1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/page_pinner.h>
67 #include <linux/kthread.h>
68 #include <linux/memcontrol.h>
69 #include <linux/ftrace.h>
70 #include <linux/lockdep.h>
71 #include <linux/nmi.h>
72 #include <linux/psi.h>
73 #include <linux/padata.h>
74 #include <linux/khugepaged.h>
75 #include <linux/buffer_head.h>
76 #include <trace/hooks/mm.h>
77 #include <asm/sections.h>
78 #include <asm/tlbflush.h>
79 #include <asm/div64.h>
80 #include "internal.h"
81 #include "shuffle.h"
82 #include "page_reporting.h"
83
84 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_page_alloc);
85
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88
89 /* No special request */
90 #define FPI_NONE ((__force fpi_t)0)
91
92 /*
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
99 */
100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
101
102 /*
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
106 *
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
110 * reporting).
111 */
112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
113
114 /*
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
122 */
123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128
129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
130 /*
131 * On SMP, spin_trylock is sufficient protection.
132 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
133 */
134 #define pcp_trylock_prepare(flags) do { } while (0)
135 #define pcp_trylock_finish(flag) do { } while (0)
136 #else
137
138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139 #define pcp_trylock_prepare(flags) local_irq_save(flags)
140 #define pcp_trylock_finish(flags) local_irq_restore(flags)
141 #endif
142
143 /*
144 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145 * a migration causing the wrong PCP to be locked and remote memory being
146 * potentially allocated, pin the task to the CPU for the lookup+lock.
147 * preempt_disable is used on !RT because it is faster than migrate_disable.
148 * migrate_disable is used on RT because otherwise RT spinlock usage is
149 * interfered with and a high priority task cannot preempt the allocator.
150 */
151 #ifndef CONFIG_PREEMPT_RT
152 #define pcpu_task_pin() preempt_disable()
153 #define pcpu_task_unpin() preempt_enable()
154 #else
155 #define pcpu_task_pin() migrate_disable()
156 #define pcpu_task_unpin() migrate_enable()
157 #endif
158
159 /*
160 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161 * Return value should be used with equivalent unlock helper.
162 */
163 #define pcpu_spin_lock(type, member, ptr) \
164 ({ \
165 type *_ret; \
166 pcpu_task_pin(); \
167 _ret = this_cpu_ptr(ptr); \
168 spin_lock(&_ret->member); \
169 _ret; \
170 })
171
172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
173 ({ \
174 type *_ret; \
175 pcpu_task_pin(); \
176 _ret = this_cpu_ptr(ptr); \
177 spin_lock_irqsave(&_ret->member, flags); \
178 _ret; \
179 })
180
181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
182 ({ \
183 type *_ret; \
184 pcpu_task_pin(); \
185 _ret = this_cpu_ptr(ptr); \
186 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
187 pcpu_task_unpin(); \
188 _ret = NULL; \
189 } \
190 _ret; \
191 })
192
193 #define pcpu_spin_unlock(member, ptr) \
194 ({ \
195 spin_unlock(&ptr->member); \
196 pcpu_task_unpin(); \
197 })
198
199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
200 ({ \
201 spin_unlock_irqrestore(&ptr->member, flags); \
202 pcpu_task_unpin(); \
203 })
204
205 /* struct per_cpu_pages specific helpers. */
206 #define pcp_spin_lock(ptr) \
207 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
208
209 #define pcp_spin_lock_irqsave(ptr, flags) \
210 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
211
212 #define pcp_spin_trylock_irqsave(ptr, flags) \
213 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
214
215 #define pcp_spin_unlock(ptr) \
216 pcpu_spin_unlock(lock, ptr)
217
218 #define pcp_spin_unlock_irqrestore(ptr, flags) \
219 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221 DEFINE_PER_CPU(int, numa_node);
222 EXPORT_PER_CPU_SYMBOL(numa_node);
223 #endif
224
225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
226
227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
228 /*
229 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232 * defined in <linux/topology.h>.
233 */
234 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
236 #endif
237
238 static DEFINE_MUTEX(pcpu_drain_mutex);
239
240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
241 volatile unsigned long latent_entropy __latent_entropy;
242 EXPORT_SYMBOL(latent_entropy);
243 #endif
244
245 /*
246 * Array of node states.
247 */
248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 [N_POSSIBLE] = NODE_MASK_ALL,
250 [N_ONLINE] = { { [0] = 1UL } },
251 #ifndef CONFIG_NUMA
252 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
253 #ifdef CONFIG_HIGHMEM
254 [N_HIGH_MEMORY] = { { [0] = 1UL } },
255 #endif
256 [N_MEMORY] = { { [0] = 1UL } },
257 [N_CPU] = { { [0] = 1UL } },
258 #endif /* NUMA */
259 };
260 EXPORT_SYMBOL(node_states);
261
262 atomic_long_t _totalram_pages __read_mostly;
263 EXPORT_SYMBOL(_totalram_pages);
264 unsigned long totalreserve_pages __read_mostly;
265 unsigned long totalcma_pages __read_mostly;
266
267 int percpu_pagelist_high_fraction;
268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
270 EXPORT_SYMBOL(init_on_alloc);
271
272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
273 EXPORT_SYMBOL(init_on_free);
274
275 static bool _init_on_alloc_enabled_early __read_mostly
276 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)277 static int __init early_init_on_alloc(char *buf)
278 {
279
280 return kstrtobool(buf, &_init_on_alloc_enabled_early);
281 }
282 early_param("init_on_alloc", early_init_on_alloc);
283
284 static bool _init_on_free_enabled_early __read_mostly
285 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)286 static int __init early_init_on_free(char *buf)
287 {
288 return kstrtobool(buf, &_init_on_free_enabled_early);
289 }
290 early_param("init_on_free", early_init_on_free);
291
292 /*
293 * A cached value of the page's pageblock's migratetype, used when the page is
294 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296 * Also the migratetype set in the page does not necessarily match the pcplist
297 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298 * other index - this ensures that it will be put on the correct CMA freelist.
299 */
get_pcppage_migratetype(struct page * page)300 static inline int get_pcppage_migratetype(struct page *page)
301 {
302 return page->index;
303 }
304
set_pcppage_migratetype(struct page * page,int migratetype)305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
306 {
307 page->index = migratetype;
308 }
309
310 #ifdef CONFIG_PM_SLEEP
311 /*
312 * The following functions are used by the suspend/hibernate code to temporarily
313 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314 * while devices are suspended. To avoid races with the suspend/hibernate code,
315 * they should always be called with system_transition_mutex held
316 * (gfp_allowed_mask also should only be modified with system_transition_mutex
317 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318 * with that modification).
319 */
320
321 static gfp_t saved_gfp_mask;
322
pm_restore_gfp_mask(void)323 void pm_restore_gfp_mask(void)
324 {
325 WARN_ON(!mutex_is_locked(&system_transition_mutex));
326 if (saved_gfp_mask) {
327 gfp_allowed_mask = saved_gfp_mask;
328 saved_gfp_mask = 0;
329 }
330 }
331
pm_restrict_gfp_mask(void)332 void pm_restrict_gfp_mask(void)
333 {
334 WARN_ON(!mutex_is_locked(&system_transition_mutex));
335 WARN_ON(saved_gfp_mask);
336 saved_gfp_mask = gfp_allowed_mask;
337 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
338 }
339
pm_suspended_storage(void)340 bool pm_suspended_storage(void)
341 {
342 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
343 return false;
344 return true;
345 }
346 #endif /* CONFIG_PM_SLEEP */
347
348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
349 unsigned int pageblock_order __read_mostly;
350 #endif
351
352 static void __free_pages_ok(struct page *page, unsigned int order,
353 fpi_t fpi_flags);
354
355 /*
356 * results with 256, 32 in the lowmem_reserve sysctl:
357 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358 * 1G machine -> (16M dma, 784M normal, 224M high)
359 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
361 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
362 *
363 * TBD: should special case ZONE_DMA32 machines here - in those we normally
364 * don't need any ZONE_NORMAL reservation
365 */
366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
367 #ifdef CONFIG_ZONE_DMA
368 [ZONE_DMA] = 256,
369 #endif
370 #ifdef CONFIG_ZONE_DMA32
371 [ZONE_DMA32] = 256,
372 #endif
373 [ZONE_NORMAL] = 32,
374 #ifdef CONFIG_HIGHMEM
375 [ZONE_HIGHMEM] = 0,
376 #endif
377 [ZONE_MOVABLE] = 0,
378 };
379
380 static char * const zone_names[MAX_NR_ZONES] = {
381 #ifdef CONFIG_ZONE_DMA
382 "DMA",
383 #endif
384 #ifdef CONFIG_ZONE_DMA32
385 "DMA32",
386 #endif
387 "Normal",
388 #ifdef CONFIG_HIGHMEM
389 "HighMem",
390 #endif
391 "Movable",
392 #ifdef CONFIG_ZONE_DEVICE
393 "Device",
394 #endif
395 };
396
397 const char * const migratetype_names[MIGRATE_TYPES] = {
398 "Unmovable",
399 "Movable",
400 "Reclaimable",
401 #ifdef CONFIG_CMA
402 "CMA",
403 #endif
404 "HighAtomic",
405 #ifdef CONFIG_MEMORY_ISOLATION
406 "Isolate",
407 #endif
408 };
409
410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 [NULL_COMPOUND_DTOR] = NULL,
412 [COMPOUND_PAGE_DTOR] = free_compound_page,
413 #ifdef CONFIG_HUGETLB_PAGE
414 [HUGETLB_PAGE_DTOR] = free_huge_page,
415 #endif
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
418 #endif
419 };
420
421 int min_free_kbytes = 1024;
422 int user_min_free_kbytes = -1;
423 int watermark_boost_factor __read_mostly = 15000;
424 int watermark_scale_factor = 10;
425
426 static unsigned long nr_kernel_pages __initdata;
427 static unsigned long nr_all_pages __initdata;
428 static unsigned long dma_reserve __initdata;
429
430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long required_kernelcore __initdata;
433 static unsigned long required_kernelcore_percent __initdata;
434 static unsigned long required_movablecore __initdata;
435 static unsigned long required_movablecore_percent __initdata;
436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
437 static bool mirrored_kernelcore __meminitdata;
438
439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
440 int movable_zone;
441 EXPORT_SYMBOL(movable_zone);
442
443 #if MAX_NUMNODES > 1
444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
445 unsigned int nr_online_nodes __read_mostly = 1;
446 EXPORT_SYMBOL(nr_node_ids);
447 EXPORT_SYMBOL(nr_online_nodes);
448 #endif
449
450 int page_group_by_mobility_disabled __read_mostly;
451
452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
453 /*
454 * During boot we initialize deferred pages on-demand, as needed, but once
455 * page_alloc_init_late() has finished, the deferred pages are all initialized,
456 * and we can permanently disable that path.
457 */
458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
459
deferred_pages_enabled(void)460 static inline bool deferred_pages_enabled(void)
461 {
462 return static_branch_unlikely(&deferred_pages);
463 }
464
465 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
467 {
468 int nid = early_pfn_to_nid(pfn);
469
470 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
471 return true;
472
473 return false;
474 }
475
476 /*
477 * Returns true when the remaining initialisation should be deferred until
478 * later in the boot cycle when it can be parallelised.
479 */
480 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
482 {
483 static unsigned long prev_end_pfn, nr_initialised;
484
485 /*
486 * prev_end_pfn static that contains the end of previous zone
487 * No need to protect because called very early in boot before smp_init.
488 */
489 if (prev_end_pfn != end_pfn) {
490 prev_end_pfn = end_pfn;
491 nr_initialised = 0;
492 }
493
494 /* Always populate low zones for address-constrained allocations */
495 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
496 return false;
497
498 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
499 return true;
500 /*
501 * We start only with one section of pages, more pages are added as
502 * needed until the rest of deferred pages are initialized.
503 */
504 nr_initialised++;
505 if ((nr_initialised > PAGES_PER_SECTION) &&
506 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
507 NODE_DATA(nid)->first_deferred_pfn = pfn;
508 return true;
509 }
510 return false;
511 }
512 #else
deferred_pages_enabled(void)513 static inline bool deferred_pages_enabled(void)
514 {
515 return false;
516 }
517
early_page_uninitialised(unsigned long pfn)518 static inline bool early_page_uninitialised(unsigned long pfn)
519 {
520 return false;
521 }
522
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)523 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
524 {
525 return false;
526 }
527 #endif
528
529 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)530 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
531 unsigned long pfn)
532 {
533 #ifdef CONFIG_SPARSEMEM
534 return section_to_usemap(__pfn_to_section(pfn));
535 #else
536 return page_zone(page)->pageblock_flags;
537 #endif /* CONFIG_SPARSEMEM */
538 }
539
pfn_to_bitidx(const struct page * page,unsigned long pfn)540 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
541 {
542 #ifdef CONFIG_SPARSEMEM
543 pfn &= (PAGES_PER_SECTION-1);
544 #else
545 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
546 #endif /* CONFIG_SPARSEMEM */
547 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
548 }
549
550 static __always_inline
__get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)551 unsigned long __get_pfnblock_flags_mask(const struct page *page,
552 unsigned long pfn,
553 unsigned long mask)
554 {
555 unsigned long *bitmap;
556 unsigned long bitidx, word_bitidx;
557 unsigned long word;
558
559 bitmap = get_pageblock_bitmap(page, pfn);
560 bitidx = pfn_to_bitidx(page, pfn);
561 word_bitidx = bitidx / BITS_PER_LONG;
562 bitidx &= (BITS_PER_LONG-1);
563 /*
564 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
565 * a consistent read of the memory array, so that results, even though
566 * racy, are not corrupted.
567 */
568 word = READ_ONCE(bitmap[word_bitidx]);
569 return (word >> bitidx) & mask;
570 }
571
572 /**
573 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
574 * @page: The page within the block of interest
575 * @pfn: The target page frame number
576 * @mask: mask of bits that the caller is interested in
577 *
578 * Return: pageblock_bits flags
579 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)580 unsigned long get_pfnblock_flags_mask(const struct page *page,
581 unsigned long pfn, unsigned long mask)
582 {
583 return __get_pfnblock_flags_mask(page, pfn, mask);
584 }
585 EXPORT_SYMBOL_GPL(get_pfnblock_flags_mask);
586
isolate_anon_lru_page(struct page * page)587 int isolate_anon_lru_page(struct page *page)
588 {
589 int ret;
590
591 if (!PageLRU(page) || !PageAnon(page))
592 return -EINVAL;
593
594 if (!get_page_unless_zero(page))
595 return -EINVAL;
596
597 ret = isolate_lru_page(page);
598 put_page(page);
599
600 return ret;
601 }
602 EXPORT_SYMBOL_GPL(isolate_anon_lru_page);
603
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)604 static __always_inline int get_pfnblock_migratetype(const struct page *page,
605 unsigned long pfn)
606 {
607 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
608 }
609
610 /**
611 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
612 * @page: The page within the block of interest
613 * @flags: The flags to set
614 * @pfn: The target page frame number
615 * @mask: mask of bits that the caller is interested in
616 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)617 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
618 unsigned long pfn,
619 unsigned long mask)
620 {
621 unsigned long *bitmap;
622 unsigned long bitidx, word_bitidx;
623 unsigned long old_word, word;
624
625 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
626 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
627
628 bitmap = get_pageblock_bitmap(page, pfn);
629 bitidx = pfn_to_bitidx(page, pfn);
630 word_bitidx = bitidx / BITS_PER_LONG;
631 bitidx &= (BITS_PER_LONG-1);
632
633 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
634
635 mask <<= bitidx;
636 flags <<= bitidx;
637
638 word = READ_ONCE(bitmap[word_bitidx]);
639 for (;;) {
640 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
641 if (word == old_word)
642 break;
643 word = old_word;
644 }
645 }
646
set_pageblock_migratetype(struct page * page,int migratetype)647 void set_pageblock_migratetype(struct page *page, int migratetype)
648 {
649 if (unlikely(page_group_by_mobility_disabled &&
650 migratetype < MIGRATE_PCPTYPES))
651 migratetype = MIGRATE_UNMOVABLE;
652
653 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
654 page_to_pfn(page), MIGRATETYPE_MASK);
655 }
656
657 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)658 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
659 {
660 int ret = 0;
661 unsigned seq;
662 unsigned long pfn = page_to_pfn(page);
663 unsigned long sp, start_pfn;
664
665 do {
666 seq = zone_span_seqbegin(zone);
667 start_pfn = zone->zone_start_pfn;
668 sp = zone->spanned_pages;
669 if (!zone_spans_pfn(zone, pfn))
670 ret = 1;
671 } while (zone_span_seqretry(zone, seq));
672
673 if (ret)
674 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
675 pfn, zone_to_nid(zone), zone->name,
676 start_pfn, start_pfn + sp);
677
678 return ret;
679 }
680
page_is_consistent(struct zone * zone,struct page * page)681 static int page_is_consistent(struct zone *zone, struct page *page)
682 {
683 if (zone != page_zone(page))
684 return 0;
685
686 return 1;
687 }
688 /*
689 * Temporary debugging check for pages not lying within a given zone.
690 */
bad_range(struct zone * zone,struct page * page)691 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
692 {
693 if (page_outside_zone_boundaries(zone, page))
694 return 1;
695 if (!page_is_consistent(zone, page))
696 return 1;
697
698 return 0;
699 }
700 #else
bad_range(struct zone * zone,struct page * page)701 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
702 {
703 return 0;
704 }
705 #endif
706
bad_page(struct page * page,const char * reason)707 static void bad_page(struct page *page, const char *reason)
708 {
709 static unsigned long resume;
710 static unsigned long nr_shown;
711 static unsigned long nr_unshown;
712
713 /*
714 * Allow a burst of 60 reports, then keep quiet for that minute;
715 * or allow a steady drip of one report per second.
716 */
717 if (nr_shown == 60) {
718 if (time_before(jiffies, resume)) {
719 nr_unshown++;
720 goto out;
721 }
722 if (nr_unshown) {
723 pr_alert(
724 "BUG: Bad page state: %lu messages suppressed\n",
725 nr_unshown);
726 nr_unshown = 0;
727 }
728 nr_shown = 0;
729 }
730 if (nr_shown++ == 0)
731 resume = jiffies + 60 * HZ;
732
733 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
734 current->comm, page_to_pfn(page));
735 dump_page(page, reason);
736
737 print_modules();
738 dump_stack();
739 out:
740 /* Leave bad fields for debug, except PageBuddy could make trouble */
741 page_mapcount_reset(page); /* remove PageBuddy */
742 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
743 }
744
order_to_pindex(int migratetype,int order)745 static inline unsigned int order_to_pindex(int migratetype, int order)
746 {
747 int base = order;
748
749 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
750 if (order > PAGE_ALLOC_COSTLY_ORDER) {
751 VM_BUG_ON(order != pageblock_order);
752 return NR_LOWORDER_PCP_LISTS;
753 }
754 #else
755 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
756 #endif
757
758 return (MIGRATE_PCPTYPES * base) + migratetype;
759 }
760
pindex_to_order(unsigned int pindex)761 static inline int pindex_to_order(unsigned int pindex)
762 {
763 int order = pindex / MIGRATE_PCPTYPES;
764
765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
766 if (pindex == NR_LOWORDER_PCP_LISTS) {
767 order = pageblock_order;
768 VM_BUG_ON(order != pageblock_order);
769 }
770 #else
771 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
772 #endif
773
774 return order;
775 }
776
pcp_allowed_order(unsigned int order)777 static inline bool pcp_allowed_order(unsigned int order)
778 {
779 if (order <= PAGE_ALLOC_COSTLY_ORDER)
780 return true;
781 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
782 if (order == pageblock_order)
783 return true;
784 #endif
785 return false;
786 }
787
free_the_page(struct page * page,unsigned int order)788 static inline void free_the_page(struct page *page, unsigned int order)
789 {
790 if (pcp_allowed_order(order)) /* Via pcp? */
791 free_unref_page(page, order);
792 else
793 __free_pages_ok(page, order, FPI_NONE);
794 }
795
796 /*
797 * Higher-order pages are called "compound pages". They are structured thusly:
798 *
799 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
800 *
801 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
802 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
803 *
804 * The first tail page's ->compound_dtor holds the offset in array of compound
805 * page destructors. See compound_page_dtors.
806 *
807 * The first tail page's ->compound_order holds the order of allocation.
808 * This usage means that zero-order pages may not be compound.
809 */
810
free_compound_page(struct page * page)811 void free_compound_page(struct page *page)
812 {
813 mem_cgroup_uncharge(page);
814 free_the_page(page, compound_order(page));
815 }
816
prep_compound_page(struct page * page,unsigned int order)817 void prep_compound_page(struct page *page, unsigned int order)
818 {
819 int i;
820 int nr_pages = 1 << order;
821
822 __SetPageHead(page);
823 for (i = 1; i < nr_pages; i++) {
824 struct page *p = page + i;
825 p->mapping = TAIL_MAPPING;
826 set_compound_head(p, page);
827 }
828
829 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
830 set_compound_order(page, order);
831 atomic_set(compound_mapcount_ptr(page), -1);
832 if (hpage_pincount_available(page))
833 atomic_set(compound_pincount_ptr(page), 0);
834 }
835
836 #ifdef CONFIG_DEBUG_PAGEALLOC
837 unsigned int _debug_guardpage_minorder;
838
839 bool _debug_pagealloc_enabled_early __read_mostly
840 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
841 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
842 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
843 EXPORT_SYMBOL(_debug_pagealloc_enabled);
844
845 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
846
early_debug_pagealloc(char * buf)847 static int __init early_debug_pagealloc(char *buf)
848 {
849 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
850 }
851 early_param("debug_pagealloc", early_debug_pagealloc);
852
debug_guardpage_minorder_setup(char * buf)853 static int __init debug_guardpage_minorder_setup(char *buf)
854 {
855 unsigned long res;
856
857 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
858 pr_err("Bad debug_guardpage_minorder value\n");
859 return 0;
860 }
861 _debug_guardpage_minorder = res;
862 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
863 return 0;
864 }
865 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
866
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)867 static inline bool set_page_guard(struct zone *zone, struct page *page,
868 unsigned int order, int migratetype)
869 {
870 if (!debug_guardpage_enabled())
871 return false;
872
873 if (order >= debug_guardpage_minorder())
874 return false;
875
876 __SetPageGuard(page);
877 INIT_LIST_HEAD(&page->buddy_list);
878 set_page_private(page, order);
879 /* Guard pages are not available for any usage */
880 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
881
882 return true;
883 }
884
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)885 static inline void clear_page_guard(struct zone *zone, struct page *page,
886 unsigned int order, int migratetype)
887 {
888 if (!debug_guardpage_enabled())
889 return;
890
891 __ClearPageGuard(page);
892
893 set_page_private(page, 0);
894 if (!is_migrate_isolate(migratetype))
895 __mod_zone_freepage_state(zone, (1 << order), migratetype);
896 }
897 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)898 static inline bool set_page_guard(struct zone *zone, struct page *page,
899 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)900 static inline void clear_page_guard(struct zone *zone, struct page *page,
901 unsigned int order, int migratetype) {}
902 #endif
903
904 /*
905 * Enable static keys related to various memory debugging and hardening options.
906 * Some override others, and depend on early params that are evaluated in the
907 * order of appearance. So we need to first gather the full picture of what was
908 * enabled, and then make decisions.
909 */
init_mem_debugging_and_hardening(void)910 void init_mem_debugging_and_hardening(void)
911 {
912 bool page_poisoning_requested = false;
913
914 #ifdef CONFIG_PAGE_POISONING
915 /*
916 * Page poisoning is debug page alloc for some arches. If
917 * either of those options are enabled, enable poisoning.
918 */
919 if (page_poisoning_enabled() ||
920 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
921 debug_pagealloc_enabled())) {
922 static_branch_enable(&_page_poisoning_enabled);
923 page_poisoning_requested = true;
924 }
925 #endif
926
927 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
928 page_poisoning_requested) {
929 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
930 "will take precedence over init_on_alloc and init_on_free\n");
931 _init_on_alloc_enabled_early = false;
932 _init_on_free_enabled_early = false;
933 }
934
935 if (_init_on_alloc_enabled_early)
936 static_branch_enable(&init_on_alloc);
937 else
938 static_branch_disable(&init_on_alloc);
939
940 if (_init_on_free_enabled_early)
941 static_branch_enable(&init_on_free);
942 else
943 static_branch_disable(&init_on_free);
944
945 #ifdef CONFIG_DEBUG_PAGEALLOC
946 if (!debug_pagealloc_enabled())
947 return;
948
949 static_branch_enable(&_debug_pagealloc_enabled);
950
951 if (!debug_guardpage_minorder())
952 return;
953
954 static_branch_enable(&_debug_guardpage_enabled);
955 #endif
956 }
957
set_buddy_order(struct page * page,unsigned int order)958 static inline void set_buddy_order(struct page *page, unsigned int order)
959 {
960 set_page_private(page, order);
961 __SetPageBuddy(page);
962 }
963
964 /*
965 * This function checks whether a page is free && is the buddy
966 * we can coalesce a page and its buddy if
967 * (a) the buddy is not in a hole (check before calling!) &&
968 * (b) the buddy is in the buddy system &&
969 * (c) a page and its buddy have the same order &&
970 * (d) a page and its buddy are in the same zone.
971 *
972 * For recording whether a page is in the buddy system, we set PageBuddy.
973 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
974 *
975 * For recording page's order, we use page_private(page).
976 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)977 static inline bool page_is_buddy(struct page *page, struct page *buddy,
978 unsigned int order)
979 {
980 if (!page_is_guard(buddy) && !PageBuddy(buddy))
981 return false;
982
983 if (buddy_order(buddy) != order)
984 return false;
985
986 /*
987 * zone check is done late to avoid uselessly calculating
988 * zone/node ids for pages that could never merge.
989 */
990 if (page_zone_id(page) != page_zone_id(buddy))
991 return false;
992
993 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
994
995 return true;
996 }
997
998 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)999 static inline struct capture_control *task_capc(struct zone *zone)
1000 {
1001 struct capture_control *capc = current->capture_control;
1002
1003 return unlikely(capc) &&
1004 !(current->flags & PF_KTHREAD) &&
1005 !capc->page &&
1006 capc->cc->zone == zone ? capc : NULL;
1007 }
1008
1009 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)1010 compaction_capture(struct capture_control *capc, struct page *page,
1011 int order, int migratetype)
1012 {
1013 if (!capc || order != capc->cc->order)
1014 return false;
1015
1016 /* Do not accidentally pollute CMA or isolated regions*/
1017 if (is_migrate_cma(migratetype) ||
1018 is_migrate_isolate(migratetype))
1019 return false;
1020
1021 /*
1022 * Do not let lower order allocations pollute a movable pageblock.
1023 * This might let an unmovable request use a reclaimable pageblock
1024 * and vice-versa but no more than normal fallback logic which can
1025 * have trouble finding a high-order free page.
1026 */
1027 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
1028 return false;
1029
1030 capc->page = page;
1031 return true;
1032 }
1033
1034 #else
task_capc(struct zone * zone)1035 static inline struct capture_control *task_capc(struct zone *zone)
1036 {
1037 return NULL;
1038 }
1039
1040 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)1041 compaction_capture(struct capture_control *capc, struct page *page,
1042 int order, int migratetype)
1043 {
1044 return false;
1045 }
1046 #endif /* CONFIG_COMPACTION */
1047
1048 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)1049 static inline void add_to_free_list(struct page *page, struct zone *zone,
1050 unsigned int order, int migratetype)
1051 {
1052 struct free_area *area = &zone->free_area[order];
1053
1054 list_add(&page->buddy_list, &area->free_list[migratetype]);
1055 area->nr_free++;
1056 }
1057
1058 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)1059 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1060 unsigned int order, int migratetype)
1061 {
1062 struct free_area *area = &zone->free_area[order];
1063
1064 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1065 area->nr_free++;
1066 }
1067
1068 /*
1069 * Used for pages which are on another list. Move the pages to the tail
1070 * of the list - so the moved pages won't immediately be considered for
1071 * allocation again (e.g., optimization for memory onlining).
1072 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)1073 static inline void move_to_free_list(struct page *page, struct zone *zone,
1074 unsigned int order, int migratetype)
1075 {
1076 struct free_area *area = &zone->free_area[order];
1077
1078 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1079 }
1080
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)1081 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1082 unsigned int order)
1083 {
1084 /* clear reported state and update reported page count */
1085 if (page_reported(page))
1086 __ClearPageReported(page);
1087
1088 list_del(&page->buddy_list);
1089 __ClearPageBuddy(page);
1090 set_page_private(page, 0);
1091 zone->free_area[order].nr_free--;
1092 }
1093
1094 /*
1095 * If this is not the largest possible page, check if the buddy
1096 * of the next-highest order is free. If it is, it's possible
1097 * that pages are being freed that will coalesce soon. In case,
1098 * that is happening, add the free page to the tail of the list
1099 * so it's less likely to be used soon and more likely to be merged
1100 * as a higher order page
1101 */
1102 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)1103 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1104 struct page *page, unsigned int order)
1105 {
1106 struct page *higher_page, *higher_buddy;
1107 unsigned long combined_pfn;
1108
1109 if (order >= MAX_ORDER - 2)
1110 return false;
1111
1112 combined_pfn = buddy_pfn & pfn;
1113 higher_page = page + (combined_pfn - pfn);
1114 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1115 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1116
1117 return page_is_buddy(higher_page, higher_buddy, order + 1);
1118 }
1119
1120 /*
1121 * Freeing function for a buddy system allocator.
1122 *
1123 * The concept of a buddy system is to maintain direct-mapped table
1124 * (containing bit values) for memory blocks of various "orders".
