• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/page_pinner.h>
67 #include <linux/kthread.h>
68 #include <linux/memcontrol.h>
69 #include <linux/ftrace.h>
70 #include <linux/lockdep.h>
71 #include <linux/nmi.h>
72 #include <linux/psi.h>
73 #include <linux/padata.h>
74 #include <linux/khugepaged.h>
75 #include <linux/buffer_head.h>
76 #include <trace/hooks/mm.h>
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83 
84 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_page_alloc);
85 
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88 
89 /* No special request */
90 #define FPI_NONE		((__force fpi_t)0)
91 
92 /*
93  * Skip free page reporting notification for the (possibly merged) page.
94  * This does not hinder free page reporting from grabbing the page,
95  * reporting it and marking it "reported" -  it only skips notifying
96  * the free page reporting infrastructure about a newly freed page. For
97  * example, used when temporarily pulling a page from a freelist and
98  * putting it back unmodified.
99  */
100 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
101 
102 /*
103  * Place the (possibly merged) page to the tail of the freelist. Will ignore
104  * page shuffling (relevant code - e.g., memory onlining - is expected to
105  * shuffle the whole zone).
106  *
107  * Note: No code should rely on this flag for correctness - it's purely
108  *       to allow for optimizations when handing back either fresh pages
109  *       (memory onlining) or untouched pages (page isolation, free page
110  *       reporting).
111  */
112 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
113 
114 /*
115  * Don't poison memory with KASAN (only for the tag-based modes).
116  * During boot, all non-reserved memblock memory is exposed to page_alloc.
117  * Poisoning all that memory lengthens boot time, especially on systems with
118  * large amount of RAM. This flag is used to skip that poisoning.
119  * This is only done for the tag-based KASAN modes, as those are able to
120  * detect memory corruptions with the memory tags assigned by default.
121  * All memory allocated normally after boot gets poisoned as usual.
122  */
123 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
124 
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128 
129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
130 /*
131  * On SMP, spin_trylock is sufficient protection.
132  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
133  */
134 #define pcp_trylock_prepare(flags)	do { } while (0)
135 #define pcp_trylock_finish(flag)	do { } while (0)
136 #else
137 
138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
140 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
141 #endif
142 
143 /*
144  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145  * a migration causing the wrong PCP to be locked and remote memory being
146  * potentially allocated, pin the task to the CPU for the lookup+lock.
147  * preempt_disable is used on !RT because it is faster than migrate_disable.
148  * migrate_disable is used on RT because otherwise RT spinlock usage is
149  * interfered with and a high priority task cannot preempt the allocator.
150  */
151 #ifndef CONFIG_PREEMPT_RT
152 #define pcpu_task_pin()		preempt_disable()
153 #define pcpu_task_unpin()	preempt_enable()
154 #else
155 #define pcpu_task_pin()		migrate_disable()
156 #define pcpu_task_unpin()	migrate_enable()
157 #endif
158 
159 /*
160  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161  * Return value should be used with equivalent unlock helper.
162  */
163 #define pcpu_spin_lock(type, member, ptr)				\
164 ({									\
165 	type *_ret;							\
166 	pcpu_task_pin();						\
167 	_ret = this_cpu_ptr(ptr);					\
168 	spin_lock(&_ret->member);					\
169 	_ret;								\
170 })
171 
172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
173 ({									\
174 	type *_ret;							\
175 	pcpu_task_pin();						\
176 	_ret = this_cpu_ptr(ptr);					\
177 	spin_lock_irqsave(&_ret->member, flags);			\
178 	_ret;								\
179 })
180 
181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
182 ({									\
183 	type *_ret;							\
184 	pcpu_task_pin();						\
185 	_ret = this_cpu_ptr(ptr);					\
186 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
187 		pcpu_task_unpin();					\
188 		_ret = NULL;						\
189 	}								\
190 	_ret;								\
191 })
192 
193 #define pcpu_spin_unlock(member, ptr)					\
194 ({									\
195 	spin_unlock(&ptr->member);					\
196 	pcpu_task_unpin();						\
197 })
198 
199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
200 ({									\
201 	spin_unlock_irqrestore(&ptr->member, flags);			\
202 	pcpu_task_unpin();						\
203 })
204 
205 /* struct per_cpu_pages specific helpers. */
206 #define pcp_spin_lock(ptr)						\
207 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
208 
209 #define pcp_spin_lock_irqsave(ptr, flags)				\
210 	pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
211 
212 #define pcp_spin_trylock_irqsave(ptr, flags)				\
213 	pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
214 
215 #define pcp_spin_unlock(ptr)						\
216 	pcpu_spin_unlock(lock, ptr)
217 
218 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
219 	pcpu_spin_unlock_irqrestore(lock, ptr, flags)
220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221 DEFINE_PER_CPU(int, numa_node);
222 EXPORT_PER_CPU_SYMBOL(numa_node);
223 #endif
224 
225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
226 
227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
228 /*
229  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232  * defined in <linux/topology.h>.
233  */
234 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
236 #endif
237 
238 static DEFINE_MUTEX(pcpu_drain_mutex);
239 
240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
241 volatile unsigned long latent_entropy __latent_entropy;
242 EXPORT_SYMBOL(latent_entropy);
243 #endif
244 
245 /*
246  * Array of node states.
247  */
248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 	[N_POSSIBLE] = NODE_MASK_ALL,
250 	[N_ONLINE] = { { [0] = 1UL } },
251 #ifndef CONFIG_NUMA
252 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
253 #ifdef CONFIG_HIGHMEM
254 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
255 #endif
256 	[N_MEMORY] = { { [0] = 1UL } },
257 	[N_CPU] = { { [0] = 1UL } },
258 #endif	/* NUMA */
259 };
260 EXPORT_SYMBOL(node_states);
261 
262 atomic_long_t _totalram_pages __read_mostly;
263 EXPORT_SYMBOL(_totalram_pages);
264 unsigned long totalreserve_pages __read_mostly;
265 unsigned long totalcma_pages __read_mostly;
266 
267 int percpu_pagelist_high_fraction;
268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
270 EXPORT_SYMBOL(init_on_alloc);
271 
272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
273 EXPORT_SYMBOL(init_on_free);
274 
275 static bool _init_on_alloc_enabled_early __read_mostly
276 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)277 static int __init early_init_on_alloc(char *buf)
278 {
279 
280 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
281 }
282 early_param("init_on_alloc", early_init_on_alloc);
283 
284 static bool _init_on_free_enabled_early __read_mostly
285 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)286 static int __init early_init_on_free(char *buf)
287 {
288 	return kstrtobool(buf, &_init_on_free_enabled_early);
289 }
290 early_param("init_on_free", early_init_on_free);
291 
292 /*
293  * A cached value of the page's pageblock's migratetype, used when the page is
294  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296  * Also the migratetype set in the page does not necessarily match the pcplist
297  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298  * other index - this ensures that it will be put on the correct CMA freelist.
299  */
get_pcppage_migratetype(struct page * page)300 static inline int get_pcppage_migratetype(struct page *page)
301 {
302 	return page->index;
303 }
304 
set_pcppage_migratetype(struct page * page,int migratetype)305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
306 {
307 	page->index = migratetype;
308 }
309 
310 #ifdef CONFIG_PM_SLEEP
311 /*
312  * The following functions are used by the suspend/hibernate code to temporarily
313  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314  * while devices are suspended.  To avoid races with the suspend/hibernate code,
315  * they should always be called with system_transition_mutex held
316  * (gfp_allowed_mask also should only be modified with system_transition_mutex
317  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318  * with that modification).
319  */
320 
321 static gfp_t saved_gfp_mask;
322 
pm_restore_gfp_mask(void)323 void pm_restore_gfp_mask(void)
324 {
325 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
326 	if (saved_gfp_mask) {
327 		gfp_allowed_mask = saved_gfp_mask;
328 		saved_gfp_mask = 0;
329 	}
330 }
331 
pm_restrict_gfp_mask(void)332 void pm_restrict_gfp_mask(void)
333 {
334 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
335 	WARN_ON(saved_gfp_mask);
336 	saved_gfp_mask = gfp_allowed_mask;
337 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
338 }
339 
pm_suspended_storage(void)340 bool pm_suspended_storage(void)
341 {
342 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
343 		return false;
344 	return true;
345 }
346 #endif /* CONFIG_PM_SLEEP */
347 
348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
349 unsigned int pageblock_order __read_mostly;
350 #endif
351 
352 static void __free_pages_ok(struct page *page, unsigned int order,
353 			    fpi_t fpi_flags);
354 
355 /*
356  * results with 256, 32 in the lowmem_reserve sysctl:
357  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358  *	1G machine -> (16M dma, 784M normal, 224M high)
359  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
361  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
362  *
363  * TBD: should special case ZONE_DMA32 machines here - in those we normally
364  * don't need any ZONE_NORMAL reservation
365  */
366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
367 #ifdef CONFIG_ZONE_DMA
368 	[ZONE_DMA] = 256,
369 #endif
370 #ifdef CONFIG_ZONE_DMA32
371 	[ZONE_DMA32] = 256,
372 #endif
373 	[ZONE_NORMAL] = 32,
374 #ifdef CONFIG_HIGHMEM
375 	[ZONE_HIGHMEM] = 0,
376 #endif
377 	[ZONE_MOVABLE] = 0,
378 };
379 
380 static char * const zone_names[MAX_NR_ZONES] = {
381 #ifdef CONFIG_ZONE_DMA
382 	 "DMA",
383 #endif
384 #ifdef CONFIG_ZONE_DMA32
385 	 "DMA32",
386 #endif
387 	 "Normal",
388 #ifdef CONFIG_HIGHMEM
389 	 "HighMem",
390 #endif
391 	 "Movable",
392 #ifdef CONFIG_ZONE_DEVICE
393 	 "Device",
394 #endif
395 };
396 
397 const char * const migratetype_names[MIGRATE_TYPES] = {
398 	"Unmovable",
399 	"Movable",
400 	"Reclaimable",
401 #ifdef CONFIG_CMA
402 	"CMA",
403 #endif
404 	"HighAtomic",
405 #ifdef CONFIG_MEMORY_ISOLATION
406 	"Isolate",
407 #endif
408 };
409 
410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 	[NULL_COMPOUND_DTOR] = NULL,
412 	[COMPOUND_PAGE_DTOR] = free_compound_page,
413 #ifdef CONFIG_HUGETLB_PAGE
414 	[HUGETLB_PAGE_DTOR] = free_huge_page,
415 #endif
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
418 #endif
419 };
420 
421 int min_free_kbytes = 1024;
422 int user_min_free_kbytes = -1;
423 int watermark_boost_factor __read_mostly = 15000;
424 int watermark_scale_factor = 10;
425 
426 static unsigned long nr_kernel_pages __initdata;
427 static unsigned long nr_all_pages __initdata;
428 static unsigned long dma_reserve __initdata;
429 
430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long required_kernelcore __initdata;
433 static unsigned long required_kernelcore_percent __initdata;
434 static unsigned long required_movablecore __initdata;
435 static unsigned long required_movablecore_percent __initdata;
436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
437 static bool mirrored_kernelcore __meminitdata;
438 
439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
440 int movable_zone;
441 EXPORT_SYMBOL(movable_zone);
442 
443 #if MAX_NUMNODES > 1
444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
445 unsigned int nr_online_nodes __read_mostly = 1;
446 EXPORT_SYMBOL(nr_node_ids);
447 EXPORT_SYMBOL(nr_online_nodes);
448 #endif
449 
450 int page_group_by_mobility_disabled __read_mostly;
451 
452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
453 /*
454  * During boot we initialize deferred pages on-demand, as needed, but once
455  * page_alloc_init_late() has finished, the deferred pages are all initialized,
456  * and we can permanently disable that path.
457  */
458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
459 
deferred_pages_enabled(void)460 static inline bool deferred_pages_enabled(void)
461 {
462 	return static_branch_unlikely(&deferred_pages);
463 }
464 
465 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
467 {
468 	int nid = early_pfn_to_nid(pfn);
469 
470 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
471 		return true;
472 
473 	return false;
474 }
475 
476 /*
477  * Returns true when the remaining initialisation should be deferred until
478  * later in the boot cycle when it can be parallelised.
479  */
480 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
482 {
483 	static unsigned long prev_end_pfn, nr_initialised;
484 
485 	/*
486 	 * prev_end_pfn static that contains the end of previous zone
487 	 * No need to protect because called very early in boot before smp_init.
488 	 */
489 	if (prev_end_pfn != end_pfn) {
490 		prev_end_pfn = end_pfn;
491 		nr_initialised = 0;
492 	}
493 
494 	/* Always populate low zones for address-constrained allocations */
495 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
496 		return false;
497 
498 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
499 		return true;
500 	/*
501 	 * We start only with one section of pages, more pages are added as
502 	 * needed until the rest of deferred pages are initialized.
503 	 */
504 	nr_initialised++;
505 	if ((nr_initialised > PAGES_PER_SECTION) &&
506 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
507 		NODE_DATA(nid)->first_deferred_pfn = pfn;
508 		return true;
509 	}
510 	return false;
511 }
512 #else
deferred_pages_enabled(void)513 static inline bool deferred_pages_enabled(void)
514 {
515 	return false;
516 }
517 
early_page_uninitialised(unsigned long pfn)518 static inline bool early_page_uninitialised(unsigned long pfn)
519 {
520 	return false;
521 }
522 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)523 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
524 {
525 	return false;
526 }
527 #endif
528 
529 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)530 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
531 							unsigned long pfn)
532 {
533 #ifdef CONFIG_SPARSEMEM
534 	return section_to_usemap(__pfn_to_section(pfn));
535 #else
536 	return page_zone(page)->pageblock_flags;
537 #endif /* CONFIG_SPARSEMEM */
538 }
539 
pfn_to_bitidx(const struct page * page,unsigned long pfn)540 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
541 {
542 #ifdef CONFIG_SPARSEMEM
543 	pfn &= (PAGES_PER_SECTION-1);
544 #else
545 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
546 #endif /* CONFIG_SPARSEMEM */
547 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
548 }
549 
550 static __always_inline
__get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)551 unsigned long __get_pfnblock_flags_mask(const struct page *page,
552 					unsigned long pfn,
553 					unsigned long mask)
554 {
555 	unsigned long *bitmap;
556 	unsigned long bitidx, word_bitidx;
557 	unsigned long word;
558 
559 	bitmap = get_pageblock_bitmap(page, pfn);
560 	bitidx = pfn_to_bitidx(page, pfn);
561 	word_bitidx = bitidx / BITS_PER_LONG;
562 	bitidx &= (BITS_PER_LONG-1);
563 	/*
564 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
565 	 * a consistent read of the memory array, so that results, even though
566 	 * racy, are not corrupted.
567 	 */
568 	word = READ_ONCE(bitmap[word_bitidx]);
569 	return (word >> bitidx) & mask;
570 }
571 
572 /**
573  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
574  * @page: The page within the block of interest
575  * @pfn: The target page frame number
576  * @mask: mask of bits that the caller is interested in
577  *
578  * Return: pageblock_bits flags
579  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)580 unsigned long get_pfnblock_flags_mask(const struct page *page,
581 					unsigned long pfn, unsigned long mask)
582 {
583 	return __get_pfnblock_flags_mask(page, pfn, mask);
584 }
585 EXPORT_SYMBOL_GPL(get_pfnblock_flags_mask);
586 
isolate_anon_lru_page(struct page * page)587 int isolate_anon_lru_page(struct page *page)
588 {
589 	int ret;
590 
591 	if (!PageLRU(page) || !PageAnon(page))
592 		return -EINVAL;
593 
594 	if (!get_page_unless_zero(page))
595 		return -EINVAL;
596 
597 	ret = isolate_lru_page(page);
598 	put_page(page);
599 
600 	return ret;
601 }
602 EXPORT_SYMBOL_GPL(isolate_anon_lru_page);
603 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)604 static __always_inline int get_pfnblock_migratetype(const struct page *page,
605 					unsigned long pfn)
606 {
607 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
608 }
609 
610 /**
611  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
612  * @page: The page within the block of interest
613  * @flags: The flags to set
614  * @pfn: The target page frame number
615  * @mask: mask of bits that the caller is interested in
616  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)617 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
618 					unsigned long pfn,
619 					unsigned long mask)
620 {
621 	unsigned long *bitmap;
622 	unsigned long bitidx, word_bitidx;
623 	unsigned long old_word, word;
624 
625 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
626 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
627 
628 	bitmap = get_pageblock_bitmap(page, pfn);
629 	bitidx = pfn_to_bitidx(page, pfn);
630 	word_bitidx = bitidx / BITS_PER_LONG;
631 	bitidx &= (BITS_PER_LONG-1);
632 
633 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
634 
635 	mask <<= bitidx;
636 	flags <<= bitidx;
637 
638 	word = READ_ONCE(bitmap[word_bitidx]);
639 	for (;;) {
640 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
641 		if (word == old_word)
642 			break;
643 		word = old_word;
644 	}
645 }
646 
set_pageblock_migratetype(struct page * page,int migratetype)647 void set_pageblock_migratetype(struct page *page, int migratetype)
648 {
649 	if (unlikely(page_group_by_mobility_disabled &&
650 		     migratetype < MIGRATE_PCPTYPES))
651 		migratetype = MIGRATE_UNMOVABLE;
652 
653 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
654 				page_to_pfn(page), MIGRATETYPE_MASK);
655 }
656 
657 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)658 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
659 {
660 	int ret = 0;
661 	unsigned seq;
662 	unsigned long pfn = page_to_pfn(page);
663 	unsigned long sp, start_pfn;
664 
665 	do {
666 		seq = zone_span_seqbegin(zone);
667 		start_pfn = zone->zone_start_pfn;
668 		sp = zone->spanned_pages;
669 		if (!zone_spans_pfn(zone, pfn))
670 			ret = 1;
671 	} while (zone_span_seqretry(zone, seq));
672 
673 	if (ret)
674 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
675 			pfn, zone_to_nid(zone), zone->name,
676 			start_pfn, start_pfn + sp);
677 
678 	return ret;
679 }
680 
page_is_consistent(struct zone * zone,struct page * page)681 static int page_is_consistent(struct zone *zone, struct page *page)
682 {
683 	if (zone != page_zone(page))
684 		return 0;
685 
686 	return 1;
687 }
688 /*
689  * Temporary debugging check for pages not lying within a given zone.
690  */
bad_range(struct zone * zone,struct page * page)691 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
692 {
693 	if (page_outside_zone_boundaries(zone, page))
694 		return 1;
695 	if (!page_is_consistent(zone, page))
696 		return 1;
697 
698 	return 0;
699 }
700 #else
bad_range(struct zone * zone,struct page * page)701 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
702 {
703 	return 0;
704 }
705 #endif
706 
bad_page(struct page * page,const char * reason)707 static void bad_page(struct page *page, const char *reason)
708 {
709 	static unsigned long resume;
710 	static unsigned long nr_shown;
711 	static unsigned long nr_unshown;
712 
713 	/*
714 	 * Allow a burst of 60 reports, then keep quiet for that minute;
715 	 * or allow a steady drip of one report per second.
716 	 */
717 	if (nr_shown == 60) {
718 		if (time_before(jiffies, resume)) {
719 			nr_unshown++;
720 			goto out;
721 		}
722 		if (nr_unshown) {
723 			pr_alert(
724 			      "BUG: Bad page state: %lu messages suppressed\n",
725 				nr_unshown);
726 			nr_unshown = 0;
727 		}
728 		nr_shown = 0;
729 	}
730 	if (nr_shown++ == 0)
731 		resume = jiffies + 60 * HZ;
732 
733 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
734 		current->comm, page_to_pfn(page));
735 	dump_page(page, reason);
736 
737 	print_modules();
738 	dump_stack();
739 out:
740 	/* Leave bad fields for debug, except PageBuddy could make trouble */
741 	page_mapcount_reset(page); /* remove PageBuddy */
742 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
743 }
744 
order_to_pindex(int migratetype,int order)745 static inline unsigned int order_to_pindex(int migratetype, int order)
746 {
747 	int base = order;
748 
749 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
750 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
751 		VM_BUG_ON(order != pageblock_order);
752 		return NR_LOWORDER_PCP_LISTS;
753 	}
754 #else
755 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
756 #endif
757 
758 	return (MIGRATE_PCPTYPES * base) + migratetype;
759 }
760 
pindex_to_order(unsigned int pindex)761 static inline int pindex_to_order(unsigned int pindex)
762 {
763 	int order = pindex / MIGRATE_PCPTYPES;
764 
765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
766 	if (pindex == NR_LOWORDER_PCP_LISTS) {
767 		order = pageblock_order;
768 		VM_BUG_ON(order != pageblock_order);
769 	}
770 #else
771 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
772 #endif
773 
774 	return order;
775 }
776 
pcp_allowed_order(unsigned int order)777 static inline bool pcp_allowed_order(unsigned int order)
778 {
779 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
780 		return true;
781 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
782 	if (order == pageblock_order)
783 		return true;
784 #endif
785 	return false;
786 }
787 
free_the_page(struct page * page,unsigned int order)788 static inline void free_the_page(struct page *page, unsigned int order)
789 {
790 	if (pcp_allowed_order(order))		/* Via pcp? */
791 		free_unref_page(page, order);
792 	else
793 		__free_pages_ok(page, order, FPI_NONE);
794 }
795 
796 /*
797  * Higher-order pages are called "compound pages".  They are structured thusly:
798  *
799  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
800  *
801  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
802  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
803  *
804  * The first tail page's ->compound_dtor holds the offset in array of compound
805  * page destructors. See compound_page_dtors.
806  *
807  * The first tail page's ->compound_order holds the order of allocation.
808  * This usage means that zero-order pages may not be compound.
809  */
810 
free_compound_page(struct page * page)811 void free_compound_page(struct page *page)
812 {
813 	mem_cgroup_uncharge(page);
814 	free_the_page(page, compound_order(page));
815 }
816 
prep_compound_page(struct page * page,unsigned int order)817 void prep_compound_page(struct page *page, unsigned int order)
818 {
819 	int i;
820 	int nr_pages = 1 << order;
821 
822 	__SetPageHead(page);
823 	for (i = 1; i < nr_pages; i++) {
824 		struct page *p = page + i;
825 		p->mapping = TAIL_MAPPING;
826 		set_compound_head(p, page);
827 	}
828 
829 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
830 	set_compound_order(page, order);
831 	atomic_set(compound_mapcount_ptr(page), -1);
832 	if (hpage_pincount_available(page))
833 		atomic_set(compound_pincount_ptr(page), 0);
834 }
835 
836 #ifdef CONFIG_DEBUG_PAGEALLOC
837 unsigned int _debug_guardpage_minorder;
838 
839 bool _debug_pagealloc_enabled_early __read_mostly
840 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
841 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
842 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
843 EXPORT_SYMBOL(_debug_pagealloc_enabled);
844 
845 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
846 
early_debug_pagealloc(char * buf)847 static int __init early_debug_pagealloc(char *buf)
848 {
849 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
850 }
851 early_param("debug_pagealloc", early_debug_pagealloc);
852 
debug_guardpage_minorder_setup(char * buf)853 static int __init debug_guardpage_minorder_setup(char *buf)
854 {
855 	unsigned long res;
856 
857 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
858 		pr_err("Bad debug_guardpage_minorder value\n");
859 		return 0;
860 	}
861 	_debug_guardpage_minorder = res;
862 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
863 	return 0;
864 }
865 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
866 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)867 static inline bool set_page_guard(struct zone *zone, struct page *page,
868 				unsigned int order, int migratetype)
869 {
870 	if (!debug_guardpage_enabled())
871 		return false;
872 
873 	if (order >= debug_guardpage_minorder())
874 		return false;
875 
876 	__SetPageGuard(page);
877 	INIT_LIST_HEAD(&page->buddy_list);
878 	set_page_private(page, order);
879 	/* Guard pages are not available for any usage */
880 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
881 
882 	return true;
883 }
884 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)885 static inline void clear_page_guard(struct zone *zone, struct page *page,
886 				unsigned int order, int migratetype)
887 {
888 	if (!debug_guardpage_enabled())
889 		return;
890 
891 	__ClearPageGuard(page);
892 
893 	set_page_private(page, 0);
894 	if (!is_migrate_isolate(migratetype))
895 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
896 }
897 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)898 static inline bool set_page_guard(struct zone *zone, struct page *page,
899 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)900 static inline void clear_page_guard(struct zone *zone, struct page *page,
901 				unsigned int order, int migratetype) {}
902 #endif
903 
904 /*
905  * Enable static keys related to various memory debugging and hardening options.
906  * Some override others, and depend on early params that are evaluated in the
907  * order of appearance. So we need to first gather the full picture of what was
908  * enabled, and then make decisions.
909  */
init_mem_debugging_and_hardening(void)910 void init_mem_debugging_and_hardening(void)
911 {
912 	bool page_poisoning_requested = false;
913 
914 #ifdef CONFIG_PAGE_POISONING
915 	/*
916 	 * Page poisoning is debug page alloc for some arches. If
917 	 * either of those options are enabled, enable poisoning.
918 	 */
919 	if (page_poisoning_enabled() ||
920 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
921 	      debug_pagealloc_enabled())) {
922 		static_branch_enable(&_page_poisoning_enabled);
923 		page_poisoning_requested = true;
924 	}
925 #endif
926 
927 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
928 	    page_poisoning_requested) {
929 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
930 			"will take precedence over init_on_alloc and init_on_free\n");
931 		_init_on_alloc_enabled_early = false;
932 		_init_on_free_enabled_early = false;
933 	}
934 
935 	if (_init_on_alloc_enabled_early)
936 		static_branch_enable(&init_on_alloc);
937 	else
938 		static_branch_disable(&init_on_alloc);
939 
940 	if (_init_on_free_enabled_early)
941 		static_branch_enable(&init_on_free);
942 	else
943 		static_branch_disable(&init_on_free);
944 
945 #ifdef CONFIG_DEBUG_PAGEALLOC
946 	if (!debug_pagealloc_enabled())
947 		return;
948 
949 	static_branch_enable(&_debug_pagealloc_enabled);
950 
951 	if (!debug_guardpage_minorder())
952 		return;
953 
954 	static_branch_enable(&_debug_guardpage_enabled);
955 #endif
956 }
957 
set_buddy_order(struct page * page,unsigned int order)958 static inline void set_buddy_order(struct page *page, unsigned int order)
959 {
960 	set_page_private(page, order);
961 	__SetPageBuddy(page);
962 }
963 
964 /*
965  * This function checks whether a page is free && is the buddy
966  * we can coalesce a page and its buddy if
967  * (a) the buddy is not in a hole (check before calling!) &&
968  * (b) the buddy is in the buddy system &&
969  * (c) a page and its buddy have the same order &&
970  * (d) a page and its buddy are in the same zone.
971  *
972  * For recording whether a page is in the buddy system, we set PageBuddy.
973  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
974  *
975  * For recording page's order, we use page_private(page).
976  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)977 static inline bool page_is_buddy(struct page *page, struct page *buddy,
978 							unsigned int order)
979 {
980 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
981 		return false;
982 
983 	if (buddy_order(buddy) != order)
984 		return false;
985 
986 	/*
987 	 * zone check is done late to avoid uselessly calculating
988 	 * zone/node ids for pages that could never merge.
989 	 */
990 	if (page_zone_id(page) != page_zone_id(buddy))
991 		return false;
992 
993 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
994 
995 	return true;
996 }
997 
998 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)999 static inline struct capture_control *task_capc(struct zone *zone)
1000 {
1001 	struct capture_control *capc = current->capture_control;
1002 
1003 	return unlikely(capc) &&
1004 		!(current->flags & PF_KTHREAD) &&
1005 		!capc->page &&
1006 		capc->cc->zone == zone ? capc : NULL;
1007 }
1008 
1009 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)1010 compaction_capture(struct capture_control *capc, struct page *page,
1011 		   int order, int migratetype)
1012 {
1013 	if (!capc || order != capc->cc->order)
1014 		return false;
1015 
1016 	/* Do not accidentally pollute CMA or isolated regions*/
1017 	if (is_migrate_cma(migratetype) ||
1018 	    is_migrate_isolate(migratetype))
1019 		return false;
1020 
1021 	/*
1022 	 * Do not let lower order allocations pollute a movable pageblock.
1023 	 * This might let an unmovable request use a reclaimable pageblock
1024 	 * and vice-versa but no more than normal fallback logic which can
1025 	 * have trouble finding a high-order free page.
1026 	 */
1027 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
1028 		return false;
1029 
1030 	capc->page = page;
1031 	return true;
1032 }
1033 
1034 #else
task_capc(struct zone * zone)1035 static inline struct capture_control *task_capc(struct zone *zone)
1036 {
1037 	return NULL;
1038 }
1039 
1040 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)1041 compaction_capture(struct capture_control *capc, struct page *page,
1042 		   int order, int migratetype)
1043 {
1044 	return false;
1045 }
1046 #endif /* CONFIG_COMPACTION */
1047 
1048 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)1049 static inline void add_to_free_list(struct page *page, struct zone *zone,
1050 				    unsigned int order, int migratetype)
1051 {
1052 	struct free_area *area = &zone->free_area[order];
1053 
1054 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1055 	area->nr_free++;
1056 }
1057 
1058 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)1059 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1060 					 unsigned int order, int migratetype)
1061 {
1062 	struct free_area *area = &zone->free_area[order];
1063 
1064 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1065 	area->nr_free++;
1066 }
1067 
1068 /*
1069  * Used for pages which are on another list. Move the pages to the tail
1070  * of the list - so the moved pages won't immediately be considered for
1071  * allocation again (e.g., optimization for memory onlining).
1072  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)1073 static inline void move_to_free_list(struct page *page, struct zone *zone,
1074 				     unsigned int order, int migratetype)
1075 {
1076 	struct free_area *area = &zone->free_area[order];
1077 
1078 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1079 }
1080 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)1081 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1082 					   unsigned int order)
1083 {
1084 	/* clear reported state and update reported page count */
1085 	if (page_reported(page))
1086 		__ClearPageReported(page);
1087 
1088 	list_del(&page->buddy_list);
1089 	__ClearPageBuddy(page);
1090 	set_page_private(page, 0);
1091 	zone->free_area[order].nr_free--;
1092 }
1093 
1094 /*
1095  * If this is not the largest possible page, check if the buddy
1096  * of the next-highest order is free. If it is, it's possible
1097  * that pages are being freed that will coalesce soon. In case,
1098  * that is happening, add the free page to the tail of the list
1099  * so it's less likely to be used soon and more likely to be merged
1100  * as a higher order page
1101  */
1102 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)1103 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1104 		   struct page *page, unsigned int order)
1105 {
1106 	struct page *higher_page, *higher_buddy;
1107 	unsigned long combined_pfn;
1108 
1109 	if (order >= MAX_ORDER - 2)
1110 		return false;
1111 
1112 	combined_pfn = buddy_pfn & pfn;
1113 	higher_page = page + (combined_pfn - pfn);
1114 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1115 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1116 
1117 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1118 }
1119 
1120 /*
1121  * Freeing function for a buddy system allocator.
1122  *
1123  * The concept of a buddy system is to maintain direct-mapped table
1124  * (containing bit values) for memory blocks of various "orders".
1125  * The bottom level table contains the map for the smallest allocatable
1126  * units of memory (here, pages), and each level above it describes
1127  * pairs of units from the levels below, hence, "buddies".
1128  * At a high level, all that happens here is marking the table entry
1129  * at the bottom level available, and propagating the changes upward
1130  * as necessary, plus some accounting needed to play nicely with other
1131  * parts of the VM system.
1132  * At each level, we keep a list of pages, which are heads of continuous
1133  * free pages of length of (1 << order) and marked with PageBuddy.
1134  * Page's order is recorded in page_private(page) field.
1135  * So when we are allocating or freeing one, we can derive the state of the
1136  * other.  That is, if we allocate a small block, and both were
1137  * free, the remainder of the region must be split into blocks.
1138  * If a block is freed, and its buddy is also free, then this
1139  * triggers coalescing into a block of larger size.
1140  *
1141  * -- nyc
1142  */
1143 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)1144 static inline void __free_one_page(struct page *page,
1145 		unsigned long pfn,
1146 		struct zone *zone, unsigned int order,
1147 		int migratetype, fpi_t fpi_flags)
1148 {
1149 	struct capture_control *capc = task_capc(zone);
1150 	unsigned long buddy_pfn;
1151 	unsigned long combined_pfn;
1152 	unsigned int max_order;
1153 	struct page *buddy;
1154 	bool to_tail;
1155 
1156 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1157 
1158 	VM_BUG_ON(!zone_is_initialized(zone));
1159 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1160 
1161 	VM_BUG_ON(migratetype == -1);
1162 	if (likely(!is_migrate_isolate(migratetype)))
1163 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1164 
1165 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1166 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1167 
1168 continue_merging:
1169 	while (order < max_order) {
1170 		if (compaction_capture(capc, page, order, migratetype)) {
1171 			__mod_zone_freepage_state(zone, -(1 << order),
1172 								migratetype);
1173 			return;
1174 		}
1175 		buddy_pfn = __find_buddy_pfn(pfn, order);
1176 		buddy = page + (buddy_pfn - pfn);
1177 
1178 		if (!page_is_buddy(page, buddy, order))
1179 			goto done_merging;
1180 		/*
1181 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1182 		 * merge with it and move up one order.
1183 		 */
1184 		if (page_is_guard(buddy))
1185 			clear_page_guard(zone, buddy, order, migratetype);
1186 		else
1187 			del_page_from_free_list(buddy, zone, order);
1188 		combined_pfn = buddy_pfn & pfn;
1189 		page = page + (combined_pfn - pfn);
1190 		pfn = combined_pfn;
1191 		order++;
1192 	}
1193 	if (order < MAX_ORDER - 1) {
1194 		/* If we are here, it means order is >= pageblock_order.
1195 		 * We want to prevent merge between freepages on isolate
1196 		 * pageblock and normal pageblock. Without this, pageblock
1197 		 * isolation could cause incorrect freepage or CMA accounting.
1198 		 *
1199 		 * We don't want to hit this code for the more frequent
1200 		 * low-order merging.
1201 		 */
1202 		if (unlikely(has_isolate_pageblock(zone))) {
1203 			int buddy_mt;
1204 
1205 			buddy_pfn = __find_buddy_pfn(pfn, order);
1206 			buddy = page + (buddy_pfn - pfn);
1207 			buddy_mt = get_pageblock_migratetype(buddy);
1208 
1209 			if (migratetype != buddy_mt
1210 					&& (is_migrate_isolate(migratetype) ||
1211 						is_migrate_isolate(buddy_mt)))
1212 				goto done_merging;
1213 		}
1214 		max_order = order + 1;
1215 		goto continue_merging;
1216 	}
1217 
1218 done_merging:
1219 	set_buddy_order(page, order);
1220 
1221 	if (fpi_flags & FPI_TO_TAIL)
1222 		to_tail = true;
1223 	else if (is_shuffle_order(order))
1224 		to_tail = shuffle_pick_tail();
1225 	else
1226 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1227 
1228 	if (to_tail)
1229 		add_to_free_list_tail(page, zone, order, migratetype);
1230 	else
1231 		add_to_free_list(page, zone, order, migratetype);
1232 
1233 	/* Notify page reporting subsystem of freed page */
1234 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1235 		page_reporting_notify_free(order);
1236 }
1237 
1238 /*
1239  * A bad page could be due to a number of fields. Instead of multiple branches,
1240  * try and check multiple fields with one check. The caller must do a detailed
1241  * check if necessary.
1242  */
page_expected_state(struct page * page,unsigned long check_flags)1243 static inline bool page_expected_state(struct page *page,
1244 					unsigned long check_flags)
1245 {
1246 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1247 		return false;
1248 
1249 	if (unlikely((unsigned long)page->mapping |
1250 			page_ref_count(page) |
1251 #ifdef CONFIG_MEMCG
1252 			page->memcg_data |
1253 #endif
1254 			(page->flags & check_flags)))
1255 		return false;
1256 
1257 	return true;
1258 }
1259 
page_bad_reason(struct page * page,unsigned long flags)1260 static const char *page_bad_reason(struct page *page, unsigned long flags)
1261 {
1262 	const char *bad_reason = NULL;
1263 
1264 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1265 		bad_reason = "nonzero mapcount";
1266 	if (unlikely(page->mapping != NULL))
1267 		bad_reason = "non-NULL mapping";
1268 	if (unlikely(page_ref_count(page) != 0))
1269 		bad_reason = "nonzero _refcount";
1270 	if (unlikely(page->flags & flags)) {
1271 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1272 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1273 		else
1274 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1275 	}
1276 #ifdef CONFIG_MEMCG
1277 	if (unlikely(page->memcg_data))
1278 		bad_reason = "page still charged to cgroup";
1279 #endif
1280 	return bad_reason;
1281 }
1282 
check_free_page_bad(struct page * page)1283 static void check_free_page_bad(struct page *page)
1284 {
1285 	bad_page(page,
1286 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1287 }
1288 
check_free_page(struct page * page)1289 static inline int check_free_page(struct page *page)
1290 {
1291 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1292 		return 0;
1293 
1294 	/* Something has gone sideways, find it */
1295 	check_free_page_bad(page);
1296 	return 1;
1297 }
1298 
free_tail_pages_check(struct page * head_page,struct page * page)1299 static int free_tail_pages_check(struct page *head_page, struct page *page)
1300 {
1301 	int ret = 1;
1302 
1303 	/*
1304 	 * We rely page->lru.next never has bit 0 set, unless the page
1305 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1306 	 */
1307 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1308 
1309 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1310 		ret = 0;
1311 		goto out;
1312 	}
1313 	switch (page - head_page) {
1314 	case 1:
1315 		/* the first tail page: ->mapping may be compound_mapcount() */
1316 		if (unlikely(compound_mapcount(page))) {
1317 			bad_page(page, "nonzero compound_mapcount");
1318 			goto out;
1319 		}
1320 		break;
1321 	case 2:
1322 		/*
1323 		 * the second tail page: ->mapping is
1324 		 * deferred_list.next -- ignore value.
1325 		 */
1326 		break;
1327 	default:
1328 		if (page->mapping != TAIL_MAPPING) {
1329 			bad_page(page, "corrupted mapping in tail page");
1330 			goto out;
1331 		}
1332 		break;
1333 	}
1334 	if (unlikely(!PageTail(page))) {
1335 		bad_page(page, "PageTail not set");
1336 		goto out;
1337 	}
1338 	if (unlikely(compound_head(page) != head_page)) {
1339 		bad_page(page, "compound_head not consistent");
1340 		goto out;
1341 	}
1342 	ret = 0;
1343 out:
1344 	page->mapping = NULL;
1345 	clear_compound_head(page);
1346 	return ret;
1347 }
1348 
1349 /*
1350  * Skip KASAN memory poisoning when either:
1351  *
1352  * 1. Deferred memory initialization has not yet completed,
1353  *    see the explanation below.
1354  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1355  *    see the comment next to it.
1356  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1357  *    see the comment next to it.
1358  * 4. The allocation is excluded from being checked due to sampling,
1359  *    see the call to kasan_unpoison_pages.
1360  *
1361  * Poisoning pages during deferred memory init will greatly lengthen the
1362  * process and cause problem in large memory systems as the deferred pages
1363  * initialization is done with interrupt disabled.
