1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec.c - kexec system call core code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/panic_notifier.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/uaccess.h>
33 #include <linux/io.h>
34 #include <linux/console.h>
35 #include <linux/vmalloc.h>
36 #include <linux/swap.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/compiler.h>
39 #include <linux/hugetlb.h>
40 #include <linux/objtool.h>
41 #include <linux/kmsg_dump.h>
42
43 #include <asm/page.h>
44 #include <asm/sections.h>
45
46 #include <crypto/hash.h>
47 #include "kexec_internal.h"
48
49 atomic_t __kexec_lock = ATOMIC_INIT(0);
50
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
53
54 /* Flag to indicate we are going to kexec a new kernel */
55 bool kexec_in_progress = false;
56
57
58 /* Location of the reserved area for the crash kernel */
59 struct resource crashk_res = {
60 .name = "Crash kernel",
61 .start = 0,
62 .end = 0,
63 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
64 .desc = IORES_DESC_CRASH_KERNEL
65 };
66 struct resource crashk_low_res = {
67 .name = "Crash kernel",
68 .start = 0,
69 .end = 0,
70 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
71 .desc = IORES_DESC_CRASH_KERNEL
72 };
73
kexec_should_crash(struct task_struct * p)74 int kexec_should_crash(struct task_struct *p)
75 {
76 /*
77 * If crash_kexec_post_notifiers is enabled, don't run
78 * crash_kexec() here yet, which must be run after panic
79 * notifiers in panic().
80 */
81 if (crash_kexec_post_notifiers)
82 return 0;
83 /*
84 * There are 4 panic() calls in do_exit() path, each of which
85 * corresponds to each of these 4 conditions.
86 */
87 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 return 1;
89 return 0;
90 }
91
kexec_crash_loaded(void)92 int kexec_crash_loaded(void)
93 {
94 return !!kexec_crash_image;
95 }
96 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
97
98 /*
99 * When kexec transitions to the new kernel there is a one-to-one
100 * mapping between physical and virtual addresses. On processors
101 * where you can disable the MMU this is trivial, and easy. For
102 * others it is still a simple predictable page table to setup.
103 *
104 * In that environment kexec copies the new kernel to its final
105 * resting place. This means I can only support memory whose
106 * physical address can fit in an unsigned long. In particular
107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108 * If the assembly stub has more restrictive requirements
109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110 * defined more restrictively in <asm/kexec.h>.
111 *
112 * The code for the transition from the current kernel to the
113 * new kernel is placed in the control_code_buffer, whose size
114 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
115 * page of memory is necessary, but some architectures require more.
116 * Because this memory must be identity mapped in the transition from
117 * virtual to physical addresses it must live in the range
118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119 * modifiable.
120 *
121 * The assembly stub in the control code buffer is passed a linked list
122 * of descriptor pages detailing the source pages of the new kernel,
123 * and the destination addresses of those source pages. As this data
124 * structure is not used in the context of the current OS, it must
125 * be self-contained.
126 *
127 * The code has been made to work with highmem pages and will use a
128 * destination page in its final resting place (if it happens
129 * to allocate it). The end product of this is that most of the
130 * physical address space, and most of RAM can be used.
131 *
132 * Future directions include:
133 * - allocating a page table with the control code buffer identity
134 * mapped, to simplify machine_kexec and make kexec_on_panic more
135 * reliable.
136 */
137
138 /*
139 * KIMAGE_NO_DEST is an impossible destination address..., for
140 * allocating pages whose destination address we do not care about.
141 */
142 #define KIMAGE_NO_DEST (-1UL)
143 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
144
145 static struct page *kimage_alloc_page(struct kimage *image,
146 gfp_t gfp_mask,
147 unsigned long dest);
148
sanity_check_segment_list(struct kimage * image)149 int sanity_check_segment_list(struct kimage *image)
150 {
151 int i;
152 unsigned long nr_segments = image->nr_segments;
153 unsigned long total_pages = 0;
154 unsigned long nr_pages = totalram_pages();
155
156 /*
157 * Verify we have good destination addresses. The caller is
158 * responsible for making certain we don't attempt to load
159 * the new image into invalid or reserved areas of RAM. This
160 * just verifies it is an address we can use.
161 *
162 * Since the kernel does everything in page size chunks ensure
163 * the destination addresses are page aligned. Too many
164 * special cases crop of when we don't do this. The most
165 * insidious is getting overlapping destination addresses
166 * simply because addresses are changed to page size
167 * granularity.