1125 * The bottom level table contains the map for the smallest allocatable
1126 * units of memory (here, pages), and each level above it describes
1127 * pairs of units from the levels below, hence, "buddies".
1128 * At a high level, all that happens here is marking the table entry
1129 * at the bottom level available, and propagating the changes upward
1130 * as necessary, plus some accounting needed to play nicely with other
1131 * parts of the VM system.
1132 * At each level, we keep a list of pages, which are heads of continuous
1133 * free pages of length of (1 << order) and marked with PageBuddy.
1134 * Page's order is recorded in page_private(page) field.
1135 * So when we are allocating or freeing one, we can derive the state of the
1136 * other. That is, if we allocate a small block, and both were
1137 * free, the remainder of the region must be split into blocks.
1138 * If a block is freed, and its buddy is also free, then this
1139 * triggers coalescing into a block of larger size.
1140 *
1141 * -- nyc
1142 */
1143
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)1144 static inline void __free_one_page(struct page *page,
1145 unsigned long pfn,
1146 struct zone *zone, unsigned int order,
1147 int migratetype, fpi_t fpi_flags)
1148 {
1149 struct capture_control *capc = task_capc(zone);
1150 unsigned long buddy_pfn;
1151 unsigned long combined_pfn;
1152 unsigned int max_order;
1153 struct page *buddy;
1154 bool to_tail;
1155
1156 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1157
1158 VM_BUG_ON(!zone_is_initialized(zone));
1159 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1160
1161 VM_BUG_ON(migratetype == -1);
1162 if (likely(!is_migrate_isolate(migratetype)))
1163 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1164
1165 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1166 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1167
1168 continue_merging:
1169 while (order < max_order) {
1170 if (compaction_capture(capc, page, order, migratetype)) {
1171 __mod_zone_freepage_state(zone, -(1 << order),
1172 migratetype);
1173 return;
1174 }
1175 buddy_pfn = __find_buddy_pfn(pfn, order);
1176 buddy = page + (buddy_pfn - pfn);
1177
1178 if (!page_is_buddy(page, buddy, order))
1179 goto done_merging;
1180 /*
1181 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1182 * merge with it and move up one order.
1183 */
1184 if (page_is_guard(buddy))
1185 clear_page_guard(zone, buddy, order, migratetype);
1186 else
1187 del_page_from_free_list(buddy, zone, order);
1188 combined_pfn = buddy_pfn & pfn;
1189 page = page + (combined_pfn - pfn);
1190 pfn = combined_pfn;
1191 order++;
1192 }
1193 if (order < MAX_ORDER - 1) {
1194 /* If we are here, it means order is >= pageblock_order.
1195 * We want to prevent merge between freepages on isolate
1196 * pageblock and normal pageblock. Without this, pageblock
1197 * isolation could cause incorrect freepage or CMA accounting.
1198 *
1199 * We don't want to hit this code for the more frequent
1200 * low-order merging.
1201 */
1202 if (unlikely(has_isolate_pageblock(zone))) {
1203 int buddy_mt;
1204
1205 buddy_pfn = __find_buddy_pfn(pfn, order);
1206 buddy = page + (buddy_pfn - pfn);
1207 buddy_mt = get_pageblock_migratetype(buddy);
1208
1209 if (migratetype != buddy_mt
1210 && (is_migrate_isolate(migratetype) ||
1211 is_migrate_isolate(buddy_mt)))
1212 goto done_merging;
1213 }
1214 max_order = order + 1;
1215 goto continue_merging;
1216 }
1217
1218 done_merging:
1219 set_buddy_order(page, order);
1220
1221 if (fpi_flags & FPI_TO_TAIL)
1222 to_tail = true;
1223 else if (is_shuffle_order(order))
1224 to_tail = shuffle_pick_tail();
1225 else
1226 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1227
1228 if (to_tail)
1229 add_to_free_list_tail(page, zone, order, migratetype);
1230 else
1231 add_to_free_list(page, zone, order, migratetype);
1232
1233 /* Notify page reporting subsystem of freed page */
1234 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1235 page_reporting_notify_free(order);
1236 }
1237
1238 /*
1239 * A bad page could be due to a number of fields. Instead of multiple branches,
1240 * try and check multiple fields with one check. The caller must do a detailed
1241 * check if necessary.
1242 */
page_expected_state(struct page * page,unsigned long check_flags)1243 static inline bool page_expected_state(struct page *page,
1244 unsigned long check_flags)
1245 {
1246 if (unlikely(atomic_read(&page->_mapcount) != -1))
1247 return false;
1248
1249 if (unlikely((unsigned long)page->mapping |
1250 page_ref_count(page) |
1251 #ifdef CONFIG_MEMCG
1252 page->memcg_data |
1253 #endif
1254 (page->flags & check_flags)))
1255 return false;
1256
1257 return true;
1258 }
1259
page_bad_reason(struct page * page,unsigned long flags)1260 static const char *page_bad_reason(struct page *page, unsigned long flags)
1261 {
1262 const char *bad_reason = NULL;
1263
1264 if (unlikely(atomic_read(&page->_mapcount) != -1))
1265 bad_reason = "nonzero mapcount";
1266 if (unlikely(page->mapping != NULL))
1267 bad_reason = "non-NULL mapping";
1268 if (unlikely(page_ref_count(page) != 0))
1269 bad_reason = "nonzero _refcount";
1270 if (unlikely(page->flags & flags)) {
1271 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1272 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1273 else
1274 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1275 }
1276 #ifdef CONFIG_MEMCG
1277 if (unlikely(page->memcg_data))
1278 bad_reason = "page still charged to cgroup";
1279 #endif
1280 return bad_reason;
1281 }
1282
check_free_page_bad(struct page * page)1283 static void check_free_page_bad(struct page *page)
1284 {
1285 bad_page(page,
1286 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1287 }
1288
check_free_page(struct page * page)1289 static inline int check_free_page(struct page *page)
1290 {
1291 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1292 return 0;
1293
1294 /* Something has gone sideways, find it */
1295 check_free_page_bad(page);
1296 return 1;
1297 }
1298
free_tail_pages_check(struct page * head_page,struct page * page)1299 static int free_tail_pages_check(struct page *head_page, struct page *page)
1300 {
1301 int ret = 1;
1302
1303 /*
1304 * We rely page->lru.next never has bit 0 set, unless the page
1305 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1306 */
1307 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1308
1309 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1310 ret = 0;
1311 goto out;
1312 }
1313 switch (page - head_page) {
1314 case 1:
1315 /* the first tail page: ->mapping may be compound_mapcount() */
1316 if (unlikely(compound_mapcount(page))) {
1317 bad_page(page, "nonzero compound_mapcount");
1318 goto out;
1319 }
1320 break;
1321 case 2:
1322 /*
1323 * the second tail page: ->mapping is
1324 * deferred_list.next -- ignore value.
1325 */
1326 break;
1327 default:
1328 if (page->mapping != TAIL_MAPPING) {
1329 bad_page(page, "corrupted mapping in tail page");
1330 goto out;
1331 }
1332 break;
1333 }
1334 if (unlikely(!PageTail(page))) {
1335 bad_page(page, "PageTail not set");
1336 goto out;
1337 }
1338 if (unlikely(compound_head(page) != head_page)) {
1339 bad_page(page, "compound_head not consistent");
1340 goto out;
1341 }
1342 ret = 0;
1343 out:
1344 page->mapping = NULL;
1345 clear_compound_head(page);
1346 return ret;
1347 }
1348
1349 /*
1350 * Skip KASAN memory poisoning when either:
1351 *
1352 * 1. Deferred memory initialization has not yet completed,
1353 * see the explanation below.
1354 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1355 * see the comment next to it.
1356 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1357 * see the comment next to it.
1358 * 4. The allocation is excluded from being checked due to sampling,
1359 * see the call to kasan_unpoison_pages.
1360 *
1361 * Poisoning pages during deferred memory init will greatly lengthen the
1362 * process and cause problem in large memory systems as the deferred pages
1363 * initialization is done with interrupt disabled.
1364 *
1365 * Assuming that there will be no reference to those newly initialized
1366 * pages before they are ever allocated, this should have no effect on
1367 * KASAN memory tracking as the poison will be properly inserted at page
1368 * allocation time. The only corner case is when pages are allocated by
1369 * on-demand allocation and then freed again before the deferred pages
1370 * initialization is done, but this is not likely to happen.
1371 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1372 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1373 {
1374 return deferred_pages_enabled() ||
1375 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1376 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1377 PageSkipKASanPoison(page);
1378 }
1379
kernel_init_pages(struct page * page,int numpages)1380 static void kernel_init_pages(struct page *page, int numpages)
1381 {
1382 int i;
1383
1384 /* s390's use of memset() could override KASAN redzones. */
1385 kasan_disable_current();
1386 for (i = 0; i < numpages; i++)
1387 clear_highpage_kasan_tagged(page + i);
1388 kasan_enable_current();
1389 }
1390
free_pages_prepare(struct page * page,unsigned int order,bool check_free,fpi_t fpi_flags)1391 static __always_inline bool free_pages_prepare(struct page *page,
1392 unsigned int order, bool check_free, fpi_t fpi_flags)
1393 {
1394 int bad = 0;
1395 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1396 bool init = want_init_on_free();
1397
1398 VM_BUG_ON_PAGE(PageTail(page), page);
1399
1400 trace_mm_page_free(page, order);
1401
1402 if (unlikely(PageHWPoison(page)) && !order) {
1403 /*
1404 * Do not let hwpoison pages hit pcplists/buddy
1405 * Untie memcg state and reset page's owner
1406 */
1407 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1408 __memcg_kmem_uncharge_page(page, order);
1409 reset_page_owner(page, order);
1410 free_page_pinner(page, order);
1411 return false;
1412 }
1413
1414 /*
1415 * Check tail pages before head page information is cleared to
1416 * avoid checking PageCompound for order-0 pages.
1417 */
1418 if (unlikely(order)) {
1419 bool compound = PageCompound(page);
1420 int i;
1421
1422 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1423
1424 if (compound) {
1425 ClearPageDoubleMap(page);
1426 ClearPageHasHWPoisoned(page);
1427 }
1428 for (i = 1; i < (1 << order); i++) {
1429 if (compound)
1430 bad += free_tail_pages_check(page, page + i);
1431 if (unlikely(check_free_page(page + i))) {
1432 bad++;
1433 continue;
1434 }
1435 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1436 }
1437 }
1438 if (PageMappingFlags(page))
1439 page->mapping = NULL;
1440 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1441 __memcg_kmem_uncharge_page(page, order);
1442 if (check_free)
1443 bad += check_free_page(page);
1444 if (bad)
1445 return false;
1446
1447 page_cpupid_reset_last(page);
1448 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1449 reset_page_owner(page, order);
1450 free_page_pinner(page, order);
1451
1452 if (!PageHighMem(page)) {
1453 debug_check_no_locks_freed(page_address(page),
1454 PAGE_SIZE << order);
1455 debug_check_no_obj_freed(page_address(page),
1456 PAGE_SIZE << order);
1457 }
1458
1459 kernel_poison_pages(page, 1 << order);
1460
1461 /*
1462 * As memory initialization might be integrated into KASAN,
1463 * KASAN poisoning and memory initialization code must be
1464 * kept together to avoid discrepancies in behavior.
1465 *
1466 * With hardware tag-based KASAN, memory tags must be set before the
1467 * page becomes unavailable via debug_pagealloc or arch_free_page.
1468 */
1469 if (!skip_kasan_poison) {
1470 kasan_poison_pages(page, order, init);
1471
1472 /* Memory is already initialized if KASAN did it internally. */
1473 if (kasan_has_integrated_init())
1474 init = false;
1475 }
1476 if (init)
1477 kernel_init_pages(page, 1 << order);
1478
1479 /*
1480 * arch_free_page() can make the page's contents inaccessible. s390
1481 * does this. So nothing which can access the page's contents should
1482 * happen after this.
1483 */
1484 arch_free_page(page, order);
1485
1486 debug_pagealloc_unmap_pages(page, 1 << order);
1487
1488 return true;
1489 }
1490
1491 #ifdef CONFIG_DEBUG_VM
1492 /*
1493 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1494 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1495 * moved from pcp lists to free lists.
1496 */
free_pcp_prepare(struct page * page,unsigned int order)1497 static bool free_pcp_prepare(struct page *page, unsigned int order)
1498 {
1499 return free_pages_prepare(page, order, true, FPI_NONE);
1500 }
1501
bulkfree_pcp_prepare(struct page * page)1502 static bool bulkfree_pcp_prepare(struct page *page)
1503 {
1504 if (debug_pagealloc_enabled_static())
1505 return check_free_page(page);
1506 else
1507 return false;
1508 }
1509 #else
1510 /*
1511 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1512 * moving from pcp lists to free list in order to reduce overhead. With
1513 * debug_pagealloc enabled, they are checked also immediately when being freed
1514 * to the pcp lists.
1515 */
free_pcp_prepare(struct page * page,unsigned int order)1516 static bool free_pcp_prepare(struct page *page, unsigned int order)
1517 {
1518 if (debug_pagealloc_enabled_static())
1519 return free_pages_prepare(page, order, true, FPI_NONE);
1520 else
1521 return free_pages_prepare(page, order, false, FPI_NONE);
1522 }
1523
bulkfree_pcp_prepare(struct page * page)1524 static bool bulkfree_pcp_prepare(struct page *page)
1525 {
1526 return check_free_page(page);
1527 }
1528 #endif /* CONFIG_DEBUG_VM */
1529
prefetch_buddy(struct page * page)1530 static inline void prefetch_buddy(struct page *page)
1531 {
1532 unsigned long pfn = page_to_pfn(page);
1533 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1534 struct page *buddy = page + (buddy_pfn - pfn);
1535
1536 prefetch(buddy);
1537 }
1538
1539 /*
1540 * Frees a number of pages from the PCP lists
1541 * Assumes all pages on list are in same zone, and of same order.
1542 * count is the number of pages to free.
1543 *
1544 * If the zone was previously in an "all pages pinned" state then look to
1545 * see if this freeing clears that state.
1546 *
1547 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1548 * pinned" detection logic.
1549 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1550 static void free_pcppages_bulk(struct zone *zone, int count,
1551 struct per_cpu_pages *pcp)
1552 {
1553 int pindex = 0;
1554 int batch_free = 0;
1555 int nr_freed = 0;
1556 unsigned int order;
1557 int prefetch_nr = READ_ONCE(pcp->batch);
1558 bool isolated_pageblocks;
1559 struct page *page, *tmp;
1560 LIST_HEAD(head);
1561
1562 /*
1563 * Ensure proper count is passed which otherwise would stuck in the
1564 * below while (list_empty(list)) loop.
1565 */
1566 count = min(pcp->count, count);
1567 while (count > 0) {
1568 struct list_head *list;
1569
1570 /*
1571 * Remove pages from lists in a round-robin fashion. A
1572 * batch_free count is maintained that is incremented when an
1573 * empty list is encountered. This is so more pages are freed
1574 * off fuller lists instead of spinning excessively around empty
1575 * lists
1576 */
1577 do {
1578 batch_free++;
1579 if (++pindex == NR_PCP_LISTS)
1580 pindex = 0;
1581 list = &pcp->lists[pindex];
1582 } while (list_empty(list));
1583
1584 /* This is the only non-empty list. Free them all. */
1585 if (batch_free == NR_PCP_LISTS)
1586 batch_free = count;
1587
1588 order = pindex_to_order(pindex);
1589 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1590 do {
1591 page = list_last_entry(list, struct page, pcp_list);
1592 /* must delete to avoid corrupting pcp list */
1593 list_del(&page->pcp_list);
1594 nr_freed += 1 << order;
1595 count -= 1 << order;
1596
1597 if (bulkfree_pcp_prepare(page))
1598 continue;
1599
1600 /* Encode order with the migratetype */
1601 page->index <<= NR_PCP_ORDER_WIDTH;
1602 page->index |= order;
1603
1604 list_add_tail(&page->lru, &head);
1605
1606 /*
1607 * We are going to put the page back to the global
1608 * pool, prefetch its buddy to speed up later access
1609 * under zone->lock. It is believed the overhead of
1610 * an additional test and calculating buddy_pfn here
1611 * can be offset by reduced memory latency later. To
1612 * avoid excessive prefetching due to large count, only
1613 * prefetch buddy for the first pcp->batch nr of pages.
1614 */
1615 if (prefetch_nr) {
1616 prefetch_buddy(page);
1617 prefetch_nr--;
1618 }
1619 } while (count > 0 && --batch_free && !list_empty(list));
1620 }
1621 pcp->count -= nr_freed;
1622
1623 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1624 spin_lock(&zone->lock);
1625 isolated_pageblocks = has_isolate_pageblock(zone);
1626
1627 /*
1628 * Use safe version since after __free_one_page(),
1629 * page->lru.next will not point to original list.
1630 */
1631 list_for_each_entry_safe(page, tmp, &head, lru) {
1632 int mt = get_pcppage_migratetype(page);
1633
1634 /* mt has been encoded with the order (see above) */
1635 order = mt & NR_PCP_ORDER_MASK;
1636 mt >>= NR_PCP_ORDER_WIDTH;
1637
1638 /* MIGRATE_ISOLATE page should not go to pcplists */
1639 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1640 /* Pageblock could have been isolated meanwhile */
1641 if (unlikely(isolated_pageblocks))
1642 mt = get_pageblock_migratetype(page);
1643
1644 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1645 trace_mm_page_pcpu_drain(page, order, mt);
1646 }
1647 spin_unlock(&zone->lock);
1648 }
1649
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1650 static void free_one_page(struct zone *zone,
1651 struct page *page, unsigned long pfn,
1652 unsigned int order,
1653 int migratetype, fpi_t fpi_flags)
1654 {
1655 unsigned long flags;
1656
1657 spin_lock_irqsave(&zone->lock, flags);
1658 if (unlikely(has_isolate_pageblock(zone) ||
1659 is_migrate_isolate(migratetype))) {
1660 migratetype = get_pfnblock_migratetype(page, pfn);
1661 }
1662 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1663 spin_unlock_irqrestore(&zone->lock, flags);
1664 }
1665
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1666 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1667 unsigned long zone, int nid)
1668 {
1669 mm_zero_struct_page(page);
1670 set_page_links(page, zone, nid, pfn);
1671 init_page_count(page);
1672 page_mapcount_reset(page);
1673 page_cpupid_reset_last(page);
1674 page_kasan_tag_reset(page);
1675
1676 INIT_LIST_HEAD(&page->lru);
1677 #ifdef WANT_PAGE_VIRTUAL
1678 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1679 if (!is_highmem_idx(zone))
1680 set_page_address(page, __va(pfn << PAGE_SHIFT));
1681 #endif
1682 }
1683
1684 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1685 static void __meminit init_reserved_page(unsigned long pfn)
1686 {
1687 pg_data_t *pgdat;
1688 int nid, zid;
1689
1690 if (!early_page_uninitialised(pfn))
1691 return;
1692
1693 nid = early_pfn_to_nid(pfn);
1694 pgdat = NODE_DATA(nid);
1695
1696 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1697 struct zone *zone = &pgdat->node_zones[zid];
1698
1699 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1700 break;
1701 }
1702 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1703 }
1704 #else
init_reserved_page(unsigned long pfn)1705 static inline void init_reserved_page(unsigned long pfn)
1706 {
1707 }
1708 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1709
1710 /*
1711 * Initialised pages do not have PageReserved set. This function is
1712 * called for each range allocated by the bootmem allocator and
1713 * marks the pages PageReserved. The remaining valid pages are later
1714 * sent to the buddy page allocator.
1715 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1716 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1717 {
1718 unsigned long start_pfn = PFN_DOWN(start);
1719 unsigned long end_pfn = PFN_UP(end);
1720
1721 for (; start_pfn < end_pfn; start_pfn++) {
1722 if (pfn_valid(start_pfn)) {
1723 struct page *page = pfn_to_page(start_pfn);
1724
1725 init_reserved_page(start_pfn);
1726
1727 /* Avoid false-positive PageTail() */
1728 INIT_LIST_HEAD(&page->lru);
1729
1730 /*
1731 * no need for atomic set_bit because the struct
1732 * page is not visible yet so nobody should
1733 * access it yet.
1734 */
1735 __SetPageReserved(page);
1736 }
1737 }
1738 }
1739
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1740 static void __free_pages_ok(struct page *page, unsigned int order,
1741 fpi_t fpi_flags)
1742 {
1743 unsigned long flags;
1744 int migratetype;
1745 unsigned long pfn = page_to_pfn(page);
1746 struct zone *zone = page_zone(page);
1747 bool skip_free_unref_page = false;
1748
1749 if (!free_pages_prepare(page, order, true, fpi_flags))
1750 return;
1751
1752 migratetype = get_pfnblock_migratetype(page, pfn);
1753 trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
1754 if (skip_free_unref_page)
1755 return;
1756
1757 spin_lock_irqsave(&zone->lock, flags);
1758 if (unlikely(has_isolate_pageblock(zone) ||
1759 is_migrate_isolate(migratetype))) {
1760 migratetype = get_pfnblock_migratetype(page, pfn);
1761 }
1762 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1763 spin_unlock_irqrestore(&zone->lock, flags);
1764
1765 __count_vm_events(PGFREE, 1 << order);
1766 }
1767
__free_pages_core(struct page * page,unsigned int order)1768 void __free_pages_core(struct page *page, unsigned int order)
1769 {
1770 unsigned int nr_pages = 1 << order;
1771 struct page *p = page;
1772 unsigned int loop;
1773
1774 /*
1775 * When initializing the memmap, __init_single_page() sets the refcount
1776 * of all pages to 1 ("allocated"/"not free"). We have to set the
1777 * refcount of all involved pages to 0.
1778 */
1779 prefetchw(p);
1780 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1781 prefetchw(p + 1);
1782 __ClearPageReserved(p);
1783 set_page_count(p, 0);
1784 }
1785 __ClearPageReserved(p);
1786 set_page_count(p, 0);
1787
1788 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1789
1790 /*
1791 * Bypass PCP and place fresh pages right to the tail, primarily
1792 * relevant for memory onlining.
1793 */
1794 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1795 }
1796
1797 #ifdef CONFIG_NUMA
1798
1799 /*
1800 * During memory init memblocks map pfns to nids. The search is expensive and
1801 * this caches recent lookups. The implementation of __early_pfn_to_nid
1802 * treats start/end as pfns.
1803 */
1804 struct mminit_pfnnid_cache {
1805 unsigned long last_start;
1806 unsigned long last_end;
1807 int last_nid;
1808 };
1809
1810 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1811
1812 /*
1813 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1814 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1815 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1816 struct mminit_pfnnid_cache *state)
1817 {
1818 unsigned long start_pfn, end_pfn;
1819 int nid;
1820
1821 if (state->last_start <= pfn && pfn < state->last_end)
1822 return state->last_nid;
1823
1824 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1825 if (nid != NUMA_NO_NODE) {
1826 state->last_start = start_pfn;
1827 state->last_end = end_pfn;
1828 state->last_nid = nid;
1829 }
1830
1831 return nid;
1832 }
1833
early_pfn_to_nid(unsigned long pfn)1834 int __meminit early_pfn_to_nid(unsigned long pfn)
1835 {
1836 static DEFINE_SPINLOCK(early_pfn_lock);
1837 int nid;
1838
1839 spin_lock(&early_pfn_lock);
1840 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1841 if (nid < 0)
1842 nid = first_online_node;
1843 spin_unlock(&early_pfn_lock);
1844
1845 return nid;
1846 }
1847 #endif /* CONFIG_NUMA */
1848
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1849 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1850 unsigned int order)
1851 {
1852 if (early_page_uninitialised(pfn))
1853 return;
1854 __free_pages_core(page, order);
1855 }
1856
1857 /*
1858 * Check that the whole (or subset of) a pageblock given by the interval of
1859 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1860 * with the migration of free compaction scanner.
1861 *
1862 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1863 *
1864 * It's possible on some configurations to have a setup like node0 node1 node0
1865 * i.e. it's possible that all pages within a zones range of pages do not
1866 * belong to a single zone. We assume that a border between node0 and node1
1867 * can occur within a single pageblock, but not a node0 node1 node0
1868 * interleaving within a single pageblock. It is therefore sufficient to check
1869 * the first and last page of a pageblock and avoid checking each individual
1870 * page in a pageblock.
1871 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1872 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1873 unsigned long end_pfn, struct zone *zone)
1874 {
1875 struct page *start_page;
1876 struct page *end_page;
1877
1878 /* end_pfn is one past the range we are checking */
1879 end_pfn--;
1880
1881 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1882 return NULL;
1883
1884 start_page = pfn_to_online_page(start_pfn);
1885 if (!start_page)
1886 return NULL;
1887
1888 if (page_zone(start_page) != zone)
1889 return NULL;
1890
1891 end_page = pfn_to_page(end_pfn);
1892
1893 /* This gives a shorter code than deriving page_zone(end_page) */
1894 if (page_zone_id(start_page) != page_zone_id(end_page))
1895 return NULL;
1896
1897 return start_page;
1898 }
1899
set_zone_contiguous(struct zone * zone)1900 void set_zone_contiguous(struct zone *zone)
1901 {
1902 unsigned long block_start_pfn = zone->zone_start_pfn;
1903 unsigned long block_end_pfn;
1904
1905 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1906 for (; block_start_pfn < zone_end_pfn(zone);
1907 block_start_pfn = block_end_pfn,
1908 block_end_pfn += pageblock_nr_pages) {
1909
1910 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1911
1912 if (!__pageblock_pfn_to_page(block_start_pfn,
1913 block_end_pfn, zone))
1914 return;
1915 cond_resched();
1916 }
1917
1918 /* We confirm that there is no hole */
1919 zone->contiguous = true;
1920 }
1921
clear_zone_contiguous(struct zone * zone)1922 void clear_zone_contiguous(struct zone *zone)
1923 {
1924 zone->contiguous = false;
1925 }
1926
1927 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1928 static void __init deferred_free_range(unsigned long pfn,
1929 unsigned long nr_pages)
1930 {
1931 struct page *page;
1932 unsigned long i;
1933
1934 if (!nr_pages)
1935 return;
1936
1937 page = pfn_to_page(pfn);
1938
1939 /* Free a large naturally-aligned chunk if possible */
1940 if (nr_pages == pageblock_nr_pages &&
1941 (pfn & (pageblock_nr_pages - 1)) == 0) {
1942 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1943 __free_pages_core(page, pageblock_order);
1944 return;
1945 }
1946
1947 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1948 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1949 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1950 __free_pages_core(page, 0);
1951 }
1952 }
1953
1954 /* Completion tracking for deferred_init_memmap() threads */
1955 static atomic_t pgdat_init_n_undone __initdata;
1956 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1957
pgdat_init_report_one_done(void)1958 static inline void __init pgdat_init_report_one_done(void)
1959 {
1960 if (atomic_dec_and_test(&pgdat_init_n_undone))
1961 complete(&pgdat_init_all_done_comp);
1962 }
1963
1964 /*
1965 * Returns true if page needs to be initialized or freed to buddy allocator.
1966 *
1967 * First we check if pfn is valid on architectures where it is possible to have
1968 * holes within pageblock_nr_pages. On systems where it is not possible, this
1969 * function is optimized out.
1970 *
1971 * Then, we check if a current large page is valid by only checking the validity
1972 * of the head pfn.
1973 */
deferred_pfn_valid(unsigned long pfn)1974 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1975 {
1976 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1977 return false;
1978 return true;
1979 }
1980
1981 /*
1982 * Free pages to buddy allocator. Try to free aligned pages in
1983 * pageblock_nr_pages sizes.
1984 */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1985 static void __init deferred_free_pages(unsigned long pfn,
1986 unsigned long end_pfn)
1987 {
1988 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1989 unsigned long nr_free = 0;
1990
1991 for (; pfn < end_pfn; pfn++) {
1992 if (!deferred_pfn_valid(pfn)) {
1993 deferred_free_range(pfn - nr_free, nr_free);
1994 nr_free = 0;
1995 } else if (!(pfn & nr_pgmask)) {
1996 deferred_free_range(pfn - nr_free, nr_free);
1997 nr_free = 1;
1998 } else {
1999 nr_free++;
2000 }
2001 }
2002 /* Free the last block of pages to allocator */
2003 deferred_free_range(pfn - nr_free, nr_free);
2004 }
2005
2006 /*
2007 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
2008 * by performing it only once every pageblock_nr_pages.
2009 * Return number of pages initialized.
2010 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2011 static unsigned long __init deferred_init_pages(struct zone *zone,
2012 unsigned long pfn,
2013 unsigned long end_pfn)
2014 {
2015 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2016 int nid = zone_to_nid(zone);
2017 unsigned long nr_pages = 0;
2018 int zid = zone_idx(zone);
2019 struct page *page = NULL;
2020
2021 for (; pfn < end_pfn; pfn++) {
2022 if (!deferred_pfn_valid(pfn)) {
2023 page = NULL;
2024 continue;
2025 } else if (!page || !(pfn & nr_pgmask)) {
2026 page = pfn_to_page(pfn);
2027 } else {
2028 page++;
2029 }
2030 __init_single_page(page, pfn, zid, nid);
2031 nr_pages++;
2032 }
2033 return (nr_pages);
2034 }
2035
2036 /*
2037 * This function is meant to pre-load the iterator for the zone init.
2038 * Specifically it walks through the ranges until we are caught up to the
2039 * first_init_pfn value and exits there. If we never encounter the value we
2040 * return false indicating there are no valid ranges left.