1364  *
1365  * Assuming that there will be no reference to those newly initialized
1366  * pages before they are ever allocated, this should have no effect on
1367  * KASAN memory tracking as the poison will be properly inserted at page
1368  * allocation time. The only corner case is when pages are allocated by
1369  * on-demand allocation and then freed again before the deferred pages
1370  * initialization is done, but this is not likely to happen.
1371  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1372 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1373 {
1374 	return deferred_pages_enabled() ||
1375 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1376 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1377 	       PageSkipKASanPoison(page);
1378 }
1379 
kernel_init_pages(struct page * page,int numpages)1380 static void kernel_init_pages(struct page *page, int numpages)
1381 {
1382 	int i;
1383 
1384 	/* s390's use of memset() could override KASAN redzones. */
1385 	kasan_disable_current();
1386 	for (i = 0; i < numpages; i++)
1387 		clear_highpage_kasan_tagged(page + i);
1388 	kasan_enable_current();
1389 }
1390 
free_pages_prepare(struct page * page,unsigned int order,bool check_free,fpi_t fpi_flags)1391 static __always_inline bool free_pages_prepare(struct page *page,
1392 			unsigned int order, bool check_free, fpi_t fpi_flags)
1393 {
1394 	int bad = 0;
1395 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1396 	bool init = want_init_on_free();
1397 
1398 	VM_BUG_ON_PAGE(PageTail(page), page);
1399 
1400 	trace_mm_page_free(page, order);
1401 
1402 	if (unlikely(PageHWPoison(page)) && !order) {
1403 		/*
1404 		 * Do not let hwpoison pages hit pcplists/buddy
1405 		 * Untie memcg state and reset page's owner
1406 		 */
1407 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1408 			__memcg_kmem_uncharge_page(page, order);
1409 		reset_page_owner(page, order);
1410 		free_page_pinner(page, order);
1411 		return false;
1412 	}
1413 
1414 	/*
1415 	 * Check tail pages before head page information is cleared to
1416 	 * avoid checking PageCompound for order-0 pages.
1417 	 */
1418 	if (unlikely(order)) {
1419 		bool compound = PageCompound(page);
1420 		int i;
1421 
1422 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1423 
1424 		if (compound) {
1425 			ClearPageDoubleMap(page);
1426 			ClearPageHasHWPoisoned(page);
1427 		}
1428 		for (i = 1; i < (1 << order); i++) {
1429 			if (compound)
1430 				bad += free_tail_pages_check(page, page + i);
1431 			if (unlikely(check_free_page(page + i))) {
1432 				bad++;
1433 				continue;
1434 			}
1435 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1436 		}
1437 	}
1438 	if (PageMappingFlags(page))
1439 		page->mapping = NULL;
1440 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1441 		__memcg_kmem_uncharge_page(page, order);
1442 	if (check_free)
1443 		bad += check_free_page(page);
1444 	if (bad)
1445 		return false;
1446 
1447 	page_cpupid_reset_last(page);
1448 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1449 	reset_page_owner(page, order);
1450 	free_page_pinner(page, order);
1451 
1452 	if (!PageHighMem(page)) {
1453 		debug_check_no_locks_freed(page_address(page),
1454 					   PAGE_SIZE << order);
1455 		debug_check_no_obj_freed(page_address(page),
1456 					   PAGE_SIZE << order);
1457 	}
1458 
1459 	kernel_poison_pages(page, 1 << order);
1460 
1461 	/*
1462 	 * As memory initialization might be integrated into KASAN,
1463 	 * KASAN poisoning and memory initialization code must be
1464 	 * kept together to avoid discrepancies in behavior.
1465 	 *
1466 	 * With hardware tag-based KASAN, memory tags must be set before the
1467 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1468 	 */
1469 	if (!skip_kasan_poison) {
1470 		kasan_poison_pages(page, order, init);
1471 
1472 		/* Memory is already initialized if KASAN did it internally. */
1473 		if (kasan_has_integrated_init())
1474 			init = false;
1475 	}
1476 	if (init)
1477 		kernel_init_pages(page, 1 << order);
1478 
1479 	/*
1480 	 * arch_free_page() can make the page's contents inaccessible.  s390
1481 	 * does this.  So nothing which can access the page's contents should
1482 	 * happen after this.
1483 	 */
1484 	arch_free_page(page, order);
1485 
1486 	debug_pagealloc_unmap_pages(page, 1 << order);
1487 
1488 	return true;
1489 }
1490 
1491 #ifdef CONFIG_DEBUG_VM
1492 /*
1493  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1494  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1495  * moved from pcp lists to free lists.
1496  */
free_pcp_prepare(struct page * page,unsigned int order)1497 static bool free_pcp_prepare(struct page *page, unsigned int order)
1498 {
1499 	return free_pages_prepare(page, order, true, FPI_NONE);
1500 }
1501 
bulkfree_pcp_prepare(struct page * page)1502 static bool bulkfree_pcp_prepare(struct page *page)
1503 {
1504 	if (debug_pagealloc_enabled_static())
1505 		return check_free_page(page);
1506 	else
1507 		return false;
1508 }
1509 #else
1510 /*
1511  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1512  * moving from pcp lists to free list in order to reduce overhead. With
1513  * debug_pagealloc enabled, they are checked also immediately when being freed
1514  * to the pcp lists.
1515  */
free_pcp_prepare(struct page * page,unsigned int order)1516 static bool free_pcp_prepare(struct page *page, unsigned int order)
1517 {
1518 	if (debug_pagealloc_enabled_static())
1519 		return free_pages_prepare(page, order, true, FPI_NONE);
1520 	else
1521 		return free_pages_prepare(page, order, false, FPI_NONE);
1522 }
1523 
bulkfree_pcp_prepare(struct page * page)1524 static bool bulkfree_pcp_prepare(struct page *page)
1525 {
1526 	return check_free_page(page);
1527 }
1528 #endif /* CONFIG_DEBUG_VM */
1529 
prefetch_buddy(struct page * page)1530 static inline void prefetch_buddy(struct page *page)
1531 {
1532 	unsigned long pfn = page_to_pfn(page);
1533 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1534 	struct page *buddy = page + (buddy_pfn - pfn);
1535 
1536 	prefetch(buddy);
1537 }
1538 
1539 /*
1540  * Frees a number of pages from the PCP lists
1541  * Assumes all pages on list are in same zone, and of same order.
1542  * count is the number of pages to free.
1543  *
1544  * If the zone was previously in an "all pages pinned" state then look to
1545  * see if this freeing clears that state.
1546  *
1547  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1548  * pinned" detection logic.
1549  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1550 static void free_pcppages_bulk(struct zone *zone, int count,
1551 					struct per_cpu_pages *pcp)
1552 {
1553 	int pindex = 0;
1554 	int batch_free = 0;
1555 	int nr_freed = 0;
1556 	unsigned int order;
1557 	int prefetch_nr = READ_ONCE(pcp->batch);
1558 	bool isolated_pageblocks;
1559 	struct page *page, *tmp;
1560 	LIST_HEAD(head);
1561 
1562 	/*
1563 	 * Ensure proper count is passed which otherwise would stuck in the
1564 	 * below while (list_empty(list)) loop.
1565 	 */
1566 	count = min(pcp->count, count);
1567 	while (count > 0) {
1568 		struct list_head *list;
1569 
1570 		/*
1571 		 * Remove pages from lists in a round-robin fashion. A
1572 		 * batch_free count is maintained that is incremented when an
1573 		 * empty list is encountered.  This is so more pages are freed
1574 		 * off fuller lists instead of spinning excessively around empty
1575 		 * lists
1576 		 */
1577 		do {
1578 			batch_free++;
1579 			if (++pindex == NR_PCP_LISTS)
1580 				pindex = 0;
1581 			list = &pcp->lists[pindex];
1582 		} while (list_empty(list));
1583 
1584 		/* This is the only non-empty list. Free them all. */
1585 		if (batch_free == NR_PCP_LISTS)
1586 			batch_free = count;
1587 
1588 		order = pindex_to_order(pindex);
1589 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1590 		do {
1591 			page = list_last_entry(list, struct page, pcp_list);
1592 			/* must delete to avoid corrupting pcp list */
1593 			list_del(&page->pcp_list);
1594 			nr_freed += 1 << order;
1595 			count -= 1 << order;
1596 
1597 			if (bulkfree_pcp_prepare(page))
1598 				continue;
1599 
1600 			/* Encode order with the migratetype */
1601 			page->index <<= NR_PCP_ORDER_WIDTH;
1602 			page->index |= order;
1603 
1604 			list_add_tail(&page->lru, &head);
1605 
1606 			/*
1607 			 * We are going to put the page back to the global
1608 			 * pool, prefetch its buddy to speed up later access
1609 			 * under zone->lock. It is believed the overhead of
1610 			 * an additional test and calculating buddy_pfn here
1611 			 * can be offset by reduced memory latency later. To
1612 			 * avoid excessive prefetching due to large count, only
1613 			 * prefetch buddy for the first pcp->batch nr of pages.
1614 			 */
1615 			if (prefetch_nr) {
1616 				prefetch_buddy(page);
1617 				prefetch_nr--;
1618 			}
1619 		} while (count > 0 && --batch_free && !list_empty(list));
1620 	}
1621 	pcp->count -= nr_freed;
1622 
1623 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1624 	spin_lock(&zone->lock);
1625 	isolated_pageblocks = has_isolate_pageblock(zone);
1626 
1627 	/*
1628 	 * Use safe version since after __free_one_page(),
1629 	 * page->lru.next will not point to original list.
1630 	 */
1631 	list_for_each_entry_safe(page, tmp, &head, lru) {
1632 		int mt = get_pcppage_migratetype(page);
1633 
1634 		/* mt has been encoded with the order (see above) */
1635 		order = mt & NR_PCP_ORDER_MASK;
1636 		mt >>= NR_PCP_ORDER_WIDTH;
1637 
1638 		/* MIGRATE_ISOLATE page should not go to pcplists */
1639 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1640 		/* Pageblock could have been isolated meanwhile */
1641 		if (unlikely(isolated_pageblocks))
1642 			mt = get_pageblock_migratetype(page);
1643 
1644 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1645 		trace_mm_page_pcpu_drain(page, order, mt);
1646 	}
1647 	spin_unlock(&zone->lock);
1648 }
1649 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1650 static void free_one_page(struct zone *zone,
1651 				struct page *page, unsigned long pfn,
1652 				unsigned int order,
1653 				int migratetype, fpi_t fpi_flags)
1654 {
1655 	unsigned long flags;
1656 
1657 	spin_lock_irqsave(&zone->lock, flags);
1658 	if (unlikely(has_isolate_pageblock(zone) ||
1659 		is_migrate_isolate(migratetype))) {
1660 		migratetype = get_pfnblock_migratetype(page, pfn);
1661 	}
1662 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1663 	spin_unlock_irqrestore(&zone->lock, flags);
1664 }
1665 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1666 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1667 				unsigned long zone, int nid)
1668 {
1669 	mm_zero_struct_page(page);
1670 	set_page_links(page, zone, nid, pfn);
1671 	init_page_count(page);
1672 	page_mapcount_reset(page);
1673 	page_cpupid_reset_last(page);
1674 	page_kasan_tag_reset(page);
1675 
1676 	INIT_LIST_HEAD(&page->lru);
1677 #ifdef WANT_PAGE_VIRTUAL
1678 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1679 	if (!is_highmem_idx(zone))
1680 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1681 #endif
1682 }
1683 
1684 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1685 static void __meminit init_reserved_page(unsigned long pfn)
1686 {
1687 	pg_data_t *pgdat;
1688 	int nid, zid;
1689 
1690 	if (!early_page_uninitialised(pfn))
1691 		return;
1692 
1693 	nid = early_pfn_to_nid(pfn);
1694 	pgdat = NODE_DATA(nid);
1695 
1696 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1697 		struct zone *zone = &pgdat->node_zones[zid];
1698 
1699 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1700 			break;
1701 	}
1702 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1703 }
1704 #else
init_reserved_page(unsigned long pfn)1705 static inline void init_reserved_page(unsigned long pfn)
1706 {
1707 }
1708 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1709 
1710 /*
1711  * Initialised pages do not have PageReserved set. This function is
1712  * called for each range allocated by the bootmem allocator and
1713  * marks the pages PageReserved. The remaining valid pages are later
1714  * sent to the buddy page allocator.
1715  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1716 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1717 {
1718 	unsigned long start_pfn = PFN_DOWN(start);
1719 	unsigned long end_pfn = PFN_UP(end);
1720 
1721 	for (; start_pfn < end_pfn; start_pfn++) {
1722 		if (pfn_valid(start_pfn)) {
1723 			struct page *page = pfn_to_page(start_pfn);
1724 
1725 			init_reserved_page(start_pfn);
1726 
1727 			/* Avoid false-positive PageTail() */
1728 			INIT_LIST_HEAD(&page->lru);
1729 
1730 			/*
1731 			 * no need for atomic set_bit because the struct
1732 			 * page is not visible yet so nobody should
1733 			 * access it yet.
1734 			 */
1735 			__SetPageReserved(page);
1736 		}
1737 	}
1738 }
1739 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1740 static void __free_pages_ok(struct page *page, unsigned int order,
1741 			    fpi_t fpi_flags)
1742 {
1743 	unsigned long flags;
1744 	int migratetype;
1745 	unsigned long pfn = page_to_pfn(page);
1746 	struct zone *zone = page_zone(page);
1747 	bool skip_free_unref_page = false;
1748 
1749 	if (!free_pages_prepare(page, order, true, fpi_flags))
1750 		return;
1751 
1752 	migratetype = get_pfnblock_migratetype(page, pfn);
1753 	trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
1754 	if (skip_free_unref_page)
1755 		return;
1756 
1757 	spin_lock_irqsave(&zone->lock, flags);
1758 	if (unlikely(has_isolate_pageblock(zone) ||
1759 		is_migrate_isolate(migratetype))) {
1760 		migratetype = get_pfnblock_migratetype(page, pfn);
1761 	}
1762 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1763 	spin_unlock_irqrestore(&zone->lock, flags);
1764 
1765 	__count_vm_events(PGFREE, 1 << order);
1766 }
1767 
__free_pages_core(struct page * page,unsigned int order)1768 void __free_pages_core(struct page *page, unsigned int order)
1769 {
1770 	unsigned int nr_pages = 1 << order;
1771 	struct page *p = page;
1772 	unsigned int loop;
1773 
1774 	/*
1775 	 * When initializing the memmap, __init_single_page() sets the refcount
1776 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1777 	 * refcount of all involved pages to 0.
1778 	 */
1779 	prefetchw(p);
1780 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1781 		prefetchw(p + 1);
1782 		__ClearPageReserved(p);
1783 		set_page_count(p, 0);
1784 	}
1785 	__ClearPageReserved(p);
1786 	set_page_count(p, 0);
1787 
1788 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1789 
1790 	/*
1791 	 * Bypass PCP and place fresh pages right to the tail, primarily
1792 	 * relevant for memory onlining.
1793 	 */
1794 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1795 }
1796 
1797 #ifdef CONFIG_NUMA
1798 
1799 /*
1800  * During memory init memblocks map pfns to nids. The search is expensive and
1801  * this caches recent lookups. The implementation of __early_pfn_to_nid
1802  * treats start/end as pfns.
1803  */
1804 struct mminit_pfnnid_cache {
1805 	unsigned long last_start;
1806 	unsigned long last_end;
1807 	int last_nid;
1808 };
1809 
1810 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1811 
1812 /*
1813  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1814  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1815 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1816 					struct mminit_pfnnid_cache *state)
1817 {
1818 	unsigned long start_pfn, end_pfn;
1819 	int nid;
1820 
1821 	if (state->last_start <= pfn && pfn < state->last_end)
1822 		return state->last_nid;
1823 
1824 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1825 	if (nid != NUMA_NO_NODE) {
1826 		state->last_start = start_pfn;
1827 		state->last_end = end_pfn;
1828 		state->last_nid = nid;
1829 	}
1830 
1831 	return nid;
1832 }
1833 
early_pfn_to_nid(unsigned long pfn)1834 int __meminit early_pfn_to_nid(unsigned long pfn)
1835 {
1836 	static DEFINE_SPINLOCK(early_pfn_lock);
1837 	int nid;
1838 
1839 	spin_lock(&early_pfn_lock);
1840 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1841 	if (nid < 0)
1842 		nid = first_online_node;
1843 	spin_unlock(&early_pfn_lock);
1844 
1845 	return nid;
1846 }
1847 #endif /* CONFIG_NUMA */
1848 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1849 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1850 							unsigned int order)
1851 {
1852 	if (early_page_uninitialised(pfn))
1853 		return;
1854 	__free_pages_core(page, order);
1855 }
1856 
1857 /*
1858  * Check that the whole (or subset of) a pageblock given by the interval of
1859  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1860  * with the migration of free compaction scanner.
1861  *
1862  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1863  *
1864  * It's possible on some configurations to have a setup like node0 node1 node0
1865  * i.e. it's possible that all pages within a zones range of pages do not
1866  * belong to a single zone. We assume that a border between node0 and node1
1867  * can occur within a single pageblock, but not a node0 node1 node0
1868  * interleaving within a single pageblock. It is therefore sufficient to check
1869  * the first and last page of a pageblock and avoid checking each individual
1870  * page in a pageblock.
1871  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1872 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1873 				     unsigned long end_pfn, struct zone *zone)
1874 {
1875 	struct page *start_page;
1876 	struct page *end_page;
1877 
1878 	/* end_pfn is one past the range we are checking */
1879 	end_pfn--;
1880 
1881 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1882 		return NULL;
1883 
1884 	start_page = pfn_to_online_page(start_pfn);
1885 	if (!start_page)
1886 		return NULL;
1887 
1888 	if (page_zone(start_page) != zone)
1889 		return NULL;
1890 
1891 	end_page = pfn_to_page(end_pfn);
1892 
1893 	/* This gives a shorter code than deriving page_zone(end_page) */
1894 	if (page_zone_id(start_page) != page_zone_id(end_page))
1895 		return NULL;
1896 
1897 	return start_page;
1898 }
1899 
set_zone_contiguous(struct zone * zone)1900 void set_zone_contiguous(struct zone *zone)
1901 {
1902 	unsigned long block_start_pfn = zone->zone_start_pfn;
1903 	unsigned long block_end_pfn;
1904 
1905 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1906 	for (; block_start_pfn < zone_end_pfn(zone);
1907 			block_start_pfn = block_end_pfn,
1908 			 block_end_pfn += pageblock_nr_pages) {
1909 
1910 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1911 
1912 		if (!__pageblock_pfn_to_page(block_start_pfn,
1913 					     block_end_pfn, zone))
1914 			return;
1915 		cond_resched();
1916 	}
1917 
1918 	/* We confirm that there is no hole */
1919 	zone->contiguous = true;
1920 }
1921 
clear_zone_contiguous(struct zone * zone)1922 void clear_zone_contiguous(struct zone *zone)
1923 {
1924 	zone->contiguous = false;
1925 }
1926 
1927 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1928 static void __init deferred_free_range(unsigned long pfn,
1929 				       unsigned long nr_pages)
1930 {
1931 	struct page *page;
1932 	unsigned long i;
1933 
1934 	if (!nr_pages)
1935 		return;
1936 
1937 	page = pfn_to_page(pfn);
1938 
1939 	/* Free a large naturally-aligned chunk if possible */
1940 	if (nr_pages == pageblock_nr_pages &&
1941 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1942 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1943 		__free_pages_core(page, pageblock_order);
1944 		return;
1945 	}
1946 
1947 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1948 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1949 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1950 		__free_pages_core(page, 0);
1951 	}
1952 }
1953 
1954 /* Completion tracking for deferred_init_memmap() threads */
1955 static atomic_t pgdat_init_n_undone __initdata;
1956 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1957 
pgdat_init_report_one_done(void)1958 static inline void __init pgdat_init_report_one_done(void)
1959 {
1960 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1961 		complete(&pgdat_init_all_done_comp);
1962 }
1963 
1964 /*
1965  * Returns true if page needs to be initialized or freed to buddy allocator.
1966  *
1967  * First we check if pfn is valid on architectures where it is possible to have
1968  * holes within pageblock_nr_pages. On systems where it is not possible, this
1969  * function is optimized out.
1970  *
1971  * Then, we check if a current large page is valid by only checking the validity
1972  * of the head pfn.
1973  */
deferred_pfn_valid(unsigned long pfn)1974 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1975 {
1976 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1977 		return false;
1978 	return true;
1979 }
1980 
1981 /*
1982  * Free pages to buddy allocator. Try to free aligned pages in
1983  * pageblock_nr_pages sizes.
1984  */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1985 static void __init deferred_free_pages(unsigned long pfn,
1986 				       unsigned long end_pfn)
1987 {
1988 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1989 	unsigned long nr_free = 0;
1990 
1991 	for (; pfn < end_pfn; pfn++) {
1992 		if (!deferred_pfn_valid(pfn)) {
1993 			deferred_free_range(pfn - nr_free, nr_free);
1994 			nr_free = 0;
1995 		} else if (!(pfn & nr_pgmask)) {
1996 			deferred_free_range(pfn - nr_free, nr_free);
1997 			nr_free = 1;
1998 		} else {
1999 			nr_free++;
2000 		}
2001 	}
2002 	/* Free the last block of pages to allocator */
2003 	deferred_free_range(pfn - nr_free, nr_free);
2004 }
2005 
2006 /*
2007  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2008  * by performing it only once every pageblock_nr_pages.
2009  * Return number of pages initialized.
2010  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2011 static unsigned long  __init deferred_init_pages(struct zone *zone,
2012 						 unsigned long pfn,
2013 						 unsigned long end_pfn)
2014 {
2015 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
2016 	int nid = zone_to_nid(zone);
2017 	unsigned long nr_pages = 0;
2018 	int zid = zone_idx(zone);
2019 	struct page *page = NULL;
2020 
2021 	for (; pfn < end_pfn; pfn++) {
2022 		if (!deferred_pfn_valid(pfn)) {
2023 			page = NULL;
2024 			continue;
2025 		} else if (!page || !(pfn & nr_pgmask)) {
2026 			page = pfn_to_page(pfn);
2027 		} else {
2028 			page++;
2029 		}
2030 		__init_single_page(page, pfn, zid, nid);
2031 		nr_pages++;
2032 	}
2033 	return (nr_pages);
2034 }
2035 
2036 /*
2037  * This function is meant to pre-load the iterator for the zone init.
2038  * Specifically it walks through the ranges until we are caught up to the
2039  * first_init_pfn value and exits there. If we never encounter the value we
2040  * return false indicating there are no valid ranges left.
2041  */
2042 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2043 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2044 				    unsigned long *spfn, unsigned long *epfn,
2045 				    unsigned long first_init_pfn)
2046 {
2047 	u64 j;
2048 
2049 	/*
2050 	 * Start out by walking through the ranges in this zone that have
2051 	 * already been initialized. We don't need to do anything with them
2052 	 * so we just need to flush them out of the system.
2053 	 */
2054 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2055 		if (*epfn <= first_init_pfn)
2056 			continue;
2057 		if (*spfn < first_init_pfn)
2058 			*spfn = first_init_pfn;
2059 		*i = j;
2060 		return true;
2061 	}
2062 
2063 	return false;
2064 }
2065 
2066 /*
2067  * Initialize and free pages. We do it in two loops: first we initialize
2068  * struct page, then free to buddy allocator, because while we are
2069  * freeing pages we can access pages that are ahead (computing buddy
2070  * page in __free_one_page()).
2071  *
2072  * In order to try and keep some memory in the cache we have the loop
2073  * broken along max page order boundaries. This way we will not cause
2074  * any issues with the buddy page computation.
2075  */
2076 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2077 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2078 		       unsigned long *end_pfn)
2079 {
2080 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2081 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2082 	unsigned long nr_pages = 0;
2083 	u64 j = *i;
2084 
2085 	/* First we loop through and initialize the page values */
2086 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2087 		unsigned long t;
2088 
2089 		if (mo_pfn <= *start_pfn)
2090 			break;
2091 
2092 		t = min(mo_pfn, *end_pfn);
2093 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2094 
2095 		if (mo_pfn < *end_pfn) {
2096 			*start_pfn = mo_pfn;
2097 			break;
2098 		}
2099 	}
2100 
2101 	/* Reset values and now loop through freeing pages as needed */
2102 	swap(j, *i);
2103 
2104 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2105 		unsigned long t;
2106 
2107 		if (mo_pfn <= spfn)
2108 			break;
2109 
2110 		t = min(mo_pfn, epfn);
2111 		deferred_free_pages(spfn, t);
2112 
2113 		if (mo_pfn <= epfn)
2114 			break;
2115 	}
2116 
2117 	return nr_pages;
2118 }
2119 
2120 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2121 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2122 			   void *arg)
2123 {
2124 	unsigned long spfn, epfn;
2125 	struct zone *zone = arg;
2126 	u64 i;
2127 
2128 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2129 
2130 	/*
2131 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2132 	 * can avoid introducing any issues with the buddy allocator.
2133 	 */
2134 	while (spfn < end_pfn) {
2135 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2136 		cond_resched();
2137 	}
2138 }
2139 
2140 /* An arch may override for more concurrency. */
2141 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2142 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2143 {
2144 	return 1;
2145 }
2146 
2147 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2148 static int __init deferred_init_memmap(void *data)
2149 {
2150 	pg_data_t *pgdat = data;
2151 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2152 	unsigned long spfn = 0, epfn = 0;
2153 	unsigned long first_init_pfn, flags;
2154 	unsigned long start = jiffies;
2155 	struct zone *zone;
2156 	int zid, max_threads;
2157 	u64 i;
2158 
2159 	/* Bind memory initialisation thread to a local node if possible */
2160 	if (!cpumask_empty(cpumask))
2161 		set_cpus_allowed_ptr(current, cpumask);
2162 
2163 	pgdat_resize_lock(pgdat, &flags);
2164 	first_init_pfn = pgdat->first_deferred_pfn;
2165 	if (first_init_pfn == ULONG_MAX) {
2166 		pgdat_resize_unlock(pgdat, &flags);
2167 		pgdat_init_report_one_done();
2168 		return 0;
2169 	}
2170 
2171 	/* Sanity check boundaries */
2172 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2173 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2174 	pgdat->first_deferred_pfn = ULONG_MAX;
2175 
2176 	/*
2177 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2178 	 * interrupt thread must allocate this early in boot, zone must be
2179 	 * pre-grown prior to start of deferred page initialization.
2180 	 */
2181 	pgdat_resize_unlock(pgdat, &flags);
2182 
2183 	/* Only the highest zone is deferred so find it */
2184 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2185 		zone = pgdat->node_zones + zid;
2186 		if (first_init_pfn < zone_end_pfn(zone))
2187 			break;
2188 	}
2189 
2190 	/* If the zone is empty somebody else may have cleared out the zone */
2191 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2192 						 first_init_pfn))
2193 		goto zone_empty;
2194 
2195 	max_threads = deferred_page_init_max_threads(cpumask);
2196 
2197 	while (spfn < epfn) {
2198 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2199 		struct padata_mt_job job = {
2200 			.thread_fn   = deferred_init_memmap_chunk,
2201 			.fn_arg      = zone,
2202 			.start       = spfn,
2203 			.size        = epfn_align - spfn,
2204 			.align       = PAGES_PER_SECTION,
2205 			.min_chunk   = PAGES_PER_SECTION,
2206 			.max_threads = max_threads,
2207 		};
2208 
2209 		padata_do_multithreaded(&job);
2210 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2211 						    epfn_align);
2212 	}
2213 zone_empty:
2214 	/* Sanity check that the next zone really is unpopulated */
2215 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2216 
2217 	pr_info("node %d deferred pages initialised in %ums\n",
2218 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2219 
2220 	pgdat_init_report_one_done();
2221 	return 0;
2222 }
2223 
2224 /*
2225  * If this zone has deferred pages, try to grow it by initializing enough
2226  * deferred pages to satisfy the allocation specified by order, rounded up to
2227  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2228  * of SECTION_SIZE bytes by initializing struct pages in increments of
2229  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2230  *
2231  * Return true when zone was grown, otherwise return false. We return true even
2232  * when we grow less than requested, to let the caller decide if there are
2233  * enough pages to satisfy the allocation.
2234  *
2235  * Note: We use noinline because this function is needed only during boot, and
2236  * it is called from a __ref function _deferred_grow_zone. This way we are
2237  * making sure that it is not inlined into permanent text section.
2238  */
2239 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2240 deferred_grow_zone(struct zone *zone, unsigned int order)
2241 {
2242 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2243 	pg_data_t *pgdat = zone->zone_pgdat;
2244 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2245 	unsigned long spfn, epfn, flags;
2246 	unsigned long nr_pages = 0;
2247 	u64 i;
2248 
2249 	/* Only the last zone may have deferred pages */
2250 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2251 		return false;
2252 
2253 	pgdat_resize_lock(pgdat, &flags);
2254 
2255 	/*
2256 	 * If someone grew this zone while we were waiting for spinlock, return
2257 	 * true, as there might be enough pages already.
2258 	 */
2259 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2260 		pgdat_resize_unlock(pgdat, &flags);
2261 		return true;
2262 	}
2263 
2264 	/* If the zone is empty somebody else may have cleared out the zone */
2265 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2266 						 first_deferred_pfn)) {
2267 		pgdat->first_deferred_pfn = ULONG_MAX;
2268 		pgdat_resize_unlock(pgdat, &flags);
2269 		/* Retry only once. */
2270 		return first_deferred_pfn != ULONG_MAX;
2271 	}
2272 
2273 	/*
2274 	 * Initialize and free pages in MAX_ORDER sized increments so
2275 	 * that we can avoid introducing any issues with the buddy
2276 	 * allocator.
2277 	 */
2278 	while (spfn < epfn) {
2279 		/* update our first deferred PFN for this section */
2280 		first_deferred_pfn = spfn;
2281 
2282 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2283 		touch_nmi_watchdog();
2284 
2285 		/* We should only stop along section boundaries */
2286 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2287 			continue;
2288 
2289 		/* If our quota has been met we can stop here */
2290 		if (nr_pages >= nr_pages_needed)
2291 			break;
2292 	}
2293 
2294 	pgdat->first_deferred_pfn = spfn;
2295 	pgdat_resize_unlock(pgdat, &flags);
2296 
2297 	return nr_pages > 0;
2298 }
2299 
2300 /*
2301  * deferred_grow_zone() is __init, but it is called from
2302  * get_page_from_freelist() during early boot until deferred_pages permanently
2303  * disables this call. This is why we have refdata wrapper to avoid warning,
2304  * and to ensure that the function body gets unloaded.
2305  */
2306 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2307 _deferred_grow_zone(struct zone *zone, unsigned int order)
2308 {
2309 	return deferred_grow_zone(zone, order);
2310 }
2311 
2312 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2313 
page_alloc_init_late(void)2314 void __init page_alloc_init_late(void)
2315 {
2316 	struct zone *zone;
2317 	int nid;
2318 
2319 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2320 
2321 	/* There will be num_node_state(N_MEMORY) threads */
2322 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2323 	for_each_node_state(nid, N_MEMORY) {
2324 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2325 	}
2326 
2327 	/* Block until all are initialised */
2328 	wait_for_completion(&pgdat_init_all_done_comp);
2329 
2330 	/*
2331 	 * We initialized the rest of the deferred pages.  Permanently disable
2332 	 * on-demand struct page initialization.
2333 	 */
2334 	static_branch_disable(&deferred_pages);
2335 
2336 	/* Reinit limits that are based on free pages after the kernel is up */
2337 	files_maxfiles_init();
2338 #endif
2339 
2340 	buffer_init();
2341 
2342 	/* Discard memblock private memory */
2343 	memblock_discard();
2344 
2345 	for_each_node_state(nid, N_MEMORY)
2346 		shuffle_free_memory(NODE_DATA(nid));
2347 
2348 	for_each_populated_zone(zone)
2349 		set_zone_contiguous(zone);
2350 }
2351 
2352 #ifdef CONFIG_CMA
2353 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2354 void __init init_cma_reserved_pageblock(struct page *page)
2355 {
2356 	unsigned i = pageblock_nr_pages;
2357 	struct page *p = page;
2358 
2359 	do {
2360 		__ClearPageReserved(p);
2361 		set_page_count(p, 0);
2362 	} while (++p, --i);
2363 
2364 	set_pageblock_migratetype(page, MIGRATE_CMA);
2365 
2366 	if (pageblock_order >= MAX_ORDER) {
2367 		i = pageblock_nr_pages;
2368 		p = page;
2369 		do {
2370 			set_page_refcounted(p);
2371 			__free_pages(p, MAX_ORDER - 1);
2372 			p += MAX_ORDER_NR_PAGES;
2373 		} while (i -= MAX_ORDER_NR_PAGES);
2374 	} else {
2375 		set_page_refcounted(page);
2376 		__free_pages(page, pageblock_order);
2377 	}
2378 
2379 	adjust_managed_page_count(page, pageblock_nr_pages);
2380 	page_zone(page)->cma_pages += pageblock_nr_pages;
2381 }
2382 #endif
2383 
2384 /*
2385  * The order of subdivision here is critical for the IO subsystem.
2386  * Please do not alter this order without good reasons and regression
2387  * testing. Specifically, as large blocks of memory are subdivided,
2388  * the order in which smaller blocks are delivered depends on the order
2389  * they're subdivided in this function. This is the primary factor
2390  * influencing the order in which pages are delivered to the IO
2391  * subsystem according to empirical testing, and this is also justified
2392  * by considering the behavior of a buddy system containing a single
2393  * large block of memory acted on by a series of small allocations.
2394  * This behavior is a critical factor in sglist merging's success.
2395  *
2396  * -- nyc
2397  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2398 static inline void expand(struct zone *zone, struct page *page,
2399 	int low, int high, int migratetype)
2400 {
2401 	unsigned long size = 1 << high;
2402 
2403 	while (high > low) {
2404 		high--;
2405 		size >>= 1;
2406 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2407 
2408 		/*
2409 		 * Mark as guard pages (or page), that will allow to
2410 		 * merge back to allocator when buddy will be freed.
2411 		 * Corresponding page table entries will not be touched,
2412 		 * pages will stay not present in virtual address space
2413 		 */
2414 		if (set_page_guard(zone, &page[size], high, migratetype))
2415 			continue;
2416 
2417 		add_to_free_list(&page[size], zone, high, migratetype);
2418 		set_buddy_order(&page[size], high);
2419 	}
2420 }
2421 
check_new_page_bad(struct page * page)2422 static void check_new_page_bad(struct page *page)
2423 {
2424 	if (unlikely(page->flags & __PG_HWPOISON)) {
2425 		/* Don't complain about hwpoisoned pages */
2426 		page_mapcount_reset(page); /* remove PageBuddy */
2427 		return;
2428 	}
2429 
2430 	bad_page(page,
2431 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2432 }
2433 
2434 /*
2435  * This page is about to be returned from the page allocator
2436  */
check_new_page(struct page * page)2437 static inline int check_new_page(struct page *page)
2438 {
2439 	if (likely(page_expected_state(page,
2440 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2441 		return 0;
2442 
2443 	check_new_page_bad(page);
2444 	return 1;
2445 }
2446 
2447 #ifdef CONFIG_DEBUG_VM
2448 /*
2449  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2450  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2451  * also checked when pcp lists are refilled from the free lists.
2452  */
check_pcp_refill(struct page * page)2453 static inline bool check_pcp_refill(struct page *page)
2454 {
2455 	if (debug_pagealloc_enabled_static())
2456 		return check_new_page(page);
2457 	else
2458 		return false;
2459 }
2460 
check_new_pcp(struct page * page)2461 static inline bool check_new_pcp(struct page *page)
2462 {
2463 	return check_new_page(page);
2464 }
2465 #else
2466 /*
2467  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2468  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2469  * enabled, they are also checked when being allocated from the pcp lists.
2470  */
check_pcp_refill(struct page * page)2471 static inline bool check_pcp_refill(struct page *page)
2472 {
2473 	return check_new_page(page);
2474 }
check_new_pcp(struct page * page)2475 static inline bool check_new_pcp(struct page *page)
2476 {
2477 	if (debug_pagealloc_enabled_static())
2478 		return check_new_page(page);
2479 	else
2480 		return false;
2481 }
2482 #endif /* CONFIG_DEBUG_VM */
2483 
check_new_pages(struct page * page,unsigned int order)2484 static bool check_new_pages(struct page *page, unsigned int order)
2485 {
2486 	int i;
2487 	for (i = 0; i < (1 << order); i++) {
2488 		struct page *p = page + i;
2489 
2490 		if (unlikely(check_new_page(p)))
2491 			return true;
2492 	}
2493 
2494 	return false;
2495 }
2496 
should_skip_kasan_unpoison(gfp_t flags)2497 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2498 {
2499 	/* Don't skip if a software KASAN mode is enabled. */
2500 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2501 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2502 		return false;
2503 
2504 	/* Skip, if hardware tag-based KASAN is not enabled. */
2505 	if (!kasan_hw_tags_enabled())
2506 		return true;
2507 
2508 	/*
2509 	 * With hardware tag-based KASAN enabled, skip if this has been
2510 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2511 	 */
2512 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2513 }
2514 
should_skip_init(gfp_t flags)2515 static inline bool should_skip_init(gfp_t flags)
2516 {
2517 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2518 	if (!kasan_hw_tags_enabled())
2519 		return false;
2520 
2521 	/* For hardware tag-based KASAN, skip if requested. */
2522 	return (flags & __GFP_SKIP_ZERO);
2523 }
2524 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2525 inline void post_alloc_hook(struct page *page, unsigned int order,
2526 				gfp_t gfp_flags)
2527 {
2528 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2529 			!should_skip_init(gfp_flags);
2530 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2531 	bool reset_tags = true;
2532 	int i;
2533 
2534 	set_page_private(page, 0);
2535 	set_page_refcounted(page);
2536 
2537 	arch_alloc_page(page, order);
2538 	debug_pagealloc_map_pages(page, 1 << order);
2539 
2540 	/*
2541 	 * Page unpoisoning must happen before memory initialization.
2542 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2543 	 * allocations and the page unpoisoning code will complain.
2544 	 */
2545 	kernel_unpoison_pages(page, 1 << order);
2546 
2547 	/*
2548 	 * As memory initialization might be integrated into KASAN,
2549 	 * KASAN unpoisoning and memory initializion code must be
2550 	 * kept together to avoid discrepancies in behavior.
2551 	 */
2552 
2553 	/*
2554 	 * If memory tags should be zeroed
2555 	 * (which happens only when memory should be initialized as well).
2556 	 */
2557 	if (zero_tags) {
2558 		/* Initialize both memory and memory tags. */
2559 		for (i = 0; i != 1 << order; ++i)
2560 			tag_clear_highpage(page + i);
2561 
2562 		/* Take note that memory was initialized by the loop above. */
2563 		init = false;
2564 	}
2565 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2566 		/* Try unpoisoning (or setting tags) and initializing memory. */
2567 		if (kasan_unpoison_pages(page, order, init)) {
2568 			/* Take note that memory was initialized by KASAN. */
2569 			if (kasan_has_integrated_init())
2570 				init = false;
2571 			/* Take note that memory tags were set by KASAN. */
2572 			reset_tags = false;
2573 		} else {
2574 			/*
2575 			 * KASAN decided to exclude this allocation from being
2576 			 * (un)poisoned due to sampling. Make KASAN skip
2577 			 * poisoning when the allocation is freed.
