• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 #include <trace/hooks/wqlockup.h>
58 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
59 #undef TRACE_INCLUDE_PATH
60 
61 enum {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 */
78 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
79 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
80 
81 	/* worker flags */
82 	WORKER_DIE		= 1 << 1,	/* die die die */
83 	WORKER_IDLE		= 1 << 2,	/* is idle */
84 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
85 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
86 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
87 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
88 
89 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
90 				  WORKER_UNBOUND | WORKER_REBOUND,
91 
92 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
93 
94 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
95 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
96 
97 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
98 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
99 
100 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
101 						/* call for help after 10ms
102 						   (min two ticks) */
103 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
104 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
105 
106 	/*
107 	 * Rescue workers are used only on emergencies and shared by
108 	 * all cpus.  Give MIN_NICE.
109 	 */
110 	RESCUER_NICE_LEVEL	= MIN_NICE,
111 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
112 
113 	WQ_NAME_LEN		= 24,
114 };
115 
116 /*
117  * Structure fields follow one of the following exclusion rules.
118  *
119  * I: Modifiable by initialization/destruction paths and read-only for
120  *    everyone else.
121  *
122  * P: Preemption protected.  Disabling preemption is enough and should
123  *    only be modified and accessed from the local cpu.
124  *
125  * L: pool->lock protected.  Access with pool->lock held.
126  *
127  * X: During normal operation, modification requires pool->lock and should
128  *    be done only from local cpu.  Either disabling preemption on local
129  *    cpu or grabbing pool->lock is enough for read access.  If
130  *    POOL_DISASSOCIATED is set, it's identical to L.
131  *
132  * A: wq_pool_attach_mutex protected.
133  *
134  * PL: wq_pool_mutex protected.
135  *
136  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
137  *
138  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
139  *
140  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
141  *      RCU for reads.
142  *
143  * WQ: wq->mutex protected.
144  *
145  * WR: wq->mutex protected for writes.  RCU protected for reads.
146  *
147  * MD: wq_mayday_lock protected.
148  */
149 
150 /* struct worker is defined in workqueue_internal.h */
151 
152 struct worker_pool {
153 	raw_spinlock_t		lock;		/* the pool lock */
154 	int			cpu;		/* I: the associated cpu */
155 	int			node;		/* I: the associated node ID */
156 	int			id;		/* I: pool ID */
157 	unsigned int		flags;		/* X: flags */
158 
159 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
160 
161 	struct list_head	worklist;	/* L: list of pending works */
162 
163 	int			nr_workers;	/* L: total number of workers */
164 	int			nr_idle;	/* L: currently idle workers */
165 
166 	struct list_head	idle_list;	/* X: list of idle workers */
167 	struct timer_list	idle_timer;	/* L: worker idle timeout */
168 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
169 
170 	/* a workers is either on busy_hash or idle_list, or the manager */
171 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
172 						/* L: hash of busy workers */
173 
174 	struct worker		*manager;	/* L: purely informational */
175 	struct list_head	workers;	/* A: attached workers */
176 	struct completion	*detach_completion; /* all workers detached */
177 
178 	struct ida		worker_ida;	/* worker IDs for task name */
179 
180 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
181 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
182 	int			refcnt;		/* PL: refcnt for unbound pools */
183 
184 	/*
185 	 * The current concurrency level.  As it's likely to be accessed
186 	 * from other CPUs during try_to_wake_up(), put it in a separate
187 	 * cacheline.
188 	 */
189 	atomic_t		nr_running ____cacheline_aligned_in_smp;
190 
191 	/*
192 	 * Destruction of pool is RCU protected to allow dereferences
193 	 * from get_work_pool().
194 	 */
195 	struct rcu_head		rcu;
196 } ____cacheline_aligned_in_smp;
197 
198 /*
199  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
200  * of work_struct->data are used for flags and the remaining high bits
201  * point to the pwq; thus, pwqs need to be aligned at two's power of the
202  * number of flag bits.
203  */
204 struct pool_workqueue {
205 	struct worker_pool	*pool;		/* I: the associated pool */
206 	struct workqueue_struct *wq;		/* I: the owning workqueue */
207 	int			work_color;	/* L: current color */
208 	int			flush_color;	/* L: flushing color */
209 	int			refcnt;		/* L: reference count */
210 	int			nr_in_flight[WORK_NR_COLORS];
211 						/* L: nr of in_flight works */
212 
213 	/*
214 	 * nr_active management and WORK_STRUCT_INACTIVE:
215 	 *
216 	 * When pwq->nr_active >= max_active, new work item is queued to
217 	 * pwq->inactive_works instead of pool->worklist and marked with
218 	 * WORK_STRUCT_INACTIVE.
219 	 *
220 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
221 	 * in pwq->nr_active and all work items in pwq->inactive_works are
222 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
223 	 * work items are in pwq->inactive_works.  Some of them are ready to
224 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
225 	 * only struct wq_barrier which is used for flush_work() and should
226 	 * not participate in pwq->nr_active.  For non-barrier work item, it
227 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
228 	 */
229 	int			nr_active;	/* L: nr of active works */
230 	int			max_active;	/* L: max active works */
231 	struct list_head	inactive_works;	/* L: inactive works */
232 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
233 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
234 
235 	/*
236 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
237 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
238 	 * itself is also RCU protected so that the first pwq can be
239 	 * determined without grabbing wq->mutex.
240 	 */
241 	struct work_struct	unbound_release_work;
242 	struct rcu_head		rcu;
243 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
244 
245 /*
246  * Structure used to wait for workqueue flush.
247  */
248 struct wq_flusher {
249 	struct list_head	list;		/* WQ: list of flushers */
250 	int			flush_color;	/* WQ: flush color waiting for */
251 	struct completion	done;		/* flush completion */
252 };
253 
254 struct wq_device;
255 
256 /*
257  * The externally visible workqueue.  It relays the issued work items to
258  * the appropriate worker_pool through its pool_workqueues.
259  */
260 struct workqueue_struct {
261 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
262 	struct list_head	list;		/* PR: list of all workqueues */
263 
264 	struct mutex		mutex;		/* protects this wq */
265 	int			work_color;	/* WQ: current work color */
266 	int			flush_color;	/* WQ: current flush color */
267 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
268 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
269 	struct list_head	flusher_queue;	/* WQ: flush waiters */
270 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
271 
272 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
273 	struct worker		*rescuer;	/* MD: rescue worker */
274 
275 	int			nr_drainers;	/* WQ: drain in progress */
276 	int			saved_max_active; /* WQ: saved pwq max_active */
277 
278 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
279 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
280 
281 #ifdef CONFIG_SYSFS
282 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
283 #endif
284 #ifdef CONFIG_LOCKDEP
285 	char			*lock_name;
286 	struct lock_class_key	key;
287 	struct lockdep_map	lockdep_map;
288 #endif
289 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
290 
291 	/*
292 	 * Destruction of workqueue_struct is RCU protected to allow walking
293 	 * the workqueues list without grabbing wq_pool_mutex.
294 	 * This is used to dump all workqueues from sysrq.
295 	 */
296 	struct rcu_head		rcu;
297 
298 	/* hot fields used during command issue, aligned to cacheline */
299 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
300 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
301 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
302 };
303 
304 static struct kmem_cache *pwq_cache;
305 
306 static cpumask_var_t *wq_numa_possible_cpumask;
307 					/* possible CPUs of each node */
308 
309 static bool wq_disable_numa;
310 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
311 
312 /* see the comment above the definition of WQ_POWER_EFFICIENT */
313 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
314 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
315 
316 static bool wq_online;			/* can kworkers be created yet? */
317 
318 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
319 
320 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
321 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
322 
323 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
324 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
325 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
326 /* wait for manager to go away */
327 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
328 
329 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
330 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
331 
332 /* PL: allowable cpus for unbound wqs and work items */
333 static cpumask_var_t wq_unbound_cpumask;
334 
335 /* CPU where unbound work was last round robin scheduled from this CPU */
336 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
337 
338 /*
339  * Local execution of unbound work items is no longer guaranteed.  The
340  * following always forces round-robin CPU selection on unbound work items
341  * to uncover usages which depend on it.
342  */
343 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
344 static bool wq_debug_force_rr_cpu = true;
345 #else
346 static bool wq_debug_force_rr_cpu = false;
347 #endif
348 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
349 
350 /* the per-cpu worker pools */
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
352 
353 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
354 
355 /* PL: hash of all unbound pools keyed by pool->attrs */
356 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
357 
358 /* I: attributes used when instantiating standard unbound pools on demand */
359 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
360 
361 /* I: attributes used when instantiating ordered pools on demand */
362 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
363 
364 struct workqueue_struct *system_wq __read_mostly;
365 EXPORT_SYMBOL(system_wq);
366 struct workqueue_struct *system_highpri_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_highpri_wq);
368 struct workqueue_struct *system_long_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_long_wq);
370 struct workqueue_struct *system_unbound_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_unbound_wq);
372 struct workqueue_struct *system_freezable_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_wq);
374 struct workqueue_struct *system_power_efficient_wq __read_mostly;
375 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
376 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
377 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
378 
379 static int worker_thread(void *__worker);
380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
381 static void show_pwq(struct pool_workqueue *pwq);
382 static void show_one_worker_pool(struct worker_pool *pool);
383 
384 #define CREATE_TRACE_POINTS
385 #include <trace/events/workqueue.h>
386 
387 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
388 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
389 
390 #define assert_rcu_or_pool_mutex()					\
391 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
392 			 !lockdep_is_held(&wq_pool_mutex),		\
393 			 "RCU or wq_pool_mutex should be held")
394 
395 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
396 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
397 			 !lockdep_is_held(&wq->mutex) &&		\
398 			 !lockdep_is_held(&wq_pool_mutex),		\
399 			 "RCU, wq->mutex or wq_pool_mutex should be held")
400 
401 #define for_each_cpu_worker_pool(pool, cpu)				\
402 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
403 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
404 	     (pool)++)
405 
406 /**
407  * for_each_pool - iterate through all worker_pools in the system
408  * @pool: iteration cursor
409  * @pi: integer used for iteration
410  *
411  * This must be called either with wq_pool_mutex held or RCU read
412  * locked.  If the pool needs to be used beyond the locking in effect, the
413  * caller is responsible for guaranteeing that the pool stays online.
414  *
415  * The if/else clause exists only for the lockdep assertion and can be
416  * ignored.
417  */
418 #define for_each_pool(pool, pi)						\
419 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
420 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
421 		else
422 
423 /**
424  * for_each_pool_worker - iterate through all workers of a worker_pool
425  * @worker: iteration cursor
426  * @pool: worker_pool to iterate workers of
427  *
428  * This must be called with wq_pool_attach_mutex.
429  *
430  * The if/else clause exists only for the lockdep assertion and can be
431  * ignored.
432  */
433 #define for_each_pool_worker(worker, pool)				\
434 	list_for_each_entry((worker), &(pool)->workers, node)		\
435 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
436 		else
437 
438 /**
439  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
440  * @pwq: iteration cursor
441  * @wq: the target workqueue
442  *
443  * This must be called either with wq->mutex held or RCU read locked.
444  * If the pwq needs to be used beyond the locking in effect, the caller is
445  * responsible for guaranteeing that the pwq stays online.
446  *
447  * The if/else clause exists only for the lockdep assertion and can be
448  * ignored.
449  */
450 #define for_each_pwq(pwq, wq)						\
451 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
452 				 lockdep_is_held(&(wq->mutex)))
453 
454 #ifdef CONFIG_DEBUG_OBJECTS_WORK
455 
456 static const struct debug_obj_descr work_debug_descr;
457 
work_debug_hint(void * addr)458 static void *work_debug_hint(void *addr)
459 {
460 	return ((struct work_struct *) addr)->func;
461 }
462 
work_is_static_object(void * addr)463 static bool work_is_static_object(void *addr)
464 {
465 	struct work_struct *work = addr;
466 
467 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
468 }
469 
470 /*
471  * fixup_init is called when:
472  * - an active object is initialized
473  */
work_fixup_init(void * addr,enum debug_obj_state state)474 static bool work_fixup_init(void *addr, enum debug_obj_state state)
475 {
476 	struct work_struct *work = addr;
477 
478 	switch (state) {
479 	case ODEBUG_STATE_ACTIVE:
480 		cancel_work_sync(work);
481 		debug_object_init(work, &work_debug_descr);
482 		return true;
483 	default:
484 		return false;
485 	}
486 }
487 
488 /*
489  * fixup_free is called when:
490  * - an active object is freed
491  */
work_fixup_free(void * addr,enum debug_obj_state state)492 static bool work_fixup_free(void *addr, enum debug_obj_state state)
493 {
494 	struct work_struct *work = addr;
495 
496 	switch (state) {
497 	case ODEBUG_STATE_ACTIVE:
498 		cancel_work_sync(work);
499 		debug_object_free(work, &work_debug_descr);
500 		return true;
501 	default:
502 		return false;
503 	}
504 }
505 
506 static const struct debug_obj_descr work_debug_descr = {
507 	.name		= "work_struct",
508 	.debug_hint	= work_debug_hint,
509 	.is_static_object = work_is_static_object,
510 	.fixup_init	= work_fixup_init,
511 	.fixup_free	= work_fixup_free,
512 };
513 
debug_work_activate(struct work_struct * work)514 static inline void debug_work_activate(struct work_struct *work)
515 {
516 	debug_object_activate(work, &work_debug_descr);
517 }
518 
debug_work_deactivate(struct work_struct * work)519 static inline void debug_work_deactivate(struct work_struct *work)
520 {
521 	debug_object_deactivate(work, &work_debug_descr);
522 }
523 
__init_work(struct work_struct * work,int onstack)524 void __init_work(struct work_struct *work, int onstack)
525 {
526 	if (onstack)
527 		debug_object_init_on_stack(work, &work_debug_descr);
528 	else
529 		debug_object_init(work, &work_debug_descr);
530 }
531 EXPORT_SYMBOL_GPL(__init_work);
532 
destroy_work_on_stack(struct work_struct * work)533 void destroy_work_on_stack(struct work_struct *work)
534 {
535 	debug_object_free(work, &work_debug_descr);
536 }
537 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
538 
destroy_delayed_work_on_stack(struct delayed_work * work)539 void destroy_delayed_work_on_stack(struct delayed_work *work)
540 {
541 	destroy_timer_on_stack(&work->timer);
542 	debug_object_free(&work->work, &work_debug_descr);
543 }
544 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
545 
546 #else
debug_work_activate(struct work_struct * work)547 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)548 static inline void debug_work_deactivate(struct work_struct *work) { }
549 #endif
550 
551 /**
552  * worker_pool_assign_id - allocate ID and assign it to @pool
553  * @pool: the pool pointer of interest
554  *
555  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
556  * successfully, -errno on failure.
557  */
worker_pool_assign_id(struct worker_pool * pool)558 static int worker_pool_assign_id(struct worker_pool *pool)
559 {
560 	int ret;
561 
562 	lockdep_assert_held(&wq_pool_mutex);
563 
564 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
565 			GFP_KERNEL);
566 	if (ret >= 0) {
567 		pool->id = ret;
568 		return 0;
569 	}
570 	return ret;
571 }
572 
573 /**
574  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
575  * @wq: the target workqueue
576  * @node: the node ID
577  *
578  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
579  * read locked.
580  * If the pwq needs to be used beyond the locking in effect, the caller is
581  * responsible for guaranteeing that the pwq stays online.
582  *
583  * Return: The unbound pool_workqueue for @node.
584  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)585 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
586 						  int node)
587 {
588 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
589 
590 	/*
591 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
592 	 * delayed item is pending.  The plan is to keep CPU -> NODE
593 	 * mapping valid and stable across CPU on/offlines.  Once that
594 	 * happens, this workaround can be removed.
595 	 */
596 	if (unlikely(node == NUMA_NO_NODE))
597 		return wq->dfl_pwq;
598 
599 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
600 }
601 
work_color_to_flags(int color)602 static unsigned int work_color_to_flags(int color)
603 {
604 	return color << WORK_STRUCT_COLOR_SHIFT;
605 }
606 
get_work_color(unsigned long work_data)607 static int get_work_color(unsigned long work_data)
608 {
609 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
610 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
611 }
612 
work_next_color(int color)613 static int work_next_color(int color)
614 {
615 	return (color + 1) % WORK_NR_COLORS;
616 }
617 
618 /*
619  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
620  * contain the pointer to the queued pwq.  Once execution starts, the flag
621  * is cleared and the high bits contain OFFQ flags and pool ID.
622  *
623  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
624  * and clear_work_data() can be used to set the pwq, pool or clear
625  * work->data.  These functions should only be called while the work is
626  * owned - ie. while the PENDING bit is set.
627  *
628  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
629  * corresponding to a work.  Pool is available once the work has been
630  * queued anywhere after initialization until it is sync canceled.  pwq is
631  * available only while the work item is queued.
632  *
633  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
634  * canceled.  While being canceled, a work item may have its PENDING set
635  * but stay off timer and worklist for arbitrarily long and nobody should
636  * try to steal the PENDING bit.
637  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)638 static inline void set_work_data(struct work_struct *work, unsigned long data,
639 				 unsigned long flags)
640 {
641 	WARN_ON_ONCE(!work_pending(work));
642 	atomic_long_set(&work->data, data | flags | work_static(work));
643 }
644 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)645 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
646 			 unsigned long extra_flags)
647 {
648 	set_work_data(work, (unsigned long)pwq,
649 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
650 }
651 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)652 static void set_work_pool_and_keep_pending(struct work_struct *work,
653 					   int pool_id)
654 {
655 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
656 		      WORK_STRUCT_PENDING);
657 }
658 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)659 static void set_work_pool_and_clear_pending(struct work_struct *work,
660 					    int pool_id)
661 {
662 	/*
663 	 * The following wmb is paired with the implied mb in
664 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
665 	 * here are visible to and precede any updates by the next PENDING
666 	 * owner.
667 	 */
668 	smp_wmb();
669 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
670 	/*
671 	 * The following mb guarantees that previous clear of a PENDING bit
672 	 * will not be reordered with any speculative LOADS or STORES from
673 	 * work->current_func, which is executed afterwards.  This possible
674 	 * reordering can lead to a missed execution on attempt to queue
675 	 * the same @work.  E.g. consider this case:
676 	 *
677 	 *   CPU#0                         CPU#1
678 	 *   ----------------------------  --------------------------------
679 	 *
680 	 * 1  STORE event_indicated
681 	 * 2  queue_work_on() {
682 	 * 3    test_and_set_bit(PENDING)
683 	 * 4 }                             set_..._and_clear_pending() {
684 	 * 5                                 set_work_data() # clear bit
685 	 * 6                                 smp_mb()
686 	 * 7                               work->current_func() {
687 	 * 8				      LOAD event_indicated
688 	 *				   }
689 	 *
690 	 * Without an explicit full barrier speculative LOAD on line 8 can
691 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
692 	 * CPU#0 observes the PENDING bit is still set and new execution of
693 	 * a @work is not queued in a hope, that CPU#1 will eventually
694 	 * finish the queued @work.  Meanwhile CPU#1 does not see
695 	 * event_indicated is set, because speculative LOAD was executed
696 	 * before actual STORE.
697 	 */
698 	smp_mb();
699 }
700 
clear_work_data(struct work_struct * work)701 static void clear_work_data(struct work_struct *work)
702 {
703 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
704 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
705 }
706 
work_struct_pwq(unsigned long data)707 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
708 {
709 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
710 }
711 
get_work_pwq(struct work_struct * work)712 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
713 {
714 	unsigned long data = atomic_long_read(&work->data);
715 
716 	if (data & WORK_STRUCT_PWQ)
717 		return work_struct_pwq(data);
718 	else
719 		return NULL;
720 }
721 
722 /**
723  * get_work_pool - return the worker_pool a given work was associated with
724  * @work: the work item of interest
725  *
726  * Pools are created and destroyed under wq_pool_mutex, and allows read
727  * access under RCU read lock.  As such, this function should be
728  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
729  *
730  * All fields of the returned pool are accessible as long as the above
731  * mentioned locking is in effect.  If the returned pool needs to be used
732  * beyond the critical section, the caller is responsible for ensuring the
733  * returned pool is and stays online.
734  *
735  * Return: The worker_pool @work was last associated with.  %NULL if none.
736  */
get_work_pool(struct work_struct * work)737 static struct worker_pool *get_work_pool(struct work_struct *work)
738 {
739 	unsigned long data = atomic_long_read(&work->data);
740 	int pool_id;
741 
742 	assert_rcu_or_pool_mutex();
743 
744 	if (data & WORK_STRUCT_PWQ)
745 		return work_struct_pwq(data)->pool;
746 
747 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
748 	if (pool_id == WORK_OFFQ_POOL_NONE)
749 		return NULL;
750 
751 	return idr_find(&worker_pool_idr, pool_id);
752 }
753 
754 /**
755  * get_work_pool_id - return the worker pool ID a given work is associated with
756  * @work: the work item of interest
757  *
758  * Return: The worker_pool ID @work was last associated with.
759  * %WORK_OFFQ_POOL_NONE if none.
760  */
get_work_pool_id(struct work_struct * work)761 static int get_work_pool_id(struct work_struct *work)
762 {
763 	unsigned long data = atomic_long_read(&work->data);
764 
765 	if (data & WORK_STRUCT_PWQ)
766 		return work_struct_pwq(data)->pool->id;
767 
768 	return data >> WORK_OFFQ_POOL_SHIFT;
769 }
770 
mark_work_canceling(struct work_struct * work)771 static void mark_work_canceling(struct work_struct *work)
772 {
773 	unsigned long pool_id = get_work_pool_id(work);
774 
775 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
776 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
777 }
778 
work_is_canceling(struct work_struct * work)779 static bool work_is_canceling(struct work_struct *work)
780 {
781 	unsigned long data = atomic_long_read(&work->data);
782 
783 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
784 }
785 
786 /*
787  * Policy functions.  These define the policies on how the global worker
788  * pools are managed.  Unless noted otherwise, these functions assume that
789  * they're being called with pool->lock held.
790  */
791 
__need_more_worker(struct worker_pool * pool)792 static bool __need_more_worker(struct worker_pool *pool)
793 {
794 	return !atomic_read(&pool->nr_running);
795 }
796 
797 /*
798  * Need to wake up a worker?  Called from anything but currently
799  * running workers.
800  *
801  * Note that, because unbound workers never contribute to nr_running, this
802  * function will always return %true for unbound pools as long as the
803  * worklist isn't empty.
804  */
need_more_worker(struct worker_pool * pool)805 static bool need_more_worker(struct worker_pool *pool)
806 {
807 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
808 }
809 
810 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)811 static bool may_start_working(struct worker_pool *pool)
812 {
813 	return pool->nr_idle;
814 }
815 
816 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)817 static bool keep_working(struct worker_pool *pool)
818 {
819 	return !list_empty(&pool->worklist) &&
820 		atomic_read(&pool->nr_running) <= 1;
821 }
822 
823 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)824 static bool need_to_create_worker(struct worker_pool *pool)
825 {
826 	return need_more_worker(pool) && !may_start_working(pool);
827 }
828 
829 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)830 static bool too_many_workers(struct worker_pool *pool)
831 {
832 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
833 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
834 	int nr_busy = pool->nr_workers - nr_idle;
835 
836 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
837 }
838 
839 /*
840  * Wake up functions.
841  */
842 
843 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)844 static struct worker *first_idle_worker(struct worker_pool *pool)
845 {
846 	if (unlikely(list_empty(&pool->idle_list)))
847 		return NULL;
848 
849 	return list_first_entry(&pool->idle_list, struct worker, entry);
850 }
851 
852 /**
853  * wake_up_worker - wake up an idle worker
854  * @pool: worker pool to wake worker from
855  *
856  * Wake up the first idle worker of @pool.
857  *
858  * CONTEXT:
859  * raw_spin_lock_irq(pool->lock).
860  */
wake_up_worker(struct worker_pool * pool)861 static void wake_up_worker(struct worker_pool *pool)
862 {
863 	struct worker *worker = first_idle_worker(pool);
864 
865 	if (likely(worker))
866 		wake_up_process(worker->task);
867 }
868 
869 /**
870  * wq_worker_running - a worker is running again
871  * @task: task waking up
872  *
873  * This function is called when a worker returns from schedule()
874  */
wq_worker_running(struct task_struct * task)875 void wq_worker_running(struct task_struct *task)
876 {
877 	struct worker *worker = kthread_data(task);
878 
879 	if (!worker->sleeping)
880 		return;
881 
882 	/*
883 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
884 	 * and the nr_running increment below, we may ruin the nr_running reset
885 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
886 	 * pool. Protect against such race.