168 */
169 for (i = 0; i < nr_segments; i++) {
170 unsigned long mstart, mend;
171
172 mstart = image->segment[i].mem;
173 mend = mstart + image->segment[i].memsz;
174 if (mstart > mend)
175 return -EADDRNOTAVAIL;
176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 return -EADDRNOTAVAIL;
178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 return -EADDRNOTAVAIL;
180 }
181
182 /* Verify our destination addresses do not overlap.
183 * If we alloed overlapping destination addresses
184 * through very weird things can happen with no
185 * easy explanation as one segment stops on another.
186 */
187 for (i = 0; i < nr_segments; i++) {
188 unsigned long mstart, mend;
189 unsigned long j;
190
191 mstart = image->segment[i].mem;
192 mend = mstart + image->segment[i].memsz;
193 for (j = 0; j < i; j++) {
194 unsigned long pstart, pend;
195
196 pstart = image->segment[j].mem;
197 pend = pstart + image->segment[j].memsz;
198 /* Do the segments overlap ? */
199 if ((mend > pstart) && (mstart < pend))
200 return -EINVAL;
201 }
202 }
203
204 /* Ensure our buffer sizes are strictly less than
205 * our memory sizes. This should always be the case,
206 * and it is easier to check up front than to be surprised
207 * later on.
208 */
209 for (i = 0; i < nr_segments; i++) {
210 if (image->segment[i].bufsz > image->segment[i].memsz)
211 return -EINVAL;
212 }
213
214 /*
215 * Verify that no more than half of memory will be consumed. If the
216 * request from userspace is too large, a large amount of time will be
217 * wasted allocating pages, which can cause a soft lockup.
218 */
219 for (i = 0; i < nr_segments; i++) {
220 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
221 return -EINVAL;
222
223 total_pages += PAGE_COUNT(image->segment[i].memsz);
224 }
225
226 if (total_pages > nr_pages / 2)
227 return -EINVAL;
228
229 /*
230 * Verify we have good destination addresses. Normally
231 * the caller is responsible for making certain we don't
232 * attempt to load the new image into invalid or reserved
233 * areas of RAM. But crash kernels are preloaded into a
234 * reserved area of ram. We must ensure the addresses
235 * are in the reserved area otherwise preloading the
236 * kernel could corrupt things.
237 */
238
239 if (image->type == KEXEC_TYPE_CRASH) {
240 for (i = 0; i < nr_segments; i++) {
241 unsigned long mstart, mend;
242
243 mstart = image->segment[i].mem;
244 mend = mstart + image->segment[i].memsz - 1;
245 /* Ensure we are within the crash kernel limits */
246 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 (mend > phys_to_boot_phys(crashk_res.end)))
248 return -EADDRNOTAVAIL;
249 }
250 }
251
252 return 0;
253 }
254
do_kimage_alloc_init(void)255 struct kimage *do_kimage_alloc_init(void)
256 {
257 struct kimage *image;
258
259 /* Allocate a controlling structure */
260 image = kzalloc(sizeof(*image), GFP_KERNEL);
261 if (!image)
262 return NULL;
263
264 image->head = 0;
265 image->entry = &image->head;
266 image->last_entry = &image->head;
267 image->control_page = ~0; /* By default this does not apply */
268 image->type = KEXEC_TYPE_DEFAULT;
269
270 /* Initialize the list of control pages */
271 INIT_LIST_HEAD(&image->control_pages);
272
273 /* Initialize the list of destination pages */
274 INIT_LIST_HEAD(&image->dest_pages);
275
276 /* Initialize the list of unusable pages */
277 INIT_LIST_HEAD(&image->unusable_pages);
278
279 return image;
280 }
281
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)282 int kimage_is_destination_range(struct kimage *image,
283 unsigned long start,
284 unsigned long end)
285 {
286 unsigned long i;
287
288 for (i = 0; i < image->nr_segments; i++) {
289 unsigned long mstart, mend;
290
291 mstart = image->segment[i].mem;
292 mend = mstart + image->segment[i].memsz;
293 if ((end > mstart) && (start < mend))
294 return 1;
295 }
296
297 return 0;
298 }
299
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301 {
302 struct page *pages;
303
304 if (fatal_signal_pending(current))
305 return NULL;
306 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
307 if (pages) {
308 unsigned int count, i;
309
310 pages->mapping = NULL;
311 set_page_private(pages, order);
312 count = 1 << order;
313 for (i = 0; i < count; i++)
314 SetPageReserved(pages + i);
315
316 arch_kexec_post_alloc_pages(page_address(pages), count,
317 gfp_mask);
318
319 if (gfp_mask & __GFP_ZERO)
320 for (i = 0; i < count; i++)
321 clear_highpage(pages + i);
322 }
323
324 return pages;
325 }
326
kimage_free_pages(struct page * page)327 static void kimage_free_pages(struct page *page)
328 {
329 unsigned int order, count, i;
330
331 order = page_private(page);
332 count = 1 << order;
333
334 arch_kexec_pre_free_pages(page_address(page), count);
335
336 for (i = 0; i < count; i++)
337 ClearPageReserved(page + i);
338 __free_pages(page, order);
339 }
340
kimage_free_page_list(struct list_head * list)341 void kimage_free_page_list(struct list_head *list)
342 {
343 struct page *page, *next;
344
345 list_for_each_entry_safe(page, next, list, lru) {
346 list_del(&page->lru);
347 kimage_free_pages(page);
348 }
349 }
350
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)351 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
352 unsigned int order)
353 {
354 /* Control pages are special, they are the intermediaries
355 * that are needed while we copy the rest of the pages
356 * to their final resting place. As such they must
357 * not conflict with either the destination addresses
358 * or memory the kernel is already using.