2578 			 */
2579 			SetPageSkipKASanPoison(page);
2580 		}
2581 	}
2582 	/*
2583 	 * If memory tags have not been set by KASAN, reset the page tags to
2584 	 * ensure page_address() dereferencing does not fault.
2585 	 */
2586 	if (reset_tags) {
2587 		for (i = 0; i != 1 << order; ++i)
2588 			page_kasan_tag_reset(page + i);
2589 	}
2590 	/* If memory is still not initialized, initialize it now. */
2591 	if (init)
2592 		kernel_init_pages(page, 1 << order);
2593 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2594 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2595 		SetPageSkipKASanPoison(page);
2596 
2597 	set_page_owner(page, order, gfp_flags);
2598 }
2599 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2600 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2601 							unsigned int alloc_flags)
2602 {
2603 	post_alloc_hook(page, order, gfp_flags);
2604 
2605 	if (order && (gfp_flags & __GFP_COMP))
2606 		prep_compound_page(page, order);
2607 
2608 	/*
2609 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2610 	 * allocate the page. The expectation is that the caller is taking
2611 	 * steps that will free more memory. The caller should avoid the page
2612 	 * being used for !PFMEMALLOC purposes.
2613 	 */
2614 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2615 		set_page_pfmemalloc(page);
2616 	else
2617 		clear_page_pfmemalloc(page);
2618 }
2619 
2620 /*
2621  * Go through the free lists for the given migratetype and remove
2622  * the smallest available page from the freelists
2623  */
2624 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2625 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2626 						int migratetype)
2627 {
2628 	unsigned int current_order;
2629 	struct free_area *area;
2630 	struct page *page;
2631 
2632 	/* Find a page of the appropriate size in the preferred list */
2633 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2634 		area = &(zone->free_area[current_order]);
2635 		page = get_page_from_free_area(area, migratetype);
2636 		if (!page)
2637 			continue;
2638 		del_page_from_free_list(page, zone, current_order);
2639 		expand(zone, page, order, current_order, migratetype);
2640 		set_pcppage_migratetype(page, migratetype);
2641 		return page;
2642 	}
2643 
2644 	return NULL;
2645 }
2646 
2647 
2648 /*
2649  * This array describes the order lists are fallen back to when
2650  * the free lists for the desirable migrate type are depleted
2651  */
2652 static int fallbacks[MIGRATE_TYPES][3] = {
2653 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2654 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2655 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2656 #ifdef CONFIG_CMA
2657 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2658 #endif
2659 #ifdef CONFIG_MEMORY_ISOLATION
2660 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2661 #endif
2662 };
2663 
2664 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2665 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2666 					unsigned int order)
2667 {
2668 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2669 }
2670 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2671 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2672 					unsigned int order) { return NULL; }
2673 #endif
2674 
2675 /*
2676  * Move the free pages in a range to the freelist tail of the requested type.
2677  * Note that start_page and end_pages are not aligned on a pageblock
2678  * boundary. If alignment is required, use move_freepages_block()
2679  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2680 static int move_freepages(struct zone *zone,
2681 			  unsigned long start_pfn, unsigned long end_pfn,
2682 			  int migratetype, int *num_movable)
2683 {
2684 	struct page *page;
2685 	unsigned long pfn;
2686 	unsigned int order;
2687 	int pages_moved = 0;
2688 
2689 	for (pfn = start_pfn; pfn <= end_pfn;) {
2690 		page = pfn_to_page(pfn);
2691 		if (!PageBuddy(page)) {
2692 			/*
2693 			 * We assume that pages that could be isolated for
2694 			 * migration are movable. But we don't actually try
2695 			 * isolating, as that would be expensive.
2696 			 */
2697 			if (num_movable &&
2698 					(PageLRU(page) || __PageMovable(page)))
2699 				(*num_movable)++;
2700 			pfn++;
2701 			continue;
2702 		}
2703 
2704 		/* Make sure we are not inadvertently changing nodes */
2705 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2706 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2707 
2708 		order = buddy_order(page);
2709 		move_to_free_list(page, zone, order, migratetype);
2710 		pfn += 1 << order;
2711 		pages_moved += 1 << order;
2712 	}
2713 
2714 	return pages_moved;
2715 }
2716 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2717 int move_freepages_block(struct zone *zone, struct page *page,
2718 				int migratetype, int *num_movable)
2719 {
2720 	unsigned long start_pfn, end_pfn, pfn;
2721 
2722 	if (num_movable)
2723 		*num_movable = 0;
2724 
2725 	pfn = page_to_pfn(page);
2726 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2727 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2728 
2729 	/* Do not cross zone boundaries */
2730 	if (!zone_spans_pfn(zone, start_pfn))
2731 		start_pfn = pfn;
2732 	if (!zone_spans_pfn(zone, end_pfn))
2733 		return 0;
2734 
2735 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2736 								num_movable);
2737 }
2738 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2739 static void change_pageblock_range(struct page *pageblock_page,
2740 					int start_order, int migratetype)
2741 {
2742 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2743 
2744 	while (nr_pageblocks--) {
2745 		set_pageblock_migratetype(pageblock_page, migratetype);
2746 		pageblock_page += pageblock_nr_pages;
2747 	}
2748 }
2749 
2750 /*
2751  * When we are falling back to another migratetype during allocation, try to
2752  * steal extra free pages from the same pageblocks to satisfy further
2753  * allocations, instead of polluting multiple pageblocks.
2754  *
2755  * If we are stealing a relatively large buddy page, it is likely there will
2756  * be more free pages in the pageblock, so try to steal them all. For
2757  * reclaimable and unmovable allocations, we steal regardless of page size,
2758  * as fragmentation caused by those allocations polluting movable pageblocks
2759  * is worse than movable allocations stealing from unmovable and reclaimable
2760  * pageblocks.
2761  */
can_steal_fallback(unsigned int order,int start_mt)2762 static bool can_steal_fallback(unsigned int order, int start_mt)
2763 {
2764 	/*
2765 	 * Leaving this order check is intended, although there is
2766 	 * relaxed order check in next check. The reason is that
2767 	 * we can actually steal whole pageblock if this condition met,
2768 	 * but, below check doesn't guarantee it and that is just heuristic
2769 	 * so could be changed anytime.
2770 	 */
2771 	if (order >= pageblock_order)
2772 		return true;
2773 
2774 	if (order >= pageblock_order / 2 ||
2775 		start_mt == MIGRATE_RECLAIMABLE ||
2776 		start_mt == MIGRATE_UNMOVABLE ||
2777 		page_group_by_mobility_disabled)
2778 		return true;
2779 
2780 	return false;
2781 }
2782 
boost_watermark(struct zone * zone)2783 static inline bool boost_watermark(struct zone *zone)
2784 {
2785 	unsigned long max_boost;
2786 
2787 	if (!watermark_boost_factor)
2788 		return false;
2789 	/*
2790 	 * Don't bother in zones that are unlikely to produce results.
2791 	 * On small machines, including kdump capture kernels running
2792 	 * in a small area, boosting the watermark can cause an out of
2793 	 * memory situation immediately.
2794 	 */
2795 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2796 		return false;
2797 
2798 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2799 			watermark_boost_factor, 10000);
2800 
2801 	/*
2802 	 * high watermark may be uninitialised if fragmentation occurs
2803 	 * very early in boot so do not boost. We do not fall
2804 	 * through and boost by pageblock_nr_pages as failing
2805 	 * allocations that early means that reclaim is not going
2806 	 * to help and it may even be impossible to reclaim the
2807 	 * boosted watermark resulting in a hang.
2808 	 */
2809 	if (!max_boost)
2810 		return false;
2811 
2812 	max_boost = max(pageblock_nr_pages, max_boost);
2813 
2814 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2815 		max_boost);
2816 
2817 	return true;
2818 }
2819 
2820 /*
2821  * This function implements actual steal behaviour. If order is large enough,
2822  * we can steal whole pageblock. If not, we first move freepages in this
2823  * pageblock to our migratetype and determine how many already-allocated pages
2824  * are there in the pageblock with a compatible migratetype. If at least half
2825  * of pages are free or compatible, we can change migratetype of the pageblock
2826  * itself, so pages freed in the future will be put on the correct free list.
2827  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2828 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2829 		unsigned int alloc_flags, int start_type, bool whole_block)
2830 {
2831 	unsigned int current_order = buddy_order(page);
2832 	int free_pages, movable_pages, alike_pages;
2833 	int old_block_type;
2834 
2835 	old_block_type = get_pageblock_migratetype(page);
2836 
2837 	/*
2838 	 * This can happen due to races and we want to prevent broken
2839 	 * highatomic accounting.
2840 	 */
2841 	if (is_migrate_highatomic(old_block_type))
2842 		goto single_page;
2843 
2844 	/* Take ownership for orders >= pageblock_order */
2845 	if (current_order >= pageblock_order) {
2846 		change_pageblock_range(page, current_order, start_type);
2847 		goto single_page;
2848 	}
2849 
2850 	/*
2851 	 * Boost watermarks to increase reclaim pressure to reduce the
2852 	 * likelihood of future fallbacks. Wake kswapd now as the node
2853 	 * may be balanced overall and kswapd will not wake naturally.
2854 	 */
2855 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2856 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2857 
2858 	/* We are not allowed to try stealing from the whole block */
2859 	if (!whole_block)
2860 		goto single_page;
2861 
2862 	free_pages = move_freepages_block(zone, page, start_type,
2863 						&movable_pages);
2864 	/*
2865 	 * Determine how many pages are compatible with our allocation.
2866 	 * For movable allocation, it's the number of movable pages which
2867 	 * we just obtained. For other types it's a bit more tricky.
2868 	 */
2869 	if (start_type == MIGRATE_MOVABLE) {
2870 		alike_pages = movable_pages;
2871 	} else {
2872 		/*
2873 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2874 		 * to MOVABLE pageblock, consider all non-movable pages as
2875 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2876 		 * vice versa, be conservative since we can't distinguish the
2877 		 * exact migratetype of non-movable pages.
2878 		 */
2879 		if (old_block_type == MIGRATE_MOVABLE)
2880 			alike_pages = pageblock_nr_pages
2881 						- (free_pages + movable_pages);
2882 		else
2883 			alike_pages = 0;
2884 	}
2885 
2886 	/* moving whole block can fail due to zone boundary conditions */
2887 	if (!free_pages)
2888 		goto single_page;
2889 
2890 	/*
2891 	 * If a sufficient number of pages in the block are either free or of
2892 	 * comparable migratability as our allocation, claim the whole block.
2893 	 */
2894 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2895 			page_group_by_mobility_disabled)
2896 		set_pageblock_migratetype(page, start_type);
2897 
2898 	return;
2899 
2900 single_page:
2901 	move_to_free_list(page, zone, current_order, start_type);
2902 }
2903 
2904 /*
2905  * Check whether there is a suitable fallback freepage with requested order.
2906  * If only_stealable is true, this function returns fallback_mt only if
2907  * we can steal other freepages all together. This would help to reduce
2908  * fragmentation due to mixed migratetype pages in one pageblock.
2909  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2910 int find_suitable_fallback(struct free_area *area, unsigned int order,
2911 			int migratetype, bool only_stealable, bool *can_steal)
2912 {
2913 	int i;
2914 	int fallback_mt;
2915 
2916 	if (area->nr_free == 0)
2917 		return -1;
2918 
2919 	*can_steal = false;
2920 	for (i = 0;; i++) {
2921 		fallback_mt = fallbacks[migratetype][i];
2922 		if (fallback_mt == MIGRATE_TYPES)
2923 			break;
2924 
2925 		if (free_area_empty(area, fallback_mt))
2926 			continue;
2927 
2928 		if (can_steal_fallback(order, migratetype))
2929 			*can_steal = true;
2930 
2931 		if (!only_stealable)
2932 			return fallback_mt;
2933 
2934 		if (*can_steal)
2935 			return fallback_mt;
2936 	}
2937 
2938 	return -1;
2939 }
2940 
2941 /*
2942  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2943  * there are no empty page blocks that contain a page with a suitable order
2944  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2945 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2946 				unsigned int alloc_order)
2947 {
2948 	int mt;
2949 	unsigned long max_managed, flags;
2950 
2951 	/*
2952 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2953 	 * Check is race-prone but harmless.
2954 	 */
2955 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2956 	if (zone->nr_reserved_highatomic >= max_managed)
2957 		return;
2958 
2959 	spin_lock_irqsave(&zone->lock, flags);
2960 
2961 	/* Recheck the nr_reserved_highatomic limit under the lock */
2962 	if (zone->nr_reserved_highatomic >= max_managed)
2963 		goto out_unlock;
2964 
2965 	/* Yoink! */
2966 	mt = get_pageblock_migratetype(page);
2967 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2968 	    && !is_migrate_cma(mt)) {
2969 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2970 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2971 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2972 	}
2973 
2974 out_unlock:
2975 	spin_unlock_irqrestore(&zone->lock, flags);
2976 }
2977 
2978 /*
2979  * Used when an allocation is about to fail under memory pressure. This
2980  * potentially hurts the reliability of high-order allocations when under
2981  * intense memory pressure but failed atomic allocations should be easier
2982  * to recover from than an OOM.
2983  *
2984  * If @force is true, try to unreserve a pageblock even though highatomic
2985  * pageblock is exhausted.
2986  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2987 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2988 						bool force)
2989 {
2990 	struct zonelist *zonelist = ac->zonelist;
2991 	unsigned long flags;
2992 	struct zoneref *z;
2993 	struct zone *zone;
2994 	struct page *page;
2995 	int order;
2996 	bool ret;
2997 	bool skip_unreserve_highatomic = false;
2998 
2999 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3000 								ac->nodemask) {
3001 		/*
3002 		 * Preserve at least one pageblock unless memory pressure
3003 		 * is really high.
3004 		 */
3005 		if (!force && zone->nr_reserved_highatomic <=
3006 					pageblock_nr_pages)
3007 			continue;
3008 
3009 		trace_android_vh_unreserve_highatomic_bypass(force, zone,
3010 				&skip_unreserve_highatomic);
3011 		if (skip_unreserve_highatomic)
3012 			continue;
3013 
3014 		spin_lock_irqsave(&zone->lock, flags);
3015 		for (order = 0; order < MAX_ORDER; order++) {
3016 			struct free_area *area = &(zone->free_area[order]);
3017 
3018 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3019 			if (!page)
3020 				continue;
3021 
3022 			/*
3023 			 * In page freeing path, migratetype change is racy so
3024 			 * we can counter several free pages in a pageblock
3025 			 * in this loop although we changed the pageblock type
3026 			 * from highatomic to ac->migratetype. So we should
3027 			 * adjust the count once.
3028 			 */
3029 			if (is_migrate_highatomic_page(page)) {
3030 				/*
3031 				 * It should never happen but changes to
3032 				 * locking could inadvertently allow a per-cpu
3033 				 * drain to add pages to MIGRATE_HIGHATOMIC
3034 				 * while unreserving so be safe and watch for
3035 				 * underflows.
3036 				 */
3037 				zone->nr_reserved_highatomic -= min(
3038 						pageblock_nr_pages,
3039 						zone->nr_reserved_highatomic);
3040 			}
3041 
3042 			/*
3043 			 * Convert to ac->migratetype and avoid the normal
3044 			 * pageblock stealing heuristics. Minimally, the caller
3045 			 * is doing the work and needs the pages. More
3046 			 * importantly, if the block was always converted to
3047 			 * MIGRATE_UNMOVABLE or another type then the number
3048 			 * of pageblocks that cannot be completely freed
3049 			 * may increase.
3050 			 */
3051 			set_pageblock_migratetype(page, ac->migratetype);
3052 			ret = move_freepages_block(zone, page, ac->migratetype,
3053 									NULL);
3054 			if (ret) {
3055 				spin_unlock_irqrestore(&zone->lock, flags);
3056 				return ret;
3057 			}
3058 		}
3059 		spin_unlock_irqrestore(&zone->lock, flags);
3060 	}
3061 
3062 	return false;
3063 }
3064 
3065 /*
3066  * Try finding a free buddy page on the fallback list and put it on the free
3067  * list of requested migratetype, possibly along with other pages from the same
3068  * block, depending on fragmentation avoidance heuristics. Returns true if
3069  * fallback was found so that __rmqueue_smallest() can grab it.
3070  *
3071  * The use of signed ints for order and current_order is a deliberate
3072  * deviation from the rest of this file, to make the for loop
3073  * condition simpler.
3074  */
3075 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)3076 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3077 						unsigned int alloc_flags)
3078 {
3079 	struct free_area *area;
3080 	int current_order;
3081 	int min_order = order;
3082 	struct page *page;
3083 	int fallback_mt;
3084 	bool can_steal;
3085 
3086 	/*
3087 	 * Do not steal pages from freelists belonging to other pageblocks
3088 	 * i.e. orders < pageblock_order. If there are no local zones free,
3089 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3090 	 */
3091 	if (alloc_flags & ALLOC_NOFRAGMENT)
3092 		min_order = pageblock_order;
3093 
3094 	/*
3095 	 * Find the largest available free page in the other list. This roughly
3096 	 * approximates finding the pageblock with the most free pages, which
3097 	 * would be too costly to do exactly.
3098 	 */
3099 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3100 				--current_order) {
3101 		area = &(zone->free_area[current_order]);
3102 		fallback_mt = find_suitable_fallback(area, current_order,
3103 				start_migratetype, false, &can_steal);
3104 		if (fallback_mt == -1)
3105 			continue;
3106 
3107 		/*
3108 		 * We cannot steal all free pages from the pageblock and the
3109 		 * requested migratetype is movable. In that case it's better to
3110 		 * steal and split the smallest available page instead of the
3111 		 * largest available page, because even if the next movable
3112 		 * allocation falls back into a different pageblock than this
3113 		 * one, it won't cause permanent fragmentation.
3114 		 */
3115 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3116 					&& current_order > order)
3117 			goto find_smallest;
3118 
3119 		goto do_steal;
3120 	}
3121 
3122 	return false;
3123 
3124 find_smallest:
3125 	for (current_order = order; current_order < MAX_ORDER;
3126 							current_order++) {
3127 		area = &(zone->free_area[current_order]);
3128 		fallback_mt = find_suitable_fallback(area, current_order,
3129 				start_migratetype, false, &can_steal);
3130 		if (fallback_mt != -1)
3131 			break;
3132 	}
3133 
3134 	/*
3135 	 * This should not happen - we already found a suitable fallback
3136 	 * when looking for the largest page.
3137 	 */
3138 	VM_BUG_ON(current_order == MAX_ORDER);
3139 
3140 do_steal:
3141 	page = get_page_from_free_area(area, fallback_mt);
3142 
3143 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3144 								can_steal);
3145 
3146 	trace_mm_page_alloc_extfrag(page, order, current_order,
3147 		start_migratetype, fallback_mt);
3148 
3149 	return true;
3150 
3151 }
3152 
3153 /*
3154  * Do the hard work of removing an element from the buddy allocator.
3155  * Call me with the zone->lock already held.
3156  */
3157 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3158 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3159 						unsigned int alloc_flags)
3160 {
3161 	struct page *page;
3162 
3163 retry:
3164 	page = __rmqueue_smallest(zone, order, migratetype);
3165 
3166 	if (unlikely(!page) && __rmqueue_fallback(zone, order, migratetype,
3167 						  alloc_flags))
3168 		goto retry;
3169 
3170 	if (page)
3171 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3172 	return page;
3173 }
3174 
3175 #ifdef CONFIG_CMA
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3176 static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
3177 				  int migratetype,
3178 				  unsigned int alloc_flags)
3179 {
3180 	struct page *page = __rmqueue_cma_fallback(zone, order);
3181 
3182 	if (page)
3183 		trace_mm_page_alloc_zone_locked(page, order, MIGRATE_CMA);
3184 	return page;
3185 }
3186 #else
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3187 static inline struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
3188 					 int migratetype,
3189 					 unsigned int alloc_flags)
3190 {
3191 	return NULL;
3192 }
3193 #endif
3194 
3195 /*
3196  * Obtain a specified number of elements from the buddy allocator, all under
3197  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3198  * Returns the number of new pages which were placed at *list.
3199  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)3200 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3201 			unsigned long count, struct list_head *list,
3202 			int migratetype, unsigned int alloc_flags)
3203 {
3204 	int i, allocated = 0;
3205 
3206 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3207 	spin_lock(&zone->lock);
3208 	for (i = 0; i < count; ++i) {
3209 		struct page *page = NULL;
3210 
3211 		if (is_migrate_cma(migratetype)) {
3212 			bool is_cma_alloc = true;
3213 
3214 			trace_android_vh_cma_alloc_adjust(zone, &is_cma_alloc);
3215 			if (is_cma_alloc)
3216 				page = __rmqueue_cma(zone, order, migratetype,
3217 					     alloc_flags);
3218 		} else
3219 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3220 
3221 		if (unlikely(page == NULL))
3222 			break;
3223 
3224 		if (unlikely(check_pcp_refill(page)))
3225 			continue;
3226 
3227 		/*
3228 		 * Split buddy pages returned by expand() are received here in
3229 		 * physical page order. The page is added to the tail of
3230 		 * caller's list. From the callers perspective, the linked list
3231 		 * is ordered by page number under some conditions. This is
3232 		 * useful for IO devices that can forward direction from the
3233 		 * head, thus also in the physical page order. This is useful
3234 		 * for IO devices that can merge IO requests if the physical
3235 		 * pages are ordered properly.
3236 		 */
3237 		list_add_tail(&page->pcp_list, list);
3238 		allocated++;
3239 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3240 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3241 					      -(1 << order));
3242 	}
3243 
3244 	/*
3245 	 * i pages were removed from the buddy list even if some leak due
3246 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3247 	 * on i. Do not confuse with 'allocated' which is the number of
3248 	 * pages added to the pcp list.
3249 	 */
3250 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3251 	spin_unlock(&zone->lock);
3252 	return allocated;
3253 }
3254 
3255 /*
3256  * Return the pcp list that corresponds to the migrate type if that list isn't
3257  * empty.
3258  * If the list is empty return NULL.
3259  */
get_populated_pcp_list(struct zone * zone,unsigned int order,struct per_cpu_pages * pcp,int migratetype,unsigned int alloc_flags)3260 static struct list_head *get_populated_pcp_list(struct zone *zone,
3261 			unsigned int order, struct per_cpu_pages *pcp,
3262 			int migratetype, unsigned int alloc_flags)
3263 {
3264 	struct list_head *list = &pcp->lists[order_to_pindex(migratetype, order)];
3265 
3266 	if (list_empty(list)) {
3267 		int batch = READ_ONCE(pcp->batch);
3268 		int alloced;
3269 
3270 		trace_android_vh_rmqueue_bulk_bypass(order, pcp, migratetype, list);
3271 		if (!list_empty(list))
3272 			return list;
3273 
3274 		/*
3275 		 * Scale batch relative to order if batch implies
3276 		 * free pages can be stored on the PCP. Batch can
3277 		 * be 1 for small zones or for boot pagesets which
3278 		 * should never store free pages as the pages may
3279 		 * belong to arbitrary zones.
3280 		 */
3281 		if (batch > 1)
3282 			batch = max(batch >> order, 2);
3283 		alloced = rmqueue_bulk(zone, order, batch, list, migratetype, alloc_flags);
3284 
3285 		pcp->count += alloced << order;
3286 		if (list_empty(list))
3287 			list = NULL;
3288 	}
3289 	return list;
3290 }
3291 
3292 #ifdef CONFIG_NUMA
3293 /*
3294  * Called from the vmstat counter updater to drain pagesets of this
3295  * currently executing processor on remote nodes after they have
3296  * expired.
3297  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)3298 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3299 {
3300 	int to_drain, batch;
3301 
3302 	batch = READ_ONCE(pcp->batch);
3303 	to_drain = min(pcp->count, batch);
3304 	if (to_drain > 0) {
3305 		unsigned long flags;
3306 
3307 		/*
3308 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3309 		 * so even though pcp->lock is not intended to be IRQ-safe,
3310 		 * it's needed in this context.
3311 		 */
3312 		spin_lock_irqsave(&pcp->lock, flags);
3313 		free_pcppages_bulk(zone, to_drain, pcp);
3314 		spin_unlock_irqrestore(&pcp->lock, flags);
3315 	}
3316 }
3317 #endif
3318 
3319 /*
3320  * Drain pcplists of the indicated processor and zone.
3321  */
drain_pages_zone(unsigned int cpu,struct zone * zone)3322 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3323 {
3324 	struct per_cpu_pages *pcp;
3325 
3326 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3327 	if (pcp->count) {
3328 		unsigned long flags;
3329 
3330 		/* See drain_zone_pages on why this is disabling IRQs */
3331 		spin_lock_irqsave(&pcp->lock, flags);
3332 		free_pcppages_bulk(zone, pcp->count, pcp);
3333 		spin_unlock_irqrestore(&pcp->lock, flags);
3334 	}
3335 }
3336 
3337 /*
3338  * Drain pcplists of all zones on the indicated processor.
3339  */
drain_pages(unsigned int cpu)3340 static void drain_pages(unsigned int cpu)
3341 {
3342 	struct zone *zone;
3343 
3344 	for_each_populated_zone(zone) {
3345 		drain_pages_zone(cpu, zone);
3346 	}
3347 }
3348 
3349 /*
3350  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3351  */
drain_local_pages(struct zone * zone)3352 void drain_local_pages(struct zone *zone)
3353 {
3354 	int cpu = smp_processor_id();
3355 
3356 	if (zone)
3357 		drain_pages_zone(cpu, zone);
3358 	else
3359 		drain_pages(cpu);
3360 }
3361 
3362 /*
3363  * The implementation of drain_all_pages(), exposing an extra parameter to
3364  * drain on all cpus.
3365  *
3366  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3367  * not empty. The check for non-emptiness can however race with a free to
3368  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3369  * that need the guarantee that every CPU has drained can disable the
3370  * optimizing racy check.
3371  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)3372 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3373 {
3374 	int cpu;
3375 
3376 	/*
3377 	 * Allocate in the BSS so we won't require allocation in
3378 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3379 	 */
3380 	static cpumask_t cpus_with_pcps;
3381 
3382 	/*
3383 	 * Do not drain if one is already in progress unless it's specific to
3384 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3385 	 * the drain to be complete when the call returns.
3386 	 */
3387 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3388 		if (!zone)
3389 			return;
3390 		mutex_lock(&pcpu_drain_mutex);
3391 	}
3392 
3393 	/*
3394 	 * We don't care about racing with CPU hotplug event
3395 	 * as offline notification will cause the notified
3396 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3397 	 * disables preemption as part of its processing
3398 	 */
3399 	for_each_online_cpu(cpu) {
3400 		struct per_cpu_pages *pcp;
3401 		struct zone *z;
3402 		bool has_pcps = false;
3403 
3404 		if (force_all_cpus) {
3405 			/*
3406 			 * The pcp.count check is racy, some callers need a
3407 			 * guarantee that no cpu is missed.
3408 			 */
3409 			has_pcps = true;
3410 		} else if (zone) {
3411 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3412 			if (pcp->count)
3413 				has_pcps = true;
3414 		} else {
3415 			for_each_populated_zone(z) {
3416 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3417 				if (pcp->count) {
3418 					has_pcps = true;
3419 					break;
3420 				}
3421 			}
3422 		}
3423 
3424 		if (has_pcps)
3425 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3426 		else
3427 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3428 	}
3429 
3430 	for_each_cpu(cpu, &cpus_with_pcps) {
3431 		if (zone)
3432 			drain_pages_zone(cpu, zone);
3433 		else
3434 			drain_pages(cpu);
3435 	}
3436 
3437 	mutex_unlock(&pcpu_drain_mutex);
3438 }
3439 
3440 /*
3441  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3442  *
3443  * When zone parameter is non-NULL, spill just the single zone's pages.
3444  */
drain_all_pages(struct zone * zone)3445 void drain_all_pages(struct zone *zone)
3446 {
3447 	__drain_all_pages(zone, false);
3448 }
3449 
3450 #ifdef CONFIG_HIBERNATION
3451 
3452 /*
3453  * Touch the watchdog for every WD_PAGE_COUNT pages.
3454  */
3455 #define WD_PAGE_COUNT	(128*1024)
3456 
mark_free_pages(struct zone * zone)3457 void mark_free_pages(struct zone *zone)
3458 {
3459 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3460 	unsigned long flags;
3461 	unsigned int order, t;
3462 	struct page *page;
3463 
3464 	if (zone_is_empty(zone))
3465 		return;
3466 
3467 	spin_lock_irqsave(&zone->lock, flags);
3468 
3469 	max_zone_pfn = zone_end_pfn(zone);
3470 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3471 		if (pfn_valid(pfn)) {
3472 			page = pfn_to_page(pfn);
3473 
3474 			if (!--page_count) {
3475 				touch_nmi_watchdog();
3476 				page_count = WD_PAGE_COUNT;
3477 			}
3478 
3479 			if (page_zone(page) != zone)
3480 				continue;
3481 
3482 			if (!swsusp_page_is_forbidden(page))
3483 				swsusp_unset_page_free(page);
3484 		}
3485 
3486 	for_each_migratetype_order(order, t) {
3487 		list_for_each_entry(page,
3488 				&zone->free_area[order].free_list[t], buddy_list) {
3489 			unsigned long i;
3490 
3491 			pfn = page_to_pfn(page);
3492 			for (i = 0; i < (1UL << order); i++) {
3493 				if (!--page_count) {
3494 					touch_nmi_watchdog();
3495 					page_count = WD_PAGE_COUNT;
3496 				}
3497 				swsusp_set_page_free(pfn_to_page(pfn + i));
3498 			}
3499 		}
3500 	}
3501 	spin_unlock_irqrestore(&zone->lock, flags);
3502 }
3503 #endif /* CONFIG_PM */
3504 
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)3505 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3506 							unsigned int order)
3507 {
3508 	int migratetype;
3509 
3510 	if (!free_pcp_prepare(page, order))
3511 		return false;
3512 
3513 	migratetype = get_pfnblock_migratetype(page, pfn);
3514 	set_pcppage_migratetype(page, migratetype);
3515 	return true;
3516 }
3517 
nr_pcp_free(struct per_cpu_pages * pcp,int high,int batch)3518 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3519 {
3520 	int min_nr_free, max_nr_free;
3521 
3522 	/* Check for PCP disabled or boot pageset */
3523 	if (unlikely(high < batch))
3524 		return 1;
3525 
3526 	/* Leave at least pcp->batch pages on the list */
3527 	min_nr_free = batch;
3528 	max_nr_free = high - batch;
3529 
3530 	/*
3531 	 * Double the number of pages freed each time there is subsequent
3532 	 * freeing of pages without any allocation.
3533 	 */
3534 	batch <<= pcp->free_factor;
3535 	if (batch < max_nr_free)
3536 		pcp->free_factor++;
3537 	batch = clamp(batch, min_nr_free, max_nr_free);
3538 
3539 	return batch;
3540 }
3541 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone)3542 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3543 {
3544 	int high = READ_ONCE(pcp->high);
3545 
3546 	if (unlikely(!high))
3547 		return 0;
3548 
3549 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3550 		return high;
3551 
3552 	/*
3553 	 * If reclaim is active, limit the number of pages that can be
3554 	 * stored on pcp lists
3555 	 */
3556 	return min(READ_ONCE(pcp->batch) << 2, high);
3557 }
3558 
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,unsigned long pfn,int migratetype,unsigned int order)3559 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3560 				   struct page *page, unsigned long pfn,
3561 				   int migratetype, unsigned int order)
3562 {
3563 	int high;
3564 	int pindex;
3565 
3566 	__count_vm_event(PGFREE);
3567 	pindex = order_to_pindex(migratetype, order);
3568 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3569 	pcp->count += 1 << order;
3570 	high = nr_pcp_high(pcp, zone);
3571 	if (pcp->count >= high) {
3572 		int batch = READ_ONCE(pcp->batch);
3573 
3574 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3575 	}
3576 }
3577 
3578 /*
3579  * Free a pcp page
3580  */
free_unref_page(struct page * page,unsigned int order)3581 void free_unref_page(struct page *page, unsigned int order)
3582 {
3583 	unsigned long flags;
3584 	unsigned long __maybe_unused UP_flags;
3585 	struct per_cpu_pages *pcp;
3586 	struct zone *zone;
3587 	unsigned long pfn = page_to_pfn(page);
3588 	int migratetype, pcpmigratetype;
3589 	bool pcp_skip_cma_pages = false;
3590 	bool skip_free_unref_page = false;
3591 
3592 	if (!free_unref_page_prepare(page, pfn, order))
3593 		return;
3594 
3595 	migratetype = get_pcppage_migratetype(page);
3596 	trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
3597 	if (skip_free_unref_page)
3598 		return;
3599 
3600 	/*
3601 	 * We only track unmovable, reclaimable movable, and CMA on pcp lists.
3602 	 * Place ISOLATE pages on the isolated list because they are being
3603 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
3604 	 * get those areas back if necessary. Otherwise, we may have to free
3605 	 * excessively into the page allocator
3606 	 */
3607 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
3608 	if (unlikely(migratetype > MIGRATE_RECLAIMABLE)) {
3609 		trace_android_vh_pcplist_add_cma_pages_bypass(migratetype,
3610 			&pcp_skip_cma_pages);
3611 		if (unlikely(is_migrate_isolate(migratetype)) ||
3612 			pcp_skip_cma_pages) {
3613 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3614 			return;
3615 		}
3616 		if (pcpmigratetype == MIGRATE_HIGHATOMIC)
3617 			pcpmigratetype = MIGRATE_MOVABLE;
3618 	}
3619 
3620 	zone = page_zone(page);
3621 	pcp_trylock_prepare(UP_flags);
3622 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3623 	if (pcp) {
3624 		free_unref_page_commit(zone, pcp, page, pfn, pcpmigratetype, order);
3625 		pcp_spin_unlock_irqrestore(pcp, flags);
3626 	} else {
3627 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3628 	}
3629 	pcp_trylock_finish(UP_flags);
3630 }
3631 
3632 /*
3633  * Free a list of 0-order pages
3634  */
free_unref_page_list(struct list_head * list)3635 void free_unref_page_list(struct list_head *list)
3636 {
3637 	struct page *page, *next;
3638 	struct per_cpu_pages *pcp = NULL;
3639 	struct zone *locked_zone = NULL;
3640 	unsigned long flags, pfn;
3641 	int batch_count = 0;
3642 	int migratetype;
3643 	bool pcp_skip_cma_pages = false;
3644 
3645 	/* Prepare pages for freeing */
3646 	list_for_each_entry_safe(page, next, list, lru) {
3647 		pfn = page_to_pfn(page);
3648 		if (!free_unref_page_prepare(page, pfn, 0)) {
3649 			list_del(&page->lru);
3650 			continue;
3651 		}
3652 
3653 		/*
3654 		 * Free isolated pages directly to the allocator, see
3655 		 * comment in free_unref_page.
3656 		 */
3657 		migratetype = get_pcppage_migratetype(page);
3658 		trace_android_vh_pcplist_add_cma_pages_bypass(migratetype,
3659 			&pcp_skip_cma_pages);
3660 		if (unlikely(is_migrate_isolate(migratetype)) ||
3661 			pcp_skip_cma_pages) {
3662 			list_del(&page->lru);
3663 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3664 			continue;
3665 		}
3666 
3667 		set_page_private(page, pfn);
3668 	}
3669 
3670 	list_for_each_entry_safe(page, next, list, lru) {
3671 		struct zone *zone = page_zone(page);
3672 
3673 		/* Different zone, different pcp lock. */
3674 		if (zone != locked_zone) {
3675 			if (pcp)
3676 				pcp_spin_unlock_irqrestore(pcp, flags);
3677 
3678 			locked_zone = zone;
3679 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3680 		}
3681 
3682 		pfn = page_private(page);
3683 		set_page_private(page, 0);
3684 
3685 		/*
3686 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3687 		 * to the MIGRATE_MOVABLE pcp list.
3688 		 */
3689 		migratetype = get_pcppage_migratetype(page);
3690 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3691 			migratetype = MIGRATE_MOVABLE;
3692 
3693 		trace_mm_page_free_batched(page);
3694 		free_unref_page_commit(zone, pcp, page, pfn, migratetype, 0);
3695 
3696 		/*
3697 		 * Guard against excessive IRQ disabled times when we get
3698 		 * a large list of pages to free.
3699 		 */
3700 		if (++batch_count == SWAP_CLUSTER_MAX) {
3701 			pcp_spin_unlock_irqrestore(pcp, flags);
3702 			batch_count = 0;
3703 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3704 		}
3705 	}
3706 
3707 	if (pcp)
3708 		pcp_spin_unlock_irqrestore(pcp, flags);
3709 }
3710 
3711 /*
3712  * split_page takes a non-compound higher-order page, and splits it into
3713  * n (1<<order) sub-pages: page[0..n]
3714  * Each sub-page must be freed individually.
3715  *
3716  * Note: this is probably too low level an operation for use in drivers.
3717  * Please consult with lkml before using this in your driver.
3718  */
split_page(struct page * page,unsigned int order)3719 void split_page(struct page *page, unsigned int order)
3720 {
3721 	int i;
3722 
3723 	VM_BUG_ON_PAGE(PageCompound(page), page);
3724 	VM_BUG_ON_PAGE(!page_count(page), page);
3725 
3726 	for (i = 1; i < (1 << order); i++)
3727 		set_page_refcounted(page + i);
3728 	split_page_owner(page, 1 << order);
3729 	split_page_memcg(page, 1 << order);
3730 }
3731 EXPORT_SYMBOL_GPL(split_page);
3732 
__isolate_free_page(struct page * page,unsigned int order)3733 int __isolate_free_page(struct page *page, unsigned int order)
3734 {
3735 	unsigned long watermark;
3736 	struct zone *zone;
3737 	int mt;
3738 
3739 	BUG_ON(!PageBuddy(page));
3740 
3741 	zone = page_zone(page);
3742 	mt = get_pageblock_migratetype(page);
3743 
3744 	if (!is_migrate_isolate(mt)) {
3745 		/*
3746 		 * Obey watermarks as if the page was being allocated. We can
3747 		 * emulate a high-order watermark check with a raised order-0
3748 		 * watermark, because we already know our high-order page
3749 		 * exists.
3750 		 */
3751 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3752 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3753 			return 0;
3754 
3755 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3756 	}
3757 
3758 	/* Remove page from free list */
3759 
3760 	del_page_from_free_list(page, zone, order);
3761 
3762 	/*
3763 	 * Set the pageblock if the isolated page is at least half of a
3764 	 * pageblock
3765 	 */
3766 	if (order >= pageblock_order - 1) {
3767 		struct page *endpage = page + (1 << order) - 1;
3768 		for (; page < endpage; page += pageblock_nr_pages) {
3769 			int mt = get_pageblock_migratetype(page);
3770 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3771 			    && !is_migrate_highatomic(mt))
3772 				set_pageblock_migratetype(page,
3773 							  MIGRATE_MOVABLE);
3774 		}
3775 	}
3776 
3777 
3778 	return 1UL << order;
3779 }
3780 
3781 /**
3782  * __putback_isolated_page - Return a now-isolated page back where we got it
3783  * @page: Page that was isolated
3784  * @order: Order of the isolated page
3785  * @mt: The page's pageblock's migratetype
3786  *
3787  * This function is meant to return a page pulled from the free lists via
3788  * __isolate_free_page back to the free lists they were pulled from.