887 	 */
888 	preempt_disable();
889 	if (!(worker->flags & WORKER_NOT_RUNNING))
890 		atomic_inc(&worker->pool->nr_running);
891 	preempt_enable();
892 	worker->sleeping = 0;
893 }
894 
895 /**
896  * wq_worker_sleeping - a worker is going to sleep
897  * @task: task going to sleep
898  *
899  * This function is called from schedule() when a busy worker is
900  * going to sleep. Preemption needs to be disabled to protect ->sleeping
901  * assignment.
902  */
wq_worker_sleeping(struct task_struct * task)903 void wq_worker_sleeping(struct task_struct *task)
904 {
905 	struct worker *next, *worker = kthread_data(task);
906 	struct worker_pool *pool;
907 
908 	/*
909 	 * Rescuers, which may not have all the fields set up like normal
910 	 * workers, also reach here, let's not access anything before
911 	 * checking NOT_RUNNING.
912 	 */
913 	if (worker->flags & WORKER_NOT_RUNNING)
914 		return;
915 
916 	pool = worker->pool;
917 
918 	/* Return if preempted before wq_worker_running() was reached */
919 	if (worker->sleeping)
920 		return;
921 
922 	worker->sleeping = 1;
923 	raw_spin_lock_irq(&pool->lock);
924 
925 	/*
926 	 * The counterpart of the following dec_and_test, implied mb,
927 	 * worklist not empty test sequence is in insert_work().
928 	 * Please read comment there.
929 	 *
930 	 * NOT_RUNNING is clear.  This means that we're bound to and
931 	 * running on the local cpu w/ rq lock held and preemption
932 	 * disabled, which in turn means that none else could be
933 	 * manipulating idle_list, so dereferencing idle_list without pool
934 	 * lock is safe.
935 	 */
936 	if (atomic_dec_and_test(&pool->nr_running) &&
937 	    !list_empty(&pool->worklist)) {
938 		next = first_idle_worker(pool);
939 		if (next)
940 			wake_up_process(next->task);
941 	}
942 	raw_spin_unlock_irq(&pool->lock);
943 }
944 
945 /**
946  * wq_worker_last_func - retrieve worker's last work function
947  * @task: Task to retrieve last work function of.
948  *
949  * Determine the last function a worker executed. This is called from
950  * the scheduler to get a worker's last known identity.
951  *
952  * CONTEXT:
953  * raw_spin_lock_irq(rq->lock)
954  *
955  * This function is called during schedule() when a kworker is going
956  * to sleep. It's used by psi to identify aggregation workers during
957  * dequeuing, to allow periodic aggregation to shut-off when that
958  * worker is the last task in the system or cgroup to go to sleep.
959  *
960  * As this function doesn't involve any workqueue-related locking, it
961  * only returns stable values when called from inside the scheduler's
962  * queuing and dequeuing paths, when @task, which must be a kworker,
963  * is guaranteed to not be processing any works.
964  *
965  * Return:
966  * The last work function %current executed as a worker, NULL if it
967  * hasn't executed any work yet.
968  */
wq_worker_last_func(struct task_struct * task)969 work_func_t wq_worker_last_func(struct task_struct *task)
970 {
971 	struct worker *worker = kthread_data(task);
972 
973 	return worker->last_func;
974 }
975 
976 /**
977  * worker_set_flags - set worker flags and adjust nr_running accordingly
978  * @worker: self
979  * @flags: flags to set
980  *
981  * Set @flags in @worker->flags and adjust nr_running accordingly.
982  *
983  * CONTEXT:
984  * raw_spin_lock_irq(pool->lock)
985  */
worker_set_flags(struct worker * worker,unsigned int flags)986 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
987 {
988 	struct worker_pool *pool = worker->pool;
989 
990 	WARN_ON_ONCE(worker->task != current);
991 
992 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
993 	if ((flags & WORKER_NOT_RUNNING) &&
994 	    !(worker->flags & WORKER_NOT_RUNNING)) {
995 		atomic_dec(&pool->nr_running);
996 	}
997 
998 	worker->flags |= flags;
999 }
1000 
1001 /**
1002  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
1003  * @worker: self
1004  * @flags: flags to clear
1005  *
1006  * Clear @flags in @worker->flags and adjust nr_running accordingly.
1007  *
1008  * CONTEXT:
1009  * raw_spin_lock_irq(pool->lock)
1010  */
worker_clr_flags(struct worker * worker,unsigned int flags)1011 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1012 {
1013 	struct worker_pool *pool = worker->pool;
1014 	unsigned int oflags = worker->flags;
1015 
1016 	WARN_ON_ONCE(worker->task != current);
1017 
1018 	worker->flags &= ~flags;
1019 
1020 	/*
1021 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1022 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1023 	 * of multiple flags, not a single flag.
1024 	 */
1025 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1026 		if (!(worker->flags & WORKER_NOT_RUNNING))
1027 			atomic_inc(&pool->nr_running);
1028 }
1029 
1030 /**
1031  * find_worker_executing_work - find worker which is executing a work
1032  * @pool: pool of interest
1033  * @work: work to find worker for
1034  *
1035  * Find a worker which is executing @work on @pool by searching
1036  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1037  * to match, its current execution should match the address of @work and
1038  * its work function.  This is to avoid unwanted dependency between
1039  * unrelated work executions through a work item being recycled while still
1040  * being executed.
1041  *
1042  * This is a bit tricky.  A work item may be freed once its execution
1043  * starts and nothing prevents the freed area from being recycled for
1044  * another work item.  If the same work item address ends up being reused
1045  * before the original execution finishes, workqueue will identify the
1046  * recycled work item as currently executing and make it wait until the
1047  * current execution finishes, introducing an unwanted dependency.
1048  *
1049  * This function checks the work item address and work function to avoid
1050  * false positives.  Note that this isn't complete as one may construct a
1051  * work function which can introduce dependency onto itself through a
1052  * recycled work item.  Well, if somebody wants to shoot oneself in the
1053  * foot that badly, there's only so much we can do, and if such deadlock
1054  * actually occurs, it should be easy to locate the culprit work function.
1055  *
1056  * CONTEXT:
1057  * raw_spin_lock_irq(pool->lock).
1058  *
1059  * Return:
1060  * Pointer to worker which is executing @work if found, %NULL
1061  * otherwise.
1062  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1063 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1064 						 struct work_struct *work)
1065 {
1066 	struct worker *worker;
1067 
1068 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1069 			       (unsigned long)work)
1070 		if (worker->current_work == work &&
1071 		    worker->current_func == work->func)
1072 			return worker;
1073 
1074 	return NULL;
1075 }
1076 
1077 /**
1078  * move_linked_works - move linked works to a list
1079  * @work: start of series of works to be scheduled
1080  * @head: target list to append @work to
1081  * @nextp: out parameter for nested worklist walking
1082  *
1083  * Schedule linked works starting from @work to @head.  Work series to
1084  * be scheduled starts at @work and includes any consecutive work with
1085  * WORK_STRUCT_LINKED set in its predecessor.
1086  *
1087  * If @nextp is not NULL, it's updated to point to the next work of
1088  * the last scheduled work.  This allows move_linked_works() to be
1089  * nested inside outer list_for_each_entry_safe().
1090  *
1091  * CONTEXT:
1092  * raw_spin_lock_irq(pool->lock).
1093  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1094 static void move_linked_works(struct work_struct *work, struct list_head *head,
1095 			      struct work_struct **nextp)
1096 {
1097 	struct work_struct *n;
1098 
1099 	/*
1100 	 * Linked worklist will always end before the end of the list,
1101 	 * use NULL for list head.
1102 	 */
1103 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1104 		list_move_tail(&work->entry, head);
1105 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1106 			break;
1107 	}
1108 
1109 	/*
1110 	 * If we're already inside safe list traversal and have moved
1111 	 * multiple works to the scheduled queue, the next position
1112 	 * needs to be updated.
1113 	 */
1114 	if (nextp)
1115 		*nextp = n;
1116 }
1117 
1118 /**
1119  * get_pwq - get an extra reference on the specified pool_workqueue
1120  * @pwq: pool_workqueue to get
1121  *
1122  * Obtain an extra reference on @pwq.  The caller should guarantee that
1123  * @pwq has positive refcnt and be holding the matching pool->lock.
1124  */
get_pwq(struct pool_workqueue * pwq)1125 static void get_pwq(struct pool_workqueue *pwq)
1126 {
1127 	lockdep_assert_held(&pwq->pool->lock);
1128 	WARN_ON_ONCE(pwq->refcnt <= 0);
1129 	pwq->refcnt++;
1130 }
1131 
1132 /**
1133  * put_pwq - put a pool_workqueue reference
1134  * @pwq: pool_workqueue to put
1135  *
1136  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1137  * destruction.  The caller should be holding the matching pool->lock.
1138  */
put_pwq(struct pool_workqueue * pwq)1139 static void put_pwq(struct pool_workqueue *pwq)
1140 {
1141 	lockdep_assert_held(&pwq->pool->lock);
1142 	if (likely(--pwq->refcnt))
1143 		return;
1144 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1145 		return;
1146 	/*
1147 	 * @pwq can't be released under pool->lock, bounce to
1148 	 * pwq_unbound_release_workfn().  This never recurses on the same
1149 	 * pool->lock as this path is taken only for unbound workqueues and
1150 	 * the release work item is scheduled on a per-cpu workqueue.  To
1151 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1152 	 * subclass of 1 in get_unbound_pool().
1153 	 */
1154 	schedule_work(&pwq->unbound_release_work);
1155 }
1156 
1157 /**
1158  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1159  * @pwq: pool_workqueue to put (can be %NULL)
1160  *
1161  * put_pwq() with locking.  This function also allows %NULL @pwq.
1162  */
put_pwq_unlocked(struct pool_workqueue * pwq)1163 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1164 {
1165 	if (pwq) {
1166 		/*
1167 		 * As both pwqs and pools are RCU protected, the
1168 		 * following lock operations are safe.
1169 		 */
1170 		raw_spin_lock_irq(&pwq->pool->lock);
1171 		put_pwq(pwq);
1172 		raw_spin_unlock_irq(&pwq->pool->lock);
1173 	}
1174 }
1175 
pwq_activate_inactive_work(struct work_struct * work)1176 static void pwq_activate_inactive_work(struct work_struct *work)
1177 {
1178 	struct pool_workqueue *pwq = get_work_pwq(work);
1179 
1180 	trace_workqueue_activate_work(work);
1181 	if (list_empty(&pwq->pool->worklist))
1182 		pwq->pool->watchdog_ts = jiffies;
1183 	move_linked_works(work, &pwq->pool->worklist, NULL);
1184 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1185 	pwq->nr_active++;
1186 }
1187 
pwq_activate_first_inactive(struct pool_workqueue * pwq)1188 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1189 {
1190 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1191 						    struct work_struct, entry);
1192 
1193 	pwq_activate_inactive_work(work);
1194 }
1195 
1196 /**
1197  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1198  * @pwq: pwq of interest
1199  * @work_data: work_data of work which left the queue
1200  *
1201  * A work either has completed or is removed from pending queue,
1202  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1203  *
1204  * CONTEXT:
1205  * raw_spin_lock_irq(pool->lock).
1206  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1207 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1208 {
1209 	int color = get_work_color(work_data);
1210 
1211 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1212 		pwq->nr_active--;
1213 		if (!list_empty(&pwq->inactive_works)) {
1214 			/* one down, submit an inactive one */
1215 			if (pwq->nr_active < pwq->max_active)
1216 				pwq_activate_first_inactive(pwq);
1217 		}
1218 	}
1219 
1220 	pwq->nr_in_flight[color]--;
1221 
1222 	/* is flush in progress and are we at the flushing tip? */
1223 	if (likely(pwq->flush_color != color))
1224 		goto out_put;
1225 
1226 	/* are there still in-flight works? */
1227 	if (pwq->nr_in_flight[color])
1228 		goto out_put;
1229 
1230 	/* this pwq is done, clear flush_color */
1231 	pwq->flush_color = -1;
1232 
1233 	/*
1234 	 * If this was the last pwq, wake up the first flusher.  It
1235 	 * will handle the rest.
1236 	 */
1237 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1238 		complete(&pwq->wq->first_flusher->done);
1239 out_put:
1240 	put_pwq(pwq);
1241 }
1242 
1243 /**
1244  * try_to_grab_pending - steal work item from worklist and disable irq
1245  * @work: work item to steal
1246  * @is_dwork: @work is a delayed_work
1247  * @flags: place to store irq state
1248  *
1249  * Try to grab PENDING bit of @work.  This function can handle @work in any
1250  * stable state - idle, on timer or on worklist.
1251  *
1252  * Return:
1253  *
1254  *  ========	================================================================
1255  *  1		if @work was pending and we successfully stole PENDING
1256  *  0		if @work was idle and we claimed PENDING
1257  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1258  *  -ENOENT	if someone else is canceling @work, this state may persist
1259  *		for arbitrarily long
1260  *  ========	================================================================
1261  *
1262  * Note:
1263  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1264  * interrupted while holding PENDING and @work off queue, irq must be
1265  * disabled on entry.  This, combined with delayed_work->timer being
1266  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1267  *
1268  * On successful return, >= 0, irq is disabled and the caller is
1269  * responsible for releasing it using local_irq_restore(*@flags).
1270  *
1271  * This function is safe to call from any context including IRQ handler.
1272  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1273 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1274 			       unsigned long *flags)
1275 {
1276 	struct worker_pool *pool;
1277 	struct pool_workqueue *pwq;
1278 
1279 	local_irq_save(*flags);
1280 
1281 	/* try to steal the timer if it exists */
1282 	if (is_dwork) {
1283 		struct delayed_work *dwork = to_delayed_work(work);
1284 
1285 		/*
1286 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1287 		 * guaranteed that the timer is not queued anywhere and not
1288 		 * running on the local CPU.
1289 		 */
1290 		if (likely(del_timer(&dwork->timer)))
1291 			return 1;
1292 	}
1293 
1294 	/* try to claim PENDING the normal way */
1295 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1296 		return 0;
1297 
1298 	rcu_read_lock();
1299 	/*
1300 	 * The queueing is in progress, or it is already queued. Try to
1301 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1302 	 */
1303 	pool = get_work_pool(work);
1304 	if (!pool)
1305 		goto fail;
1306 
1307 	raw_spin_lock(&pool->lock);
1308 	/*
1309 	 * work->data is guaranteed to point to pwq only while the work
1310 	 * item is queued on pwq->wq, and both updating work->data to point
1311 	 * to pwq on queueing and to pool on dequeueing are done under
1312 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1313 	 * points to pwq which is associated with a locked pool, the work
1314 	 * item is currently queued on that pool.
1315 	 */
1316 	pwq = get_work_pwq(work);
1317 	if (pwq && pwq->pool == pool) {
1318 		debug_work_deactivate(work);
1319 
1320 		/*
1321 		 * A cancelable inactive work item must be in the
1322 		 * pwq->inactive_works since a queued barrier can't be
1323 		 * canceled (see the comments in insert_wq_barrier()).
1324 		 *
1325 		 * An inactive work item cannot be grabbed directly because
1326 		 * it might have linked barrier work items which, if left
1327 		 * on the inactive_works list, will confuse pwq->nr_active
1328 		 * management later on and cause stall.  Make sure the work
1329 		 * item is activated before grabbing.
1330 		 */
1331 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1332 			pwq_activate_inactive_work(work);
1333 
1334 		list_del_init(&work->entry);
1335 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1336 
1337 		/* work->data points to pwq iff queued, point to pool */
1338 		set_work_pool_and_keep_pending(work, pool->id);
1339 
1340 		raw_spin_unlock(&pool->lock);
1341 		rcu_read_unlock();
1342 		return 1;
1343 	}
1344 	raw_spin_unlock(&pool->lock);
1345 fail:
1346 	rcu_read_unlock();
1347 	local_irq_restore(*flags);
1348 	if (work_is_canceling(work))
1349 		return -ENOENT;
1350 	cpu_relax();
1351 	return -EAGAIN;
1352 }
1353 
1354 /**
1355  * insert_work - insert a work into a pool
1356  * @pwq: pwq @work belongs to
1357  * @work: work to insert
1358  * @head: insertion point
1359  * @extra_flags: extra WORK_STRUCT_* flags to set
1360  *
1361  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1362  * work_struct flags.
1363  *
1364  * CONTEXT:
1365  * raw_spin_lock_irq(pool->lock).
1366  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1367 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1368 			struct list_head *head, unsigned int extra_flags)
1369 {
1370 	struct worker_pool *pool = pwq->pool;
1371 
1372 	/* record the work call stack in order to print it in KASAN reports */
1373 	kasan_record_aux_stack_noalloc(work);
1374 
1375 	/* we own @work, set data and link */
1376 	set_work_pwq(work, pwq, extra_flags);
1377 	list_add_tail(&work->entry, head);
1378 	get_pwq(pwq);
1379 
1380 	/*
1381 	 * Ensure either wq_worker_sleeping() sees the above
1382 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1383 	 * around lazily while there are works to be processed.
1384 	 */
1385 	smp_mb();
1386 
1387 	if (__need_more_worker(pool))
1388 		wake_up_worker(pool);
1389 }
1390 
1391 /*
1392  * Test whether @work is being queued from another work executing on the
1393  * same workqueue.
1394  */
is_chained_work(struct workqueue_struct * wq)1395 static bool is_chained_work(struct workqueue_struct *wq)
1396 {
1397 	struct worker *worker;
1398 
1399 	worker = current_wq_worker();
1400 	/*
1401 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1402 	 * I'm @worker, it's safe to dereference it without locking.
1403 	 */
1404 	return worker && worker->current_pwq->wq == wq;
1405 }
1406 
1407 /*
1408  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1409  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1410  * avoid perturbing sensitive tasks.
1411  */
wq_select_unbound_cpu(int cpu)1412 static int wq_select_unbound_cpu(int cpu)
1413 {
1414 	static bool printed_dbg_warning;
1415 	int new_cpu;
1416 
1417 	if (likely(!wq_debug_force_rr_cpu)) {
1418 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1419 			return cpu;
1420 	} else if (!printed_dbg_warning) {
1421 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1422 		printed_dbg_warning = true;
1423 	}
1424 
1425 	if (cpumask_empty(wq_unbound_cpumask))
1426 		return cpu;
1427 
1428 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1429 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1430 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1431 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1432 		if (unlikely(new_cpu >= nr_cpu_ids))
1433 			return cpu;
1434 	}
1435 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1436 
1437 	return new_cpu;
1438 }
1439 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1440 static void __queue_work(int cpu, struct workqueue_struct *wq,
1441 			 struct work_struct *work)
1442 {
1443 	struct pool_workqueue *pwq;
1444 	struct worker_pool *last_pool;
1445 	struct list_head *worklist;
1446 	unsigned int work_flags;
1447 	unsigned int req_cpu = cpu;
1448 
1449 	/*
1450 	 * While a work item is PENDING && off queue, a task trying to
1451 	 * steal the PENDING will busy-loop waiting for it to either get
1452 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1453 	 * happen with IRQ disabled.
1454 	 */
1455 	lockdep_assert_irqs_disabled();
1456 
1457 
1458 	/* if draining, only works from the same workqueue are allowed */
1459 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1460 	    WARN_ON_ONCE(!is_chained_work(wq)))
1461 		return;
1462 	rcu_read_lock();
1463 retry:
1464 	/* pwq which will be used unless @work is executing elsewhere */
1465 	if (wq->flags & WQ_UNBOUND) {
1466 		if (req_cpu == WORK_CPU_UNBOUND)
1467 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1468 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1469 	} else {
1470 		if (req_cpu == WORK_CPU_UNBOUND)
1471 			cpu = raw_smp_processor_id();
1472 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1473 	}
1474 
1475 	/*
1476 	 * If @work was previously on a different pool, it might still be
1477 	 * running there, in which case the work needs to be queued on that
1478 	 * pool to guarantee non-reentrancy.
1479 	 */
1480 	last_pool = get_work_pool(work);
1481 	if (last_pool && last_pool != pwq->pool) {
1482 		struct worker *worker;
1483 
1484 		raw_spin_lock(&last_pool->lock);
1485 
1486 		worker = find_worker_executing_work(last_pool, work);
1487 
1488 		if (worker && worker->current_pwq->wq == wq) {
1489 			pwq = worker->current_pwq;
1490 		} else {
1491 			/* meh... not running there, queue here */
1492 			raw_spin_unlock(&last_pool->lock);
1493 			raw_spin_lock(&pwq->pool->lock);
1494 		}
1495 	} else {
1496 		raw_spin_lock(&pwq->pool->lock);
1497 	}
1498 
1499 	/*
1500 	 * pwq is determined and locked.  For unbound pools, we could have
1501 	 * raced with pwq release and it could already be dead.  If its
1502 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1503 	 * without another pwq replacing it in the numa_pwq_tbl or while
1504 	 * work items are executing on it, so the retrying is guaranteed to
1505 	 * make forward-progress.
1506 	 */
1507 	if (unlikely(!pwq->refcnt)) {
1508 		if (wq->flags & WQ_UNBOUND) {
1509 			raw_spin_unlock(&pwq->pool->lock);
1510 			cpu_relax();
1511 			goto retry;
1512 		}
1513 		/* oops */
1514 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1515 			  wq->name, cpu);
1516 	}
1517 
1518 	/* pwq determined, queue */
1519 	trace_workqueue_queue_work(req_cpu, pwq, work);
1520 
1521 	if (WARN_ON(!list_empty(&work->entry)))
1522 		goto out;
1523 
1524 	pwq->nr_in_flight[pwq->work_color]++;
1525 	work_flags = work_color_to_flags(pwq->work_color);
1526 
1527 	if (likely(pwq->nr_active < pwq->max_active)) {
1528 		trace_workqueue_activate_work(work);
1529 		pwq->nr_active++;
1530 		worklist = &pwq->pool->worklist;
1531 		if (list_empty(worklist))
1532 			pwq->pool->watchdog_ts = jiffies;
1533 	} else {
1534 		work_flags |= WORK_STRUCT_INACTIVE;
1535 		worklist = &pwq->inactive_works;
1536 	}
1537 
1538 	debug_work_activate(work);
1539 	insert_work(pwq, work, worklist, work_flags);
1540 
1541 out:
1542 	raw_spin_unlock(&pwq->pool->lock);
1543 	rcu_read_unlock();
1544 }
1545 
1546 /**
1547  * queue_work_on - queue work on specific cpu
1548  * @cpu: CPU number to execute work on
1549  * @wq: workqueue to use
1550  * @work: work to queue
1551  *
1552  * We queue the work to a specific CPU, the caller must ensure it
1553  * can't go away.
1554  *
1555  * Return: %false if @work was already on a queue, %true otherwise.
1556  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1557 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1558 		   struct work_struct *work)
1559 {
1560 	bool ret = false;
1561 	unsigned long flags;
1562 
1563 	local_irq_save(flags);
1564 
1565 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1566 		__queue_work(cpu, wq, work);
1567 		ret = true;
1568 	}
1569 
1570 	local_irq_restore(flags);
1571 	return ret;
1572 }
1573 EXPORT_SYMBOL(queue_work_on);
1574 
1575 /**
1576  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1577  * @node: NUMA node ID that we want to select a CPU from
1578  *
1579  * This function will attempt to find a "random" cpu available on a given
1580  * node. If there are no CPUs available on the given node it will return
1581  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1582  * available CPU if we need to schedule this work.
1583  */
workqueue_select_cpu_near(int node)1584 static int workqueue_select_cpu_near(int node)
1585 {
1586 	int cpu;
1587 
1588 	/* No point in doing this if NUMA isn't enabled for workqueues */
1589 	if (!wq_numa_enabled)
1590 		return WORK_CPU_UNBOUND;
1591 
1592 	/* Delay binding to CPU if node is not valid or online */
1593 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1594 		return WORK_CPU_UNBOUND;
1595 
1596 	/* Use local node/cpu if we are already there */
1597 	cpu = raw_smp_processor_id();
1598 	if (node == cpu_to_node(cpu))
1599 		return cpu;
1600 
1601 	/* Use "random" otherwise know as "first" online CPU of node */
1602 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1603 
1604 	/* If CPU is valid return that, otherwise just defer */
1605 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1606 }
1607 
1608 /**
1609  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1610  * @node: NUMA node that we are targeting the work for
1611  * @wq: workqueue to use
1612  * @work: work to queue
1613  *
1614  * We queue the work to a "random" CPU within a given NUMA node. The basic
1615  * idea here is to provide a way to somehow associate work with a given
1616  * NUMA node.