359 *
360 * The only case where we really need more than one of
361 * these are for architectures where we cannot disable
362 * the MMU and must instead generate an identity mapped
363 * page table for all of the memory.
364 *
365 * At worst this runs in O(N) of the image size.
366 */
367 struct list_head extra_pages;
368 struct page *pages;
369 unsigned int count;
370
371 count = 1 << order;
372 INIT_LIST_HEAD(&extra_pages);
373
374 /* Loop while I can allocate a page and the page allocated
375 * is a destination page.
376 */
377 do {
378 unsigned long pfn, epfn, addr, eaddr;
379
380 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
381 if (!pages)
382 break;
383 pfn = page_to_boot_pfn(pages);
384 epfn = pfn + count;
385 addr = pfn << PAGE_SHIFT;
386 eaddr = epfn << PAGE_SHIFT;
387 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
388 kimage_is_destination_range(image, addr, eaddr)) {
389 list_add(&pages->lru, &extra_pages);
390 pages = NULL;
391 }
392 } while (!pages);
393
394 if (pages) {
395 /* Remember the allocated page... */
396 list_add(&pages->lru, &image->control_pages);
397
398 /* Because the page is already in it's destination
399 * location we will never allocate another page at
400 * that address. Therefore kimage_alloc_pages
401 * will not return it (again) and we don't need
402 * to give it an entry in image->segment[].
403 */
404 }
405 /* Deal with the destination pages I have inadvertently allocated.
406 *
407 * Ideally I would convert multi-page allocations into single
408 * page allocations, and add everything to image->dest_pages.
409 *
410 * For now it is simpler to just free the pages.
411 */
412 kimage_free_page_list(&extra_pages);
413
414 return pages;
415 }
416
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)417 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
418 unsigned int order)
419 {
420 /* Control pages are special, they are the intermediaries
421 * that are needed while we copy the rest of the pages
422 * to their final resting place. As such they must
423 * not conflict with either the destination addresses
424 * or memory the kernel is already using.
425 *
426 * Control pages are also the only pags we must allocate
427 * when loading a crash kernel. All of the other pages
428 * are specified by the segments and we just memcpy
429 * into them directly.
430 *
431 * The only case where we really need more than one of
432 * these are for architectures where we cannot disable
433 * the MMU and must instead generate an identity mapped
434 * page table for all of the memory.
435 *
436 * Given the low demand this implements a very simple
437 * allocator that finds the first hole of the appropriate
438 * size in the reserved memory region, and allocates all
439 * of the memory up to and including the hole.