3789  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3790 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3791 {
3792 	struct zone *zone = page_zone(page);
3793 
3794 	/* zone lock should be held when this function is called */
3795 	lockdep_assert_held(&zone->lock);
3796 
3797 	/* Return isolated page to tail of freelist. */
3798 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3799 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3800 }
3801 
3802 /*
3803  * Update NUMA hit/miss statistics
3804  *
3805  * Must be called with interrupts disabled.
3806  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)3807 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3808 				   long nr_account)
3809 {
3810 #ifdef CONFIG_NUMA
3811 	enum numa_stat_item local_stat = NUMA_LOCAL;
3812 
3813 	/* skip numa counters update if numa stats is disabled */
3814 	if (!static_branch_likely(&vm_numa_stat_key))
3815 		return;
3816 
3817 	if (zone_to_nid(z) != numa_node_id())
3818 		local_stat = NUMA_OTHER;
3819 
3820 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3821 		__count_numa_events(z, NUMA_HIT, nr_account);
3822 	else {
3823 		__count_numa_events(z, NUMA_MISS, nr_account);
3824 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3825 	}
3826 	__count_numa_events(z, local_stat, nr_account);
3827 #endif
3828 }
3829 
3830 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)3831 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3832 			   unsigned int order, unsigned int alloc_flags,
3833 			   int migratetype)
3834 {
3835 	struct page *page;
3836 	unsigned long flags;
3837 
3838 	do {
3839 		page = NULL;
3840 		spin_lock_irqsave(&zone->lock, flags);
3841 		/*
3842 		 * order-0 request can reach here when the pcplist is skipped
3843 		 * due to non-CMA allocation context. HIGHATOMIC area is
3844 		 * reserved for high-order atomic allocation, so order-0
3845 		 * request should skip it.
3846 		 */
3847 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3848 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3849 			if (page)
3850 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3851 		}
3852 		if (!page) {
3853 			if (alloc_flags & ALLOC_CMA && migratetype == MIGRATE_MOVABLE)
3854 				page = __rmqueue_cma(zone, order, migratetype,
3855 						     alloc_flags);
3856 			if (!page)
3857 				page = __rmqueue(zone, order, migratetype,
3858 						 alloc_flags);
3859 		}
3860 		if (!page) {
3861 			spin_unlock_irqrestore(&zone->lock, flags);
3862 			return NULL;
3863 		}
3864 		__mod_zone_freepage_state(zone, -(1 << order),
3865 					  get_pcppage_migratetype(page));
3866 		spin_unlock_irqrestore(&zone->lock, flags);
3867 	} while (check_new_pages(page, order));
3868 
3869 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3870 	zone_statistics(preferred_zone, zone, 1);
3871 
3872 	return page;
3873 }
3874 
3875 /* Remove page from the per-cpu list, caller must protect the list */
3876 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,gfp_t gfp_flags)3877 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3878 			int migratetype,
3879 			unsigned int alloc_flags,
3880 			struct per_cpu_pages *pcp,
3881 			gfp_t gfp_flags)
3882 {
3883 	struct page *page = NULL;
3884 	struct list_head *list = NULL;
3885 
3886 	do {
3887 		/* First try to get CMA pages */
3888 		if (migratetype == MIGRATE_MOVABLE && alloc_flags & ALLOC_CMA)
3889 			list = get_populated_pcp_list(zone, order, pcp, get_cma_migrate_type(),
3890 						      alloc_flags);
3891 		if (list == NULL) {
3892 			/*
3893 			 * Either CMA is not suitable or there are no
3894 			 * free CMA pages.
3895 			 */
3896 			list = get_populated_pcp_list(zone, order, pcp, migratetype, alloc_flags);
3897 			if (unlikely(list == NULL) || unlikely(list_empty(list)))
3898 				return NULL;
3899 		}
3900 
3901 		page = list_first_entry(list, struct page, pcp_list);
3902 		list_del(&page->pcp_list);
3903 		pcp->count -= 1 << order;
3904 	} while (check_new_pcp(page));
3905 
3906 	return page;
3907 }
3908 
3909 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3910 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3911 			struct zone *zone, unsigned int order,
3912 			gfp_t gfp_flags, int migratetype,
3913 			unsigned int alloc_flags)
3914 {
3915 	struct per_cpu_pages *pcp;
3916 	struct page *page;
3917 	unsigned long flags;
3918 	unsigned long __maybe_unused UP_flags;
3919 
3920 	/*
3921 	 * spin_trylock may fail due to a parallel drain. In the future, the
3922 	 * trylock will also protect against IRQ reentrancy.
3923 	 */
3924 	pcp_trylock_prepare(UP_flags);
3925 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3926 	if (!pcp) {
3927 		pcp_trylock_finish(UP_flags);
3928 		return NULL;
3929 	}
3930 
3931 	/*
3932 	 * On allocation, reduce the number of pages that are batch freed.
3933 	 * See nr_pcp_free() where free_factor is increased for subsequent
3934 	 * frees.
3935 	 */
3936 	pcp->free_factor >>= 1;
3937 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, gfp_flags);
3938 	pcp_spin_unlock_irqrestore(pcp, flags);
3939 	pcp_trylock_finish(UP_flags);
3940 	if (page) {
3941 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3942 		zone_statistics(preferred_zone, zone, 1);
3943 	}
3944 	return page;
3945 }
3946 
3947 /*
3948  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3949  */
3950 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3951 struct page *rmqueue(struct zone *preferred_zone,
3952 			struct zone *zone, unsigned int order,
3953 			gfp_t gfp_flags, unsigned int alloc_flags,
3954 			int migratetype)
3955 {
3956 	struct page *page;
3957 
3958 	if (likely(pcp_allowed_order(order))) {
3959 		page = rmqueue_pcplist(preferred_zone, zone, order,
3960 				gfp_flags, migratetype, alloc_flags);
3961 		if (likely(page))
3962 			goto out;
3963 	}
3964 
3965 	/*
3966 	 * We most definitely don't want callers attempting to
3967 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3968 	 */
3969 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3970 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3971 							migratetype);
3972 	trace_android_vh_rmqueue(preferred_zone, zone, order,
3973 			gfp_flags, alloc_flags, migratetype);
3974 
3975 out:
3976 	/* Separate test+clear to avoid unnecessary atomics */
3977 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3978 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3979 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3980 	}
3981 
3982 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3983 	return page;
3984 }
3985 
3986 #ifdef CONFIG_FAIL_PAGE_ALLOC
3987 
3988 static struct {
3989 	struct fault_attr attr;
3990 
3991 	bool ignore_gfp_highmem;
3992 	bool ignore_gfp_reclaim;
3993 	u32 min_order;
3994 } fail_page_alloc = {
3995 	.attr = FAULT_ATTR_INITIALIZER,
3996 	.ignore_gfp_reclaim = true,
3997 	.ignore_gfp_highmem = true,
3998 	.min_order = 1,
3999 };
4000 
setup_fail_page_alloc(char * str)4001 static int __init setup_fail_page_alloc(char *str)
4002 {
4003 	return setup_fault_attr(&fail_page_alloc.attr, str);
4004 }
4005 __setup("fail_page_alloc=", setup_fail_page_alloc);
4006 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4007 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4008 {
4009 	if (order < fail_page_alloc.min_order)
4010 		return false;
4011 	if (gfp_mask & __GFP_NOFAIL)
4012 		return false;
4013 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
4014 		return false;
4015 	if (fail_page_alloc.ignore_gfp_reclaim &&
4016 			(gfp_mask & __GFP_DIRECT_RECLAIM))
4017 		return false;
4018 
4019 	return should_fail(&fail_page_alloc.attr, 1 << order);
4020 }
4021 
4022 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
4023 
fail_page_alloc_debugfs(void)4024 static int __init fail_page_alloc_debugfs(void)
4025 {
4026 	umode_t mode = S_IFREG | 0600;
4027 	struct dentry *dir;
4028 
4029 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
4030 					&fail_page_alloc.attr);
4031 
4032 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
4033 			    &fail_page_alloc.ignore_gfp_reclaim);
4034 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
4035 			    &fail_page_alloc.ignore_gfp_highmem);
4036 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
4037 
4038 	return 0;
4039 }
4040 
4041 late_initcall(fail_page_alloc_debugfs);
4042 
4043 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
4044 
4045 #else /* CONFIG_FAIL_PAGE_ALLOC */
4046 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4047 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4048 {
4049 	return false;
4050 }
4051 
4052 #endif /* CONFIG_FAIL_PAGE_ALLOC */
4053 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4054 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4055 {
4056 	return __should_fail_alloc_page(gfp_mask, order);
4057 }
4058 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
4059 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)4060 static inline long __zone_watermark_unusable_free(struct zone *z,
4061 				unsigned int order, unsigned int alloc_flags)
4062 {
4063 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
4064 	long unusable_free = (1 << order) - 1;
4065 
4066 	/*
4067 	 * If the caller does not have rights to ALLOC_HARDER then subtract
4068 	 * the high-atomic reserves. This will over-estimate the size of the
4069 	 * atomic reserve but it avoids a search.
4070 	 */
4071 	if (likely(!alloc_harder))
4072 		unusable_free += z->nr_reserved_highatomic;
4073 
4074 #ifdef CONFIG_CMA
4075 	/* If allocation can't use CMA areas don't use free CMA pages */
4076 	if (!(alloc_flags & ALLOC_CMA))
4077 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
4078 #endif
4079 
4080 	return unusable_free;
4081 }
4082 
4083 /*
4084  * Return true if free base pages are above 'mark'. For high-order checks it
4085  * will return true of the order-0 watermark is reached and there is at least
4086  * one free page of a suitable size. Checking now avoids taking the zone lock
4087  * to check in the allocation paths if no pages are free.
4088  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)4089 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4090 			 int highest_zoneidx, unsigned int alloc_flags,
4091 			 long free_pages)
4092 {
4093 	long min = mark;
4094 	int o;
4095 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
4096 
4097 	/* free_pages may go negative - that's OK */
4098 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4099 
4100 	if (alloc_flags & ALLOC_HIGH)
4101 		min -= min / 2;
4102 
4103 	if (unlikely(alloc_harder)) {
4104 		/*
4105 		 * OOM victims can try even harder than normal ALLOC_HARDER
4106 		 * users on the grounds that it's definitely going to be in
4107 		 * the exit path shortly and free memory. Any allocation it
4108 		 * makes during the free path will be small and short-lived.
4109 		 */
4110 		if (alloc_flags & ALLOC_OOM)
4111 			min -= min / 2;
4112 		else
4113 			min -= min / 4;
4114 	}
4115 
4116 	/*
4117 	 * Check watermarks for an order-0 allocation request. If these
4118 	 * are not met, then a high-order request also cannot go ahead
4119 	 * even if a suitable page happened to be free.
4120 	 */
4121 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4122 		return false;
4123 
4124 	/* If this is an order-0 request then the watermark is fine */
4125 	if (!order)
4126 		return true;
4127 
4128 	/* For a high-order request, check at least one suitable page is free */
4129 	for (o = order; o < MAX_ORDER; o++) {
4130 		struct free_area *area = &z->free_area[o];
4131 		int mt;
4132 
4133 		if (!area->nr_free)
4134 			continue;
4135 
4136 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4137 #ifdef CONFIG_CMA
4138 			/*
4139 			 * Note that this check is needed only
4140 			 * when MIGRATE_CMA < MIGRATE_PCPTYPES.
4141 			 */
4142 			if (mt == MIGRATE_CMA)
4143 				continue;
4144 #endif
4145 			if (!free_area_empty(area, mt))
4146 				return true;
4147 		}
4148 
4149 #ifdef CONFIG_CMA
4150 		if ((alloc_flags & ALLOC_CMA) &&
4151 		    !free_area_empty(area, MIGRATE_CMA)) {
4152 			return true;
4153 		}
4154 #endif
4155 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4156 			return true;
4157 	}
4158 	return false;
4159 }
4160 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)4161 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4162 		      int highest_zoneidx, unsigned int alloc_flags)
4163 {
4164 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4165 					zone_page_state(z, NR_FREE_PAGES));
4166 }
4167 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)4168 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4169 				unsigned long mark, int highest_zoneidx,
4170 				unsigned int alloc_flags, gfp_t gfp_mask)
4171 {
4172 	long free_pages;
4173 
4174 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4175 
4176 	/*
4177 	 * Fast check for order-0 only. If this fails then the reserves
4178 	 * need to be calculated.
4179 	 */
4180 	if (!order) {
4181 		long usable_free;
4182 		long reserved;
4183 
4184 		usable_free = free_pages;
4185 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4186 
4187 		/* reserved may over estimate high-atomic reserves. */
4188 		usable_free -= min(usable_free, reserved);
4189 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4190 			return true;
4191 	}
4192 
4193 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4194 					free_pages))
4195 		return true;
4196 	/*
4197 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4198 	 * when checking the min watermark. The min watermark is the
4199 	 * point where boosting is ignored so that kswapd is woken up
4200 	 * when below the low watermark.
4201 	 */
4202 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4203 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4204 		mark = z->_watermark[WMARK_MIN];
4205 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4206 					alloc_flags, free_pages);
4207 	}
4208 
4209 	return false;
4210 }
4211 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)4212 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4213 			unsigned long mark, int highest_zoneidx)
4214 {
4215 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4216 
4217 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4218 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4219 
4220 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4221 								free_pages);
4222 }
4223 
4224 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)4225 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4226 {
4227 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4228 				node_reclaim_distance;
4229 }
4230 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)4231 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4232 {
4233 	return true;
4234 }
4235 #endif	/* CONFIG_NUMA */
4236 
4237 /*
4238  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4239  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4240  * premature use of a lower zone may cause lowmem pressure problems that
4241  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4242  * probably too small. It only makes sense to spread allocations to avoid
4243  * fragmentation between the Normal and DMA32 zones.
4244  */
4245 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)4246 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4247 {
4248 	unsigned int alloc_flags;
4249 
4250 	/*
4251 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4252 	 * to save a branch.
4253 	 */
4254 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4255 
4256 #ifdef CONFIG_ZONE_DMA32
4257 	if (!zone)
4258 		return alloc_flags;
4259 
4260 	if (zone_idx(zone) != ZONE_NORMAL)
4261 		return alloc_flags;
4262 
4263 	/*
4264 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4265 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4266 	 * on UMA that if Normal is populated then so is DMA32.
4267 	 */
4268 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4269 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4270 		return alloc_flags;
4271 
4272 	alloc_flags |= ALLOC_NOFRAGMENT;
4273 #endif /* CONFIG_ZONE_DMA32 */
4274 	return alloc_flags;
4275 }
4276 
4277 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)4278 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4279 						  unsigned int alloc_flags)
4280 {
4281 #ifdef CONFIG_CMA
4282 	bool bypass = false;
4283 
4284 	trace_android_vh_calc_alloc_flags(gfp_mask, &alloc_flags, &bypass);
4285 	if (bypass)
4286 		return alloc_flags;
4287 
4288 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE && gfp_mask & __GFP_CMA)
4289 		alloc_flags |= ALLOC_CMA;
4290 #endif
4291 	return alloc_flags;
4292 }
4293 
4294 /*
4295  * get_page_from_freelist goes through the zonelist trying to allocate
4296  * a page.
4297  */
4298 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)4299 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4300 						const struct alloc_context *ac)
4301 {
4302 	struct zoneref *z;
4303 	struct zone *zone;
4304 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4305 	bool no_fallback;
4306 
4307 retry:
4308 	/*
4309 	 * Scan zonelist, looking for a zone with enough free.
4310 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4311 	 */
4312 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4313 	z = ac->preferred_zoneref;
4314 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4315 					ac->nodemask) {
4316 		struct page *page;
4317 		unsigned long mark;
4318 
4319 		if (cpusets_enabled() &&
4320 			(alloc_flags & ALLOC_CPUSET) &&
4321 			!__cpuset_zone_allowed(zone, gfp_mask))
4322 				continue;
4323 		/*
4324 		 * When allocating a page cache page for writing, we
4325 		 * want to get it from a node that is within its dirty
4326 		 * limit, such that no single node holds more than its
4327 		 * proportional share of globally allowed dirty pages.
4328 		 * The dirty limits take into account the node's
4329 		 * lowmem reserves and high watermark so that kswapd
4330 		 * should be able to balance it without having to
4331 		 * write pages from its LRU list.
4332 		 *
4333 		 * XXX: For now, allow allocations to potentially
4334 		 * exceed the per-node dirty limit in the slowpath
4335 		 * (spread_dirty_pages unset) before going into reclaim,
4336 		 * which is important when on a NUMA setup the allowed
4337 		 * nodes are together not big enough to reach the
4338 		 * global limit.  The proper fix for these situations
4339 		 * will require awareness of nodes in the
4340 		 * dirty-throttling and the flusher threads.
4341 		 */
4342 		if (ac->spread_dirty_pages) {
4343 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4344 				continue;
4345 
4346 			if (!node_dirty_ok(zone->zone_pgdat)) {
4347 				last_pgdat_dirty_limit = zone->zone_pgdat;
4348 				continue;
4349 			}
4350 		}
4351 
4352 		if (no_fallback && nr_online_nodes > 1 &&
4353 		    zone != ac->preferred_zoneref->zone) {
4354 			int local_nid;
4355 
4356 			/*
4357 			 * If moving to a remote node, retry but allow
4358 			 * fragmenting fallbacks. Locality is more important
4359 			 * than fragmentation avoidance.
4360 			 */
4361 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4362 			if (zone_to_nid(zone) != local_nid) {
4363 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4364 				goto retry;
4365 			}
4366 		}
4367 
4368 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4369 		if (!zone_watermark_fast(zone, order, mark,
4370 				       ac->highest_zoneidx, alloc_flags,
4371 				       gfp_mask)) {
4372 			int ret;
4373 
4374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4375 			/*
4376 			 * Watermark failed for this zone, but see if we can
4377 			 * grow this zone if it contains deferred pages.
4378 			 */
4379 			if (static_branch_unlikely(&deferred_pages)) {
4380 				if (_deferred_grow_zone(zone, order))
4381 					goto try_this_zone;
4382 			}
4383 #endif
4384 			/* Checked here to keep the fast path fast */
4385 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4386 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4387 				goto try_this_zone;
4388 
4389 			if (!node_reclaim_enabled() ||
4390 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4391 				continue;
4392 
4393 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4394 			switch (ret) {
4395 			case NODE_RECLAIM_NOSCAN:
4396 				/* did not scan */
4397 				continue;
4398 			case NODE_RECLAIM_FULL:
4399 				/* scanned but unreclaimable */
4400 				continue;
4401 			default:
4402 				/* did we reclaim enough */
4403 				if (zone_watermark_ok(zone, order, mark,
4404 					ac->highest_zoneidx, alloc_flags))
4405 					goto try_this_zone;
4406 
4407 				continue;
4408 			}
4409 		}
4410 
4411 try_this_zone:
4412 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4413 				gfp_mask, alloc_flags, ac->migratetype);
4414 		if (page) {
4415 			prep_new_page(page, order, gfp_mask, alloc_flags);
4416 
4417 			/*
4418 			 * If this is a high-order atomic allocation then check
4419 			 * if the pageblock should be reserved for the future
4420 			 */
4421 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4422 				reserve_highatomic_pageblock(page, zone, order);
4423 
4424 			return page;
4425 		} else {
4426 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4427 			/* Try again if zone has deferred pages */
4428 			if (static_branch_unlikely(&deferred_pages)) {
4429 				if (_deferred_grow_zone(zone, order))
4430 					goto try_this_zone;
4431 			}
4432 #endif
4433 		}
4434 	}
4435 
4436 	/*
4437 	 * It's possible on a UMA machine to get through all zones that are
4438 	 * fragmented. If avoiding fragmentation, reset and try again.
4439 	 */
4440 	if (no_fallback) {
4441 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4442 		goto retry;
4443 	}
4444 
4445 	return NULL;
4446 }
4447 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)4448 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4449 {
4450 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4451 
4452 	/*
4453 	 * This documents exceptions given to allocations in certain
4454 	 * contexts that are allowed to allocate outside current's set
4455 	 * of allowed nodes.
4456 	 */
4457 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4458 		if (tsk_is_oom_victim(current) ||
4459 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4460 			filter &= ~SHOW_MEM_FILTER_NODES;
4461 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4462 		filter &= ~SHOW_MEM_FILTER_NODES;
4463 
4464 	show_mem(filter, nodemask);
4465 }
4466 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)4467 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4468 {
4469 	struct va_format vaf;
4470 	va_list args;
4471 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4472 
4473 	if ((gfp_mask & __GFP_NOWARN) ||
4474 	     !__ratelimit(&nopage_rs) ||
4475 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4476 		return;
4477 
4478 	va_start(args, fmt);
4479 	vaf.fmt = fmt;
4480 	vaf.va = &args;
4481 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4482 			current->comm, &vaf, gfp_mask, &gfp_mask,
4483 			nodemask_pr_args(nodemask));
4484 	va_end(args);
4485 
4486 	cpuset_print_current_mems_allowed();
4487 	pr_cont("\n");
4488 	dump_stack();
4489 	warn_alloc_show_mem(gfp_mask, nodemask);
4490 }
4491 
4492 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4493 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4494 			      unsigned int alloc_flags,
4495 			      const struct alloc_context *ac)
4496 {
4497 	struct page *page;
4498 
4499 	page = get_page_from_freelist(gfp_mask, order,
4500 			alloc_flags|ALLOC_CPUSET, ac);
4501 	/*
4502 	 * fallback to ignore cpuset restriction if our nodes
4503 	 * are depleted
4504 	 */
4505 	if (!page)
4506 		page = get_page_from_freelist(gfp_mask, order,
4507 				alloc_flags, ac);
4508 
4509 	return page;
4510 }
4511 
4512 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4513 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4514 	const struct alloc_context *ac, unsigned long *did_some_progress)
4515 {
4516 	struct oom_control oc = {
4517 		.zonelist = ac->zonelist,
4518 		.nodemask = ac->nodemask,
4519 		.memcg = NULL,
4520 		.gfp_mask = gfp_mask,
4521 		.order = order,
4522 	};
4523 	struct page *page;
4524 
4525 	*did_some_progress = 0;
4526 
4527 	/*
4528 	 * Acquire the oom lock.  If that fails, somebody else is
4529 	 * making progress for us.
4530 	 */
4531 	if (!mutex_trylock(&oom_lock)) {
4532 		*did_some_progress = 1;
4533 		schedule_timeout_uninterruptible(1);
4534 		return NULL;
4535 	}
4536 
4537 	/*
4538 	 * Go through the zonelist yet one more time, keep very high watermark
4539 	 * here, this is only to catch a parallel oom killing, we must fail if
4540 	 * we're still under heavy pressure. But make sure that this reclaim
4541 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4542 	 * allocation which will never fail due to oom_lock already held.
4543 	 */
4544 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4545 				      ~__GFP_DIRECT_RECLAIM, order,
4546 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4547 	if (page)
4548 		goto out;
4549 
4550 	/* Coredumps can quickly deplete all memory reserves */
4551 	if (current->flags & PF_DUMPCORE)
4552 		goto out;
4553 	/* The OOM killer will not help higher order allocs */
4554 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4555 		goto out;
4556 	/*
4557 	 * We have already exhausted all our reclaim opportunities without any
4558 	 * success so it is time to admit defeat. We will skip the OOM killer
4559 	 * because it is very likely that the caller has a more reasonable
4560 	 * fallback than shooting a random task.
4561 	 *
4562 	 * The OOM killer may not free memory on a specific node.
4563 	 */
4564 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4565 		goto out;
4566 	/* The OOM killer does not needlessly kill tasks for lowmem */
4567 	if (ac->highest_zoneidx < ZONE_NORMAL)
4568 		goto out;
4569 	if (pm_suspended_storage())
4570 		goto out;
4571 	/*
4572 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4573 	 * other request to make a forward progress.
4574 	 * We are in an unfortunate situation where out_of_memory cannot
4575 	 * do much for this context but let's try it to at least get
4576 	 * access to memory reserved if the current task is killed (see
4577 	 * out_of_memory). Once filesystems are ready to handle allocation
4578 	 * failures more gracefully we should just bail out here.
4579 	 */
4580 
4581 	/* Exhausted what can be done so it's blame time */
4582 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4583 		*did_some_progress = 1;
4584 
4585 		/*
4586 		 * Help non-failing allocations by giving them access to memory
4587 		 * reserves
4588 		 */
4589 		if (gfp_mask & __GFP_NOFAIL)
4590 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4591 					ALLOC_NO_WATERMARKS, ac);
4592 	}
4593 out:
4594 	mutex_unlock(&oom_lock);
4595 	return page;
4596 }
4597 
4598 /*
4599  * Maximum number of compaction retries with a progress before OOM
4600  * killer is consider as the only way to move forward.
4601  */
4602 #define MAX_COMPACT_RETRIES 16
4603 
4604 #ifdef CONFIG_COMPACTION
4605 /* Try memory compaction for high-order allocations before reclaim */
4606 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4607 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4608 		unsigned int alloc_flags, const struct alloc_context *ac,
4609 		enum compact_priority prio, enum compact_result *compact_result)
4610 {
4611 	struct page *page = NULL;
4612 	unsigned long pflags;
4613 	unsigned int noreclaim_flag;
4614 
4615 	if (!order)
4616 		return NULL;
4617 
4618 	psi_memstall_enter(&pflags);
4619 	noreclaim_flag = memalloc_noreclaim_save();
4620 
4621 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4622 								prio, &page);
4623 
4624 	memalloc_noreclaim_restore(noreclaim_flag);
4625 	psi_memstall_leave(&pflags);
4626 
4627 	if (*compact_result == COMPACT_SKIPPED)
4628 		return NULL;
4629 	/*
4630 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4631 	 * count a compaction stall
4632 	 */
4633 	count_vm_event(COMPACTSTALL);
4634 
4635 	/* Prep a captured page if available */
4636 	if (page)
4637 		prep_new_page(page, order, gfp_mask, alloc_flags);
4638 
4639 	/* Try get a page from the freelist if available */
4640 	if (!page)
4641 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4642 
4643 	if (page) {
4644 		struct zone *zone = page_zone(page);
4645 
4646 		zone->compact_blockskip_flush = false;
4647 		compaction_defer_reset(zone, order, true);
4648 		count_vm_event(COMPACTSUCCESS);
4649 		return page;
4650 	}
4651 
4652 	/*
4653 	 * It's bad if compaction run occurs and fails. The most likely reason
4654 	 * is that pages exist, but not enough to satisfy watermarks.
4655 	 */
4656 	count_vm_event(COMPACTFAIL);
4657 
4658 	cond_resched();
4659 
4660 	return NULL;
4661 }
4662 
4663 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4664 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4665 		     enum compact_result compact_result,
4666 		     enum compact_priority *compact_priority,
4667 		     int *compaction_retries)
4668 {
4669 	int max_retries = MAX_COMPACT_RETRIES;
4670 	int min_priority;
4671 	bool ret = false;
4672 	int retries = *compaction_retries;
4673 	enum compact_priority priority = *compact_priority;
4674 
4675 	if (!order)
4676 		return false;
4677 
4678 	if (fatal_signal_pending(current))
4679 		return false;
4680 
4681 	if (compaction_made_progress(compact_result))
4682 		(*compaction_retries)++;
4683 
4684 	/*
4685 	 * compaction considers all the zone as desperately out of memory
4686 	 * so it doesn't really make much sense to retry except when the
4687 	 * failure could be caused by insufficient priority
4688 	 */
4689 	if (compaction_failed(compact_result))
4690 		goto check_priority;
4691 
4692 	/*
4693 	 * compaction was skipped because there are not enough order-0 pages
4694 	 * to work with, so we retry only if it looks like reclaim can help.
4695 	 */
4696 	if (compaction_needs_reclaim(compact_result)) {
4697 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4698 		goto out;
4699 	}
4700 
4701 	/*
4702 	 * make sure the compaction wasn't deferred or didn't bail out early
4703 	 * due to locks contention before we declare that we should give up.
4704 	 * But the next retry should use a higher priority if allowed, so
4705 	 * we don't just keep bailing out endlessly.
4706 	 */
4707 	if (compaction_withdrawn(compact_result)) {
4708 		goto check_priority;
4709 	}
4710 
4711 	/*
4712 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4713 	 * costly ones because they are de facto nofail and invoke OOM
4714 	 * killer to move on while costly can fail and users are ready
4715 	 * to cope with that. 1/4 retries is rather arbitrary but we
4716 	 * would need much more detailed feedback from compaction to
4717 	 * make a better decision.
4718 	 */
4719 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4720 		max_retries /= 4;
4721 	if (*compaction_retries <= max_retries) {
4722 		ret = true;
4723 		goto out;
4724 	}
4725 
4726 	/*
4727 	 * Make sure there are attempts at the highest priority if we exhausted
4728 	 * all retries or failed at the lower priorities.
4729 	 */
4730 check_priority:
4731 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4732 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4733 
4734 	if (*compact_priority > min_priority) {
4735 		(*compact_priority)--;
4736 		*compaction_retries = 0;
4737 		ret = true;
4738 	}
4739 out:
4740 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4741 	return ret;
4742 }
4743 #else
4744 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4745 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4746 		unsigned int alloc_flags, const struct alloc_context *ac,
4747 		enum compact_priority prio, enum compact_result *compact_result)
4748 {
4749 	*compact_result = COMPACT_SKIPPED;
4750 	return NULL;
4751 }
4752 
4753 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4754 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4755 		     enum compact_result compact_result,
4756 		     enum compact_priority *compact_priority,
4757 		     int *compaction_retries)
4758 {
4759 	struct zone *zone;
4760 	struct zoneref *z;
4761 
4762 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4763 		return false;
4764 
4765 	/*
4766 	 * There are setups with compaction disabled which would prefer to loop
4767 	 * inside the allocator rather than hit the oom killer prematurely.
4768 	 * Let's give them a good hope and keep retrying while the order-0
4769 	 * watermarks are OK.
4770 	 */
4771 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4772 				ac->highest_zoneidx, ac->nodemask) {
4773 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4774 					ac->highest_zoneidx, alloc_flags))
4775 			return true;
4776 	}
4777 	return false;
4778 }
4779 #endif /* CONFIG_COMPACTION */
4780 
4781 #ifdef CONFIG_LOCKDEP
4782 static struct lockdep_map __fs_reclaim_map =
4783 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4784 
__need_reclaim(gfp_t gfp_mask)4785 static bool __need_reclaim(gfp_t gfp_mask)
4786 {
4787 	/* no reclaim without waiting on it */
4788 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4789 		return false;
4790 
4791 	/* this guy won't enter reclaim */
4792 	if (current->flags & PF_MEMALLOC)
4793 		return false;
4794 
4795 	if (gfp_mask & __GFP_NOLOCKDEP)
4796 		return false;
4797 
4798 	return true;
4799 }
4800 
__fs_reclaim_acquire(unsigned long ip)4801 void __fs_reclaim_acquire(unsigned long ip)
4802 {
4803 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4804 }
4805 
__fs_reclaim_release(unsigned long ip)4806 void __fs_reclaim_release(unsigned long ip)
4807 {
4808 	lock_release(&__fs_reclaim_map, ip);
4809 }
4810 
fs_reclaim_acquire(gfp_t gfp_mask)4811 void fs_reclaim_acquire(gfp_t gfp_mask)
4812 {
4813 	gfp_mask = current_gfp_context(gfp_mask);
4814 
4815 	if (__need_reclaim(gfp_mask)) {
4816 		if (gfp_mask & __GFP_FS)
4817 			__fs_reclaim_acquire(_RET_IP_);
4818 
4819 #ifdef CONFIG_MMU_NOTIFIER
4820 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4821 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4822 #endif
4823 
4824 	}
4825 }
4826 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4827 
fs_reclaim_release(gfp_t gfp_mask)4828 void fs_reclaim_release(gfp_t gfp_mask)
4829 {
4830 	gfp_mask = current_gfp_context(gfp_mask);
4831 
4832 	if (__need_reclaim(gfp_mask)) {
4833 		if (gfp_mask & __GFP_FS)
4834 			__fs_reclaim_release(_RET_IP_);
4835 	}
4836 }
4837 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4838 #endif
4839 
4840 /*
4841  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4842  * have been rebuilt so allocation retries. Reader side does not lock and
4843  * retries the allocation if zonelist changes. Writer side is protected by the
4844  * embedded spin_lock.
4845  */
4846 static DEFINE_SEQLOCK(zonelist_update_seq);
4847 
zonelist_iter_begin(void)4848 static unsigned int zonelist_iter_begin(void)
4849 {
4850 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4851 		return read_seqbegin(&zonelist_update_seq);
4852 
4853 	return 0;
4854 }
4855 
check_retry_zonelist(unsigned int seq)4856 static unsigned int check_retry_zonelist(unsigned int seq)
4857 {
4858 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4859 		return read_seqretry(&zonelist_update_seq, seq);
4860 
4861 	return seq;
4862 }
4863 
4864 /* Perform direct synchronous page reclaim */
4865 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4866 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4867 					const struct alloc_context *ac)
4868 {
4869 	unsigned int noreclaim_flag;
4870 	unsigned long progress;
4871 
4872 	cond_resched();
4873 
4874 	/* We now go into synchronous reclaim */
4875 	cpuset_memory_pressure_bump();
4876 	fs_reclaim_acquire(gfp_mask);
4877 	noreclaim_flag = memalloc_noreclaim_save();
4878 
4879 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4880 								ac->nodemask);
4881 
4882 	memalloc_noreclaim_restore(noreclaim_flag);
4883 	fs_reclaim_release(gfp_mask);
4884 
4885 	cond_resched();
4886 
4887 	return progress;
4888 }
4889 
4890 /* The really slow allocator path where we enter direct reclaim */
4891 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4892 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4893 		unsigned int alloc_flags, const struct alloc_context *ac,
4894 		unsigned long *did_some_progress)
4895 {
4896 	struct page *page = NULL;
4897 	unsigned long pflags;
4898 	bool drained = false;
4899 	bool skip_pcp_drain = false;
4900 
4901 	psi_memstall_enter(&pflags);
4902 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4903 	if (unlikely(!(*did_some_progress)))
4904 		goto out;
4905 
4906 retry:
4907 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4908 
4909 	/*
4910 	 * If an allocation failed after direct reclaim, it could be because
4911 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4912 	 * Shrink them and try again
4913 	 */
4914 	if (!page && !drained) {
4915 		unreserve_highatomic_pageblock(ac, false);
4916 		trace_android_vh_drain_all_pages_bypass(gfp_mask, order,
4917 			alloc_flags, ac->migratetype, *did_some_progress, &skip_pcp_drain);
4918 		if (!skip_pcp_drain)
4919 			drain_all_pages(NULL);
4920 		drained = true;
4921 		goto retry;
4922 	}
4923 out:
4924 	psi_memstall_leave(&pflags);
4925 
4926 	return page;
4927 }
4928 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4929 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4930 			     const struct alloc_context *ac)
4931 {
4932 	struct zoneref *z;
4933 	struct zone *zone;
4934 	pg_data_t *last_pgdat = NULL;
4935 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4936 
4937 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4938 					ac->nodemask) {
4939 		if (last_pgdat != zone->zone_pgdat)
4940 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4941 		last_pgdat = zone->zone_pgdat;
4942 	}
4943 }
4944 
4945 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4946 gfp_to_alloc_flags(gfp_t gfp_mask)
4947 {
4948 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4949 
4950 	/*
4951 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4952 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4953 	 * to save two branches.
4954 	 */
4955 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4956 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4957 
4958 	/*
4959 	 * The caller may dip into page reserves a bit more if the caller
4960 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4961 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4962 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4963 	 */
4964 	alloc_flags |= (__force int)
4965 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4966 
4967 	if (gfp_mask & __GFP_ATOMIC) {
4968 		/*
4969 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4970 		 * if it can't schedule.
4971 		 */
4972 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4973 			alloc_flags |= ALLOC_HARDER;
4974 		/*
4975 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4976 		 * comment for __cpuset_node_allowed().
4977 		 */
4978 		alloc_flags &= ~ALLOC_CPUSET;
4979 	} else if (unlikely(rt_task(current)) && in_task())
4980 		alloc_flags |= ALLOC_HARDER;
4981 
4982 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4983 
4984 	return alloc_flags;
4985 }
4986 
oom_reserves_allowed(struct task_struct * tsk)4987 static bool oom_reserves_allowed(struct task_struct *tsk)
4988 {
4989 	if (!tsk_is_oom_victim(tsk))
4990 		return false;
4991 
4992 	/*
4993 	 * !MMU doesn't have oom reaper so give access to memory reserves
4994 	 * only to the thread with TIF_MEMDIE set
4995 	 */
4996 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4997 		return false;
4998 
4999 	return true;
5000 }
5001 
5002 /*
5003  * Distinguish requests which really need access to full memory
5004  * reserves from oom victims which can live with a portion of it
5005  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)5006 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
5007 {
5008 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
5009 		return 0;
5010 	if (gfp_mask & __GFP_MEMALLOC)
5011 		return ALLOC_NO_WATERMARKS;
5012 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
5013 		return ALLOC_NO_WATERMARKS;
5014 	if (!in_interrupt()) {
5015 		if (current->flags & PF_MEMALLOC)
5016 			return ALLOC_NO_WATERMARKS;
5017 		else if (oom_reserves_allowed(current))
5018 			return ALLOC_OOM;
5019 	}
5020 
5021 	return 0;
5022 }
5023 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)5024 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
5025 {
5026 	return !!__gfp_pfmemalloc_flags(gfp_mask);
5027 }
5028 
5029 /*
5030  * Checks whether it makes sense to retry the reclaim to make a forward progress
5031  * for the given allocation request.
5032  *
5033  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
5034  * without success, or when we couldn't even meet the watermark if we
5035  * reclaimed all remaining pages on the LRU lists.
5036  *
5037  * Returns true if a retry is viable or false to enter the oom path.
5038  */
5039 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)5040 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
5041 		     struct alloc_context *ac, int alloc_flags,
5042 		     bool did_some_progress, int *no_progress_loops)
5043 {
5044 	struct zone *zone;
5045 	struct zoneref *z;
5046 	bool ret = false;
5047 
5048 	/*
5049 	 * Costly allocations might have made a progress but this doesn't mean
5050 	 * their order will become available due to high fragmentation so
5051 	 * always increment the no progress counter for them
5052 	 */
5053 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
5054 		*no_progress_loops = 0;
5055 	else
5056 		(*no_progress_loops)++;
5057 
5058 	/*
5059 	 * Make sure we converge to OOM if we cannot make any progress
5060 	 * several times in the row.
5061 	 */
5062 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
5063 		/* Before OOM, exhaust highatomic_reserve */
5064 		return unreserve_highatomic_pageblock(ac, true);
5065 	}
5066 
5067 	/*
5068 	 * Keep reclaiming pages while there is a chance this will lead
5069 	 * somewhere.  If none of the target zones can satisfy our allocation
5070 	 * request even if all reclaimable pages are considered then we are
5071 	 * screwed and have to go OOM.
5072 	 */
5073 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
5074 				ac->highest_zoneidx, ac->nodemask) {
5075 		unsigned long available;
5076 		unsigned long reclaimable;
5077 		unsigned long min_wmark = min_wmark_pages(zone);
5078 		bool wmark;
5079 
5080 		available = reclaimable = zone_reclaimable_pages(zone);
5081 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
5082 
5083 		/*
5084 		 * Would the allocation succeed if we reclaimed all
5085 		 * reclaimable pages?