1617  *
1618  * This function will only make a best effort attempt at getting this onto
1619  * the right NUMA node. If no node is requested or the requested node is
1620  * offline then we just fall back to standard queue_work behavior.
1621  *
1622  * Currently the "random" CPU ends up being the first available CPU in the
1623  * intersection of cpu_online_mask and the cpumask of the node, unless we
1624  * are running on the node. In that case we just use the current CPU.
1625  *
1626  * Return: %false if @work was already on a queue, %true otherwise.
1627  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1628 bool queue_work_node(int node, struct workqueue_struct *wq,
1629 		     struct work_struct *work)
1630 {
1631 	unsigned long flags;
1632 	bool ret = false;
1633 
1634 	/*
1635 	 * This current implementation is specific to unbound workqueues.
1636 	 * Specifically we only return the first available CPU for a given
1637 	 * node instead of cycling through individual CPUs within the node.
1638 	 *
1639 	 * If this is used with a per-cpu workqueue then the logic in
1640 	 * workqueue_select_cpu_near would need to be updated to allow for
1641 	 * some round robin type logic.
1642 	 */
1643 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1644 
1645 	local_irq_save(flags);
1646 
1647 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1648 		int cpu = workqueue_select_cpu_near(node);
1649 
1650 		__queue_work(cpu, wq, work);
1651 		ret = true;
1652 	}
1653 
1654 	local_irq_restore(flags);
1655 	return ret;
1656 }
1657 EXPORT_SYMBOL_GPL(queue_work_node);
1658 
delayed_work_timer_fn(struct timer_list * t)1659 void delayed_work_timer_fn(struct timer_list *t)
1660 {
1661 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1662 
1663 	/* should have been called from irqsafe timer with irq already off */
1664 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1665 }
1666 EXPORT_SYMBOL(delayed_work_timer_fn);
1667 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1668 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1669 				struct delayed_work *dwork, unsigned long delay)
1670 {
1671 	struct timer_list *timer = &dwork->timer;
1672 	struct work_struct *work = &dwork->work;
1673 
1674 	WARN_ON_ONCE(!wq);
1675 	WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1676 	WARN_ON_ONCE(timer_pending(timer));
1677 	WARN_ON_ONCE(!list_empty(&work->entry));
1678 
1679 	/*
1680 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1681 	 * both optimization and correctness.  The earliest @timer can
1682 	 * expire is on the closest next tick and delayed_work users depend
1683 	 * on that there's no such delay when @delay is 0.
1684 	 */
1685 	if (!delay) {
1686 		__queue_work(cpu, wq, &dwork->work);
1687 		return;
1688 	}
1689 
1690 	dwork->wq = wq;
1691 	dwork->cpu = cpu;
1692 	timer->expires = jiffies + delay;
1693 
1694 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1695 		add_timer_on(timer, cpu);
1696 	else
1697 		add_timer(timer);
1698 }
1699 
1700 /**
1701  * queue_delayed_work_on - queue work on specific CPU after delay
1702  * @cpu: CPU number to execute work on
1703  * @wq: workqueue to use
1704  * @dwork: work to queue
1705  * @delay: number of jiffies to wait before queueing
1706  *
1707  * Return: %false if @work was already on a queue, %true otherwise.  If
1708  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1709  * execution.
1710  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1711 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1712 			   struct delayed_work *dwork, unsigned long delay)
1713 {
1714 	struct work_struct *work = &dwork->work;
1715 	bool ret = false;
1716 	unsigned long flags;
1717 
1718 	/* read the comment in __queue_work() */
1719 	local_irq_save(flags);
1720 
1721 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1722 		__queue_delayed_work(cpu, wq, dwork, delay);
1723 		ret = true;
1724 	}
1725 
1726 	local_irq_restore(flags);
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL(queue_delayed_work_on);
1730 
1731 /**
1732  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1733  * @cpu: CPU number to execute work on
1734  * @wq: workqueue to use
1735  * @dwork: work to queue
1736  * @delay: number of jiffies to wait before queueing
1737  *
1738  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1739  * modify @dwork's timer so that it expires after @delay.  If @delay is
1740  * zero, @work is guaranteed to be scheduled immediately regardless of its
1741  * current state.
1742  *
1743  * Return: %false if @dwork was idle and queued, %true if @dwork was
1744  * pending and its timer was modified.
1745  *
1746  * This function is safe to call from any context including IRQ handler.
1747  * See try_to_grab_pending() for details.
1748  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1749 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1750 			 struct delayed_work *dwork, unsigned long delay)
1751 {
1752 	unsigned long flags;
1753 	int ret;
1754 
1755 	do {
1756 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1757 	} while (unlikely(ret == -EAGAIN));
1758 
1759 	if (likely(ret >= 0)) {
1760 		__queue_delayed_work(cpu, wq, dwork, delay);
1761 		local_irq_restore(flags);
1762 	}
1763 
1764 	/* -ENOENT from try_to_grab_pending() becomes %true */
1765 	return ret;
1766 }
1767 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1768 
rcu_work_rcufn(struct rcu_head * rcu)1769 static void rcu_work_rcufn(struct rcu_head *rcu)
1770 {
1771 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1772 
1773 	/* read the comment in __queue_work() */
1774 	local_irq_disable();
1775 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1776 	local_irq_enable();
1777 }
1778 
1779 /**
1780  * queue_rcu_work - queue work after a RCU grace period
1781  * @wq: workqueue to use
1782  * @rwork: work to queue
1783  *
1784  * Return: %false if @rwork was already pending, %true otherwise.  Note
1785  * that a full RCU grace period is guaranteed only after a %true return.
1786  * While @rwork is guaranteed to be executed after a %false return, the
1787  * execution may happen before a full RCU grace period has passed.
1788  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1789 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1790 {
1791 	struct work_struct *work = &rwork->work;
1792 
1793 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1794 		rwork->wq = wq;
1795 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1796 		return true;
1797 	}
1798 
1799 	return false;
1800 }
1801 EXPORT_SYMBOL(queue_rcu_work);
1802 
1803 /**
1804  * worker_enter_idle - enter idle state
1805  * @worker: worker which is entering idle state
1806  *
1807  * @worker is entering idle state.  Update stats and idle timer if
1808  * necessary.
1809  *
1810  * LOCKING:
1811  * raw_spin_lock_irq(pool->lock).
1812  */
worker_enter_idle(struct worker * worker)1813 static void worker_enter_idle(struct worker *worker)
1814 {
1815 	struct worker_pool *pool = worker->pool;
1816 
1817 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1818 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1819 			 (worker->hentry.next || worker->hentry.pprev)))
1820 		return;
1821 
1822 	/* can't use worker_set_flags(), also called from create_worker() */
1823 	worker->flags |= WORKER_IDLE;
1824 	pool->nr_idle++;
1825 	worker->last_active = jiffies;
1826 
1827 	/* idle_list is LIFO */
1828 	list_add(&worker->entry, &pool->idle_list);
1829 
1830 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1831 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1832 
1833 	/*
1834 	 * Sanity check nr_running.  Because unbind_workers() releases
1835 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1836 	 * nr_running, the warning may trigger spuriously.  Check iff
1837 	 * unbind is not in progress.
1838 	 */
1839 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1840 		     pool->nr_workers == pool->nr_idle &&
1841 		     atomic_read(&pool->nr_running));
1842 }
1843 
1844 /**
1845  * worker_leave_idle - leave idle state
1846  * @worker: worker which is leaving idle state
1847  *
1848  * @worker is leaving idle state.  Update stats.
1849  *
1850  * LOCKING:
1851  * raw_spin_lock_irq(pool->lock).
1852  */
worker_leave_idle(struct worker * worker)1853 static void worker_leave_idle(struct worker *worker)
1854 {
1855 	struct worker_pool *pool = worker->pool;
1856 
1857 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1858 		return;
1859 	worker_clr_flags(worker, WORKER_IDLE);
1860 	pool->nr_idle--;
1861 	list_del_init(&worker->entry);
1862 }
1863 
alloc_worker(int node)1864 static struct worker *alloc_worker(int node)
1865 {
1866 	struct worker *worker;
1867 
1868 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1869 	if (worker) {
1870 		INIT_LIST_HEAD(&worker->entry);
1871 		INIT_LIST_HEAD(&worker->scheduled);
1872 		INIT_LIST_HEAD(&worker->node);
1873 		/* on creation a worker is in !idle && prep state */
1874 		worker->flags = WORKER_PREP;
1875 	}
1876 	return worker;
1877 }
1878 
1879 /**
1880  * worker_attach_to_pool() - attach a worker to a pool
1881  * @worker: worker to be attached
1882  * @pool: the target pool
1883  *
1884  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1885  * cpu-binding of @worker are kept coordinated with the pool across
1886  * cpu-[un]hotplugs.
1887  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1888 static void worker_attach_to_pool(struct worker *worker,
1889 				   struct worker_pool *pool)
1890 {
1891 	mutex_lock(&wq_pool_attach_mutex);
1892 
1893 	/*
1894 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1895 	 * stable across this function.  See the comments above the flag
1896 	 * definition for details.
1897 	 */
1898 	if (pool->flags & POOL_DISASSOCIATED)
1899 		worker->flags |= WORKER_UNBOUND;
1900 	else
1901 		kthread_set_per_cpu(worker->task, pool->cpu);
1902 
1903 	if (worker->rescue_wq)
1904 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1905 
1906 	list_add_tail(&worker->node, &pool->workers);
1907 	worker->pool = pool;
1908 
1909 	mutex_unlock(&wq_pool_attach_mutex);
1910 }
1911 
1912 /**
1913  * worker_detach_from_pool() - detach a worker from its pool
1914  * @worker: worker which is attached to its pool
1915  *
1916  * Undo the attaching which had been done in worker_attach_to_pool().  The
1917  * caller worker shouldn't access to the pool after detached except it has
1918  * other reference to the pool.
1919  */
worker_detach_from_pool(struct worker * worker)1920 static void worker_detach_from_pool(struct worker *worker)
1921 {
1922 	struct worker_pool *pool = worker->pool;
1923 	struct completion *detach_completion = NULL;
1924 
1925 	mutex_lock(&wq_pool_attach_mutex);
1926 
1927 	kthread_set_per_cpu(worker->task, -1);
1928 	list_del(&worker->node);
1929 	worker->pool = NULL;
1930 
1931 	if (list_empty(&pool->workers))
1932 		detach_completion = pool->detach_completion;
1933 	mutex_unlock(&wq_pool_attach_mutex);
1934 
1935 	/* clear leftover flags without pool->lock after it is detached */
1936 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1937 
1938 	if (detach_completion)
1939 		complete(detach_completion);
1940 }
1941 
1942 /**
1943  * create_worker - create a new workqueue worker
1944  * @pool: pool the new worker will belong to
1945  *
1946  * Create and start a new worker which is attached to @pool.
1947  *
1948  * CONTEXT:
1949  * Might sleep.  Does GFP_KERNEL allocations.
1950  *
1951  * Return:
1952  * Pointer to the newly created worker.
1953  */
create_worker(struct worker_pool * pool)1954 static struct worker *create_worker(struct worker_pool *pool)
1955 {
1956 	struct worker *worker;
1957 	int id;
1958 	char id_buf[16];
1959 
1960 	/* ID is needed to determine kthread name */
1961 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1962 	if (id < 0)
1963 		return NULL;
1964 
1965 	worker = alloc_worker(pool->node);
1966 	if (!worker)
1967 		goto fail;
1968 
1969 	worker->id = id;
1970 
1971 	if (pool->cpu >= 0)
1972 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1973 			 pool->attrs->nice < 0  ? "H" : "");
1974 	else
1975 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1976 
1977 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1978 					      "kworker/%s", id_buf);
1979 	if (IS_ERR(worker->task))
1980 		goto fail;
1981 
1982 	set_user_nice(worker->task, pool->attrs->nice);
1983 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1984 
1985 	/* successful, attach the worker to the pool */
1986 	worker_attach_to_pool(worker, pool);
1987 
1988 	/* start the newly created worker */
1989 	raw_spin_lock_irq(&pool->lock);
1990 	worker->pool->nr_workers++;
1991 	worker_enter_idle(worker);
1992 	wake_up_process(worker->task);
1993 	raw_spin_unlock_irq(&pool->lock);
1994 
1995 	return worker;
1996 
1997 fail:
1998 	ida_free(&pool->worker_ida, id);
1999 	kfree(worker);
2000 	return NULL;
2001 }
2002 
2003 /**
2004  * destroy_worker - destroy a workqueue worker
2005  * @worker: worker to be destroyed
2006  *
2007  * Destroy @worker and adjust @pool stats accordingly.  The worker should
2008  * be idle.
2009  *
2010  * CONTEXT:
2011  * raw_spin_lock_irq(pool->lock).
2012  */
destroy_worker(struct worker * worker)2013 static void destroy_worker(struct worker *worker)
2014 {
2015 	struct worker_pool *pool = worker->pool;
2016 
2017 	lockdep_assert_held(&pool->lock);
2018 
2019 	/* sanity check frenzy */
2020 	if (WARN_ON(worker->current_work) ||
2021 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2022 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2023 		return;
2024 
2025 	pool->nr_workers--;
2026 	pool->nr_idle--;
2027 
2028 	list_del_init(&worker->entry);
2029 	worker->flags |= WORKER_DIE;
2030 	wake_up_process(worker->task);
2031 }
2032 
idle_worker_timeout(struct timer_list * t)2033 static void idle_worker_timeout(struct timer_list *t)
2034 {
2035 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2036 
2037 	raw_spin_lock_irq(&pool->lock);
2038 
2039 	while (too_many_workers(pool)) {
2040 		struct worker *worker;
2041 		unsigned long expires;
2042 
2043 		/* idle_list is kept in LIFO order, check the last one */
2044 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2045 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2046 
2047 		if (time_before(jiffies, expires)) {
2048 			mod_timer(&pool->idle_timer, expires);
2049 			break;
2050 		}
2051 
2052 		destroy_worker(worker);
2053 	}
2054 
2055 	raw_spin_unlock_irq(&pool->lock);
2056 }
2057 
send_mayday(struct work_struct * work)2058 static void send_mayday(struct work_struct *work)
2059 {
2060 	struct pool_workqueue *pwq = get_work_pwq(work);
2061 	struct workqueue_struct *wq = pwq->wq;
2062 
2063 	lockdep_assert_held(&wq_mayday_lock);
2064 
2065 	if (!wq->rescuer)
2066 		return;
2067 
2068 	/* mayday mayday mayday */
2069 	if (list_empty(&pwq->mayday_node)) {
2070 		/*
2071 		 * If @pwq is for an unbound wq, its base ref may be put at
2072 		 * any time due to an attribute change.  Pin @pwq until the
2073 		 * rescuer is done with it.
2074 		 */
2075 		get_pwq(pwq);
2076 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2077 		wake_up_process(wq->rescuer->task);
2078 	}
2079 }
2080 
pool_mayday_timeout(struct timer_list * t)2081 static void pool_mayday_timeout(struct timer_list *t)
2082 {
2083 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2084 	struct work_struct *work;
2085 
2086 	raw_spin_lock_irq(&pool->lock);
2087 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2088 
2089 	if (need_to_create_worker(pool)) {
2090 		/*
2091 		 * We've been trying to create a new worker but
2092 		 * haven't been successful.  We might be hitting an
2093 		 * allocation deadlock.  Send distress signals to
2094 		 * rescuers.
2095 		 */
2096 		list_for_each_entry(work, &pool->worklist, entry)
2097 			send_mayday(work);
2098 	}
2099 
2100 	raw_spin_unlock(&wq_mayday_lock);
2101 	raw_spin_unlock_irq(&pool->lock);
2102 
2103 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2104 }
2105 
2106 /**
2107  * maybe_create_worker - create a new worker if necessary
2108  * @pool: pool to create a new worker for
2109  *
2110  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2111  * have at least one idle worker on return from this function.  If
2112  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2113  * sent to all rescuers with works scheduled on @pool to resolve
2114  * possible allocation deadlock.
2115  *
2116  * On return, need_to_create_worker() is guaranteed to be %false and
2117  * may_start_working() %true.
2118  *
2119  * LOCKING:
2120  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2121  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2122  * manager.
2123  */
maybe_create_worker(struct worker_pool * pool)2124 static void maybe_create_worker(struct worker_pool *pool)
2125 __releases(&pool->lock)
2126 __acquires(&pool->lock)
2127 {
2128 restart:
2129 	raw_spin_unlock_irq(&pool->lock);
2130 
2131 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2132 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2133 
2134 	while (true) {
2135 		if (create_worker(pool) || !need_to_create_worker(pool))
2136 			break;
2137 
2138 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2139 
2140 		if (!need_to_create_worker(pool))
2141 			break;
2142 	}
2143 
2144 	del_timer_sync(&pool->mayday_timer);
2145 	raw_spin_lock_irq(&pool->lock);
2146 	/*
2147 	 * This is necessary even after a new worker was just successfully
2148 	 * created as @pool->lock was dropped and the new worker might have
2149 	 * already become busy.
2150 	 */
2151 	if (need_to_create_worker(pool))
2152 		goto restart;
2153 }
2154 
2155 /**
2156  * manage_workers - manage worker pool
2157  * @worker: self
2158  *
2159  * Assume the manager role and manage the worker pool @worker belongs
2160  * to.  At any given time, there can be only zero or one manager per
2161  * pool.  The exclusion is handled automatically by this function.
2162  *
2163  * The caller can safely start processing works on false return.  On
2164  * true return, it's guaranteed that need_to_create_worker() is false
2165  * and may_start_working() is true.
2166  *
2167  * CONTEXT:
2168  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2169  * multiple times.  Does GFP_KERNEL allocations.
2170  *
2171  * Return:
2172  * %false if the pool doesn't need management and the caller can safely
2173  * start processing works, %true if management function was performed and
2174  * the conditions that the caller verified before calling the function may
2175  * no longer be true.
2176  */
manage_workers(struct worker * worker)2177 static bool manage_workers(struct worker *worker)
2178 {
2179 	struct worker_pool *pool = worker->pool;
2180 
2181 	if (pool->flags & POOL_MANAGER_ACTIVE)
2182 		return false;
2183 
2184 	pool->flags |= POOL_MANAGER_ACTIVE;
2185 	pool->manager = worker;
2186 
2187 	maybe_create_worker(pool);
2188 
2189 	pool->manager = NULL;
2190 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2191 	rcuwait_wake_up(&manager_wait);
2192 	return true;
2193 }
2194 
2195 /**
2196  * process_one_work - process single work
2197  * @worker: self
2198  * @work: work to process
2199  *
2200  * Process @work.  This function contains all the logics necessary to
2201  * process a single work including synchronization against and
2202  * interaction with other workers on the same cpu, queueing and
2203  * flushing.  As long as context requirement is met, any worker can
2204  * call this function to process a work.
2205  *
2206  * CONTEXT:
2207  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2208  */
process_one_work(struct worker * worker,struct work_struct * work)2209 static void process_one_work(struct worker *worker, struct work_struct *work)
2210 __releases(&pool->lock)
2211 __acquires(&pool->lock)
2212 {
2213 	struct pool_workqueue *pwq = get_work_pwq(work);
2214 	struct worker_pool *pool = worker->pool;
2215 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2216 	unsigned long work_data;
2217 	struct worker *collision;
2218 #ifdef CONFIG_LOCKDEP
2219 	/*
2220 	 * It is permissible to free the struct work_struct from
2221 	 * inside the function that is called from it, this we need to
2222 	 * take into account for lockdep too.  To avoid bogus "held
2223 	 * lock freed" warnings as well as problems when looking into
2224 	 * work->lockdep_map, make a copy and use that here.
2225 	 */
2226 	struct lockdep_map lockdep_map;
2227 
2228 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2229 #endif
2230 	/* ensure we're on the correct CPU */
2231 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2232 		     raw_smp_processor_id() != pool->cpu);
2233 
2234 	/*
2235 	 * A single work shouldn't be executed concurrently by
2236 	 * multiple workers on a single cpu.  Check whether anyone is
2237 	 * already processing the work.  If so, defer the work to the
2238 	 * currently executing one.
2239 	 */
2240 	collision = find_worker_executing_work(pool, work);
2241 	if (unlikely(collision)) {
2242 		move_linked_works(work, &collision->scheduled, NULL);
2243 		return;
2244 	}
2245 
2246 	/* claim and dequeue */
2247 	debug_work_deactivate(work);
2248 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2249 	worker->current_work = work;
2250 	worker->current_func = work->func;
2251 	worker->current_pwq = pwq;
2252 	work_data = *work_data_bits(work);
2253 	worker->current_color = get_work_color(work_data);
2254 
2255 	/*
2256 	 * Record wq name for cmdline and debug reporting, may get
2257 	 * overridden through set_worker_desc().
2258 	 */
2259 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2260 
2261 	list_del_init(&work->entry);
2262 
2263 	/*
2264 	 * CPU intensive works don't participate in concurrency management.
2265 	 * They're the scheduler's responsibility.  This takes @worker out
2266 	 * of concurrency management and the next code block will chain
2267 	 * execution of the pending work items.
2268 	 */
2269 	if (unlikely(cpu_intensive))
2270 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2271 
2272 	/*
2273 	 * Wake up another worker if necessary.  The condition is always
2274 	 * false for normal per-cpu workers since nr_running would always
2275 	 * be >= 1 at this point.  This is used to chain execution of the
2276 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2277 	 * UNBOUND and CPU_INTENSIVE ones.
2278 	 */
2279 	if (need_more_worker(pool))
2280 		wake_up_worker(pool);
2281 
2282 	/*
2283 	 * Record the last pool and clear PENDING which should be the last
2284 	 * update to @work.  Also, do this inside @pool->lock so that
2285 	 * PENDING and queued state changes happen together while IRQ is
2286 	 * disabled.
2287 	 */
2288 	set_work_pool_and_clear_pending(work, pool->id);
2289 
2290 	raw_spin_unlock_irq(&pool->lock);
2291 
2292 	lock_map_acquire(&pwq->wq->lockdep_map);
2293 	lock_map_acquire(&lockdep_map);
2294 	/*
2295 	 * Strictly speaking we should mark the invariant state without holding
2296 	 * any locks, that is, before these two lock_map_acquire()'s.
2297 	 *
2298 	 * However, that would result in:
2299 	 *
2300 	 *   A(W1)
2301 	 *   WFC(C)
2302 	 *		A(W1)
2303 	 *		C(C)
2304 	 *
2305 	 * Which would create W1->C->W1 dependencies, even though there is no
2306 	 * actual deadlock possible. There are two solutions, using a
2307 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2308 	 * hit the lockdep limitation on recursive locks, or simply discard
2309 	 * these locks.
2310 	 *
2311 	 * AFAICT there is no possible deadlock scenario between the
2312 	 * flush_work() and complete() primitives (except for single-threaded
2313 	 * workqueues), so hiding them isn't a problem.
2314 	 */
2315 	lockdep_invariant_state(true);
2316 	trace_workqueue_execute_start(work);
2317 	worker->current_func(work);
2318 	/*
2319 	 * While we must be careful to not use "work" after this, the trace
2320 	 * point will only record its address.
2321 	 */
2322 	trace_workqueue_execute_end(work, worker->current_func);
2323 	lock_map_release(&lockdep_map);
2324 	lock_map_release(&pwq->wq->lockdep_map);
2325 
2326 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2327 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2328 		       "     last function: %ps\n",
2329 		       current->comm, preempt_count(), task_pid_nr(current),
2330 		       worker->current_func);
2331 		debug_show_held_locks(current);
2332 		dump_stack();
2333 	}
2334 
2335 	/*
2336 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2337 	 * kernels, where a requeueing work item waiting for something to
2338 	 * happen could deadlock with stop_machine as such work item could
2339 	 * indefinitely requeue itself while all other CPUs are trapped in
2340 	 * stop_machine. At the same time, report a quiescent RCU state so
2341 	 * the same condition doesn't freeze RCU.
2342 	 */
2343 	cond_resched();
2344 
2345 	raw_spin_lock_irq(&pool->lock);
2346 
2347 	/* clear cpu intensive status */
2348 	if (unlikely(cpu_intensive))
2349 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2350 
2351 	/* tag the worker for identification in schedule() */
2352 	worker->last_func = worker->current_func;
2353 
2354 	/* we're done with it, release */
2355 	hash_del(&worker->hentry);
2356 	worker->current_work = NULL;
2357 	worker->current_func = NULL;
2358 	worker->current_pwq = NULL;
2359 	worker->current_color = INT_MAX;
2360 	pwq_dec_nr_in_flight(pwq, work_data);
2361 }
2362 
2363 /**
2364  * process_scheduled_works - process scheduled works
2365  * @worker: self
2366  *
2367  * Process all scheduled works.  Please note that the scheduled list
2368  * may change while processing a work, so this function repeatedly
2369  * fetches a work from the top and executes it.