2041 */
2042 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2043 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2044 unsigned long *spfn, unsigned long *epfn,
2045 unsigned long first_init_pfn)
2046 {
2047 u64 j;
2048
2049 /*
2050 * Start out by walking through the ranges in this zone that have
2051 * already been initialized. We don't need to do anything with them
2052 * so we just need to flush them out of the system.
2053 */
2054 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2055 if (*epfn <= first_init_pfn)
2056 continue;
2057 if (*spfn < first_init_pfn)
2058 *spfn = first_init_pfn;
2059 *i = j;
2060 return true;
2061 }
2062
2063 return false;
2064 }
2065
2066 /*
2067 * Initialize and free pages. We do it in two loops: first we initialize
2068 * struct page, then free to buddy allocator, because while we are
2069 * freeing pages we can access pages that are ahead (computing buddy
2070 * page in __free_one_page()).
2071 *
2072 * In order to try and keep some memory in the cache we have the loop
2073 * broken along max page order boundaries. This way we will not cause
2074 * any issues with the buddy page computation.
2075 */
2076 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2077 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2078 unsigned long *end_pfn)
2079 {
2080 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2081 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2082 unsigned long nr_pages = 0;
2083 u64 j = *i;
2084
2085 /* First we loop through and initialize the page values */
2086 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2087 unsigned long t;
2088
2089 if (mo_pfn <= *start_pfn)
2090 break;
2091
2092 t = min(mo_pfn, *end_pfn);
2093 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2094
2095 if (mo_pfn < *end_pfn) {
2096 *start_pfn = mo_pfn;
2097 break;
2098 }
2099 }
2100
2101 /* Reset values and now loop through freeing pages as needed */
2102 swap(j, *i);
2103
2104 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2105 unsigned long t;
2106
2107 if (mo_pfn <= spfn)
2108 break;
2109
2110 t = min(mo_pfn, epfn);
2111 deferred_free_pages(spfn, t);
2112
2113 if (mo_pfn <= epfn)
2114 break;
2115 }
2116
2117 return nr_pages;
2118 }
2119
2120 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2121 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2122 void *arg)
2123 {
2124 unsigned long spfn, epfn;
2125 struct zone *zone = arg;
2126 u64 i;
2127
2128 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2129
2130 /*
2131 * Initialize and free pages in MAX_ORDER sized increments so that we
2132 * can avoid introducing any issues with the buddy allocator.
2133 */
2134 while (spfn < end_pfn) {
2135 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2136 cond_resched();
2137 }
2138 }
2139
2140 /* An arch may override for more concurrency. */
2141 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2142 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2143 {
2144 return 1;
2145 }
2146
2147 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2148 static int __init deferred_init_memmap(void *data)
2149 {
2150 pg_data_t *pgdat = data;
2151 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2152 unsigned long spfn = 0, epfn = 0;
2153 unsigned long first_init_pfn, flags;
2154 unsigned long start = jiffies;
2155 struct zone *zone;
2156 int zid, max_threads;
2157 u64 i;
2158
2159 /* Bind memory initialisation thread to a local node if possible */
2160 if (!cpumask_empty(cpumask))
2161 set_cpus_allowed_ptr(current, cpumask);
2162
2163 pgdat_resize_lock(pgdat, &flags);
2164 first_init_pfn = pgdat->first_deferred_pfn;
2165 if (first_init_pfn == ULONG_MAX) {
2166 pgdat_resize_unlock(pgdat, &flags);
2167 pgdat_init_report_one_done();
2168 return 0;
2169 }
2170
2171 /* Sanity check boundaries */
2172 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2173 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2174 pgdat->first_deferred_pfn = ULONG_MAX;
2175
2176 /*
2177 * Once we unlock here, the zone cannot be grown anymore, thus if an
2178 * interrupt thread must allocate this early in boot, zone must be
2179 * pre-grown prior to start of deferred page initialization.
2180 */
2181 pgdat_resize_unlock(pgdat, &flags);
2182
2183 /* Only the highest zone is deferred so find it */
2184 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2185 zone = pgdat->node_zones + zid;
2186 if (first_init_pfn < zone_end_pfn(zone))
2187 break;
2188 }
2189
2190 /* If the zone is empty somebody else may have cleared out the zone */
2191 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2192 first_init_pfn))
2193 goto zone_empty;
2194
2195 max_threads = deferred_page_init_max_threads(cpumask);
2196
2197 while (spfn < epfn) {
2198 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2199 struct padata_mt_job job = {
2200 .thread_fn = deferred_init_memmap_chunk,
2201 .fn_arg = zone,
2202 .start = spfn,
2203 .size = epfn_align - spfn,
2204 .align = PAGES_PER_SECTION,
2205 .min_chunk = PAGES_PER_SECTION,
2206 .max_threads = max_threads,
2207 };
2208
2209 padata_do_multithreaded(&job);
2210 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2211 epfn_align);
2212 }
2213 zone_empty:
2214 /* Sanity check that the next zone really is unpopulated */
2215 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2216
2217 pr_info("node %d deferred pages initialised in %ums\n",
2218 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2219
2220 pgdat_init_report_one_done();
2221 return 0;
2222 }
2223
2224 /*
2225 * If this zone has deferred pages, try to grow it by initializing enough
2226 * deferred pages to satisfy the allocation specified by order, rounded up to
2227 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2228 * of SECTION_SIZE bytes by initializing struct pages in increments of
2229 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2230 *
2231 * Return true when zone was grown, otherwise return false. We return true even
2232 * when we grow less than requested, to let the caller decide if there are
2233 * enough pages to satisfy the allocation.
2234 *
2235 * Note: We use noinline because this function is needed only during boot, and
2236 * it is called from a __ref function _deferred_grow_zone. This way we are
2237 * making sure that it is not inlined into permanent text section.
2238 */
2239 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2240 deferred_grow_zone(struct zone *zone, unsigned int order)
2241 {
2242 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2243 pg_data_t *pgdat = zone->zone_pgdat;
2244 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2245 unsigned long spfn, epfn, flags;
2246 unsigned long nr_pages = 0;
2247 u64 i;
2248
2249 /* Only the last zone may have deferred pages */
2250 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2251 return false;
2252
2253 pgdat_resize_lock(pgdat, &flags);
2254
2255 /*
2256 * If someone grew this zone while we were waiting for spinlock, return
2257 * true, as there might be enough pages already.
2258 */
2259 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2260 pgdat_resize_unlock(pgdat, &flags);
2261 return true;
2262 }
2263
2264 /* If the zone is empty somebody else may have cleared out the zone */
2265 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2266 first_deferred_pfn)) {
2267 pgdat->first_deferred_pfn = ULONG_MAX;
2268 pgdat_resize_unlock(pgdat, &flags);
2269 /* Retry only once. */
2270 return first_deferred_pfn != ULONG_MAX;
2271 }
2272
2273 /*
2274 * Initialize and free pages in MAX_ORDER sized increments so
2275 * that we can avoid introducing any issues with the buddy
2276 * allocator.
2277 */
2278 while (spfn < epfn) {
2279 /* update our first deferred PFN for this section */
2280 first_deferred_pfn = spfn;
2281
2282 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2283 touch_nmi_watchdog();
2284
2285 /* We should only stop along section boundaries */
2286 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2287 continue;
2288
2289 /* If our quota has been met we can stop here */
2290 if (nr_pages >= nr_pages_needed)
2291 break;
2292 }
2293
2294 pgdat->first_deferred_pfn = spfn;
2295 pgdat_resize_unlock(pgdat, &flags);
2296
2297 return nr_pages > 0;
2298 }
2299
2300 /*
2301 * deferred_grow_zone() is __init, but it is called from
2302 * get_page_from_freelist() during early boot until deferred_pages permanently
2303 * disables this call. This is why we have refdata wrapper to avoid warning,
2304 * and to ensure that the function body gets unloaded.
2305 */
2306 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2307 _deferred_grow_zone(struct zone *zone, unsigned int order)
2308 {
2309 return deferred_grow_zone(zone, order);
2310 }
2311
2312 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2313
page_alloc_init_late(void)2314 void __init page_alloc_init_late(void)
2315 {
2316 struct zone *zone;
2317 int nid;
2318
2319 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2320
2321 /* There will be num_node_state(N_MEMORY) threads */
2322 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2323 for_each_node_state(nid, N_MEMORY) {
2324 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2325 }
2326
2327 /* Block until all are initialised */
2328 wait_for_completion(&pgdat_init_all_done_comp);
2329
2330 /*
2331 * We initialized the rest of the deferred pages. Permanently disable
2332 * on-demand struct page initialization.
2333 */
2334 static_branch_disable(&deferred_pages);
2335
2336 /* Reinit limits that are based on free pages after the kernel is up */
2337 files_maxfiles_init();
2338 #endif
2339
2340 buffer_init();
2341
2342 /* Discard memblock private memory */
2343 memblock_discard();
2344
2345 for_each_node_state(nid, N_MEMORY)
2346 shuffle_free_memory(NODE_DATA(nid));
2347
2348 for_each_populated_zone(zone)
2349 set_zone_contiguous(zone);
2350 }
2351
2352 #ifdef CONFIG_CMA
2353 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2354 void __init init_cma_reserved_pageblock(struct page *page)
2355 {
2356 unsigned i = pageblock_nr_pages;
2357 struct page *p = page;
2358
2359 do {
2360 __ClearPageReserved(p);
2361 set_page_count(p, 0);
2362 } while (++p, --i);
2363
2364 set_pageblock_migratetype(page, MIGRATE_CMA);
2365
2366 if (pageblock_order >= MAX_ORDER) {
2367 i = pageblock_nr_pages;
2368 p = page;
2369 do {
2370 set_page_refcounted(p);
2371 __free_pages(p, MAX_ORDER - 1);
2372 p += MAX_ORDER_NR_PAGES;
2373 } while (i -= MAX_ORDER_NR_PAGES);
2374 } else {
2375 set_page_refcounted(page);
2376 __free_pages(page, pageblock_order);
2377 }
2378
2379 adjust_managed_page_count(page, pageblock_nr_pages);
2380 page_zone(page)->cma_pages += pageblock_nr_pages;
2381 }
2382 #endif
2383
2384 /*
2385 * The order of subdivision here is critical for the IO subsystem.
2386 * Please do not alter this order without good reasons and regression
2387 * testing. Specifically, as large blocks of memory are subdivided,
2388 * the order in which smaller blocks are delivered depends on the order
2389 * they're subdivided in this function. This is the primary factor
2390 * influencing the order in which pages are delivered to the IO
2391 * subsystem according to empirical testing, and this is also justified
2392 * by considering the behavior of a buddy system containing a single
2393 * large block of memory acted on by a series of small allocations.
2394 * This behavior is a critical factor in sglist merging's success.
2395 *
2396 * -- nyc
2397 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2398 static inline void expand(struct zone *zone, struct page *page,
2399 int low, int high, int migratetype)
2400 {
2401 unsigned long size = 1 << high;
2402
2403 while (high > low) {
2404 high--;
2405 size >>= 1;
2406 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2407
2408 /*
2409 * Mark as guard pages (or page), that will allow to
2410 * merge back to allocator when buddy will be freed.
2411 * Corresponding page table entries will not be touched,
2412 * pages will stay not present in virtual address space
2413 */
2414 if (set_page_guard(zone, &page[size], high, migratetype))
2415 continue;
2416
2417 add_to_free_list(&page[size], zone, high, migratetype);
2418 set_buddy_order(&page[size], high);
2419 }
2420 }
2421
check_new_page_bad(struct page * page)2422 static void check_new_page_bad(struct page *page)
2423 {
2424 if (unlikely(page->flags & __PG_HWPOISON)) {
2425 /* Don't complain about hwpoisoned pages */
2426 page_mapcount_reset(page); /* remove PageBuddy */
2427 return;
2428 }
2429
2430 bad_page(page,
2431 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2432 }
2433
2434 /*
2435 * This page is about to be returned from the page allocator
2436 */
check_new_page(struct page * page)2437 static inline int check_new_page(struct page *page)
2438 {
2439 if (likely(page_expected_state(page,
2440 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2441 return 0;
2442
2443 check_new_page_bad(page);
2444 return 1;
2445 }
2446
2447 #ifdef CONFIG_DEBUG_VM
2448 /*
2449 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2450 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2451 * also checked when pcp lists are refilled from the free lists.
2452 */
check_pcp_refill(struct page * page)2453 static inline bool check_pcp_refill(struct page *page)
2454 {
2455 if (debug_pagealloc_enabled_static())
2456 return check_new_page(page);
2457 else
2458 return false;
2459 }
2460
check_new_pcp(struct page * page)2461 static inline bool check_new_pcp(struct page *page)
2462 {
2463 return check_new_page(page);
2464 }
2465 #else
2466 /*
2467 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2468 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2469 * enabled, they are also checked when being allocated from the pcp lists.
2470 */
check_pcp_refill(struct page * page)2471 static inline bool check_pcp_refill(struct page *page)
2472 {
2473 return check_new_page(page);
2474 }
check_new_pcp(struct page * page)2475 static inline bool check_new_pcp(struct page *page)
2476 {
2477 if (debug_pagealloc_enabled_static())
2478 return check_new_page(page);
2479 else
2480 return false;
2481 }
2482 #endif /* CONFIG_DEBUG_VM */
2483
check_new_pages(struct page * page,unsigned int order)2484 static bool check_new_pages(struct page *page, unsigned int order)
2485 {
2486 int i;
2487 for (i = 0; i < (1 << order); i++) {
2488 struct page *p = page + i;
2489
2490 if (unlikely(check_new_page(p)))
2491 return true;
2492 }
2493
2494 return false;
2495 }
2496
should_skip_kasan_unpoison(gfp_t flags)2497 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2498 {
2499 /* Don't skip if a software KASAN mode is enabled. */
2500 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2501 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2502 return false;
2503
2504 /* Skip, if hardware tag-based KASAN is not enabled. */
2505 if (!kasan_hw_tags_enabled())
2506 return true;
2507
2508 /*
2509 * With hardware tag-based KASAN enabled, skip if this has been
2510 * requested via __GFP_SKIP_KASAN_UNPOISON.
2511 */
2512 return flags & __GFP_SKIP_KASAN_UNPOISON;
2513 }
2514
should_skip_init(gfp_t flags)2515 static inline bool should_skip_init(gfp_t flags)
2516 {
2517 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2518 if (!kasan_hw_tags_enabled())
2519 return false;
2520
2521 /* For hardware tag-based KASAN, skip if requested. */
2522 return (flags & __GFP_SKIP_ZERO);
2523 }
2524
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2525 inline void post_alloc_hook(struct page *page, unsigned int order,
2526 gfp_t gfp_flags)
2527 {
2528 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2529 !should_skip_init(gfp_flags);
2530 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2531 bool reset_tags = true;
2532 int i;
2533
2534 set_page_private(page, 0);
2535 set_page_refcounted(page);
2536
2537 arch_alloc_page(page, order);
2538 debug_pagealloc_map_pages(page, 1 << order);
2539
2540 /*
2541 * Page unpoisoning must happen before memory initialization.
2542 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2543 * allocations and the page unpoisoning code will complain.
2544 */
2545 kernel_unpoison_pages(page, 1 << order);
2546
2547 /*
2548 * As memory initialization might be integrated into KASAN,
2549 * KASAN unpoisoning and memory initializion code must be
2550 * kept together to avoid discrepancies in behavior.
2551 */
2552
2553 /*
2554 * If memory tags should be zeroed
2555 * (which happens only when memory should be initialized as well).
2556 */
2557 if (zero_tags) {
2558 /* Initialize both memory and memory tags. */
2559 for (i = 0; i != 1 << order; ++i)
2560 tag_clear_highpage(page + i);
2561
2562 /* Take note that memory was initialized by the loop above. */
2563 init = false;
2564 }
2565 if (!should_skip_kasan_unpoison(gfp_flags)) {
2566 /* Try unpoisoning (or setting tags) and initializing memory. */
2567 if (kasan_unpoison_pages(page, order, init)) {
2568 /* Take note that memory was initialized by KASAN. */
2569 if (kasan_has_integrated_init())
2570 init = false;
2571 /* Take note that memory tags were set by KASAN. */
2572 reset_tags = false;
2573 } else {
2574 /*
2575 * KASAN decided to exclude this allocation from being
2576 * (un)poisoned due to sampling. Make KASAN skip
2577 * poisoning when the allocation is freed.
2578 */
2579 SetPageSkipKASanPoison(page);
2580 }
2581 }
2582 /*
2583 * If memory tags have not been set by KASAN, reset the page tags to
2584 * ensure page_address() dereferencing does not fault.
2585 */
2586 if (reset_tags) {
2587 for (i = 0; i != 1 << order; ++i)
2588 page_kasan_tag_reset(page + i);
2589 }
2590 /* If memory is still not initialized, initialize it now. */
2591 if (init)
2592 kernel_init_pages(page, 1 << order);
2593 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2594 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2595 SetPageSkipKASanPoison(page);
2596
2597 set_page_owner(page, order, gfp_flags);
2598 }
2599
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2600 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2601 unsigned int alloc_flags)
2602 {
2603 post_alloc_hook(page, order, gfp_flags);
2604
2605 if (order && (gfp_flags & __GFP_COMP))
2606 prep_compound_page(page, order);
2607
2608 /*
2609 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2610 * allocate the page. The expectation is that the caller is taking
2611 * steps that will free more memory. The caller should avoid the page
2612 * being used for !PFMEMALLOC purposes.
2613 */
2614 if (alloc_flags & ALLOC_NO_WATERMARKS)
2615 set_page_pfmemalloc(page);
2616 else
2617 clear_page_pfmemalloc(page);
2618 }
2619
2620 /*
2621 * Go through the free lists for the given migratetype and remove
2622 * the smallest available page from the freelists
2623 */
2624 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2625 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2626 int migratetype)
2627 {
2628 unsigned int current_order;
2629 struct free_area *area;
2630 struct page *page;
2631
2632 /* Find a page of the appropriate size in the preferred list */
2633 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2634 area = &(zone->free_area[current_order]);
2635 page = get_page_from_free_area(area, migratetype);
2636 if (!page)
2637 continue;
2638 del_page_from_free_list(page, zone, current_order);
2639 expand(zone, page, order, current_order, migratetype);
2640 set_pcppage_migratetype(page, migratetype);
2641 return page;
2642 }
2643
2644 return NULL;
2645 }
2646
2647
2648 /*
2649 * This array describes the order lists are fallen back to when
2650 * the free lists for the desirable migrate type are depleted
2651 */
2652 static int fallbacks[MIGRATE_TYPES][3] = {
2653 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2654 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2655 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2656 #ifdef CONFIG_CMA
2657 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2658 #endif
2659 #ifdef CONFIG_MEMORY_ISOLATION
2660 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2661 #endif
2662 };
2663
2664 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2665 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2666 unsigned int order)
2667 {
2668 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2669 }
2670 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2671 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2672 unsigned int order) { return NULL; }
2673 #endif
2674
2675 /*
2676 * Move the free pages in a range to the freelist tail of the requested type.
2677 * Note that start_page and end_pages are not aligned on a pageblock
2678 * boundary. If alignment is required, use move_freepages_block()
2679 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2680 static int move_freepages(struct zone *zone,
2681 unsigned long start_pfn, unsigned long end_pfn,
2682 int migratetype, int *num_movable)
2683 {
2684 struct page *page;
2685 unsigned long pfn;
2686 unsigned int order;
2687 int pages_moved = 0;
2688
2689 for (pfn = start_pfn; pfn <= end_pfn;) {
2690 page = pfn_to_page(pfn);
2691 if (!PageBuddy(page)) {
2692 /*
2693 * We assume that pages that could be isolated for
2694 * migration are movable. But we don't actually try
2695 * isolating, as that would be expensive.
2696 */
2697 if (num_movable &&
2698 (PageLRU(page) || __PageMovable(page)))
2699 (*num_movable)++;
2700 pfn++;
2701 continue;
2702 }
2703
2704 /* Make sure we are not inadvertently changing nodes */
2705 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2706 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2707
2708 order = buddy_order(page);
2709 move_to_free_list(page, zone, order, migratetype);
2710 pfn += 1 << order;
2711 pages_moved += 1 << order;
2712 }
2713
2714 return pages_moved;
2715 }
2716
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2717 int move_freepages_block(struct zone *zone, struct page *page,
2718 int migratetype, int *num_movable)
2719 {
2720 unsigned long start_pfn, end_pfn, pfn;
2721
2722 if (num_movable)
2723 *num_movable = 0;
2724
2725 pfn = page_to_pfn(page);
2726 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2727 end_pfn = start_pfn + pageblock_nr_pages - 1;
2728
2729 /* Do not cross zone boundaries */
2730 if (!zone_spans_pfn(zone, start_pfn))
2731 start_pfn = pfn;
2732 if (!zone_spans_pfn(zone, end_pfn))
2733 return 0;
2734
2735 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2736 num_movable);
2737 }
2738
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2739 static void change_pageblock_range(struct page *pageblock_page,
2740 int start_order, int migratetype)
2741 {
2742 int nr_pageblocks = 1 << (start_order - pageblock_order);
2743
2744 while (nr_pageblocks--) {
2745 set_pageblock_migratetype(pageblock_page, migratetype);
2746 pageblock_page += pageblock_nr_pages;
2747 }
2748 }
2749
2750 /*
2751 * When we are falling back to another migratetype during allocation, try to
2752 * steal extra free pages from the same pageblocks to satisfy further
2753 * allocations, instead of polluting multiple pageblocks.
2754 *
2755 * If we are stealing a relatively large buddy page, it is likely there will
2756 * be more free pages in the pageblock, so try to steal them all. For
2757 * reclaimable and unmovable allocations, we steal regardless of page size,
2758 * as fragmentation caused by those allocations polluting movable pageblocks
2759 * is worse than movable allocations stealing from unmovable and reclaimable
2760 * pageblocks.
2761 */
can_steal_fallback(unsigned int order,int start_mt)2762 static bool can_steal_fallback(unsigned int order, int start_mt)
2763 {
2764 /*
2765 * Leaving this order check is intended, although there is
2766 * relaxed order check in next check. The reason is that
2767 * we can actually steal whole pageblock if this condition met,
2768 * but, below check doesn't guarantee it and that is just heuristic
2769 * so could be changed anytime.
2770 */
2771 if (order >= pageblock_order)
2772 return true;
2773
2774 if (order >= pageblock_order / 2 ||
2775 start_mt == MIGRATE_RECLAIMABLE ||
2776 start_mt == MIGRATE_UNMOVABLE ||
2777 page_group_by_mobility_disabled)
2778 return true;
2779
2780 return false;
2781 }
2782
boost_watermark(struct zone * zone)2783 static inline bool boost_watermark(struct zone *zone)
2784 {
2785 unsigned long max_boost;
2786
2787 if (!watermark_boost_factor)
2788 return false;
2789 /*
2790 * Don't bother in zones that are unlikely to produce results.
2791 * On small machines, including kdump capture kernels running
2792 * in a small area, boosting the watermark can cause an out of
2793 * memory situation immediately.
2794 */
2795 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2796 return false;
2797
2798 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2799 watermark_boost_factor, 10000);
2800
2801 /*
2802 * high watermark may be uninitialised if fragmentation occurs
2803 * very early in boot so do not boost. We do not fall
2804 * through and boost by pageblock_nr_pages as failing
2805 * allocations that early means that reclaim is not going
2806 * to help and it may even be impossible to reclaim the
2807 * boosted watermark resulting in a hang.
2808 */
2809 if (!max_boost)
2810 return false;
2811
2812 max_boost = max(pageblock_nr_pages, max_boost);
2813
2814 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2815 max_boost);
2816
2817 return true;
2818 }
2819
2820 /*
2821 * This function implements actual steal behaviour. If order is large enough,
2822 * we can steal whole pageblock. If not, we first move freepages in this
2823 * pageblock to our migratetype and determine how many already-allocated pages
2824 * are there in the pageblock with a compatible migratetype. If at least half
2825 * of pages are free or compatible, we can change migratetype of the pageblock
2826 * itself, so pages freed in the future will be put on the correct free list.
2827 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2828 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2829 unsigned int alloc_flags, int start_type, bool whole_block)
2830 {
2831 unsigned int current_order = buddy_order(page);
2832 int free_pages, movable_pages, alike_pages;
2833 int old_block_type;
2834
2835 old_block_type = get_pageblock_migratetype(page);
2836
2837 /*
2838 * This can happen due to races and we want to prevent broken
2839 * highatomic accounting.
2840 */
2841 if (is_migrate_highatomic(old_block_type))
2842 goto single_page;
2843
2844 /* Take ownership for orders >= pageblock_order */
2845 if (current_order >= pageblock_order) {
2846 change_pageblock_range(page, current_order, start_type);
2847 goto single_page;
2848 }
2849
2850 /*
2851 * Boost watermarks to increase reclaim pressure to reduce the
2852 * likelihood of future fallbacks. Wake kswapd now as the node
2853 * may be balanced overall and kswapd will not wake naturally.
2854 */
2855 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2856 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2857
2858 /* We are not allowed to try stealing from the whole block */
2859 if (!whole_block)
2860 goto single_page;
2861
2862 free_pages = move_freepages_block(zone, page, start_type,
2863 &movable_pages);
2864 /*
2865 * Determine how many pages are compatible with our allocation.
2866 * For movable allocation, it's the number of movable pages which
2867 * we just obtained. For other types it's a bit more tricky.
2868 */
2869 if (start_type == MIGRATE_MOVABLE) {
2870 alike_pages = movable_pages;
2871 } else {
2872 /*
2873 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2874 * to MOVABLE pageblock, consider all non-movable pages as
2875 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2876 * vice versa, be conservative since we can't distinguish the
2877 * exact migratetype of non-movable pages.
2878 */
2879 if (old_block_type == MIGRATE_MOVABLE)
2880 alike_pages = pageblock_nr_pages
2881 - (free_pages + movable_pages);
2882 else
2883 alike_pages = 0;
2884 }
2885
2886 /* moving whole block can fail due to zone boundary conditions */
2887 if (!free_pages)
2888 goto single_page;
2889
2890 /*
2891 * If a sufficient number of pages in the block are either free or of
2892 * comparable migratability as our allocation, claim the whole block.
2893 */
2894 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2895 page_group_by_mobility_disabled)
2896 set_pageblock_migratetype(page, start_type);
2897
2898 return;
2899
2900 single_page:
2901 move_to_free_list(page, zone, current_order, start_type);
2902 }
2903
2904 /*
2905 * Check whether there is a suitable fallback freepage with requested order.
2906 * If only_stealable is true, this function returns fallback_mt only if
2907 * we can steal other freepages all together. This would help to reduce
2908 * fragmentation due to mixed migratetype pages in one pageblock.
2909 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2910 int find_suitable_fallback(struct free_area *area, unsigned int order,
2911 int migratetype, bool only_stealable, bool *can_steal)
2912 {
2913 int i;
2914 int fallback_mt;
2915
2916 if (area->nr_free == 0)
2917 return -1;
2918
2919 *can_steal = false;
2920 for (i = 0;; i++) {
2921 fallback_mt = fallbacks[migratetype][i];
2922 if (fallback_mt == MIGRATE_TYPES)
2923 break;
2924
2925 if (free_area_empty(area, fallback_mt))
2926 continue;
2927
2928 if (can_steal_fallback(order, migratetype))
2929 *can_steal = true;
2930
2931 if (!only_stealable)
2932 return fallback_mt;
2933
2934 if (*can_steal)
2935 return fallback_mt;
2936 }
2937
2938 return -1;
2939 }
2940
2941 /*
2942 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2943 * there are no empty page blocks that contain a page with a suitable order
2944 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2945 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2946 unsigned int alloc_order)
2947 {
2948 int mt;
2949 unsigned long max_managed, flags;
2950
2951 /*
2952 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2953 * Check is race-prone but harmless.
2954 */
2955 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2956 if (zone->nr_reserved_highatomic >= max_managed)
2957 return;
2958
2959 spin_lock_irqsave(&zone->lock, flags);
2960
2961 /* Recheck the nr_reserved_highatomic limit under the lock */
2962 if (zone->nr_reserved_highatomic >= max_managed)
2963 goto out_unlock;
2964
2965 /* Yoink! */
2966 mt = get_pageblock_migratetype(page);
2967 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2968 && !is_migrate_cma(mt)) {
2969 zone->nr_reserved_highatomic += pageblock_nr_pages;
2970 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2971 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2972 }
2973
2974 out_unlock:
2975 spin_unlock_irqrestore(&zone->lock, flags);
2976 }
2977
2978 /*
2979 * Used when an allocation is about to fail under memory pressure. This
2980 * potentially hurts the reliability of high-order allocations when under
2981 * intense memory pressure but failed atomic allocations should be easier
2982 * to recover from than an OOM.
2983 *
2984 * If @force is true, try to unreserve a pageblock even though highatomic
2985 * pageblock is exhausted.
2986 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2987 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2988 bool force)
2989 {
2990 struct zonelist *zonelist = ac->zonelist;
2991 unsigned long flags;
2992 struct zoneref *z;
2993 struct zone *zone;
2994 struct page *page;
2995 int order;
2996 bool ret;
2997 bool skip_unreserve_highatomic = false;
2998
2999 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3000 ac->nodemask) {
3001 /*
3002 * Preserve at least one pageblock unless memory pressure
3003 * is really high.
3004 */
3005 if (!force && zone->nr_reserved_highatomic <=
3006 pageblock_nr_pages)
3007 continue;
3008
3009 trace_android_vh_unreserve_highatomic_bypass(force, zone,
3010 &skip_unreserve_highatomic);
3011 if (skip_unreserve_highatomic)
3012 continue;
3013
3014 spin_lock_irqsave(&zone->lock, flags);
3015 for (order = 0; order < MAX_ORDER; order++) {
3016 struct free_area *area = &(zone->free_area[order]);
3017
3018 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3019 if (!page)
3020 continue;
3021
3022 /*
3023 * In page freeing path, migratetype change is racy so
3024 * we can counter several free pages in a pageblock
3025 * in this loop although we changed the pageblock type
3026 * from highatomic to ac->migratetype. So we should
3027 * adjust the count once.