5086 		 */
5087 		wmark = __zone_watermark_ok(zone, order, min_wmark,
5088 				ac->highest_zoneidx, alloc_flags, available);
5089 		trace_reclaim_retry_zone(z, order, reclaimable,
5090 				available, min_wmark, *no_progress_loops, wmark);
5091 		if (wmark) {
5092 			/*
5093 			 * If we didn't make any progress and have a lot of
5094 			 * dirty + writeback pages then we should wait for
5095 			 * an IO to complete to slow down the reclaim and
5096 			 * prevent from pre mature OOM
5097 			 */
5098 			if (!did_some_progress) {
5099 				unsigned long write_pending;
5100 
5101 				write_pending = zone_page_state_snapshot(zone,
5102 							NR_ZONE_WRITE_PENDING);
5103 
5104 				if (2 * write_pending > reclaimable) {
5105 					congestion_wait(BLK_RW_ASYNC, HZ/10);
5106 					return true;
5107 				}
5108 			}
5109 
5110 			ret = true;
5111 			goto out;
5112 		}
5113 	}
5114 
5115 out:
5116 	/*
5117 	 * Memory allocation/reclaim might be called from a WQ context and the
5118 	 * current implementation of the WQ concurrency control doesn't
5119 	 * recognize that a particular WQ is congested if the worker thread is
5120 	 * looping without ever sleeping. Therefore we have to do a short sleep
5121 	 * here rather than calling cond_resched().
5122 	 */
5123 	if (current->flags & PF_WQ_WORKER)
5124 		schedule_timeout_uninterruptible(1);
5125 	else
5126 		cond_resched();
5127 	return ret;
5128 }
5129 
5130 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)5131 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5132 {
5133 	/*
5134 	 * It's possible that cpuset's mems_allowed and the nodemask from
5135 	 * mempolicy don't intersect. This should be normally dealt with by
5136 	 * policy_nodemask(), but it's possible to race with cpuset update in
5137 	 * such a way the check therein was true, and then it became false
5138 	 * before we got our cpuset_mems_cookie here.
5139 	 * This assumes that for all allocations, ac->nodemask can come only
5140 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5141 	 * when it does not intersect with the cpuset restrictions) or the
5142 	 * caller can deal with a violated nodemask.
5143 	 */
5144 	if (cpusets_enabled() && ac->nodemask &&
5145 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5146 		ac->nodemask = NULL;
5147 		return true;
5148 	}
5149 
5150 	/*
5151 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5152 	 * possible to race with parallel threads in such a way that our
5153 	 * allocation can fail while the mask is being updated. If we are about
5154 	 * to fail, check if the cpuset changed during allocation and if so,
5155 	 * retry.
5156 	 */
5157 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5158 		return true;
5159 
5160 	return false;
5161 }
5162 
5163 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)5164 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5165 						struct alloc_context *ac)
5166 {
5167 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5168 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5169 	struct page *page = NULL;
5170 	unsigned int alloc_flags;
5171 	unsigned long did_some_progress;
5172 	enum compact_priority compact_priority;
5173 	enum compact_result compact_result;
5174 	int compaction_retries;
5175 	int no_progress_loops;
5176 	unsigned int cpuset_mems_cookie;
5177 	unsigned int zonelist_iter_cookie;
5178 	int reserve_flags;
5179 	unsigned long alloc_start = jiffies;
5180 	bool should_alloc_retry = false;
5181 	/*
5182 	 * We also sanity check to catch abuse of atomic reserves being used by
5183 	 * callers that are not in atomic context.
5184 	 */
5185 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5186 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5187 		gfp_mask &= ~__GFP_ATOMIC;
5188 
5189 restart:
5190 	compaction_retries = 0;
5191 	no_progress_loops = 0;
5192 	compact_priority = DEF_COMPACT_PRIORITY;
5193 	cpuset_mems_cookie = read_mems_allowed_begin();
5194 	zonelist_iter_cookie = zonelist_iter_begin();
5195 
5196 	/*
5197 	 * The fast path uses conservative alloc_flags to succeed only until
5198 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5199 	 * alloc_flags precisely. So we do that now.
5200 	 */
5201 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5202 
5203 	/*
5204 	 * We need to recalculate the starting point for the zonelist iterator
5205 	 * because we might have used different nodemask in the fast path, or
5206 	 * there was a cpuset modification and we are retrying - otherwise we
5207 	 * could end up iterating over non-eligible zones endlessly.
5208 	 */
5209 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5210 					ac->highest_zoneidx, ac->nodemask);
5211 	if (!ac->preferred_zoneref->zone)
5212 		goto nopage;
5213 
5214 	if (alloc_flags & ALLOC_KSWAPD)
5215 		wake_all_kswapds(order, gfp_mask, ac);
5216 
5217 	/*
5218 	 * The adjusted alloc_flags might result in immediate success, so try
5219 	 * that first
5220 	 */
5221 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5222 	if (page)
5223 		goto got_pg;
5224 
5225 	/*
5226 	 * For costly allocations, try direct compaction first, as it's likely
5227 	 * that we have enough base pages and don't need to reclaim. For non-
5228 	 * movable high-order allocations, do that as well, as compaction will
5229 	 * try prevent permanent fragmentation by migrating from blocks of the
5230 	 * same migratetype.
5231 	 * Don't try this for allocations that are allowed to ignore
5232 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5233 	 */
5234 	if (can_direct_reclaim &&
5235 			(costly_order ||
5236 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5237 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5238 		page = __alloc_pages_direct_compact(gfp_mask, order,
5239 						alloc_flags, ac,
5240 						INIT_COMPACT_PRIORITY,
5241 						&compact_result);
5242 		if (page)
5243 			goto got_pg;
5244 
5245 		/*
5246 		 * Checks for costly allocations with __GFP_NORETRY, which
5247 		 * includes some THP page fault allocations
5248 		 */
5249 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5250 			/*
5251 			 * If allocating entire pageblock(s) and compaction
5252 			 * failed because all zones are below low watermarks
5253 			 * or is prohibited because it recently failed at this
5254 			 * order, fail immediately unless the allocator has
5255 			 * requested compaction and reclaim retry.
5256 			 *
5257 			 * Reclaim is
5258 			 *  - potentially very expensive because zones are far
5259 			 *    below their low watermarks or this is part of very
5260 			 *    bursty high order allocations,
5261 			 *  - not guaranteed to help because isolate_freepages()
5262 			 *    may not iterate over freed pages as part of its
5263 			 *    linear scan, and
5264 			 *  - unlikely to make entire pageblocks free on its
5265 			 *    own.
5266 			 */
5267 			if (compact_result == COMPACT_SKIPPED ||
5268 			    compact_result == COMPACT_DEFERRED)
5269 				goto nopage;
5270 
5271 			/*
5272 			 * Looks like reclaim/compaction is worth trying, but
5273 			 * sync compaction could be very expensive, so keep
5274 			 * using async compaction.
5275 			 */
5276 			compact_priority = INIT_COMPACT_PRIORITY;
5277 		}
5278 	}
5279 
5280 retry:
5281 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5282 	if (alloc_flags & ALLOC_KSWAPD)
5283 		wake_all_kswapds(order, gfp_mask, ac);
5284 
5285 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5286 	if (reserve_flags)
5287 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5288 
5289 	/*
5290 	 * Reset the nodemask and zonelist iterators if memory policies can be
5291 	 * ignored. These allocations are high priority and system rather than
5292 	 * user oriented.
5293 	 */
5294 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5295 		ac->nodemask = NULL;
5296 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5297 					ac->highest_zoneidx, ac->nodemask);
5298 	}
5299 
5300 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5301 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5302 	if (page)
5303 		goto got_pg;
5304 
5305 	/* Caller is not willing to reclaim, we can't balance anything */
5306 	if (!can_direct_reclaim)
5307 		goto nopage;
5308 
5309 	/* Avoid recursion of direct reclaim */
5310 	if (current->flags & PF_MEMALLOC)
5311 		goto nopage;
5312 
5313 	trace_android_vh_should_alloc_pages_retry(gfp_mask, order, &alloc_flags,
5314 		ac->migratetype, ac->preferred_zoneref->zone, &page, &should_alloc_retry);
5315 	if (should_alloc_retry)
5316 		goto retry;
5317 
5318 	/* Try direct reclaim and then allocating */
5319 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5320 							&did_some_progress);
5321 	if (page)
5322 		goto got_pg;
5323 
5324 	/* Try direct compaction and then allocating */
5325 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5326 					compact_priority, &compact_result);
5327 	if (page)
5328 		goto got_pg;
5329 
5330 	/* Do not loop if specifically requested */
5331 	if (gfp_mask & __GFP_NORETRY)
5332 		goto nopage;
5333 
5334 	/*
5335 	 * Do not retry costly high order allocations unless they are
5336 	 * __GFP_RETRY_MAYFAIL
5337 	 */
5338 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5339 		goto nopage;
5340 
5341 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5342 				 did_some_progress > 0, &no_progress_loops))
5343 		goto retry;
5344 
5345 	/*
5346 	 * It doesn't make any sense to retry for the compaction if the order-0
5347 	 * reclaim is not able to make any progress because the current
5348 	 * implementation of the compaction depends on the sufficient amount
5349 	 * of free memory (see __compaction_suitable)
5350 	 */
5351 	if (did_some_progress > 0 &&
5352 			should_compact_retry(ac, order, alloc_flags,
5353 				compact_result, &compact_priority,
5354 				&compaction_retries))
5355 		goto retry;
5356 
5357 
5358 	/*
5359 	 * Deal with possible cpuset update races or zonelist updates to avoid
5360 	 * a unnecessary OOM kill.
5361 	 */
5362 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5363 	    check_retry_zonelist(zonelist_iter_cookie))
5364 		goto restart;
5365 
5366 	/* Reclaim has failed us, start killing things */
5367 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5368 	if (page)
5369 		goto got_pg;
5370 
5371 	/* Avoid allocations with no watermarks from looping endlessly */
5372 	if (tsk_is_oom_victim(current) &&
5373 	    (alloc_flags & ALLOC_OOM ||
5374 	     (gfp_mask & __GFP_NOMEMALLOC)))
5375 		goto nopage;
5376 
5377 	/* Retry as long as the OOM killer is making progress */
5378 	if (did_some_progress) {
5379 		no_progress_loops = 0;
5380 		goto retry;
5381 	}
5382 
5383 nopage:
5384 	/*
5385 	 * Deal with possible cpuset update races or zonelist updates to avoid
5386 	 * a unnecessary OOM kill.
5387 	 */
5388 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5389 	    check_retry_zonelist(zonelist_iter_cookie))
5390 		goto restart;
5391 
5392 	/*
5393 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5394 	 * we always retry
5395 	 */
5396 	if (gfp_mask & __GFP_NOFAIL) {
5397 		/*
5398 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5399 		 * of any new users that actually require GFP_NOWAIT
5400 		 */
5401 		if (WARN_ON_ONCE(!can_direct_reclaim))
5402 			goto fail;
5403 
5404 		/*
5405 		 * PF_MEMALLOC request from this context is rather bizarre
5406 		 * because we cannot reclaim anything and only can loop waiting
5407 		 * for somebody to do a work for us
5408 		 */
5409 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5410 
5411 		/*
5412 		 * non failing costly orders are a hard requirement which we
5413 		 * are not prepared for much so let's warn about these users
5414 		 * so that we can identify them and convert them to something
5415 		 * else.
5416 		 */
5417 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5418 
5419 		/*
5420 		 * Help non-failing allocations by giving them access to memory
5421 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5422 		 * could deplete whole memory reserves which would just make
5423 		 * the situation worse
5424 		 */
5425 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5426 		if (page)
5427 			goto got_pg;
5428 
5429 		cond_resched();
5430 		goto retry;
5431 	}
5432 fail:
5433 	warn_alloc(gfp_mask, ac->nodemask,
5434 			"page allocation failure: order:%u", order);
5435 got_pg:
5436 	trace_android_vh_alloc_pages_slowpath(gfp_mask, order, alloc_start);
5437 	return page;
5438 }
5439 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)5440 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5441 		int preferred_nid, nodemask_t *nodemask,
5442 		struct alloc_context *ac, gfp_t *alloc_gfp,
5443 		unsigned int *alloc_flags)
5444 {
5445 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5446 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5447 	ac->nodemask = nodemask;
5448 	ac->migratetype = gfp_migratetype(gfp_mask);
5449 
5450 	if (cpusets_enabled()) {
5451 		*alloc_gfp |= __GFP_HARDWALL;
5452 		/*
5453 		 * When we are in the interrupt context, it is irrelevant
5454 		 * to the current task context. It means that any node ok.
5455 		 */
5456 		if (in_task() && !ac->nodemask)
5457 			ac->nodemask = &cpuset_current_mems_allowed;
5458 		else
5459 			*alloc_flags |= ALLOC_CPUSET;
5460 	}
5461 
5462 	fs_reclaim_acquire(gfp_mask);
5463 	fs_reclaim_release(gfp_mask);
5464 
5465 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5466 
5467 	if (should_fail_alloc_page(gfp_mask, order))
5468 		return false;
5469 
5470 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5471 
5472 	/* Dirty zone balancing only done in the fast path */
5473 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5474 
5475 	/*
5476 	 * The preferred zone is used for statistics but crucially it is
5477 	 * also used as the starting point for the zonelist iterator. It
5478 	 * may get reset for allocations that ignore memory policies.
5479 	 */
5480 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5481 					ac->highest_zoneidx, ac->nodemask);
5482 
5483 	return true;
5484 }
5485 
5486 /*
5487  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5488  * @gfp: GFP flags for the allocation
5489  * @preferred_nid: The preferred NUMA node ID to allocate from
5490  * @nodemask: Set of nodes to allocate from, may be NULL
5491  * @nr_pages: The number of pages desired on the list or array
5492  * @page_list: Optional list to store the allocated pages
5493  * @page_array: Optional array to store the pages
5494  *
5495  * This is a batched version of the page allocator that attempts to
5496  * allocate nr_pages quickly. Pages are added to page_list if page_list
5497  * is not NULL, otherwise it is assumed that the page_array is valid.
5498  *
5499  * For lists, nr_pages is the number of pages that should be allocated.
5500  *
5501  * For arrays, only NULL elements are populated with pages and nr_pages
5502  * is the maximum number of pages that will be stored in the array.
5503  *
5504  * Returns the number of pages on the list or array.
5505  */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)5506 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5507 			nodemask_t *nodemask, int nr_pages,
5508 			struct list_head *page_list,
5509 			struct page **page_array)
5510 {
5511 	struct page *page;
5512 	unsigned long flags;
5513 	unsigned long __maybe_unused UP_flags;
5514 	struct zone *zone;
5515 	struct zoneref *z;
5516 	struct per_cpu_pages *pcp;
5517 	struct alloc_context ac;
5518 	gfp_t alloc_gfp;
5519 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5520 	int nr_populated = 0, nr_account = 0;
5521 
5522 	/*
5523 	 * Skip populated array elements to determine if any pages need
5524 	 * to be allocated before disabling IRQs.
5525 	 */
5526 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5527 		nr_populated++;
5528 
5529 	/* No pages requested? */
5530 	if (unlikely(nr_pages <= 0))
5531 		goto out;
5532 
5533 	/* Already populated array? */
5534 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5535 		goto out;
5536 
5537 	/* Bulk allocator does not support memcg accounting. */
5538 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5539 		goto failed;
5540 
5541 	/* Use the single page allocator for one page. */
5542 	if (nr_pages - nr_populated == 1)
5543 		goto failed;
5544 
5545 #ifdef CONFIG_PAGE_OWNER
5546 	/*
5547 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5548 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5549 	 * removes much of the performance benefit of bulk allocation so
5550 	 * force the caller to allocate one page at a time as it'll have
5551 	 * similar performance to added complexity to the bulk allocator.
5552 	 */
5553 	if (static_branch_unlikely(&page_owner_inited))
5554 		goto failed;
5555 #endif
5556 
5557 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5558 	gfp &= gfp_allowed_mask;
5559 	alloc_gfp = gfp;
5560 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5561 		goto out;
5562 	gfp = alloc_gfp;
5563 
5564 	/* Find an allowed local zone that meets the low watermark. */
5565 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5566 		unsigned long mark;
5567 
5568 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5569 		    !__cpuset_zone_allowed(zone, gfp)) {
5570 			continue;
5571 		}
5572 
5573 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5574 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5575 			goto failed;
5576 		}
5577 
5578 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5579 		if (zone_watermark_fast(zone, 0,  mark,
5580 				zonelist_zone_idx(ac.preferred_zoneref),
5581 				alloc_flags, gfp)) {
5582 			break;
5583 		}
5584 	}
5585 
5586 	/*
5587 	 * If there are no allowed local zones that meets the watermarks then
5588 	 * try to allocate a single page and reclaim if necessary.
5589 	 */
5590 	if (unlikely(!zone))
5591 		goto failed;
5592 
5593 	/* Is a parallel drain in progress? */
5594 	pcp_trylock_prepare(UP_flags);
5595 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5596 	if (!pcp)
5597 		goto failed_irq;
5598 
5599 	/* Attempt the batch allocation */
5600 	while (nr_populated < nr_pages) {
5601 
5602 		/* Skip existing pages */
5603 		if (page_array && page_array[nr_populated]) {
5604 			nr_populated++;
5605 			continue;
5606 		}
5607 
5608 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5609 								pcp, alloc_gfp);
5610 		if (unlikely(!page)) {
5611 			/* Try and allocate at least one page */
5612 			if (!nr_account) {
5613 				pcp_spin_unlock_irqrestore(pcp, flags);
5614 				goto failed_irq;
5615 			}
5616 			break;
5617 		}
5618 		nr_account++;
5619 
5620 		prep_new_page(page, 0, gfp, 0);
5621 		if (page_list)
5622 			list_add(&page->lru, page_list);
5623 		else
5624 			page_array[nr_populated] = page;
5625 		nr_populated++;
5626 	}
5627 
5628 	pcp_spin_unlock_irqrestore(pcp, flags);
5629 	pcp_trylock_finish(UP_flags);
5630 
5631 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5632 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5633 
5634 out:
5635 	return nr_populated;
5636 
5637 failed_irq:
5638 	pcp_trylock_finish(UP_flags);
5639 
5640 failed:
5641 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5642 	if (page) {
5643 		if (page_list)
5644 			list_add(&page->lru, page_list);
5645 		else
5646 			page_array[nr_populated] = page;
5647 		nr_populated++;
5648 	}
5649 
5650 	goto out;
5651 }
5652 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5653 
5654 /*
5655  * This is the 'heart' of the zoned buddy allocator.
5656  */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5657 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5658 							nodemask_t *nodemask)
5659 {
5660 	struct page *page;
5661 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5662 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5663 	struct alloc_context ac = { };
5664 
5665 	trace_android_vh_alloc_pages_entry(&gfp, order, preferred_nid, nodemask);
5666 	/*
5667 	 * There are several places where we assume that the order value is sane
5668 	 * so bail out early if the request is out of bound.
5669 	 */
5670 	if (unlikely(order >= MAX_ORDER)) {
5671 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5672 		return NULL;
5673 	}
5674 
5675 	gfp &= gfp_allowed_mask;
5676 	/*
5677 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5678 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5679 	 * from a particular context which has been marked by
5680 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5681 	 * movable zones are not used during allocation.
5682 	 */
5683 	gfp = current_gfp_context(gfp);
5684 	alloc_gfp = gfp;
5685 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5686 			&alloc_gfp, &alloc_flags))
5687 		return NULL;
5688 
5689 	/*
5690 	 * Forbid the first pass from falling back to types that fragment
5691 	 * memory until all local zones are considered.
5692 	 */
5693 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5694 
5695 	/* First allocation attempt */
5696 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5697 	if (likely(page))
5698 		goto out;
5699 
5700 	alloc_gfp = gfp;
5701 	ac.spread_dirty_pages = false;
5702 
5703 	/*
5704 	 * Restore the original nodemask if it was potentially replaced with
5705 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5706 	 */
5707 	ac.nodemask = nodemask;
5708 
5709 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5710 
5711 out:
5712 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5713 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5714 		__free_pages(page, order);
5715 		page = NULL;
5716 	}
5717 
5718 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5719 
5720 	return page;
5721 }
5722 EXPORT_SYMBOL(__alloc_pages);
5723 
5724 /*
5725  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5726  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5727  * you need to access high mem.
5728  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5729 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5730 {
5731 	struct page *page;
5732 
5733 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5734 	if (!page)
5735 		return 0;
5736 	return (unsigned long) page_address(page);
5737 }
5738 EXPORT_SYMBOL(__get_free_pages);
5739 
get_zeroed_page(gfp_t gfp_mask)5740 unsigned long get_zeroed_page(gfp_t gfp_mask)
5741 {
5742 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5743 }
5744 EXPORT_SYMBOL(get_zeroed_page);
5745 
5746 /**
5747  * __free_pages - Free pages allocated with alloc_pages().
5748  * @page: The page pointer returned from alloc_pages().
5749  * @order: The order of the allocation.
5750  *
5751  * This function can free multi-page allocations that are not compound
5752  * pages.  It does not check that the @order passed in matches that of
5753  * the allocation, so it is easy to leak memory.  Freeing more memory
5754  * than was allocated will probably emit a warning.
5755  *
5756  * If the last reference to this page is speculative, it will be released
5757  * by put_page() which only frees the first page of a non-compound
5758  * allocation.  To prevent the remaining pages from being leaked, we free
5759  * the subsequent pages here.  If you want to use the page's reference
5760  * count to decide when to free the allocation, you should allocate a
5761  * compound page, and use put_page() instead of __free_pages().
5762  *
5763  * Context: May be called in interrupt context or while holding a normal
5764  * spinlock, but not in NMI context or while holding a raw spinlock.
5765  */
__free_pages(struct page * page,unsigned int order)5766 void __free_pages(struct page *page, unsigned int order)
5767 {
5768 	/* get PageHead before we drop reference */
5769 	int head = PageHead(page);
5770 
5771 	if (put_page_testzero(page))
5772 		free_the_page(page, order);
5773 	else if (!head)
5774 		while (order-- > 0)
5775 			free_the_page(page + (1 << order), order);
5776 }
5777 EXPORT_SYMBOL(__free_pages);
5778 
free_pages(unsigned long addr,unsigned int order)5779 void free_pages(unsigned long addr, unsigned int order)
5780 {
5781 	if (addr != 0) {
5782 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5783 		__free_pages(virt_to_page((void *)addr), order);
5784 	}
5785 }
5786 
5787 EXPORT_SYMBOL(free_pages);
5788 
5789 /*
5790  * Page Fragment:
5791  *  An arbitrary-length arbitrary-offset area of memory which resides
5792  *  within a 0 or higher order page.  Multiple fragments within that page
5793  *  are individually refcounted, in the page's reference counter.
5794  *
5795  * The page_frag functions below provide a simple allocation framework for
5796  * page fragments.  This is used by the network stack and network device
5797  * drivers to provide a backing region of memory for use as either an
5798  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5799  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5800 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5801 					     gfp_t gfp_mask)
5802 {
5803 	struct page *page = NULL;
5804 	gfp_t gfp = gfp_mask;
5805 
5806 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5807 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5808 		    __GFP_NOMEMALLOC;
5809 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5810 				PAGE_FRAG_CACHE_MAX_ORDER);
5811 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5812 #endif
5813 	if (unlikely(!page))
5814 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5815 
5816 	nc->va = page ? page_address(page) : NULL;
5817 
5818 	return page;
5819 }
5820 
__page_frag_cache_drain(struct page * page,unsigned int count)5821 void __page_frag_cache_drain(struct page *page, unsigned int count)
5822 {
5823 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5824 
5825 	if (page_ref_sub_and_test(page, count))
5826 		free_the_page(page, compound_order(page));
5827 }
5828 EXPORT_SYMBOL(__page_frag_cache_drain);
5829 
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)5830 void *page_frag_alloc_align(struct page_frag_cache *nc,
5831 		      unsigned int fragsz, gfp_t gfp_mask,
5832 		      unsigned int align_mask)
5833 {
5834 	unsigned int size = PAGE_SIZE;
5835 	struct page *page;
5836 	int offset;
5837 
5838 	if (unlikely(!nc->va)) {
5839 refill:
5840 		page = __page_frag_cache_refill(nc, gfp_mask);
5841 		if (!page)
5842 			return NULL;
5843 
5844 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5845 		/* if size can vary use size else just use PAGE_SIZE */
5846 		size = nc->size;
5847 #endif
5848 		/* Even if we own the page, we do not use atomic_set().
5849 		 * This would break get_page_unless_zero() users.
5850 		 */
5851 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5852 
5853 		/* reset page count bias and offset to start of new frag */
5854 		nc->pfmemalloc = page_is_pfmemalloc(page);
5855 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5856 		nc->offset = size;
5857 	}
5858 
5859 	offset = nc->offset - fragsz;
5860 	if (unlikely(offset < 0)) {
5861 		page = virt_to_page(nc->va);
5862 
5863 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5864 			goto refill;
5865 
5866 		if (unlikely(nc->pfmemalloc)) {
5867 			free_the_page(page, compound_order(page));
5868 			goto refill;
5869 		}
5870 
5871 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5872 		/* if size can vary use size else just use PAGE_SIZE */
5873 		size = nc->size;
5874 #endif
5875 		/* OK, page count is 0, we can safely set it */
5876 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5877 
5878 		/* reset page count bias and offset to start of new frag */
5879 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5880 		offset = size - fragsz;
5881 		if (unlikely(offset < 0)) {
5882 			/*
5883 			 * The caller is trying to allocate a fragment
5884 			 * with fragsz > PAGE_SIZE but the cache isn't big
5885 			 * enough to satisfy the request, this may
5886 			 * happen in low memory conditions.
5887 			 * We don't release the cache page because
5888 			 * it could make memory pressure worse
5889 			 * so we simply return NULL here.
5890 			 */
5891 			return NULL;
5892 		}
5893 	}
5894 
5895 	nc->pagecnt_bias--;
5896 	offset &= align_mask;
5897 	nc->offset = offset;
5898 
5899 	return nc->va + offset;
5900 }
5901 EXPORT_SYMBOL(page_frag_alloc_align);
5902 
5903 /*
5904  * Frees a page fragment allocated out of either a compound or order 0 page.
5905  */
page_frag_free(void * addr)5906 void page_frag_free(void *addr)
5907 {
5908 	struct page *page = virt_to_head_page(addr);
5909 
5910 	if (unlikely(put_page_testzero(page)))
5911 		free_the_page(page, compound_order(page));
5912 }
5913 EXPORT_SYMBOL(page_frag_free);
5914 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5915 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5916 		size_t size)
5917 {
5918 	if (addr) {
5919 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5920 		unsigned long used = addr + PAGE_ALIGN(size);
5921 
5922 		split_page(virt_to_page((void *)addr), order);
5923 		while (used < alloc_end) {
5924 			free_page(used);
5925 			used += PAGE_SIZE;
5926 		}
5927 	}
5928 	return (void *)addr;
5929 }
5930 
5931 /**
5932  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5933  * @size: the number of bytes to allocate
5934  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5935  *
5936  * This function is similar to alloc_pages(), except that it allocates the
5937  * minimum number of pages to satisfy the request.  alloc_pages() can only
5938  * allocate memory in power-of-two pages.
5939  *
5940  * This function is also limited by MAX_ORDER.
5941  *
5942  * Memory allocated by this function must be released by free_pages_exact().
5943  *
5944  * Return: pointer to the allocated area or %NULL in case of error.
5945  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5946 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5947 {
5948 	unsigned int order = get_order(size);
5949 	unsigned long addr;
5950 
5951 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5952 		gfp_mask &= ~__GFP_COMP;
5953 
5954 	addr = __get_free_pages(gfp_mask, order);
5955 	return make_alloc_exact(addr, order, size);
5956 }
5957 EXPORT_SYMBOL(alloc_pages_exact);
5958 
5959 /**
5960  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5961  *			   pages on a node.
5962  * @nid: the preferred node ID where memory should be allocated
5963  * @size: the number of bytes to allocate
5964  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5965  *
5966  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5967  * back.
5968  *
5969  * Return: pointer to the allocated area or %NULL in case of error.
5970  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5971 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5972 {
5973 	unsigned int order = get_order(size);
5974 	struct page *p;
5975 
5976 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5977 		gfp_mask &= ~__GFP_COMP;
5978 
5979 	p = alloc_pages_node(nid, gfp_mask, order);
5980 	if (!p)
5981 		return NULL;
5982 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5983 }
5984 
5985 /**
5986  * free_pages_exact - release memory allocated via alloc_pages_exact()
5987  * @virt: the value returned by alloc_pages_exact.
5988  * @size: size of allocation, same value as passed to alloc_pages_exact().
5989  *
5990  * Release the memory allocated by a previous call to alloc_pages_exact.
5991  */
free_pages_exact(void * virt,size_t size)5992 void free_pages_exact(void *virt, size_t size)
5993 {
5994 	unsigned long addr = (unsigned long)virt;
5995 	unsigned long end = addr + PAGE_ALIGN(size);
5996 
5997 	while (addr < end) {
5998 		free_page(addr);
5999 		addr += PAGE_SIZE;
6000 	}
6001 }
6002 EXPORT_SYMBOL(free_pages_exact);
6003 
6004 /**
6005  * nr_free_zone_pages - count number of pages beyond high watermark
6006  * @offset: The zone index of the highest zone
6007  *
6008  * nr_free_zone_pages() counts the number of pages which are beyond the
6009  * high watermark within all zones at or below a given zone index.  For each
6010  * zone, the number of pages is calculated as:
6011  *
6012  *     nr_free_zone_pages = managed_pages - high_pages
6013  *
6014  * Return: number of pages beyond high watermark.
6015  */
nr_free_zone_pages(int offset)6016 static unsigned long nr_free_zone_pages(int offset)
6017 {
6018 	struct zoneref *z;
6019 	struct zone *zone;
6020 
6021 	/* Just pick one node, since fallback list is circular */
6022 	unsigned long sum = 0;
6023 
6024 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
6025 
6026 	for_each_zone_zonelist(zone, z, zonelist, offset) {
6027 		unsigned long size = zone_managed_pages(zone);
6028 		unsigned long high = high_wmark_pages(zone);
6029 		if (size > high)
6030 			sum += size - high;
6031 	}
6032 
6033 	return sum;
6034 }
6035 
6036 /**
6037  * nr_free_buffer_pages - count number of pages beyond high watermark
6038  *
6039  * nr_free_buffer_pages() counts the number of pages which are beyond the high
6040  * watermark within ZONE_DMA and ZONE_NORMAL.
6041  *
6042  * Return: number of pages beyond high watermark within ZONE_DMA and
6043  * ZONE_NORMAL.
6044  */
nr_free_buffer_pages(void)6045 unsigned long nr_free_buffer_pages(void)
6046 {
6047 	return nr_free_zone_pages(gfp_zone(GFP_USER));
6048 }
6049 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
6050 
show_node(struct zone * zone)6051 static inline void show_node(struct zone *zone)
6052 {
6053 	if (IS_ENABLED(CONFIG_NUMA))
6054 		printk("Node %d ", zone_to_nid(zone));
6055 }
6056 
si_mem_available(void)6057 long si_mem_available(void)
6058 {
6059 	long available;
6060 	unsigned long pagecache;
6061 	unsigned long wmark_low = 0;
6062 	unsigned long pages[NR_LRU_LISTS];
6063 	unsigned long reclaimable;
6064 	struct zone *zone;
6065 	int lru;
6066 
6067 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
6068 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
6069 
6070 	for_each_zone(zone)
6071 		wmark_low += low_wmark_pages(zone);
6072 
6073 	/*
6074 	 * Estimate the amount of memory available for userspace allocations,
6075 	 * without causing swapping.
6076 	 */
6077 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
6078 
6079 	/*
6080 	 * Not all the page cache can be freed, otherwise the system will
6081 	 * start swapping. Assume at least half of the page cache, or the
6082 	 * low watermark worth of cache, needs to stay.
6083 	 */
6084 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
6085 	pagecache -= min(pagecache / 2, wmark_low);
6086 	available += pagecache;
6087 
6088 	/*
6089 	 * Part of the reclaimable slab and other kernel memory consists of
6090 	 * items that are in use, and cannot be freed. Cap this estimate at the
6091 	 * low watermark.
6092 	 */
6093 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6094 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
6095 	available += reclaimable - min(reclaimable / 2, wmark_low);
6096 
6097 	if (available < 0)
6098 		available = 0;
6099 	return available;
6100 }
6101 EXPORT_SYMBOL_GPL(si_mem_available);
6102 
si_meminfo(struct sysinfo * val)6103 void si_meminfo(struct sysinfo *val)
6104 {
6105 	val->totalram = totalram_pages();
6106 	val->sharedram = global_node_page_state(NR_SHMEM);
6107 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
6108 	val->bufferram = nr_blockdev_pages();
6109 	val->totalhigh = totalhigh_pages();
6110 	val->freehigh = nr_free_highpages();
6111 	val->mem_unit = PAGE_SIZE;
6112 	trace_android_vh_si_meminfo(val);
6113 }
6114 
6115 EXPORT_SYMBOL(si_meminfo);
6116 
6117 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)6118 void si_meminfo_node(struct sysinfo *val, int nid)
6119 {
6120 	int zone_type;		/* needs to be signed */
6121 	unsigned long managed_pages = 0;
6122 	unsigned long managed_highpages = 0;
6123 	unsigned long free_highpages = 0;
6124 	pg_data_t *pgdat = NODE_DATA(nid);
6125 
6126 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6127 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6128 	val->totalram = managed_pages;
6129 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
6130 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6131 #ifdef CONFIG_HIGHMEM
6132 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6133 		struct zone *zone = &pgdat->node_zones[zone_type];
6134 
6135 		if (is_highmem(zone)) {
6136 			managed_highpages += zone_managed_pages(zone);
6137 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6138 		}
6139 	}
6140 	val->totalhigh = managed_highpages;
6141 	val->freehigh = free_highpages;
6142 #else
6143 	val->totalhigh = managed_highpages;
6144 	val->freehigh = free_highpages;
6145 #endif
6146 	val->mem_unit = PAGE_SIZE;
6147 }
6148 #endif
6149 
6150 /*
6151  * Determine whether the node should be displayed or not, depending on whether
6152  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6153  */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)6154 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6155 {
6156 	if (!(flags & SHOW_MEM_FILTER_NODES))
6157 		return false;
6158 
6159 	/*
6160 	 * no node mask - aka implicit memory numa policy. Do not bother with
6161 	 * the synchronization - read_mems_allowed_begin - because we do not
6162 	 * have to be precise here.
6163 	 */
6164 	if (!nodemask)
6165 		nodemask = &cpuset_current_mems_allowed;
6166 
6167 	return !node_isset(nid, *nodemask);
6168 }
6169 
6170 #define K(x) ((x) << (PAGE_SHIFT-10))
6171 
show_migration_types(unsigned char type)6172 static void show_migration_types(unsigned char type)
6173 {
6174 	static const char types[MIGRATE_TYPES] = {
6175 		[MIGRATE_UNMOVABLE]	= 'U',
6176 		[MIGRATE_MOVABLE]	= 'M',
6177 		[MIGRATE_RECLAIMABLE]	= 'E',
6178 		[MIGRATE_HIGHATOMIC]	= 'H',
6179 #ifdef CONFIG_CMA
6180 		[MIGRATE_CMA]		= 'C',
6181 #endif
6182 #ifdef CONFIG_MEMORY_ISOLATION
6183 		[MIGRATE_ISOLATE]	= 'I',
6184 #endif
6185 	};
6186 	char tmp[MIGRATE_TYPES + 1];
6187 	char *p = tmp;
6188 	int i;
6189 
6190 	for (i = 0; i < MIGRATE_TYPES; i++) {
6191 		if (type & (1 << i))
6192 			*p++ = types[i];
6193 	}
6194 
6195 	*p = '\0';
6196 	printk(KERN_CONT "(%s) ", tmp);
6197 }
6198 
6199 /*
6200  * Show free area list (used inside shift_scroll-lock stuff)
6201  * We also calculate the percentage fragmentation. We do this by counting the
6202  * memory on each free list with the exception of the first item on the list.
6203  *
6204  * Bits in @filter:
6205  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6206  *   cpuset.
