1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/tracepoint-defs.h>
14
15 /*
16 * The set of flags that only affect watermark checking and reclaim
17 * behaviour. This is used by the MM to obey the caller constraints
18 * about IO, FS and watermark checking while ignoring placement
19 * hints such as HIGHMEM usage.
20 */
21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
24 __GFP_ATOMIC)
25
26 /* The GFP flags allowed during early boot */
27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
28
29 /* Control allocation cpuset and node placement constraints */
30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
31
32 /* Do not use these with a slab allocator */
33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
34
35 void page_writeback_init(void);
36
37 vm_fault_t do_swap_page(struct vm_fault *vmf);
38 void activate_page(struct page *page);
39
40 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
41 unsigned long floor, unsigned long ceiling);
42
can_madv_lru_vma(struct vm_area_struct * vma)43 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
44 {
45 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
46 }
47
48 void unmap_page_range(struct mmu_gather *tlb,
49 struct vm_area_struct *vma,
50 unsigned long addr, unsigned long end,
51 struct zap_details *details);
52
53 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
54 unsigned long lookahead_size);
55 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)56 static inline void force_page_cache_readahead(struct address_space *mapping,
57 struct file *file, pgoff_t index, unsigned long nr_to_read)
58 {
59 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
60 force_page_cache_ra(&ractl, nr_to_read);
61 }
62
63 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
64 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
65
66 /**
67 * page_evictable - test whether a page is evictable
68 * @page: the page to test
69 *
70 * Test whether page is evictable--i.e., should be placed on active/inactive
71 * lists vs unevictable list.
72 *
73 * Reasons page might not be evictable:
74 * (1) page's mapping marked unevictable
75 * (2) page is part of an mlocked VMA
76 *
77 */
page_evictable(struct page * page)78 static inline bool page_evictable(struct page *page)
79 {
80 bool ret;
81
82 /* Prevent address_space of inode and swap cache from being freed */
83 rcu_read_lock();
84 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
85 rcu_read_unlock();
86 return ret;
87 }
88
89 /*
90 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
91 * a count of one.
92 */
set_page_refcounted(struct page * page)93 static inline void set_page_refcounted(struct page *page)
94 {
95 VM_BUG_ON_PAGE(PageTail(page), page);
96 VM_BUG_ON_PAGE(page_ref_count(page), page);
97 set_page_count(page, 1);
98 }
99
100 extern unsigned long highest_memmap_pfn;
101
102 /*
103 * Maximum number of reclaim retries without progress before the OOM
104 * killer is consider the only way forward.
105 */
106 #define MAX_RECLAIM_RETRIES 16
107
108 /*
109 * in mm/vmscan.c:
110 */
111 extern int isolate_lru_page(struct page *page);
112 extern void putback_lru_page(struct page *page);
113
114 /*
115 * in mm/rmap.c:
116 */
117 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
118
119 /*
120 * in mm/memcontrol.c:
121 */
122 extern bool cgroup_memory_nokmem;
123
124 /*
125 * in mm/page_alloc.c
126 */
127
128 /*
129 * Structure for holding the mostly immutable allocation parameters passed
130 * between functions involved in allocations, including the alloc_pages*
131 * family of functions.
132 *
133 * nodemask, migratetype and highest_zoneidx are initialized only once in
134 * __alloc_pages() and then never change.
135 *
136 * zonelist, preferred_zone and highest_zoneidx are set first in
137 * __alloc_pages() for the fast path, and might be later changed
138 * in __alloc_pages_slowpath(). All other functions pass the whole structure
139 * by a const pointer.
140 */
141 struct alloc_context {
142 struct zonelist *zonelist;
143 nodemask_t *nodemask;
144 struct zoneref *preferred_zoneref;
145 int migratetype;
146
147 /*
148 * highest_zoneidx represents highest usable zone index of
149 * the allocation request. Due to the nature of the zone,
150 * memory on lower zone than the highest_zoneidx will be
151 * protected by lowmem_reserve[highest_zoneidx].
152 *
153 * highest_zoneidx is also used by reclaim/compaction to limit
154 * the target zone since higher zone than this index cannot be
155 * usable for this allocation request.
156 */
157 enum zone_type highest_zoneidx;
158 bool spread_dirty_pages;
159 };
160
161 /*
162 * Locate the struct page for both the matching buddy in our
163 * pair (buddy1) and the combined O(n+1) page they form (page).