440 */
441 unsigned long hole_start, hole_end, size;
442 struct page *pages;
443
444 pages = NULL;
445 size = (1 << order) << PAGE_SHIFT;
446 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
447 hole_end = hole_start + size - 1;
448 while (hole_end <= crashk_res.end) {
449 unsigned long i;
450
451 cond_resched();
452
453 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
454 break;
455 /* See if I overlap any of the segments */
456 for (i = 0; i < image->nr_segments; i++) {
457 unsigned long mstart, mend;
458
459 mstart = image->segment[i].mem;
460 mend = mstart + image->segment[i].memsz - 1;
461 if ((hole_end >= mstart) && (hole_start <= mend)) {
462 /* Advance the hole to the end of the segment */
463 hole_start = (mend + (size - 1)) & ~(size - 1);
464 hole_end = hole_start + size - 1;
465 break;
466 }
467 }
468 /* If I don't overlap any segments I have found my hole! */
469 if (i == image->nr_segments) {
470 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
471 image->control_page = hole_end;
472 break;
473 }
474 }
475
476 /* Ensure that these pages are decrypted if SME is enabled. */
477 if (pages)
478 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
479
480 return pages;
481 }
482
483
kimage_alloc_control_pages(struct kimage * image,unsigned int order)484 struct page *kimage_alloc_control_pages(struct kimage *image,
485 unsigned int order)
486 {
487 struct page *pages = NULL;
488
489 switch (image->type) {
490 case KEXEC_TYPE_DEFAULT:
491 pages = kimage_alloc_normal_control_pages(image, order);
492 break;
493 case KEXEC_TYPE_CRASH:
494 pages = kimage_alloc_crash_control_pages(image, order);
495 break;
496 }
497
498 return pages;
499 }
500
kimage_crash_copy_vmcoreinfo(struct kimage * image)501 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
502 {
503 struct page *vmcoreinfo_page;
504 void *safecopy;
505
506 if (image->type != KEXEC_TYPE_CRASH)
507 return 0;
508
509 /*
510 * For kdump, allocate one vmcoreinfo safe copy from the
511 * crash memory. as we have arch_kexec_protect_crashkres()
512 * after kexec syscall, we naturally protect it from write
513 * (even read) access under kernel direct mapping. But on
514 * the other hand, we still need to operate it when crash
515 * happens to generate vmcoreinfo note, hereby we rely on
516 * vmap for this purpose.
517 */
518 vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
519 if (!vmcoreinfo_page) {
520 pr_warn("Could not allocate vmcoreinfo buffer\n");
521 return -ENOMEM;
522 }
523 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
524 if (!safecopy) {
525 pr_warn("Could not vmap vmcoreinfo buffer\n");
526 return -ENOMEM;
527 }
528
529 image->vmcoreinfo_data_copy = safecopy;
530 crash_update_vmcoreinfo_safecopy(safecopy);
531
532 return 0;
533 }
534
kimage_add_entry(struct kimage * image,kimage_entry_t entry)535 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
536 {
537 if (*image->entry != 0)
538 image->entry++;
539
540 if (image->entry == image->last_entry) {
541 kimage_entry_t *ind_page;
542 struct page *page;
543
544 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
545 if (!page)
546 return -ENOMEM;
547
548 ind_page = page_address(page);
549 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
550 image->entry = ind_page;
551 image->last_entry = ind_page +
552 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
553 }
554 *image->entry = entry;
555 image->entry++;
556 *image->entry = 0;
557
558 return 0;
559 }
560
kimage_set_destination(struct kimage * image,unsigned long destination)561 static int kimage_set_destination(struct kimage *image,
562 unsigned long destination)
563 {
564 int result;
565
566 destination &= PAGE_MASK;
567 result = kimage_add_entry(image, destination | IND_DESTINATION);
568
569 return result;
570 }
571
572
kimage_add_page(struct kimage * image,unsigned long page)573 static int kimage_add_page(struct kimage *image, unsigned long page)
574 {
575 int result;
576
577 page &= PAGE_MASK;
578 result = kimage_add_entry(image, page | IND_SOURCE);
579
580 return result;
581 }
582
583
kimage_free_extra_pages(struct kimage * image)584 static void kimage_free_extra_pages(struct kimage *image)
585 {
586 /* Walk through and free any extra destination pages I may have */
587 kimage_free_page_list(&image->dest_pages);
588
589 /* Walk through and free any unusable pages I have cached */
590 kimage_free_page_list(&image->unusable_pages);
591
592 }
593
machine_kexec_post_load(struct kimage * image)594 int __weak machine_kexec_post_load(struct kimage *image)
595 {
596 return 0;
597 }
598
kimage_terminate(struct kimage * image)599 void kimage_terminate(struct kimage *image)
600 {
601 if (*image->entry != 0)
602 image->entry++;
603
604 *image->entry = IND_DONE;
605 }
606
607 #define for_each_kimage_entry(image, ptr, entry) \
608 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
609 ptr = (entry & IND_INDIRECTION) ? \
610 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
611
kimage_free_entry(kimage_entry_t entry)612 static void kimage_free_entry(kimage_entry_t entry)
613 {
614 struct page *page;
615
616 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
617 kimage_free_pages(page);
618 }
619
kimage_free(struct kimage * image)620 void kimage_free(struct kimage *image)
621 {
622 kimage_entry_t *ptr, entry;
623 kimage_entry_t ind = 0;
624
625 if (!image)
626 return;
627
628 if (image->vmcoreinfo_data_copy) {
629 crash_update_vmcoreinfo_safecopy(NULL);
630 vunmap(image->vmcoreinfo_data_copy);
631 }
632
633 kimage_free_extra_pages(image);
634 for_each_kimage_entry(image, ptr, entry) {
635 if (entry & IND_INDIRECTION) {
636 /* Free the previous indirection page */
637 if (ind & IND_INDIRECTION)
638 kimage_free_entry(ind);
639 /* Save this indirection page until we are
640 * done with it.