6207  */
show_free_areas(unsigned int filter,nodemask_t * nodemask)6208 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6209 {
6210 	unsigned long free_pcp = 0;
6211 	int cpu;
6212 	struct zone *zone;
6213 	pg_data_t *pgdat;
6214 
6215 	for_each_populated_zone(zone) {
6216 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6217 			continue;
6218 
6219 		for_each_online_cpu(cpu)
6220 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6221 	}
6222 
6223 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6224 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6225 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6226 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6227 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6228 		" sec_pagetables:%lu bounce:%lu\n"
6229 		" kernel_misc_reclaimable:%lu\n"
6230 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6231 		global_node_page_state(NR_ACTIVE_ANON),
6232 		global_node_page_state(NR_INACTIVE_ANON),
6233 		global_node_page_state(NR_ISOLATED_ANON),
6234 		global_node_page_state(NR_ACTIVE_FILE),
6235 		global_node_page_state(NR_INACTIVE_FILE),
6236 		global_node_page_state(NR_ISOLATED_FILE),
6237 		global_node_page_state(NR_UNEVICTABLE),
6238 		global_node_page_state(NR_FILE_DIRTY),
6239 		global_node_page_state(NR_WRITEBACK),
6240 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6241 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6242 		global_node_page_state(NR_FILE_MAPPED),
6243 		global_node_page_state(NR_SHMEM),
6244 		global_node_page_state(NR_PAGETABLE),
6245 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6246 		global_zone_page_state(NR_BOUNCE),
6247 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6248 		global_zone_page_state(NR_FREE_PAGES),
6249 		free_pcp,
6250 		global_zone_page_state(NR_FREE_CMA_PAGES));
6251 
6252 	for_each_online_pgdat(pgdat) {
6253 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6254 			continue;
6255 
6256 		printk("Node %d"
6257 			" active_anon:%lukB"
6258 			" inactive_anon:%lukB"
6259 			" active_file:%lukB"
6260 			" inactive_file:%lukB"
6261 			" unevictable:%lukB"
6262 			" isolated(anon):%lukB"
6263 			" isolated(file):%lukB"
6264 			" mapped:%lukB"
6265 			" dirty:%lukB"
6266 			" writeback:%lukB"
6267 			" shmem:%lukB"
6268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6269 			" shmem_thp: %lukB"
6270 			" shmem_pmdmapped: %lukB"
6271 			" anon_thp: %lukB"
6272 #endif
6273 			" writeback_tmp:%lukB"
6274 			" kernel_stack:%lukB"
6275 #ifdef CONFIG_SHADOW_CALL_STACK
6276 			" shadow_call_stack:%lukB"
6277 #endif
6278 			" pagetables:%lukB"
6279 			" sec_pagetables:%lukB"
6280 			" all_unreclaimable? %s"
6281 			"\n",
6282 			pgdat->node_id,
6283 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6284 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6285 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6286 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6287 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6288 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6289 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6290 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6291 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6292 			K(node_page_state(pgdat, NR_WRITEBACK)),
6293 			K(node_page_state(pgdat, NR_SHMEM)),
6294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6295 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6296 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6297 			K(node_page_state(pgdat, NR_ANON_THPS)),
6298 #endif
6299 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6300 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6301 #ifdef CONFIG_SHADOW_CALL_STACK
6302 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6303 #endif
6304 			K(node_page_state(pgdat, NR_PAGETABLE)),
6305 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6306 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6307 				"yes" : "no");
6308 	}
6309 
6310 	for_each_populated_zone(zone) {
6311 		int i;
6312 
6313 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6314 			continue;
6315 
6316 		free_pcp = 0;
6317 		for_each_online_cpu(cpu)
6318 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6319 
6320 		show_node(zone);
6321 		printk(KERN_CONT
6322 			"%s"
6323 			" free:%lukB"
6324 			" min:%lukB"
6325 			" low:%lukB"
6326 			" high:%lukB"
6327 			" reserved_highatomic:%luKB"
6328 			" active_anon:%lukB"
6329 			" inactive_anon:%lukB"
6330 			" active_file:%lukB"
6331 			" inactive_file:%lukB"
6332 			" unevictable:%lukB"
6333 			" writepending:%lukB"
6334 			" present:%lukB"
6335 			" managed:%lukB"
6336 			" mlocked:%lukB"
6337 			" bounce:%lukB"
6338 			" free_pcp:%lukB"
6339 			" local_pcp:%ukB"
6340 			" free_cma:%lukB"
6341 			"\n",
6342 			zone->name,
6343 			K(zone_page_state(zone, NR_FREE_PAGES)),
6344 			K(min_wmark_pages(zone)),
6345 			K(low_wmark_pages(zone)),
6346 			K(high_wmark_pages(zone)),
6347 			K(zone->nr_reserved_highatomic),
6348 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6349 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6350 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6351 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6352 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6353 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6354 			K(zone->present_pages),
6355 			K(zone_managed_pages(zone)),
6356 			K(zone_page_state(zone, NR_MLOCK)),
6357 			K(zone_page_state(zone, NR_BOUNCE)),
6358 			K(free_pcp),
6359 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6360 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6361 		printk("lowmem_reserve[]:");
6362 		for (i = 0; i < MAX_NR_ZONES; i++)
6363 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6364 		printk(KERN_CONT "\n");
6365 	}
6366 
6367 	for_each_populated_zone(zone) {
6368 		unsigned int order;
6369 		unsigned long nr[MAX_ORDER], flags, total = 0;
6370 		unsigned char types[MAX_ORDER];
6371 
6372 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6373 			continue;
6374 		show_node(zone);
6375 		printk(KERN_CONT "%s: ", zone->name);
6376 
6377 		spin_lock_irqsave(&zone->lock, flags);
6378 		for (order = 0; order < MAX_ORDER; order++) {
6379 			struct free_area *area = &zone->free_area[order];
6380 			int type;
6381 
6382 			nr[order] = area->nr_free;
6383 			total += nr[order] << order;
6384 
6385 			types[order] = 0;
6386 			for (type = 0; type < MIGRATE_TYPES; type++) {
6387 				if (!free_area_empty(area, type))
6388 					types[order] |= 1 << type;
6389 			}
6390 		}
6391 		spin_unlock_irqrestore(&zone->lock, flags);
6392 		for (order = 0; order < MAX_ORDER; order++) {
6393 			printk(KERN_CONT "%lu*%lukB ",
6394 			       nr[order], K(1UL) << order);
6395 			if (nr[order])
6396 				show_migration_types(types[order]);
6397 		}
6398 		printk(KERN_CONT "= %lukB\n", K(total));
6399 	}
6400 
6401 	hugetlb_show_meminfo();
6402 
6403 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6404 
6405 	show_swap_cache_info();
6406 }
6407 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)6408 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6409 {
6410 	zoneref->zone = zone;
6411 	zoneref->zone_idx = zone_idx(zone);
6412 }
6413 
6414 /*
6415  * Builds allocation fallback zone lists.
6416  *
6417  * Add all populated zones of a node to the zonelist.
6418  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)6419 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6420 {
6421 	struct zone *zone;
6422 	enum zone_type zone_type = MAX_NR_ZONES;
6423 	int nr_zones = 0;
6424 
6425 	do {
6426 		zone_type--;
6427 		zone = pgdat->node_zones + zone_type;
6428 		if (populated_zone(zone)) {
6429 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6430 			check_highest_zone(zone_type);
6431 		}
6432 	} while (zone_type);
6433 
6434 	return nr_zones;
6435 }
6436 
6437 #ifdef CONFIG_NUMA
6438 
__parse_numa_zonelist_order(char * s)6439 static int __parse_numa_zonelist_order(char *s)
6440 {
6441 	/*
6442 	 * We used to support different zonelists modes but they turned
6443 	 * out to be just not useful. Let's keep the warning in place
6444 	 * if somebody still use the cmd line parameter so that we do
6445 	 * not fail it silently
6446 	 */
6447 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6448 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6449 		return -EINVAL;
6450 	}
6451 	return 0;
6452 }
6453 
6454 char numa_zonelist_order[] = "Node";
6455 
6456 /*
6457  * sysctl handler for numa_zonelist_order
6458  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6459 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6460 		void *buffer, size_t *length, loff_t *ppos)
6461 {
6462 	if (write)
6463 		return __parse_numa_zonelist_order(buffer);
6464 	return proc_dostring(table, write, buffer, length, ppos);
6465 }
6466 
6467 
6468 #define MAX_NODE_LOAD (nr_online_nodes)
6469 static int node_load[MAX_NUMNODES];
6470 
6471 /**
6472  * find_next_best_node - find the next node that should appear in a given node's fallback list
6473  * @node: node whose fallback list we're appending
6474  * @used_node_mask: nodemask_t of already used nodes
6475  *
6476  * We use a number of factors to determine which is the next node that should
6477  * appear on a given node's fallback list.  The node should not have appeared
6478  * already in @node's fallback list, and it should be the next closest node
6479  * according to the distance array (which contains arbitrary distance values
6480  * from each node to each node in the system), and should also prefer nodes
6481  * with no CPUs, since presumably they'll have very little allocation pressure
6482  * on them otherwise.
6483  *
6484  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6485  */
find_next_best_node(int node,nodemask_t * used_node_mask)6486 int find_next_best_node(int node, nodemask_t *used_node_mask)
6487 {
6488 	int n, val;
6489 	int min_val = INT_MAX;
6490 	int best_node = NUMA_NO_NODE;
6491 
6492 	/* Use the local node if we haven't already */
6493 	if (!node_isset(node, *used_node_mask)) {
6494 		node_set(node, *used_node_mask);
6495 		return node;
6496 	}
6497 
6498 	for_each_node_state(n, N_MEMORY) {
6499 
6500 		/* Don't want a node to appear more than once */
6501 		if (node_isset(n, *used_node_mask))
6502 			continue;
6503 
6504 		/* Use the distance array to find the distance */
6505 		val = node_distance(node, n);
6506 
6507 		/* Penalize nodes under us ("prefer the next node") */
6508 		val += (n < node);
6509 
6510 		/* Give preference to headless and unused nodes */
6511 		if (!cpumask_empty(cpumask_of_node(n)))
6512 			val += PENALTY_FOR_NODE_WITH_CPUS;
6513 
6514 		/* Slight preference for less loaded node */
6515 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6516 		val += node_load[n];
6517 
6518 		if (val < min_val) {
6519 			min_val = val;
6520 			best_node = n;
6521 		}
6522 	}
6523 
6524 	if (best_node >= 0)
6525 		node_set(best_node, *used_node_mask);
6526 
6527 	return best_node;
6528 }
6529 
6530 
6531 /*
6532  * Build zonelists ordered by node and zones within node.
6533  * This results in maximum locality--normal zone overflows into local
6534  * DMA zone, if any--but risks exhausting DMA zone.
6535  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)6536 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6537 		unsigned nr_nodes)
6538 {
6539 	struct zoneref *zonerefs;
6540 	int i;
6541 
6542 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6543 
6544 	for (i = 0; i < nr_nodes; i++) {
6545 		int nr_zones;
6546 
6547 		pg_data_t *node = NODE_DATA(node_order[i]);
6548 
6549 		nr_zones = build_zonerefs_node(node, zonerefs);
6550 		zonerefs += nr_zones;
6551 	}
6552 	zonerefs->zone = NULL;
6553 	zonerefs->zone_idx = 0;
6554 }
6555 
6556 /*
6557  * Build gfp_thisnode zonelists
6558  */
build_thisnode_zonelists(pg_data_t * pgdat)6559 static void build_thisnode_zonelists(pg_data_t *pgdat)
6560 {
6561 	struct zoneref *zonerefs;
6562 	int nr_zones;
6563 
6564 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6565 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6566 	zonerefs += nr_zones;
6567 	zonerefs->zone = NULL;
6568 	zonerefs->zone_idx = 0;
6569 }
6570 
6571 /*
6572  * Build zonelists ordered by zone and nodes within zones.
6573  * This results in conserving DMA zone[s] until all Normal memory is
6574  * exhausted, but results in overflowing to remote node while memory
6575  * may still exist in local DMA zone.
6576  */
6577 
build_zonelists(pg_data_t * pgdat)6578 static void build_zonelists(pg_data_t *pgdat)
6579 {
6580 	static int node_order[MAX_NUMNODES];
6581 	int node, load, nr_nodes = 0;
6582 	nodemask_t used_mask = NODE_MASK_NONE;
6583 	int local_node, prev_node;
6584 
6585 	/* NUMA-aware ordering of nodes */
6586 	local_node = pgdat->node_id;
6587 	load = nr_online_nodes;
6588 	prev_node = local_node;
6589 
6590 	memset(node_order, 0, sizeof(node_order));
6591 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6592 		/*
6593 		 * We don't want to pressure a particular node.
6594 		 * So adding penalty to the first node in same
6595 		 * distance group to make it round-robin.
6596 		 */
6597 		if (node_distance(local_node, node) !=
6598 		    node_distance(local_node, prev_node))
6599 			node_load[node] = load;
6600 
6601 		node_order[nr_nodes++] = node;
6602 		prev_node = node;
6603 		load--;
6604 	}
6605 
6606 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6607 	build_thisnode_zonelists(pgdat);
6608 }
6609 
6610 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6611 /*
6612  * Return node id of node used for "local" allocations.
6613  * I.e., first node id of first zone in arg node's generic zonelist.
6614  * Used for initializing percpu 'numa_mem', which is used primarily
6615  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6616  */
local_memory_node(int node)6617 int local_memory_node(int node)
6618 {
6619 	struct zoneref *z;
6620 
6621 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6622 				   gfp_zone(GFP_KERNEL),
6623 				   NULL);
6624 	return zone_to_nid(z->zone);
6625 }
6626 #endif
6627 
6628 static void setup_min_unmapped_ratio(void);
6629 static void setup_min_slab_ratio(void);
6630 #else	/* CONFIG_NUMA */
6631 
build_zonelists(pg_data_t * pgdat)6632 static void build_zonelists(pg_data_t *pgdat)
6633 {
6634 	int node, local_node;
6635 	struct zoneref *zonerefs;
6636 	int nr_zones;
6637 
6638 	local_node = pgdat->node_id;
6639 
6640 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6641 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6642 	zonerefs += nr_zones;
6643 
6644 	/*
6645 	 * Now we build the zonelist so that it contains the zones
6646 	 * of all the other nodes.
6647 	 * We don't want to pressure a particular node, so when
6648 	 * building the zones for node N, we make sure that the
6649 	 * zones coming right after the local ones are those from
6650 	 * node N+1 (modulo N)
6651 	 */
6652 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6653 		if (!node_online(node))
6654 			continue;
6655 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6656 		zonerefs += nr_zones;
6657 	}
6658 	for (node = 0; node < local_node; node++) {
6659 		if (!node_online(node))
6660 			continue;
6661 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6662 		zonerefs += nr_zones;
6663 	}
6664 
6665 	zonerefs->zone = NULL;
6666 	zonerefs->zone_idx = 0;
6667 }
6668 
6669 #endif	/* CONFIG_NUMA */
6670 
6671 /*
6672  * Boot pageset table. One per cpu which is going to be used for all
6673  * zones and all nodes. The parameters will be set in such a way
6674  * that an item put on a list will immediately be handed over to
6675  * the buddy list. This is safe since pageset manipulation is done
6676  * with interrupts disabled.
6677  *
6678  * The boot_pagesets must be kept even after bootup is complete for
6679  * unused processors and/or zones. They do play a role for bootstrapping
6680  * hotplugged processors.
6681  *
6682  * zoneinfo_show() and maybe other functions do
6683  * not check if the processor is online before following the pageset pointer.
6684  * Other parts of the kernel may not check if the zone is available.
6685  */
6686 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6687 /* These effectively disable the pcplists in the boot pageset completely */
6688 #define BOOT_PAGESET_HIGH	0
6689 #define BOOT_PAGESET_BATCH	1
6690 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6691 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6692 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6693 
__build_all_zonelists(void * data)6694 static void __build_all_zonelists(void *data)
6695 {
6696 	int nid;
6697 	int __maybe_unused cpu;
6698 	pg_data_t *self = data;
6699 	unsigned long flags;
6700 
6701 	/*
6702 	 * Explicitly disable this CPU's interrupts before taking seqlock
6703 	 * to prevent any IRQ handler from calling into the page allocator
6704 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
6705 	 */
6706 	local_irq_save(flags);
6707 	/*
6708 	 * Explicitly disable this CPU's synchronous printk() before taking
6709 	 * seqlock to prevent any printk() from trying to hold port->lock, for
6710 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
6711 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
6712 	 */
6713 	printk_deferred_enter();
6714 	write_seqlock(&zonelist_update_seq);
6715 
6716 #ifdef CONFIG_NUMA
6717 	memset(node_load, 0, sizeof(node_load));
6718 #endif
6719 
6720 	/*
6721 	 * This node is hotadded and no memory is yet present.   So just
6722 	 * building zonelists is fine - no need to touch other nodes.
6723 	 */
6724 	if (self && !node_online(self->node_id)) {
6725 		build_zonelists(self);
6726 	} else {
6727 		for_each_online_node(nid) {
6728 			pg_data_t *pgdat = NODE_DATA(nid);
6729 
6730 			build_zonelists(pgdat);
6731 		}
6732 
6733 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6734 		/*
6735 		 * We now know the "local memory node" for each node--
6736 		 * i.e., the node of the first zone in the generic zonelist.
6737 		 * Set up numa_mem percpu variable for on-line cpus.  During
6738 		 * boot, only the boot cpu should be on-line;  we'll init the
6739 		 * secondary cpus' numa_mem as they come on-line.  During
6740 		 * node/memory hotplug, we'll fixup all on-line cpus.
6741 		 */
6742 		for_each_online_cpu(cpu)
6743 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6744 #endif
6745 	}
6746 
6747 	write_sequnlock(&zonelist_update_seq);
6748 	printk_deferred_exit();
6749 	local_irq_restore(flags);
6750 }
6751 
6752 static noinline void __init
build_all_zonelists_init(void)6753 build_all_zonelists_init(void)
6754 {
6755 	int cpu;
6756 
6757 	__build_all_zonelists(NULL);
6758 
6759 	/*
6760 	 * Initialize the boot_pagesets that are going to be used
6761 	 * for bootstrapping processors. The real pagesets for
6762 	 * each zone will be allocated later when the per cpu
6763 	 * allocator is available.
6764 	 *
6765 	 * boot_pagesets are used also for bootstrapping offline
6766 	 * cpus if the system is already booted because the pagesets
6767 	 * are needed to initialize allocators on a specific cpu too.
6768 	 * F.e. the percpu allocator needs the page allocator which
6769 	 * needs the percpu allocator in order to allocate its pagesets
6770 	 * (a chicken-egg dilemma).
6771 	 */
6772 	for_each_possible_cpu(cpu)
6773 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6774 
6775 	mminit_verify_zonelist();
6776 	cpuset_init_current_mems_allowed();
6777 }
6778 
6779 /*
6780  * unless system_state == SYSTEM_BOOTING.
6781  *
6782  * __ref due to call of __init annotated helper build_all_zonelists_init
6783  * [protected by SYSTEM_BOOTING].
6784  */
build_all_zonelists(pg_data_t * pgdat)6785 void __ref build_all_zonelists(pg_data_t *pgdat)
6786 {
6787 	unsigned long vm_total_pages;
6788 
6789 	if (system_state == SYSTEM_BOOTING) {
6790 		build_all_zonelists_init();
6791 	} else {
6792 		__build_all_zonelists(pgdat);
6793 		/* cpuset refresh routine should be here */
6794 	}
6795 	/* Get the number of free pages beyond high watermark in all zones. */
6796 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6797 	/*
6798 	 * Disable grouping by mobility if the number of pages in the
6799 	 * system is too low to allow the mechanism to work. It would be
6800 	 * more accurate, but expensive to check per-zone. This check is
6801 	 * made on memory-hotadd so a system can start with mobility
6802 	 * disabled and enable it later
6803 	 */
6804 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6805 		page_group_by_mobility_disabled = 1;
6806 	else
6807 		page_group_by_mobility_disabled = 0;
6808 
6809 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6810 		nr_online_nodes,
6811 		page_group_by_mobility_disabled ? "off" : "on",
6812 		vm_total_pages);
6813 #ifdef CONFIG_NUMA
6814 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6815 #endif
6816 }
6817 
6818 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6819 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6820 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6821 {
6822 	static struct memblock_region *r;
6823 
6824 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6825 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6826 			for_each_mem_region(r) {
6827 				if (*pfn < memblock_region_memory_end_pfn(r))
6828 					break;
6829 			}
6830 		}
6831 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6832 		    memblock_is_mirror(r)) {
6833 			*pfn = memblock_region_memory_end_pfn(r);
6834 			return true;
6835 		}
6836 	}
6837 	return false;
6838 }
6839 
6840 /*
6841  * Initially all pages are reserved - free ones are freed
6842  * up by memblock_free_all() once the early boot process is
6843  * done. Non-atomic initialization, single-pass.
6844  *
6845  * All aligned pageblocks are initialized to the specified migratetype
6846  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6847  * zone stats (e.g., nr_isolate_pageblock) are touched.
6848  */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6849 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6850 		unsigned long start_pfn, unsigned long zone_end_pfn,
6851 		enum meminit_context context,
6852 		struct vmem_altmap *altmap, int migratetype)
6853 {
6854 	unsigned long pfn, end_pfn = start_pfn + size;
6855 	struct page *page;
6856 
6857 	if (highest_memmap_pfn < end_pfn - 1)
6858 		highest_memmap_pfn = end_pfn - 1;
6859 
6860 #ifdef CONFIG_ZONE_DEVICE
6861 	/*
6862 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6863 	 * memory. We limit the total number of pages to initialize to just
6864 	 * those that might contain the memory mapping. We will defer the
6865 	 * ZONE_DEVICE page initialization until after we have released
6866 	 * the hotplug lock.
6867 	 */
6868 	if (zone == ZONE_DEVICE) {
6869 		if (!altmap)
6870 			return;
6871 
6872 		if (start_pfn == altmap->base_pfn)
6873 			start_pfn += altmap->reserve;
6874 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6875 	}
6876 #endif
6877 
6878 	for (pfn = start_pfn; pfn < end_pfn; ) {
6879 		/*
6880 		 * There can be holes in boot-time mem_map[]s handed to this
6881 		 * function.  They do not exist on hotplugged memory.
6882 		 */
6883 		if (context == MEMINIT_EARLY) {
6884 			if (overlap_memmap_init(zone, &pfn))
6885 				continue;
6886 			if (defer_init(nid, pfn, zone_end_pfn))
6887 				break;
6888 		}
6889 
6890 		page = pfn_to_page(pfn);
6891 		__init_single_page(page, pfn, zone, nid);
6892 		if (context == MEMINIT_HOTPLUG)
6893 			__SetPageReserved(page);
6894 
6895 		/*
6896 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6897 		 * such that unmovable allocations won't be scattered all
6898 		 * over the place during system boot.
6899 		 */
6900 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6901 			set_pageblock_migratetype(page, migratetype);
6902 			cond_resched();
6903 		}
6904 		pfn++;
6905 	}
6906 }
6907 
6908 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6909 void __ref memmap_init_zone_device(struct zone *zone,
6910 				   unsigned long start_pfn,
6911 				   unsigned long nr_pages,
6912 				   struct dev_pagemap *pgmap)
6913 {
6914 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6915 	struct pglist_data *pgdat = zone->zone_pgdat;
6916 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6917 	unsigned long zone_idx = zone_idx(zone);
6918 	unsigned long start = jiffies;
6919 	int nid = pgdat->node_id;
6920 
6921 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6922 		return;
6923 
6924 	/*
6925 	 * The call to memmap_init should have already taken care
6926 	 * of the pages reserved for the memmap, so we can just jump to
6927 	 * the end of that region and start processing the device pages.
6928 	 */
6929 	if (altmap) {
6930 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6931 		nr_pages = end_pfn - start_pfn;
6932 	}
6933 
6934 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6935 		struct page *page = pfn_to_page(pfn);
6936 
6937 		__init_single_page(page, pfn, zone_idx, nid);
6938 
6939 		/*
6940 		 * Mark page reserved as it will need to wait for onlining
6941 		 * phase for it to be fully associated with a zone.
6942 		 *
6943 		 * We can use the non-atomic __set_bit operation for setting
6944 		 * the flag as we are still initializing the pages.
6945 		 */
6946 		__SetPageReserved(page);
6947 
6948 		/*
6949 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6950 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6951 		 * ever freed or placed on a driver-private list.
6952 		 */
6953 		page->pgmap = pgmap;
6954 		page->zone_device_data = NULL;
6955 
6956 		/*
6957 		 * Mark the block movable so that blocks are reserved for
6958 		 * movable at startup. This will force kernel allocations
6959 		 * to reserve their blocks rather than leaking throughout
6960 		 * the address space during boot when many long-lived
6961 		 * kernel allocations are made.
6962 		 *
6963 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6964 		 * because this is done early in section_activate()
6965 		 */
6966 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6967 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6968 			cond_resched();
6969 		}
6970 	}
6971 
6972 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6973 		nr_pages, jiffies_to_msecs(jiffies - start));
6974 }
6975 
6976 #endif
zone_init_free_lists(struct zone * zone)6977 static void __meminit zone_init_free_lists(struct zone *zone)
6978 {
6979 	unsigned int order, t;
6980 	for_each_migratetype_order(order, t) {
6981 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6982 		zone->free_area[order].nr_free = 0;
6983 	}
6984 }
6985 
6986 /*
6987  * Only struct pages that correspond to ranges defined by memblock.memory
6988  * are zeroed and initialized by going through __init_single_page() during
6989  * memmap_init_zone_range().
6990  *
6991  * But, there could be struct pages that correspond to holes in
6992  * memblock.memory. This can happen because of the following reasons:
6993  * - physical memory bank size is not necessarily the exact multiple of the
6994  *   arbitrary section size
6995  * - early reserved memory may not be listed in memblock.memory
6996  * - memory layouts defined with memmap= kernel parameter may not align
6997  *   nicely with memmap sections
6998  *
6999  * Explicitly initialize those struct pages so that:
7000  * - PG_Reserved is set
7001  * - zone and node links point to zone and node that span the page if the
7002  *   hole is in the middle of a zone
7003  * - zone and node links point to adjacent zone/node if the hole falls on
7004  *   the zone boundary; the pages in such holes will be prepended to the
7005  *   zone/node above the hole except for the trailing pages in the last
7006  *   section that will be appended to the zone/node below.
7007  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)7008 static void __init init_unavailable_range(unsigned long spfn,
7009 					  unsigned long epfn,
7010 					  int zone, int node)
7011 {
7012 	unsigned long pfn;
7013 	u64 pgcnt = 0;
7014 
7015 	for (pfn = spfn; pfn < epfn; pfn++) {
7016 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7017 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7018 				+ pageblock_nr_pages - 1;
7019 			continue;
7020 		}
7021 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
7022 		__SetPageReserved(pfn_to_page(pfn));
7023 		pgcnt++;
7024 	}
7025 
7026 	if (pgcnt)
7027 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7028 			node, zone_names[zone], pgcnt);
7029 }
7030 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)7031 static void __init memmap_init_zone_range(struct zone *zone,
7032 					  unsigned long start_pfn,
7033 					  unsigned long end_pfn,
7034 					  unsigned long *hole_pfn)
7035 {
7036 	unsigned long zone_start_pfn = zone->zone_start_pfn;
7037 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7038 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7039 
7040 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7041 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7042 
7043 	if (start_pfn >= end_pfn)
7044 		return;
7045 
7046 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7047 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7048 
7049 	if (*hole_pfn < start_pfn)
7050 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7051 
7052 	*hole_pfn = end_pfn;
7053 }
7054 
memmap_init(void)7055 static void __init memmap_init(void)
7056 {
7057 	unsigned long start_pfn, end_pfn;
7058 	unsigned long hole_pfn = 0;
7059 	int i, j, zone_id = 0, nid;
7060 
7061 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7062 		struct pglist_data *node = NODE_DATA(nid);
7063 
7064 		for (j = 0; j < MAX_NR_ZONES; j++) {
7065 			struct zone *zone = node->node_zones + j;
7066 
7067 			if (!populated_zone(zone))
7068 				continue;
7069 
7070 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7071 					       &hole_pfn);
7072 			zone_id = j;
7073 		}
7074 	}
7075 
7076 #ifdef CONFIG_SPARSEMEM
7077 	/*
7078 	 * Initialize the memory map for hole in the range [memory_end,
7079 	 * section_end].
7080 	 * Append the pages in this hole to the highest zone in the last
7081 	 * node.
7082 	 * The call to init_unavailable_range() is outside the ifdef to
7083 	 * silence the compiler warining about zone_id set but not used;
7084 	 * for FLATMEM it is a nop anyway
7085 	 */
7086 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7087 	if (hole_pfn < end_pfn)
7088 #endif
7089 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7090 }
7091 
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)7092 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7093 			  phys_addr_t min_addr, int nid, bool exact_nid)
7094 {
7095 	void *ptr;
7096 
7097 	if (exact_nid)
7098 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7099 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7100 						   nid);
7101 	else
7102 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7103 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7104 						 nid);
7105 
7106 	if (ptr && size > 0)
7107 		page_init_poison(ptr, size);
7108 
7109 	return ptr;
7110 }
7111 
zone_batchsize(struct zone * zone)7112 static int zone_batchsize(struct zone *zone)
7113 {
7114 #ifdef CONFIG_MMU
7115 	int batch;
7116 
7117 	/*
7118 	 * The number of pages to batch allocate is either ~0.1%
7119 	 * of the zone or 1MB, whichever is smaller. The batch
7120 	 * size is striking a balance between allocation latency
7121 	 * and zone lock contention.
7122 	 */
7123 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7124 	batch /= 4;		/* We effectively *= 4 below */
7125 	if (batch < 1)
7126 		batch = 1;
7127 
7128 	/*
7129 	 * Clamp the batch to a 2^n - 1 value. Having a power
7130 	 * of 2 value was found to be more likely to have
7131 	 * suboptimal cache aliasing properties in some cases.
7132 	 *
7133 	 * For example if 2 tasks are alternately allocating
7134 	 * batches of pages, one task can end up with a lot
7135 	 * of pages of one half of the possible page colors
7136 	 * and the other with pages of the other colors.
7137 	 */
7138 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7139 
7140 	return batch;
7141 
7142 #else
7143 	/* The deferral and batching of frees should be suppressed under NOMMU
7144 	 * conditions.
7145 	 *
7146 	 * The problem is that NOMMU needs to be able to allocate large chunks
7147 	 * of contiguous memory as there's no hardware page translation to
7148 	 * assemble apparent contiguous memory from discontiguous pages.
7149 	 *
7150 	 * Queueing large contiguous runs of pages for batching, however,
7151 	 * causes the pages to actually be freed in smaller chunks.  As there
7152 	 * can be a significant delay between the individual batches being
7153 	 * recycled, this leads to the once large chunks of space being
7154 	 * fragmented and becoming unavailable for high-order allocations.
7155 	 */
7156 	return 0;
7157 #endif
7158 }
7159 
zone_highsize(struct zone * zone,int batch,int cpu_online)7160 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7161 {
7162 #ifdef CONFIG_MMU
7163 	int high;
7164 	int nr_split_cpus;
7165 	unsigned long total_pages;
7166 
7167 	if (!percpu_pagelist_high_fraction) {
7168 		/*
7169 		 * By default, the high value of the pcp is based on the zone
7170 		 * low watermark so that if they are full then background
7171 		 * reclaim will not be started prematurely.
7172 		 */
7173 		total_pages = low_wmark_pages(zone);
7174 	} else {
7175 		/*
7176 		 * If percpu_pagelist_high_fraction is configured, the high
7177 		 * value is based on a fraction of the managed pages in the
7178 		 * zone.
7179 		 */
7180 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7181 	}
7182 
7183 	/*
7184 	 * Split the high value across all online CPUs local to the zone. Note
7185 	 * that early in boot that CPUs may not be online yet and that during
7186 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7187 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7188 	 * all online CPUs to mitigate the risk that reclaim is triggered
7189 	 * prematurely due to pages stored on pcp lists.
7190 	 */
7191 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7192 	if (!nr_split_cpus)
7193 		nr_split_cpus = num_online_cpus();
7194 	high = total_pages / nr_split_cpus;
7195 
7196 	/*
7197 	 * Ensure high is at least batch*4. The multiple is based on the
7198 	 * historical relationship between high and batch.
7199 	 */
7200 	high = max(high, batch << 2);
7201 
7202 	return high;
7203 #else
7204 	return 0;
7205 #endif
7206 }
7207 
7208 /*
7209  * pcp->high and pcp->batch values are related and generally batch is lower
7210  * than high. They are also related to pcp->count such that count is lower
7211  * than high, and as soon as it reaches high, the pcplist is flushed.
7212  *
7213  * However, guaranteeing these relations at all times would require e.g. write
7214  * barriers here but also careful usage of read barriers at the read side, and
7215  * thus be prone to error and bad for performance. Thus the update only prevents
7216  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7217  * can cope with those fields changing asynchronously, and fully trust only the
7218  * pcp->count field on the local CPU with interrupts disabled.
7219  *
7220  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7221  * outside of boot time (or some other assurance that no concurrent updaters
7222  * exist).
7223  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)7224 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7225 		unsigned long batch)
7226 {
7227 	WRITE_ONCE(pcp->batch, batch);
7228 	WRITE_ONCE(pcp->high, high);
7229 }
7230 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)7231 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7232 {
7233 	int pindex;
7234 
7235 	memset(pcp, 0, sizeof(*pcp));
7236 	memset(pzstats, 0, sizeof(*pzstats));
7237 
7238 	spin_lock_init(&pcp->lock);
7239 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7240 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7241 
7242 	/*
7243 	 * Set batch and high values safe for a boot pageset. A true percpu
7244 	 * pageset's initialization will update them subsequently. Here we don't
7245 	 * need to be as careful as pageset_update() as nobody can access the
7246 	 * pageset yet.
7247 	 */
7248 	pcp->high = BOOT_PAGESET_HIGH;
7249 	pcp->batch = BOOT_PAGESET_BATCH;
7250 	pcp->free_factor = 0;
7251 }
7252 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)7253 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7254 		unsigned long batch)
7255 {
7256 	struct per_cpu_pages *pcp;
7257 	int cpu;
7258 
7259 	for_each_possible_cpu(cpu) {
7260 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7261 		pageset_update(pcp, high, batch);
7262 	}
7263 }
7264 
7265 /*
7266  * Calculate and set new high and batch values for all per-cpu pagesets of a
7267  * zone based on the zone's size.
7268  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)7269 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7270 {
7271 	int new_high, new_batch;
7272 
7273 	new_batch = max(1, zone_batchsize(zone));
7274 	new_high = zone_highsize(zone, new_batch, cpu_online);
7275 
7276 	if (zone->pageset_high == new_high &&
7277 	    zone->pageset_batch == new_batch)
7278 		return;
7279 
7280 	zone->pageset_high = new_high;
7281 	zone->pageset_batch = new_batch;
7282 
7283 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7284 }
7285 
setup_zone_pageset(struct zone * zone)7286 void __meminit setup_zone_pageset(struct zone *zone)
7287 {
7288 	int cpu;
7289 
7290 	/* Size may be 0 on !SMP && !NUMA */
7291 	if (sizeof(struct per_cpu_zonestat) > 0)
7292 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7293 
7294 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7295 	for_each_possible_cpu(cpu) {
7296 		struct per_cpu_pages *pcp;
7297 		struct per_cpu_zonestat *pzstats;
7298 
7299 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7300 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7301 		per_cpu_pages_init(pcp, pzstats);
7302 	}
7303 
7304 	zone_set_pageset_high_and_batch(zone, 0);
7305 }
7306 
7307 /*
7308  * Allocate per cpu pagesets and initialize them.
7309  * Before this call only boot pagesets were available.
7310  */
setup_per_cpu_pageset(void)7311 void __init setup_per_cpu_pageset(void)
7312 {
7313 	struct pglist_data *pgdat;
7314 	struct zone *zone;
7315 	int __maybe_unused cpu;
7316 
7317 	for_each_populated_zone(zone)
7318 		setup_zone_pageset(zone);
7319 
7320 #ifdef CONFIG_NUMA
7321 	/*
7322 	 * Unpopulated zones continue using the boot pagesets.
7323 	 * The numa stats for these pagesets need to be reset.
7324 	 * Otherwise, they will end up skewing the stats of
7325 	 * the nodes these zones are associated with.
7326 	 */
7327 	for_each_possible_cpu(cpu) {
7328 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7329 		memset(pzstats->vm_numa_event, 0,
7330 		       sizeof(pzstats->vm_numa_event));
7331 	}
7332 #endif
7333 
7334 	for_each_online_pgdat(pgdat)
7335 		pgdat->per_cpu_nodestats =
7336 			alloc_percpu(struct per_cpu_nodestat);
7337 }
7338 
zone_pcp_init(struct zone * zone)7339 static __meminit void zone_pcp_init(struct zone *zone)
7340 {
7341 	/*
7342 	 * per cpu subsystem is not up at this point. The following code
7343 	 * relies on the ability of the linker to provide the
7344 	 * offset of a (static) per cpu variable into the per cpu area.
7345 	 */
7346 	zone->per_cpu_pageset = &boot_pageset;
7347 	zone->per_cpu_zonestats = &boot_zonestats;
7348 	zone->pageset_high = BOOT_PAGESET_HIGH;
7349 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7350 
7351 	if (populated_zone(zone))
7352 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7353 			 zone->present_pages, zone_batchsize(zone));
7354 }
7355 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)7356 void __meminit init_currently_empty_zone(struct zone *zone,
7357 					unsigned long zone_start_pfn,
7358 					unsigned long size)
7359 {
7360 	struct pglist_data *pgdat = zone->zone_pgdat;
7361 	int zone_idx = zone_idx(zone) + 1;
7362 
7363 	if (zone_idx > pgdat->nr_zones)
7364 		pgdat->nr_zones = zone_idx;
7365 
7366 	zone->zone_start_pfn = zone_start_pfn;
7367 
7368 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7369 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7370 			pgdat->node_id,
7371 			(unsigned long)zone_idx(zone),
7372 			zone_start_pfn, (zone_start_pfn + size));
7373 
7374 	zone_init_free_lists(zone);
7375 	zone->initialized = 1;
7376 }
7377 
7378 /**
7379  * get_pfn_range_for_nid - Return the start and end page frames for a node
7380  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7381  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7382  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7383  *
7384  * It returns the start and end page frame of a node based on information
7385  * provided by memblock_set_node(). If called for a node
7386  * with no available memory, a warning is printed and the start and end
7387  * PFNs will be 0.
7388  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)7389 void __init get_pfn_range_for_nid(unsigned int nid,
7390 			unsigned long *start_pfn, unsigned long *end_pfn)
7391 {
7392 	unsigned long this_start_pfn, this_end_pfn;
7393 	int i;
7394 
7395 	*start_pfn = -1UL;
7396 	*end_pfn = 0;
7397 
7398 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7399 		*start_pfn = min(*start_pfn, this_start_pfn);
7400 		*end_pfn = max(*end_pfn, this_end_pfn);
7401 	}
7402 
7403 	if (*start_pfn == -1UL)
7404 		*start_pfn = 0;
7405 }
7406 
7407 /*
7408  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7409  * assumption is made that zones within a node are ordered in monotonic
7410  * increasing memory addresses so that the "highest" populated zone is used
7411  */
find_usable_zone_for_movable(void)7412 static void __init find_usable_zone_for_movable(void)
7413 {
7414 	int zone_index;
7415 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7416 		if (zone_index == ZONE_MOVABLE)
7417 			continue;
7418 
7419 		if (arch_zone_highest_possible_pfn[zone_index] >
7420 				arch_zone_lowest_possible_pfn[zone_index])
7421 			break;
7422 	}
7423 
7424 	VM_BUG_ON(zone_index == -1);
7425 	movable_zone = zone_index;
7426 }
7427 
7428 /*
7429  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7430  * because it is sized independent of architecture. Unlike the other zones,
7431  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7432  * in each node depending on the size of each node and how evenly kernelcore
7433  * is distributed. This helper function adjusts the zone ranges
7434  * provided by the architecture for a given node by using the end of the
7435  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7436  * zones within a node are in order of monotonic increases memory addresses
7437  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7438 static void __init adjust_zone_range_for_zone_movable(int nid,
7439 					unsigned long zone_type,
7440 					unsigned long node_start_pfn,
7441 					unsigned long node_end_pfn,
7442 					unsigned long *zone_start_pfn,
7443 					unsigned long *zone_end_pfn)
7444 {
7445 	/* Only adjust if ZONE_MOVABLE is on this node */
7446 	if (zone_movable_pfn[nid]) {
7447 		/* Size ZONE_MOVABLE */
7448 		if (zone_type == ZONE_MOVABLE) {
7449 			*zone_start_pfn = zone_movable_pfn[nid];
7450 			*zone_end_pfn = min(node_end_pfn,
7451 				arch_zone_highest_possible_pfn[movable_zone]);
7452 
7453 		/* Adjust for ZONE_MOVABLE starting within this range */
7454 		} else if (!mirrored_kernelcore &&
7455 			*zone_start_pfn < zone_movable_pfn[nid] &&
7456 			*zone_end_pfn > zone_movable_pfn[nid]) {
7457 			*zone_end_pfn = zone_movable_pfn[nid];
7458 
7459 		/* Check if this whole range is within ZONE_MOVABLE */
7460 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7461 			*zone_start_pfn = *zone_end_pfn;
7462 	}
7463 }
7464 
7465 /*
7466  * Return the number of pages a zone spans in a node, including holes
7467  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7468  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7469 static unsigned long __init zone_spanned_pages_in_node(int nid,
7470 					unsigned long zone_type,
7471 					unsigned long node_start_pfn,
7472 					unsigned long node_end_pfn,
7473 					unsigned long *zone_start_pfn,
7474 					unsigned long *zone_end_pfn)
7475 {
7476 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7477 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7478 	/* When hotadd a new node from cpu_up(), the node should be empty */
7479 	if (!node_start_pfn && !node_end_pfn)
7480 		return 0;
7481 
7482 	/* Get the start and end of the zone */
7483 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7484 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7485 	adjust_zone_range_for_zone_movable(nid, zone_type,
7486 				node_start_pfn, node_end_pfn,
7487 				zone_start_pfn, zone_end_pfn);
7488 
7489 	/* Check that this node has pages within the zone's required range */
7490 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7491 		return 0;
7492 
7493 	/* Move the zone boundaries inside the node if necessary */
7494 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7495 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7496 
7497 	/* Return the spanned pages */
7498 	return *zone_end_pfn - *zone_start_pfn;
7499 }
7500 
7501 /*
7502  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7503  * then all holes in the requested range will be accounted for.