3028 */
3029 if (is_migrate_highatomic_page(page)) {
3030 /*
3031 * It should never happen but changes to
3032 * locking could inadvertently allow a per-cpu
3033 * drain to add pages to MIGRATE_HIGHATOMIC
3034 * while unreserving so be safe and watch for
3035 * underflows.
3036 */
3037 zone->nr_reserved_highatomic -= min(
3038 pageblock_nr_pages,
3039 zone->nr_reserved_highatomic);
3040 }
3041
3042 /*
3043 * Convert to ac->migratetype and avoid the normal
3044 * pageblock stealing heuristics. Minimally, the caller
3045 * is doing the work and needs the pages. More
3046 * importantly, if the block was always converted to
3047 * MIGRATE_UNMOVABLE or another type then the number
3048 * of pageblocks that cannot be completely freed
3049 * may increase.
3050 */
3051 set_pageblock_migratetype(page, ac->migratetype);
3052 ret = move_freepages_block(zone, page, ac->migratetype,
3053 NULL);
3054 if (ret) {
3055 spin_unlock_irqrestore(&zone->lock, flags);
3056 return ret;
3057 }
3058 }
3059 spin_unlock_irqrestore(&zone->lock, flags);
3060 }
3061
3062 return false;
3063 }
3064
3065 /*
3066 * Try finding a free buddy page on the fallback list and put it on the free
3067 * list of requested migratetype, possibly along with other pages from the same
3068 * block, depending on fragmentation avoidance heuristics. Returns true if
3069 * fallback was found so that __rmqueue_smallest() can grab it.
3070 *
3071 * The use of signed ints for order and current_order is a deliberate
3072 * deviation from the rest of this file, to make the for loop
3073 * condition simpler.
3074 */
3075 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)3076 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3077 unsigned int alloc_flags)
3078 {
3079 struct free_area *area;
3080 int current_order;
3081 int min_order = order;
3082 struct page *page;
3083 int fallback_mt;
3084 bool can_steal;
3085
3086 /*
3087 * Do not steal pages from freelists belonging to other pageblocks
3088 * i.e. orders < pageblock_order. If there are no local zones free,
3089 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3090 */
3091 if (alloc_flags & ALLOC_NOFRAGMENT)
3092 min_order = pageblock_order;
3093
3094 /*
3095 * Find the largest available free page in the other list. This roughly
3096 * approximates finding the pageblock with the most free pages, which
3097 * would be too costly to do exactly.
3098 */
3099 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3100 --current_order) {
3101 area = &(zone->free_area[current_order]);
3102 fallback_mt = find_suitable_fallback(area, current_order,
3103 start_migratetype, false, &can_steal);
3104 if (fallback_mt == -1)
3105 continue;
3106
3107 /*
3108 * We cannot steal all free pages from the pageblock and the
3109 * requested migratetype is movable. In that case it's better to
3110 * steal and split the smallest available page instead of the
3111 * largest available page, because even if the next movable
3112 * allocation falls back into a different pageblock than this
3113 * one, it won't cause permanent fragmentation.
3114 */
3115 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3116 && current_order > order)
3117 goto find_smallest;
3118
3119 goto do_steal;
3120 }
3121
3122 return false;
3123
3124 find_smallest:
3125 for (current_order = order; current_order < MAX_ORDER;
3126 current_order++) {
3127 area = &(zone->free_area[current_order]);
3128 fallback_mt = find_suitable_fallback(area, current_order,
3129 start_migratetype, false, &can_steal);
3130 if (fallback_mt != -1)
3131 break;
3132 }
3133
3134 /*
3135 * This should not happen - we already found a suitable fallback
3136 * when looking for the largest page.
3137 */
3138 VM_BUG_ON(current_order == MAX_ORDER);
3139
3140 do_steal:
3141 page = get_page_from_free_area(area, fallback_mt);
3142
3143 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3144 can_steal);
3145
3146 trace_mm_page_alloc_extfrag(page, order, current_order,
3147 start_migratetype, fallback_mt);
3148
3149 return true;
3150
3151 }
3152
3153 /*
3154 * Do the hard work of removing an element from the buddy allocator.
3155 * Call me with the zone->lock already held.
3156 */
3157 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3158 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3159 unsigned int alloc_flags)
3160 {
3161 struct page *page;
3162
3163 retry:
3164 page = __rmqueue_smallest(zone, order, migratetype);
3165
3166 if (unlikely(!page) && __rmqueue_fallback(zone, order, migratetype,
3167 alloc_flags))
3168 goto retry;
3169
3170 if (page)
3171 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3172 return page;
3173 }
3174
3175 #ifdef CONFIG_CMA
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3176 static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
3177 int migratetype,
3178 unsigned int alloc_flags)
3179 {
3180 struct page *page = __rmqueue_cma_fallback(zone, order);
3181
3182 if (page)
3183 trace_mm_page_alloc_zone_locked(page, order, MIGRATE_CMA);
3184 return page;
3185 }
3186 #else
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3187 static inline struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
3188 int migratetype,
3189 unsigned int alloc_flags)
3190 {
3191 return NULL;
3192 }
3193 #endif
3194
3195 /*
3196 * Obtain a specified number of elements from the buddy allocator, all under
3197 * a single hold of the lock, for efficiency. Add them to the supplied list.
3198 * Returns the number of new pages which were placed at *list.
3199 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)3200 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3201 unsigned long count, struct list_head *list,
3202 int migratetype, unsigned int alloc_flags)
3203 {
3204 int i, allocated = 0;
3205
3206 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3207 spin_lock(&zone->lock);
3208 for (i = 0; i < count; ++i) {
3209 struct page *page = NULL;
3210
3211 if (is_migrate_cma(migratetype)) {
3212 bool is_cma_alloc = true;
3213
3214 trace_android_vh_cma_alloc_adjust(zone, &is_cma_alloc);
3215 if (is_cma_alloc)
3216 page = __rmqueue_cma(zone, order, migratetype,
3217 alloc_flags);
3218 } else
3219 page = __rmqueue(zone, order, migratetype, alloc_flags);
3220
3221 if (unlikely(page == NULL))
3222 break;
3223
3224 if (unlikely(check_pcp_refill(page)))
3225 continue;
3226
3227 /*
3228 * Split buddy pages returned by expand() are received here in
3229 * physical page order. The page is added to the tail of
3230 * caller's list. From the callers perspective, the linked list
3231 * is ordered by page number under some conditions. This is
3232 * useful for IO devices that can forward direction from the
3233 * head, thus also in the physical page order. This is useful
3234 * for IO devices that can merge IO requests if the physical
3235 * pages are ordered properly.
3236 */
3237 list_add_tail(&page->pcp_list, list);
3238 allocated++;
3239 if (is_migrate_cma(get_pcppage_migratetype(page)))
3240 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3241 -(1 << order));
3242 }
3243
3244 /*
3245 * i pages were removed from the buddy list even if some leak due
3246 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3247 * on i. Do not confuse with 'allocated' which is the number of
3248 * pages added to the pcp list.
3249 */
3250 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3251 spin_unlock(&zone->lock);
3252 return allocated;
3253 }
3254
3255 /*
3256 * Return the pcp list that corresponds to the migrate type if that list isn't
3257 * empty.
3258 * If the list is empty return NULL.
3259 */
get_populated_pcp_list(struct zone * zone,unsigned int order,struct per_cpu_pages * pcp,int migratetype,unsigned int alloc_flags)3260 static struct list_head *get_populated_pcp_list(struct zone *zone,
3261 unsigned int order, struct per_cpu_pages *pcp,
3262 int migratetype, unsigned int alloc_flags)
3263 {
3264 struct list_head *list = &pcp->lists[order_to_pindex(migratetype, order)];
3265
3266 if (list_empty(list)) {
3267 int batch = READ_ONCE(pcp->batch);
3268 int alloced;
3269
3270 trace_android_vh_rmqueue_bulk_bypass(order, pcp, migratetype, list);
3271 if (!list_empty(list))
3272 return list;
3273
3274 /*
3275 * Scale batch relative to order if batch implies
3276 * free pages can be stored on the PCP. Batch can
3277 * be 1 for small zones or for boot pagesets which
3278 * should never store free pages as the pages may
3279 * belong to arbitrary zones.
3280 */
3281 if (batch > 1)
3282 batch = max(batch >> order, 2);
3283 alloced = rmqueue_bulk(zone, order, batch, list, migratetype, alloc_flags);
3284
3285 pcp->count += alloced << order;
3286 if (list_empty(list))
3287 list = NULL;
3288 }
3289 return list;
3290 }
3291
3292 #ifdef CONFIG_NUMA
3293 /*
3294 * Called from the vmstat counter updater to drain pagesets of this
3295 * currently executing processor on remote nodes after they have
3296 * expired.
3297 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)3298 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3299 {
3300 int to_drain, batch;
3301
3302 batch = READ_ONCE(pcp->batch);
3303 to_drain = min(pcp->count, batch);
3304 if (to_drain > 0) {
3305 unsigned long flags;
3306
3307 /*
3308 * free_pcppages_bulk expects IRQs disabled for zone->lock
3309 * so even though pcp->lock is not intended to be IRQ-safe,
3310 * it's needed in this context.
3311 */
3312 spin_lock_irqsave(&pcp->lock, flags);
3313 free_pcppages_bulk(zone, to_drain, pcp);
3314 spin_unlock_irqrestore(&pcp->lock, flags);
3315 }
3316 }
3317 #endif
3318
3319 /*
3320 * Drain pcplists of the indicated processor and zone.
3321 */
drain_pages_zone(unsigned int cpu,struct zone * zone)3322 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3323 {
3324 struct per_cpu_pages *pcp;
3325
3326 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3327 if (pcp->count) {
3328 unsigned long flags;
3329
3330 /* See drain_zone_pages on why this is disabling IRQs */
3331 spin_lock_irqsave(&pcp->lock, flags);
3332 free_pcppages_bulk(zone, pcp->count, pcp);
3333 spin_unlock_irqrestore(&pcp->lock, flags);
3334 }
3335 }
3336
3337 /*
3338 * Drain pcplists of all zones on the indicated processor.
3339 */
drain_pages(unsigned int cpu)3340 static void drain_pages(unsigned int cpu)
3341 {
3342 struct zone *zone;
3343
3344 for_each_populated_zone(zone) {
3345 drain_pages_zone(cpu, zone);
3346 }
3347 }
3348
3349 /*
3350 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3351 */
drain_local_pages(struct zone * zone)3352 void drain_local_pages(struct zone *zone)
3353 {
3354 int cpu = smp_processor_id();
3355
3356 if (zone)
3357 drain_pages_zone(cpu, zone);
3358 else
3359 drain_pages(cpu);
3360 }
3361
3362 /*
3363 * The implementation of drain_all_pages(), exposing an extra parameter to
3364 * drain on all cpus.
3365 *
3366 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3367 * not empty. The check for non-emptiness can however race with a free to
3368 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3369 * that need the guarantee that every CPU has drained can disable the
3370 * optimizing racy check.
3371 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)3372 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3373 {
3374 int cpu;
3375
3376 /*
3377 * Allocate in the BSS so we won't require allocation in
3378 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3379 */
3380 static cpumask_t cpus_with_pcps;
3381
3382 /*
3383 * Do not drain if one is already in progress unless it's specific to
3384 * a zone. Such callers are primarily CMA and memory hotplug and need
3385 * the drain to be complete when the call returns.
3386 */
3387 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3388 if (!zone)
3389 return;
3390 mutex_lock(&pcpu_drain_mutex);
3391 }
3392
3393 /*
3394 * We don't care about racing with CPU hotplug event
3395 * as offline notification will cause the notified
3396 * cpu to drain that CPU pcps and on_each_cpu_mask
3397 * disables preemption as part of its processing
3398 */
3399 for_each_online_cpu(cpu) {
3400 struct per_cpu_pages *pcp;
3401 struct zone *z;
3402 bool has_pcps = false;
3403
3404 if (force_all_cpus) {
3405 /*
3406 * The pcp.count check is racy, some callers need a
3407 * guarantee that no cpu is missed.
3408 */
3409 has_pcps = true;
3410 } else if (zone) {
3411 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3412 if (pcp->count)
3413 has_pcps = true;
3414 } else {
3415 for_each_populated_zone(z) {
3416 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3417 if (pcp->count) {
3418 has_pcps = true;
3419 break;
3420 }
3421 }
3422 }
3423
3424 if (has_pcps)
3425 cpumask_set_cpu(cpu, &cpus_with_pcps);
3426 else
3427 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3428 }
3429
3430 for_each_cpu(cpu, &cpus_with_pcps) {
3431 if (zone)
3432 drain_pages_zone(cpu, zone);
3433 else
3434 drain_pages(cpu);
3435 }
3436
3437 mutex_unlock(&pcpu_drain_mutex);
3438 }
3439
3440 /*
3441 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3442 *
3443 * When zone parameter is non-NULL, spill just the single zone's pages.
3444 */
drain_all_pages(struct zone * zone)3445 void drain_all_pages(struct zone *zone)
3446 {
3447 __drain_all_pages(zone, false);
3448 }
3449
3450 #ifdef CONFIG_HIBERNATION
3451
3452 /*
3453 * Touch the watchdog for every WD_PAGE_COUNT pages.
3454 */
3455 #define WD_PAGE_COUNT (128*1024)
3456
mark_free_pages(struct zone * zone)3457 void mark_free_pages(struct zone *zone)
3458 {
3459 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3460 unsigned long flags;
3461 unsigned int order, t;
3462 struct page *page;
3463
3464 if (zone_is_empty(zone))
3465 return;
3466
3467 spin_lock_irqsave(&zone->lock, flags);
3468
3469 max_zone_pfn = zone_end_pfn(zone);
3470 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3471 if (pfn_valid(pfn)) {
3472 page = pfn_to_page(pfn);
3473
3474 if (!--page_count) {
3475 touch_nmi_watchdog();
3476 page_count = WD_PAGE_COUNT;
3477 }
3478
3479 if (page_zone(page) != zone)
3480 continue;
3481
3482 if (!swsusp_page_is_forbidden(page))
3483 swsusp_unset_page_free(page);
3484 }
3485
3486 for_each_migratetype_order(order, t) {
3487 list_for_each_entry(page,
3488 &zone->free_area[order].free_list[t], buddy_list) {
3489 unsigned long i;
3490
3491 pfn = page_to_pfn(page);
3492 for (i = 0; i < (1UL << order); i++) {
3493 if (!--page_count) {
3494 touch_nmi_watchdog();
3495 page_count = WD_PAGE_COUNT;
3496 }
3497 swsusp_set_page_free(pfn_to_page(pfn + i));
3498 }
3499 }
3500 }
3501 spin_unlock_irqrestore(&zone->lock, flags);
3502 }
3503 #endif /* CONFIG_PM */
3504
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)3505 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3506 unsigned int order)
3507 {
3508 int migratetype;
3509
3510 if (!free_pcp_prepare(page, order))
3511 return false;
3512
3513 migratetype = get_pfnblock_migratetype(page, pfn);
3514 set_pcppage_migratetype(page, migratetype);
3515 return true;
3516 }
3517
nr_pcp_free(struct per_cpu_pages * pcp,int high,int batch)3518 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3519 {
3520 int min_nr_free, max_nr_free;
3521
3522 /* Check for PCP disabled or boot pageset */
3523 if (unlikely(high < batch))
3524 return 1;
3525
3526 /* Leave at least pcp->batch pages on the list */
3527 min_nr_free = batch;
3528 max_nr_free = high - batch;
3529
3530 /*
3531 * Double the number of pages freed each time there is subsequent
3532 * freeing of pages without any allocation.
3533 */
3534 batch <<= pcp->free_factor;
3535 if (batch < max_nr_free)
3536 pcp->free_factor++;
3537 batch = clamp(batch, min_nr_free, max_nr_free);
3538
3539 return batch;
3540 }
3541
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone)3542 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3543 {
3544 int high = READ_ONCE(pcp->high);
3545
3546 if (unlikely(!high))
3547 return 0;
3548
3549 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3550 return high;
3551
3552 /*
3553 * If reclaim is active, limit the number of pages that can be
3554 * stored on pcp lists
3555 */
3556 return min(READ_ONCE(pcp->batch) << 2, high);
3557 }
3558
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,unsigned long pfn,int migratetype,unsigned int order)3559 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3560 struct page *page, unsigned long pfn,
3561 int migratetype, unsigned int order)
3562 {
3563 int high;
3564 int pindex;
3565
3566 __count_vm_event(PGFREE);
3567 pindex = order_to_pindex(migratetype, order);
3568 list_add(&page->pcp_list, &pcp->lists[pindex]);
3569 pcp->count += 1 << order;
3570 high = nr_pcp_high(pcp, zone);
3571 if (pcp->count >= high) {
3572 int batch = READ_ONCE(pcp->batch);
3573
3574 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3575 }
3576 }
3577
3578 /*
3579 * Free a pcp page
3580 */
free_unref_page(struct page * page,unsigned int order)3581 void free_unref_page(struct page *page, unsigned int order)
3582 {
3583 unsigned long flags;
3584 unsigned long __maybe_unused UP_flags;
3585 struct per_cpu_pages *pcp;
3586 struct zone *zone;
3587 unsigned long pfn = page_to_pfn(page);
3588 int migratetype, pcpmigratetype;
3589 bool pcp_skip_cma_pages = false;
3590 bool skip_free_unref_page = false;
3591
3592 if (!free_unref_page_prepare(page, pfn, order))
3593 return;
3594
3595 migratetype = get_pcppage_migratetype(page);
3596 trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
3597 if (skip_free_unref_page)
3598 return;
3599
3600 /*
3601 * We only track unmovable, reclaimable movable, and CMA on pcp lists.
3602 * Place ISOLATE pages on the isolated list because they are being
3603 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
3604 * get those areas back if necessary. Otherwise, we may have to free
3605 * excessively into the page allocator
3606 */
3607 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
3608 if (unlikely(migratetype > MIGRATE_RECLAIMABLE)) {
3609 trace_android_vh_pcplist_add_cma_pages_bypass(migratetype,
3610 &pcp_skip_cma_pages);
3611 if (unlikely(is_migrate_isolate(migratetype)) ||
3612 pcp_skip_cma_pages) {
3613 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3614 return;
3615 }
3616 if (pcpmigratetype == MIGRATE_HIGHATOMIC)
3617 pcpmigratetype = MIGRATE_MOVABLE;
3618 }
3619
3620 zone = page_zone(page);
3621 pcp_trylock_prepare(UP_flags);
3622 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3623 if (pcp) {
3624 free_unref_page_commit(zone, pcp, page, pfn, pcpmigratetype, order);
3625 pcp_spin_unlock_irqrestore(pcp, flags);
3626 } else {
3627 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3628 }
3629 pcp_trylock_finish(UP_flags);
3630 }
3631
3632 /*
3633 * Free a list of 0-order pages
3634 */
free_unref_page_list(struct list_head * list)3635 void free_unref_page_list(struct list_head *list)
3636 {
3637 struct page *page, *next;
3638 struct per_cpu_pages *pcp = NULL;
3639 struct zone *locked_zone = NULL;
3640 unsigned long flags, pfn;
3641 int batch_count = 0;
3642 int migratetype;
3643 bool pcp_skip_cma_pages = false;
3644
3645 /* Prepare pages for freeing */
3646 list_for_each_entry_safe(page, next, list, lru) {
3647 pfn = page_to_pfn(page);
3648 if (!free_unref_page_prepare(page, pfn, 0)) {
3649 list_del(&page->lru);
3650 continue;
3651 }
3652
3653 /*
3654 * Free isolated pages directly to the allocator, see
3655 * comment in free_unref_page.
3656 */
3657 migratetype = get_pcppage_migratetype(page);
3658 trace_android_vh_pcplist_add_cma_pages_bypass(migratetype,
3659 &pcp_skip_cma_pages);
3660 if (unlikely(is_migrate_isolate(migratetype)) ||
3661 pcp_skip_cma_pages) {
3662 list_del(&page->lru);
3663 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3664 continue;
3665 }
3666
3667 set_page_private(page, pfn);
3668 }
3669
3670 list_for_each_entry_safe(page, next, list, lru) {
3671 struct zone *zone = page_zone(page);
3672
3673 /* Different zone, different pcp lock. */
3674 if (zone != locked_zone) {
3675 if (pcp)
3676 pcp_spin_unlock_irqrestore(pcp, flags);
3677
3678 locked_zone = zone;
3679 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3680 }
3681
3682 pfn = page_private(page);
3683 set_page_private(page, 0);
3684
3685 /*
3686 * Non-isolated types over MIGRATE_PCPTYPES get added
3687 * to the MIGRATE_MOVABLE pcp list.
3688 */
3689 migratetype = get_pcppage_migratetype(page);
3690 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3691 migratetype = MIGRATE_MOVABLE;
3692
3693 trace_mm_page_free_batched(page);
3694 free_unref_page_commit(zone, pcp, page, pfn, migratetype, 0);
3695
3696 /*
3697 * Guard against excessive IRQ disabled times when we get
3698 * a large list of pages to free.
3699 */
3700 if (++batch_count == SWAP_CLUSTER_MAX) {
3701 pcp_spin_unlock_irqrestore(pcp, flags);
3702 batch_count = 0;
3703 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3704 }
3705 }
3706
3707 if (pcp)
3708 pcp_spin_unlock_irqrestore(pcp, flags);
3709 }
3710
3711 /*
3712 * split_page takes a non-compound higher-order page, and splits it into
3713 * n (1<<order) sub-pages: page[0..n]
3714 * Each sub-page must be freed individually.
3715 *
3716 * Note: this is probably too low level an operation for use in drivers.
3717 * Please consult with lkml before using this in your driver.
3718 */
split_page(struct page * page,unsigned int order)3719 void split_page(struct page *page, unsigned int order)
3720 {
3721 int i;
3722
3723 VM_BUG_ON_PAGE(PageCompound(page), page);
3724 VM_BUG_ON_PAGE(!page_count(page), page);
3725
3726 for (i = 1; i < (1 << order); i++)
3727 set_page_refcounted(page + i);
3728 split_page_owner(page, 1 << order);
3729 split_page_memcg(page, 1 << order);
3730 }
3731 EXPORT_SYMBOL_GPL(split_page);
3732
__isolate_free_page(struct page * page,unsigned int order)3733 int __isolate_free_page(struct page *page, unsigned int order)
3734 {
3735 unsigned long watermark;
3736 struct zone *zone;
3737 int mt;
3738
3739 BUG_ON(!PageBuddy(page));
3740
3741 zone = page_zone(page);
3742 mt = get_pageblock_migratetype(page);
3743
3744 if (!is_migrate_isolate(mt)) {
3745 /*
3746 * Obey watermarks as if the page was being allocated. We can
3747 * emulate a high-order watermark check with a raised order-0
3748 * watermark, because we already know our high-order page
3749 * exists.
3750 */
3751 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3752 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3753 return 0;
3754
3755 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3756 }
3757
3758 /* Remove page from free list */
3759
3760 del_page_from_free_list(page, zone, order);
3761
3762 /*
3763 * Set the pageblock if the isolated page is at least half of a
3764 * pageblock
3765 */
3766 if (order >= pageblock_order - 1) {
3767 struct page *endpage = page + (1 << order) - 1;
3768 for (; page < endpage; page += pageblock_nr_pages) {
3769 int mt = get_pageblock_migratetype(page);
3770 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3771 && !is_migrate_highatomic(mt))
3772 set_pageblock_migratetype(page,
3773 MIGRATE_MOVABLE);
3774 }
3775 }
3776
3777
3778 return 1UL << order;
3779 }
3780
3781 /**
3782 * __putback_isolated_page - Return a now-isolated page back where we got it
3783 * @page: Page that was isolated
3784 * @order: Order of the isolated page
3785 * @mt: The page's pageblock's migratetype
3786 *
3787 * This function is meant to return a page pulled from the free lists via
3788 * __isolate_free_page back to the free lists they were pulled from.
3789 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3790 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3791 {
3792 struct zone *zone = page_zone(page);
3793
3794 /* zone lock should be held when this function is called */
3795 lockdep_assert_held(&zone->lock);
3796
3797 /* Return isolated page to tail of freelist. */
3798 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3799 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3800 }
3801
3802 /*
3803 * Update NUMA hit/miss statistics
3804 *
3805 * Must be called with interrupts disabled.
3806 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)3807 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3808 long nr_account)
3809 {
3810 #ifdef CONFIG_NUMA
3811 enum numa_stat_item local_stat = NUMA_LOCAL;
3812
3813 /* skip numa counters update if numa stats is disabled */
3814 if (!static_branch_likely(&vm_numa_stat_key))
3815 return;
3816
3817 if (zone_to_nid(z) != numa_node_id())
3818 local_stat = NUMA_OTHER;
3819
3820 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3821 __count_numa_events(z, NUMA_HIT, nr_account);
3822 else {
3823 __count_numa_events(z, NUMA_MISS, nr_account);
3824 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3825 }
3826 __count_numa_events(z, local_stat, nr_account);
3827 #endif
3828 }
3829
3830 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)3831 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3832 unsigned int order, unsigned int alloc_flags,
3833 int migratetype)
3834 {
3835 struct page *page;
3836 unsigned long flags;
3837
3838 do {
3839 page = NULL;
3840 spin_lock_irqsave(&zone->lock, flags);
3841 /*
3842 * order-0 request can reach here when the pcplist is skipped
3843 * due to non-CMA allocation context. HIGHATOMIC area is
3844 * reserved for high-order atomic allocation, so order-0
3845 * request should skip it.
3846 */
3847 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3848 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3849 if (page)
3850 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3851 }
3852 if (!page) {
3853 if (alloc_flags & ALLOC_CMA && migratetype == MIGRATE_MOVABLE)
3854 page = __rmqueue_cma(zone, order, migratetype,
3855 alloc_flags);
3856 if (!page)
3857 page = __rmqueue(zone, order, migratetype,
3858 alloc_flags);
3859 }
3860 if (!page) {
3861 spin_unlock_irqrestore(&zone->lock, flags);
3862 return NULL;
3863 }
3864 __mod_zone_freepage_state(zone, -(1 << order),
3865 get_pcppage_migratetype(page));
3866 spin_unlock_irqrestore(&zone->lock, flags);
3867 } while (check_new_pages(page, order));
3868
3869 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3870 zone_statistics(preferred_zone, zone, 1);
3871
3872 return page;
3873 }
3874
3875 /* Remove page from the per-cpu list, caller must protect the list */
3876 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,gfp_t gfp_flags)3877 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3878 int migratetype,
3879 unsigned int alloc_flags,
3880 struct per_cpu_pages *pcp,
3881 gfp_t gfp_flags)
3882 {
3883 struct page *page = NULL;
3884 struct list_head *list = NULL;
3885
3886 do {
3887 /* First try to get CMA pages */
3888 if (migratetype == MIGRATE_MOVABLE && alloc_flags & ALLOC_CMA)
3889 list = get_populated_pcp_list(zone, order, pcp, get_cma_migrate_type(),
3890 alloc_flags);
3891 if (list == NULL) {
3892 /*
3893 * Either CMA is not suitable or there are no
3894 * free CMA pages.
3895 */
3896 list = get_populated_pcp_list(zone, order, pcp, migratetype, alloc_flags);
3897 if (unlikely(list == NULL) || unlikely(list_empty(list)))
3898 return NULL;
3899 }
3900
3901 page = list_first_entry(list, struct page, pcp_list);
3902 list_del(&page->pcp_list);
3903 pcp->count -= 1 << order;
3904 } while (check_new_pcp(page));
3905
3906 return page;
3907 }
3908
3909 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3910 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3911 struct zone *zone, unsigned int order,
3912 gfp_t gfp_flags, int migratetype,
3913 unsigned int alloc_flags)
3914 {
3915 struct per_cpu_pages *pcp;
3916 struct page *page;
3917 unsigned long flags;
3918 unsigned long __maybe_unused UP_flags;
3919
3920 /*
3921 * spin_trylock may fail due to a parallel drain. In the future, the
3922 * trylock will also protect against IRQ reentrancy.
3923 */
3924 pcp_trylock_prepare(UP_flags);
3925 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3926 if (!pcp) {
3927 pcp_trylock_finish(UP_flags);
3928 return NULL;
3929 }
3930
3931 /*
3932 * On allocation, reduce the number of pages that are batch freed.
3933 * See nr_pcp_free() where free_factor is increased for subsequent
3934 * frees.
3935 */
3936 pcp->free_factor >>= 1;
3937 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, gfp_flags);
3938 pcp_spin_unlock_irqrestore(pcp, flags);
3939 pcp_trylock_finish(UP_flags);
3940 if (page) {
3941 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3942 zone_statistics(preferred_zone, zone, 1);
3943 }
3944 return page;
3945 }
3946
3947 /*
3948 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3949 */
3950 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3951 struct page *rmqueue(struct zone *preferred_zone,
3952 struct zone *zone, unsigned int order,
3953 gfp_t gfp_flags, unsigned int alloc_flags,
3954 int migratetype)
3955 {
3956 struct page *page;
3957
3958 if (likely(pcp_allowed_order(order))) {
3959 page = rmqueue_pcplist(preferred_zone, zone, order,
3960 gfp_flags, migratetype, alloc_flags);
3961 if (likely(page))
3962 goto out;
3963 }
3964
3965 /*
3966 * We most definitely don't want callers attempting to
3967 * allocate greater than order-1 page units with __GFP_NOFAIL.