2370  *
2371  * CONTEXT:
2372  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2373  * multiple times.
2374  */
process_scheduled_works(struct worker * worker)2375 static void process_scheduled_works(struct worker *worker)
2376 {
2377 	while (!list_empty(&worker->scheduled)) {
2378 		struct work_struct *work = list_first_entry(&worker->scheduled,
2379 						struct work_struct, entry);
2380 		process_one_work(worker, work);
2381 	}
2382 }
2383 
set_pf_worker(bool val)2384 static void set_pf_worker(bool val)
2385 {
2386 	mutex_lock(&wq_pool_attach_mutex);
2387 	if (val)
2388 		current->flags |= PF_WQ_WORKER;
2389 	else
2390 		current->flags &= ~PF_WQ_WORKER;
2391 	mutex_unlock(&wq_pool_attach_mutex);
2392 }
2393 
2394 /**
2395  * worker_thread - the worker thread function
2396  * @__worker: self
2397  *
2398  * The worker thread function.  All workers belong to a worker_pool -
2399  * either a per-cpu one or dynamic unbound one.  These workers process all
2400  * work items regardless of their specific target workqueue.  The only
2401  * exception is work items which belong to workqueues with a rescuer which
2402  * will be explained in rescuer_thread().
2403  *
2404  * Return: 0
2405  */
worker_thread(void * __worker)2406 static int worker_thread(void *__worker)
2407 {
2408 	struct worker *worker = __worker;
2409 	struct worker_pool *pool = worker->pool;
2410 
2411 	/* tell the scheduler that this is a workqueue worker */
2412 	set_pf_worker(true);
2413 woke_up:
2414 	raw_spin_lock_irq(&pool->lock);
2415 
2416 	/* am I supposed to die? */
2417 	if (unlikely(worker->flags & WORKER_DIE)) {
2418 		raw_spin_unlock_irq(&pool->lock);
2419 		WARN_ON_ONCE(!list_empty(&worker->entry));
2420 		set_pf_worker(false);
2421 
2422 		set_task_comm(worker->task, "kworker/dying");
2423 		ida_free(&pool->worker_ida, worker->id);
2424 		worker_detach_from_pool(worker);
2425 		kfree(worker);
2426 		return 0;
2427 	}
2428 
2429 	worker_leave_idle(worker);
2430 recheck:
2431 	/* no more worker necessary? */
2432 	if (!need_more_worker(pool))
2433 		goto sleep;
2434 
2435 	/* do we need to manage? */
2436 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2437 		goto recheck;
2438 
2439 	/*
2440 	 * ->scheduled list can only be filled while a worker is
2441 	 * preparing to process a work or actually processing it.
2442 	 * Make sure nobody diddled with it while I was sleeping.
2443 	 */
2444 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2445 
2446 	/*
2447 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2448 	 * worker or that someone else has already assumed the manager
2449 	 * role.  This is where @worker starts participating in concurrency
2450 	 * management if applicable and concurrency management is restored
2451 	 * after being rebound.  See rebind_workers() for details.
2452 	 */
2453 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2454 
2455 	do {
2456 		struct work_struct *work =
2457 			list_first_entry(&pool->worklist,
2458 					 struct work_struct, entry);
2459 
2460 		pool->watchdog_ts = jiffies;
2461 
2462 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2463 			/* optimization path, not strictly necessary */
2464 			process_one_work(worker, work);
2465 			if (unlikely(!list_empty(&worker->scheduled)))
2466 				process_scheduled_works(worker);
2467 		} else {
2468 			move_linked_works(work, &worker->scheduled, NULL);
2469 			process_scheduled_works(worker);
2470 		}
2471 	} while (keep_working(pool));
2472 
2473 	worker_set_flags(worker, WORKER_PREP);
2474 sleep:
2475 	/*
2476 	 * pool->lock is held and there's no work to process and no need to
2477 	 * manage, sleep.  Workers are woken up only while holding
2478 	 * pool->lock or from local cpu, so setting the current state
2479 	 * before releasing pool->lock is enough to prevent losing any
2480 	 * event.
2481 	 */
2482 	worker_enter_idle(worker);
2483 	__set_current_state(TASK_IDLE);
2484 	raw_spin_unlock_irq(&pool->lock);
2485 	schedule();
2486 	goto woke_up;
2487 }
2488 
2489 /**
2490  * rescuer_thread - the rescuer thread function
2491  * @__rescuer: self
2492  *
2493  * Workqueue rescuer thread function.  There's one rescuer for each
2494  * workqueue which has WQ_MEM_RECLAIM set.
2495  *
2496  * Regular work processing on a pool may block trying to create a new
2497  * worker which uses GFP_KERNEL allocation which has slight chance of
2498  * developing into deadlock if some works currently on the same queue
2499  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2500  * the problem rescuer solves.
2501  *
2502  * When such condition is possible, the pool summons rescuers of all
2503  * workqueues which have works queued on the pool and let them process
2504  * those works so that forward progress can be guaranteed.
2505  *
2506  * This should happen rarely.
2507  *
2508  * Return: 0
2509  */
rescuer_thread(void * __rescuer)2510 static int rescuer_thread(void *__rescuer)
2511 {
2512 	struct worker *rescuer = __rescuer;
2513 	struct workqueue_struct *wq = rescuer->rescue_wq;
2514 	struct list_head *scheduled = &rescuer->scheduled;
2515 	bool should_stop;
2516 
2517 	set_user_nice(current, RESCUER_NICE_LEVEL);
2518 
2519 	/*
2520 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2521 	 * doesn't participate in concurrency management.
2522 	 */
2523 	set_pf_worker(true);
2524 repeat:
2525 	set_current_state(TASK_IDLE);
2526 
2527 	/*
2528 	 * By the time the rescuer is requested to stop, the workqueue
2529 	 * shouldn't have any work pending, but @wq->maydays may still have
2530 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2531 	 * all the work items before the rescuer got to them.  Go through
2532 	 * @wq->maydays processing before acting on should_stop so that the
2533 	 * list is always empty on exit.
2534 	 */
2535 	should_stop = kthread_should_stop();
2536 
2537 	/* see whether any pwq is asking for help */
2538 	raw_spin_lock_irq(&wq_mayday_lock);
2539 
2540 	while (!list_empty(&wq->maydays)) {
2541 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2542 					struct pool_workqueue, mayday_node);
2543 		struct worker_pool *pool = pwq->pool;
2544 		struct work_struct *work, *n;
2545 		bool first = true;
2546 
2547 		__set_current_state(TASK_RUNNING);
2548 		list_del_init(&pwq->mayday_node);
2549 
2550 		raw_spin_unlock_irq(&wq_mayday_lock);
2551 
2552 		worker_attach_to_pool(rescuer, pool);
2553 
2554 		raw_spin_lock_irq(&pool->lock);
2555 
2556 		/*
2557 		 * Slurp in all works issued via this workqueue and
2558 		 * process'em.
2559 		 */
2560 		WARN_ON_ONCE(!list_empty(scheduled));
2561 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2562 			if (get_work_pwq(work) == pwq) {
2563 				if (first)
2564 					pool->watchdog_ts = jiffies;
2565 				move_linked_works(work, scheduled, &n);
2566 			}
2567 			first = false;
2568 		}
2569 
2570 		if (!list_empty(scheduled)) {
2571 			process_scheduled_works(rescuer);
2572 
2573 			/*
2574 			 * The above execution of rescued work items could
2575 			 * have created more to rescue through
2576 			 * pwq_activate_first_inactive() or chained
2577 			 * queueing.  Let's put @pwq back on mayday list so
2578 			 * that such back-to-back work items, which may be
2579 			 * being used to relieve memory pressure, don't
2580 			 * incur MAYDAY_INTERVAL delay inbetween.
2581 			 */
2582 			if (pwq->nr_active && need_to_create_worker(pool)) {
2583 				raw_spin_lock(&wq_mayday_lock);
2584 				/*
2585 				 * Queue iff we aren't racing destruction
2586 				 * and somebody else hasn't queued it already.
2587 				 */
2588 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2589 					get_pwq(pwq);
2590 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2591 				}
2592 				raw_spin_unlock(&wq_mayday_lock);
2593 			}
2594 		}
2595 
2596 		/*
2597 		 * Put the reference grabbed by send_mayday().  @pool won't
2598 		 * go away while we're still attached to it.
2599 		 */
2600 		put_pwq(pwq);
2601 
2602 		/*
2603 		 * Leave this pool.  If need_more_worker() is %true, notify a
2604 		 * regular worker; otherwise, we end up with 0 concurrency
2605 		 * and stalling the execution.
2606 		 */
2607 		if (need_more_worker(pool))
2608 			wake_up_worker(pool);
2609 
2610 		raw_spin_unlock_irq(&pool->lock);
2611 
2612 		worker_detach_from_pool(rescuer);
2613 
2614 		raw_spin_lock_irq(&wq_mayday_lock);
2615 	}
2616 
2617 	raw_spin_unlock_irq(&wq_mayday_lock);
2618 
2619 	if (should_stop) {
2620 		__set_current_state(TASK_RUNNING);
2621 		set_pf_worker(false);
2622 		return 0;
2623 	}
2624 
2625 	/* rescuers should never participate in concurrency management */
2626 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2627 	schedule();
2628 	goto repeat;
2629 }
2630 
2631 /**
2632  * check_flush_dependency - check for flush dependency sanity
2633  * @target_wq: workqueue being flushed
2634  * @target_work: work item being flushed (NULL for workqueue flushes)
2635  *
2636  * %current is trying to flush the whole @target_wq or @target_work on it.
2637  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2638  * reclaiming memory or running on a workqueue which doesn't have
2639  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2640  * a deadlock.
2641  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2642 static void check_flush_dependency(struct workqueue_struct *target_wq,
2643 				   struct work_struct *target_work)
2644 {
2645 	work_func_t target_func = target_work ? target_work->func : NULL;
2646 	struct worker *worker;
2647 
2648 	if (target_wq->flags & WQ_MEM_RECLAIM)
2649 		return;
2650 
2651 	worker = current_wq_worker();
2652 
2653 	WARN_ONCE(current->flags & PF_MEMALLOC,
2654 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2655 		  current->pid, current->comm, target_wq->name, target_func);
2656 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2657 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2658 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2659 		  worker->current_pwq->wq->name, worker->current_func,
2660 		  target_wq->name, target_func);
2661 }
2662 
2663 struct wq_barrier {
2664 	struct work_struct	work;
2665 	struct completion	done;
2666 	struct task_struct	*task;	/* purely informational */
2667 };
2668 
wq_barrier_func(struct work_struct * work)2669 static void wq_barrier_func(struct work_struct *work)
2670 {
2671 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2672 	complete(&barr->done);
2673 }
2674 
2675 /**
2676  * insert_wq_barrier - insert a barrier work
2677  * @pwq: pwq to insert barrier into
2678  * @barr: wq_barrier to insert
2679  * @target: target work to attach @barr to
2680  * @worker: worker currently executing @target, NULL if @target is not executing
2681  *
2682  * @barr is linked to @target such that @barr is completed only after
2683  * @target finishes execution.  Please note that the ordering
2684  * guarantee is observed only with respect to @target and on the local
2685  * cpu.
2686  *
2687  * Currently, a queued barrier can't be canceled.  This is because
2688  * try_to_grab_pending() can't determine whether the work to be
2689  * grabbed is at the head of the queue and thus can't clear LINKED
2690  * flag of the previous work while there must be a valid next work
2691  * after a work with LINKED flag set.
2692  *
2693  * Note that when @worker is non-NULL, @target may be modified
2694  * underneath us, so we can't reliably determine pwq from @target.
2695  *
2696  * CONTEXT:
2697  * raw_spin_lock_irq(pool->lock).
2698  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2699 static void insert_wq_barrier(struct pool_workqueue *pwq,
2700 			      struct wq_barrier *barr,
2701 			      struct work_struct *target, struct worker *worker)
2702 {
2703 	unsigned int work_flags = 0;
2704 	unsigned int work_color;
2705 	struct list_head *head;
2706 
2707 	/*
2708 	 * debugobject calls are safe here even with pool->lock locked
2709 	 * as we know for sure that this will not trigger any of the
2710 	 * checks and call back into the fixup functions where we
2711 	 * might deadlock.
2712 	 */
2713 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2714 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2715 
2716 	init_completion_map(&barr->done, &target->lockdep_map);
2717 
2718 	barr->task = current;
2719 
2720 	/* The barrier work item does not participate in pwq->nr_active. */
2721 	work_flags |= WORK_STRUCT_INACTIVE;
2722 
2723 	/*
2724 	 * If @target is currently being executed, schedule the
2725 	 * barrier to the worker; otherwise, put it after @target.
2726 	 */
2727 	if (worker) {
2728 		head = worker->scheduled.next;
2729 		work_color = worker->current_color;
2730 	} else {
2731 		unsigned long *bits = work_data_bits(target);
2732 
2733 		head = target->entry.next;
2734 		/* there can already be other linked works, inherit and set */
2735 		work_flags |= *bits & WORK_STRUCT_LINKED;
2736 		work_color = get_work_color(*bits);
2737 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2738 	}
2739 
2740 	pwq->nr_in_flight[work_color]++;
2741 	work_flags |= work_color_to_flags(work_color);
2742 
2743 	debug_work_activate(&barr->work);
2744 	insert_work(pwq, &barr->work, head, work_flags);
2745 }
2746 
2747 /**
2748  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2749  * @wq: workqueue being flushed
2750  * @flush_color: new flush color, < 0 for no-op
2751  * @work_color: new work color, < 0 for no-op
2752  *
2753  * Prepare pwqs for workqueue flushing.
2754  *
2755  * If @flush_color is non-negative, flush_color on all pwqs should be
2756  * -1.  If no pwq has in-flight commands at the specified color, all
2757  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2758  * has in flight commands, its pwq->flush_color is set to
2759  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2760  * wakeup logic is armed and %true is returned.
2761  *
2762  * The caller should have initialized @wq->first_flusher prior to
2763  * calling this function with non-negative @flush_color.  If
2764  * @flush_color is negative, no flush color update is done and %false
2765  * is returned.
2766  *
2767  * If @work_color is non-negative, all pwqs should have the same
2768  * work_color which is previous to @work_color and all will be
2769  * advanced to @work_color.
2770  *
2771  * CONTEXT:
2772  * mutex_lock(wq->mutex).
2773  *
2774  * Return:
2775  * %true if @flush_color >= 0 and there's something to flush.  %false
2776  * otherwise.
2777  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2778 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2779 				      int flush_color, int work_color)
2780 {
2781 	bool wait = false;
2782 	struct pool_workqueue *pwq;
2783 
2784 	if (flush_color >= 0) {
2785 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2786 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2787 	}
2788 
2789 	for_each_pwq(pwq, wq) {
2790 		struct worker_pool *pool = pwq->pool;
2791 
2792 		raw_spin_lock_irq(&pool->lock);
2793 
2794 		if (flush_color >= 0) {
2795 			WARN_ON_ONCE(pwq->flush_color != -1);
2796 
2797 			if (pwq->nr_in_flight[flush_color]) {
2798 				pwq->flush_color = flush_color;
2799 				atomic_inc(&wq->nr_pwqs_to_flush);
2800 				wait = true;
2801 			}
2802 		}
2803 
2804 		if (work_color >= 0) {
2805 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2806 			pwq->work_color = work_color;
2807 		}
2808 
2809 		raw_spin_unlock_irq(&pool->lock);
2810 	}
2811 
2812 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2813 		complete(&wq->first_flusher->done);
2814 
2815 	return wait;
2816 }
2817 
2818 /**
2819  * flush_workqueue - ensure that any scheduled work has run to completion.
2820  * @wq: workqueue to flush
2821  *
2822  * This function sleeps until all work items which were queued on entry
2823  * have finished execution, but it is not livelocked by new incoming ones.
2824  */
flush_workqueue(struct workqueue_struct * wq)2825 void flush_workqueue(struct workqueue_struct *wq)
2826 {
2827 	struct wq_flusher this_flusher = {
2828 		.list = LIST_HEAD_INIT(this_flusher.list),
2829 		.flush_color = -1,
2830 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2831 	};
2832 	int next_color;
2833 
2834 	if (WARN_ON(!wq_online))
2835 		return;
2836 
2837 	lock_map_acquire(&wq->lockdep_map);
2838 	lock_map_release(&wq->lockdep_map);
2839 
2840 	mutex_lock(&wq->mutex);
2841 
2842 	/*
2843 	 * Start-to-wait phase
2844 	 */
2845 	next_color = work_next_color(wq->work_color);
2846 
2847 	if (next_color != wq->flush_color) {
2848 		/*
2849 		 * Color space is not full.  The current work_color
2850 		 * becomes our flush_color and work_color is advanced
2851 		 * by one.
2852 		 */
2853 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2854 		this_flusher.flush_color = wq->work_color;
2855 		wq->work_color = next_color;
2856 
2857 		if (!wq->first_flusher) {
2858 			/* no flush in progress, become the first flusher */
2859 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2860 
2861 			wq->first_flusher = &this_flusher;
2862 
2863 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2864 						       wq->work_color)) {
2865 				/* nothing to flush, done */
2866 				wq->flush_color = next_color;
2867 				wq->first_flusher = NULL;
2868 				goto out_unlock;
2869 			}
2870 		} else {
2871 			/* wait in queue */
2872 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2873 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2874 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2875 		}
2876 	} else {
2877 		/*
2878 		 * Oops, color space is full, wait on overflow queue.
2879 		 * The next flush completion will assign us
2880 		 * flush_color and transfer to flusher_queue.
2881 		 */
2882 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2883 	}
2884 
2885 	check_flush_dependency(wq, NULL);
2886 
2887 	mutex_unlock(&wq->mutex);
2888 
2889 	wait_for_completion(&this_flusher.done);
2890 
2891 	/*
2892 	 * Wake-up-and-cascade phase
2893 	 *
2894 	 * First flushers are responsible for cascading flushes and
2895 	 * handling overflow.  Non-first flushers can simply return.
2896 	 */
2897 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2898 		return;
2899 
2900 	mutex_lock(&wq->mutex);
2901 
2902 	/* we might have raced, check again with mutex held */
2903 	if (wq->first_flusher != &this_flusher)
2904 		goto out_unlock;
2905 
2906 	WRITE_ONCE(wq->first_flusher, NULL);
2907 
2908 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2909 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2910 
2911 	while (true) {
2912 		struct wq_flusher *next, *tmp;
2913 
2914 		/* complete all the flushers sharing the current flush color */
2915 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2916 			if (next->flush_color != wq->flush_color)
2917 				break;
2918 			list_del_init(&next->list);
2919 			complete(&next->done);
2920 		}
2921 
2922 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2923 			     wq->flush_color != work_next_color(wq->work_color));
2924 
2925 		/* this flush_color is finished, advance by one */
2926 		wq->flush_color = work_next_color(wq->flush_color);
2927 
2928 		/* one color has been freed, handle overflow queue */
2929 		if (!list_empty(&wq->flusher_overflow)) {
2930 			/*
2931 			 * Assign the same color to all overflowed
2932 			 * flushers, advance work_color and append to
2933 			 * flusher_queue.  This is the start-to-wait
2934 			 * phase for these overflowed flushers.
2935 			 */
2936 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2937 				tmp->flush_color = wq->work_color;
2938 
2939 			wq->work_color = work_next_color(wq->work_color);
2940 
2941 			list_splice_tail_init(&wq->flusher_overflow,
2942 					      &wq->flusher_queue);
2943 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2944 		}
2945 
2946 		if (list_empty(&wq->flusher_queue)) {
2947 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2948 			break;
2949 		}
2950 
2951 		/*
2952 		 * Need to flush more colors.  Make the next flusher
2953 		 * the new first flusher and arm pwqs.
2954 		 */
2955 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2956 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2957 
2958 		list_del_init(&next->list);
2959 		wq->first_flusher = next;
2960 
2961 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2962 			break;
2963 
2964 		/*
2965 		 * Meh... this color is already done, clear first
2966 		 * flusher and repeat cascading.
2967 		 */
2968 		wq->first_flusher = NULL;
2969 	}
2970 
2971 out_unlock:
2972 	mutex_unlock(&wq->mutex);
2973 }
2974 EXPORT_SYMBOL(flush_workqueue);
2975 
2976 /**
2977  * drain_workqueue - drain a workqueue
2978  * @wq: workqueue to drain
2979  *
2980  * Wait until the workqueue becomes empty.  While draining is in progress,
2981  * only chain queueing is allowed.  IOW, only currently pending or running
2982  * work items on @wq can queue further work items on it.  @wq is flushed
2983  * repeatedly until it becomes empty.  The number of flushing is determined
2984  * by the depth of chaining and should be relatively short.  Whine if it
2985  * takes too long.
2986  */
drain_workqueue(struct workqueue_struct * wq)2987 void drain_workqueue(struct workqueue_struct *wq)
2988 {
2989 	unsigned int flush_cnt = 0;
2990 	struct pool_workqueue *pwq;
2991 
2992 	/*
2993 	 * __queue_work() needs to test whether there are drainers, is much
2994 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2995 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2996 	 */
2997 	mutex_lock(&wq->mutex);
2998 	if (!wq->nr_drainers++)
2999 		wq->flags |= __WQ_DRAINING;
3000 	mutex_unlock(&wq->mutex);
3001 reflush:
3002 	flush_workqueue(wq);
3003 
3004 	mutex_lock(&wq->mutex);
3005 
3006 	for_each_pwq(pwq, wq) {
3007 		bool drained;
3008 
3009 		raw_spin_lock_irq(&pwq->pool->lock);
3010 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3011 		raw_spin_unlock_irq(&pwq->pool->lock);
3012 
3013 		if (drained)
3014 			continue;
3015 
3016 		if (++flush_cnt == 10 ||
3017 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3018 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3019 				wq->name, __func__, flush_cnt);
3020 
3021 		mutex_unlock(&wq->mutex);
3022 		goto reflush;
3023 	}
3024 
3025 	if (!--wq->nr_drainers)
3026 		wq->flags &= ~__WQ_DRAINING;
3027 	mutex_unlock(&wq->mutex);
3028 }
3029 EXPORT_SYMBOL_GPL(drain_workqueue);
3030 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3031 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3032 			     bool from_cancel)
3033 {
3034 	struct worker *worker = NULL;
3035 	struct worker_pool *pool;
3036 	struct pool_workqueue *pwq;
3037 
3038 	might_sleep();
3039 
3040 	rcu_read_lock();
3041 	pool = get_work_pool(work);
3042 	if (!pool) {
3043 		rcu_read_unlock();
3044 		return false;
3045 	}
3046 
3047 	raw_spin_lock_irq(&pool->lock);
3048 	/* see the comment in try_to_grab_pending() with the same code */
3049 	pwq = get_work_pwq(work);
3050 	if (pwq) {
3051 		if (unlikely(pwq->pool != pool))
3052 			goto already_gone;
3053 	} else {
3054 		worker = find_worker_executing_work(pool, work);
3055 		if (!worker)
3056 			goto already_gone;
3057 		pwq = worker->current_pwq;
3058 	}
3059 
3060 	check_flush_dependency(pwq->wq, work);
3061 
3062 	insert_wq_barrier(pwq, barr, work, worker);
3063 	raw_spin_unlock_irq(&pool->lock);
3064 
3065 	/*
3066 	 * Force a lock recursion deadlock when using flush_work() inside a
3067 	 * single-threaded or rescuer equipped workqueue.
3068 	 *
3069 	 * For single threaded workqueues the deadlock happens when the work
3070 	 * is after the work issuing the flush_work(). For rescuer equipped
3071 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3072 	 * forward progress.
3073 	 */
3074 	if (!from_cancel &&
3075 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3076 		lock_map_acquire(&pwq->wq->lockdep_map);
3077 		lock_map_release(&pwq->wq->lockdep_map);
3078 	}
3079 	rcu_read_unlock();
3080 	return true;
3081 already_gone:
3082 	raw_spin_unlock_irq(&pool->lock);
3083 	rcu_read_unlock();
3084 	return false;
3085 }
3086 
__flush_work(struct work_struct * work,bool from_cancel)3087 static bool __flush_work(struct work_struct *work, bool from_cancel)
3088 {
3089 	struct wq_barrier barr;
3090 
3091 	if (WARN_ON(!wq_online))
3092 		return false;
3093 
3094 	if (WARN_ON(!work->func))
3095 		return false;
3096 
3097 	lock_map_acquire(&work->lockdep_map);
3098 	lock_map_release(&work->lockdep_map);
3099 
3100 	if (start_flush_work(work, &barr, from_cancel)) {
3101 		wait_for_completion(&barr.done);
3102 		destroy_work_on_stack(&barr.work);
3103 		return true;
3104 	} else {
3105 		return false;
3106 	}
3107 }
3108 
3109 /**
3110  * flush_work - wait for a work to finish executing the last queueing instance
3111  * @work: the work to flush
3112  *
3113  * Wait until @work has finished execution.  @work is guaranteed to be idle
3114  * on return if it hasn't been requeued since flush started.