641 */
642 ind = entry;
643 } else if (entry & IND_SOURCE)
644 kimage_free_entry(entry);
645 }
646 /* Free the final indirection page */
647 if (ind & IND_INDIRECTION)
648 kimage_free_entry(ind);
649
650 /* Handle any machine specific cleanup */
651 machine_kexec_cleanup(image);
652
653 /* Free the kexec control pages... */
654 kimage_free_page_list(&image->control_pages);
655
656 /*
657 * Free up any temporary buffers allocated. This might hit if
658 * error occurred much later after buffer allocation.
659 */
660 if (image->file_mode)
661 kimage_file_post_load_cleanup(image);
662
663 kfree(image);
664 }
665
kimage_dst_used(struct kimage * image,unsigned long page)666 static kimage_entry_t *kimage_dst_used(struct kimage *image,
667 unsigned long page)
668 {
669 kimage_entry_t *ptr, entry;
670 unsigned long destination = 0;
671
672 for_each_kimage_entry(image, ptr, entry) {
673 if (entry & IND_DESTINATION)
674 destination = entry & PAGE_MASK;
675 else if (entry & IND_SOURCE) {
676 if (page == destination)
677 return ptr;
678 destination += PAGE_SIZE;
679 }
680 }
681
682 return NULL;
683 }
684
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)685 static struct page *kimage_alloc_page(struct kimage *image,
686 gfp_t gfp_mask,
687 unsigned long destination)
688 {
689 /*
690 * Here we implement safeguards to ensure that a source page
691 * is not copied to its destination page before the data on
692 * the destination page is no longer useful.
693 *
694 * To do this we maintain the invariant that a source page is
695 * either its own destination page, or it is not a
696 * destination page at all.
697 *
698 * That is slightly stronger than required, but the proof
699 * that no problems will not occur is trivial, and the
700 * implementation is simply to verify.
701 *
702 * When allocating all pages normally this algorithm will run
703 * in O(N) time, but in the worst case it will run in O(N^2)
704 * time. If the runtime is a problem the data structures can
705 * be fixed.
706 */
707 struct page *page;
708 unsigned long addr;
709
710 /*
711 * Walk through the list of destination pages, and see if I
712 * have a match.
713 */
714 list_for_each_entry(page, &image->dest_pages, lru) {
715 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
716 if (addr == destination) {
717 list_del(&page->lru);
718 return page;
719 }
720 }
721 page = NULL;
722 while (1) {
723 kimage_entry_t *old;
724
725 /* Allocate a page, if we run out of memory give up */
726 page = kimage_alloc_pages(gfp_mask, 0);
727 if (!page)
728 return NULL;
729 /* If the page cannot be used file it away */
730 if (page_to_boot_pfn(page) >
731 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
732 list_add(&page->lru, &image->unusable_pages);
733 continue;
734 }
735 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
736
737 /* If it is the destination page we want use it */
738 if (addr == destination)
739 break;
740
741 /* If the page is not a destination page use it */
742 if (!kimage_is_destination_range(image, addr,
743 addr + PAGE_SIZE))
744 break;
745
746 /*
747 * I know that the page is someones destination page.
748 * See if there is already a source page for this
749 * destination page. And if so swap the source pages.
750 */
751 old = kimage_dst_used(image, addr);
752 if (old) {
753 /* If so move it */
754 unsigned long old_addr;
755 struct page *old_page;
756
757 old_addr = *old & PAGE_MASK;
758 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
759 copy_highpage(page, old_page);
760 *old = addr | (*old & ~PAGE_MASK);
761
762 /* The old page I have found cannot be a
763 * destination page, so return it if it's
764 * gfp_flags honor the ones passed in.