3968 */
3969 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3970 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3971 migratetype);
3972 trace_android_vh_rmqueue(preferred_zone, zone, order,
3973 gfp_flags, alloc_flags, migratetype);
3974
3975 out:
3976 /* Separate test+clear to avoid unnecessary atomics */
3977 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3978 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3979 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3980 }
3981
3982 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3983 return page;
3984 }
3985
3986 #ifdef CONFIG_FAIL_PAGE_ALLOC
3987
3988 static struct {
3989 struct fault_attr attr;
3990
3991 bool ignore_gfp_highmem;
3992 bool ignore_gfp_reclaim;
3993 u32 min_order;
3994 } fail_page_alloc = {
3995 .attr = FAULT_ATTR_INITIALIZER,
3996 .ignore_gfp_reclaim = true,
3997 .ignore_gfp_highmem = true,
3998 .min_order = 1,
3999 };
4000
setup_fail_page_alloc(char * str)4001 static int __init setup_fail_page_alloc(char *str)
4002 {
4003 return setup_fault_attr(&fail_page_alloc.attr, str);
4004 }
4005 __setup("fail_page_alloc=", setup_fail_page_alloc);
4006
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4007 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4008 {
4009 if (order < fail_page_alloc.min_order)
4010 return false;
4011 if (gfp_mask & __GFP_NOFAIL)
4012 return false;
4013 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
4014 return false;
4015 if (fail_page_alloc.ignore_gfp_reclaim &&
4016 (gfp_mask & __GFP_DIRECT_RECLAIM))
4017 return false;
4018
4019 return should_fail(&fail_page_alloc.attr, 1 << order);
4020 }
4021
4022 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
4023
fail_page_alloc_debugfs(void)4024 static int __init fail_page_alloc_debugfs(void)
4025 {
4026 umode_t mode = S_IFREG | 0600;
4027 struct dentry *dir;
4028
4029 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
4030 &fail_page_alloc.attr);
4031
4032 debugfs_create_bool("ignore-gfp-wait", mode, dir,
4033 &fail_page_alloc.ignore_gfp_reclaim);
4034 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
4035 &fail_page_alloc.ignore_gfp_highmem);
4036 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
4037
4038 return 0;
4039 }
4040
4041 late_initcall(fail_page_alloc_debugfs);
4042
4043 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
4044
4045 #else /* CONFIG_FAIL_PAGE_ALLOC */
4046
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4047 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4048 {
4049 return false;
4050 }
4051
4052 #endif /* CONFIG_FAIL_PAGE_ALLOC */
4053
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)4054 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
4055 {
4056 return __should_fail_alloc_page(gfp_mask, order);
4057 }
4058 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
4059
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)4060 static inline long __zone_watermark_unusable_free(struct zone *z,
4061 unsigned int order, unsigned int alloc_flags)
4062 {
4063 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
4064 long unusable_free = (1 << order) - 1;
4065
4066 /*
4067 * If the caller does not have rights to ALLOC_HARDER then subtract
4068 * the high-atomic reserves. This will over-estimate the size of the
4069 * atomic reserve but it avoids a search.
4070 */
4071 if (likely(!alloc_harder))
4072 unusable_free += z->nr_reserved_highatomic;
4073
4074 #ifdef CONFIG_CMA
4075 /* If allocation can't use CMA areas don't use free CMA pages */
4076 if (!(alloc_flags & ALLOC_CMA))
4077 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
4078 #endif
4079
4080 return unusable_free;
4081 }
4082
4083 /*
4084 * Return true if free base pages are above 'mark'. For high-order checks it
4085 * will return true of the order-0 watermark is reached and there is at least
4086 * one free page of a suitable size. Checking now avoids taking the zone lock
4087 * to check in the allocation paths if no pages are free.
4088 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)4089 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4090 int highest_zoneidx, unsigned int alloc_flags,
4091 long free_pages)
4092 {
4093 long min = mark;
4094 int o;
4095 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
4096
4097 /* free_pages may go negative - that's OK */
4098 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4099
4100 if (alloc_flags & ALLOC_HIGH)
4101 min -= min / 2;
4102
4103 if (unlikely(alloc_harder)) {
4104 /*
4105 * OOM victims can try even harder than normal ALLOC_HARDER
4106 * users on the grounds that it's definitely going to be in
4107 * the exit path shortly and free memory. Any allocation it
4108 * makes during the free path will be small and short-lived.
4109 */
4110 if (alloc_flags & ALLOC_OOM)
4111 min -= min / 2;
4112 else
4113 min -= min / 4;
4114 }
4115
4116 /*
4117 * Check watermarks for an order-0 allocation request. If these
4118 * are not met, then a high-order request also cannot go ahead
4119 * even if a suitable page happened to be free.
4120 */
4121 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4122 return false;
4123
4124 /* If this is an order-0 request then the watermark is fine */
4125 if (!order)
4126 return true;
4127
4128 /* For a high-order request, check at least one suitable page is free */
4129 for (o = order; o < MAX_ORDER; o++) {
4130 struct free_area *area = &z->free_area[o];
4131 int mt;
4132
4133 if (!area->nr_free)
4134 continue;
4135
4136 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4137 #ifdef CONFIG_CMA
4138 /*
4139 * Note that this check is needed only
4140 * when MIGRATE_CMA < MIGRATE_PCPTYPES.
4141 */
4142 if (mt == MIGRATE_CMA)
4143 continue;
4144 #endif
4145 if (!free_area_empty(area, mt))
4146 return true;
4147 }
4148
4149 #ifdef CONFIG_CMA
4150 if ((alloc_flags & ALLOC_CMA) &&
4151 !free_area_empty(area, MIGRATE_CMA)) {
4152 return true;
4153 }
4154 #endif
4155 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4156 return true;
4157 }
4158 return false;
4159 }
4160
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)4161 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4162 int highest_zoneidx, unsigned int alloc_flags)
4163 {
4164 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4165 zone_page_state(z, NR_FREE_PAGES));
4166 }
4167
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)4168 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4169 unsigned long mark, int highest_zoneidx,
4170 unsigned int alloc_flags, gfp_t gfp_mask)
4171 {
4172 long free_pages;
4173
4174 free_pages = zone_page_state(z, NR_FREE_PAGES);
4175
4176 /*
4177 * Fast check for order-0 only. If this fails then the reserves
4178 * need to be calculated.
4179 */
4180 if (!order) {
4181 long usable_free;
4182 long reserved;
4183
4184 usable_free = free_pages;
4185 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4186
4187 /* reserved may over estimate high-atomic reserves. */
4188 usable_free -= min(usable_free, reserved);
4189 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4190 return true;
4191 }
4192
4193 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4194 free_pages))
4195 return true;
4196 /*
4197 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4198 * when checking the min watermark. The min watermark is the
4199 * point where boosting is ignored so that kswapd is woken up
4200 * when below the low watermark.
4201 */
4202 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4203 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4204 mark = z->_watermark[WMARK_MIN];
4205 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4206 alloc_flags, free_pages);
4207 }
4208
4209 return false;
4210 }
4211
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)4212 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4213 unsigned long mark, int highest_zoneidx)
4214 {
4215 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4216
4217 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4218 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4219
4220 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4221 free_pages);
4222 }
4223
4224 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)4225 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4226 {
4227 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4228 node_reclaim_distance;
4229 }
4230 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)4231 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4232 {
4233 return true;
4234 }
4235 #endif /* CONFIG_NUMA */
4236
4237 /*
4238 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4239 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4240 * premature use of a lower zone may cause lowmem pressure problems that
4241 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4242 * probably too small. It only makes sense to spread allocations to avoid
4243 * fragmentation between the Normal and DMA32 zones.
4244 */
4245 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)4246 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4247 {
4248 unsigned int alloc_flags;
4249
4250 /*
4251 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4252 * to save a branch.
4253 */
4254 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4255
4256 #ifdef CONFIG_ZONE_DMA32
4257 if (!zone)
4258 return alloc_flags;
4259
4260 if (zone_idx(zone) != ZONE_NORMAL)
4261 return alloc_flags;
4262
4263 /*
4264 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4265 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4266 * on UMA that if Normal is populated then so is DMA32.
4267 */
4268 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4269 if (nr_online_nodes > 1 && !populated_zone(--zone))
4270 return alloc_flags;
4271
4272 alloc_flags |= ALLOC_NOFRAGMENT;
4273 #endif /* CONFIG_ZONE_DMA32 */
4274 return alloc_flags;
4275 }
4276
4277 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)4278 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4279 unsigned int alloc_flags)
4280 {
4281 #ifdef CONFIG_CMA
4282 bool bypass = false;
4283
4284 trace_android_vh_calc_alloc_flags(gfp_mask, &alloc_flags, &bypass);
4285 if (bypass)
4286 return alloc_flags;
4287
4288 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE && gfp_mask & __GFP_CMA)
4289 alloc_flags |= ALLOC_CMA;
4290 #endif
4291 return alloc_flags;
4292 }
4293
4294 /*
4295 * get_page_from_freelist goes through the zonelist trying to allocate
4296 * a page.
4297 */
4298 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)4299 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4300 const struct alloc_context *ac)
4301 {
4302 struct zoneref *z;
4303 struct zone *zone;
4304 struct pglist_data *last_pgdat_dirty_limit = NULL;
4305 bool no_fallback;
4306
4307 retry:
4308 /*
4309 * Scan zonelist, looking for a zone with enough free.
4310 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4311 */
4312 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4313 z = ac->preferred_zoneref;
4314 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4315 ac->nodemask) {
4316 struct page *page;
4317 unsigned long mark;
4318
4319 if (cpusets_enabled() &&
4320 (alloc_flags & ALLOC_CPUSET) &&
4321 !__cpuset_zone_allowed(zone, gfp_mask))
4322 continue;
4323 /*
4324 * When allocating a page cache page for writing, we
4325 * want to get it from a node that is within its dirty
4326 * limit, such that no single node holds more than its
4327 * proportional share of globally allowed dirty pages.
4328 * The dirty limits take into account the node's
4329 * lowmem reserves and high watermark so that kswapd
4330 * should be able to balance it without having to
4331 * write pages from its LRU list.
4332 *
4333 * XXX: For now, allow allocations to potentially
4334 * exceed the per-node dirty limit in the slowpath
4335 * (spread_dirty_pages unset) before going into reclaim,
4336 * which is important when on a NUMA setup the allowed
4337 * nodes are together not big enough to reach the
4338 * global limit. The proper fix for these situations
4339 * will require awareness of nodes in the
4340 * dirty-throttling and the flusher threads.
4341 */
4342 if (ac->spread_dirty_pages) {
4343 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4344 continue;
4345
4346 if (!node_dirty_ok(zone->zone_pgdat)) {
4347 last_pgdat_dirty_limit = zone->zone_pgdat;
4348 continue;
4349 }
4350 }
4351
4352 if (no_fallback && nr_online_nodes > 1 &&
4353 zone != ac->preferred_zoneref->zone) {
4354 int local_nid;
4355
4356 /*
4357 * If moving to a remote node, retry but allow
4358 * fragmenting fallbacks. Locality is more important
4359 * than fragmentation avoidance.
4360 */
4361 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4362 if (zone_to_nid(zone) != local_nid) {
4363 alloc_flags &= ~ALLOC_NOFRAGMENT;
4364 goto retry;
4365 }
4366 }
4367
4368 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4369 if (!zone_watermark_fast(zone, order, mark,
4370 ac->highest_zoneidx, alloc_flags,
4371 gfp_mask)) {
4372 int ret;
4373
4374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4375 /*
4376 * Watermark failed for this zone, but see if we can
4377 * grow this zone if it contains deferred pages.
4378 */
4379 if (static_branch_unlikely(&deferred_pages)) {
4380 if (_deferred_grow_zone(zone, order))
4381 goto try_this_zone;
4382 }
4383 #endif
4384 /* Checked here to keep the fast path fast */
4385 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4386 if (alloc_flags & ALLOC_NO_WATERMARKS)
4387 goto try_this_zone;
4388
4389 if (!node_reclaim_enabled() ||
4390 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4391 continue;
4392
4393 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4394 switch (ret) {
4395 case NODE_RECLAIM_NOSCAN:
4396 /* did not scan */
4397 continue;
4398 case NODE_RECLAIM_FULL:
4399 /* scanned but unreclaimable */
4400 continue;
4401 default:
4402 /* did we reclaim enough */
4403 if (zone_watermark_ok(zone, order, mark,
4404 ac->highest_zoneidx, alloc_flags))
4405 goto try_this_zone;
4406
4407 continue;
4408 }
4409 }
4410
4411 try_this_zone:
4412 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4413 gfp_mask, alloc_flags, ac->migratetype);
4414 if (page) {
4415 prep_new_page(page, order, gfp_mask, alloc_flags);
4416
4417 /*
4418 * If this is a high-order atomic allocation then check
4419 * if the pageblock should be reserved for the future
4420 */
4421 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4422 reserve_highatomic_pageblock(page, zone, order);
4423
4424 return page;
4425 } else {
4426 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4427 /* Try again if zone has deferred pages */
4428 if (static_branch_unlikely(&deferred_pages)) {
4429 if (_deferred_grow_zone(zone, order))
4430 goto try_this_zone;
4431 }
4432 #endif
4433 }
4434 }
4435
4436 /*
4437 * It's possible on a UMA machine to get through all zones that are
4438 * fragmented. If avoiding fragmentation, reset and try again.
4439 */
4440 if (no_fallback) {
4441 alloc_flags &= ~ALLOC_NOFRAGMENT;
4442 goto retry;
4443 }
4444
4445 return NULL;
4446 }
4447
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)4448 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4449 {
4450 unsigned int filter = SHOW_MEM_FILTER_NODES;
4451
4452 /*
4453 * This documents exceptions given to allocations in certain
4454 * contexts that are allowed to allocate outside current's set
4455 * of allowed nodes.
4456 */
4457 if (!(gfp_mask & __GFP_NOMEMALLOC))
4458 if (tsk_is_oom_victim(current) ||
4459 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4460 filter &= ~SHOW_MEM_FILTER_NODES;
4461 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4462 filter &= ~SHOW_MEM_FILTER_NODES;
4463
4464 show_mem(filter, nodemask);
4465 }
4466
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)4467 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4468 {
4469 struct va_format vaf;
4470 va_list args;
4471 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4472
4473 if ((gfp_mask & __GFP_NOWARN) ||
4474 !__ratelimit(&nopage_rs) ||
4475 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4476 return;
4477
4478 va_start(args, fmt);
4479 vaf.fmt = fmt;
4480 vaf.va = &args;
4481 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4482 current->comm, &vaf, gfp_mask, &gfp_mask,
4483 nodemask_pr_args(nodemask));
4484 va_end(args);
4485
4486 cpuset_print_current_mems_allowed();
4487 pr_cont("\n");
4488 dump_stack();
4489 warn_alloc_show_mem(gfp_mask, nodemask);
4490 }
4491
4492 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4493 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4494 unsigned int alloc_flags,
4495 const struct alloc_context *ac)
4496 {
4497 struct page *page;
4498
4499 page = get_page_from_freelist(gfp_mask, order,
4500 alloc_flags|ALLOC_CPUSET, ac);
4501 /*
4502 * fallback to ignore cpuset restriction if our nodes
4503 * are depleted
4504 */
4505 if (!page)
4506 page = get_page_from_freelist(gfp_mask, order,
4507 alloc_flags, ac);
4508
4509 return page;
4510 }
4511
4512 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4513 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4514 const struct alloc_context *ac, unsigned long *did_some_progress)
4515 {
4516 struct oom_control oc = {
4517 .zonelist = ac->zonelist,
4518 .nodemask = ac->nodemask,
4519 .memcg = NULL,
4520 .gfp_mask = gfp_mask,
4521 .order = order,
4522 };
4523 struct page *page;
4524
4525 *did_some_progress = 0;
4526
4527 /*
4528 * Acquire the oom lock. If that fails, somebody else is
4529 * making progress for us.
4530 */
4531 if (!mutex_trylock(&oom_lock)) {
4532 *did_some_progress = 1;
4533 schedule_timeout_uninterruptible(1);
4534 return NULL;
4535 }
4536
4537 /*
4538 * Go through the zonelist yet one more time, keep very high watermark
4539 * here, this is only to catch a parallel oom killing, we must fail if
4540 * we're still under heavy pressure. But make sure that this reclaim
4541 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4542 * allocation which will never fail due to oom_lock already held.
4543 */
4544 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4545 ~__GFP_DIRECT_RECLAIM, order,
4546 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4547 if (page)
4548 goto out;
4549
4550 /* Coredumps can quickly deplete all memory reserves */
4551 if (current->flags & PF_DUMPCORE)
4552 goto out;
4553 /* The OOM killer will not help higher order allocs */
4554 if (order > PAGE_ALLOC_COSTLY_ORDER)
4555 goto out;
4556 /*
4557 * We have already exhausted all our reclaim opportunities without any
4558 * success so it is time to admit defeat. We will skip the OOM killer
4559 * because it is very likely that the caller has a more reasonable
4560 * fallback than shooting a random task.
4561 *
4562 * The OOM killer may not free memory on a specific node.
4563 */
4564 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4565 goto out;
4566 /* The OOM killer does not needlessly kill tasks for lowmem */
4567 if (ac->highest_zoneidx < ZONE_NORMAL)
4568 goto out;
4569 if (pm_suspended_storage())
4570 goto out;
4571 /*
4572 * XXX: GFP_NOFS allocations should rather fail than rely on
4573 * other request to make a forward progress.
4574 * We are in an unfortunate situation where out_of_memory cannot
4575 * do much for this context but let's try it to at least get
4576 * access to memory reserved if the current task is killed (see
4577 * out_of_memory). Once filesystems are ready to handle allocation
4578 * failures more gracefully we should just bail out here.
4579 */
4580
4581 /* Exhausted what can be done so it's blame time */
4582 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4583 *did_some_progress = 1;
4584
4585 /*
4586 * Help non-failing allocations by giving them access to memory
4587 * reserves
4588 */
4589 if (gfp_mask & __GFP_NOFAIL)
4590 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4591 ALLOC_NO_WATERMARKS, ac);
4592 }
4593 out:
4594 mutex_unlock(&oom_lock);
4595 return page;
4596 }
4597
4598 /*
4599 * Maximum number of compaction retries with a progress before OOM
4600 * killer is consider as the only way to move forward.
4601 */
4602 #define MAX_COMPACT_RETRIES 16
4603
4604 #ifdef CONFIG_COMPACTION
4605 /* Try memory compaction for high-order allocations before reclaim */
4606 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4607 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4608 unsigned int alloc_flags, const struct alloc_context *ac,
4609 enum compact_priority prio, enum compact_result *compact_result)
4610 {
4611 struct page *page = NULL;
4612 unsigned long pflags;
4613 unsigned int noreclaim_flag;
4614
4615 if (!order)
4616 return NULL;
4617
4618 psi_memstall_enter(&pflags);
4619 noreclaim_flag = memalloc_noreclaim_save();
4620
4621 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4622 prio, &page);
4623
4624 memalloc_noreclaim_restore(noreclaim_flag);
4625 psi_memstall_leave(&pflags);
4626
4627 if (*compact_result == COMPACT_SKIPPED)
4628 return NULL;
4629 /*
4630 * At least in one zone compaction wasn't deferred or skipped, so let's
4631 * count a compaction stall
4632 */
4633 count_vm_event(COMPACTSTALL);
4634
4635 /* Prep a captured page if available */
4636 if (page)
4637 prep_new_page(page, order, gfp_mask, alloc_flags);
4638
4639 /* Try get a page from the freelist if available */
4640 if (!page)
4641 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4642
4643 if (page) {
4644 struct zone *zone = page_zone(page);
4645
4646 zone->compact_blockskip_flush = false;
4647 compaction_defer_reset(zone, order, true);
4648 count_vm_event(COMPACTSUCCESS);
4649 return page;
4650 }
4651
4652 /*
4653 * It's bad if compaction run occurs and fails. The most likely reason
4654 * is that pages exist, but not enough to satisfy watermarks.
4655 */
4656 count_vm_event(COMPACTFAIL);
4657
4658 cond_resched();
4659
4660 return NULL;
4661 }
4662
4663 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4664 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4665 enum compact_result compact_result,
4666 enum compact_priority *compact_priority,
4667 int *compaction_retries)
4668 {
4669 int max_retries = MAX_COMPACT_RETRIES;
4670 int min_priority;
4671 bool ret = false;
4672 int retries = *compaction_retries;
4673 enum compact_priority priority = *compact_priority;
4674
4675 if (!order)
4676 return false;
4677
4678 if (fatal_signal_pending(current))
4679 return false;
4680
4681 if (compaction_made_progress(compact_result))
4682 (*compaction_retries)++;
4683
4684 /*
4685 * compaction considers all the zone as desperately out of memory
4686 * so it doesn't really make much sense to retry except when the
4687 * failure could be caused by insufficient priority
4688 */
4689 if (compaction_failed(compact_result))
4690 goto check_priority;
4691
4692 /*
4693 * compaction was skipped because there are not enough order-0 pages
4694 * to work with, so we retry only if it looks like reclaim can help.
4695 */
4696 if (compaction_needs_reclaim(compact_result)) {
4697 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4698 goto out;
4699 }
4700
4701 /*
4702 * make sure the compaction wasn't deferred or didn't bail out early
4703 * due to locks contention before we declare that we should give up.
4704 * But the next retry should use a higher priority if allowed, so
4705 * we don't just keep bailing out endlessly.
4706 */
4707 if (compaction_withdrawn(compact_result)) {
4708 goto check_priority;
4709 }
4710
4711 /*
4712 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4713 * costly ones because they are de facto nofail and invoke OOM
4714 * killer to move on while costly can fail and users are ready
4715 * to cope with that. 1/4 retries is rather arbitrary but we
4716 * would need much more detailed feedback from compaction to
4717 * make a better decision.
4718 */
4719 if (order > PAGE_ALLOC_COSTLY_ORDER)
4720 max_retries /= 4;
4721 if (*compaction_retries <= max_retries) {
4722 ret = true;
4723 goto out;
4724 }
4725
4726 /*
4727 * Make sure there are attempts at the highest priority if we exhausted
4728 * all retries or failed at the lower priorities.
4729 */
4730 check_priority:
4731 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4732 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4733
4734 if (*compact_priority > min_priority) {
4735 (*compact_priority)--;
4736 *compaction_retries = 0;
4737 ret = true;
4738 }
4739 out:
4740 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4741 return ret;
4742 }
4743 #else
4744 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4745 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4746 unsigned int alloc_flags, const struct alloc_context *ac,
4747 enum compact_priority prio, enum compact_result *compact_result)
4748 {
4749 *compact_result = COMPACT_SKIPPED;
4750 return NULL;
4751 }
4752
4753 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4754 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4755 enum compact_result compact_result,
4756 enum compact_priority *compact_priority,
4757 int *compaction_retries)
4758 {
4759 struct zone *zone;
4760 struct zoneref *z;
4761
4762 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4763 return false;
4764
4765 /*
4766 * There are setups with compaction disabled which would prefer to loop
4767 * inside the allocator rather than hit the oom killer prematurely.
4768 * Let's give them a good hope and keep retrying while the order-0
4769 * watermarks are OK.
4770 */
4771 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4772 ac->highest_zoneidx, ac->nodemask) {
4773 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4774 ac->highest_zoneidx, alloc_flags))
4775 return true;
4776 }
4777 return false;
4778 }
4779 #endif /* CONFIG_COMPACTION */
4780
4781 #ifdef CONFIG_LOCKDEP
4782 static struct lockdep_map __fs_reclaim_map =
4783 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4784
__need_reclaim(gfp_t gfp_mask)4785 static bool __need_reclaim(gfp_t gfp_mask)
4786 {
4787 /* no reclaim without waiting on it */
4788 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4789 return false;
4790
4791 /* this guy won't enter reclaim */
4792 if (current->flags & PF_MEMALLOC)
4793 return false;
4794
4795 if (gfp_mask & __GFP_NOLOCKDEP)
4796 return false;
4797
4798 return true;
4799 }
4800
__fs_reclaim_acquire(unsigned long ip)4801 void __fs_reclaim_acquire(unsigned long ip)
4802 {
4803 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4804 }
4805
__fs_reclaim_release(unsigned long ip)4806 void __fs_reclaim_release(unsigned long ip)
4807 {
4808 lock_release(&__fs_reclaim_map, ip);
4809 }
4810
fs_reclaim_acquire(gfp_t gfp_mask)4811 void fs_reclaim_acquire(gfp_t gfp_mask)
4812 {
4813 gfp_mask = current_gfp_context(gfp_mask);
4814
4815 if (__need_reclaim(gfp_mask)) {
4816 if (gfp_mask & __GFP_FS)
4817 __fs_reclaim_acquire(_RET_IP_);
4818
4819 #ifdef CONFIG_MMU_NOTIFIER
4820 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4821 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4822 #endif
4823
4824 }
4825 }
4826 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4827
fs_reclaim_release(gfp_t gfp_mask)4828 void fs_reclaim_release(gfp_t gfp_mask)
4829 {
4830 gfp_mask = current_gfp_context(gfp_mask);
4831
4832 if (__need_reclaim(gfp_mask)) {
4833 if (gfp_mask & __GFP_FS)
4834 __fs_reclaim_release(_RET_IP_);
4835 }
4836 }
4837 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4838 #endif
4839
4840 /*
4841 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4842 * have been rebuilt so allocation retries. Reader side does not lock and
4843 * retries the allocation if zonelist changes. Writer side is protected by the
4844 * embedded spin_lock.
4845 */
4846 static DEFINE_SEQLOCK(zonelist_update_seq);
4847
zonelist_iter_begin(void)4848 static unsigned int zonelist_iter_begin(void)
4849 {
4850 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4851 return read_seqbegin(&zonelist_update_seq);
4852
4853 return 0;
4854 }
4855
check_retry_zonelist(unsigned int seq)4856 static unsigned int check_retry_zonelist(unsigned int seq)
4857 {
4858 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4859 return read_seqretry(&zonelist_update_seq, seq);
4860
4861 return seq;
4862 }
4863
4864 /* Perform direct synchronous page reclaim */
4865 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4866 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4867 const struct alloc_context *ac)
4868 {
4869 unsigned int noreclaim_flag;
4870 unsigned long progress;
4871
4872 cond_resched();
4873
4874 /* We now go into synchronous reclaim */
4875 cpuset_memory_pressure_bump();
4876 fs_reclaim_acquire(gfp_mask);
4877 noreclaim_flag = memalloc_noreclaim_save();
4878
4879 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4880 ac->nodemask);
4881
4882 memalloc_noreclaim_restore(noreclaim_flag);
4883 fs_reclaim_release(gfp_mask);
4884
4885 cond_resched();
4886
4887 return progress;
4888 }
4889
4890 /* The really slow allocator path where we enter direct reclaim */
4891 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4892 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4893 unsigned int alloc_flags, const struct alloc_context *ac,
4894 unsigned long *did_some_progress)
4895 {
4896 struct page *page = NULL;
4897 unsigned long pflags;
4898 bool drained = false;
4899 bool skip_pcp_drain = false;
4900
4901 psi_memstall_enter(&pflags);
4902 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4903 if (unlikely(!(*did_some_progress)))
4904 goto out;
4905
4906 retry:
4907 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4908
4909 /*
4910 * If an allocation failed after direct reclaim, it could be because
4911 * pages are pinned on the per-cpu lists or in high alloc reserves.
4912 * Shrink them and try again
4913 */
4914 if (!page && !drained) {
4915 unreserve_highatomic_pageblock(ac, false);
4916 trace_android_vh_drain_all_pages_bypass(gfp_mask, order,
4917 alloc_flags, ac->migratetype, *did_some_progress, &skip_pcp_drain);
4918 if (!skip_pcp_drain)
4919 drain_all_pages(NULL);
4920 drained = true;
4921 goto retry;
4922 }
4923 out:
4924 psi_memstall_leave(&pflags);
4925
4926 return page;
4927 }
4928
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4929 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4930 const struct alloc_context *ac)
4931 {
4932 struct zoneref *z;
4933 struct zone *zone;
4934 pg_data_t *last_pgdat = NULL;
4935 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4936
4937 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4938 ac->nodemask) {
4939 if (last_pgdat != zone->zone_pgdat)
4940 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4941 last_pgdat = zone->zone_pgdat;
4942 }
4943 }
4944
4945 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4946 gfp_to_alloc_flags(gfp_t gfp_mask)
4947 {
4948 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4949
4950 /*
4951 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4952 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4953 * to save two branches.
4954 */
4955 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4956 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4957
4958 /*
4959 * The caller may dip into page reserves a bit more if the caller
4960 * cannot run direct reclaim, or if the caller has realtime scheduling
4961 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4962 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4963 */
4964 alloc_flags |= (__force int)
4965 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4966
4967 if (gfp_mask & __GFP_ATOMIC) {
4968 /*
4969 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4970 * if it can't schedule.
4971 */
4972 if (!(gfp_mask & __GFP_NOMEMALLOC))
4973 alloc_flags |= ALLOC_HARDER;
4974 /*
4975 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4976 * comment for __cpuset_node_allowed().