3115  *
3116  * Return:
3117  * %true if flush_work() waited for the work to finish execution,
3118  * %false if it was already idle.
3119  */
flush_work(struct work_struct * work)3120 bool flush_work(struct work_struct *work)
3121 {
3122 	return __flush_work(work, false);
3123 }
3124 EXPORT_SYMBOL_GPL(flush_work);
3125 
3126 struct cwt_wait {
3127 	wait_queue_entry_t		wait;
3128 	struct work_struct	*work;
3129 };
3130 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3131 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3132 {
3133 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3134 
3135 	if (cwait->work != key)
3136 		return 0;
3137 	return autoremove_wake_function(wait, mode, sync, key);
3138 }
3139 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3140 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3141 {
3142 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3143 	unsigned long flags;
3144 	int ret;
3145 
3146 	do {
3147 		ret = try_to_grab_pending(work, is_dwork, &flags);
3148 		/*
3149 		 * If someone else is already canceling, wait for it to
3150 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3151 		 * because we may get scheduled between @work's completion
3152 		 * and the other canceling task resuming and clearing
3153 		 * CANCELING - flush_work() will return false immediately
3154 		 * as @work is no longer busy, try_to_grab_pending() will
3155 		 * return -ENOENT as @work is still being canceled and the
3156 		 * other canceling task won't be able to clear CANCELING as
3157 		 * we're hogging the CPU.
3158 		 *
3159 		 * Let's wait for completion using a waitqueue.  As this
3160 		 * may lead to the thundering herd problem, use a custom
3161 		 * wake function which matches @work along with exclusive
3162 		 * wait and wakeup.
3163 		 */
3164 		if (unlikely(ret == -ENOENT)) {
3165 			struct cwt_wait cwait;
3166 
3167 			init_wait(&cwait.wait);
3168 			cwait.wait.func = cwt_wakefn;
3169 			cwait.work = work;
3170 
3171 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3172 						  TASK_UNINTERRUPTIBLE);
3173 			if (work_is_canceling(work))
3174 				schedule();
3175 			finish_wait(&cancel_waitq, &cwait.wait);
3176 		}
3177 	} while (unlikely(ret < 0));
3178 
3179 	/* tell other tasks trying to grab @work to back off */
3180 	mark_work_canceling(work);
3181 	local_irq_restore(flags);
3182 
3183 	/*
3184 	 * This allows canceling during early boot.  We know that @work
3185 	 * isn't executing.
3186 	 */
3187 	if (wq_online)
3188 		__flush_work(work, true);
3189 
3190 	clear_work_data(work);
3191 
3192 	/*
3193 	 * Paired with prepare_to_wait() above so that either
3194 	 * waitqueue_active() is visible here or !work_is_canceling() is
3195 	 * visible there.
3196 	 */
3197 	smp_mb();
3198 	if (waitqueue_active(&cancel_waitq))
3199 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3200 
3201 	return ret;
3202 }
3203 
3204 /**
3205  * cancel_work_sync - cancel a work and wait for it to finish
3206  * @work: the work to cancel
3207  *
3208  * Cancel @work and wait for its execution to finish.  This function
3209  * can be used even if the work re-queues itself or migrates to
3210  * another workqueue.  On return from this function, @work is
3211  * guaranteed to be not pending or executing on any CPU.
3212  *
3213  * cancel_work_sync(&delayed_work->work) must not be used for
3214  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3215  *
3216  * The caller must ensure that the workqueue on which @work was last
3217  * queued can't be destroyed before this function returns.
3218  *
3219  * Return:
3220  * %true if @work was pending, %false otherwise.
3221  */
cancel_work_sync(struct work_struct * work)3222 bool cancel_work_sync(struct work_struct *work)
3223 {
3224 	return __cancel_work_timer(work, false);
3225 }
3226 EXPORT_SYMBOL_GPL(cancel_work_sync);
3227 
3228 /**
3229  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3230  * @dwork: the delayed work to flush
3231  *
3232  * Delayed timer is cancelled and the pending work is queued for
3233  * immediate execution.  Like flush_work(), this function only
3234  * considers the last queueing instance of @dwork.
3235  *
3236  * Return:
3237  * %true if flush_work() waited for the work to finish execution,
3238  * %false if it was already idle.
3239  */
flush_delayed_work(struct delayed_work * dwork)3240 bool flush_delayed_work(struct delayed_work *dwork)
3241 {
3242 	local_irq_disable();
3243 	if (del_timer_sync(&dwork->timer))
3244 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3245 	local_irq_enable();
3246 	return flush_work(&dwork->work);
3247 }
3248 EXPORT_SYMBOL(flush_delayed_work);
3249 
3250 /**
3251  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3252  * @rwork: the rcu work to flush
3253  *
3254  * Return:
3255  * %true if flush_rcu_work() waited for the work to finish execution,
3256  * %false if it was already idle.
3257  */
flush_rcu_work(struct rcu_work * rwork)3258 bool flush_rcu_work(struct rcu_work *rwork)
3259 {
3260 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3261 		rcu_barrier();
3262 		flush_work(&rwork->work);
3263 		return true;
3264 	} else {
3265 		return flush_work(&rwork->work);
3266 	}
3267 }
3268 EXPORT_SYMBOL(flush_rcu_work);
3269 
__cancel_work(struct work_struct * work,bool is_dwork)3270 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3271 {
3272 	unsigned long flags;
3273 	int ret;
3274 
3275 	do {
3276 		ret = try_to_grab_pending(work, is_dwork, &flags);
3277 	} while (unlikely(ret == -EAGAIN));
3278 
3279 	if (unlikely(ret < 0))
3280 		return false;
3281 
3282 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3283 	local_irq_restore(flags);
3284 	return ret;
3285 }
3286 
3287 /*
3288  * See cancel_delayed_work()
3289  */
cancel_work(struct work_struct * work)3290 bool cancel_work(struct work_struct *work)
3291 {
3292 	return __cancel_work(work, false);
3293 }
3294 EXPORT_SYMBOL(cancel_work);
3295 
3296 /**
3297  * cancel_delayed_work - cancel a delayed work
3298  * @dwork: delayed_work to cancel
3299  *
3300  * Kill off a pending delayed_work.
3301  *
3302  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3303  * pending.
3304  *
3305  * Note:
3306  * The work callback function may still be running on return, unless
3307  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3308  * use cancel_delayed_work_sync() to wait on it.
3309  *
3310  * This function is safe to call from any context including IRQ handler.
3311  */
cancel_delayed_work(struct delayed_work * dwork)3312 bool cancel_delayed_work(struct delayed_work *dwork)
3313 {
3314 	return __cancel_work(&dwork->work, true);
3315 }
3316 EXPORT_SYMBOL(cancel_delayed_work);
3317 
3318 /**
3319  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3320  * @dwork: the delayed work cancel
3321  *
3322  * This is cancel_work_sync() for delayed works.
3323  *
3324  * Return:
3325  * %true if @dwork was pending, %false otherwise.
3326  */
cancel_delayed_work_sync(struct delayed_work * dwork)3327 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3328 {
3329 	return __cancel_work_timer(&dwork->work, true);
3330 }
3331 EXPORT_SYMBOL(cancel_delayed_work_sync);
3332 
3333 /**
3334  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3335  * @func: the function to call
3336  *
3337  * schedule_on_each_cpu() executes @func on each online CPU using the
3338  * system workqueue and blocks until all CPUs have completed.
3339  * schedule_on_each_cpu() is very slow.
3340  *
3341  * Return:
3342  * 0 on success, -errno on failure.
3343  */
schedule_on_each_cpu(work_func_t func)3344 int schedule_on_each_cpu(work_func_t func)
3345 {
3346 	int cpu;
3347 	struct work_struct __percpu *works;
3348 
3349 	works = alloc_percpu(struct work_struct);
3350 	if (!works)
3351 		return -ENOMEM;
3352 
3353 	cpus_read_lock();
3354 
3355 	for_each_online_cpu(cpu) {
3356 		struct work_struct *work = per_cpu_ptr(works, cpu);
3357 
3358 		INIT_WORK(work, func);
3359 		schedule_work_on(cpu, work);
3360 	}
3361 
3362 	for_each_online_cpu(cpu)
3363 		flush_work(per_cpu_ptr(works, cpu));
3364 
3365 	cpus_read_unlock();
3366 	free_percpu(works);
3367 	return 0;
3368 }
3369 
3370 /**
3371  * execute_in_process_context - reliably execute the routine with user context
3372  * @fn:		the function to execute
3373  * @ew:		guaranteed storage for the execute work structure (must
3374  *		be available when the work executes)
3375  *
3376  * Executes the function immediately if process context is available,
3377  * otherwise schedules the function for delayed execution.
3378  *
3379  * Return:	0 - function was executed
3380  *		1 - function was scheduled for execution
3381  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3382 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3383 {
3384 	if (!in_interrupt()) {
3385 		fn(&ew->work);
3386 		return 0;
3387 	}
3388 
3389 	INIT_WORK(&ew->work, fn);
3390 	schedule_work(&ew->work);
3391 
3392 	return 1;
3393 }
3394 EXPORT_SYMBOL_GPL(execute_in_process_context);
3395 
3396 /**
3397  * free_workqueue_attrs - free a workqueue_attrs
3398  * @attrs: workqueue_attrs to free
3399  *
3400  * Undo alloc_workqueue_attrs().
3401  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3402 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3403 {
3404 	if (attrs) {
3405 		free_cpumask_var(attrs->cpumask);
3406 		kfree(attrs);
3407 	}
3408 }
3409 
3410 /**
3411  * alloc_workqueue_attrs - allocate a workqueue_attrs
3412  *
3413  * Allocate a new workqueue_attrs, initialize with default settings and
3414  * return it.
3415  *
3416  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3417  */
alloc_workqueue_attrs(void)3418 struct workqueue_attrs *alloc_workqueue_attrs(void)
3419 {
3420 	struct workqueue_attrs *attrs;
3421 
3422 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3423 	if (!attrs)
3424 		goto fail;
3425 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3426 		goto fail;
3427 
3428 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3429 	return attrs;
3430 fail:
3431 	free_workqueue_attrs(attrs);
3432 	return NULL;
3433 }
3434 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3435 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3436 				 const struct workqueue_attrs *from)
3437 {
3438 	to->nice = from->nice;
3439 	cpumask_copy(to->cpumask, from->cpumask);
3440 	/*
3441 	 * Unlike hash and equality test, this function doesn't ignore
3442 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3443 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3444 	 */
3445 	to->no_numa = from->no_numa;
3446 }
3447 
3448 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3449 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3450 {
3451 	u32 hash = 0;
3452 
3453 	hash = jhash_1word(attrs->nice, hash);
3454 	hash = jhash(cpumask_bits(attrs->cpumask),
3455 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3456 	return hash;
3457 }
3458 
3459 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3460 static bool wqattrs_equal(const struct workqueue_attrs *a,
3461 			  const struct workqueue_attrs *b)
3462 {
3463 	if (a->nice != b->nice)
3464 		return false;
3465 	if (!cpumask_equal(a->cpumask, b->cpumask))
3466 		return false;
3467 	return true;
3468 }
3469 
3470 /**
3471  * init_worker_pool - initialize a newly zalloc'd worker_pool
3472  * @pool: worker_pool to initialize
3473  *
3474  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3475  *
3476  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3477  * inside @pool proper are initialized and put_unbound_pool() can be called
3478  * on @pool safely to release it.
3479  */
init_worker_pool(struct worker_pool * pool)3480 static int init_worker_pool(struct worker_pool *pool)
3481 {
3482 	raw_spin_lock_init(&pool->lock);
3483 	pool->id = -1;
3484 	pool->cpu = -1;
3485 	pool->node = NUMA_NO_NODE;
3486 	pool->flags |= POOL_DISASSOCIATED;
3487 	pool->watchdog_ts = jiffies;
3488 	INIT_LIST_HEAD(&pool->worklist);
3489 	INIT_LIST_HEAD(&pool->idle_list);
3490 	hash_init(pool->busy_hash);
3491 
3492 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3493 
3494 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3495 
3496 	INIT_LIST_HEAD(&pool->workers);
3497 
3498 	ida_init(&pool->worker_ida);
3499 	INIT_HLIST_NODE(&pool->hash_node);
3500 	pool->refcnt = 1;
3501 
3502 	/* shouldn't fail above this point */
3503 	pool->attrs = alloc_workqueue_attrs();
3504 	if (!pool->attrs)
3505 		return -ENOMEM;
3506 	return 0;
3507 }
3508 
3509 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3510 static void wq_init_lockdep(struct workqueue_struct *wq)
3511 {
3512 	char *lock_name;
3513 
3514 	lockdep_register_key(&wq->key);
3515 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3516 	if (!lock_name)
3517 		lock_name = wq->name;
3518 
3519 	wq->lock_name = lock_name;
3520 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3521 }
3522 
wq_unregister_lockdep(struct workqueue_struct * wq)3523 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3524 {
3525 	lockdep_unregister_key(&wq->key);
3526 }
3527 
wq_free_lockdep(struct workqueue_struct * wq)3528 static void wq_free_lockdep(struct workqueue_struct *wq)
3529 {
3530 	if (wq->lock_name != wq->name)
3531 		kfree(wq->lock_name);
3532 }
3533 #else
wq_init_lockdep(struct workqueue_struct * wq)3534 static void wq_init_lockdep(struct workqueue_struct *wq)
3535 {
3536 }
3537 
wq_unregister_lockdep(struct workqueue_struct * wq)3538 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3539 {
3540 }
3541 
wq_free_lockdep(struct workqueue_struct * wq)3542 static void wq_free_lockdep(struct workqueue_struct *wq)
3543 {
3544 }
3545 #endif
3546 
rcu_free_wq(struct rcu_head * rcu)3547 static void rcu_free_wq(struct rcu_head *rcu)
3548 {
3549 	struct workqueue_struct *wq =
3550 		container_of(rcu, struct workqueue_struct, rcu);
3551 
3552 	wq_free_lockdep(wq);
3553 
3554 	if (!(wq->flags & WQ_UNBOUND))
3555 		free_percpu(wq->cpu_pwqs);
3556 	else
3557 		free_workqueue_attrs(wq->unbound_attrs);
3558 
3559 	kfree(wq);
3560 }
3561 
rcu_free_pool(struct rcu_head * rcu)3562 static void rcu_free_pool(struct rcu_head *rcu)
3563 {
3564 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3565 
3566 	ida_destroy(&pool->worker_ida);
3567 	free_workqueue_attrs(pool->attrs);
3568 	kfree(pool);
3569 }
3570 
3571 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3572 static bool wq_manager_inactive(struct worker_pool *pool)
3573 {
3574 	raw_spin_lock_irq(&pool->lock);
3575 
3576 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3577 		raw_spin_unlock_irq(&pool->lock);
3578 		return false;
3579 	}
3580 	return true;
3581 }
3582 
3583 /**
3584  * put_unbound_pool - put a worker_pool
3585  * @pool: worker_pool to put
3586  *
3587  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3588  * safe manner.  get_unbound_pool() calls this function on its failure path
3589  * and this function should be able to release pools which went through,
3590  * successfully or not, init_worker_pool().
3591  *
3592  * Should be called with wq_pool_mutex held.
3593  */
put_unbound_pool(struct worker_pool * pool)3594 static void put_unbound_pool(struct worker_pool *pool)
3595 {
3596 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3597 	struct worker *worker;
3598 
3599 	lockdep_assert_held(&wq_pool_mutex);
3600 
3601 	if (--pool->refcnt)
3602 		return;
3603 
3604 	/* sanity checks */
3605 	if (WARN_ON(!(pool->cpu < 0)) ||
3606 	    WARN_ON(!list_empty(&pool->worklist)))
3607 		return;
3608 
3609 	/* release id and unhash */
3610 	if (pool->id >= 0)
3611 		idr_remove(&worker_pool_idr, pool->id);
3612 	hash_del(&pool->hash_node);
3613 
3614 	/*
3615 	 * Become the manager and destroy all workers.  This prevents
3616 	 * @pool's workers from blocking on attach_mutex.  We're the last
3617 	 * manager and @pool gets freed with the flag set.
3618 	 * Because of how wq_manager_inactive() works, we will hold the
3619 	 * spinlock after a successful wait.
3620 	 */
3621 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3622 			   TASK_UNINTERRUPTIBLE);
3623 	pool->flags |= POOL_MANAGER_ACTIVE;
3624 
3625 	while ((worker = first_idle_worker(pool)))
3626 		destroy_worker(worker);
3627 	WARN_ON(pool->nr_workers || pool->nr_idle);
3628 	raw_spin_unlock_irq(&pool->lock);
3629 
3630 	mutex_lock(&wq_pool_attach_mutex);
3631 	if (!list_empty(&pool->workers))
3632 		pool->detach_completion = &detach_completion;
3633 	mutex_unlock(&wq_pool_attach_mutex);
3634 
3635 	if (pool->detach_completion)
3636 		wait_for_completion(pool->detach_completion);
3637 
3638 	/* shut down the timers */
3639 	del_timer_sync(&pool->idle_timer);
3640 	del_timer_sync(&pool->mayday_timer);
3641 
3642 	/* RCU protected to allow dereferences from get_work_pool() */
3643 	call_rcu(&pool->rcu, rcu_free_pool);
3644 }
3645 
3646 /**
3647  * get_unbound_pool - get a worker_pool with the specified attributes
3648  * @attrs: the attributes of the worker_pool to get
3649  *
3650  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3651  * reference count and return it.  If there already is a matching
3652  * worker_pool, it will be used; otherwise, this function attempts to
3653  * create a new one.
3654  *
3655  * Should be called with wq_pool_mutex held.
3656  *
3657  * Return: On success, a worker_pool with the same attributes as @attrs.
3658  * On failure, %NULL.
3659  */
get_unbound_pool(const struct workqueue_attrs * attrs)3660 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3661 {
3662 	u32 hash = wqattrs_hash(attrs);
3663 	struct worker_pool *pool;
3664 	int node;
3665 	int target_node = NUMA_NO_NODE;
3666 
3667 	lockdep_assert_held(&wq_pool_mutex);
3668 
3669 	/* do we already have a matching pool? */
3670 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3671 		if (wqattrs_equal(pool->attrs, attrs)) {
3672 			pool->refcnt++;
3673 			return pool;
3674 		}
3675 	}
3676 
3677 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3678 	if (wq_numa_enabled) {
3679 		for_each_node(node) {
3680 			if (cpumask_subset(attrs->cpumask,
3681 					   wq_numa_possible_cpumask[node])) {
3682 				target_node = node;
3683 				break;
3684 			}
3685 		}
3686 	}
3687 
3688 	/* nope, create a new one */
3689 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3690 	if (!pool || init_worker_pool(pool) < 0)
3691 		goto fail;
3692 
3693 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3694 	copy_workqueue_attrs(pool->attrs, attrs);
3695 	pool->node = target_node;
3696 
3697 	/*
3698 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3699 	 * 'struct workqueue_attrs' comments for detail.
3700 	 */
3701 	pool->attrs->no_numa = false;
3702 
3703 	if (worker_pool_assign_id(pool) < 0)
3704 		goto fail;
3705 
3706 	/* create and start the initial worker */
3707 	if (wq_online && !create_worker(pool))
3708 		goto fail;
3709 
3710 	/* install */
3711 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3712 
3713 	return pool;
3714 fail:
3715 	if (pool)
3716 		put_unbound_pool(pool);
3717 	return NULL;
3718 }
3719 
rcu_free_pwq(struct rcu_head * rcu)3720 static void rcu_free_pwq(struct rcu_head *rcu)
3721 {
3722 	kmem_cache_free(pwq_cache,
3723 			container_of(rcu, struct pool_workqueue, rcu));
3724 }
3725 
3726 /*
3727  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3728  * and needs to be destroyed.
3729  */
pwq_unbound_release_workfn(struct work_struct * work)3730 static void pwq_unbound_release_workfn(struct work_struct *work)
3731 {
3732 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3733 						  unbound_release_work);
3734 	struct workqueue_struct *wq = pwq->wq;
3735 	struct worker_pool *pool = pwq->pool;
3736 	bool is_last = false;
3737 
3738 	/*
3739 	 * when @pwq is not linked, it doesn't hold any reference to the
3740 	 * @wq, and @wq is invalid to access.
3741 	 */
3742 	if (!list_empty(&pwq->pwqs_node)) {
3743 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3744 			return;
3745 
3746 		mutex_lock(&wq->mutex);
3747 		list_del_rcu(&pwq->pwqs_node);
3748 		is_last = list_empty(&wq->pwqs);
3749 		mutex_unlock(&wq->mutex);
3750 	}
3751 
3752 	mutex_lock(&wq_pool_mutex);
3753 	put_unbound_pool(pool);
3754 	mutex_unlock(&wq_pool_mutex);
3755 
3756 	call_rcu(&pwq->rcu, rcu_free_pwq);
3757 
3758 	/*
3759 	 * If we're the last pwq going away, @wq is already dead and no one
3760 	 * is gonna access it anymore.  Schedule RCU free.
3761 	 */
3762 	if (is_last) {
3763 		wq_unregister_lockdep(wq);
3764 		call_rcu(&wq->rcu, rcu_free_wq);
3765 	}
3766 }
3767 
3768 /**
3769  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3770  * @pwq: target pool_workqueue
3771  *
3772  * If @pwq isn't freezing, set @pwq->max_active to the associated
3773  * workqueue's saved_max_active and activate inactive work items
3774  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3775  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3776 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3777 {
3778 	struct workqueue_struct *wq = pwq->wq;
3779 	bool freezable = wq->flags & WQ_FREEZABLE;
3780 	unsigned long flags;
3781 
3782 	/* for @wq->saved_max_active */
3783 	lockdep_assert_held(&wq->mutex);
3784 
3785 	/* fast exit for non-freezable wqs */
3786 	if (!freezable && pwq->max_active == wq->saved_max_active)
3787 		return;
3788 
3789 	/* this function can be called during early boot w/ irq disabled */
3790 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3791 
3792 	/*
3793 	 * During [un]freezing, the caller is responsible for ensuring that
3794 	 * this function is called at least once after @workqueue_freezing
3795 	 * is updated and visible.
3796 	 */
3797 	if (!freezable || !workqueue_freezing) {
3798 		bool kick = false;
3799 
3800 		pwq->max_active = wq->saved_max_active;
3801 
3802 		while (!list_empty(&pwq->inactive_works) &&
3803 		       pwq->nr_active < pwq->max_active) {
3804 			pwq_activate_first_inactive(pwq);
3805 			kick = true;
3806 		}
3807 
3808 		/*
3809 		 * Need to kick a worker after thawed or an unbound wq's
3810 		 * max_active is bumped. In realtime scenarios, always kicking a
3811 		 * worker will cause interference on the isolated cpu cores, so
3812 		 * let's kick iff work items were activated.
3813 		 */
3814 		if (kick)
3815 			wake_up_worker(pwq->pool);
3816 	} else {
3817 		pwq->max_active = 0;
3818 	}
3819 
3820 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3821 }
3822 
3823 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3824 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3825 		     struct worker_pool *pool)
3826 {
3827 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3828 
3829 	memset(pwq, 0, sizeof(*pwq));
3830 
3831 	pwq->pool = pool;
3832 	pwq->wq = wq;
3833 	pwq->flush_color = -1;
3834 	pwq->refcnt = 1;
3835 	INIT_LIST_HEAD(&pwq->inactive_works);
3836 	INIT_LIST_HEAD(&pwq->pwqs_node);
3837 	INIT_LIST_HEAD(&pwq->mayday_node);
3838 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3839 }
3840 
3841 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3842 static void link_pwq(struct pool_workqueue *pwq)
3843 {
3844 	struct workqueue_struct *wq = pwq->wq;
3845 
3846 	lockdep_assert_held(&wq->mutex);
3847 
3848 	/* may be called multiple times, ignore if already linked */
3849 	if (!list_empty(&pwq->pwqs_node))
3850 		return;
3851 
3852 	/* set the matching work_color */
3853 	pwq->work_color = wq->work_color;
3854 
3855 	/* sync max_active to the current setting */
3856 	pwq_adjust_max_active(pwq);
3857 
3858 	/* link in @pwq */
3859 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3860 }
3861 
3862 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3863 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3864 					const struct workqueue_attrs *attrs)
3865 {
3866 	struct worker_pool *pool;
3867 	struct pool_workqueue *pwq;
3868 
3869 	lockdep_assert_held(&wq_pool_mutex);
3870 
3871 	pool = get_unbound_pool(attrs);
3872 	if (!pool)
3873 		return NULL;
3874 
3875 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3876 	if (!pwq) {
3877 		put_unbound_pool(pool);
3878 		return NULL;
3879 	}
3880 
3881 	init_pwq(pwq, wq, pool);
3882 	return pwq;
3883 }
3884 
3885 /**
3886  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3887  * @attrs: the wq_attrs of the default pwq of the target workqueue
3888  * @node: the target NUMA node
3889  * @cpu_going_down: if >= 0, the CPU to consider as offline
3890  * @cpumask: outarg, the resulting cpumask
3891  *
3892  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3893  * @cpu_going_down is >= 0, that cpu is considered offline during
3894  * calculation.  The result is stored in @cpumask.