164 *
165 * 1) Any buddy B1 will have an order O twin B2 which satisfies
166 * the following equation:
167 * B2 = B1 ^ (1 << O)
168 * For example, if the starting buddy (buddy2) is #8 its order
169 * 1 buddy is #10:
170 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
171 *
172 * 2) Any buddy B will have an order O+1 parent P which
173 * satisfies the following equation:
174 * P = B & ~(1 << O)
175 *
176 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
177 */
178 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)179 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
180 {
181 return page_pfn ^ (1 << order);
182 }
183
184 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
185 unsigned long end_pfn, struct zone *zone);
186
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)187 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
188 unsigned long end_pfn, struct zone *zone)
189 {
190 if (zone->contiguous)
191 return pfn_to_page(start_pfn);
192
193 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
194 }
195
196 extern int __isolate_free_page(struct page *page, unsigned int order);
197 extern void __putback_isolated_page(struct page *page, unsigned int order,
198 int mt);
199 extern void memblock_free_pages(struct page *page, unsigned long pfn,
200 unsigned int order);
201 extern void __free_pages_core(struct page *page, unsigned int order);
202 extern void prep_compound_page(struct page *page, unsigned int order);
203 extern void post_alloc_hook(struct page *page, unsigned int order,
204 gfp_t gfp_flags);
205 extern int user_min_free_kbytes;
206
207 extern void free_unref_page(struct page *page, unsigned int order);
208 extern void free_unref_page_list(struct list_head *list);
209
210 extern void zone_pcp_update(struct zone *zone, int cpu_online);
211 extern void zone_pcp_reset(struct zone *zone);
212 extern void zone_pcp_disable(struct zone *zone);
213 extern void zone_pcp_enable(struct zone *zone);
214
215 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
216 phys_addr_t min_addr,
217 int nid, bool exact_nid);
218
219 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
220
221 /*
222 * in mm/compaction.c
223 */
224 /*
225 * compact_control is used to track pages being migrated and the free pages
226 * they are being migrated to during memory compaction. The free_pfn starts
227 * at the end of a zone and migrate_pfn begins at the start. Movable pages
228 * are moved to the end of a zone during a compaction run and the run
229 * completes when free_pfn <= migrate_pfn
230 */
231 struct compact_control {
232 struct list_head freepages; /* List of free pages to migrate to */
233 struct list_head migratepages; /* List of pages being migrated */
234 unsigned int nr_freepages; /* Number of isolated free pages */
235 unsigned int nr_migratepages; /* Number of pages to migrate */
236 unsigned long free_pfn; /* isolate_freepages search base */
237 /*
238 * Acts as an in/out parameter to page isolation for migration.
239 * isolate_migratepages uses it as a search base.
240 * isolate_migratepages_block will update the value to the next pfn
241 * after the last isolated one.
242 */
243 unsigned long migrate_pfn;
244 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
245 struct zone *zone;
246 unsigned long total_migrate_scanned;
247 unsigned long total_free_scanned;
248 unsigned short fast_search_fail;/* failures to use free list searches */
249 short search_order; /* order to start a fast search at */
250 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
251 int order; /* order a direct compactor needs */
252 int migratetype; /* migratetype of direct compactor */
253 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
254 const int highest_zoneidx; /* zone index of a direct compactor */
255 enum migrate_mode mode; /* Async or sync migration mode */
256 bool ignore_skip_hint; /* Scan blocks even if marked skip */
257 bool no_set_skip_hint; /* Don't mark blocks for skipping */
258 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
259 bool direct_compaction; /* False from kcompactd or /proc/... */
260 bool proactive_compaction; /* kcompactd proactive compaction */
261 bool whole_zone; /* Whole zone should/has been scanned */
262 bool contended; /* Signal lock or sched contention */
263 bool rescan; /* Rescanning the same pageblock */
264 bool alloc_contig; /* alloc_contig_range allocation */
265 };
266
267 struct compact_control_ext {
268 struct compact_control *cc;
269 unsigned int nr_migrate_file_pages; /* Number of file pages to migrate */
270 };
271
272 /*
273 * Used in direct compaction when a page should be taken from the freelists
274 * immediately when one is created during the free path.