765 */
766 if (!(gfp_mask & __GFP_HIGHMEM) &&
767 PageHighMem(old_page)) {
768 kimage_free_pages(old_page);
769 continue;
770 }
771 addr = old_addr;
772 page = old_page;
773 break;
774 }
775 /* Place the page on the destination list, to be used later */
776 list_add(&page->lru, &image->dest_pages);
777 }
778
779 return page;
780 }
781
kimage_load_normal_segment(struct kimage * image,struct kexec_segment * segment)782 static int kimage_load_normal_segment(struct kimage *image,
783 struct kexec_segment *segment)
784 {
785 unsigned long maddr;
786 size_t ubytes, mbytes;
787 int result;
788 unsigned char __user *buf = NULL;
789 unsigned char *kbuf = NULL;
790
791 result = 0;
792 if (image->file_mode)
793 kbuf = segment->kbuf;
794 else
795 buf = segment->buf;
796 ubytes = segment->bufsz;
797 mbytes = segment->memsz;
798 maddr = segment->mem;
799
800 result = kimage_set_destination(image, maddr);
801 if (result < 0)
802 goto out;
803
804 while (mbytes) {
805 struct page *page;
806 char *ptr;
807 size_t uchunk, mchunk;
808
809 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
810 if (!page) {
811 result = -ENOMEM;
812 goto out;
813 }
814 result = kimage_add_page(image, page_to_boot_pfn(page)
815 << PAGE_SHIFT);
816 if (result < 0)
817 goto out;
818
819 ptr = kmap(page);
820 /* Start with a clear page */
821 clear_page(ptr);
822 ptr += maddr & ~PAGE_MASK;
823 mchunk = min_t(size_t, mbytes,
824 PAGE_SIZE - (maddr & ~PAGE_MASK));
825 uchunk = min(ubytes, mchunk);
826
827 /* For file based kexec, source pages are in kernel memory */
828 if (image->file_mode)
829 memcpy(ptr, kbuf, uchunk);
830 else
831 result = copy_from_user(ptr, buf, uchunk);
832 kunmap(page);
833 if (result) {
834 result = -EFAULT;
835 goto out;
836 }
837 ubytes -= uchunk;
838 maddr += mchunk;
839 if (image->file_mode)
840 kbuf += mchunk;
841 else
842 buf += mchunk;
843 mbytes -= mchunk;
844
845 cond_resched();
846 }
847 out:
848 return result;
849 }
850
kimage_load_crash_segment(struct kimage * image,struct kexec_segment * segment)851 static int kimage_load_crash_segment(struct kimage *image,
852 struct kexec_segment *segment)
853 {
854 /* For crash dumps kernels we simply copy the data from
855 * user space to it's destination.
856 * We do things a page at a time for the sake of kmap.
857 */
858 unsigned long maddr;
859 size_t ubytes, mbytes;
860 int result;
861 unsigned char __user *buf = NULL;
862 unsigned char *kbuf = NULL;
863
864 result = 0;
865 if (image->file_mode)
866 kbuf = segment->kbuf;
867 else
868 buf = segment->buf;
869 ubytes = segment->bufsz;
870 mbytes = segment->memsz;
871 maddr = segment->mem;
872 while (mbytes) {
873 struct page *page;
874 char *ptr;
875 size_t uchunk, mchunk;
876
877 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
878 if (!page) {
879 result = -ENOMEM;
880 goto out;
881 }
882 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
883 ptr = kmap(page);
884 ptr += maddr & ~PAGE_MASK;
885 mchunk = min_t(size_t, mbytes,
886 PAGE_SIZE - (maddr & ~PAGE_MASK));
887 uchunk = min(ubytes, mchunk);
888 if (mchunk > uchunk) {
889 /* Zero the trailing part of the page */
890 memset(ptr + uchunk, 0, mchunk - uchunk);
891 }
892
893 /* For file based kexec, source pages are in kernel memory */
894 if (image->file_mode)
895 memcpy(ptr, kbuf, uchunk);
896 else
897 result = copy_from_user(ptr, buf, uchunk);
898 kexec_flush_icache_page(page);
899 kunmap(page);
900 arch_kexec_pre_free_pages(page_address(page), 1);
901 if (result) {
902 result = -EFAULT;
903 goto out;
904 }
905 ubytes -= uchunk;
906 maddr += mchunk;
907 if (image->file_mode)
908 kbuf += mchunk;
909 else
910 buf += mchunk;
911 mbytes -= mchunk;
912
913 cond_resched();
914 }
915 out:
916 return result;
917 }
918
kimage_load_segment(struct kimage * image,struct kexec_segment * segment)919 int kimage_load_segment(struct kimage *image,
920 struct kexec_segment *segment)
921 {
922 int result = -ENOMEM;
923
924 switch (image->type) {
925 case KEXEC_TYPE_DEFAULT:
926 result = kimage_load_normal_segment(image, segment);
927 break;
928 case KEXEC_TYPE_CRASH:
929 result = kimage_load_crash_segment(image, segment);
930 break;
931 }
932
933 return result;
934 }
935
936 struct kimage *kexec_image;
937 struct kimage *kexec_crash_image;
938 int kexec_load_disabled;
939
940 /*
941 * No panic_cpu check version of crash_kexec(). This function is called
942 * only when panic_cpu holds the current CPU number; this is the only CPU
943 * which processes crash_kexec routines.