3895  *
3896  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3897  * enabled and @node has online CPUs requested by @attrs, the returned
3898  * cpumask is the intersection of the possible CPUs of @node and
3899  * @attrs->cpumask.
3900  *
3901  * The caller is responsible for ensuring that the cpumask of @node stays
3902  * stable.
3903  *
3904  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3905  * %false if equal.
3906  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3907 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3908 				 int cpu_going_down, cpumask_t *cpumask)
3909 {
3910 	if (!wq_numa_enabled || attrs->no_numa)
3911 		goto use_dfl;
3912 
3913 	/* does @node have any online CPUs @attrs wants? */
3914 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3915 	if (cpu_going_down >= 0)
3916 		cpumask_clear_cpu(cpu_going_down, cpumask);
3917 
3918 	if (cpumask_empty(cpumask))
3919 		goto use_dfl;
3920 
3921 	/* yeap, return possible CPUs in @node that @attrs wants */
3922 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3923 
3924 	if (cpumask_empty(cpumask)) {
3925 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3926 				"possible intersect\n");
3927 		return false;
3928 	}
3929 
3930 	return !cpumask_equal(cpumask, attrs->cpumask);
3931 
3932 use_dfl:
3933 	cpumask_copy(cpumask, attrs->cpumask);
3934 	return false;
3935 }
3936 
3937 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3938 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3939 						   int node,
3940 						   struct pool_workqueue *pwq)
3941 {
3942 	struct pool_workqueue *old_pwq;
3943 
3944 	lockdep_assert_held(&wq_pool_mutex);
3945 	lockdep_assert_held(&wq->mutex);
3946 
3947 	/* link_pwq() can handle duplicate calls */
3948 	link_pwq(pwq);
3949 
3950 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3951 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3952 	return old_pwq;
3953 }
3954 
3955 /* context to store the prepared attrs & pwqs before applying */
3956 struct apply_wqattrs_ctx {
3957 	struct workqueue_struct	*wq;		/* target workqueue */
3958 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3959 	struct list_head	list;		/* queued for batching commit */
3960 	struct pool_workqueue	*dfl_pwq;
3961 	struct pool_workqueue	*pwq_tbl[];
3962 };
3963 
3964 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3965 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3966 {
3967 	if (ctx) {
3968 		int node;
3969 
3970 		for_each_node(node)
3971 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3972 		put_pwq_unlocked(ctx->dfl_pwq);
3973 
3974 		free_workqueue_attrs(ctx->attrs);
3975 
3976 		kfree(ctx);
3977 	}
3978 }
3979 
3980 /* allocate the attrs and pwqs for later installation */
3981 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3982 apply_wqattrs_prepare(struct workqueue_struct *wq,
3983 		      const struct workqueue_attrs *attrs)
3984 {
3985 	struct apply_wqattrs_ctx *ctx;
3986 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3987 	int node;
3988 
3989 	lockdep_assert_held(&wq_pool_mutex);
3990 
3991 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3992 
3993 	new_attrs = alloc_workqueue_attrs();
3994 	tmp_attrs = alloc_workqueue_attrs();
3995 	if (!ctx || !new_attrs || !tmp_attrs)
3996 		goto out_free;
3997 
3998 	/*
3999 	 * Calculate the attrs of the default pwq.
4000 	 * If the user configured cpumask doesn't overlap with the
4001 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4002 	 */
4003 	copy_workqueue_attrs(new_attrs, attrs);
4004 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
4005 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
4006 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
4007 
4008 	/*
4009 	 * We may create multiple pwqs with differing cpumasks.  Make a
4010 	 * copy of @new_attrs which will be modified and used to obtain
4011 	 * pools.
4012 	 */
4013 	copy_workqueue_attrs(tmp_attrs, new_attrs);
4014 
4015 	/*
4016 	 * If something goes wrong during CPU up/down, we'll fall back to
4017 	 * the default pwq covering whole @attrs->cpumask.  Always create
4018 	 * it even if we don't use it immediately.
4019 	 */
4020 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4021 	if (!ctx->dfl_pwq)
4022 		goto out_free;
4023 
4024 	for_each_node(node) {
4025 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4026 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4027 			if (!ctx->pwq_tbl[node])
4028 				goto out_free;
4029 		} else {
4030 			ctx->dfl_pwq->refcnt++;
4031 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4032 		}
4033 	}
4034 
4035 	/* save the user configured attrs and sanitize it. */
4036 	copy_workqueue_attrs(new_attrs, attrs);
4037 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4038 	ctx->attrs = new_attrs;
4039 
4040 	ctx->wq = wq;
4041 	free_workqueue_attrs(tmp_attrs);
4042 	return ctx;
4043 
4044 out_free:
4045 	free_workqueue_attrs(tmp_attrs);
4046 	free_workqueue_attrs(new_attrs);
4047 	apply_wqattrs_cleanup(ctx);
4048 	return NULL;
4049 }
4050 
4051 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4052 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4053 {
4054 	int node;
4055 
4056 	/* all pwqs have been created successfully, let's install'em */
4057 	mutex_lock(&ctx->wq->mutex);
4058 
4059 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4060 
4061 	/* save the previous pwq and install the new one */
4062 	for_each_node(node)
4063 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4064 							  ctx->pwq_tbl[node]);
4065 
4066 	/* @dfl_pwq might not have been used, ensure it's linked */
4067 	link_pwq(ctx->dfl_pwq);
4068 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4069 
4070 	mutex_unlock(&ctx->wq->mutex);
4071 }
4072 
apply_wqattrs_lock(void)4073 static void apply_wqattrs_lock(void)
4074 {
4075 	/* CPUs should stay stable across pwq creations and installations */
4076 	cpus_read_lock();
4077 	mutex_lock(&wq_pool_mutex);
4078 }
4079 
apply_wqattrs_unlock(void)4080 static void apply_wqattrs_unlock(void)
4081 {
4082 	mutex_unlock(&wq_pool_mutex);
4083 	cpus_read_unlock();
4084 }
4085 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4086 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4087 					const struct workqueue_attrs *attrs)
4088 {
4089 	struct apply_wqattrs_ctx *ctx;
4090 
4091 	/* only unbound workqueues can change attributes */
4092 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4093 		return -EINVAL;
4094 
4095 	/* creating multiple pwqs breaks ordering guarantee */
4096 	if (!list_empty(&wq->pwqs)) {
4097 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4098 			return -EINVAL;
4099 
4100 		wq->flags &= ~__WQ_ORDERED;
4101 	}
4102 
4103 	ctx = apply_wqattrs_prepare(wq, attrs);
4104 	if (!ctx)
4105 		return -ENOMEM;
4106 
4107 	/* the ctx has been prepared successfully, let's commit it */
4108 	apply_wqattrs_commit(ctx);
4109 	apply_wqattrs_cleanup(ctx);
4110 
4111 	return 0;
4112 }
4113 
4114 /**
4115  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4116  * @wq: the target workqueue
4117  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4118  *
4119  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4120  * machines, this function maps a separate pwq to each NUMA node with
4121  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4122  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4123  * items finish.  Note that a work item which repeatedly requeues itself
4124  * back-to-back will stay on its current pwq.
4125  *
4126  * Performs GFP_KERNEL allocations.
4127  *
4128  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4129  *
4130  * Return: 0 on success and -errno on failure.
4131  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4132 int apply_workqueue_attrs(struct workqueue_struct *wq,
4133 			  const struct workqueue_attrs *attrs)
4134 {
4135 	int ret;
4136 
4137 	lockdep_assert_cpus_held();
4138 
4139 	mutex_lock(&wq_pool_mutex);
4140 	ret = apply_workqueue_attrs_locked(wq, attrs);
4141 	mutex_unlock(&wq_pool_mutex);
4142 
4143 	return ret;
4144 }
4145 
4146 /**
4147  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4148  * @wq: the target workqueue
4149  * @cpu: the CPU coming up or going down
4150  * @online: whether @cpu is coming up or going down
4151  *
4152  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4153  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4154  * @wq accordingly.
4155  *
4156  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4157  * falls back to @wq->dfl_pwq which may not be optimal but is always
4158  * correct.
4159  *
4160  * Note that when the last allowed CPU of a NUMA node goes offline for a
4161  * workqueue with a cpumask spanning multiple nodes, the workers which were
4162  * already executing the work items for the workqueue will lose their CPU
4163  * affinity and may execute on any CPU.  This is similar to how per-cpu
4164  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4165  * affinity, it's the user's responsibility to flush the work item from
4166  * CPU_DOWN_PREPARE.
4167  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4168 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4169 				   bool online)
4170 {
4171 	int node = cpu_to_node(cpu);
4172 	int cpu_off = online ? -1 : cpu;
4173 	struct pool_workqueue *old_pwq = NULL, *pwq;
4174 	struct workqueue_attrs *target_attrs;
4175 	cpumask_t *cpumask;
4176 
4177 	lockdep_assert_held(&wq_pool_mutex);
4178 
4179 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4180 	    wq->unbound_attrs->no_numa)
4181 		return;
4182 
4183 	/*
4184 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4185 	 * Let's use a preallocated one.  The following buf is protected by
4186 	 * CPU hotplug exclusion.
4187 	 */
4188 	target_attrs = wq_update_unbound_numa_attrs_buf;
4189 	cpumask = target_attrs->cpumask;
4190 
4191 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4192 	pwq = unbound_pwq_by_node(wq, node);
4193 
4194 	/*
4195 	 * Let's determine what needs to be done.  If the target cpumask is
4196 	 * different from the default pwq's, we need to compare it to @pwq's
4197 	 * and create a new one if they don't match.  If the target cpumask
4198 	 * equals the default pwq's, the default pwq should be used.
4199 	 */
4200 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4201 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4202 			return;
4203 	} else {
4204 		goto use_dfl_pwq;
4205 	}
4206 
4207 	/* create a new pwq */
4208 	pwq = alloc_unbound_pwq(wq, target_attrs);
4209 	if (!pwq) {
4210 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4211 			wq->name);
4212 		goto use_dfl_pwq;
4213 	}
4214 
4215 	/* Install the new pwq. */
4216 	mutex_lock(&wq->mutex);
4217 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4218 	goto out_unlock;
4219 
4220 use_dfl_pwq:
4221 	mutex_lock(&wq->mutex);
4222 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4223 	get_pwq(wq->dfl_pwq);
4224 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4225 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4226 out_unlock:
4227 	mutex_unlock(&wq->mutex);
4228 	put_pwq_unlocked(old_pwq);
4229 }
4230 
alloc_and_link_pwqs(struct workqueue_struct * wq)4231 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4232 {
4233 	bool highpri = wq->flags & WQ_HIGHPRI;
4234 	int cpu, ret;
4235 
4236 	if (!(wq->flags & WQ_UNBOUND)) {
4237 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4238 		if (!wq->cpu_pwqs)
4239 			return -ENOMEM;
4240 
4241 		for_each_possible_cpu(cpu) {
4242 			struct pool_workqueue *pwq =
4243 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4244 			struct worker_pool *cpu_pools =
4245 				per_cpu(cpu_worker_pools, cpu);
4246 
4247 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4248 
4249 			mutex_lock(&wq->mutex);
4250 			link_pwq(pwq);
4251 			mutex_unlock(&wq->mutex);
4252 		}
4253 		return 0;
4254 	}
4255 
4256 	cpus_read_lock();
4257 	if (wq->flags & __WQ_ORDERED) {
4258 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4259 		/* there should only be single pwq for ordering guarantee */
4260 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4261 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4262 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4263 	} else {
4264 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4265 	}
4266 	cpus_read_unlock();
4267 
4268 	return ret;
4269 }
4270 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4271 static int wq_clamp_max_active(int max_active, unsigned int flags,
4272 			       const char *name)
4273 {
4274 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4275 
4276 	if (max_active < 1 || max_active > lim)
4277 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4278 			max_active, name, 1, lim);
4279 
4280 	return clamp_val(max_active, 1, lim);
4281 }
4282 
4283 /*
4284  * Workqueues which may be used during memory reclaim should have a rescuer
4285  * to guarantee forward progress.
4286  */
init_rescuer(struct workqueue_struct * wq)4287 static int init_rescuer(struct workqueue_struct *wq)
4288 {
4289 	struct worker *rescuer;
4290 	int ret;
4291 
4292 	if (!(wq->flags & WQ_MEM_RECLAIM))
4293 		return 0;
4294 
4295 	rescuer = alloc_worker(NUMA_NO_NODE);
4296 	if (!rescuer)
4297 		return -ENOMEM;
4298 
4299 	rescuer->rescue_wq = wq;
4300 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4301 	if (IS_ERR(rescuer->task)) {
4302 		ret = PTR_ERR(rescuer->task);
4303 		kfree(rescuer);
4304 		return ret;
4305 	}
4306 
4307 	wq->rescuer = rescuer;
4308 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4309 	wake_up_process(rescuer->task);
4310 
4311 	return 0;
4312 }
4313 
4314 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4315 struct workqueue_struct *alloc_workqueue(const char *fmt,
4316 					 unsigned int flags,
4317 					 int max_active, ...)
4318 {
4319 	size_t tbl_size = 0;
4320 	va_list args;
4321 	struct workqueue_struct *wq;
4322 	struct pool_workqueue *pwq;
4323 
4324 	/*
4325 	 * Unbound && max_active == 1 used to imply ordered, which is no
4326 	 * longer the case on NUMA machines due to per-node pools.  While
4327 	 * alloc_ordered_workqueue() is the right way to create an ordered
4328 	 * workqueue, keep the previous behavior to avoid subtle breakages
4329 	 * on NUMA.
4330 	 */
4331 	if ((flags & WQ_UNBOUND) && max_active == 1)
4332 		flags |= __WQ_ORDERED;
4333 
4334 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4335 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4336 		flags |= WQ_UNBOUND;
4337 
4338 	/* allocate wq and format name */
4339 	if (flags & WQ_UNBOUND)
4340 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4341 
4342 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4343 	if (!wq)
4344 		return NULL;
4345 
4346 	if (flags & WQ_UNBOUND) {
4347 		wq->unbound_attrs = alloc_workqueue_attrs();
4348 		if (!wq->unbound_attrs)
4349 			goto err_free_wq;
4350 	}
4351 
4352 	va_start(args, max_active);
4353 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4354 	va_end(args);
4355 
4356 	max_active = max_active ?: WQ_DFL_ACTIVE;
4357 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4358 
4359 	/* init wq */
4360 	wq->flags = flags;
4361 	wq->saved_max_active = max_active;
4362 	mutex_init(&wq->mutex);
4363 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4364 	INIT_LIST_HEAD(&wq->pwqs);
4365 	INIT_LIST_HEAD(&wq->flusher_queue);
4366 	INIT_LIST_HEAD(&wq->flusher_overflow);
4367 	INIT_LIST_HEAD(&wq->maydays);
4368 
4369 	wq_init_lockdep(wq);
4370 	INIT_LIST_HEAD(&wq->list);
4371 
4372 	if (alloc_and_link_pwqs(wq) < 0)
4373 		goto err_unreg_lockdep;
4374 
4375 	if (wq_online && init_rescuer(wq) < 0)
4376 		goto err_destroy;
4377 
4378 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4379 		goto err_destroy;
4380 
4381 	/*
4382 	 * wq_pool_mutex protects global freeze state and workqueues list.
4383 	 * Grab it, adjust max_active and add the new @wq to workqueues
4384 	 * list.
4385 	 */
4386 	mutex_lock(&wq_pool_mutex);
4387 
4388 	mutex_lock(&wq->mutex);
4389 	for_each_pwq(pwq, wq)
4390 		pwq_adjust_max_active(pwq);
4391 	mutex_unlock(&wq->mutex);
4392 
4393 	list_add_tail_rcu(&wq->list, &workqueues);
4394 
4395 	mutex_unlock(&wq_pool_mutex);
4396 
4397 	return wq;
4398 
4399 err_unreg_lockdep:
4400 	wq_unregister_lockdep(wq);
4401 	wq_free_lockdep(wq);
4402 err_free_wq:
4403 	free_workqueue_attrs(wq->unbound_attrs);
4404 	kfree(wq);
4405 	return NULL;
4406 err_destroy:
4407 	destroy_workqueue(wq);
4408 	return NULL;
4409 }
4410 EXPORT_SYMBOL_GPL(alloc_workqueue);
4411 
pwq_busy(struct pool_workqueue * pwq)4412 static bool pwq_busy(struct pool_workqueue *pwq)
4413 {
4414 	int i;
4415 
4416 	for (i = 0; i < WORK_NR_COLORS; i++)
4417 		if (pwq->nr_in_flight[i])
4418 			return true;
4419 
4420 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4421 		return true;
4422 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4423 		return true;
4424 
4425 	return false;
4426 }
4427 
4428 /**
4429  * destroy_workqueue - safely terminate a workqueue
4430  * @wq: target workqueue
4431  *
4432  * Safely destroy a workqueue. All work currently pending will be done first.
4433  */
destroy_workqueue(struct workqueue_struct * wq)4434 void destroy_workqueue(struct workqueue_struct *wq)
4435 {
4436 	struct pool_workqueue *pwq;
4437 	int node;
4438 
4439 	/*
4440 	 * Remove it from sysfs first so that sanity check failure doesn't
4441 	 * lead to sysfs name conflicts.
4442 	 */
4443 	workqueue_sysfs_unregister(wq);
4444 
4445 	/* drain it before proceeding with destruction */
4446 	drain_workqueue(wq);
4447 
4448 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4449 	if (wq->rescuer) {
4450 		struct worker *rescuer = wq->rescuer;
4451 
4452 		/* this prevents new queueing */
4453 		raw_spin_lock_irq(&wq_mayday_lock);
4454 		wq->rescuer = NULL;
4455 		raw_spin_unlock_irq(&wq_mayday_lock);
4456 
4457 		/* rescuer will empty maydays list before exiting */
4458 		kthread_stop(rescuer->task);
4459 		kfree(rescuer);
4460 	}
4461 
4462 	/*
4463 	 * Sanity checks - grab all the locks so that we wait for all
4464 	 * in-flight operations which may do put_pwq().
4465 	 */
4466 	mutex_lock(&wq_pool_mutex);
4467 	mutex_lock(&wq->mutex);
4468 	for_each_pwq(pwq, wq) {
4469 		raw_spin_lock_irq(&pwq->pool->lock);
4470 		if (WARN_ON(pwq_busy(pwq))) {
4471 			pr_warn("%s: %s has the following busy pwq\n",
4472 				__func__, wq->name);
4473 			show_pwq(pwq);
4474 			raw_spin_unlock_irq(&pwq->pool->lock);
4475 			mutex_unlock(&wq->mutex);
4476 			mutex_unlock(&wq_pool_mutex);
4477 			show_one_workqueue(wq);
4478 			return;
4479 		}
4480 		raw_spin_unlock_irq(&pwq->pool->lock);
4481 	}
4482 	mutex_unlock(&wq->mutex);
4483 
4484 	/*
4485 	 * wq list is used to freeze wq, remove from list after
4486 	 * flushing is complete in case freeze races us.
4487 	 */
4488 	list_del_rcu(&wq->list);
4489 	mutex_unlock(&wq_pool_mutex);
4490 
4491 	if (!(wq->flags & WQ_UNBOUND)) {
4492 		wq_unregister_lockdep(wq);
4493 		/*
4494 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4495 		 * schedule RCU free.
4496 		 */
4497 		call_rcu(&wq->rcu, rcu_free_wq);
4498 	} else {
4499 		/*
4500 		 * We're the sole accessor of @wq at this point.  Directly
4501 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4502 		 * @wq will be freed when the last pwq is released.
4503 		 */
4504 		for_each_node(node) {
4505 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4506 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4507 			put_pwq_unlocked(pwq);
4508 		}
4509 
4510 		/*
4511 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4512 		 * put.  Don't access it afterwards.
4513 		 */
4514 		pwq = wq->dfl_pwq;
4515 		wq->dfl_pwq = NULL;
4516 		put_pwq_unlocked(pwq);
4517 	}
4518 }
4519 EXPORT_SYMBOL_GPL(destroy_workqueue);
4520 
4521 /**
4522  * workqueue_set_max_active - adjust max_active of a workqueue
4523  * @wq: target workqueue
4524  * @max_active: new max_active value.
4525  *
4526  * Set max_active of @wq to @max_active.
4527  *
4528  * CONTEXT:
4529  * Don't call from IRQ context.
4530  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4531 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4532 {
4533 	struct pool_workqueue *pwq;
4534 
4535 	/* disallow meddling with max_active for ordered workqueues */
4536 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4537 		return;
4538 
4539 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4540 
4541 	mutex_lock(&wq->mutex);
4542 
4543 	wq->flags &= ~__WQ_ORDERED;
4544 	wq->saved_max_active = max_active;
4545 
4546 	for_each_pwq(pwq, wq)
4547 		pwq_adjust_max_active(pwq);
4548 
4549 	mutex_unlock(&wq->mutex);
4550 }
4551 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4552 
4553 /**
4554  * current_work - retrieve %current task's work struct
4555  *
4556  * Determine if %current task is a workqueue worker and what it's working on.
4557  * Useful to find out the context that the %current task is running in.
4558  *
4559  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4560  */
current_work(void)4561 struct work_struct *current_work(void)
4562 {
4563 	struct worker *worker = current_wq_worker();
4564 
4565 	return worker ? worker->current_work : NULL;
4566 }
4567 EXPORT_SYMBOL(current_work);
4568 
4569 /**
4570  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4571  *
4572  * Determine whether %current is a workqueue rescuer.  Can be used from
4573  * work functions to determine whether it's being run off the rescuer task.
4574  *
4575  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4576  */
current_is_workqueue_rescuer(void)4577 bool current_is_workqueue_rescuer(void)
4578 {
4579 	struct worker *worker = current_wq_worker();
4580 
4581 	return worker && worker->rescue_wq;
4582 }
4583 
4584 /**
4585  * workqueue_congested - test whether a workqueue is congested
4586  * @cpu: CPU in question
4587  * @wq: target workqueue
4588  *
4589  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4590  * no synchronization around this function and the test result is
4591  * unreliable and only useful as advisory hints or for debugging.
4592  *
4593  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4594  * Note that both per-cpu and unbound workqueues may be associated with
4595  * multiple pool_workqueues which have separate congested states.  A
4596  * workqueue being congested on one CPU doesn't mean the workqueue is also
4597  * contested on other CPUs / NUMA nodes.
4598  *
4599  * Return:
4600  * %true if congested, %false otherwise.
4601  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4602 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4603 {
4604 	struct pool_workqueue *pwq;
4605 	bool ret;
4606 
4607 	rcu_read_lock();
4608 	preempt_disable();
4609 
4610 	if (cpu == WORK_CPU_UNBOUND)
4611 		cpu = smp_processor_id();
4612 
4613 	if (!(wq->flags & WQ_UNBOUND))
4614 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4615 	else
4616 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4617 
4618 	ret = !list_empty(&pwq->inactive_works);
4619 	preempt_enable();
4620 	rcu_read_unlock();
4621 
4622 	return ret;
4623 }
4624 EXPORT_SYMBOL_GPL(workqueue_congested);
4625 
4626 /**
4627  * work_busy - test whether a work is currently pending or running
4628  * @work: the work to be tested
4629  *
4630  * Test whether @work is currently pending or running.  There is no
4631  * synchronization around this function and the test result is
4632  * unreliable and only useful as advisory hints or for debugging.
4633  *
4634  * Return:
4635  * OR'd bitmask of WORK_BUSY_* bits.