275 */
276 struct capture_control {
277 struct compact_control *cc;
278 struct page *page;
279 };
280
281 unsigned long
282 isolate_freepages_range(struct compact_control *cc,
283 unsigned long start_pfn, unsigned long end_pfn);
284 int
285 isolate_migratepages_range(struct compact_control *cc,
286 unsigned long low_pfn, unsigned long end_pfn);
287 #endif
288 int find_suitable_fallback(struct free_area *area, unsigned int order,
289 int migratetype, bool only_stealable, bool *can_steal);
290
291 /*
292 * This function returns the order of a free page in the buddy system. In
293 * general, page_zone(page)->lock must be held by the caller to prevent the
294 * page from being allocated in parallel and returning garbage as the order.
295 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
296 * page cannot be allocated or merged in parallel. Alternatively, it must
297 * handle invalid values gracefully, and use buddy_order_unsafe() below.
298 */
buddy_order(struct page * page)299 static inline unsigned int buddy_order(struct page *page)
300 {
301 /* PageBuddy() must be checked by the caller */
302 return page_private(page);
303 }
304
305 /*
306 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
307 * PageBuddy() should be checked first by the caller to minimize race window,
308 * and invalid values must be handled gracefully.
309 *
310 * READ_ONCE is used so that if the caller assigns the result into a local
311 * variable and e.g. tests it for valid range before using, the compiler cannot
312 * decide to remove the variable and inline the page_private(page) multiple
313 * times, potentially observing different values in the tests and the actual
314 * use of the result.
315 */
316 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
317
318 /*
319 * These three helpers classifies VMAs for virtual memory accounting.
320 */
321
322 /*
323 * Executable code area - executable, not writable, not stack
324 */
is_exec_mapping(vm_flags_t flags)325 static inline bool is_exec_mapping(vm_flags_t flags)
326 {
327 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
328 }
329
330 /*
331 * Stack area - automatically grows in one direction
332 *
333 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
334 * do_mmap() forbids all other combinations.
335 */
is_stack_mapping(vm_flags_t flags)336 static inline bool is_stack_mapping(vm_flags_t flags)
337 {
338 return (flags & VM_STACK) == VM_STACK;
339 }
340
341 /*
342 * Data area - private, writable, not stack
343 */
is_data_mapping(vm_flags_t flags)344 static inline bool is_data_mapping(vm_flags_t flags)
345 {
346 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
347 }
348
349 /* mm/util.c */
350 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
351 struct vm_area_struct *prev);
352 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
353
354 #ifdef CONFIG_MMU
355 extern long populate_vma_page_range(struct vm_area_struct *vma,
356 unsigned long start, unsigned long end, int *locked);
357 extern long faultin_vma_page_range(struct vm_area_struct *vma,
358 unsigned long start, unsigned long end,
359 bool write, int *locked);
360 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
361 unsigned long start, unsigned long end);
munlock_vma_pages_all(struct vm_area_struct * vma)362 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
363 {
364 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
365 }
366
367 /*
368 * must be called with vma's mmap_lock held for read or write, and page locked.
369 */
370 extern void mlock_vma_page(struct page *page);
371 extern unsigned int munlock_vma_page(struct page *page);
372
373 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
374 unsigned long len);
375
376 /*
377 * Clear the page's PageMlocked(). This can be useful in a situation where
378 * we want to unconditionally remove a page from the pagecache -- e.g.,
379 * on truncation or freeing.
380 *
381 * It is legal to call this function for any page, mlocked or not.
382 * If called for a page that is still mapped by mlocked vmas, all we do
383 * is revert to lazy LRU behaviour -- semantics are not broken.
384 */
385 extern void clear_page_mlock(struct page *page);
386
387 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
388
389 /*
390 * At what user virtual address is page expected in vma?
391 * Returns -EFAULT if all of the page is outside the range of vma.
392 * If page is a compound head, the entire compound page is considered.