944 */
__crash_kexec(struct pt_regs * regs)945 void __noclone __crash_kexec(struct pt_regs *regs)
946 {
947 /* Take the kexec_lock here to prevent sys_kexec_load
948 * running on one cpu from replacing the crash kernel
949 * we are using after a panic on a different cpu.
950 *
951 * If the crash kernel was not located in a fixed area
952 * of memory the xchg(&kexec_crash_image) would be
953 * sufficient. But since I reuse the memory...
954 */
955 if (kexec_trylock()) {
956 if (kexec_crash_image) {
957 struct pt_regs fixed_regs;
958
959 crash_setup_regs(&fixed_regs, regs);
960 crash_save_vmcoreinfo();
961 machine_crash_shutdown(&fixed_regs);
962 machine_kexec(kexec_crash_image);
963 }
964 kexec_unlock();
965 }
966 }
967 STACK_FRAME_NON_STANDARD(__crash_kexec);
968
crash_kexec(struct pt_regs * regs)969 void crash_kexec(struct pt_regs *regs)
970 {
971 int old_cpu, this_cpu;
972
973 /*
974 * Only one CPU is allowed to execute the crash_kexec() code as with
975 * panic(). Otherwise parallel calls of panic() and crash_kexec()
976 * may stop each other. To exclude them, we use panic_cpu here too.
977 */
978 this_cpu = raw_smp_processor_id();
979 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
980 if (old_cpu == PANIC_CPU_INVALID) {
981 /* This is the 1st CPU which comes here, so go ahead. */
982 __crash_kexec(regs);
983
984 /*
985 * Reset panic_cpu to allow another panic()/crash_kexec()
986 * call.
987 */
988 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
989 }
990 }
991
crash_get_memory_size(void)992 ssize_t crash_get_memory_size(void)
993 {
994 ssize_t size = 0;
995
996 if (!kexec_trylock())
997 return -EBUSY;
998
999 if (crashk_res.end != crashk_res.start)
1000 size = resource_size(&crashk_res);
1001
1002 kexec_unlock();
1003 return size;
1004 }
1005
crash_free_reserved_phys_range(unsigned long begin,unsigned long end)1006 void __weak crash_free_reserved_phys_range(unsigned long begin,
1007 unsigned long end)
1008 {
1009 unsigned long addr;
1010
1011 for (addr = begin; addr < end; addr += PAGE_SIZE)
1012 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1013 }
1014
crash_shrink_memory(unsigned long new_size)1015 int crash_shrink_memory(unsigned long new_size)
1016 {
1017 int ret = 0;
1018 unsigned long start, end;
1019 unsigned long old_size;
1020 struct resource *ram_res;
1021
1022 if (!kexec_trylock())
1023 return -EBUSY;
1024
1025 if (kexec_crash_image) {
1026 ret = -ENOENT;
1027 goto unlock;
1028 }
1029 start = crashk_res.start;
1030 end = crashk_res.end;
1031 old_size = (end == 0) ? 0 : end - start + 1;
1032 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
1033 if (new_size >= old_size) {
1034 ret = (new_size == old_size) ? 0 : -EINVAL;
1035 goto unlock;
1036 }
1037
1038 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1039 if (!ram_res) {
1040 ret = -ENOMEM;
1041 goto unlock;
1042 }
1043
1044 end = start + new_size;
1045 crash_free_reserved_phys_range(end, crashk_res.end);
1046
1047 if ((start == end) && (crashk_res.parent != NULL))
1048 release_resource(&crashk_res);
1049
1050 ram_res->start = end;
1051 ram_res->end = crashk_res.end;
1052 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1053 ram_res->name = "System RAM";
1054
1055 crashk_res.end = end - 1;
1056
1057 insert_resource(&iomem_resource, ram_res);
1058
1059 unlock:
1060 kexec_unlock();
1061 return ret;
1062 }
1063
crash_save_cpu(struct pt_regs * regs,int cpu)1064 void crash_save_cpu(struct pt_regs *regs, int cpu)
1065 {
1066 struct elf_prstatus prstatus;
1067 u32 *buf;
1068
1069 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1070 return;
1071
1072 /* Using ELF notes here is opportunistic.
1073 * I need a well defined structure format
1074 * for the data I pass, and I need tags
1075 * on the data to indicate what information I have
1076 * squirrelled away. ELF notes happen to provide
1077 * all of that, so there is no need to invent something new.