4977 */
4978 alloc_flags &= ~ALLOC_CPUSET;
4979 } else if (unlikely(rt_task(current)) && in_task())
4980 alloc_flags |= ALLOC_HARDER;
4981
4982 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4983
4984 return alloc_flags;
4985 }
4986
oom_reserves_allowed(struct task_struct * tsk)4987 static bool oom_reserves_allowed(struct task_struct *tsk)
4988 {
4989 if (!tsk_is_oom_victim(tsk))
4990 return false;
4991
4992 /*
4993 * !MMU doesn't have oom reaper so give access to memory reserves
4994 * only to the thread with TIF_MEMDIE set
4995 */
4996 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4997 return false;
4998
4999 return true;
5000 }
5001
5002 /*
5003 * Distinguish requests which really need access to full memory
5004 * reserves from oom victims which can live with a portion of it
5005 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)5006 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
5007 {
5008 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
5009 return 0;
5010 if (gfp_mask & __GFP_MEMALLOC)
5011 return ALLOC_NO_WATERMARKS;
5012 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
5013 return ALLOC_NO_WATERMARKS;
5014 if (!in_interrupt()) {
5015 if (current->flags & PF_MEMALLOC)
5016 return ALLOC_NO_WATERMARKS;
5017 else if (oom_reserves_allowed(current))
5018 return ALLOC_OOM;
5019 }
5020
5021 return 0;
5022 }
5023
gfp_pfmemalloc_allowed(gfp_t gfp_mask)5024 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
5025 {
5026 return !!__gfp_pfmemalloc_flags(gfp_mask);
5027 }
5028
5029 /*
5030 * Checks whether it makes sense to retry the reclaim to make a forward progress
5031 * for the given allocation request.
5032 *
5033 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
5034 * without success, or when we couldn't even meet the watermark if we
5035 * reclaimed all remaining pages on the LRU lists.
5036 *
5037 * Returns true if a retry is viable or false to enter the oom path.
5038 */
5039 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)5040 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
5041 struct alloc_context *ac, int alloc_flags,
5042 bool did_some_progress, int *no_progress_loops)
5043 {
5044 struct zone *zone;
5045 struct zoneref *z;
5046 bool ret = false;
5047
5048 /*
5049 * Costly allocations might have made a progress but this doesn't mean
5050 * their order will become available due to high fragmentation so
5051 * always increment the no progress counter for them
5052 */
5053 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
5054 *no_progress_loops = 0;
5055 else
5056 (*no_progress_loops)++;
5057
5058 /*
5059 * Make sure we converge to OOM if we cannot make any progress
5060 * several times in the row.
5061 */
5062 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
5063 /* Before OOM, exhaust highatomic_reserve */
5064 return unreserve_highatomic_pageblock(ac, true);
5065 }
5066
5067 /*
5068 * Keep reclaiming pages while there is a chance this will lead
5069 * somewhere. If none of the target zones can satisfy our allocation
5070 * request even if all reclaimable pages are considered then we are
5071 * screwed and have to go OOM.
5072 */
5073 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
5074 ac->highest_zoneidx, ac->nodemask) {
5075 unsigned long available;
5076 unsigned long reclaimable;
5077 unsigned long min_wmark = min_wmark_pages(zone);
5078 bool wmark;
5079
5080 available = reclaimable = zone_reclaimable_pages(zone);
5081 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
5082
5083 /*
5084 * Would the allocation succeed if we reclaimed all
5085 * reclaimable pages?
5086 */
5087 wmark = __zone_watermark_ok(zone, order, min_wmark,
5088 ac->highest_zoneidx, alloc_flags, available);
5089 trace_reclaim_retry_zone(z, order, reclaimable,
5090 available, min_wmark, *no_progress_loops, wmark);
5091 if (wmark) {
5092 /*
5093 * If we didn't make any progress and have a lot of
5094 * dirty + writeback pages then we should wait for
5095 * an IO to complete to slow down the reclaim and
5096 * prevent from pre mature OOM
5097 */
5098 if (!did_some_progress) {
5099 unsigned long write_pending;
5100
5101 write_pending = zone_page_state_snapshot(zone,
5102 NR_ZONE_WRITE_PENDING);
5103
5104 if (2 * write_pending > reclaimable) {
5105 congestion_wait(BLK_RW_ASYNC, HZ/10);
5106 return true;
5107 }
5108 }
5109
5110 ret = true;
5111 goto out;
5112 }
5113 }
5114
5115 out:
5116 /*
5117 * Memory allocation/reclaim might be called from a WQ context and the
5118 * current implementation of the WQ concurrency control doesn't
5119 * recognize that a particular WQ is congested if the worker thread is
5120 * looping without ever sleeping. Therefore we have to do a short sleep
5121 * here rather than calling cond_resched().
5122 */
5123 if (current->flags & PF_WQ_WORKER)
5124 schedule_timeout_uninterruptible(1);
5125 else
5126 cond_resched();
5127 return ret;
5128 }
5129
5130 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)5131 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5132 {
5133 /*
5134 * It's possible that cpuset's mems_allowed and the nodemask from
5135 * mempolicy don't intersect. This should be normally dealt with by
5136 * policy_nodemask(), but it's possible to race with cpuset update in
5137 * such a way the check therein was true, and then it became false
5138 * before we got our cpuset_mems_cookie here.
5139 * This assumes that for all allocations, ac->nodemask can come only
5140 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5141 * when it does not intersect with the cpuset restrictions) or the
5142 * caller can deal with a violated nodemask.
5143 */
5144 if (cpusets_enabled() && ac->nodemask &&
5145 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5146 ac->nodemask = NULL;
5147 return true;
5148 }
5149
5150 /*
5151 * When updating a task's mems_allowed or mempolicy nodemask, it is
5152 * possible to race with parallel threads in such a way that our
5153 * allocation can fail while the mask is being updated. If we are about
5154 * to fail, check if the cpuset changed during allocation and if so,
5155 * retry.
5156 */
5157 if (read_mems_allowed_retry(cpuset_mems_cookie))
5158 return true;
5159
5160 return false;
5161 }
5162
5163 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)5164 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5165 struct alloc_context *ac)
5166 {
5167 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5168 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5169 struct page *page = NULL;
5170 unsigned int alloc_flags;
5171 unsigned long did_some_progress;
5172 enum compact_priority compact_priority;
5173 enum compact_result compact_result;
5174 int compaction_retries;
5175 int no_progress_loops;
5176 unsigned int cpuset_mems_cookie;
5177 unsigned int zonelist_iter_cookie;
5178 int reserve_flags;
5179 unsigned long alloc_start = jiffies;
5180 bool should_alloc_retry = false;
5181 /*
5182 * We also sanity check to catch abuse of atomic reserves being used by
5183 * callers that are not in atomic context.
5184 */
5185 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5186 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5187 gfp_mask &= ~__GFP_ATOMIC;
5188
5189 restart:
5190 compaction_retries = 0;
5191 no_progress_loops = 0;
5192 compact_priority = DEF_COMPACT_PRIORITY;
5193 cpuset_mems_cookie = read_mems_allowed_begin();
5194 zonelist_iter_cookie = zonelist_iter_begin();
5195
5196 /*
5197 * The fast path uses conservative alloc_flags to succeed only until
5198 * kswapd needs to be woken up, and to avoid the cost of setting up
5199 * alloc_flags precisely. So we do that now.
5200 */
5201 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5202
5203 /*
5204 * We need to recalculate the starting point for the zonelist iterator
5205 * because we might have used different nodemask in the fast path, or
5206 * there was a cpuset modification and we are retrying - otherwise we
5207 * could end up iterating over non-eligible zones endlessly.
5208 */
5209 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5210 ac->highest_zoneidx, ac->nodemask);
5211 if (!ac->preferred_zoneref->zone)
5212 goto nopage;
5213
5214 if (alloc_flags & ALLOC_KSWAPD)
5215 wake_all_kswapds(order, gfp_mask, ac);
5216
5217 /*
5218 * The adjusted alloc_flags might result in immediate success, so try
5219 * that first
5220 */
5221 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5222 if (page)
5223 goto got_pg;
5224
5225 /*
5226 * For costly allocations, try direct compaction first, as it's likely
5227 * that we have enough base pages and don't need to reclaim. For non-
5228 * movable high-order allocations, do that as well, as compaction will
5229 * try prevent permanent fragmentation by migrating from blocks of the
5230 * same migratetype.
5231 * Don't try this for allocations that are allowed to ignore
5232 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5233 */
5234 if (can_direct_reclaim &&
5235 (costly_order ||
5236 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5237 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5238 page = __alloc_pages_direct_compact(gfp_mask, order,
5239 alloc_flags, ac,
5240 INIT_COMPACT_PRIORITY,
5241 &compact_result);
5242 if (page)
5243 goto got_pg;
5244
5245 /*
5246 * Checks for costly allocations with __GFP_NORETRY, which
5247 * includes some THP page fault allocations
5248 */
5249 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5250 /*
5251 * If allocating entire pageblock(s) and compaction
5252 * failed because all zones are below low watermarks
5253 * or is prohibited because it recently failed at this
5254 * order, fail immediately unless the allocator has
5255 * requested compaction and reclaim retry.
5256 *
5257 * Reclaim is
5258 * - potentially very expensive because zones are far
5259 * below their low watermarks or this is part of very
5260 * bursty high order allocations,
5261 * - not guaranteed to help because isolate_freepages()
5262 * may not iterate over freed pages as part of its
5263 * linear scan, and
5264 * - unlikely to make entire pageblocks free on its
5265 * own.
5266 */
5267 if (compact_result == COMPACT_SKIPPED ||
5268 compact_result == COMPACT_DEFERRED)
5269 goto nopage;
5270
5271 /*
5272 * Looks like reclaim/compaction is worth trying, but
5273 * sync compaction could be very expensive, so keep
5274 * using async compaction.
5275 */
5276 compact_priority = INIT_COMPACT_PRIORITY;
5277 }
5278 }
5279
5280 retry:
5281 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5282 if (alloc_flags & ALLOC_KSWAPD)
5283 wake_all_kswapds(order, gfp_mask, ac);
5284
5285 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5286 if (reserve_flags)
5287 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5288
5289 /*
5290 * Reset the nodemask and zonelist iterators if memory policies can be
5291 * ignored. These allocations are high priority and system rather than
5292 * user oriented.
5293 */
5294 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5295 ac->nodemask = NULL;
5296 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5297 ac->highest_zoneidx, ac->nodemask);
5298 }
5299
5300 /* Attempt with potentially adjusted zonelist and alloc_flags */
5301 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5302 if (page)
5303 goto got_pg;
5304
5305 /* Caller is not willing to reclaim, we can't balance anything */
5306 if (!can_direct_reclaim)
5307 goto nopage;
5308
5309 /* Avoid recursion of direct reclaim */
5310 if (current->flags & PF_MEMALLOC)
5311 goto nopage;
5312
5313 trace_android_vh_should_alloc_pages_retry(gfp_mask, order, &alloc_flags,
5314 ac->migratetype, ac->preferred_zoneref->zone, &page, &should_alloc_retry);
5315 if (should_alloc_retry)
5316 goto retry;
5317
5318 /* Try direct reclaim and then allocating */
5319 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5320 &did_some_progress);
5321 if (page)
5322 goto got_pg;
5323
5324 /* Try direct compaction and then allocating */
5325 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5326 compact_priority, &compact_result);
5327 if (page)
5328 goto got_pg;
5329
5330 /* Do not loop if specifically requested */
5331 if (gfp_mask & __GFP_NORETRY)
5332 goto nopage;
5333
5334 /*
5335 * Do not retry costly high order allocations unless they are
5336 * __GFP_RETRY_MAYFAIL
5337 */
5338 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5339 goto nopage;
5340
5341 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5342 did_some_progress > 0, &no_progress_loops))
5343 goto retry;
5344
5345 /*
5346 * It doesn't make any sense to retry for the compaction if the order-0
5347 * reclaim is not able to make any progress because the current
5348 * implementation of the compaction depends on the sufficient amount
5349 * of free memory (see __compaction_suitable)
5350 */
5351 if (did_some_progress > 0 &&
5352 should_compact_retry(ac, order, alloc_flags,
5353 compact_result, &compact_priority,
5354 &compaction_retries))
5355 goto retry;
5356
5357
5358 /*
5359 * Deal with possible cpuset update races or zonelist updates to avoid
5360 * a unnecessary OOM kill.
5361 */
5362 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5363 check_retry_zonelist(zonelist_iter_cookie))
5364 goto restart;
5365
5366 /* Reclaim has failed us, start killing things */
5367 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5368 if (page)
5369 goto got_pg;
5370
5371 /* Avoid allocations with no watermarks from looping endlessly */
5372 if (tsk_is_oom_victim(current) &&
5373 (alloc_flags & ALLOC_OOM ||
5374 (gfp_mask & __GFP_NOMEMALLOC)))
5375 goto nopage;
5376
5377 /* Retry as long as the OOM killer is making progress */
5378 if (did_some_progress) {
5379 no_progress_loops = 0;
5380 goto retry;
5381 }
5382
5383 nopage:
5384 /*
5385 * Deal with possible cpuset update races or zonelist updates to avoid
5386 * a unnecessary OOM kill.
5387 */
5388 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5389 check_retry_zonelist(zonelist_iter_cookie))
5390 goto restart;
5391
5392 /*
5393 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5394 * we always retry
5395 */
5396 if (gfp_mask & __GFP_NOFAIL) {
5397 /*
5398 * All existing users of the __GFP_NOFAIL are blockable, so warn
5399 * of any new users that actually require GFP_NOWAIT
5400 */
5401 if (WARN_ON_ONCE(!can_direct_reclaim))
5402 goto fail;
5403
5404 /*
5405 * PF_MEMALLOC request from this context is rather bizarre
5406 * because we cannot reclaim anything and only can loop waiting
5407 * for somebody to do a work for us
5408 */
5409 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5410
5411 /*
5412 * non failing costly orders are a hard requirement which we
5413 * are not prepared for much so let's warn about these users
5414 * so that we can identify them and convert them to something
5415 * else.
5416 */
5417 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5418
5419 /*
5420 * Help non-failing allocations by giving them access to memory
5421 * reserves but do not use ALLOC_NO_WATERMARKS because this
5422 * could deplete whole memory reserves which would just make
5423 * the situation worse
5424 */
5425 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5426 if (page)
5427 goto got_pg;
5428
5429 cond_resched();
5430 goto retry;
5431 }
5432 fail:
5433 warn_alloc(gfp_mask, ac->nodemask,
5434 "page allocation failure: order:%u", order);
5435 got_pg:
5436 trace_android_vh_alloc_pages_slowpath(gfp_mask, order, alloc_start);
5437 return page;
5438 }
5439
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)5440 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5441 int preferred_nid, nodemask_t *nodemask,
5442 struct alloc_context *ac, gfp_t *alloc_gfp,
5443 unsigned int *alloc_flags)
5444 {
5445 ac->highest_zoneidx = gfp_zone(gfp_mask);
5446 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5447 ac->nodemask = nodemask;
5448 ac->migratetype = gfp_migratetype(gfp_mask);
5449
5450 if (cpusets_enabled()) {
5451 *alloc_gfp |= __GFP_HARDWALL;
5452 /*
5453 * When we are in the interrupt context, it is irrelevant
5454 * to the current task context. It means that any node ok.
5455 */
5456 if (in_task() && !ac->nodemask)
5457 ac->nodemask = &cpuset_current_mems_allowed;
5458 else
5459 *alloc_flags |= ALLOC_CPUSET;
5460 }
5461
5462 fs_reclaim_acquire(gfp_mask);
5463 fs_reclaim_release(gfp_mask);
5464
5465 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5466
5467 if (should_fail_alloc_page(gfp_mask, order))
5468 return false;
5469
5470 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5471
5472 /* Dirty zone balancing only done in the fast path */
5473 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5474
5475 /*
5476 * The preferred zone is used for statistics but crucially it is
5477 * also used as the starting point for the zonelist iterator. It
5478 * may get reset for allocations that ignore memory policies.
5479 */
5480 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5481 ac->highest_zoneidx, ac->nodemask);
5482
5483 return true;
5484 }
5485
5486 /*
5487 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5488 * @gfp: GFP flags for the allocation
5489 * @preferred_nid: The preferred NUMA node ID to allocate from
5490 * @nodemask: Set of nodes to allocate from, may be NULL
5491 * @nr_pages: The number of pages desired on the list or array
5492 * @page_list: Optional list to store the allocated pages
5493 * @page_array: Optional array to store the pages
5494 *
5495 * This is a batched version of the page allocator that attempts to
5496 * allocate nr_pages quickly. Pages are added to page_list if page_list
5497 * is not NULL, otherwise it is assumed that the page_array is valid.
5498 *
5499 * For lists, nr_pages is the number of pages that should be allocated.
5500 *
5501 * For arrays, only NULL elements are populated with pages and nr_pages
5502 * is the maximum number of pages that will be stored in the array.
5503 *
5504 * Returns the number of pages on the list or array.
5505 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)5506 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5507 nodemask_t *nodemask, int nr_pages,
5508 struct list_head *page_list,
5509 struct page **page_array)
5510 {
5511 struct page *page;
5512 unsigned long flags;
5513 unsigned long __maybe_unused UP_flags;
5514 struct zone *zone;
5515 struct zoneref *z;
5516 struct per_cpu_pages *pcp;
5517 struct alloc_context ac;
5518 gfp_t alloc_gfp;
5519 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5520 int nr_populated = 0, nr_account = 0;
5521
5522 /*
5523 * Skip populated array elements to determine if any pages need
5524 * to be allocated before disabling IRQs.
5525 */
5526 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5527 nr_populated++;
5528
5529 /* No pages requested? */
5530 if (unlikely(nr_pages <= 0))
5531 goto out;
5532
5533 /* Already populated array? */
5534 if (unlikely(page_array && nr_pages - nr_populated == 0))
5535 goto out;
5536
5537 /* Bulk allocator does not support memcg accounting. */
5538 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5539 goto failed;
5540
5541 /* Use the single page allocator for one page. */
5542 if (nr_pages - nr_populated == 1)
5543 goto failed;
5544
5545 #ifdef CONFIG_PAGE_OWNER
5546 /*
5547 * PAGE_OWNER may recurse into the allocator to allocate space to
5548 * save the stack with pagesets.lock held. Releasing/reacquiring
5549 * removes much of the performance benefit of bulk allocation so
5550 * force the caller to allocate one page at a time as it'll have
5551 * similar performance to added complexity to the bulk allocator.
5552 */
5553 if (static_branch_unlikely(&page_owner_inited))
5554 goto failed;
5555 #endif
5556
5557 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5558 gfp &= gfp_allowed_mask;
5559 alloc_gfp = gfp;
5560 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5561 goto out;
5562 gfp = alloc_gfp;
5563
5564 /* Find an allowed local zone that meets the low watermark. */
5565 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5566 unsigned long mark;
5567
5568 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5569 !__cpuset_zone_allowed(zone, gfp)) {
5570 continue;
5571 }
5572
5573 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5574 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5575 goto failed;
5576 }
5577
5578 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5579 if (zone_watermark_fast(zone, 0, mark,
5580 zonelist_zone_idx(ac.preferred_zoneref),
5581 alloc_flags, gfp)) {
5582 break;
5583 }
5584 }
5585
5586 /*
5587 * If there are no allowed local zones that meets the watermarks then
5588 * try to allocate a single page and reclaim if necessary.
5589 */
5590 if (unlikely(!zone))
5591 goto failed;
5592
5593 /* Is a parallel drain in progress? */
5594 pcp_trylock_prepare(UP_flags);
5595 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5596 if (!pcp)
5597 goto failed_irq;
5598
5599 /* Attempt the batch allocation */
5600 while (nr_populated < nr_pages) {
5601
5602 /* Skip existing pages */
5603 if (page_array && page_array[nr_populated]) {
5604 nr_populated++;
5605 continue;
5606 }
5607
5608 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5609 pcp, alloc_gfp);
5610 if (unlikely(!page)) {
5611 /* Try and allocate at least one page */
5612 if (!nr_account) {
5613 pcp_spin_unlock_irqrestore(pcp, flags);
5614 goto failed_irq;
5615 }
5616 break;
5617 }
5618 nr_account++;
5619
5620 prep_new_page(page, 0, gfp, 0);
5621 if (page_list)
5622 list_add(&page->lru, page_list);
5623 else
5624 page_array[nr_populated] = page;
5625 nr_populated++;
5626 }
5627
5628 pcp_spin_unlock_irqrestore(pcp, flags);
5629 pcp_trylock_finish(UP_flags);
5630
5631 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5632 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5633
5634 out:
5635 return nr_populated;
5636
5637 failed_irq:
5638 pcp_trylock_finish(UP_flags);
5639
5640 failed:
5641 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5642 if (page) {
5643 if (page_list)
5644 list_add(&page->lru, page_list);
5645 else
5646 page_array[nr_populated] = page;
5647 nr_populated++;
5648 }
5649
5650 goto out;
5651 }
5652 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5653
5654 /*
5655 * This is the 'heart' of the zoned buddy allocator.
5656 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5657 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5658 nodemask_t *nodemask)
5659 {
5660 struct page *page;
5661 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5662 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5663 struct alloc_context ac = { };
5664
5665 trace_android_vh_alloc_pages_entry(&gfp, order, preferred_nid, nodemask);
5666 /*
5667 * There are several places where we assume that the order value is sane
5668 * so bail out early if the request is out of bound.
5669 */
5670 if (unlikely(order >= MAX_ORDER)) {
5671 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5672 return NULL;
5673 }
5674
5675 gfp &= gfp_allowed_mask;
5676 /*
5677 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5678 * resp. GFP_NOIO which has to be inherited for all allocation requests
5679 * from a particular context which has been marked by
5680 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5681 * movable zones are not used during allocation.
5682 */
5683 gfp = current_gfp_context(gfp);
5684 alloc_gfp = gfp;
5685 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5686 &alloc_gfp, &alloc_flags))
5687 return NULL;
5688
5689 /*
5690 * Forbid the first pass from falling back to types that fragment
5691 * memory until all local zones are considered.
5692 */
5693 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5694
5695 /* First allocation attempt */
5696 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5697 if (likely(page))
5698 goto out;
5699
5700 alloc_gfp = gfp;
5701 ac.spread_dirty_pages = false;
5702
5703 /*
5704 * Restore the original nodemask if it was potentially replaced with
5705 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5706 */
5707 ac.nodemask = nodemask;
5708
5709 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5710
5711 out:
5712 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5713 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5714 __free_pages(page, order);
5715 page = NULL;
5716 }
5717
5718 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5719
5720 return page;
5721 }
5722 EXPORT_SYMBOL(__alloc_pages);
5723
5724 /*
5725 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5726 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5727 * you need to access high mem.
5728 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5729 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5730 {
5731 struct page *page;
5732
5733 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5734 if (!page)
5735 return 0;
5736 return (unsigned long) page_address(page);
5737 }
5738 EXPORT_SYMBOL(__get_free_pages);
5739
get_zeroed_page(gfp_t gfp_mask)5740 unsigned long get_zeroed_page(gfp_t gfp_mask)
5741 {
5742 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5743 }
5744 EXPORT_SYMBOL(get_zeroed_page);
5745
5746 /**
5747 * __free_pages - Free pages allocated with alloc_pages().
5748 * @page: The page pointer returned from alloc_pages().
5749 * @order: The order of the allocation.
5750 *
5751 * This function can free multi-page allocations that are not compound
5752 * pages. It does not check that the @order passed in matches that of
5753 * the allocation, so it is easy to leak memory. Freeing more memory
5754 * than was allocated will probably emit a warning.
5755 *
5756 * If the last reference to this page is speculative, it will be released
5757 * by put_page() which only frees the first page of a non-compound
5758 * allocation. To prevent the remaining pages from being leaked, we free
5759 * the subsequent pages here. If you want to use the page's reference
5760 * count to decide when to free the allocation, you should allocate a
5761 * compound page, and use put_page() instead of __free_pages().
5762 *
5763 * Context: May be called in interrupt context or while holding a normal
5764 * spinlock, but not in NMI context or while holding a raw spinlock.
5765 */
__free_pages(struct page * page,unsigned int order)5766 void __free_pages(struct page *page, unsigned int order)
5767 {
5768 /* get PageHead before we drop reference */
5769 int head = PageHead(page);
5770
5771 if (put_page_testzero(page))
5772 free_the_page(page, order);
5773 else if (!head)
5774 while (order-- > 0)
5775 free_the_page(page + (1 << order), order);
5776 }
5777 EXPORT_SYMBOL(__free_pages);
5778
free_pages(unsigned long addr,unsigned int order)5779 void free_pages(unsigned long addr, unsigned int order)
5780 {
5781 if (addr != 0) {
5782 VM_BUG_ON(!virt_addr_valid((void *)addr));
5783 __free_pages(virt_to_page((void *)addr), order);
5784 }
5785 }
5786
5787 EXPORT_SYMBOL(free_pages);
5788
5789 /*
5790 * Page Fragment:
5791 * An arbitrary-length arbitrary-offset area of memory which resides
5792 * within a 0 or higher order page. Multiple fragments within that page
5793 * are individually refcounted, in the page's reference counter.
5794 *
5795 * The page_frag functions below provide a simple allocation framework for
5796 * page fragments. This is used by the network stack and network device
5797 * drivers to provide a backing region of memory for use as either an
5798 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5799 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5800 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5801 gfp_t gfp_mask)
5802 {
5803 struct page *page = NULL;
5804 gfp_t gfp = gfp_mask;
5805
5806 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5807 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5808 __GFP_NOMEMALLOC;
5809 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5810 PAGE_FRAG_CACHE_MAX_ORDER);
5811 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5812 #endif
5813 if (unlikely(!page))
5814 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5815
5816 nc->va = page ? page_address(page) : NULL;
5817
5818 return page;
5819 }
5820
__page_frag_cache_drain(struct page * page,unsigned int count)5821 void __page_frag_cache_drain(struct page *page, unsigned int count)
5822 {
5823 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5824
5825 if (page_ref_sub_and_test(page, count))
5826 free_the_page(page, compound_order(page));
5827 }
5828 EXPORT_SYMBOL(__page_frag_cache_drain);
5829
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)5830 void *page_frag_alloc_align(struct page_frag_cache *nc,
5831 unsigned int fragsz, gfp_t gfp_mask,
5832 unsigned int align_mask)
5833 {
5834 unsigned int size = PAGE_SIZE;
5835 struct page *page;
5836 int offset;
5837
5838 if (unlikely(!nc->va)) {
5839 refill:
5840 page = __page_frag_cache_refill(nc, gfp_mask);
5841 if (!page)
5842 return NULL;
5843
5844 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5845 /* if size can vary use size else just use PAGE_SIZE */
5846 size = nc->size;
5847 #endif
5848 /* Even if we own the page, we do not use atomic_set().
5849 * This would break get_page_unless_zero() users.
5850 */
5851 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5852
5853 /* reset page count bias and offset to start of new frag */
5854 nc->pfmemalloc = page_is_pfmemalloc(page);
5855 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5856 nc->offset = size;
5857 }
5858
5859 offset = nc->offset - fragsz;
5860 if (unlikely(offset < 0)) {
5861 page = virt_to_page(nc->va);
5862
5863 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5864 goto refill;
5865
5866 if (unlikely(nc->pfmemalloc)) {
5867 free_the_page(page, compound_order(page));
5868 goto refill;
5869 }
5870
5871 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5872 /* if size can vary use size else just use PAGE_SIZE */
5873 size = nc->size;
5874 #endif
5875 /* OK, page count is 0, we can safely set it */
5876 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5877
5878 /* reset page count bias and offset to start of new frag */
5879 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5880 offset = size - fragsz;
5881 if (unlikely(offset < 0)) {
5882 /*
5883 * The caller is trying to allocate a fragment
5884 * with fragsz > PAGE_SIZE but the cache isn't big
5885 * enough to satisfy the request, this may
5886 * happen in low memory conditions.
5887 * We don't release the cache page because
5888 * it could make memory pressure worse
5889 * so we simply return NULL here.
5890 */
5891 return NULL;
5892 }
5893 }
5894
5895 nc->pagecnt_bias--;
5896 offset &= align_mask;
5897 nc->offset = offset;
5898
5899 return nc->va + offset;
5900 }
5901 EXPORT_SYMBOL(page_frag_alloc_align);
5902
5903 /*
5904 * Frees a page fragment allocated out of either a compound or order 0 page.
5905 */
page_frag_free(void * addr)5906 void page_frag_free(void *addr)
5907 {
5908 struct page *page = virt_to_head_page(addr);
5909
5910 if (unlikely(put_page_testzero(page)))
5911 free_the_page(page, compound_order(page));
5912 }
5913 EXPORT_SYMBOL(page_frag_free);
5914
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5915 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5916 size_t size)
5917 {
5918 if (addr) {
5919 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5920 unsigned long used = addr + PAGE_ALIGN(size);
5921
5922 split_page(virt_to_page((void *)addr), order);
5923 while (used < alloc_end) {
5924 free_page(used);
5925 used += PAGE_SIZE;
5926 }
5927 }
5928 return (void *)addr;
5929 }
5930
5931 /**
5932 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5933 * @size: the number of bytes to allocate
5934 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5935 *
5936 * This function is similar to alloc_pages(), except that it allocates the
5937 * minimum number of pages to satisfy the request. alloc_pages() can only
5938 * allocate memory in power-of-two pages.
5939 *
5940 * This function is also limited by MAX_ORDER.
5941 *
5942 * Memory allocated by this function must be released by free_pages_exact().
5943 *
5944 * Return: pointer to the allocated area or %NULL in case of error.
5945 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5946 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5947 {
5948 unsigned int order = get_order(size);
5949 unsigned long addr;
5950
5951 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5952 gfp_mask &= ~__GFP_COMP;
5953
5954 addr = __get_free_pages(gfp_mask, order);
5955 return make_alloc_exact(addr, order, size);
5956 }
5957 EXPORT_SYMBOL(alloc_pages_exact);
5958
5959 /**
5960 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5961 * pages on a node.