393 */
394 static inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)395 vma_address(struct page *page, struct vm_area_struct *vma)
396 {
397 pgoff_t pgoff;
398 unsigned long address;
399
400 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
401 pgoff = page_to_pgoff(page);
402 if (pgoff >= vma->vm_pgoff) {
403 address = vma->vm_start +
404 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
405 /* Check for address beyond vma (or wrapped through 0?) */
406 if (address < vma->vm_start || address >= vma->vm_end)
407 address = -EFAULT;
408 } else if (PageHead(page) &&
409 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) {
410 /* Test above avoids possibility of wrap to 0 on 32-bit */
411 address = vma->vm_start;
412 } else {
413 address = -EFAULT;
414 }
415 return address;
416 }
417
418 /*
419 * Then at what user virtual address will none of the page be found in vma?
420 * Assumes that vma_address() already returned a good starting address.
421 * If page is a compound head, the entire compound page is considered.
422 */
423 static inline unsigned long
vma_address_end(struct page * page,struct vm_area_struct * vma)424 vma_address_end(struct page *page, struct vm_area_struct *vma)
425 {
426 pgoff_t pgoff;
427 unsigned long address;
428
429 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
430 pgoff = page_to_pgoff(page) + compound_nr(page);
431 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
432 /* Check for address beyond vma (or wrapped through 0?) */
433 if (address < vma->vm_start || address > vma->vm_end)
434 address = vma->vm_end;
435 return address;
436 }
437
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)438 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
439 struct file *fpin)
440 {
441 int flags = vmf->flags;
442
443 if (fpin)
444 return fpin;
445
446 /*
447 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
448 * anything, so we only pin the file and drop the mmap_lock if only
449 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
450 */
451 if (fault_flag_allow_retry_first(flags) &&
452 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
453 fpin = get_file(vmf->vma->vm_file);
454 mmap_read_unlock(vmf->vma->vm_mm);
455 }
456 return fpin;
457 }
458
459 #else /* !CONFIG_MMU */
clear_page_mlock(struct page * page)460 static inline void clear_page_mlock(struct page *page) { }
mlock_vma_page(struct page * page)461 static inline void mlock_vma_page(struct page *page) { }
vunmap_range_noflush(unsigned long start,unsigned long end)462 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
463 {
464 }
465 #endif /* !CONFIG_MMU */
466
467 /*
468 * Return the mem_map entry representing the 'offset' subpage within
469 * the maximally aligned gigantic page 'base'. Handle any discontiguity
470 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
471 */
mem_map_offset(struct page * base,int offset)472 static inline struct page *mem_map_offset(struct page *base, int offset)
473 {
474 if (unlikely(offset >= MAX_ORDER_NR_PAGES))
475 return nth_page(base, offset);
476 return base + offset;
477 }
478
479 /*
480 * Iterator over all subpages within the maximally aligned gigantic
481 * page 'base'. Handle any discontiguity in the mem_map.
482 */
mem_map_next(struct page * iter,struct page * base,int offset)483 static inline struct page *mem_map_next(struct page *iter,
484 struct page *base, int offset)
485 {
486 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
487 unsigned long pfn = page_to_pfn(base) + offset;
488 if (!pfn_valid(pfn))
489 return NULL;
490 return pfn_to_page(pfn);
491 }
492 return iter + 1;
493 }
494
495 /* Memory initialisation debug and verification */
496 enum mminit_level {
497 MMINIT_WARNING,
498 MMINIT_VERIFY,
499 MMINIT_TRACE
500 };
501
502 #ifdef CONFIG_DEBUG_MEMORY_INIT
503
504 extern int mminit_loglevel;
505
506 #define mminit_dprintk(level, prefix, fmt, arg...) \
507 do { \
508 if (level < mminit_loglevel) { \
509 if (level <= MMINIT_WARNING) \
510 pr_warn("mminit::" prefix " " fmt, ##arg); \
511 else \
512 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
513 } \
514 } while (0)
515
516 extern void mminit_verify_pageflags_layout(void);
517 extern void mminit_verify_zonelist(void);
518 #else
519
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)520 static inline void mminit_dprintk(enum mminit_level level,
521 const char *prefix, const char *fmt, ...)