4636  */
work_busy(struct work_struct * work)4637 unsigned int work_busy(struct work_struct *work)
4638 {
4639 	struct worker_pool *pool;
4640 	unsigned long flags;
4641 	unsigned int ret = 0;
4642 
4643 	if (work_pending(work))
4644 		ret |= WORK_BUSY_PENDING;
4645 
4646 	rcu_read_lock();
4647 	pool = get_work_pool(work);
4648 	if (pool) {
4649 		raw_spin_lock_irqsave(&pool->lock, flags);
4650 		if (find_worker_executing_work(pool, work))
4651 			ret |= WORK_BUSY_RUNNING;
4652 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4653 	}
4654 	rcu_read_unlock();
4655 
4656 	return ret;
4657 }
4658 EXPORT_SYMBOL_GPL(work_busy);
4659 
4660 /**
4661  * set_worker_desc - set description for the current work item
4662  * @fmt: printf-style format string
4663  * @...: arguments for the format string
4664  *
4665  * This function can be called by a running work function to describe what
4666  * the work item is about.  If the worker task gets dumped, this
4667  * information will be printed out together to help debugging.  The
4668  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4669  */
set_worker_desc(const char * fmt,...)4670 void set_worker_desc(const char *fmt, ...)
4671 {
4672 	struct worker *worker = current_wq_worker();
4673 	va_list args;
4674 
4675 	if (worker) {
4676 		va_start(args, fmt);
4677 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4678 		va_end(args);
4679 	}
4680 }
4681 EXPORT_SYMBOL_GPL(set_worker_desc);
4682 
4683 /**
4684  * print_worker_info - print out worker information and description
4685  * @log_lvl: the log level to use when printing
4686  * @task: target task
4687  *
4688  * If @task is a worker and currently executing a work item, print out the
4689  * name of the workqueue being serviced and worker description set with
4690  * set_worker_desc() by the currently executing work item.
4691  *
4692  * This function can be safely called on any task as long as the
4693  * task_struct itself is accessible.  While safe, this function isn't
4694  * synchronized and may print out mixups or garbages of limited length.
4695  */
print_worker_info(const char * log_lvl,struct task_struct * task)4696 void print_worker_info(const char *log_lvl, struct task_struct *task)
4697 {
4698 	work_func_t *fn = NULL;
4699 	char name[WQ_NAME_LEN] = { };
4700 	char desc[WORKER_DESC_LEN] = { };
4701 	struct pool_workqueue *pwq = NULL;
4702 	struct workqueue_struct *wq = NULL;
4703 	struct worker *worker;
4704 
4705 	if (!(task->flags & PF_WQ_WORKER))
4706 		return;
4707 
4708 	/*
4709 	 * This function is called without any synchronization and @task
4710 	 * could be in any state.  Be careful with dereferences.
4711 	 */
4712 	worker = kthread_probe_data(task);
4713 
4714 	/*
4715 	 * Carefully copy the associated workqueue's workfn, name and desc.
4716 	 * Keep the original last '\0' in case the original is garbage.
4717 	 */
4718 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4719 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4720 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4721 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4722 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4723 
4724 	if (fn || name[0] || desc[0]) {
4725 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4726 		if (strcmp(name, desc))
4727 			pr_cont(" (%s)", desc);
4728 		pr_cont("\n");
4729 	}
4730 }
4731 
pr_cont_pool_info(struct worker_pool * pool)4732 static void pr_cont_pool_info(struct worker_pool *pool)
4733 {
4734 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4735 	if (pool->node != NUMA_NO_NODE)
4736 		pr_cont(" node=%d", pool->node);
4737 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4738 }
4739 
pr_cont_work(bool comma,struct work_struct * work)4740 static void pr_cont_work(bool comma, struct work_struct *work)
4741 {
4742 	if (work->func == wq_barrier_func) {
4743 		struct wq_barrier *barr;
4744 
4745 		barr = container_of(work, struct wq_barrier, work);
4746 
4747 		pr_cont("%s BAR(%d)", comma ? "," : "",
4748 			task_pid_nr(barr->task));
4749 	} else {
4750 		pr_cont("%s %ps", comma ? "," : "", work->func);
4751 	}
4752 }
4753 
show_pwq(struct pool_workqueue * pwq)4754 static void show_pwq(struct pool_workqueue *pwq)
4755 {
4756 	struct worker_pool *pool = pwq->pool;
4757 	struct work_struct *work;
4758 	struct worker *worker;
4759 	bool has_in_flight = false, has_pending = false;
4760 	int bkt;
4761 
4762 	pr_info("  pwq %d:", pool->id);
4763 	pr_cont_pool_info(pool);
4764 
4765 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4766 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4767 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4768 
4769 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4770 		if (worker->current_pwq == pwq) {
4771 			has_in_flight = true;
4772 			break;
4773 		}
4774 	}
4775 	if (has_in_flight) {
4776 		bool comma = false;
4777 
4778 		pr_info("    in-flight:");
4779 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4780 			if (worker->current_pwq != pwq)
4781 				continue;
4782 
4783 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4784 				task_pid_nr(worker->task),
4785 				worker->rescue_wq ? "(RESCUER)" : "",
4786 				worker->current_func);
4787 			list_for_each_entry(work, &worker->scheduled, entry)
4788 				pr_cont_work(false, work);
4789 			comma = true;
4790 		}
4791 		pr_cont("\n");
4792 	}
4793 
4794 	list_for_each_entry(work, &pool->worklist, entry) {
4795 		if (get_work_pwq(work) == pwq) {
4796 			has_pending = true;
4797 			break;
4798 		}
4799 	}
4800 	if (has_pending) {
4801 		bool comma = false;
4802 
4803 		pr_info("    pending:");
4804 		list_for_each_entry(work, &pool->worklist, entry) {
4805 			if (get_work_pwq(work) != pwq)
4806 				continue;
4807 
4808 			pr_cont_work(comma, work);
4809 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4810 		}
4811 		pr_cont("\n");
4812 	}
4813 
4814 	if (!list_empty(&pwq->inactive_works)) {
4815 		bool comma = false;
4816 
4817 		pr_info("    inactive:");
4818 		list_for_each_entry(work, &pwq->inactive_works, entry) {
4819 			pr_cont_work(comma, work);
4820 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4821 		}
4822 		pr_cont("\n");
4823 	}
4824 }
4825 
4826 /**
4827  * show_one_workqueue - dump state of specified workqueue
4828  * @wq: workqueue whose state will be printed
4829  */
show_one_workqueue(struct workqueue_struct * wq)4830 void show_one_workqueue(struct workqueue_struct *wq)
4831 {
4832 	struct pool_workqueue *pwq;
4833 	bool idle = true;
4834 	unsigned long flags;
4835 
4836 	for_each_pwq(pwq, wq) {
4837 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4838 			idle = false;
4839 			break;
4840 		}
4841 	}
4842 	if (idle) /* Nothing to print for idle workqueue */
4843 		return;
4844 
4845 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4846 
4847 	for_each_pwq(pwq, wq) {
4848 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4849 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4850 			/*
4851 			 * Defer printing to avoid deadlocks in console
4852 			 * drivers that queue work while holding locks
4853 			 * also taken in their write paths.
4854 			 */
4855 			printk_deferred_enter();
4856 			show_pwq(pwq);
4857 			printk_deferred_exit();
4858 		}
4859 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4860 		/*
4861 		 * We could be printing a lot from atomic context, e.g.
4862 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
4863 		 * hard lockup.
4864 		 */
4865 		touch_nmi_watchdog();
4866 	}
4867 
4868 }
4869 
4870 /**
4871  * show_one_worker_pool - dump state of specified worker pool
4872  * @pool: worker pool whose state will be printed
4873  */
show_one_worker_pool(struct worker_pool * pool)4874 static void show_one_worker_pool(struct worker_pool *pool)
4875 {
4876 	struct worker *worker;
4877 	bool first = true;
4878 	unsigned long flags;
4879 	unsigned long hung = 0;
4880 
4881 	raw_spin_lock_irqsave(&pool->lock, flags);
4882 	if (pool->nr_workers == pool->nr_idle)
4883 		goto next_pool;
4884 
4885 	/* How long the first pending work is waiting for a worker. */
4886 	if (!list_empty(&pool->worklist))
4887 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
4888 
4889 	/*
4890 	 * Defer printing to avoid deadlocks in console drivers that
4891 	 * queue work while holding locks also taken in their write
4892 	 * paths.
4893 	 */
4894 	printk_deferred_enter();
4895 	pr_info("pool %d:", pool->id);
4896 	pr_cont_pool_info(pool);
4897 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
4898 	if (pool->manager)
4899 		pr_cont(" manager: %d",
4900 			task_pid_nr(pool->manager->task));
4901 	list_for_each_entry(worker, &pool->idle_list, entry) {
4902 		pr_cont(" %s%d", first ? "idle: " : "",
4903 			task_pid_nr(worker->task));
4904 		first = false;
4905 	}
4906 	pr_cont("\n");
4907 	printk_deferred_exit();
4908 next_pool:
4909 	raw_spin_unlock_irqrestore(&pool->lock, flags);
4910 	/*
4911 	 * We could be printing a lot from atomic context, e.g.
4912 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
4913 	 * hard lockup.
4914 	 */
4915 	touch_nmi_watchdog();
4916 
4917 }
4918 
4919 /**
4920  * show_all_workqueues - dump workqueue state
4921  *
4922  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4923  * all busy workqueues and pools.
4924  */
show_all_workqueues(void)4925 void show_all_workqueues(void)
4926 {
4927 	struct workqueue_struct *wq;
4928 	struct worker_pool *pool;
4929 	int pi;
4930 
4931 	rcu_read_lock();
4932 
4933 	pr_info("Showing busy workqueues and worker pools:\n");
4934 
4935 	list_for_each_entry_rcu(wq, &workqueues, list)
4936 		show_one_workqueue(wq);
4937 
4938 	for_each_pool(pool, pi)
4939 		show_one_worker_pool(pool);
4940 
4941 	rcu_read_unlock();
4942 }
4943 
4944 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4945 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4946 {
4947 	int off;
4948 
4949 	/* always show the actual comm */
4950 	off = strscpy(buf, task->comm, size);
4951 	if (off < 0)
4952 		return;
4953 
4954 	/* stabilize PF_WQ_WORKER and worker pool association */
4955 	mutex_lock(&wq_pool_attach_mutex);
4956 
4957 	if (task->flags & PF_WQ_WORKER) {
4958 		struct worker *worker = kthread_data(task);
4959 		struct worker_pool *pool = worker->pool;
4960 
4961 		if (pool) {
4962 			raw_spin_lock_irq(&pool->lock);
4963 			/*
4964 			 * ->desc tracks information (wq name or
4965 			 * set_worker_desc()) for the latest execution.  If
4966 			 * current, prepend '+', otherwise '-'.
4967 			 */
4968 			if (worker->desc[0] != '\0') {
4969 				if (worker->current_work)
4970 					scnprintf(buf + off, size - off, "+%s",
4971 						  worker->desc);
4972 				else
4973 					scnprintf(buf + off, size - off, "-%s",
4974 						  worker->desc);
4975 			}
4976 			raw_spin_unlock_irq(&pool->lock);
4977 		}
4978 	}
4979 
4980 	mutex_unlock(&wq_pool_attach_mutex);
4981 }
4982 EXPORT_SYMBOL_GPL(wq_worker_comm);
4983 
4984 #ifdef CONFIG_SMP
4985 
4986 /*
4987  * CPU hotplug.
4988  *
4989  * There are two challenges in supporting CPU hotplug.  Firstly, there
4990  * are a lot of assumptions on strong associations among work, pwq and
4991  * pool which make migrating pending and scheduled works very
4992  * difficult to implement without impacting hot paths.  Secondly,
4993  * worker pools serve mix of short, long and very long running works making
4994  * blocked draining impractical.
4995  *
4996  * This is solved by allowing the pools to be disassociated from the CPU
4997  * running as an unbound one and allowing it to be reattached later if the
4998  * cpu comes back online.
4999  */
5000 
unbind_workers(int cpu)5001 static void unbind_workers(int cpu)
5002 {
5003 	struct worker_pool *pool;
5004 	struct worker *worker;
5005 
5006 	for_each_cpu_worker_pool(pool, cpu) {
5007 		mutex_lock(&wq_pool_attach_mutex);
5008 		raw_spin_lock_irq(&pool->lock);
5009 
5010 		/*
5011 		 * We've blocked all attach/detach operations. Make all workers
5012 		 * unbound and set DISASSOCIATED.  Before this, all workers
5013 		 * except for the ones which are still executing works from
5014 		 * before the last CPU down must be on the cpu.  After
5015 		 * this, they may become diasporas.
5016 		 */
5017 		for_each_pool_worker(worker, pool)
5018 			worker->flags |= WORKER_UNBOUND;
5019 
5020 		pool->flags |= POOL_DISASSOCIATED;
5021 
5022 		raw_spin_unlock_irq(&pool->lock);
5023 
5024 		for_each_pool_worker(worker, pool) {
5025 			kthread_set_per_cpu(worker->task, -1);
5026 			WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5027 		}
5028 
5029 		mutex_unlock(&wq_pool_attach_mutex);
5030 
5031 		/*
5032 		 * Call schedule() so that we cross rq->lock and thus can
5033 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
5034 		 * This is necessary as scheduler callbacks may be invoked
5035 		 * from other cpus.
5036 		 */
5037 		schedule();
5038 
5039 		/*
5040 		 * Sched callbacks are disabled now.  Zap nr_running.
5041 		 * After this, nr_running stays zero and need_more_worker()
5042 		 * and keep_working() are always true as long as the
5043 		 * worklist is not empty.  This pool now behaves as an
5044 		 * unbound (in terms of concurrency management) pool which
5045 		 * are served by workers tied to the pool.
5046 		 */
5047 		atomic_set(&pool->nr_running, 0);
5048 
5049 		/*
5050 		 * With concurrency management just turned off, a busy
5051 		 * worker blocking could lead to lengthy stalls.  Kick off
5052 		 * unbound chain execution of currently pending work items.
5053 		 */
5054 		raw_spin_lock_irq(&pool->lock);
5055 		wake_up_worker(pool);
5056 		raw_spin_unlock_irq(&pool->lock);
5057 	}
5058 }
5059 
5060 /**
5061  * rebind_workers - rebind all workers of a pool to the associated CPU
5062  * @pool: pool of interest
5063  *
5064  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5065  */
rebind_workers(struct worker_pool * pool)5066 static void rebind_workers(struct worker_pool *pool)
5067 {
5068 	struct worker *worker;
5069 
5070 	lockdep_assert_held(&wq_pool_attach_mutex);
5071 
5072 	/*
5073 	 * Restore CPU affinity of all workers.  As all idle workers should
5074 	 * be on the run-queue of the associated CPU before any local
5075 	 * wake-ups for concurrency management happen, restore CPU affinity
5076 	 * of all workers first and then clear UNBOUND.  As we're called
5077 	 * from CPU_ONLINE, the following shouldn't fail.
5078 	 */
5079 	for_each_pool_worker(worker, pool) {
5080 		kthread_set_per_cpu(worker->task, pool->cpu);
5081 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5082 						  pool->attrs->cpumask) < 0);
5083 	}
5084 
5085 	raw_spin_lock_irq(&pool->lock);
5086 
5087 	pool->flags &= ~POOL_DISASSOCIATED;
5088 
5089 	for_each_pool_worker(worker, pool) {
5090 		unsigned int worker_flags = worker->flags;
5091 
5092 		/*
5093 		 * A bound idle worker should actually be on the runqueue
5094 		 * of the associated CPU for local wake-ups targeting it to
5095 		 * work.  Kick all idle workers so that they migrate to the
5096 		 * associated CPU.  Doing this in the same loop as
5097 		 * replacing UNBOUND with REBOUND is safe as no worker will
5098 		 * be bound before @pool->lock is released.
5099 		 */
5100 		if (worker_flags & WORKER_IDLE)
5101 			wake_up_process(worker->task);
5102 
5103 		/*
5104 		 * We want to clear UNBOUND but can't directly call
5105 		 * worker_clr_flags() or adjust nr_running.  Atomically
5106 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5107 		 * @worker will clear REBOUND using worker_clr_flags() when
5108 		 * it initiates the next execution cycle thus restoring
5109 		 * concurrency management.  Note that when or whether
5110 		 * @worker clears REBOUND doesn't affect correctness.
5111 		 *
5112 		 * WRITE_ONCE() is necessary because @worker->flags may be
5113 		 * tested without holding any lock in
5114 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5115 		 * fail incorrectly leading to premature concurrency
5116 		 * management operations.
5117 		 */
5118 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5119 		worker_flags |= WORKER_REBOUND;
5120 		worker_flags &= ~WORKER_UNBOUND;
5121 		WRITE_ONCE(worker->flags, worker_flags);
5122 	}
5123 
5124 	raw_spin_unlock_irq(&pool->lock);
5125 }
5126 
5127 /**
5128  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5129  * @pool: unbound pool of interest
5130  * @cpu: the CPU which is coming up
5131  *
5132  * An unbound pool may end up with a cpumask which doesn't have any online
5133  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5134  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5135  * online CPU before, cpus_allowed of all its workers should be restored.
5136  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5137 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5138 {
5139 	static cpumask_t cpumask;
5140 	struct worker *worker;
5141 
5142 	lockdep_assert_held(&wq_pool_attach_mutex);
5143 
5144 	/* is @cpu allowed for @pool? */
5145 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5146 		return;
5147 
5148 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5149 
5150 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5151 	for_each_pool_worker(worker, pool)
5152 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5153 }
5154 
workqueue_prepare_cpu(unsigned int cpu)5155 int workqueue_prepare_cpu(unsigned int cpu)
5156 {
5157 	struct worker_pool *pool;
5158 
5159 	for_each_cpu_worker_pool(pool, cpu) {
5160 		if (pool->nr_workers)
5161 			continue;
5162 		if (!create_worker(pool))
5163 			return -ENOMEM;
5164 	}
5165 	return 0;
5166 }
5167 
workqueue_online_cpu(unsigned int cpu)5168 int workqueue_online_cpu(unsigned int cpu)
5169 {
5170 	struct worker_pool *pool;
5171 	struct workqueue_struct *wq;
5172 	int pi;
5173 
5174 	mutex_lock(&wq_pool_mutex);
5175 
5176 	for_each_pool(pool, pi) {
5177 		mutex_lock(&wq_pool_attach_mutex);
5178 
5179 		if (pool->cpu == cpu)
5180 			rebind_workers(pool);
5181 		else if (pool->cpu < 0)
5182 			restore_unbound_workers_cpumask(pool, cpu);
5183 
5184 		mutex_unlock(&wq_pool_attach_mutex);
5185 	}
5186 
5187 	/* update NUMA affinity of unbound workqueues */
5188 	list_for_each_entry(wq, &workqueues, list)
5189 		wq_update_unbound_numa(wq, cpu, true);
5190 
5191 	mutex_unlock(&wq_pool_mutex);
5192 	return 0;
5193 }
5194 
workqueue_offline_cpu(unsigned int cpu)5195 int workqueue_offline_cpu(unsigned int cpu)
5196 {
5197 	struct workqueue_struct *wq;
5198 
5199 	/* unbinding per-cpu workers should happen on the local CPU */
5200 	if (WARN_ON(cpu != smp_processor_id()))
5201 		return -1;
5202 
5203 	unbind_workers(cpu);
5204 
5205 	/* update NUMA affinity of unbound workqueues */
5206 	mutex_lock(&wq_pool_mutex);
5207 	list_for_each_entry(wq, &workqueues, list)
5208 		wq_update_unbound_numa(wq, cpu, false);
5209 	mutex_unlock(&wq_pool_mutex);
5210 
5211 	return 0;
5212 }
5213 
5214 struct work_for_cpu {
5215 	struct work_struct work;
5216 	long (*fn)(void *);
5217 	void *arg;
5218 	long ret;
5219 };
5220 
work_for_cpu_fn(struct work_struct * work)5221 static void work_for_cpu_fn(struct work_struct *work)
5222 {
5223 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5224 
5225 	wfc->ret = wfc->fn(wfc->arg);
5226 }
5227 
5228 /**
5229  * work_on_cpu - run a function in thread context on a particular cpu
5230  * @cpu: the cpu to run on
5231  * @fn: the function to run
5232  * @arg: the function arg
5233  *
5234  * It is up to the caller to ensure that the cpu doesn't go offline.
5235  * The caller must not hold any locks which would prevent @fn from completing.
5236  *
5237  * Return: The value @fn returns.
5238  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5239 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5240 {
5241 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5242 
5243 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5244 	schedule_work_on(cpu, &wfc.work);
5245 	flush_work(&wfc.work);
5246 	destroy_work_on_stack(&wfc.work);
5247 	return wfc.ret;
5248 }
5249 EXPORT_SYMBOL_GPL(work_on_cpu);
5250 
5251 /**
5252  * work_on_cpu_safe - run a function in thread context on a particular cpu
5253  * @cpu: the cpu to run on
5254  * @fn:  the function to run
5255  * @arg: the function argument
5256  *
5257  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5258  * any locks which would prevent @fn from completing.
5259  *
5260  * Return: The value @fn returns.
5261  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5262 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5263 {
5264 	long ret = -ENODEV;
5265 
5266 	cpus_read_lock();
5267 	if (cpu_online(cpu))
5268 		ret = work_on_cpu(cpu, fn, arg);
5269 	cpus_read_unlock();
5270 	return ret;
5271 }
5272 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5273 #endif /* CONFIG_SMP */
5274 
5275 #ifdef CONFIG_FREEZER
5276 
5277 /**
5278  * freeze_workqueues_begin - begin freezing workqueues
5279  *
5280  * Start freezing workqueues.  After this function returns, all freezable
5281  * workqueues will queue new works to their inactive_works list instead of
5282  * pool->worklist.
5283  *
5284  * CONTEXT:
5285  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5286  */
freeze_workqueues_begin(void)5287 void freeze_workqueues_begin(void)
5288 {
5289 	struct workqueue_struct *wq;
5290 	struct pool_workqueue *pwq;
5291 
5292 	mutex_lock(&wq_pool_mutex);
5293 
5294 	WARN_ON_ONCE(workqueue_freezing);
5295 	workqueue_freezing = true;
5296 
5297 	list_for_each_entry(wq, &workqueues, list) {
5298 		mutex_lock(&wq->mutex);
5299 		for_each_pwq(pwq, wq)
5300 			pwq_adjust_max_active(pwq);
5301 		mutex_unlock(&wq->mutex);
5302 	}
5303 
5304 	mutex_unlock(&wq_pool_mutex);
5305 }
5306 
5307 /**
5308  * freeze_workqueues_busy - are freezable workqueues still busy?
5309  *
5310  * Check whether freezing is complete.  This function must be called
5311  * between freeze_workqueues_begin() and thaw_workqueues().
5312  *
5313  * CONTEXT:
5314  * Grabs and releases wq_pool_mutex.
5315  *
5316  * Return:
5317  * %true if some freezable workqueues are still busy.  %false if freezing
5318  * is complete.
5319  */
freeze_workqueues_busy(void)5320 bool freeze_workqueues_busy(void)
5321 {
5322 	bool busy = false;
5323 	struct workqueue_struct *wq;
5324 	struct pool_workqueue *pwq;
5325 
5326 	mutex_lock(&wq_pool_mutex);
5327 
5328 	WARN_ON_ONCE(!workqueue_freezing);
5329 
5330 	list_for_each_entry(wq, &workqueues, list) {
5331 		if (!(wq->flags & WQ_FREEZABLE))
5332 			continue;
5333 		/*
5334 		 * nr_active is monotonically decreasing.  It's safe
5335 		 * to peek without lock.
5336 		 */
5337 		rcu_read_lock();
5338 		for_each_pwq(pwq, wq) {
5339 			WARN_ON_ONCE(pwq->nr_active < 0);
5340 			if (pwq->nr_active) {
5341 				busy = true;
5342 				rcu_read_unlock();
5343 				goto out_unlock;
5344 			}
5345 		}
5346 		rcu_read_unlock();
5347 	}
5348 out_unlock:
5349 	mutex_unlock(&wq_pool_mutex);
5350 	return busy;
5351 }
5352 
5353 /**
5354  * thaw_workqueues - thaw workqueues
5355  *
5356  * Thaw workqueues.  Normal queueing is restored and all collected
5357  * frozen works are transferred to their respective pool worklists.