5962 * @nid: the preferred node ID where memory should be allocated
5963 * @size: the number of bytes to allocate
5964 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5965 *
5966 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5967 * back.
5968 *
5969 * Return: pointer to the allocated area or %NULL in case of error.
5970 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5971 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5972 {
5973 unsigned int order = get_order(size);
5974 struct page *p;
5975
5976 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5977 gfp_mask &= ~__GFP_COMP;
5978
5979 p = alloc_pages_node(nid, gfp_mask, order);
5980 if (!p)
5981 return NULL;
5982 return make_alloc_exact((unsigned long)page_address(p), order, size);
5983 }
5984
5985 /**
5986 * free_pages_exact - release memory allocated via alloc_pages_exact()
5987 * @virt: the value returned by alloc_pages_exact.
5988 * @size: size of allocation, same value as passed to alloc_pages_exact().
5989 *
5990 * Release the memory allocated by a previous call to alloc_pages_exact.
5991 */
free_pages_exact(void * virt,size_t size)5992 void free_pages_exact(void *virt, size_t size)
5993 {
5994 unsigned long addr = (unsigned long)virt;
5995 unsigned long end = addr + PAGE_ALIGN(size);
5996
5997 while (addr < end) {
5998 free_page(addr);
5999 addr += PAGE_SIZE;
6000 }
6001 }
6002 EXPORT_SYMBOL(free_pages_exact);
6003
6004 /**
6005 * nr_free_zone_pages - count number of pages beyond high watermark
6006 * @offset: The zone index of the highest zone
6007 *
6008 * nr_free_zone_pages() counts the number of pages which are beyond the
6009 * high watermark within all zones at or below a given zone index. For each
6010 * zone, the number of pages is calculated as:
6011 *
6012 * nr_free_zone_pages = managed_pages - high_pages
6013 *
6014 * Return: number of pages beyond high watermark.
6015 */
nr_free_zone_pages(int offset)6016 static unsigned long nr_free_zone_pages(int offset)
6017 {
6018 struct zoneref *z;
6019 struct zone *zone;
6020
6021 /* Just pick one node, since fallback list is circular */
6022 unsigned long sum = 0;
6023
6024 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
6025
6026 for_each_zone_zonelist(zone, z, zonelist, offset) {
6027 unsigned long size = zone_managed_pages(zone);
6028 unsigned long high = high_wmark_pages(zone);
6029 if (size > high)
6030 sum += size - high;
6031 }
6032
6033 return sum;
6034 }
6035
6036 /**
6037 * nr_free_buffer_pages - count number of pages beyond high watermark
6038 *
6039 * nr_free_buffer_pages() counts the number of pages which are beyond the high
6040 * watermark within ZONE_DMA and ZONE_NORMAL.
6041 *
6042 * Return: number of pages beyond high watermark within ZONE_DMA and
6043 * ZONE_NORMAL.
6044 */
nr_free_buffer_pages(void)6045 unsigned long nr_free_buffer_pages(void)
6046 {
6047 return nr_free_zone_pages(gfp_zone(GFP_USER));
6048 }
6049 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
6050
show_node(struct zone * zone)6051 static inline void show_node(struct zone *zone)
6052 {
6053 if (IS_ENABLED(CONFIG_NUMA))
6054 printk("Node %d ", zone_to_nid(zone));
6055 }
6056
si_mem_available(void)6057 long si_mem_available(void)
6058 {
6059 long available;
6060 unsigned long pagecache;
6061 unsigned long wmark_low = 0;
6062 unsigned long pages[NR_LRU_LISTS];
6063 unsigned long reclaimable;
6064 struct zone *zone;
6065 int lru;
6066
6067 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
6068 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
6069
6070 for_each_zone(zone)
6071 wmark_low += low_wmark_pages(zone);
6072
6073 /*
6074 * Estimate the amount of memory available for userspace allocations,
6075 * without causing swapping.
6076 */
6077 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
6078
6079 /*
6080 * Not all the page cache can be freed, otherwise the system will
6081 * start swapping. Assume at least half of the page cache, or the
6082 * low watermark worth of cache, needs to stay.
6083 */
6084 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
6085 pagecache -= min(pagecache / 2, wmark_low);
6086 available += pagecache;
6087
6088 /*
6089 * Part of the reclaimable slab and other kernel memory consists of
6090 * items that are in use, and cannot be freed. Cap this estimate at the
6091 * low watermark.
6092 */
6093 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6094 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
6095 available += reclaimable - min(reclaimable / 2, wmark_low);
6096
6097 if (available < 0)
6098 available = 0;
6099 return available;
6100 }
6101 EXPORT_SYMBOL_GPL(si_mem_available);
6102
si_meminfo(struct sysinfo * val)6103 void si_meminfo(struct sysinfo *val)
6104 {
6105 val->totalram = totalram_pages();
6106 val->sharedram = global_node_page_state(NR_SHMEM);
6107 val->freeram = global_zone_page_state(NR_FREE_PAGES);
6108 val->bufferram = nr_blockdev_pages();
6109 val->totalhigh = totalhigh_pages();
6110 val->freehigh = nr_free_highpages();
6111 val->mem_unit = PAGE_SIZE;
6112 trace_android_vh_si_meminfo(val);
6113 }
6114
6115 EXPORT_SYMBOL(si_meminfo);
6116
6117 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)6118 void si_meminfo_node(struct sysinfo *val, int nid)
6119 {
6120 int zone_type; /* needs to be signed */
6121 unsigned long managed_pages = 0;
6122 unsigned long managed_highpages = 0;
6123 unsigned long free_highpages = 0;
6124 pg_data_t *pgdat = NODE_DATA(nid);
6125
6126 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6127 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6128 val->totalram = managed_pages;
6129 val->sharedram = node_page_state(pgdat, NR_SHMEM);
6130 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6131 #ifdef CONFIG_HIGHMEM
6132 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6133 struct zone *zone = &pgdat->node_zones[zone_type];
6134
6135 if (is_highmem(zone)) {
6136 managed_highpages += zone_managed_pages(zone);
6137 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6138 }
6139 }
6140 val->totalhigh = managed_highpages;
6141 val->freehigh = free_highpages;
6142 #else
6143 val->totalhigh = managed_highpages;
6144 val->freehigh = free_highpages;
6145 #endif
6146 val->mem_unit = PAGE_SIZE;
6147 }
6148 #endif
6149
6150 /*
6151 * Determine whether the node should be displayed or not, depending on whether
6152 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6153 */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)6154 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6155 {
6156 if (!(flags & SHOW_MEM_FILTER_NODES))
6157 return false;
6158
6159 /*
6160 * no node mask - aka implicit memory numa policy. Do not bother with
6161 * the synchronization - read_mems_allowed_begin - because we do not
6162 * have to be precise here.
6163 */
6164 if (!nodemask)
6165 nodemask = &cpuset_current_mems_allowed;
6166
6167 return !node_isset(nid, *nodemask);
6168 }
6169
6170 #define K(x) ((x) << (PAGE_SHIFT-10))
6171
show_migration_types(unsigned char type)6172 static void show_migration_types(unsigned char type)
6173 {
6174 static const char types[MIGRATE_TYPES] = {
6175 [MIGRATE_UNMOVABLE] = 'U',
6176 [MIGRATE_MOVABLE] = 'M',
6177 [MIGRATE_RECLAIMABLE] = 'E',
6178 [MIGRATE_HIGHATOMIC] = 'H',
6179 #ifdef CONFIG_CMA
6180 [MIGRATE_CMA] = 'C',
6181 #endif
6182 #ifdef CONFIG_MEMORY_ISOLATION
6183 [MIGRATE_ISOLATE] = 'I',
6184 #endif
6185 };
6186 char tmp[MIGRATE_TYPES + 1];
6187 char *p = tmp;
6188 int i;
6189
6190 for (i = 0; i < MIGRATE_TYPES; i++) {
6191 if (type & (1 << i))
6192 *p++ = types[i];
6193 }
6194
6195 *p = '\0';
6196 printk(KERN_CONT "(%s) ", tmp);
6197 }
6198
6199 /*
6200 * Show free area list (used inside shift_scroll-lock stuff)
6201 * We also calculate the percentage fragmentation. We do this by counting the
6202 * memory on each free list with the exception of the first item on the list.
6203 *
6204 * Bits in @filter:
6205 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6206 * cpuset.
6207 */
show_free_areas(unsigned int filter,nodemask_t * nodemask)6208 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6209 {
6210 unsigned long free_pcp = 0;
6211 int cpu;
6212 struct zone *zone;
6213 pg_data_t *pgdat;
6214
6215 for_each_populated_zone(zone) {
6216 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6217 continue;
6218
6219 for_each_online_cpu(cpu)
6220 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6221 }
6222
6223 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6224 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6225 " unevictable:%lu dirty:%lu writeback:%lu\n"
6226 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6227 " mapped:%lu shmem:%lu pagetables:%lu\n"
6228 " sec_pagetables:%lu bounce:%lu\n"
6229 " kernel_misc_reclaimable:%lu\n"
6230 " free:%lu free_pcp:%lu free_cma:%lu\n",
6231 global_node_page_state(NR_ACTIVE_ANON),
6232 global_node_page_state(NR_INACTIVE_ANON),
6233 global_node_page_state(NR_ISOLATED_ANON),
6234 global_node_page_state(NR_ACTIVE_FILE),
6235 global_node_page_state(NR_INACTIVE_FILE),
6236 global_node_page_state(NR_ISOLATED_FILE),
6237 global_node_page_state(NR_UNEVICTABLE),
6238 global_node_page_state(NR_FILE_DIRTY),
6239 global_node_page_state(NR_WRITEBACK),
6240 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6241 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6242 global_node_page_state(NR_FILE_MAPPED),
6243 global_node_page_state(NR_SHMEM),
6244 global_node_page_state(NR_PAGETABLE),
6245 global_node_page_state(NR_SECONDARY_PAGETABLE),
6246 global_zone_page_state(NR_BOUNCE),
6247 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6248 global_zone_page_state(NR_FREE_PAGES),
6249 free_pcp,
6250 global_zone_page_state(NR_FREE_CMA_PAGES));
6251
6252 for_each_online_pgdat(pgdat) {
6253 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6254 continue;
6255
6256 printk("Node %d"
6257 " active_anon:%lukB"
6258 " inactive_anon:%lukB"
6259 " active_file:%lukB"
6260 " inactive_file:%lukB"
6261 " unevictable:%lukB"
6262 " isolated(anon):%lukB"
6263 " isolated(file):%lukB"
6264 " mapped:%lukB"
6265 " dirty:%lukB"
6266 " writeback:%lukB"
6267 " shmem:%lukB"
6268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6269 " shmem_thp: %lukB"
6270 " shmem_pmdmapped: %lukB"
6271 " anon_thp: %lukB"
6272 #endif
6273 " writeback_tmp:%lukB"
6274 " kernel_stack:%lukB"
6275 #ifdef CONFIG_SHADOW_CALL_STACK
6276 " shadow_call_stack:%lukB"
6277 #endif
6278 " pagetables:%lukB"
6279 " sec_pagetables:%lukB"
6280 " all_unreclaimable? %s"
6281 "\n",
6282 pgdat->node_id,
6283 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6284 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6285 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6286 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6287 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6288 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6289 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6290 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6291 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6292 K(node_page_state(pgdat, NR_WRITEBACK)),
6293 K(node_page_state(pgdat, NR_SHMEM)),
6294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6295 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6296 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6297 K(node_page_state(pgdat, NR_ANON_THPS)),
6298 #endif
6299 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6300 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6301 #ifdef CONFIG_SHADOW_CALL_STACK
6302 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6303 #endif
6304 K(node_page_state(pgdat, NR_PAGETABLE)),
6305 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6306 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6307 "yes" : "no");
6308 }
6309
6310 for_each_populated_zone(zone) {
6311 int i;
6312
6313 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6314 continue;
6315
6316 free_pcp = 0;
6317 for_each_online_cpu(cpu)
6318 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6319
6320 show_node(zone);
6321 printk(KERN_CONT
6322 "%s"
6323 " free:%lukB"
6324 " min:%lukB"
6325 " low:%lukB"
6326 " high:%lukB"
6327 " reserved_highatomic:%luKB"
6328 " active_anon:%lukB"
6329 " inactive_anon:%lukB"
6330 " active_file:%lukB"
6331 " inactive_file:%lukB"
6332 " unevictable:%lukB"
6333 " writepending:%lukB"
6334 " present:%lukB"
6335 " managed:%lukB"
6336 " mlocked:%lukB"
6337 " bounce:%lukB"
6338 " free_pcp:%lukB"
6339 " local_pcp:%ukB"
6340 " free_cma:%lukB"
6341 "\n",
6342 zone->name,
6343 K(zone_page_state(zone, NR_FREE_PAGES)),
6344 K(min_wmark_pages(zone)),
6345 K(low_wmark_pages(zone)),
6346 K(high_wmark_pages(zone)),
6347 K(zone->nr_reserved_highatomic),
6348 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6349 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6350 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6351 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6352 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6353 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6354 K(zone->present_pages),
6355 K(zone_managed_pages(zone)),
6356 K(zone_page_state(zone, NR_MLOCK)),
6357 K(zone_page_state(zone, NR_BOUNCE)),
6358 K(free_pcp),
6359 K(this_cpu_read(zone->per_cpu_pageset->count)),
6360 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6361 printk("lowmem_reserve[]:");
6362 for (i = 0; i < MAX_NR_ZONES; i++)
6363 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6364 printk(KERN_CONT "\n");
6365 }
6366
6367 for_each_populated_zone(zone) {
6368 unsigned int order;
6369 unsigned long nr[MAX_ORDER], flags, total = 0;
6370 unsigned char types[MAX_ORDER];
6371
6372 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6373 continue;
6374 show_node(zone);
6375 printk(KERN_CONT "%s: ", zone->name);
6376
6377 spin_lock_irqsave(&zone->lock, flags);
6378 for (order = 0; order < MAX_ORDER; order++) {
6379 struct free_area *area = &zone->free_area[order];
6380 int type;
6381
6382 nr[order] = area->nr_free;
6383 total += nr[order] << order;
6384
6385 types[order] = 0;
6386 for (type = 0; type < MIGRATE_TYPES; type++) {
6387 if (!free_area_empty(area, type))
6388 types[order] |= 1 << type;
6389 }
6390 }
6391 spin_unlock_irqrestore(&zone->lock, flags);
6392 for (order = 0; order < MAX_ORDER; order++) {
6393 printk(KERN_CONT "%lu*%lukB ",
6394 nr[order], K(1UL) << order);
6395 if (nr[order])
6396 show_migration_types(types[order]);
6397 }
6398 printk(KERN_CONT "= %lukB\n", K(total));
6399 }
6400
6401 hugetlb_show_meminfo();
6402
6403 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6404
6405 show_swap_cache_info();
6406 }
6407
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)6408 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6409 {
6410 zoneref->zone = zone;
6411 zoneref->zone_idx = zone_idx(zone);
6412 }
6413
6414 /*
6415 * Builds allocation fallback zone lists.
6416 *
6417 * Add all populated zones of a node to the zonelist.
6418 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)6419 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6420 {
6421 struct zone *zone;
6422 enum zone_type zone_type = MAX_NR_ZONES;
6423 int nr_zones = 0;
6424
6425 do {
6426 zone_type--;
6427 zone = pgdat->node_zones + zone_type;
6428 if (populated_zone(zone)) {
6429 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6430 check_highest_zone(zone_type);
6431 }
6432 } while (zone_type);
6433
6434 return nr_zones;
6435 }
6436
6437 #ifdef CONFIG_NUMA
6438
__parse_numa_zonelist_order(char * s)6439 static int __parse_numa_zonelist_order(char *s)
6440 {
6441 /*
6442 * We used to support different zonelists modes but they turned
6443 * out to be just not useful. Let's keep the warning in place
6444 * if somebody still use the cmd line parameter so that we do
6445 * not fail it silently
6446 */
6447 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6448 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6449 return -EINVAL;
6450 }
6451 return 0;
6452 }
6453
6454 char numa_zonelist_order[] = "Node";
6455
6456 /*
6457 * sysctl handler for numa_zonelist_order
6458 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6459 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6460 void *buffer, size_t *length, loff_t *ppos)
6461 {
6462 if (write)
6463 return __parse_numa_zonelist_order(buffer);
6464 return proc_dostring(table, write, buffer, length, ppos);
6465 }
6466
6467
6468 #define MAX_NODE_LOAD (nr_online_nodes)
6469 static int node_load[MAX_NUMNODES];
6470
6471 /**
6472 * find_next_best_node - find the next node that should appear in a given node's fallback list
6473 * @node: node whose fallback list we're appending
6474 * @used_node_mask: nodemask_t of already used nodes
6475 *
6476 * We use a number of factors to determine which is the next node that should
6477 * appear on a given node's fallback list. The node should not have appeared
6478 * already in @node's fallback list, and it should be the next closest node
6479 * according to the distance array (which contains arbitrary distance values
6480 * from each node to each node in the system), and should also prefer nodes
6481 * with no CPUs, since presumably they'll have very little allocation pressure
6482 * on them otherwise.
6483 *
6484 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6485 */
find_next_best_node(int node,nodemask_t * used_node_mask)6486 int find_next_best_node(int node, nodemask_t *used_node_mask)
6487 {
6488 int n, val;
6489 int min_val = INT_MAX;
6490 int best_node = NUMA_NO_NODE;
6491
6492 /* Use the local node if we haven't already */
6493 if (!node_isset(node, *used_node_mask)) {
6494 node_set(node, *used_node_mask);
6495 return node;
6496 }
6497
6498 for_each_node_state(n, N_MEMORY) {
6499
6500 /* Don't want a node to appear more than once */
6501 if (node_isset(n, *used_node_mask))
6502 continue;
6503
6504 /* Use the distance array to find the distance */
6505 val = node_distance(node, n);
6506
6507 /* Penalize nodes under us ("prefer the next node") */
6508 val += (n < node);
6509
6510 /* Give preference to headless and unused nodes */
6511 if (!cpumask_empty(cpumask_of_node(n)))
6512 val += PENALTY_FOR_NODE_WITH_CPUS;
6513
6514 /* Slight preference for less loaded node */
6515 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6516 val += node_load[n];
6517
6518 if (val < min_val) {
6519 min_val = val;
6520 best_node = n;
6521 }
6522 }
6523
6524 if (best_node >= 0)
6525 node_set(best_node, *used_node_mask);
6526
6527 return best_node;
6528 }
6529
6530
6531 /*
6532 * Build zonelists ordered by node and zones within node.
6533 * This results in maximum locality--normal zone overflows into local
6534 * DMA zone, if any--but risks exhausting DMA zone.
6535 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)6536 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6537 unsigned nr_nodes)
6538 {
6539 struct zoneref *zonerefs;
6540 int i;
6541
6542 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6543
6544 for (i = 0; i < nr_nodes; i++) {
6545 int nr_zones;
6546
6547 pg_data_t *node = NODE_DATA(node_order[i]);
6548
6549 nr_zones = build_zonerefs_node(node, zonerefs);
6550 zonerefs += nr_zones;
6551 }
6552 zonerefs->zone = NULL;
6553 zonerefs->zone_idx = 0;
6554 }
6555
6556 /*
6557 * Build gfp_thisnode zonelists
6558 */
build_thisnode_zonelists(pg_data_t * pgdat)6559 static void build_thisnode_zonelists(pg_data_t *pgdat)
6560 {
6561 struct zoneref *zonerefs;
6562 int nr_zones;
6563
6564 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6565 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6566 zonerefs += nr_zones;
6567 zonerefs->zone = NULL;
6568 zonerefs->zone_idx = 0;
6569 }
6570
6571 /*
6572 * Build zonelists ordered by zone and nodes within zones.
6573 * This results in conserving DMA zone[s] until all Normal memory is
6574 * exhausted, but results in overflowing to remote node while memory
6575 * may still exist in local DMA zone.
6576 */
6577
build_zonelists(pg_data_t * pgdat)6578 static void build_zonelists(pg_data_t *pgdat)
6579 {
6580 static int node_order[MAX_NUMNODES];
6581 int node, load, nr_nodes = 0;
6582 nodemask_t used_mask = NODE_MASK_NONE;
6583 int local_node, prev_node;
6584
6585 /* NUMA-aware ordering of nodes */
6586 local_node = pgdat->node_id;
6587 load = nr_online_nodes;
6588 prev_node = local_node;
6589
6590 memset(node_order, 0, sizeof(node_order));
6591 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6592 /*
6593 * We don't want to pressure a particular node.
6594 * So adding penalty to the first node in same
6595 * distance group to make it round-robin.
6596 */
6597 if (node_distance(local_node, node) !=
6598 node_distance(local_node, prev_node))
6599 node_load[node] = load;
6600
6601 node_order[nr_nodes++] = node;
6602 prev_node = node;
6603 load--;
6604 }
6605
6606 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6607 build_thisnode_zonelists(pgdat);
6608 }
6609
6610 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6611 /*
6612 * Return node id of node used for "local" allocations.
6613 * I.e., first node id of first zone in arg node's generic zonelist.
6614 * Used for initializing percpu 'numa_mem', which is used primarily
6615 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6616 */
local_memory_node(int node)6617 int local_memory_node(int node)
6618 {
6619 struct zoneref *z;
6620
6621 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6622 gfp_zone(GFP_KERNEL),
6623 NULL);
6624 return zone_to_nid(z->zone);
6625 }
6626 #endif
6627
6628 static void setup_min_unmapped_ratio(void);
6629 static void setup_min_slab_ratio(void);
6630 #else /* CONFIG_NUMA */
6631
build_zonelists(pg_data_t * pgdat)6632 static void build_zonelists(pg_data_t *pgdat)
6633 {
6634 int node, local_node;
6635 struct zoneref *zonerefs;
6636 int nr_zones;
6637
6638 local_node = pgdat->node_id;
6639
6640 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6641 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6642 zonerefs += nr_zones;
6643
6644 /*
6645 * Now we build the zonelist so that it contains the zones
6646 * of all the other nodes.
6647 * We don't want to pressure a particular node, so when
6648 * building the zones for node N, we make sure that the
6649 * zones coming right after the local ones are those from
6650 * node N+1 (modulo N)
6651 */
6652 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6653 if (!node_online(node))
6654 continue;
6655 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6656 zonerefs += nr_zones;
6657 }
6658 for (node = 0; node < local_node; node++) {
6659 if (!node_online(node))
6660 continue;
6661 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6662 zonerefs += nr_zones;
6663 }
6664
6665 zonerefs->zone = NULL;
6666 zonerefs->zone_idx = 0;
6667 }
6668
6669 #endif /* CONFIG_NUMA */
6670
6671 /*
6672 * Boot pageset table. One per cpu which is going to be used for all
6673 * zones and all nodes. The parameters will be set in such a way
6674 * that an item put on a list will immediately be handed over to
6675 * the buddy list. This is safe since pageset manipulation is done
6676 * with interrupts disabled.
6677 *
6678 * The boot_pagesets must be kept even after bootup is complete for
6679 * unused processors and/or zones. They do play a role for bootstrapping
6680 * hotplugged processors.
6681 *
6682 * zoneinfo_show() and maybe other functions do
6683 * not check if the processor is online before following the pageset pointer.
6684 * Other parts of the kernel may not check if the zone is available.
6685 */
6686 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6687 /* These effectively disable the pcplists in the boot pageset completely */
6688 #define BOOT_PAGESET_HIGH 0
6689 #define BOOT_PAGESET_BATCH 1
6690 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6691 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6692 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6693
__build_all_zonelists(void * data)6694 static void __build_all_zonelists(void *data)
6695 {
6696 int nid;
6697 int __maybe_unused cpu;
6698 pg_data_t *self = data;
6699 unsigned long flags;
6700
6701 /*
6702 * Explicitly disable this CPU's interrupts before taking seqlock
6703 * to prevent any IRQ handler from calling into the page allocator
6704 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
6705 */
6706 local_irq_save(flags);
6707 /*
6708 * Explicitly disable this CPU's synchronous printk() before taking
6709 * seqlock to prevent any printk() from trying to hold port->lock, for
6710 * tty_insert_flip_string_and_push_buffer() on other CPU might be
6711 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
6712 */
6713 printk_deferred_enter();
6714 write_seqlock(&zonelist_update_seq);
6715
6716 #ifdef CONFIG_NUMA
6717 memset(node_load, 0, sizeof(node_load));
6718 #endif
6719
6720 /*
6721 * This node is hotadded and no memory is yet present. So just
6722 * building zonelists is fine - no need to touch other nodes.
6723 */
6724 if (self && !node_online(self->node_id)) {
6725 build_zonelists(self);
6726 } else {
6727 for_each_online_node(nid) {
6728 pg_data_t *pgdat = NODE_DATA(nid);
6729
6730 build_zonelists(pgdat);
6731 }
6732
6733 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6734 /*
6735 * We now know the "local memory node" for each node--
6736 * i.e., the node of the first zone in the generic zonelist.
6737 * Set up numa_mem percpu variable for on-line cpus. During
6738 * boot, only the boot cpu should be on-line; we'll init the
6739 * secondary cpus' numa_mem as they come on-line. During
6740 * node/memory hotplug, we'll fixup all on-line cpus.
6741 */
6742 for_each_online_cpu(cpu)
6743 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6744 #endif
6745 }
6746
6747 write_sequnlock(&zonelist_update_seq);
6748 printk_deferred_exit();
6749 local_irq_restore(flags);
6750 }
6751
6752 static noinline void __init
build_all_zonelists_init(void)6753 build_all_zonelists_init(void)
6754 {
6755 int cpu;
6756
6757 __build_all_zonelists(NULL);
6758
6759 /*
6760 * Initialize the boot_pagesets that are going to be used
6761 * for bootstrapping processors. The real pagesets for
6762 * each zone will be allocated later when the per cpu
6763 * allocator is available.
6764 *
6765 * boot_pagesets are used also for bootstrapping offline
6766 * cpus if the system is already booted because the pagesets
6767 * are needed to initialize allocators on a specific cpu too.
6768 * F.e. the percpu allocator needs the page allocator which
6769 * needs the percpu allocator in order to allocate its pagesets
6770 * (a chicken-egg dilemma).
6771 */
6772 for_each_possible_cpu(cpu)
6773 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6774
6775 mminit_verify_zonelist();
6776 cpuset_init_current_mems_allowed();
6777 }
6778
6779 /*
6780 * unless system_state == SYSTEM_BOOTING.
6781 *
6782 * __ref due to call of __init annotated helper build_all_zonelists_init
6783 * [protected by SYSTEM_BOOTING].
6784 */
build_all_zonelists(pg_data_t * pgdat)6785 void __ref build_all_zonelists(pg_data_t *pgdat)
6786 {
6787 unsigned long vm_total_pages;
6788
6789 if (system_state == SYSTEM_BOOTING) {
6790 build_all_zonelists_init();
6791 } else {
6792 __build_all_zonelists(pgdat);
6793 /* cpuset refresh routine should be here */
6794 }
6795 /* Get the number of free pages beyond high watermark in all zones. */
6796 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6797 /*
6798 * Disable grouping by mobility if the number of pages in the
6799 * system is too low to allow the mechanism to work. It would be
6800 * more accurate, but expensive to check per-zone. This check is
6801 * made on memory-hotadd so a system can start with mobility
6802 * disabled and enable it later
6803 */
6804 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6805 page_group_by_mobility_disabled = 1;
6806 else
6807 page_group_by_mobility_disabled = 0;
6808
6809 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6810 nr_online_nodes,
6811 page_group_by_mobility_disabled ? "off" : "on",
6812 vm_total_pages);
6813 #ifdef CONFIG_NUMA
6814 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6815 #endif
6816 }
6817
6818 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6819 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6820 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6821 {
6822 static struct memblock_region *r;
6823
6824 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6825 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6826 for_each_mem_region(r) {
6827 if (*pfn < memblock_region_memory_end_pfn(r))
6828 break;
6829 }
6830 }
6831 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6832 memblock_is_mirror(r)) {
6833 *pfn = memblock_region_memory_end_pfn(r);
6834 return true;
6835 }
6836 }
6837 return false;
6838 }
6839
6840 /*
6841 * Initially all pages are reserved - free ones are freed
6842 * up by memblock_free_all() once the early boot process is
6843 * done. Non-atomic initialization, single-pass.
6844 *
6845 * All aligned pageblocks are initialized to the specified migratetype
6846 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6847 * zone stats (e.g., nr_isolate_pageblock) are touched.
6848 */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6849 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6850 unsigned long start_pfn, unsigned long zone_end_pfn,
6851 enum meminit_context context,
6852 struct vmem_altmap *altmap, int migratetype)
6853 {
6854 unsigned long pfn, end_pfn = start_pfn + size;
6855 struct page *page;
6856
6857 if (highest_memmap_pfn < end_pfn - 1)
6858 highest_memmap_pfn = end_pfn - 1;
6859
6860 #ifdef CONFIG_ZONE_DEVICE
6861 /*
6862 * Honor reservation requested by the driver for this ZONE_DEVICE
6863 * memory. We limit the total number of pages to initialize to just
6864 * those that might contain the memory mapping. We will defer the
6865 * ZONE_DEVICE page initialization until after we have released
6866 * the hotplug lock.
6867 */
6868 if (zone == ZONE_DEVICE) {
6869 if (!altmap)
6870 return;
6871
6872 if (start_pfn == altmap->base_pfn)
6873 start_pfn += altmap->reserve;
6874 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6875 }
6876 #endif
6877
6878 for (pfn = start_pfn; pfn < end_pfn; ) {
6879 /*
6880 * There can be holes in boot-time mem_map[]s handed to this
6881 * function. They do not exist on hotplugged memory.