522 {
523 }
524
mminit_verify_pageflags_layout(void)525 static inline void mminit_verify_pageflags_layout(void)
526 {
527 }
528
mminit_verify_zonelist(void)529 static inline void mminit_verify_zonelist(void)
530 {
531 }
532 #endif /* CONFIG_DEBUG_MEMORY_INIT */
533
534 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
535 #if defined(CONFIG_SPARSEMEM)
536 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
537 unsigned long *end_pfn);
538 #else
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)539 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
540 unsigned long *end_pfn)
541 {
542 }
543 #endif /* CONFIG_SPARSEMEM */
544
545 #define NODE_RECLAIM_NOSCAN -2
546 #define NODE_RECLAIM_FULL -1
547 #define NODE_RECLAIM_SOME 0
548 #define NODE_RECLAIM_SUCCESS 1
549
550 #ifdef CONFIG_NUMA
551 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
552 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
553 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)554 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
555 unsigned int order)
556 {
557 return NODE_RECLAIM_NOSCAN;
558 }
find_next_best_node(int node,nodemask_t * used_node_mask)559 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
560 {
561 return NUMA_NO_NODE;
562 }
563 #endif
564
565 extern int hwpoison_filter(struct page *p);
566
567 extern u32 hwpoison_filter_dev_major;
568 extern u32 hwpoison_filter_dev_minor;
569 extern u64 hwpoison_filter_flags_mask;
570 extern u64 hwpoison_filter_flags_value;
571 extern u64 hwpoison_filter_memcg;
572 extern u32 hwpoison_filter_enable;
573
574 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
575 unsigned long, unsigned long,
576 unsigned long, unsigned long);
577
578 extern void set_pageblock_order(void);
579 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
580 struct list_head *page_list);
581 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
582 #define ALLOC_WMARK_MIN WMARK_MIN
583 #define ALLOC_WMARK_LOW WMARK_LOW
584 #define ALLOC_WMARK_HIGH WMARK_HIGH
585 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
586
587 /* Mask to get the watermark bits */
588 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
589
590 /*
591 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
592 * cannot assume a reduced access to memory reserves is sufficient for
593 * !MMU
594 */
595 #ifdef CONFIG_MMU
596 #define ALLOC_OOM 0x08
597 #else
598 #define ALLOC_OOM ALLOC_NO_WATERMARKS
599 #endif
600
601 #define ALLOC_HARDER 0x10 /* try to alloc harder */
602 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
603 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
604 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
605 #ifdef CONFIG_ZONE_DMA32
606 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
607 #else
608 #define ALLOC_NOFRAGMENT 0x0
609 #endif
610 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
611
612 enum ttu_flags;
613 struct tlbflush_unmap_batch;
614
615
616 /*
617 * only for MM internal work items which do not depend on
618 * any allocations or locks which might depend on allocations
619 */
620 extern struct workqueue_struct *mm_percpu_wq;
621
622 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
623 void try_to_unmap_flush(void);
624 void try_to_unmap_flush_dirty(void);
625 void flush_tlb_batched_pending(struct mm_struct *mm);
626 #else
try_to_unmap_flush(void)627 static inline void try_to_unmap_flush(void)
628 {
629 }
try_to_unmap_flush_dirty(void)630 static inline void try_to_unmap_flush_dirty(void)
631 {
632 }
flush_tlb_batched_pending(struct mm_struct * mm)633 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
634 {
635 }
636 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
637
638 extern const struct trace_print_flags pageflag_names[];
639 extern const struct trace_print_flags vmaflag_names[];
640 extern const struct trace_print_flags gfpflag_names[];
641
is_migrate_highatomic(enum migratetype migratetype)642 static inline bool is_migrate_highatomic(enum migratetype migratetype)
643 {
644 return migratetype == MIGRATE_HIGHATOMIC;
645 }
646
is_migrate_highatomic_page(struct page * page)647 static inline bool is_migrate_highatomic_page(struct page *page)
648 {
649 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
650 }
651
652 void setup_zone_pageset(struct zone *zone);
653
654 struct migration_target_control {
655 int nid; /* preferred node id */
656 nodemask_t *nmask;
657 gfp_t gfp_mask;
658 };
659
660 /*
661 * mm/vmalloc.c
662 */
663 #ifdef CONFIG_MMU
664 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
665 pgprot_t prot, struct page **pages, unsigned int page_shift);
666 #else
667 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)668 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
669 pgprot_t prot, struct page **pages, unsigned int page_shift)
670 {
671 return -EINVAL;
672 }
673 #endif
674
675 void vunmap_range_noflush(unsigned long start, unsigned long end);
676
677 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
678 unsigned long addr, int page_nid, int *flags);
679
680 #endif /* __MM_INTERNAL_H */
681