7504  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)7505 unsigned long __init __absent_pages_in_range(int nid,
7506 				unsigned long range_start_pfn,
7507 				unsigned long range_end_pfn)
7508 {
7509 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7510 	unsigned long start_pfn, end_pfn;
7511 	int i;
7512 
7513 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7514 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7515 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7516 		nr_absent -= end_pfn - start_pfn;
7517 	}
7518 	return nr_absent;
7519 }
7520 
7521 /**
7522  * absent_pages_in_range - Return number of page frames in holes within a range
7523  * @start_pfn: The start PFN to start searching for holes
7524  * @end_pfn: The end PFN to stop searching for holes
7525  *
7526  * Return: the number of pages frames in memory holes within a range.
7527  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)7528 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7529 							unsigned long end_pfn)
7530 {
7531 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7532 }
7533 
7534 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)7535 static unsigned long __init zone_absent_pages_in_node(int nid,
7536 					unsigned long zone_type,
7537 					unsigned long node_start_pfn,
7538 					unsigned long node_end_pfn)
7539 {
7540 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7541 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7542 	unsigned long zone_start_pfn, zone_end_pfn;
7543 	unsigned long nr_absent;
7544 
7545 	/* When hotadd a new node from cpu_up(), the node should be empty */
7546 	if (!node_start_pfn && !node_end_pfn)
7547 		return 0;
7548 
7549 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7550 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7551 
7552 	adjust_zone_range_for_zone_movable(nid, zone_type,
7553 			node_start_pfn, node_end_pfn,
7554 			&zone_start_pfn, &zone_end_pfn);
7555 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7556 
7557 	/*
7558 	 * ZONE_MOVABLE handling.
7559 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7560 	 * and vice versa.
7561 	 */
7562 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7563 		unsigned long start_pfn, end_pfn;
7564 		struct memblock_region *r;
7565 
7566 		for_each_mem_region(r) {
7567 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7568 					  zone_start_pfn, zone_end_pfn);
7569 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7570 					zone_start_pfn, zone_end_pfn);
7571 
7572 			if (zone_type == ZONE_MOVABLE &&
7573 			    memblock_is_mirror(r))
7574 				nr_absent += end_pfn - start_pfn;
7575 
7576 			if (zone_type == ZONE_NORMAL &&
7577 			    !memblock_is_mirror(r))
7578 				nr_absent += end_pfn - start_pfn;
7579 		}
7580 	}
7581 
7582 	return nr_absent;
7583 }
7584 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)7585 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7586 						unsigned long node_start_pfn,
7587 						unsigned long node_end_pfn)
7588 {
7589 	unsigned long realtotalpages = 0, totalpages = 0;
7590 	enum zone_type i;
7591 
7592 	for (i = 0; i < MAX_NR_ZONES; i++) {
7593 		struct zone *zone = pgdat->node_zones + i;
7594 		unsigned long zone_start_pfn, zone_end_pfn;
7595 		unsigned long spanned, absent;
7596 		unsigned long size, real_size;
7597 
7598 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7599 						     node_start_pfn,
7600 						     node_end_pfn,
7601 						     &zone_start_pfn,
7602 						     &zone_end_pfn);
7603 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7604 						   node_start_pfn,
7605 						   node_end_pfn);
7606 
7607 		size = spanned;
7608 		real_size = size - absent;
7609 
7610 		if (size)
7611 			zone->zone_start_pfn = zone_start_pfn;
7612 		else
7613 			zone->zone_start_pfn = 0;
7614 		zone->spanned_pages = size;
7615 		zone->present_pages = real_size;
7616 #if defined(CONFIG_MEMORY_HOTPLUG)
7617 		zone->present_early_pages = real_size;
7618 #endif
7619 
7620 		totalpages += size;
7621 		realtotalpages += real_size;
7622 	}
7623 
7624 	pgdat->node_spanned_pages = totalpages;
7625 	pgdat->node_present_pages = realtotalpages;
7626 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7627 }
7628 
7629 #ifndef CONFIG_SPARSEMEM
7630 /*
7631  * Calculate the size of the zone->blockflags rounded to an unsigned long
7632  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7633  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7634  * round what is now in bits to nearest long in bits, then return it in
7635  * bytes.
7636  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)7637 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7638 {
7639 	unsigned long usemapsize;
7640 
7641 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7642 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7643 	usemapsize = usemapsize >> pageblock_order;
7644 	usemapsize *= NR_PAGEBLOCK_BITS;
7645 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7646 
7647 	return usemapsize / 8;
7648 }
7649 
setup_usemap(struct zone * zone)7650 static void __ref setup_usemap(struct zone *zone)
7651 {
7652 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7653 					       zone->spanned_pages);
7654 	zone->pageblock_flags = NULL;
7655 	if (usemapsize) {
7656 		zone->pageblock_flags =
7657 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7658 					    zone_to_nid(zone));
7659 		if (!zone->pageblock_flags)
7660 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7661 			      usemapsize, zone->name, zone_to_nid(zone));
7662 	}
7663 }
7664 #else
setup_usemap(struct zone * zone)7665 static inline void setup_usemap(struct zone *zone) {}
7666 #endif /* CONFIG_SPARSEMEM */
7667 
7668 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7669 
7670 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)7671 void __init set_pageblock_order(void)
7672 {
7673 	unsigned int order;
7674 
7675 	/* Check that pageblock_nr_pages has not already been setup */
7676 	if (pageblock_order)
7677 		return;
7678 
7679 	if (HPAGE_SHIFT > PAGE_SHIFT)
7680 		order = HUGETLB_PAGE_ORDER;
7681 	else
7682 		order = MAX_ORDER - 1;
7683 
7684 	/*
7685 	 * Assume the largest contiguous order of interest is a huge page.
7686 	 * This value may be variable depending on boot parameters on IA64 and
7687 	 * powerpc.
7688 	 */
7689 	pageblock_order = order;
7690 }
7691 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7692 
7693 /*
7694  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7695  * is unused as pageblock_order is set at compile-time. See
7696  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7697  * the kernel config
7698  */
set_pageblock_order(void)7699 void __init set_pageblock_order(void)
7700 {
7701 }
7702 
7703 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7704 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7705 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7706 						unsigned long present_pages)
7707 {
7708 	unsigned long pages = spanned_pages;
7709 
7710 	/*
7711 	 * Provide a more accurate estimation if there are holes within
7712 	 * the zone and SPARSEMEM is in use. If there are holes within the
7713 	 * zone, each populated memory region may cost us one or two extra
7714 	 * memmap pages due to alignment because memmap pages for each
7715 	 * populated regions may not be naturally aligned on page boundary.
7716 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7717 	 */
7718 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7719 	    IS_ENABLED(CONFIG_SPARSEMEM))
7720 		pages = present_pages;
7721 
7722 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7723 }
7724 
7725 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7726 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7727 {
7728 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7729 
7730 	spin_lock_init(&ds_queue->split_queue_lock);
7731 	INIT_LIST_HEAD(&ds_queue->split_queue);
7732 	ds_queue->split_queue_len = 0;
7733 }
7734 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7735 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7736 #endif
7737 
7738 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7739 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7740 {
7741 	init_waitqueue_head(&pgdat->kcompactd_wait);
7742 }
7743 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7744 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7745 #endif
7746 
pgdat_init_internals(struct pglist_data * pgdat)7747 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7748 {
7749 	pgdat_resize_init(pgdat);
7750 
7751 	pgdat_init_split_queue(pgdat);
7752 	pgdat_init_kcompactd(pgdat);
7753 
7754 	init_waitqueue_head(&pgdat->kswapd_wait);
7755 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7756 
7757 	pgdat_page_ext_init(pgdat);
7758 	lruvec_init(&pgdat->__lruvec);
7759 }
7760 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7761 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7762 							unsigned long remaining_pages)
7763 {
7764 	atomic_long_set(&zone->managed_pages, remaining_pages);
7765 	zone_set_nid(zone, nid);
7766 	zone->name = zone_names[idx];
7767 	zone->zone_pgdat = NODE_DATA(nid);
7768 	spin_lock_init(&zone->lock);
7769 	zone_seqlock_init(zone);
7770 	zone_pcp_init(zone);
7771 }
7772 
7773 /*
7774  * Set up the zone data structures
7775  * - init pgdat internals
7776  * - init all zones belonging to this node
7777  *
7778  * NOTE: this function is only called during memory hotplug
7779  */
7780 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7781 void __ref free_area_init_core_hotplug(int nid)
7782 {
7783 	enum zone_type z;
7784 	pg_data_t *pgdat = NODE_DATA(nid);
7785 
7786 	pgdat_init_internals(pgdat);
7787 	for (z = 0; z < MAX_NR_ZONES; z++)
7788 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7789 }
7790 #endif
7791 
7792 /*
7793  * Set up the zone data structures:
7794  *   - mark all pages reserved
7795  *   - mark all memory queues empty
7796  *   - clear the memory bitmaps
7797  *
7798  * NOTE: pgdat should get zeroed by caller.
7799  * NOTE: this function is only called during early init.
7800  */
free_area_init_core(struct pglist_data * pgdat)7801 static void __init free_area_init_core(struct pglist_data *pgdat)
7802 {
7803 	enum zone_type j;
7804 	int nid = pgdat->node_id;
7805 
7806 	pgdat_init_internals(pgdat);
7807 	pgdat->per_cpu_nodestats = &boot_nodestats;
7808 
7809 	for (j = 0; j < MAX_NR_ZONES; j++) {
7810 		struct zone *zone = pgdat->node_zones + j;
7811 		unsigned long size, freesize, memmap_pages;
7812 
7813 		size = zone->spanned_pages;
7814 		freesize = zone->present_pages;
7815 
7816 		/*
7817 		 * Adjust freesize so that it accounts for how much memory
7818 		 * is used by this zone for memmap. This affects the watermark
7819 		 * and per-cpu initialisations
7820 		 */
7821 		memmap_pages = calc_memmap_size(size, freesize);
7822 		if (!is_highmem_idx(j)) {
7823 			if (freesize >= memmap_pages) {
7824 				freesize -= memmap_pages;
7825 				if (memmap_pages)
7826 					pr_debug("  %s zone: %lu pages used for memmap\n",
7827 						 zone_names[j], memmap_pages);
7828 			} else
7829 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7830 					zone_names[j], memmap_pages, freesize);
7831 		}
7832 
7833 		/* Account for reserved pages */
7834 		if (j == 0 && freesize > dma_reserve) {
7835 			freesize -= dma_reserve;
7836 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7837 		}
7838 
7839 		if (!is_highmem_idx(j))
7840 			nr_kernel_pages += freesize;
7841 		/* Charge for highmem memmap if there are enough kernel pages */
7842 		else if (nr_kernel_pages > memmap_pages * 2)
7843 			nr_kernel_pages -= memmap_pages;
7844 		nr_all_pages += freesize;
7845 
7846 		/*
7847 		 * Set an approximate value for lowmem here, it will be adjusted
7848 		 * when the bootmem allocator frees pages into the buddy system.
7849 		 * And all highmem pages will be managed by the buddy system.
7850 		 */
7851 		zone_init_internals(zone, j, nid, freesize);
7852 
7853 		if (!size)
7854 			continue;
7855 
7856 		set_pageblock_order();
7857 		setup_usemap(zone);
7858 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7859 	}
7860 }
7861 
7862 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)7863 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7864 {
7865 	unsigned long __maybe_unused start = 0;
7866 	unsigned long __maybe_unused offset = 0;
7867 
7868 	/* Skip empty nodes */
7869 	if (!pgdat->node_spanned_pages)
7870 		return;
7871 
7872 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7873 	offset = pgdat->node_start_pfn - start;
7874 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7875 	if (!pgdat->node_mem_map) {
7876 		unsigned long size, end;
7877 		struct page *map;
7878 
7879 		/*
7880 		 * The zone's endpoints aren't required to be MAX_ORDER
7881 		 * aligned but the node_mem_map endpoints must be in order
7882 		 * for the buddy allocator to function correctly.
7883 		 */
7884 		end = pgdat_end_pfn(pgdat);
7885 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7886 		size =  (end - start) * sizeof(struct page);
7887 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7888 				   pgdat->node_id, false);
7889 		if (!map)
7890 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7891 			      size, pgdat->node_id);
7892 		pgdat->node_mem_map = map + offset;
7893 	}
7894 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7895 				__func__, pgdat->node_id, (unsigned long)pgdat,
7896 				(unsigned long)pgdat->node_mem_map);
7897 #ifndef CONFIG_NUMA
7898 	/*
7899 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7900 	 */
7901 	if (pgdat == NODE_DATA(0)) {
7902 		mem_map = NODE_DATA(0)->node_mem_map;
7903 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7904 			mem_map -= offset;
7905 	}
7906 #endif
7907 }
7908 #else
alloc_node_mem_map(struct pglist_data * pgdat)7909 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7910 #endif /* CONFIG_FLATMEM */
7911 
7912 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7913 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7914 {
7915 	pgdat->first_deferred_pfn = ULONG_MAX;
7916 }
7917 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7918 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7919 #endif
7920 
free_area_init_node(int nid)7921 static void __init free_area_init_node(int nid)
7922 {
7923 	pg_data_t *pgdat = NODE_DATA(nid);
7924 	unsigned long start_pfn = 0;
7925 	unsigned long end_pfn = 0;
7926 
7927 	/* pg_data_t should be reset to zero when it's allocated */
7928 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7929 
7930 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7931 
7932 	pgdat->node_id = nid;
7933 	pgdat->node_start_pfn = start_pfn;
7934 	pgdat->per_cpu_nodestats = NULL;
7935 
7936 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7937 		(u64)start_pfn << PAGE_SHIFT,
7938 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7939 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7940 
7941 	alloc_node_mem_map(pgdat);
7942 	pgdat_set_deferred_range(pgdat);
7943 
7944 	free_area_init_core(pgdat);
7945 	lru_gen_init_pgdat(pgdat);
7946 }
7947 
free_area_init_memoryless_node(int nid)7948 void __init free_area_init_memoryless_node(int nid)
7949 {
7950 	free_area_init_node(nid);
7951 }
7952 
7953 #if MAX_NUMNODES > 1
7954 /*
7955  * Figure out the number of possible node ids.
7956  */
setup_nr_node_ids(void)7957 void __init setup_nr_node_ids(void)
7958 {
7959 	unsigned int highest;
7960 
7961 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7962 	nr_node_ids = highest + 1;
7963 }
7964 #endif
7965 
7966 /**
7967  * node_map_pfn_alignment - determine the maximum internode alignment
7968  *
7969  * This function should be called after node map is populated and sorted.
7970  * It calculates the maximum power of two alignment which can distinguish
7971  * all the nodes.
7972  *
7973  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7974  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7975  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7976  * shifted, 1GiB is enough and this function will indicate so.
7977  *
7978  * This is used to test whether pfn -> nid mapping of the chosen memory
7979  * model has fine enough granularity to avoid incorrect mapping for the
7980  * populated node map.
7981  *
7982  * Return: the determined alignment in pfn's.  0 if there is no alignment
7983  * requirement (single node).
7984  */
node_map_pfn_alignment(void)7985 unsigned long __init node_map_pfn_alignment(void)
7986 {
7987 	unsigned long accl_mask = 0, last_end = 0;
7988 	unsigned long start, end, mask;
7989 	int last_nid = NUMA_NO_NODE;
7990 	int i, nid;
7991 
7992 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7993 		if (!start || last_nid < 0 || last_nid == nid) {
7994 			last_nid = nid;
7995 			last_end = end;
7996 			continue;
7997 		}
7998 
7999 		/*
8000 		 * Start with a mask granular enough to pin-point to the
8001 		 * start pfn and tick off bits one-by-one until it becomes
8002 		 * too coarse to separate the current node from the last.
8003 		 */
8004 		mask = ~((1 << __ffs(start)) - 1);
8005 		while (mask && last_end <= (start & (mask << 1)))
8006 			mask <<= 1;
8007 
8008 		/* accumulate all internode masks */
8009 		accl_mask |= mask;
8010 	}
8011 
8012 	/* convert mask to number of pages */
8013 	return ~accl_mask + 1;
8014 }
8015 
8016 /**
8017  * find_min_pfn_with_active_regions - Find the minimum PFN registered
8018  *
8019  * Return: the minimum PFN based on information provided via
8020  * memblock_set_node().
8021  */
find_min_pfn_with_active_regions(void)8022 unsigned long __init find_min_pfn_with_active_regions(void)
8023 {
8024 	return PHYS_PFN(memblock_start_of_DRAM());
8025 }
8026 
8027 /*
8028  * early_calculate_totalpages()
8029  * Sum pages in active regions for movable zone.
8030  * Populate N_MEMORY for calculating usable_nodes.
8031  */
early_calculate_totalpages(void)8032 static unsigned long __init early_calculate_totalpages(void)
8033 {
8034 	unsigned long totalpages = 0;
8035 	unsigned long start_pfn, end_pfn;
8036 	int i, nid;
8037 
8038 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8039 		unsigned long pages = end_pfn - start_pfn;
8040 
8041 		totalpages += pages;
8042 		if (pages)
8043 			node_set_state(nid, N_MEMORY);
8044 	}
8045 	return totalpages;
8046 }
8047 
8048 /*
8049  * Find the PFN the Movable zone begins in each node. Kernel memory
8050  * is spread evenly between nodes as long as the nodes have enough
8051  * memory. When they don't, some nodes will have more kernelcore than
8052  * others
8053  */
find_zone_movable_pfns_for_nodes(void)8054 static void __init find_zone_movable_pfns_for_nodes(void)
8055 {
8056 	int i, nid;
8057 	unsigned long usable_startpfn;
8058 	unsigned long kernelcore_node, kernelcore_remaining;
8059 	/* save the state before borrow the nodemask */
8060 	nodemask_t saved_node_state = node_states[N_MEMORY];
8061 	unsigned long totalpages = early_calculate_totalpages();
8062 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8063 	struct memblock_region *r;
8064 
8065 	/* Need to find movable_zone earlier when movable_node is specified. */
8066 	find_usable_zone_for_movable();
8067 
8068 	/*
8069 	 * If movable_node is specified, ignore kernelcore and movablecore
8070 	 * options.
8071 	 */
8072 	if (movable_node_is_enabled()) {
8073 		for_each_mem_region(r) {
8074 			if (!memblock_is_hotpluggable(r))
8075 				continue;
8076 
8077 			nid = memblock_get_region_node(r);
8078 
8079 			usable_startpfn = PFN_DOWN(r->base);
8080 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8081 				min(usable_startpfn, zone_movable_pfn[nid]) :
8082 				usable_startpfn;
8083 		}
8084 
8085 		goto out2;
8086 	}
8087 
8088 	/*
8089 	 * If kernelcore=mirror is specified, ignore movablecore option
8090 	 */
8091 	if (mirrored_kernelcore) {
8092 		bool mem_below_4gb_not_mirrored = false;
8093 
8094 		for_each_mem_region(r) {
8095 			if (memblock_is_mirror(r))
8096 				continue;
8097 
8098 			nid = memblock_get_region_node(r);
8099 
8100 			usable_startpfn = memblock_region_memory_base_pfn(r);
8101 
8102 			if (usable_startpfn < 0x100000) {
8103 				mem_below_4gb_not_mirrored = true;
8104 				continue;
8105 			}
8106 
8107 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8108 				min(usable_startpfn, zone_movable_pfn[nid]) :
8109 				usable_startpfn;
8110 		}
8111 
8112 		if (mem_below_4gb_not_mirrored)
8113 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8114 
8115 		goto out2;
8116 	}
8117 
8118 	/*
8119 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8120 	 * amount of necessary memory.
8121 	 */
8122 	if (required_kernelcore_percent)
8123 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8124 				       10000UL;
8125 	if (required_movablecore_percent)
8126 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8127 					10000UL;
8128 
8129 	/*
8130 	 * If movablecore= was specified, calculate what size of
8131 	 * kernelcore that corresponds so that memory usable for
8132 	 * any allocation type is evenly spread. If both kernelcore
8133 	 * and movablecore are specified, then the value of kernelcore
8134 	 * will be used for required_kernelcore if it's greater than
8135 	 * what movablecore would have allowed.
8136 	 */
8137 	if (required_movablecore) {
8138 		unsigned long corepages;
8139 
8140 		/*
8141 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8142 		 * was requested by the user
8143 		 */
8144 		required_movablecore =
8145 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8146 		required_movablecore = min(totalpages, required_movablecore);
8147 		corepages = totalpages - required_movablecore;
8148 
8149 		required_kernelcore = max(required_kernelcore, corepages);
8150 	}
8151 
8152 	/*
8153 	 * If kernelcore was not specified or kernelcore size is larger
8154 	 * than totalpages, there is no ZONE_MOVABLE.
8155 	 */
8156 	if (!required_kernelcore || required_kernelcore >= totalpages)
8157 		goto out;
8158 
8159 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8160 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8161 
8162 restart:
8163 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8164 	kernelcore_node = required_kernelcore / usable_nodes;
8165 	for_each_node_state(nid, N_MEMORY) {
8166 		unsigned long start_pfn, end_pfn;
8167 
8168 		/*
8169 		 * Recalculate kernelcore_node if the division per node
8170 		 * now exceeds what is necessary to satisfy the requested
8171 		 * amount of memory for the kernel
8172 		 */
8173 		if (required_kernelcore < kernelcore_node)
8174 			kernelcore_node = required_kernelcore / usable_nodes;
8175 
8176 		/*
8177 		 * As the map is walked, we track how much memory is usable
8178 		 * by the kernel using kernelcore_remaining. When it is
8179 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8180 		 */
8181 		kernelcore_remaining = kernelcore_node;
8182 
8183 		/* Go through each range of PFNs within this node */
8184 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8185 			unsigned long size_pages;
8186 
8187 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8188 			if (start_pfn >= end_pfn)
8189 				continue;
8190 
8191 			/* Account for what is only usable for kernelcore */
8192 			if (start_pfn < usable_startpfn) {
8193 				unsigned long kernel_pages;
8194 				kernel_pages = min(end_pfn, usable_startpfn)
8195 								- start_pfn;
8196 
8197 				kernelcore_remaining -= min(kernel_pages,
8198 							kernelcore_remaining);
8199 				required_kernelcore -= min(kernel_pages,
8200 							required_kernelcore);
8201 
8202 				/* Continue if range is now fully accounted */
8203 				if (end_pfn <= usable_startpfn) {
8204 
8205 					/*
8206 					 * Push zone_movable_pfn to the end so
8207 					 * that if we have to rebalance
8208 					 * kernelcore across nodes, we will
8209 					 * not double account here
8210 					 */
8211 					zone_movable_pfn[nid] = end_pfn;
8212 					continue;
8213 				}
8214 				start_pfn = usable_startpfn;
8215 			}
8216 
8217 			/*
8218 			 * The usable PFN range for ZONE_MOVABLE is from
8219 			 * start_pfn->end_pfn. Calculate size_pages as the
8220 			 * number of pages used as kernelcore
8221 			 */
8222 			size_pages = end_pfn - start_pfn;
8223 			if (size_pages > kernelcore_remaining)
8224 				size_pages = kernelcore_remaining;
8225 			zone_movable_pfn[nid] = start_pfn + size_pages;
8226 
8227 			/*
8228 			 * Some kernelcore has been met, update counts and
8229 			 * break if the kernelcore for this node has been
8230 			 * satisfied
8231 			 */
8232 			required_kernelcore -= min(required_kernelcore,
8233 								size_pages);
8234 			kernelcore_remaining -= size_pages;
8235 			if (!kernelcore_remaining)
8236 				break;
8237 		}
8238 	}
8239 
8240 	/*
8241 	 * If there is still required_kernelcore, we do another pass with one
8242 	 * less node in the count. This will push zone_movable_pfn[nid] further
8243 	 * along on the nodes that still have memory until kernelcore is
8244 	 * satisfied
8245 	 */
8246 	usable_nodes--;
8247 	if (usable_nodes && required_kernelcore > usable_nodes)
8248 		goto restart;
8249 
8250 out2:
8251 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8252 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8253 		unsigned long start_pfn, end_pfn;
8254 
8255 		zone_movable_pfn[nid] =
8256 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8257 
8258 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8259 		if (zone_movable_pfn[nid] >= end_pfn)
8260 			zone_movable_pfn[nid] = 0;
8261 	}
8262 
8263 out:
8264 	/* restore the node_state */
8265 	node_states[N_MEMORY] = saved_node_state;
8266 }
8267 
8268 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)8269 static void check_for_memory(pg_data_t *pgdat, int nid)
8270 {
8271 	enum zone_type zone_type;
8272 
8273 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8274 		struct zone *zone = &pgdat->node_zones[zone_type];
8275 		if (populated_zone(zone)) {
8276 			if (IS_ENABLED(CONFIG_HIGHMEM))
8277 				node_set_state(nid, N_HIGH_MEMORY);
8278 			if (zone_type <= ZONE_NORMAL)
8279 				node_set_state(nid, N_NORMAL_MEMORY);
8280 			break;
8281 		}
8282 	}
8283 }
8284 
8285 /*
8286  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8287  * such cases we allow max_zone_pfn sorted in the descending order
8288  */
arch_has_descending_max_zone_pfns(void)8289 bool __weak arch_has_descending_max_zone_pfns(void)
8290 {
8291 	return false;
8292 }
8293 
8294 /**
8295  * free_area_init - Initialise all pg_data_t and zone data
8296  * @max_zone_pfn: an array of max PFNs for each zone
8297  *
8298  * This will call free_area_init_node() for each active node in the system.
8299  * Using the page ranges provided by memblock_set_node(), the size of each
8300  * zone in each node and their holes is calculated. If the maximum PFN
8301  * between two adjacent zones match, it is assumed that the zone is empty.
8302  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8303  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8304  * starts where the previous one ended. For example, ZONE_DMA32 starts
8305  * at arch_max_dma_pfn.
8306  */
free_area_init(unsigned long * max_zone_pfn)8307 void __init free_area_init(unsigned long *max_zone_pfn)
8308 {
8309 	unsigned long start_pfn, end_pfn;
8310 	int i, nid, zone;
8311 	bool descending;
8312 
8313 	/* Record where the zone boundaries are */
8314 	memset(arch_zone_lowest_possible_pfn, 0,
8315 				sizeof(arch_zone_lowest_possible_pfn));
8316 	memset(arch_zone_highest_possible_pfn, 0,
8317 				sizeof(arch_zone_highest_possible_pfn));
8318 
8319 	start_pfn = find_min_pfn_with_active_regions();
8320 	descending = arch_has_descending_max_zone_pfns();
8321 
8322 	for (i = 0; i < MAX_NR_ZONES; i++) {
8323 		if (descending)
8324 			zone = MAX_NR_ZONES - i - 1;
8325 		else
8326 			zone = i;
8327 
8328 		if (zone == ZONE_MOVABLE)
8329 			continue;
8330 
8331 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8332 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8333 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8334 
8335 		start_pfn = end_pfn;
8336 	}
8337 
8338 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8339 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8340 	find_zone_movable_pfns_for_nodes();
8341 
8342 	/* Print out the zone ranges */
8343 	pr_info("Zone ranges:\n");
8344 	for (i = 0; i < MAX_NR_ZONES; i++) {
8345 		if (i == ZONE_MOVABLE)
8346 			continue;
8347 		pr_info("  %-8s ", zone_names[i]);
8348 		if (arch_zone_lowest_possible_pfn[i] ==
8349 				arch_zone_highest_possible_pfn[i])
8350 			pr_cont("empty\n");
8351 		else
8352 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8353 				(u64)arch_zone_lowest_possible_pfn[i]
8354 					<< PAGE_SHIFT,
8355 				((u64)arch_zone_highest_possible_pfn[i]
8356 					<< PAGE_SHIFT) - 1);
8357 	}
8358 
8359 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8360 	pr_info("Movable zone start for each node\n");
8361 	for (i = 0; i < MAX_NUMNODES; i++) {
8362 		if (zone_movable_pfn[i])
8363 			pr_info("  Node %d: %#018Lx\n", i,
8364 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8365 	}
8366 
8367 	/*
8368 	 * Print out the early node map, and initialize the
8369 	 * subsection-map relative to active online memory ranges to
8370 	 * enable future "sub-section" extensions of the memory map.
8371 	 */
8372 	pr_info("Early memory node ranges\n");
8373 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8374 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8375 			(u64)start_pfn << PAGE_SHIFT,
8376 			((u64)end_pfn << PAGE_SHIFT) - 1);
8377 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8378 	}
8379 
8380 	/* Initialise every node */
8381 	mminit_verify_pageflags_layout();
8382 	setup_nr_node_ids();
8383 	for_each_online_node(nid) {
8384 		pg_data_t *pgdat = NODE_DATA(nid);
8385 		free_area_init_node(nid);
8386 
8387 		/* Any memory on that node */
8388 		if (pgdat->node_present_pages)
8389 			node_set_state(nid, N_MEMORY);
8390 		check_for_memory(pgdat, nid);
8391 	}
8392 
8393 	memmap_init();
8394 }
8395 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)8396 static int __init cmdline_parse_core(char *p, unsigned long *core,
8397 				     unsigned long *percent)
8398 {
8399 	unsigned long long coremem;
8400 	char *endptr;
8401 
8402 	if (!p)
8403 		return -EINVAL;
8404 
8405 	/* Value may be a percentage of total memory, otherwise bytes */
8406 	coremem = simple_strtoull(p, &endptr, 0);
8407 	if (*endptr == '%') {
8408 		/* Paranoid check for percent values greater than 100 */
8409 		WARN_ON(coremem > 100);
8410 
8411 		*percent = coremem;
8412 	} else {
8413 		coremem = memparse(p, &p);
8414 		/* Paranoid check that UL is enough for the coremem value */
8415 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8416 
8417 		*core = coremem >> PAGE_SHIFT;
8418 		*percent = 0UL;
8419 	}
8420 	return 0;
8421 }
8422 
8423 /*
8424  * kernelcore=size sets the amount of memory for use for allocations that
8425  * cannot be reclaimed or migrated.
8426  */
cmdline_parse_kernelcore(char * p)8427 static int __init cmdline_parse_kernelcore(char *p)
8428 {
8429 	/* parse kernelcore=mirror */
8430 	if (parse_option_str(p, "mirror")) {
8431 		mirrored_kernelcore = true;
8432 		return 0;
8433 	}
8434 
8435 	return cmdline_parse_core(p, &required_kernelcore,
8436 				  &required_kernelcore_percent);
8437 }
8438 
8439 /*
8440  * movablecore=size sets the amount of memory for use for allocations that
8441  * can be reclaimed or migrated.
8442  */
cmdline_parse_movablecore(char * p)8443 static int __init cmdline_parse_movablecore(char *p)
8444 {
8445 	return cmdline_parse_core(p, &required_movablecore,
8446 				  &required_movablecore_percent);
8447 }
8448 
8449 early_param("kernelcore", cmdline_parse_kernelcore);
8450 early_param("movablecore", cmdline_parse_movablecore);
8451 
adjust_managed_page_count(struct page * page,long count)8452 void adjust_managed_page_count(struct page *page, long count)
8453 {
8454 	atomic_long_add(count, &page_zone(page)->managed_pages);
8455 	totalram_pages_add(count);
8456 #ifdef CONFIG_HIGHMEM
8457 	if (PageHighMem(page))
8458 		totalhigh_pages_add(count);
8459 #endif
8460 }
8461 EXPORT_SYMBOL(adjust_managed_page_count);
8462 
free_reserved_area(void * start,void * end,int poison,const char * s)8463 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8464 {
8465 	void *pos;
8466 	unsigned long pages = 0;
8467 
8468 	start = (void *)PAGE_ALIGN((unsigned long)start);
8469 	end = (void *)((unsigned long)end & PAGE_MASK);
8470 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8471 		struct page *page = virt_to_page(pos);
8472 		void *direct_map_addr;
8473 
8474 		/*
8475 		 * 'direct_map_addr' might be different from 'pos'
8476 		 * because some architectures' virt_to_page()
8477 		 * work with aliases.  Getting the direct map
8478 		 * address ensures that we get a _writeable_
8479 		 * alias for the memset().
8480 		 */
8481 		direct_map_addr = page_address(page);
8482 		/*
8483 		 * Perform a kasan-unchecked memset() since this memory
8484 		 * has not been initialized.
8485 		 */
8486 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8487 		if ((unsigned int)poison <= 0xFF)
8488 			memset(direct_map_addr, poison, PAGE_SIZE);
8489 
8490 		free_reserved_page(page);
8491 	}
8492 
8493 	if (pages && s)
8494 		pr_info("Freeing %s memory: %ldK\n",
8495 			s, pages << (PAGE_SHIFT - 10));
8496 
8497 	return pages;
8498 }
8499 
mem_init_print_info(void)8500 void __init mem_init_print_info(void)
8501 {
8502 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8503 	unsigned long init_code_size, init_data_size;
8504 
8505 	physpages = get_num_physpages();
8506 	codesize = _etext - _stext;
8507 	datasize = _edata - _sdata;
8508 	rosize = __end_rodata - __start_rodata;
8509 	bss_size = __bss_stop - __bss_start;
8510 	init_data_size = __init_end - __init_begin;
8511 	init_code_size = _einittext - _sinittext;
8512 
8513 	/*
8514 	 * Detect special cases and adjust section sizes accordingly:
8515 	 * 1) .init.* may be embedded into .data sections
8516 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8517 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8518 	 * 3) .rodata.* may be embedded into .text or .data sections.
8519 	 */
8520 #define adj_init_size(start, end, size, pos, adj) \
8521 	do { \
8522 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8523 			size -= adj; \
8524 	} while (0)
8525 
8526 	adj_init_size(__init_begin, __init_end, init_data_size,
8527 		     _sinittext, init_code_size);
8528 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8529 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8530 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8531 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8532 
8533 #undef	adj_init_size
8534 
8535 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8536 #ifdef	CONFIG_HIGHMEM
8537 		", %luK highmem"
8538 #endif
8539 		")\n",
8540 		nr_free_pages() << (PAGE_SHIFT - 10),
8541 		physpages << (PAGE_SHIFT - 10),
8542 		codesize >> 10, datasize >> 10, rosize >> 10,
8543 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8544 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8545 		totalcma_pages << (PAGE_SHIFT - 10)
8546 #ifdef	CONFIG_HIGHMEM
8547 		, totalhigh_pages() << (PAGE_SHIFT - 10)
8548 #endif
8549 		);
8550 }
8551 
8552 /**
8553  * set_dma_reserve - set the specified number of pages reserved in the first zone
8554  * @new_dma_reserve: The number of pages to mark reserved
8555  *
8556  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8557  * In the DMA zone, a significant percentage may be consumed by kernel image
8558  * and other unfreeable allocations which can skew the watermarks badly. This
8559  * function may optionally be used to account for unfreeable pages in the
8560  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8561  * smaller per-cpu batchsize.
8562  */
set_dma_reserve(unsigned long new_dma_reserve)8563 void __init set_dma_reserve(unsigned long new_dma_reserve)
8564 {
8565 	dma_reserve = new_dma_reserve;
8566 }
8567 
page_alloc_cpu_dead(unsigned int cpu)8568 static int page_alloc_cpu_dead(unsigned int cpu)
8569 {
8570 	struct zone *zone;
8571 
8572 	lru_add_drain_cpu(cpu);
8573 	drain_pages(cpu);
8574 
8575 	/*
8576 	 * Spill the event counters of the dead processor
8577 	 * into the current processors event counters.
8578 	 * This artificially elevates the count of the current
8579 	 * processor.
8580 	 */
8581 	vm_events_fold_cpu(cpu);
8582 
8583 	/*
8584 	 * Zero the differential counters of the dead processor
8585 	 * so that the vm statistics are consistent.
8586 	 *
8587 	 * This is only okay since the processor is dead and cannot
8588 	 * race with what we are doing.
8589 	 */
8590 	cpu_vm_stats_fold(cpu);
8591 
8592 	for_each_populated_zone(zone)
8593 		zone_pcp_update(zone, 0);
8594 
8595 	return 0;
8596 }
8597 
page_alloc_cpu_online(unsigned int cpu)8598 static int page_alloc_cpu_online(unsigned int cpu)
8599 {
8600 	struct zone *zone;
8601 
8602 	for_each_populated_zone(zone)
8603 		zone_pcp_update(zone, 1);
8604 	return 0;
8605 }
8606 
8607 #ifdef CONFIG_NUMA
8608 int hashdist = HASHDIST_DEFAULT;
8609 
set_hashdist(char * str)8610 static int __init set_hashdist(char *str)
8611 {
8612 	if (!str)
8613 		return 0;
8614 	hashdist = simple_strtoul(str, &str, 0);
8615 	return 1;
8616 }
8617 __setup("hashdist=", set_hashdist);
8618 #endif
8619 
page_alloc_init(void)8620 void __init page_alloc_init(void)
8621 {
8622 	int ret;
8623 
8624 #ifdef CONFIG_NUMA
8625 	if (num_node_state(N_MEMORY) == 1)
8626 		hashdist = 0;
8627 #endif
8628 
8629 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8630 					"mm/page_alloc:pcp",
8631 					page_alloc_cpu_online,
8632 					page_alloc_cpu_dead);
8633 	WARN_ON(ret < 0);
8634 }
8635 
8636 /*
8637  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8638  *	or min_free_kbytes changes.
8639  */
calculate_totalreserve_pages(void)8640 static void calculate_totalreserve_pages(void)
8641 {
8642 	struct pglist_data *pgdat;
8643 	unsigned long reserve_pages = 0;
8644 	enum zone_type i, j;
8645 
8646 	for_each_online_pgdat(pgdat) {
8647 
8648 		pgdat->totalreserve_pages = 0;
8649 
8650 		for (i = 0; i < MAX_NR_ZONES; i++) {
8651 			struct zone *zone = pgdat->node_zones + i;
8652 			long max = 0;
8653 			unsigned long managed_pages = zone_managed_pages(zone);
8654 
8655 			/* Find valid and maximum lowmem_reserve in the zone */
8656 			for (j = i; j < MAX_NR_ZONES; j++) {
8657 				if (zone->lowmem_reserve[j] > max)
8658 					max = zone->lowmem_reserve[j];
8659 			}
8660 
8661 			/* we treat the high watermark as reserved pages. */
8662 			max += high_wmark_pages(zone);
8663 
8664 			if (max > managed_pages)
8665 				max = managed_pages;
8666 
8667 			pgdat->totalreserve_pages += max;
8668 
8669 			reserve_pages += max;
8670 		}
8671 	}
8672 	totalreserve_pages = reserve_pages;
8673 }
8674 
8675 /*
8676  * setup_per_zone_lowmem_reserve - called whenever
8677  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8678  *	has a correct pages reserved value, so an adequate number of
8679  *	pages are left in the zone after a successful __alloc_pages().