5358  *
5359  * CONTEXT:
5360  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5361  */
thaw_workqueues(void)5362 void thaw_workqueues(void)
5363 {
5364 	struct workqueue_struct *wq;
5365 	struct pool_workqueue *pwq;
5366 
5367 	mutex_lock(&wq_pool_mutex);
5368 
5369 	if (!workqueue_freezing)
5370 		goto out_unlock;
5371 
5372 	workqueue_freezing = false;
5373 
5374 	/* restore max_active and repopulate worklist */
5375 	list_for_each_entry(wq, &workqueues, list) {
5376 		mutex_lock(&wq->mutex);
5377 		for_each_pwq(pwq, wq)
5378 			pwq_adjust_max_active(pwq);
5379 		mutex_unlock(&wq->mutex);
5380 	}
5381 
5382 out_unlock:
5383 	mutex_unlock(&wq_pool_mutex);
5384 }
5385 #endif /* CONFIG_FREEZER */
5386 
workqueue_apply_unbound_cpumask(void)5387 static int workqueue_apply_unbound_cpumask(void)
5388 {
5389 	LIST_HEAD(ctxs);
5390 	int ret = 0;
5391 	struct workqueue_struct *wq;
5392 	struct apply_wqattrs_ctx *ctx, *n;
5393 
5394 	lockdep_assert_held(&wq_pool_mutex);
5395 
5396 	list_for_each_entry(wq, &workqueues, list) {
5397 		if (!(wq->flags & WQ_UNBOUND))
5398 			continue;
5399 
5400 		/* creating multiple pwqs breaks ordering guarantee */
5401 		if (!list_empty(&wq->pwqs)) {
5402 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5403 				continue;
5404 			wq->flags &= ~__WQ_ORDERED;
5405 		}
5406 
5407 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5408 		if (!ctx) {
5409 			ret = -ENOMEM;
5410 			break;
5411 		}
5412 
5413 		list_add_tail(&ctx->list, &ctxs);
5414 	}
5415 
5416 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5417 		if (!ret)
5418 			apply_wqattrs_commit(ctx);
5419 		apply_wqattrs_cleanup(ctx);
5420 	}
5421 
5422 	return ret;
5423 }
5424 
5425 /**
5426  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5427  *  @cpumask: the cpumask to set
5428  *
5429  *  The low-level workqueues cpumask is a global cpumask that limits
5430  *  the affinity of all unbound workqueues.  This function check the @cpumask
5431  *  and apply it to all unbound workqueues and updates all pwqs of them.
5432  *
5433  *  Return:	0	- Success
5434  *  		-EINVAL	- Invalid @cpumask
5435  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5436  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5437 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5438 {
5439 	int ret = -EINVAL;
5440 	cpumask_var_t saved_cpumask;
5441 
5442 	/*
5443 	 * Not excluding isolated cpus on purpose.
5444 	 * If the user wishes to include them, we allow that.
5445 	 */
5446 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5447 	if (!cpumask_empty(cpumask)) {
5448 		apply_wqattrs_lock();
5449 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5450 			ret = 0;
5451 			goto out_unlock;
5452 		}
5453 
5454 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5455 			ret = -ENOMEM;
5456 			goto out_unlock;
5457 		}
5458 
5459 		/* save the old wq_unbound_cpumask. */
5460 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5461 
5462 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5463 		cpumask_copy(wq_unbound_cpumask, cpumask);
5464 		ret = workqueue_apply_unbound_cpumask();
5465 
5466 		/* restore the wq_unbound_cpumask when failed. */
5467 		if (ret < 0)
5468 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5469 
5470 		free_cpumask_var(saved_cpumask);
5471 out_unlock:
5472 		apply_wqattrs_unlock();
5473 	}
5474 
5475 	return ret;
5476 }
5477 
5478 #ifdef CONFIG_SYSFS
5479 /*
5480  * Workqueues with WQ_SYSFS flag set is visible to userland via
5481  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5482  * following attributes.
5483  *
5484  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5485  *  max_active	RW int	: maximum number of in-flight work items
5486  *
5487  * Unbound workqueues have the following extra attributes.
5488  *
5489  *  pool_ids	RO int	: the associated pool IDs for each node
5490  *  nice	RW int	: nice value of the workers
5491  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5492  *  numa	RW bool	: whether enable NUMA affinity
5493  */
5494 struct wq_device {
5495 	struct workqueue_struct		*wq;
5496 	struct device			dev;
5497 };
5498 
dev_to_wq(struct device * dev)5499 static struct workqueue_struct *dev_to_wq(struct device *dev)
5500 {
5501 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5502 
5503 	return wq_dev->wq;
5504 }
5505 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5506 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5507 			    char *buf)
5508 {
5509 	struct workqueue_struct *wq = dev_to_wq(dev);
5510 
5511 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5512 }
5513 static DEVICE_ATTR_RO(per_cpu);
5514 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5515 static ssize_t max_active_show(struct device *dev,
5516 			       struct device_attribute *attr, char *buf)
5517 {
5518 	struct workqueue_struct *wq = dev_to_wq(dev);
5519 
5520 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5521 }
5522 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5523 static ssize_t max_active_store(struct device *dev,
5524 				struct device_attribute *attr, const char *buf,
5525 				size_t count)
5526 {
5527 	struct workqueue_struct *wq = dev_to_wq(dev);
5528 	int val;
5529 
5530 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5531 		return -EINVAL;
5532 
5533 	workqueue_set_max_active(wq, val);
5534 	return count;
5535 }
5536 static DEVICE_ATTR_RW(max_active);
5537 
5538 static struct attribute *wq_sysfs_attrs[] = {
5539 	&dev_attr_per_cpu.attr,
5540 	&dev_attr_max_active.attr,
5541 	NULL,
5542 };
5543 ATTRIBUTE_GROUPS(wq_sysfs);
5544 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5545 static ssize_t wq_pool_ids_show(struct device *dev,
5546 				struct device_attribute *attr, char *buf)
5547 {
5548 	struct workqueue_struct *wq = dev_to_wq(dev);
5549 	const char *delim = "";
5550 	int node, written = 0;
5551 
5552 	cpus_read_lock();
5553 	rcu_read_lock();
5554 	for_each_node(node) {
5555 		written += scnprintf(buf + written, PAGE_SIZE - written,
5556 				     "%s%d:%d", delim, node,
5557 				     unbound_pwq_by_node(wq, node)->pool->id);
5558 		delim = " ";
5559 	}
5560 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5561 	rcu_read_unlock();
5562 	cpus_read_unlock();
5563 
5564 	return written;
5565 }
5566 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5567 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5568 			    char *buf)
5569 {
5570 	struct workqueue_struct *wq = dev_to_wq(dev);
5571 	int written;
5572 
5573 	mutex_lock(&wq->mutex);
5574 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5575 	mutex_unlock(&wq->mutex);
5576 
5577 	return written;
5578 }
5579 
5580 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5581 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5582 {
5583 	struct workqueue_attrs *attrs;
5584 
5585 	lockdep_assert_held(&wq_pool_mutex);
5586 
5587 	attrs = alloc_workqueue_attrs();
5588 	if (!attrs)
5589 		return NULL;
5590 
5591 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5592 	return attrs;
5593 }
5594 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5595 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5596 			     const char *buf, size_t count)
5597 {
5598 	struct workqueue_struct *wq = dev_to_wq(dev);
5599 	struct workqueue_attrs *attrs;
5600 	int ret = -ENOMEM;
5601 
5602 	apply_wqattrs_lock();
5603 
5604 	attrs = wq_sysfs_prep_attrs(wq);
5605 	if (!attrs)
5606 		goto out_unlock;
5607 
5608 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5609 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5610 		ret = apply_workqueue_attrs_locked(wq, attrs);
5611 	else
5612 		ret = -EINVAL;
5613 
5614 out_unlock:
5615 	apply_wqattrs_unlock();
5616 	free_workqueue_attrs(attrs);
5617 	return ret ?: count;
5618 }
5619 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5620 static ssize_t wq_cpumask_show(struct device *dev,
5621 			       struct device_attribute *attr, char *buf)
5622 {
5623 	struct workqueue_struct *wq = dev_to_wq(dev);
5624 	int written;
5625 
5626 	mutex_lock(&wq->mutex);
5627 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5628 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5629 	mutex_unlock(&wq->mutex);
5630 	return written;
5631 }
5632 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5633 static ssize_t wq_cpumask_store(struct device *dev,
5634 				struct device_attribute *attr,
5635 				const char *buf, size_t count)
5636 {
5637 	struct workqueue_struct *wq = dev_to_wq(dev);
5638 	struct workqueue_attrs *attrs;
5639 	int ret = -ENOMEM;
5640 
5641 	apply_wqattrs_lock();
5642 
5643 	attrs = wq_sysfs_prep_attrs(wq);
5644 	if (!attrs)
5645 		goto out_unlock;
5646 
5647 	ret = cpumask_parse(buf, attrs->cpumask);
5648 	if (!ret)
5649 		ret = apply_workqueue_attrs_locked(wq, attrs);
5650 
5651 out_unlock:
5652 	apply_wqattrs_unlock();
5653 	free_workqueue_attrs(attrs);
5654 	return ret ?: count;
5655 }
5656 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5657 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5658 			    char *buf)
5659 {
5660 	struct workqueue_struct *wq = dev_to_wq(dev);
5661 	int written;
5662 
5663 	mutex_lock(&wq->mutex);
5664 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5665 			    !wq->unbound_attrs->no_numa);
5666 	mutex_unlock(&wq->mutex);
5667 
5668 	return written;
5669 }
5670 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5671 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5672 			     const char *buf, size_t count)
5673 {
5674 	struct workqueue_struct *wq = dev_to_wq(dev);
5675 	struct workqueue_attrs *attrs;
5676 	int v, ret = -ENOMEM;
5677 
5678 	apply_wqattrs_lock();
5679 
5680 	attrs = wq_sysfs_prep_attrs(wq);
5681 	if (!attrs)
5682 		goto out_unlock;
5683 
5684 	ret = -EINVAL;
5685 	if (sscanf(buf, "%d", &v) == 1) {
5686 		attrs->no_numa = !v;
5687 		ret = apply_workqueue_attrs_locked(wq, attrs);
5688 	}
5689 
5690 out_unlock:
5691 	apply_wqattrs_unlock();
5692 	free_workqueue_attrs(attrs);
5693 	return ret ?: count;
5694 }
5695 
5696 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5697 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5698 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5699 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5700 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5701 	__ATTR_NULL,
5702 };
5703 
5704 static struct bus_type wq_subsys = {
5705 	.name				= "workqueue",
5706 	.dev_groups			= wq_sysfs_groups,
5707 };
5708 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5709 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5710 		struct device_attribute *attr, char *buf)
5711 {
5712 	int written;
5713 
5714 	mutex_lock(&wq_pool_mutex);
5715 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5716 			    cpumask_pr_args(wq_unbound_cpumask));
5717 	mutex_unlock(&wq_pool_mutex);
5718 
5719 	return written;
5720 }
5721 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5722 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5723 		struct device_attribute *attr, const char *buf, size_t count)
5724 {
5725 	cpumask_var_t cpumask;
5726 	int ret;
5727 
5728 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5729 		return -ENOMEM;
5730 
5731 	ret = cpumask_parse(buf, cpumask);
5732 	if (!ret)
5733 		ret = workqueue_set_unbound_cpumask(cpumask);
5734 
5735 	free_cpumask_var(cpumask);
5736 	return ret ? ret : count;
5737 }
5738 
5739 static struct device_attribute wq_sysfs_cpumask_attr =
5740 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5741 	       wq_unbound_cpumask_store);
5742 
wq_sysfs_init(void)5743 static int __init wq_sysfs_init(void)
5744 {
5745 	int err;
5746 
5747 	err = subsys_virtual_register(&wq_subsys, NULL);
5748 	if (err)
5749 		return err;
5750 
5751 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5752 }
5753 core_initcall(wq_sysfs_init);
5754 
wq_device_release(struct device * dev)5755 static void wq_device_release(struct device *dev)
5756 {
5757 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5758 
5759 	kfree(wq_dev);
5760 }
5761 
5762 /**
5763  * workqueue_sysfs_register - make a workqueue visible in sysfs
5764  * @wq: the workqueue to register
5765  *
5766  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5767  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5768  * which is the preferred method.
5769  *
5770  * Workqueue user should use this function directly iff it wants to apply
5771  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5772  * apply_workqueue_attrs() may race against userland updating the
5773  * attributes.
5774  *
5775  * Return: 0 on success, -errno on failure.
5776  */
workqueue_sysfs_register(struct workqueue_struct * wq)5777 int workqueue_sysfs_register(struct workqueue_struct *wq)
5778 {
5779 	struct wq_device *wq_dev;
5780 	int ret;
5781 
5782 	/*
5783 	 * Adjusting max_active or creating new pwqs by applying
5784 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5785 	 * workqueues.
5786 	 */
5787 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5788 		return -EINVAL;
5789 
5790 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5791 	if (!wq_dev)
5792 		return -ENOMEM;
5793 
5794 	wq_dev->wq = wq;
5795 	wq_dev->dev.bus = &wq_subsys;
5796 	wq_dev->dev.release = wq_device_release;
5797 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5798 
5799 	/*
5800 	 * unbound_attrs are created separately.  Suppress uevent until
5801 	 * everything is ready.
5802 	 */
5803 	dev_set_uevent_suppress(&wq_dev->dev, true);
5804 
5805 	ret = device_register(&wq_dev->dev);
5806 	if (ret) {
5807 		put_device(&wq_dev->dev);
5808 		wq->wq_dev = NULL;
5809 		return ret;
5810 	}
5811 
5812 	if (wq->flags & WQ_UNBOUND) {
5813 		struct device_attribute *attr;
5814 
5815 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5816 			ret = device_create_file(&wq_dev->dev, attr);
5817 			if (ret) {
5818 				device_unregister(&wq_dev->dev);
5819 				wq->wq_dev = NULL;
5820 				return ret;
5821 			}
5822 		}
5823 	}
5824 
5825 	dev_set_uevent_suppress(&wq_dev->dev, false);
5826 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5827 	return 0;
5828 }
5829 
5830 /**
5831  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5832  * @wq: the workqueue to unregister
5833  *
5834  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5835  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5836 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5837 {
5838 	struct wq_device *wq_dev = wq->wq_dev;
5839 
5840 	if (!wq->wq_dev)
5841 		return;
5842 
5843 	wq->wq_dev = NULL;
5844 	device_unregister(&wq_dev->dev);
5845 }
5846 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5847 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5848 #endif	/* CONFIG_SYSFS */
5849 
5850 /*
5851  * Workqueue watchdog.
5852  *
5853  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5854  * flush dependency, a concurrency managed work item which stays RUNNING
5855  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5856  * usual warning mechanisms don't trigger and internal workqueue state is
5857  * largely opaque.
5858  *
5859  * Workqueue watchdog monitors all worker pools periodically and dumps
5860  * state if some pools failed to make forward progress for a while where
5861  * forward progress is defined as the first item on ->worklist changing.
5862  *
5863  * This mechanism is controlled through the kernel parameter
5864  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5865  * corresponding sysfs parameter file.
5866  */
5867 #ifdef CONFIG_WQ_WATCHDOG
5868 
5869 static unsigned long wq_watchdog_thresh = 30;
5870 static struct timer_list wq_watchdog_timer;
5871 
5872 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5873 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5874 
wq_watchdog_reset_touched(void)5875 static void wq_watchdog_reset_touched(void)
5876 {
5877 	int cpu;
5878 
5879 	wq_watchdog_touched = jiffies;
5880 	for_each_possible_cpu(cpu)
5881 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5882 }
5883 
wq_watchdog_timer_fn(struct timer_list * unused)5884 static void wq_watchdog_timer_fn(struct timer_list *unused)
5885 {
5886 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5887 	bool lockup_detected = false;
5888 	unsigned long now = jiffies;
5889 	struct worker_pool *pool;
5890 	int pi;
5891 
5892 	if (!thresh)
5893 		return;
5894 
5895 	rcu_read_lock();
5896 
5897 	for_each_pool(pool, pi) {
5898 		unsigned long pool_ts, touched, ts;
5899 
5900 		if (list_empty(&pool->worklist))
5901 			continue;
5902 
5903 		/*
5904 		 * If a virtual machine is stopped by the host it can look to
5905 		 * the watchdog like a stall.
5906 		 */
5907 		kvm_check_and_clear_guest_paused();
5908 
5909 		/* get the latest of pool and touched timestamps */
5910 		if (pool->cpu >= 0)
5911 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5912 		else
5913 			touched = READ_ONCE(wq_watchdog_touched);
5914 		pool_ts = READ_ONCE(pool->watchdog_ts);
5915 
5916 		if (time_after(pool_ts, touched))
5917 			ts = pool_ts;
5918 		else
5919 			ts = touched;
5920 
5921 		/* did we stall? */
5922 		if (time_after(now, ts + thresh)) {
5923 			lockup_detected = true;
5924 			pr_emerg("BUG: workqueue lockup - pool");
5925 			pr_cont_pool_info(pool);
5926 			pr_cont(" stuck for %us!\n",
5927 				jiffies_to_msecs(now - pool_ts) / 1000);
5928 			trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5929 		}
5930 	}
5931 
5932 	rcu_read_unlock();
5933 
5934 	if (lockup_detected)
5935 		show_all_workqueues();
5936 
5937 	wq_watchdog_reset_touched();
5938 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5939 }
5940 
wq_watchdog_touch(int cpu)5941 notrace void wq_watchdog_touch(int cpu)
5942 {
5943 	if (cpu >= 0)
5944 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5945 
5946 	wq_watchdog_touched = jiffies;
5947 }
5948 
wq_watchdog_set_thresh(unsigned long thresh)5949 static void wq_watchdog_set_thresh(unsigned long thresh)
5950 {
5951 	wq_watchdog_thresh = 0;
5952 	del_timer_sync(&wq_watchdog_timer);
5953 
5954 	if (thresh) {
5955 		wq_watchdog_thresh = thresh;
5956 		wq_watchdog_reset_touched();
5957 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5958 	}
5959 }
5960 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5961 static int wq_watchdog_param_set_thresh(const char *val,
5962 					const struct kernel_param *kp)
5963 {
5964 	unsigned long thresh;
5965 	int ret;
5966 
5967 	ret = kstrtoul(val, 0, &thresh);
5968 	if (ret)
5969 		return ret;
5970 
5971 	if (system_wq)
5972 		wq_watchdog_set_thresh(thresh);
5973 	else
5974 		wq_watchdog_thresh = thresh;
5975 
5976 	return 0;
5977 }
5978 
5979 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5980 	.set	= wq_watchdog_param_set_thresh,
5981 	.get	= param_get_ulong,
5982 };
5983 
5984 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5985 		0644);
5986 
wq_watchdog_init(void)5987 static void wq_watchdog_init(void)
5988 {
5989 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5990 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5991 }
5992 
5993 #else	/* CONFIG_WQ_WATCHDOG */
5994 
wq_watchdog_init(void)5995 static inline void wq_watchdog_init(void) { }
5996 
5997 #endif	/* CONFIG_WQ_WATCHDOG */
5998 
wq_numa_init(void)5999 static void __init wq_numa_init(void)
6000 {
6001 	cpumask_var_t *tbl;
6002 	int node, cpu;
6003 
6004 	if (num_possible_nodes() <= 1)
6005 		return;
6006 
6007 	if (wq_disable_numa) {
6008 		pr_info("workqueue: NUMA affinity support disabled\n");
6009 		return;
6010 	}
6011 
6012 	for_each_possible_cpu(cpu) {
6013 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6014 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6015 			return;
6016 		}
6017 	}
6018 
6019 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6020 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
6021 
6022 	/*
6023 	 * We want masks of possible CPUs of each node which isn't readily
6024 	 * available.  Build one from cpu_to_node() which should have been
6025 	 * fully initialized by now.
6026 	 */
6027 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6028 	BUG_ON(!tbl);
6029 
6030 	for_each_node(node)
6031 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6032 				node_online(node) ? node : NUMA_NO_NODE));
6033 
6034 	for_each_possible_cpu(cpu) {
6035 		node = cpu_to_node(cpu);
6036 		cpumask_set_cpu(cpu, tbl[node]);
6037 	}
6038 
6039 	wq_numa_possible_cpumask = tbl;
6040 	wq_numa_enabled = true;
6041 }
6042 
6043 /**
6044  * workqueue_init_early - early init for workqueue subsystem
6045  *
6046  * This is the first half of two-staged workqueue subsystem initialization
6047  * and invoked as soon as the bare basics - memory allocation, cpumasks and
6048  * idr are up.  It sets up all the data structures and system workqueues
6049  * and allows early boot code to create workqueues and queue/cancel work
6050  * items.  Actual work item execution starts only after kthreads can be
6051  * created and scheduled right before early initcalls.
6052  */
workqueue_init_early(void)6053 void __init workqueue_init_early(void)
6054 {
6055 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6056 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
6057 	int i, cpu;
6058 
6059 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6060 
6061 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6062 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6063 
6064 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6065 
6066 	/* initialize CPU pools */
6067 	for_each_possible_cpu(cpu) {
6068 		struct worker_pool *pool;
6069 
6070 		i = 0;
6071 		for_each_cpu_worker_pool(pool, cpu) {
6072 			BUG_ON(init_worker_pool(pool));
6073 			pool->cpu = cpu;
6074 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6075 			pool->attrs->nice = std_nice[i++];
6076 			pool->node = cpu_to_node(cpu);
6077 
6078 			/* alloc pool ID */
6079 			mutex_lock(&wq_pool_mutex);
6080 			BUG_ON(worker_pool_assign_id(pool));
6081 			mutex_unlock(&wq_pool_mutex);
6082 		}
6083 	}
6084 
6085 	/* create default unbound and ordered wq attrs */
6086 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6087 		struct workqueue_attrs *attrs;
6088 
6089 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6090 		attrs->nice = std_nice[i];
6091 		unbound_std_wq_attrs[i] = attrs;
6092 
6093 		/*
6094 		 * An ordered wq should have only one pwq as ordering is
6095 		 * guaranteed by max_active which is enforced by pwqs.
6096 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6097 		 */
6098 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6099 		attrs->nice = std_nice[i];
6100 		attrs->no_numa = true;
6101 		ordered_wq_attrs[i] = attrs;
6102 	}
6103 
6104 	system_wq = alloc_workqueue("events", 0, 0);
6105 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6106 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6107 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6108 					    WQ_UNBOUND_MAX_ACTIVE);
6109 	system_freezable_wq = alloc_workqueue("events_freezable",
6110 					      WQ_FREEZABLE, 0);
6111 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6112 					      WQ_POWER_EFFICIENT, 0);
6113 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6114 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6115 					      0);
6116 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6117 	       !system_unbound_wq || !system_freezable_wq ||
6118 	       !system_power_efficient_wq ||
6119 	       !system_freezable_power_efficient_wq);
6120 }
6121 
6122 /**
6123  * workqueue_init - bring workqueue subsystem fully online
6124  *
6125  * This is the latter half of two-staged workqueue subsystem initialization
6126  * and invoked as soon as kthreads can be created and scheduled.
6127  * Workqueues have been created and work items queued on them, but there
6128  * are no kworkers executing the work items yet.  Populate the worker pools
6129  * with the initial workers and enable future kworker creations.
6130  */
workqueue_init(void)6131 void __init workqueue_init(void)
6132 {
6133 	struct workqueue_struct *wq;
6134 	struct worker_pool *pool;
6135 	int cpu, bkt;
6136 
6137 	/*
6138 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6139 	 * CPU to node mapping may not be available that early on some
6140 	 * archs such as power and arm64.  As per-cpu pools created
6141 	 * previously could be missing node hint and unbound pools NUMA
6142 	 * affinity, fix them up.
6143 	 *
6144 	 * Also, while iterating workqueues, create rescuers if requested.
6145 	 */
6146 	wq_numa_init();
6147 
6148 	mutex_lock(&wq_pool_mutex);
6149 
6150 	for_each_possible_cpu(cpu) {
6151 		for_each_cpu_worker_pool(pool, cpu) {
6152 			pool->node = cpu_to_node(cpu);
6153 		}
6154 	}
6155 
6156 	list_for_each_entry(wq, &workqueues, list) {
6157 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6158 		WARN(init_rescuer(wq),
6159 		     "workqueue: failed to create early rescuer for %s",
6160 		     wq->name);
6161 	}
6162 
6163 	mutex_unlock(&wq_pool_mutex);
6164 
6165 	/* create the initial workers */
6166 	for_each_online_cpu(cpu) {
6167 		for_each_cpu_worker_pool(pool, cpu) {
6168 			pool->flags &= ~POOL_DISASSOCIATED;
6169 			BUG_ON(!create_worker(pool));
6170 		}
6171 	}
6172 
6173 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6174 		BUG_ON(!create_worker(pool));
6175 
6176 	wq_online = true;
6177 	wq_watchdog_init();
6178 }
6179