1078 */
1079 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1080 if (!buf)
1081 return;
1082 memset(&prstatus, 0, sizeof(prstatus));
1083 prstatus.common.pr_pid = current->pid;
1084 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1085 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1086 &prstatus, sizeof(prstatus));
1087 final_note(buf);
1088 }
1089
crash_notes_memory_init(void)1090 static int __init crash_notes_memory_init(void)
1091 {
1092 /* Allocate memory for saving cpu registers. */
1093 size_t size, align;
1094
1095 /*
1096 * crash_notes could be allocated across 2 vmalloc pages when percpu
1097 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1098 * pages are also on 2 continuous physical pages. In this case the
1099 * 2nd part of crash_notes in 2nd page could be lost since only the
1100 * starting address and size of crash_notes are exported through sysfs.
1101 * Here round up the size of crash_notes to the nearest power of two
1102 * and pass it to __alloc_percpu as align value. This can make sure
1103 * crash_notes is allocated inside one physical page.
1104 */
1105 size = sizeof(note_buf_t);
1106 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1107
1108 /*
1109 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1110 * definitely will be in 2 pages with that.
1111 */
1112 BUILD_BUG_ON(size > PAGE_SIZE);
1113
1114 crash_notes = __alloc_percpu(size, align);
1115 if (!crash_notes) {
1116 pr_warn("Memory allocation for saving cpu register states failed\n");
1117 return -ENOMEM;
1118 }
1119 return 0;
1120 }
1121 subsys_initcall(crash_notes_memory_init);
1122
1123
1124 /*
1125 * Move into place and start executing a preloaded standalone
1126 * executable. If nothing was preloaded return an error.
1127 */
kernel_kexec(void)1128 int kernel_kexec(void)
1129 {
1130 int error = 0;
1131
1132 if (!kexec_trylock())
1133 return -EBUSY;
1134 if (!kexec_image) {
1135 error = -EINVAL;
1136 goto Unlock;
1137 }
1138
1139 #ifdef CONFIG_KEXEC_JUMP
1140 if (kexec_image->preserve_context) {
1141 pm_prepare_console();
1142 error = freeze_processes();
1143 if (error) {
1144 error = -EBUSY;
1145 goto Restore_console;
1146 }
1147 suspend_console();
1148 error = dpm_suspend_start(PMSG_FREEZE);
1149 if (error)
1150 goto Resume_console;
1151 /* At this point, dpm_suspend_start() has been called,
1152 * but *not* dpm_suspend_end(). We *must* call
1153 * dpm_suspend_end() now. Otherwise, drivers for
1154 * some devices (e.g. interrupt controllers) become
1155 * desynchronized with the actual state of the
1156 * hardware at resume time, and evil weirdness ensues.
1157 */
1158 error = dpm_suspend_end(PMSG_FREEZE);
1159 if (error)
1160 goto Resume_devices;
1161 error = suspend_disable_secondary_cpus();
1162 if (error)
1163 goto Enable_cpus;
1164 local_irq_disable();
1165 error = syscore_suspend();
1166 if (error)
1167 goto Enable_irqs;
1168 } else
1169 #endif
1170 {
1171 kexec_in_progress = true;
1172 kernel_restart_prepare("kexec reboot");
1173 migrate_to_reboot_cpu();
1174
1175 /*
1176 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1177 * no further code needs to use CPU hotplug (which is true in
1178 * the reboot case). However, the kexec path depends on using
1179 * CPU hotplug again; so re-enable it here.
1180 */
1181 cpu_hotplug_enable();
1182 pr_notice("Starting new kernel\n");
1183 machine_shutdown();
1184 }
1185
1186 kmsg_dump(KMSG_DUMP_SHUTDOWN);
1187 machine_kexec(kexec_image);
1188
1189 #ifdef CONFIG_KEXEC_JUMP
1190 if (kexec_image->preserve_context) {
1191 syscore_resume();
1192 Enable_irqs:
1193 local_irq_enable();
1194 Enable_cpus:
1195 suspend_enable_secondary_cpus();
1196 dpm_resume_start(PMSG_RESTORE);
1197 Resume_devices:
1198 dpm_resume_end(PMSG_RESTORE);
1199 Resume_console:
1200 resume_console();
1201 thaw_processes();
1202 Restore_console:
1203 pm_restore_console();
1204 }
1205 #endif
1206
1207 Unlock:
1208 kexec_unlock();
1209 return error;
1210 }
1211
1212 /*
1213 * Protection mechanism for crashkernel reserved memory after
1214 * the kdump kernel is loaded.
1215 *
1216 * Provide an empty default implementation here -- architecture
1217 * code may override this
1218 */
arch_kexec_protect_crashkres(void)1219 void __weak arch_kexec_protect_crashkres(void)
1220 {}
1221
arch_kexec_unprotect_crashkres(void)1222 void __weak arch_kexec_unprotect_crashkres(void)
1223 {}
1224