8680  */
setup_per_zone_lowmem_reserve(void)8681 static void setup_per_zone_lowmem_reserve(void)
8682 {
8683 	struct pglist_data *pgdat;
8684 	enum zone_type i, j;
8685 
8686 	for_each_online_pgdat(pgdat) {
8687 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8688 			struct zone *zone = &pgdat->node_zones[i];
8689 			int ratio = sysctl_lowmem_reserve_ratio[i];
8690 			bool clear = !ratio || !zone_managed_pages(zone);
8691 			unsigned long managed_pages = 0;
8692 
8693 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8694 				struct zone *upper_zone = &pgdat->node_zones[j];
8695 
8696 				managed_pages += zone_managed_pages(upper_zone);
8697 
8698 				if (clear)
8699 					zone->lowmem_reserve[j] = 0;
8700 				else
8701 					zone->lowmem_reserve[j] = managed_pages / ratio;
8702 			}
8703 		}
8704 	}
8705 
8706 	/* update totalreserve_pages */
8707 	calculate_totalreserve_pages();
8708 }
8709 
__setup_per_zone_wmarks(void)8710 static void __setup_per_zone_wmarks(void)
8711 {
8712 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8713 	unsigned long lowmem_pages = 0;
8714 	struct zone *zone;
8715 	unsigned long flags;
8716 
8717 	/* Calculate total number of !ZONE_HIGHMEM pages */
8718 	for_each_zone(zone) {
8719 		if (!is_highmem(zone))
8720 			lowmem_pages += zone_managed_pages(zone);
8721 	}
8722 
8723 	for_each_zone(zone) {
8724 		u64 tmp;
8725 
8726 		spin_lock_irqsave(&zone->lock, flags);
8727 		tmp = (u64)pages_min * zone_managed_pages(zone);
8728 		do_div(tmp, lowmem_pages);
8729 		if (is_highmem(zone)) {
8730 			/*
8731 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8732 			 * need highmem pages, so cap pages_min to a small
8733 			 * value here.
8734 			 *
8735 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8736 			 * deltas control async page reclaim, and so should
8737 			 * not be capped for highmem.
8738 			 */
8739 			unsigned long min_pages;
8740 
8741 			min_pages = zone_managed_pages(zone) / 1024;
8742 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8743 			zone->_watermark[WMARK_MIN] = min_pages;
8744 		} else {
8745 			/*
8746 			 * If it's a lowmem zone, reserve a number of pages
8747 			 * proportionate to the zone's size.
8748 			 */
8749 			zone->_watermark[WMARK_MIN] = tmp;
8750 		}
8751 
8752 		/*
8753 		 * Set the kswapd watermarks distance according to the
8754 		 * scale factor in proportion to available memory, but
8755 		 * ensure a minimum size on small systems.
8756 		 */
8757 		tmp = max_t(u64, tmp >> 2,
8758 			    mult_frac(zone_managed_pages(zone),
8759 				      watermark_scale_factor, 10000));
8760 
8761 		zone->watermark_boost = 0;
8762 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8763 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8764 
8765 		spin_unlock_irqrestore(&zone->lock, flags);
8766 	}
8767 
8768 	/* update totalreserve_pages */
8769 	calculate_totalreserve_pages();
8770 }
8771 
8772 /**
8773  * setup_per_zone_wmarks - called when min_free_kbytes changes
8774  * or when memory is hot-{added|removed}
8775  *
8776  * Ensures that the watermark[min,low,high] values for each zone are set
8777  * correctly with respect to min_free_kbytes.
8778  */
setup_per_zone_wmarks(void)8779 void setup_per_zone_wmarks(void)
8780 {
8781 	struct zone *zone;
8782 	static DEFINE_SPINLOCK(lock);
8783 
8784 	spin_lock(&lock);
8785 	__setup_per_zone_wmarks();
8786 	spin_unlock(&lock);
8787 
8788 	/*
8789 	 * The watermark size have changed so update the pcpu batch
8790 	 * and high limits or the limits may be inappropriate.
8791 	 */
8792 	for_each_zone(zone)
8793 		zone_pcp_update(zone, 0);
8794 }
8795 
8796 /*
8797  * Initialise min_free_kbytes.
8798  *
8799  * For small machines we want it small (128k min).  For large machines
8800  * we want it large (256MB max).  But it is not linear, because network
8801  * bandwidth does not increase linearly with machine size.  We use
8802  *
8803  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8804  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8805  *
8806  * which yields
8807  *
8808  * 16MB:	512k
8809  * 32MB:	724k
8810  * 64MB:	1024k
8811  * 128MB:	1448k
8812  * 256MB:	2048k
8813  * 512MB:	2896k
8814  * 1024MB:	4096k
8815  * 2048MB:	5792k
8816  * 4096MB:	8192k
8817  * 8192MB:	11584k
8818  * 16384MB:	16384k
8819  */
calculate_min_free_kbytes(void)8820 void calculate_min_free_kbytes(void)
8821 {
8822 	unsigned long lowmem_kbytes;
8823 	int new_min_free_kbytes;
8824 
8825 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8826 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8827 
8828 	if (new_min_free_kbytes > user_min_free_kbytes) {
8829 		min_free_kbytes = new_min_free_kbytes;
8830 		if (min_free_kbytes < 128)
8831 			min_free_kbytes = 128;
8832 		if (min_free_kbytes > 262144)
8833 			min_free_kbytes = 262144;
8834 	} else {
8835 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8836 				new_min_free_kbytes, user_min_free_kbytes);
8837 	}
8838 }
8839 
init_per_zone_wmark_min(void)8840 int __meminit init_per_zone_wmark_min(void)
8841 {
8842 	calculate_min_free_kbytes();
8843 	setup_per_zone_wmarks();
8844 	refresh_zone_stat_thresholds();
8845 	setup_per_zone_lowmem_reserve();
8846 
8847 #ifdef CONFIG_NUMA
8848 	setup_min_unmapped_ratio();
8849 	setup_min_slab_ratio();
8850 #endif
8851 
8852 	khugepaged_min_free_kbytes_update();
8853 
8854 	return 0;
8855 }
postcore_initcall(init_per_zone_wmark_min)8856 postcore_initcall(init_per_zone_wmark_min)
8857 
8858 /*
8859  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8860  *	that we can call two helper functions whenever min_free_kbytes
8861  *	changes.
8862  */
8863 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8864 		void *buffer, size_t *length, loff_t *ppos)
8865 {
8866 	int rc;
8867 
8868 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8869 	if (rc)
8870 		return rc;
8871 
8872 	if (write) {
8873 		user_min_free_kbytes = min_free_kbytes;
8874 		setup_per_zone_wmarks();
8875 	}
8876 	return 0;
8877 }
8878 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8879 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8880 		void *buffer, size_t *length, loff_t *ppos)
8881 {
8882 	int rc;
8883 
8884 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8885 	if (rc)
8886 		return rc;
8887 
8888 	if (write)
8889 		setup_per_zone_wmarks();
8890 
8891 	return 0;
8892 }
8893 
8894 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8895 static void setup_min_unmapped_ratio(void)
8896 {
8897 	pg_data_t *pgdat;
8898 	struct zone *zone;
8899 
8900 	for_each_online_pgdat(pgdat)
8901 		pgdat->min_unmapped_pages = 0;
8902 
8903 	for_each_zone(zone)
8904 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8905 						         sysctl_min_unmapped_ratio) / 100;
8906 }
8907 
8908 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8909 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8910 		void *buffer, size_t *length, loff_t *ppos)
8911 {
8912 	int rc;
8913 
8914 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8915 	if (rc)
8916 		return rc;
8917 
8918 	setup_min_unmapped_ratio();
8919 
8920 	return 0;
8921 }
8922 
setup_min_slab_ratio(void)8923 static void setup_min_slab_ratio(void)
8924 {
8925 	pg_data_t *pgdat;
8926 	struct zone *zone;
8927 
8928 	for_each_online_pgdat(pgdat)
8929 		pgdat->min_slab_pages = 0;
8930 
8931 	for_each_zone(zone)
8932 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8933 						     sysctl_min_slab_ratio) / 100;
8934 }
8935 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8936 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8937 		void *buffer, size_t *length, loff_t *ppos)
8938 {
8939 	int rc;
8940 
8941 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8942 	if (rc)
8943 		return rc;
8944 
8945 	setup_min_slab_ratio();
8946 
8947 	return 0;
8948 }
8949 #endif
8950 
8951 /*
8952  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8953  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8954  *	whenever sysctl_lowmem_reserve_ratio changes.
8955  *
8956  * The reserve ratio obviously has absolutely no relation with the
8957  * minimum watermarks. The lowmem reserve ratio can only make sense
8958  * if in function of the boot time zone sizes.
8959  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8960 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8961 		void *buffer, size_t *length, loff_t *ppos)
8962 {
8963 	int i;
8964 
8965 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8966 
8967 	for (i = 0; i < MAX_NR_ZONES; i++) {
8968 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8969 			sysctl_lowmem_reserve_ratio[i] = 0;
8970 	}
8971 
8972 	setup_per_zone_lowmem_reserve();
8973 	return 0;
8974 }
8975 
8976 /*
8977  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8978  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8979  * pagelist can have before it gets flushed back to buddy allocator.
8980  */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8981 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8982 		int write, void *buffer, size_t *length, loff_t *ppos)
8983 {
8984 	struct zone *zone;
8985 	int old_percpu_pagelist_high_fraction;
8986 	int ret;
8987 
8988 	mutex_lock(&pcp_batch_high_lock);
8989 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8990 
8991 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8992 	if (!write || ret < 0)
8993 		goto out;
8994 
8995 	/* Sanity checking to avoid pcp imbalance */
8996 	if (percpu_pagelist_high_fraction &&
8997 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8998 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8999 		ret = -EINVAL;
9000 		goto out;
9001 	}
9002 
9003 	/* No change? */
9004 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9005 		goto out;
9006 
9007 	for_each_populated_zone(zone)
9008 		zone_set_pageset_high_and_batch(zone, 0);
9009 out:
9010 	mutex_unlock(&pcp_batch_high_lock);
9011 	return ret;
9012 }
9013 
9014 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9015 /*
9016  * Returns the number of pages that arch has reserved but
9017  * is not known to alloc_large_system_hash().
9018  */
arch_reserved_kernel_pages(void)9019 static unsigned long __init arch_reserved_kernel_pages(void)
9020 {
9021 	return 0;
9022 }
9023 #endif
9024 
9025 /*
9026  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9027  * machines. As memory size is increased the scale is also increased but at
9028  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9029  * quadruples the scale is increased by one, which means the size of hash table
9030  * only doubles, instead of quadrupling as well.
9031  * Because 32-bit systems cannot have large physical memory, where this scaling
9032  * makes sense, it is disabled on such platforms.
9033  */
9034 #if __BITS_PER_LONG > 32
9035 #define ADAPT_SCALE_BASE	(64ul << 30)
9036 #define ADAPT_SCALE_SHIFT	2
9037 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9038 #endif
9039 
9040 /*
9041  * allocate a large system hash table from bootmem
9042  * - it is assumed that the hash table must contain an exact power-of-2
9043  *   quantity of entries
9044  * - limit is the number of hash buckets, not the total allocation size
9045  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)9046 void *__init alloc_large_system_hash(const char *tablename,
9047 				     unsigned long bucketsize,
9048 				     unsigned long numentries,
9049 				     int scale,
9050 				     int flags,
9051 				     unsigned int *_hash_shift,
9052 				     unsigned int *_hash_mask,
9053 				     unsigned long low_limit,
9054 				     unsigned long high_limit)
9055 {
9056 	unsigned long long max = high_limit;
9057 	unsigned long log2qty, size;
9058 	void *table = NULL;
9059 	gfp_t gfp_flags;
9060 	bool virt;
9061 	bool huge;
9062 
9063 	/* allow the kernel cmdline to have a say */
9064 	if (!numentries) {
9065 		/* round applicable memory size up to nearest megabyte */
9066 		numentries = nr_kernel_pages;
9067 		numentries -= arch_reserved_kernel_pages();
9068 
9069 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9070 		if (PAGE_SHIFT < 20)
9071 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9072 
9073 #if __BITS_PER_LONG > 32
9074 		if (!high_limit) {
9075 			unsigned long adapt;
9076 
9077 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9078 			     adapt <<= ADAPT_SCALE_SHIFT)
9079 				scale++;
9080 		}
9081 #endif
9082 
9083 		/* limit to 1 bucket per 2^scale bytes of low memory */
9084 		if (scale > PAGE_SHIFT)
9085 			numentries >>= (scale - PAGE_SHIFT);
9086 		else
9087 			numentries <<= (PAGE_SHIFT - scale);
9088 
9089 		/* Make sure we've got at least a 0-order allocation.. */
9090 		if (unlikely(flags & HASH_SMALL)) {
9091 			/* Makes no sense without HASH_EARLY */
9092 			WARN_ON(!(flags & HASH_EARLY));
9093 			if (!(numentries >> *_hash_shift)) {
9094 				numentries = 1UL << *_hash_shift;
9095 				BUG_ON(!numentries);
9096 			}
9097 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9098 			numentries = PAGE_SIZE / bucketsize;
9099 	}
9100 	numentries = roundup_pow_of_two(numentries);
9101 
9102 	/* limit allocation size to 1/16 total memory by default */
9103 	if (max == 0) {
9104 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9105 		do_div(max, bucketsize);
9106 	}
9107 	max = min(max, 0x80000000ULL);
9108 
9109 	if (numentries < low_limit)
9110 		numentries = low_limit;
9111 	if (numentries > max)
9112 		numentries = max;
9113 
9114 	log2qty = ilog2(numentries);
9115 
9116 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9117 	do {
9118 		virt = false;
9119 		size = bucketsize << log2qty;
9120 		if (flags & HASH_EARLY) {
9121 			if (flags & HASH_ZERO)
9122 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9123 			else
9124 				table = memblock_alloc_raw(size,
9125 							   SMP_CACHE_BYTES);
9126 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9127 			table = __vmalloc(size, gfp_flags);
9128 			virt = true;
9129 			huge = is_vm_area_hugepages(table);
9130 		} else {
9131 			/*
9132 			 * If bucketsize is not a power-of-two, we may free
9133 			 * some pages at the end of hash table which
9134 			 * alloc_pages_exact() automatically does
9135 			 */
9136 			table = alloc_pages_exact(size, gfp_flags);
9137 			kmemleak_alloc(table, size, 1, gfp_flags);
9138 		}
9139 	} while (!table && size > PAGE_SIZE && --log2qty);
9140 
9141 	if (!table)
9142 		panic("Failed to allocate %s hash table\n", tablename);
9143 
9144 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9145 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9146 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9147 
9148 	if (_hash_shift)
9149 		*_hash_shift = log2qty;
9150 	if (_hash_mask)
9151 		*_hash_mask = (1 << log2qty) - 1;
9152 
9153 	return table;
9154 }
9155 
9156 /*
9157  * This function checks whether pageblock includes unmovable pages or not.
9158  *
9159  * PageLRU check without isolation or lru_lock could race so that
9160  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
9161  * check without lock_page also may miss some movable non-lru pages at
9162  * race condition. So you can't expect this function should be exact.
9163  *
9164  * Returns a page without holding a reference. If the caller wants to
9165  * dereference that page (e.g., dumping), it has to make sure that it
9166  * cannot get removed (e.g., via memory unplug) concurrently.
9167  *
9168  */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)9169 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
9170 				 int migratetype, int flags)
9171 {
9172 	unsigned long iter = 0;
9173 	unsigned long pfn = page_to_pfn(page);
9174 	unsigned long offset = pfn % pageblock_nr_pages;
9175 
9176 	if (is_migrate_cma_page(page)) {
9177 		/*
9178 		 * CMA allocations (alloc_contig_range) really need to mark
9179 		 * isolate CMA pageblocks even when they are not movable in fact
9180 		 * so consider them movable here.
9181 		 */
9182 		if (is_migrate_cma(migratetype))
9183 			return NULL;
9184 
9185 		return page;
9186 	}
9187 
9188 	for (; iter < pageblock_nr_pages - offset; iter++) {
9189 		page = pfn_to_page(pfn + iter);
9190 
9191 		/*
9192 		 * Both, bootmem allocations and memory holes are marked
9193 		 * PG_reserved and are unmovable. We can even have unmovable
9194 		 * allocations inside ZONE_MOVABLE, for example when
9195 		 * specifying "movablecore".
9196 		 */
9197 		if (PageReserved(page))
9198 			return page;
9199 
9200 		/*
9201 		 * If the zone is movable and we have ruled out all reserved
9202 		 * pages then it should be reasonably safe to assume the rest
9203 		 * is movable.
9204 		 */
9205 		if (zone_idx(zone) == ZONE_MOVABLE)
9206 			continue;
9207 
9208 		/*
9209 		 * Hugepages are not in LRU lists, but they're movable.
9210 		 * THPs are on the LRU, but need to be counted as #small pages.
9211 		 * We need not scan over tail pages because we don't
9212 		 * handle each tail page individually in migration.
9213 		 */
9214 		if (PageHuge(page) || PageTransCompound(page)) {
9215 			struct page *head = compound_head(page);
9216 			unsigned int skip_pages;
9217 
9218 			if (PageHuge(page)) {
9219 				if (!hugepage_migration_supported(page_hstate(head)))
9220 					return page;
9221 			} else if (!PageLRU(head) && !__PageMovable(head)) {
9222 				return page;
9223 			}
9224 
9225 			skip_pages = compound_nr(head) - (page - head);
9226 			iter += skip_pages - 1;
9227 			continue;
9228 		}
9229 
9230 		/*
9231 		 * We can't use page_count without pin a page
9232 		 * because another CPU can free compound page.
9233 		 * This check already skips compound tails of THP
9234 		 * because their page->_refcount is zero at all time.
9235 		 */
9236 		if (!page_ref_count(page)) {
9237 			if (PageBuddy(page))
9238 				iter += (1 << buddy_order(page)) - 1;
9239 			continue;
9240 		}
9241 
9242 		/*
9243 		 * The HWPoisoned page may be not in buddy system, and
9244 		 * page_count() is not 0.
9245 		 */
9246 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
9247 			continue;
9248 
9249 		/*
9250 		 * We treat all PageOffline() pages as movable when offlining
9251 		 * to give drivers a chance to decrement their reference count
9252 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
9253 		 * can be offlined as there are no direct references anymore.
9254 		 * For actually unmovable PageOffline() where the driver does
9255 		 * not support this, we will fail later when trying to actually
9256 		 * move these pages that still have a reference count > 0.
9257 		 * (false negatives in this function only)
9258 		 */
9259 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9260 			continue;
9261 
9262 		if (__PageMovable(page) || PageLRU(page))
9263 			continue;
9264 
9265 		/*
9266 		 * If there are RECLAIMABLE pages, we need to check
9267 		 * it.  But now, memory offline itself doesn't call
9268 		 * shrink_node_slabs() and it still to be fixed.
9269 		 */
9270 		return page;
9271 	}
9272 	return NULL;
9273 }
9274 
9275 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)9276 static unsigned long pfn_max_align_down(unsigned long pfn)
9277 {
9278 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
9279 			     pageblock_nr_pages) - 1);
9280 }
9281 
pfn_max_align_up(unsigned long pfn)9282 unsigned long pfn_max_align_up(unsigned long pfn)
9283 {
9284 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
9285 				pageblock_nr_pages));
9286 }
9287 
9288 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9289 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9290 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)9291 static void alloc_contig_dump_pages(struct list_head *page_list)
9292 {
9293 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9294 
9295 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9296 		struct page *page;
9297 
9298 		dump_stack();
9299 		list_for_each_entry(page, page_list, lru)
9300 			dump_page(page, "migration failure");
9301 	}
9302 }
9303 #else
alloc_contig_dump_pages(struct list_head * page_list)9304 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9305 {
9306 }
9307 #endif
9308 
9309 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,struct acr_info * info)9310 static int __alloc_contig_migrate_range(struct compact_control *cc,
9311 					unsigned long start, unsigned long end,
9312 					struct acr_info *info)
9313 {
9314 	/* This function is based on compact_zone() from compaction.c. */
9315 	unsigned int nr_reclaimed;
9316 	unsigned long pfn = start;
9317 	unsigned int tries = 0;
9318 	unsigned int max_tries = 5;
9319 	int ret = 0;
9320 	bool skip = false;
9321 	struct page *page;
9322 	struct migration_target_control mtc = {
9323 		.nid = zone_to_nid(cc->zone),
9324 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9325 	};
9326 
9327 	if (cc->alloc_contig && cc->mode == MIGRATE_ASYNC)
9328 		max_tries = 1;
9329 
9330 	trace_android_vh_skip_lru_disable(&skip);
9331 	if (!skip)
9332 		lru_cache_disable();
9333 
9334 	while (pfn < end || !list_empty(&cc->migratepages)) {
9335 		if (fatal_signal_pending(current)) {
9336 			ret = -EINTR;
9337 			break;
9338 		}
9339 
9340 		if (list_empty(&cc->migratepages)) {
9341 			cc->nr_migratepages = 0;
9342 			ret = isolate_migratepages_range(cc, pfn, end);
9343 			if (ret && ret != -EAGAIN)
9344 				break;
9345 			pfn = cc->migrate_pfn;
9346 			tries = 0;
9347 		} else if (++tries == max_tries) {
9348 			ret = -EBUSY;
9349 			break;
9350 		}
9351 
9352 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9353 							&cc->migratepages);
9354 		info->nr_reclaimed += nr_reclaimed;
9355 		cc->nr_migratepages -= nr_reclaimed;
9356 
9357 		list_for_each_entry(page, &cc->migratepages, lru)
9358 			info->nr_mapped += page_mapcount(page);
9359 
9360 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9361 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9362 
9363 		if (!ret)
9364 			info->nr_migrated += cc->nr_migratepages;
9365 
9366 		/*
9367 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9368 		 * to retry again over this error, so do the same here.
9369 		 */
9370 		if (ret == -ENOMEM)
9371 			break;
9372 	}
9373 
9374 	if (!skip)
9375 		lru_cache_enable();
9376 	if (ret < 0) {
9377 		if (ret == -EBUSY) {
9378 			struct page *page;
9379 
9380 			alloc_contig_dump_pages(&cc->migratepages);
9381 			list_for_each_entry(page, &cc->migratepages, lru) {
9382 				/* The page will be freed by putback_movable_pages soon */
9383 				if (page_count(page) == 1)
9384 					continue;
9385 				page_pinner_failure_detect(page);
9386 			}
9387 		}
9388 
9389 		if (!list_empty(&cc->migratepages)) {
9390 			page = list_first_entry(&cc->migratepages, struct page , lru);
9391 			info->failed_pfn = page_to_pfn(page);
9392 		}
9393 
9394 		putback_movable_pages(&cc->migratepages);
9395 		info->err |= ACR_ERR_MIGRATE;
9396 		return ret;
9397 	}
9398 	return 0;
9399 }
9400 
9401 /**
9402  * alloc_contig_range() -- tries to allocate given range of pages
9403  * @start:	start PFN to allocate
9404  * @end:	one-past-the-last PFN to allocate
9405  * @migratetype:	migratetype of the underlying pageblocks (either
9406  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9407  *			in range must have the same migratetype and it must
9408  *			be either of the two.
9409  * @gfp_mask:	GFP mask to use during compaction
9410  *
9411  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9412  * aligned.  The PFN range must belong to a single zone.
9413  *
9414  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9415  * pageblocks in the range.  Once isolated, the pageblocks should not
9416  * be modified by others.
9417  *
9418  * Return: zero on success or negative error code.  On success all
9419  * pages which PFN is in [start, end) are allocated for the caller and
9420  * need to be freed with free_contig_range().
9421  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask,struct acr_info * info)9422 int alloc_contig_range(unsigned long start, unsigned long end,
9423 		       unsigned migratetype, gfp_t gfp_mask,
9424 		       struct acr_info *info)
9425 {
9426 	unsigned long outer_start, outer_end;
9427 	unsigned int order;
9428 	int ret = 0;
9429 	bool skip_drain_all_pages = false;
9430 
9431 	struct compact_control cc = {
9432 		.nr_migratepages = 0,
9433 		.order = -1,
9434 		.zone = page_zone(pfn_to_page(start)),
9435 		.mode = gfp_mask & __GFP_NORETRY ? MIGRATE_ASYNC : MIGRATE_SYNC,
9436 		.ignore_skip_hint = true,
9437 		.no_set_skip_hint = true,
9438 		.gfp_mask = current_gfp_context(gfp_mask),
9439 		.alloc_contig = true,
9440 	};
9441 	INIT_LIST_HEAD(&cc.migratepages);
9442 
9443 	/*
9444 	 * What we do here is we mark all pageblocks in range as
9445 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9446 	 * have different sizes, and due to the way page allocator
9447 	 * work, we align the range to biggest of the two pages so
9448 	 * that page allocator won't try to merge buddies from
9449 	 * different pageblocks and change MIGRATE_ISOLATE to some
9450 	 * other migration type.
9451 	 *
9452 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9453 	 * migrate the pages from an unaligned range (ie. pages that
9454 	 * we are interested in).  This will put all the pages in
9455 	 * range back to page allocator as MIGRATE_ISOLATE.
9456 	 *
9457 	 * When this is done, we take the pages in range from page
9458 	 * allocator removing them from the buddy system.  This way
9459 	 * page allocator will never consider using them.
9460 	 *
9461 	 * This lets us mark the pageblocks back as
9462 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9463 	 * aligned range but not in the unaligned, original range are
9464 	 * put back to page allocator so that buddy can use them.
9465 	 */
9466 
9467 	ret = start_isolate_page_range(pfn_max_align_down(start),
9468 				       pfn_max_align_up(end), migratetype, 0,
9469 				       &info->failed_pfn);
9470 	if (ret) {
9471 		info->err |= ACR_ERR_ISOLATE;
9472 		return ret;
9473 	}
9474 
9475 	trace_android_vh_cma_drain_all_pages_bypass(migratetype,
9476 						&skip_drain_all_pages);
9477 	if (!skip_drain_all_pages)
9478 		drain_all_pages(cc.zone);
9479 
9480 	/*
9481 	 * In case of -EBUSY, we'd like to know which page causes problem.
9482 	 * So, just fall through. test_pages_isolated() has a tracepoint
9483 	 * which will report the busy page.
9484 	 *
9485 	 * It is possible that busy pages could become available before
9486 	 * the call to test_pages_isolated, and the range will actually be
9487 	 * allocated.  So, if we fall through be sure to clear ret so that
9488 	 * -EBUSY is not accidentally used or returned to caller.
9489 	 */
9490 	ret = __alloc_contig_migrate_range(&cc, start, end, info);
9491 	if (ret && (ret != -EBUSY || (gfp_mask & __GFP_NORETRY)))
9492 		goto done;
9493 	ret = 0;
9494 
9495 	/*
9496 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9497 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9498 	 * more, all pages in [start, end) are free in page allocator.
9499 	 * What we are going to do is to allocate all pages from
9500 	 * [start, end) (that is remove them from page allocator).
9501 	 *
9502 	 * The only problem is that pages at the beginning and at the
9503 	 * end of interesting range may be not aligned with pages that
9504 	 * page allocator holds, ie. they can be part of higher order
9505 	 * pages.  Because of this, we reserve the bigger range and
9506 	 * once this is done free the pages we are not interested in.
9507 	 *
9508 	 * We don't have to hold zone->lock here because the pages are
9509 	 * isolated thus they won't get removed from buddy.
9510 	 */
9511 
9512 	order = 0;
9513 	outer_start = start;
9514 	while (!PageBuddy(pfn_to_page(outer_start))) {
9515 		if (++order >= MAX_ORDER) {
9516 			outer_start = start;
9517 			break;
9518 		}
9519 		outer_start &= ~0UL << order;
9520 	}
9521 
9522 	if (outer_start != start) {
9523 		order = buddy_order(pfn_to_page(outer_start));
9524 
9525 		/*
9526 		 * outer_start page could be small order buddy page and
9527 		 * it doesn't include start page. Adjust outer_start
9528 		 * in this case to report failed page properly
9529 		 * on tracepoint in test_pages_isolated()
9530 		 */
9531 		if (outer_start + (1UL << order) <= start)
9532 			outer_start = start;
9533 	}
9534 
9535 	/* Make sure the range is really isolated. */
9536 	if (test_pages_isolated(outer_start, end, 0, &info->failed_pfn)) {
9537 		ret = -EBUSY;
9538 		info->err |= ACR_ERR_TEST;
9539 		goto done;
9540 	}
9541 
9542 	/* Grab isolated pages from freelists. */
9543 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9544 	if (!outer_end) {
9545 		ret = -EBUSY;
9546 		goto done;
9547 	}
9548 
9549 	/* Free head and tail (if any) */
9550 	if (start != outer_start)
9551 		free_contig_range(outer_start, start - outer_start);
9552 	if (end != outer_end)
9553 		free_contig_range(end, outer_end - end);
9554 
9555 done:
9556 	undo_isolate_page_range(pfn_max_align_down(start),
9557 				pfn_max_align_up(end), migratetype);
9558 	return ret;
9559 }
9560 EXPORT_SYMBOL(alloc_contig_range);
9561 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)9562 static int __alloc_contig_pages(unsigned long start_pfn,
9563 				unsigned long nr_pages, gfp_t gfp_mask)
9564 {
9565 	struct acr_info dummy;
9566 	unsigned long end_pfn = start_pfn + nr_pages;
9567 
9568 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9569 				  gfp_mask, &dummy);
9570 }
9571 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)9572 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9573 				   unsigned long nr_pages)
9574 {
9575 	unsigned long i, end_pfn = start_pfn + nr_pages;
9576 	struct page *page;
9577 
9578 	for (i = start_pfn; i < end_pfn; i++) {
9579 		page = pfn_to_online_page(i);
9580 		if (!page)
9581 			return false;
9582 
9583 		if (page_zone(page) != z)
9584 			return false;
9585 
9586 		if (PageReserved(page))
9587 			return false;
9588 
9589 		if (PageHuge(page))
9590 			return false;
9591 	}
9592 	return true;
9593 }
9594 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)9595 static bool zone_spans_last_pfn(const struct zone *zone,
9596 				unsigned long start_pfn, unsigned long nr_pages)
9597 {
9598 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9599 
9600 	return zone_spans_pfn(zone, last_pfn);
9601 }
9602 
9603 /**
9604  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9605  * @nr_pages:	Number of contiguous pages to allocate
9606  * @gfp_mask:	GFP mask to limit search and used during compaction
9607  * @nid:	Target node
9608  * @nodemask:	Mask for other possible nodes
9609  *
9610  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9611  * on an applicable zonelist to find a contiguous pfn range which can then be
9612  * tried for allocation with alloc_contig_range(). This routine is intended
9613  * for allocation requests which can not be fulfilled with the buddy allocator.
9614  *
9615  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9616  * power of two then the alignment is guaranteed to be to the given nr_pages
9617  * (e.g. 1GB request would be aligned to 1GB).
9618  *
9619  * Allocated pages can be freed with free_contig_range() or by manually calling
9620  * __free_page() on each allocated page.
9621  *
9622  * Return: pointer to contiguous pages on success, or NULL if not successful.
9623  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)9624 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9625 				int nid, nodemask_t *nodemask)
9626 {
9627 	unsigned long ret, pfn, flags;
9628 	struct zonelist *zonelist;
9629 	struct zone *zone;
9630 	struct zoneref *z;
9631 
9632 	zonelist = node_zonelist(nid, gfp_mask);
9633 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9634 					gfp_zone(gfp_mask), nodemask) {
9635 		spin_lock_irqsave(&zone->lock, flags);
9636 
9637 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9638 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9639 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9640 				/*
9641 				 * We release the zone lock here because
9642 				 * alloc_contig_range() will also lock the zone
9643 				 * at some point. If there's an allocation
9644 				 * spinning on this lock, it may win the race
9645 				 * and cause alloc_contig_range() to fail...
9646 				 */
9647 				spin_unlock_irqrestore(&zone->lock, flags);
9648 				ret = __alloc_contig_pages(pfn, nr_pages,
9649 							gfp_mask);
9650 				if (!ret)
9651 					return pfn_to_page(pfn);
9652 				spin_lock_irqsave(&zone->lock, flags);
9653 			}
9654 			pfn += nr_pages;
9655 		}
9656 		spin_unlock_irqrestore(&zone->lock, flags);
9657 	}
9658 	return NULL;
9659 }
9660 #endif /* CONFIG_CONTIG_ALLOC */
9661 
free_contig_range(unsigned long pfn,unsigned long nr_pages)9662 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9663 {
9664 	unsigned long count = 0;
9665 
9666 	for (; nr_pages--; pfn++) {
9667 		struct page *page = pfn_to_page(pfn);
9668 
9669 		count += page_count(page) != 1;
9670 		__free_page(page);
9671 	}
9672 	WARN(count != 0, "%lu pages are still in use!\n", count);
9673 }
9674 EXPORT_SYMBOL(free_contig_range);
9675 
9676 /*
9677  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9678  * page high values need to be recalculated.
9679  */
zone_pcp_update(struct zone * zone,int cpu_online)9680 void zone_pcp_update(struct zone *zone, int cpu_online)
9681 {
9682 	mutex_lock(&pcp_batch_high_lock);
9683 	zone_set_pageset_high_and_batch(zone, cpu_online);
9684 	mutex_unlock(&pcp_batch_high_lock);
9685 }
9686 
9687 /*
9688  * Effectively disable pcplists for the zone by setting the high limit to 0
9689  * and draining all cpus. A concurrent page freeing on another CPU that's about
9690  * to put the page on pcplist will either finish before the drain and the page
9691  * will be drained, or observe the new high limit and skip the pcplist.
9692  *
9693  * Must be paired with a call to zone_pcp_enable().
9694  */
zone_pcp_disable(struct zone * zone)9695 void zone_pcp_disable(struct zone *zone)
9696 {
9697 	mutex_lock(&pcp_batch_high_lock);
9698 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9699 	__drain_all_pages(zone, true);
9700 }
9701 
zone_pcp_enable(struct zone * zone)9702 void zone_pcp_enable(struct zone *zone)
9703 {
9704 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9705 	mutex_unlock(&pcp_batch_high_lock);
9706 }
9707 
zone_pcp_reset(struct zone * zone)9708 void zone_pcp_reset(struct zone *zone)
9709 {
9710 	int cpu;
9711 	struct per_cpu_zonestat *pzstats;
9712 
9713 	if (zone->per_cpu_pageset != &boot_pageset) {
9714 		for_each_online_cpu(cpu) {
9715 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9716 			drain_zonestat(zone, pzstats);
9717 		}
9718 		free_percpu(zone->per_cpu_pageset);
9719 		free_percpu(zone->per_cpu_zonestats);
9720 		zone->per_cpu_pageset = &boot_pageset;
9721 		zone->per_cpu_zonestats = &boot_zonestats;
9722 	}
9723 }
9724 
9725 #ifdef CONFIG_MEMORY_HOTREMOVE
9726 /*
9727  * All pages in the range must be in a single zone, must not contain holes,
9728  * must span full sections, and must be isolated before calling this function.
9729  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)9730 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9731 {
9732 	unsigned long pfn = start_pfn;
9733 	struct page *page;
9734 	struct zone *zone;
9735 	unsigned int order;
9736 	unsigned long flags;
9737 
9738 	offline_mem_sections(pfn, end_pfn);
9739 	zone = page_zone(pfn_to_page(pfn));
9740 	spin_lock_irqsave(&zone->lock, flags);
9741 	while (pfn < end_pfn) {
9742 		page = pfn_to_page(pfn);
9743 		/*
9744 		 * The HWPoisoned page may be not in buddy system, and
9745 		 * page_count() is not 0.
9746 		 */
9747 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9748 			pfn++;
9749 			continue;
9750 		}
9751 		/*
9752 		 * At this point all remaining PageOffline() pages have a
9753 		 * reference count of 0 and can simply be skipped.
9754 		 */
9755 		if (PageOffline(page)) {
9756 			BUG_ON(page_count(page));
9757 			BUG_ON(PageBuddy(page));
9758 			pfn++;
9759 			continue;
9760 		}
9761 
9762 		BUG_ON(page_count(page));
9763 		BUG_ON(!PageBuddy(page));
9764 		order = buddy_order(page);
9765 		del_page_from_free_list(page, zone, order);
9766 		pfn += (1 << order);
9767 	}
9768 	spin_unlock_irqrestore(&zone->lock, flags);
9769 }
9770 #endif
9771 
is_free_buddy_page(struct page * page)9772 bool is_free_buddy_page(struct page *page)
9773 {
9774 	struct zone *zone = page_zone(page);
9775 	unsigned long pfn = page_to_pfn(page);
9776 	unsigned long flags;
9777 	unsigned int order;
9778 
9779 	spin_lock_irqsave(&zone->lock, flags);
9780 	for (order = 0; order < MAX_ORDER; order++) {
9781 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9782 
9783 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9784 			break;
9785 	}
9786 	spin_unlock_irqrestore(&zone->lock, flags);
9787 
9788 	return order < MAX_ORDER;
9789 }
9790 
9791 #ifdef CONFIG_MEMORY_FAILURE
9792 /*
9793  * Break down a higher-order page in sub-pages, and keep our target out of
9794  * buddy allocator.
9795  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9796 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9797 				   struct page *target, int low, int high,
9798 				   int migratetype)
9799 {
9800 	unsigned long size = 1 << high;
9801 	struct page *current_buddy, *next_page;
9802 
9803 	while (high > low) {
9804 		high--;
9805 		size >>= 1;
9806 
9807 		if (target >= &page[size]) {
9808 			next_page = page + size;
9809 			current_buddy = page;
9810 		} else {
9811 			next_page = page;
9812 			current_buddy = page + size;
9813 		}
9814 		page = next_page;
9815 
9816 		if (set_page_guard(zone, current_buddy, high, migratetype))
9817 			continue;
9818 
9819 		if (current_buddy != target) {
9820 			add_to_free_list(current_buddy, zone, high, migratetype);
9821 			set_buddy_order(current_buddy, high);
9822 		}
9823 	}
9824 }
9825 
9826 /*
9827  * Take a page that will be marked as poisoned off the buddy allocator.
9828  */
take_page_off_buddy(struct page * page)9829 bool take_page_off_buddy(struct page *page)
9830 {
9831 	struct zone *zone = page_zone(page);
9832 	unsigned long pfn = page_to_pfn(page);
9833 	unsigned long flags;
9834 	unsigned int order;
9835 	bool ret = false;
9836 
9837 	spin_lock_irqsave(&zone->lock, flags);
9838 	for (order = 0; order < MAX_ORDER; order++) {
9839 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9840 		int page_order = buddy_order(page_head);
9841 
9842 		if (PageBuddy(page_head) && page_order >= order) {
9843 			unsigned long pfn_head = page_to_pfn(page_head);
9844 			int migratetype = get_pfnblock_migratetype(page_head,
9845 								   pfn_head);
9846 
9847 			del_page_from_free_list(page_head, zone, page_order);
9848 			break_down_buddy_pages(zone, page_head, page, 0,
9849 						page_order, migratetype);
9850 			if (!is_migrate_isolate(migratetype))
9851 				__mod_zone_freepage_state(zone, -1, migratetype);
9852 			ret = true;
9853 			break;
9854 		}
9855 		if (page_count(page_head) > 0)
9856 			break;
9857 	}
9858 	spin_unlock_irqrestore(&zone->lock, flags);
9859 	return ret;
9860 }
9861 #endif
9862 
9863 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9864 bool has_managed_dma(void)
9865 {
9866 	struct pglist_data *pgdat;
9867 
9868 	for_each_online_pgdat(pgdat) {
9869 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9870 
9871 		if (managed_zone(zone))
9872 			return true;
9873 	}
9874 	return false;
9875 }
9876 #endif /* CONFIG_ZONE_DMA */
9877