6882 */
6883 if (context == MEMINIT_EARLY) {
6884 if (overlap_memmap_init(zone, &pfn))
6885 continue;
6886 if (defer_init(nid, pfn, zone_end_pfn))
6887 break;
6888 }
6889
6890 page = pfn_to_page(pfn);
6891 __init_single_page(page, pfn, zone, nid);
6892 if (context == MEMINIT_HOTPLUG)
6893 __SetPageReserved(page);
6894
6895 /*
6896 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6897 * such that unmovable allocations won't be scattered all
6898 * over the place during system boot.
6899 */
6900 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6901 set_pageblock_migratetype(page, migratetype);
6902 cond_resched();
6903 }
6904 pfn++;
6905 }
6906 }
6907
6908 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6909 void __ref memmap_init_zone_device(struct zone *zone,
6910 unsigned long start_pfn,
6911 unsigned long nr_pages,
6912 struct dev_pagemap *pgmap)
6913 {
6914 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6915 struct pglist_data *pgdat = zone->zone_pgdat;
6916 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6917 unsigned long zone_idx = zone_idx(zone);
6918 unsigned long start = jiffies;
6919 int nid = pgdat->node_id;
6920
6921 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6922 return;
6923
6924 /*
6925 * The call to memmap_init should have already taken care
6926 * of the pages reserved for the memmap, so we can just jump to
6927 * the end of that region and start processing the device pages.
6928 */
6929 if (altmap) {
6930 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6931 nr_pages = end_pfn - start_pfn;
6932 }
6933
6934 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6935 struct page *page = pfn_to_page(pfn);
6936
6937 __init_single_page(page, pfn, zone_idx, nid);
6938
6939 /*
6940 * Mark page reserved as it will need to wait for onlining
6941 * phase for it to be fully associated with a zone.
6942 *
6943 * We can use the non-atomic __set_bit operation for setting
6944 * the flag as we are still initializing the pages.
6945 */
6946 __SetPageReserved(page);
6947
6948 /*
6949 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6950 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6951 * ever freed or placed on a driver-private list.
6952 */
6953 page->pgmap = pgmap;
6954 page->zone_device_data = NULL;
6955
6956 /*
6957 * Mark the block movable so that blocks are reserved for
6958 * movable at startup. This will force kernel allocations
6959 * to reserve their blocks rather than leaking throughout
6960 * the address space during boot when many long-lived
6961 * kernel allocations are made.
6962 *
6963 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6964 * because this is done early in section_activate()
6965 */
6966 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6967 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6968 cond_resched();
6969 }
6970 }
6971
6972 pr_info("%s initialised %lu pages in %ums\n", __func__,
6973 nr_pages, jiffies_to_msecs(jiffies - start));
6974 }
6975
6976 #endif
zone_init_free_lists(struct zone * zone)6977 static void __meminit zone_init_free_lists(struct zone *zone)
6978 {
6979 unsigned int order, t;
6980 for_each_migratetype_order(order, t) {
6981 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6982 zone->free_area[order].nr_free = 0;
6983 }
6984 }
6985
6986 /*
6987 * Only struct pages that correspond to ranges defined by memblock.memory
6988 * are zeroed and initialized by going through __init_single_page() during
6989 * memmap_init_zone_range().
6990 *
6991 * But, there could be struct pages that correspond to holes in
6992 * memblock.memory. This can happen because of the following reasons:
6993 * - physical memory bank size is not necessarily the exact multiple of the
6994 * arbitrary section size
6995 * - early reserved memory may not be listed in memblock.memory
6996 * - memory layouts defined with memmap= kernel parameter may not align
6997 * nicely with memmap sections
6998 *
6999 * Explicitly initialize those struct pages so that:
7000 * - PG_Reserved is set
7001 * - zone and node links point to zone and node that span the page if the
7002 * hole is in the middle of a zone
7003 * - zone and node links point to adjacent zone/node if the hole falls on
7004 * the zone boundary; the pages in such holes will be prepended to the
7005 * zone/node above the hole except for the trailing pages in the last
7006 * section that will be appended to the zone/node below.
7007 */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)7008 static void __init init_unavailable_range(unsigned long spfn,
7009 unsigned long epfn,
7010 int zone, int node)
7011 {
7012 unsigned long pfn;
7013 u64 pgcnt = 0;
7014
7015 for (pfn = spfn; pfn < epfn; pfn++) {
7016 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7017 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7018 + pageblock_nr_pages - 1;
7019 continue;
7020 }
7021 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
7022 __SetPageReserved(pfn_to_page(pfn));
7023 pgcnt++;
7024 }
7025
7026 if (pgcnt)
7027 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7028 node, zone_names[zone], pgcnt);
7029 }
7030
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)7031 static void __init memmap_init_zone_range(struct zone *zone,
7032 unsigned long start_pfn,
7033 unsigned long end_pfn,
7034 unsigned long *hole_pfn)
7035 {
7036 unsigned long zone_start_pfn = zone->zone_start_pfn;
7037 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7038 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7039
7040 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7041 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7042
7043 if (start_pfn >= end_pfn)
7044 return;
7045
7046 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7047 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7048
7049 if (*hole_pfn < start_pfn)
7050 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7051
7052 *hole_pfn = end_pfn;
7053 }
7054
memmap_init(void)7055 static void __init memmap_init(void)
7056 {
7057 unsigned long start_pfn, end_pfn;
7058 unsigned long hole_pfn = 0;
7059 int i, j, zone_id = 0, nid;
7060
7061 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7062 struct pglist_data *node = NODE_DATA(nid);
7063
7064 for (j = 0; j < MAX_NR_ZONES; j++) {
7065 struct zone *zone = node->node_zones + j;
7066
7067 if (!populated_zone(zone))
7068 continue;
7069
7070 memmap_init_zone_range(zone, start_pfn, end_pfn,
7071 &hole_pfn);
7072 zone_id = j;
7073 }
7074 }
7075
7076 #ifdef CONFIG_SPARSEMEM
7077 /*
7078 * Initialize the memory map for hole in the range [memory_end,
7079 * section_end].
7080 * Append the pages in this hole to the highest zone in the last
7081 * node.
7082 * The call to init_unavailable_range() is outside the ifdef to
7083 * silence the compiler warining about zone_id set but not used;
7084 * for FLATMEM it is a nop anyway
7085 */
7086 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7087 if (hole_pfn < end_pfn)
7088 #endif
7089 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7090 }
7091
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)7092 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7093 phys_addr_t min_addr, int nid, bool exact_nid)
7094 {
7095 void *ptr;
7096
7097 if (exact_nid)
7098 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7099 MEMBLOCK_ALLOC_ACCESSIBLE,
7100 nid);
7101 else
7102 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7103 MEMBLOCK_ALLOC_ACCESSIBLE,
7104 nid);
7105
7106 if (ptr && size > 0)
7107 page_init_poison(ptr, size);
7108
7109 return ptr;
7110 }
7111
zone_batchsize(struct zone * zone)7112 static int zone_batchsize(struct zone *zone)
7113 {
7114 #ifdef CONFIG_MMU
7115 int batch;
7116
7117 /*
7118 * The number of pages to batch allocate is either ~0.1%
7119 * of the zone or 1MB, whichever is smaller. The batch
7120 * size is striking a balance between allocation latency
7121 * and zone lock contention.
7122 */
7123 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7124 batch /= 4; /* We effectively *= 4 below */
7125 if (batch < 1)
7126 batch = 1;
7127
7128 /*
7129 * Clamp the batch to a 2^n - 1 value. Having a power
7130 * of 2 value was found to be more likely to have
7131 * suboptimal cache aliasing properties in some cases.
7132 *
7133 * For example if 2 tasks are alternately allocating
7134 * batches of pages, one task can end up with a lot
7135 * of pages of one half of the possible page colors
7136 * and the other with pages of the other colors.
7137 */
7138 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7139
7140 return batch;
7141
7142 #else
7143 /* The deferral and batching of frees should be suppressed under NOMMU
7144 * conditions.
7145 *
7146 * The problem is that NOMMU needs to be able to allocate large chunks
7147 * of contiguous memory as there's no hardware page translation to
7148 * assemble apparent contiguous memory from discontiguous pages.
7149 *
7150 * Queueing large contiguous runs of pages for batching, however,
7151 * causes the pages to actually be freed in smaller chunks. As there
7152 * can be a significant delay between the individual batches being
7153 * recycled, this leads to the once large chunks of space being
7154 * fragmented and becoming unavailable for high-order allocations.
7155 */
7156 return 0;
7157 #endif
7158 }
7159
zone_highsize(struct zone * zone,int batch,int cpu_online)7160 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7161 {
7162 #ifdef CONFIG_MMU
7163 int high;
7164 int nr_split_cpus;
7165 unsigned long total_pages;
7166
7167 if (!percpu_pagelist_high_fraction) {
7168 /*
7169 * By default, the high value of the pcp is based on the zone
7170 * low watermark so that if they are full then background
7171 * reclaim will not be started prematurely.
7172 */
7173 total_pages = low_wmark_pages(zone);
7174 } else {
7175 /*
7176 * If percpu_pagelist_high_fraction is configured, the high
7177 * value is based on a fraction of the managed pages in the
7178 * zone.
7179 */
7180 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7181 }
7182
7183 /*
7184 * Split the high value across all online CPUs local to the zone. Note
7185 * that early in boot that CPUs may not be online yet and that during
7186 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7187 * onlined. For memory nodes that have no CPUs, split pcp->high across
7188 * all online CPUs to mitigate the risk that reclaim is triggered
7189 * prematurely due to pages stored on pcp lists.
7190 */
7191 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7192 if (!nr_split_cpus)
7193 nr_split_cpus = num_online_cpus();
7194 high = total_pages / nr_split_cpus;
7195
7196 /*
7197 * Ensure high is at least batch*4. The multiple is based on the
7198 * historical relationship between high and batch.
7199 */
7200 high = max(high, batch << 2);
7201
7202 return high;
7203 #else
7204 return 0;
7205 #endif
7206 }
7207
7208 /*
7209 * pcp->high and pcp->batch values are related and generally batch is lower
7210 * than high. They are also related to pcp->count such that count is lower
7211 * than high, and as soon as it reaches high, the pcplist is flushed.
7212 *
7213 * However, guaranteeing these relations at all times would require e.g. write
7214 * barriers here but also careful usage of read barriers at the read side, and
7215 * thus be prone to error and bad for performance. Thus the update only prevents
7216 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7217 * can cope with those fields changing asynchronously, and fully trust only the
7218 * pcp->count field on the local CPU with interrupts disabled.
7219 *
7220 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7221 * outside of boot time (or some other assurance that no concurrent updaters
7222 * exist).
7223 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)7224 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7225 unsigned long batch)
7226 {
7227 WRITE_ONCE(pcp->batch, batch);
7228 WRITE_ONCE(pcp->high, high);
7229 }
7230
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)7231 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7232 {
7233 int pindex;
7234
7235 memset(pcp, 0, sizeof(*pcp));
7236 memset(pzstats, 0, sizeof(*pzstats));
7237
7238 spin_lock_init(&pcp->lock);
7239 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7240 INIT_LIST_HEAD(&pcp->lists[pindex]);
7241
7242 /*
7243 * Set batch and high values safe for a boot pageset. A true percpu
7244 * pageset's initialization will update them subsequently. Here we don't
7245 * need to be as careful as pageset_update() as nobody can access the
7246 * pageset yet.
7247 */
7248 pcp->high = BOOT_PAGESET_HIGH;
7249 pcp->batch = BOOT_PAGESET_BATCH;
7250 pcp->free_factor = 0;
7251 }
7252
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)7253 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7254 unsigned long batch)
7255 {
7256 struct per_cpu_pages *pcp;
7257 int cpu;
7258
7259 for_each_possible_cpu(cpu) {
7260 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7261 pageset_update(pcp, high, batch);
7262 }
7263 }
7264
7265 /*
7266 * Calculate and set new high and batch values for all per-cpu pagesets of a
7267 * zone based on the zone's size.
7268 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)7269 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7270 {
7271 int new_high, new_batch;
7272
7273 new_batch = max(1, zone_batchsize(zone));
7274 new_high = zone_highsize(zone, new_batch, cpu_online);
7275
7276 if (zone->pageset_high == new_high &&
7277 zone->pageset_batch == new_batch)
7278 return;
7279
7280 zone->pageset_high = new_high;
7281 zone->pageset_batch = new_batch;
7282
7283 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7284 }
7285
setup_zone_pageset(struct zone * zone)7286 void __meminit setup_zone_pageset(struct zone *zone)
7287 {
7288 int cpu;
7289
7290 /* Size may be 0 on !SMP && !NUMA */
7291 if (sizeof(struct per_cpu_zonestat) > 0)
7292 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7293
7294 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7295 for_each_possible_cpu(cpu) {
7296 struct per_cpu_pages *pcp;
7297 struct per_cpu_zonestat *pzstats;
7298
7299 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7300 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7301 per_cpu_pages_init(pcp, pzstats);
7302 }
7303
7304 zone_set_pageset_high_and_batch(zone, 0);
7305 }
7306
7307 /*
7308 * Allocate per cpu pagesets and initialize them.
7309 * Before this call only boot pagesets were available.
7310 */
setup_per_cpu_pageset(void)7311 void __init setup_per_cpu_pageset(void)
7312 {
7313 struct pglist_data *pgdat;
7314 struct zone *zone;
7315 int __maybe_unused cpu;
7316
7317 for_each_populated_zone(zone)
7318 setup_zone_pageset(zone);
7319
7320 #ifdef CONFIG_NUMA
7321 /*
7322 * Unpopulated zones continue using the boot pagesets.
7323 * The numa stats for these pagesets need to be reset.
7324 * Otherwise, they will end up skewing the stats of
7325 * the nodes these zones are associated with.
7326 */
7327 for_each_possible_cpu(cpu) {
7328 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7329 memset(pzstats->vm_numa_event, 0,
7330 sizeof(pzstats->vm_numa_event));
7331 }
7332 #endif
7333
7334 for_each_online_pgdat(pgdat)
7335 pgdat->per_cpu_nodestats =
7336 alloc_percpu(struct per_cpu_nodestat);
7337 }
7338
zone_pcp_init(struct zone * zone)7339 static __meminit void zone_pcp_init(struct zone *zone)
7340 {
7341 /*
7342 * per cpu subsystem is not up at this point. The following code
7343 * relies on the ability of the linker to provide the
7344 * offset of a (static) per cpu variable into the per cpu area.
7345 */
7346 zone->per_cpu_pageset = &boot_pageset;
7347 zone->per_cpu_zonestats = &boot_zonestats;
7348 zone->pageset_high = BOOT_PAGESET_HIGH;
7349 zone->pageset_batch = BOOT_PAGESET_BATCH;
7350
7351 if (populated_zone(zone))
7352 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7353 zone->present_pages, zone_batchsize(zone));
7354 }
7355
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)7356 void __meminit init_currently_empty_zone(struct zone *zone,
7357 unsigned long zone_start_pfn,
7358 unsigned long size)
7359 {
7360 struct pglist_data *pgdat = zone->zone_pgdat;
7361 int zone_idx = zone_idx(zone) + 1;
7362
7363 if (zone_idx > pgdat->nr_zones)
7364 pgdat->nr_zones = zone_idx;
7365
7366 zone->zone_start_pfn = zone_start_pfn;
7367
7368 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7369 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7370 pgdat->node_id,
7371 (unsigned long)zone_idx(zone),
7372 zone_start_pfn, (zone_start_pfn + size));
7373
7374 zone_init_free_lists(zone);
7375 zone->initialized = 1;
7376 }
7377
7378 /**
7379 * get_pfn_range_for_nid - Return the start and end page frames for a node
7380 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7381 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7382 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7383 *
7384 * It returns the start and end page frame of a node based on information
7385 * provided by memblock_set_node(). If called for a node
7386 * with no available memory, a warning is printed and the start and end
7387 * PFNs will be 0.
7388 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)7389 void __init get_pfn_range_for_nid(unsigned int nid,
7390 unsigned long *start_pfn, unsigned long *end_pfn)
7391 {
7392 unsigned long this_start_pfn, this_end_pfn;
7393 int i;
7394
7395 *start_pfn = -1UL;
7396 *end_pfn = 0;
7397
7398 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7399 *start_pfn = min(*start_pfn, this_start_pfn);
7400 *end_pfn = max(*end_pfn, this_end_pfn);
7401 }
7402
7403 if (*start_pfn == -1UL)
7404 *start_pfn = 0;
7405 }
7406
7407 /*
7408 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7409 * assumption is made that zones within a node are ordered in monotonic
7410 * increasing memory addresses so that the "highest" populated zone is used
7411 */
find_usable_zone_for_movable(void)7412 static void __init find_usable_zone_for_movable(void)
7413 {
7414 int zone_index;
7415 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7416 if (zone_index == ZONE_MOVABLE)
7417 continue;
7418
7419 if (arch_zone_highest_possible_pfn[zone_index] >
7420 arch_zone_lowest_possible_pfn[zone_index])
7421 break;
7422 }
7423
7424 VM_BUG_ON(zone_index == -1);
7425 movable_zone = zone_index;
7426 }
7427
7428 /*
7429 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7430 * because it is sized independent of architecture. Unlike the other zones,
7431 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7432 * in each node depending on the size of each node and how evenly kernelcore
7433 * is distributed. This helper function adjusts the zone ranges
7434 * provided by the architecture for a given node by using the end of the
7435 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7436 * zones within a node are in order of monotonic increases memory addresses
7437 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7438 static void __init adjust_zone_range_for_zone_movable(int nid,
7439 unsigned long zone_type,
7440 unsigned long node_start_pfn,
7441 unsigned long node_end_pfn,
7442 unsigned long *zone_start_pfn,
7443 unsigned long *zone_end_pfn)
7444 {
7445 /* Only adjust if ZONE_MOVABLE is on this node */
7446 if (zone_movable_pfn[nid]) {
7447 /* Size ZONE_MOVABLE */
7448 if (zone_type == ZONE_MOVABLE) {
7449 *zone_start_pfn = zone_movable_pfn[nid];
7450 *zone_end_pfn = min(node_end_pfn,
7451 arch_zone_highest_possible_pfn[movable_zone]);
7452
7453 /* Adjust for ZONE_MOVABLE starting within this range */
7454 } else if (!mirrored_kernelcore &&
7455 *zone_start_pfn < zone_movable_pfn[nid] &&
7456 *zone_end_pfn > zone_movable_pfn[nid]) {
7457 *zone_end_pfn = zone_movable_pfn[nid];
7458
7459 /* Check if this whole range is within ZONE_MOVABLE */
7460 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7461 *zone_start_pfn = *zone_end_pfn;
7462 }
7463 }
7464
7465 /*
7466 * Return the number of pages a zone spans in a node, including holes
7467 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7468 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7469 static unsigned long __init zone_spanned_pages_in_node(int nid,
7470 unsigned long zone_type,
7471 unsigned long node_start_pfn,
7472 unsigned long node_end_pfn,
7473 unsigned long *zone_start_pfn,
7474 unsigned long *zone_end_pfn)
7475 {
7476 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7477 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7478 /* When hotadd a new node from cpu_up(), the node should be empty */
7479 if (!node_start_pfn && !node_end_pfn)
7480 return 0;
7481
7482 /* Get the start and end of the zone */
7483 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7484 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7485 adjust_zone_range_for_zone_movable(nid, zone_type,
7486 node_start_pfn, node_end_pfn,
7487 zone_start_pfn, zone_end_pfn);
7488
7489 /* Check that this node has pages within the zone's required range */
7490 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7491 return 0;
7492
7493 /* Move the zone boundaries inside the node if necessary */
7494 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7495 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7496
7497 /* Return the spanned pages */
7498 return *zone_end_pfn - *zone_start_pfn;
7499 }
7500
7501 /*
7502 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7503 * then all holes in the requested range will be accounted for.
7504 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)7505 unsigned long __init __absent_pages_in_range(int nid,
7506 unsigned long range_start_pfn,
7507 unsigned long range_end_pfn)
7508 {
7509 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7510 unsigned long start_pfn, end_pfn;
7511 int i;
7512
7513 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7514 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7515 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7516 nr_absent -= end_pfn - start_pfn;
7517 }
7518 return nr_absent;
7519 }
7520
7521 /**
7522 * absent_pages_in_range - Return number of page frames in holes within a range
7523 * @start_pfn: The start PFN to start searching for holes
7524 * @end_pfn: The end PFN to stop searching for holes
7525 *
7526 * Return: the number of pages frames in memory holes within a range.
7527 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)7528 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7529 unsigned long end_pfn)
7530 {
7531 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7532 }
7533
7534 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)7535 static unsigned long __init zone_absent_pages_in_node(int nid,
7536 unsigned long zone_type,
7537 unsigned long node_start_pfn,
7538 unsigned long node_end_pfn)
7539 {
7540 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7541 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7542 unsigned long zone_start_pfn, zone_end_pfn;
7543 unsigned long nr_absent;
7544
7545 /* When hotadd a new node from cpu_up(), the node should be empty */
7546 if (!node_start_pfn && !node_end_pfn)
7547 return 0;
7548
7549 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7550 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7551
7552 adjust_zone_range_for_zone_movable(nid, zone_type,
7553 node_start_pfn, node_end_pfn,
7554 &zone_start_pfn, &zone_end_pfn);
7555 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7556
7557 /*
7558 * ZONE_MOVABLE handling.
7559 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7560 * and vice versa.
7561 */
7562 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7563 unsigned long start_pfn, end_pfn;
7564 struct memblock_region *r;
7565
7566 for_each_mem_region(r) {
7567 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7568 zone_start_pfn, zone_end_pfn);
7569 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7570 zone_start_pfn, zone_end_pfn);
7571
7572 if (zone_type == ZONE_MOVABLE &&
7573 memblock_is_mirror(r))
7574 nr_absent += end_pfn - start_pfn;
7575
7576 if (zone_type == ZONE_NORMAL &&
7577 !memblock_is_mirror(r))
7578 nr_absent += end_pfn - start_pfn;
7579 }
7580 }
7581
7582 return nr_absent;
7583 }
7584
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)7585 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7586 unsigned long node_start_pfn,
7587 unsigned long node_end_pfn)
7588 {
7589 unsigned long realtotalpages = 0, totalpages = 0;
7590 enum zone_type i;
7591
7592 for (i = 0; i < MAX_NR_ZONES; i++) {
7593 struct zone *zone = pgdat->node_zones + i;
7594 unsigned long zone_start_pfn, zone_end_pfn;
7595 unsigned long spanned, absent;
7596 unsigned long size, real_size;
7597
7598 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7599 node_start_pfn,
7600 node_end_pfn,
7601 &zone_start_pfn,
7602 &zone_end_pfn);
7603 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7604 node_start_pfn,
7605 node_end_pfn);
7606
7607 size = spanned;
7608 real_size = size - absent;
7609
7610 if (size)
7611 zone->zone_start_pfn = zone_start_pfn;
7612 else
7613 zone->zone_start_pfn = 0;
7614 zone->spanned_pages = size;
7615 zone->present_pages = real_size;
7616 #if defined(CONFIG_MEMORY_HOTPLUG)
7617 zone->present_early_pages = real_size;
7618 #endif
7619
7620 totalpages += size;
7621 realtotalpages += real_size;
7622 }
7623
7624 pgdat->node_spanned_pages = totalpages;
7625 pgdat->node_present_pages = realtotalpages;
7626 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7627 }
7628
7629 #ifndef CONFIG_SPARSEMEM
7630 /*
7631 * Calculate the size of the zone->blockflags rounded to an unsigned long
7632 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7633 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7634 * round what is now in bits to nearest long in bits, then return it in
7635 * bytes.
7636 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)7637 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7638 {
7639 unsigned long usemapsize;
7640
7641 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7642 usemapsize = roundup(zonesize, pageblock_nr_pages);
7643 usemapsize = usemapsize >> pageblock_order;
7644 usemapsize *= NR_PAGEBLOCK_BITS;
7645 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7646
7647 return usemapsize / 8;
7648 }
7649
setup_usemap(struct zone * zone)7650 static void __ref setup_usemap(struct zone *zone)
7651 {
7652 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7653 zone->spanned_pages);
7654 zone->pageblock_flags = NULL;
7655 if (usemapsize) {
7656 zone->pageblock_flags =
7657 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7658 zone_to_nid(zone));
7659 if (!zone->pageblock_flags)
7660 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7661 usemapsize, zone->name, zone_to_nid(zone));
7662 }
7663 }
7664 #else
setup_usemap(struct zone * zone)7665 static inline void setup_usemap(struct zone *zone) {}
7666 #endif /* CONFIG_SPARSEMEM */
7667
7668 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7669
7670 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)7671 void __init set_pageblock_order(void)
7672 {
7673 unsigned int order;
7674
7675 /* Check that pageblock_nr_pages has not already been setup */
7676 if (pageblock_order)
7677 return;
7678
7679 if (HPAGE_SHIFT > PAGE_SHIFT)
7680 order = HUGETLB_PAGE_ORDER;
7681 else
7682 order = MAX_ORDER - 1;
7683
7684 /*
7685 * Assume the largest contiguous order of interest is a huge page.
7686 * This value may be variable depending on boot parameters on IA64 and
7687 * powerpc.
7688 */
7689 pageblock_order = order;
7690 }
7691 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7692
7693 /*
7694 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7695 * is unused as pageblock_order is set at compile-time. See
7696 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7697 * the kernel config
7698 */
set_pageblock_order(void)7699 void __init set_pageblock_order(void)
7700 {
7701 }
7702
7703 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7704
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7705 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7706 unsigned long present_pages)
7707 {
7708 unsigned long pages = spanned_pages;
7709
7710 /*
7711 * Provide a more accurate estimation if there are holes within
7712 * the zone and SPARSEMEM is in use. If there are holes within the
7713 * zone, each populated memory region may cost us one or two extra
7714 * memmap pages due to alignment because memmap pages for each
7715 * populated regions may not be naturally aligned on page boundary.
7716 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7717 */
7718 if (spanned_pages > present_pages + (present_pages >> 4) &&
7719 IS_ENABLED(CONFIG_SPARSEMEM))
7720 pages = present_pages;
7721
7722 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7723 }
7724
7725 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7726 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7727 {
7728 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7729
7730 spin_lock_init(&ds_queue->split_queue_lock);
7731 INIT_LIST_HEAD(&ds_queue->split_queue);
7732 ds_queue->split_queue_len = 0;
7733 }
7734 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7735 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7736 #endif
7737
7738 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7739 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7740 {
7741 init_waitqueue_head(&pgdat->kcompactd_wait);
7742 }
7743 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7744 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7745 #endif
7746
pgdat_init_internals(struct pglist_data * pgdat)7747 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7748 {
7749 pgdat_resize_init(pgdat);
7750
7751 pgdat_init_split_queue(pgdat);
7752 pgdat_init_kcompactd(pgdat);
7753
7754 init_waitqueue_head(&pgdat->kswapd_wait);
7755 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7756
7757 pgdat_page_ext_init(pgdat);
7758 lruvec_init(&pgdat->__lruvec);
7759 }
7760
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7761 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7762 unsigned long remaining_pages)
7763 {
7764 atomic_long_set(&zone->managed_pages, remaining_pages);
7765 zone_set_nid(zone, nid);
7766 zone->name = zone_names[idx];
7767 zone->zone_pgdat = NODE_DATA(nid);
7768 spin_lock_init(&zone->lock);
7769 zone_seqlock_init(zone);
7770 zone_pcp_init(zone);
7771 }
7772
7773 /*
7774 * Set up the zone data structures
7775 * - init pgdat internals
7776 * - init all zones belonging to this node
7777 *
7778 * NOTE: this function is only called during memory hotplug
7779 */
7780 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7781 void __ref free_area_init_core_hotplug(int nid)
7782 {
7783 enum zone_type z;
7784 pg_data_t *pgdat = NODE_DATA(nid);
7785
7786 pgdat_init_internals(pgdat);
7787 for (z = 0; z < MAX_NR_ZONES; z++)
7788 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7789 }
7790 #endif
7791
7792 /*
7793 * Set up the zone data structures:
7794 * - mark all pages reserved
7795 * - mark all memory queues empty
7796 * - clear the memory bitmaps
7797 *
7798 * NOTE: pgdat should get zeroed by caller.
7799 * NOTE: this function is only called during early init.
7800 */
free_area_init_core(struct pglist_data * pgdat)7801 static void __init free_area_init_core(struct pglist_data *pgdat)
7802 {
7803 enum zone_type j;
7804 int nid = pgdat->node_id;
7805
7806 pgdat_init_internals(pgdat);
7807 pgdat->per_cpu_nodestats = &boot_nodestats;
7808
7809 for (j = 0; j < MAX_NR_ZONES; j++) {
7810 struct zone *zone = pgdat->node_zones + j;
7811 unsigned long size, freesize, memmap_pages;
7812
7813 size = zone->spanned_pages;
7814 freesize = zone->present_pages;
7815
7816 /*
7817 * Adjust freesize so that it accounts for how much memory
7818 * is used by this zone for memmap. This affects the watermark
7819 * and per-cpu initialisations
7820 */
7821 memmap_pages = calc_memmap_size(size, freesize);
7822 if (!is_highmem_idx(j)) {
7823 if (freesize >= memmap_pages) {
7824 freesize -= memmap_pages;
7825 if (memmap_pages)
7826 pr_debug(" %s zone: %lu pages used for memmap\n",
7827 zone_names[j], memmap_pages);
7828 } else
7829 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7830 zone_names[j], memmap_pages, freesize);
7831 }
7832
7833 /* Account for reserved pages */
7834 if (j == 0 && freesize > dma_reserve) {
7835 freesize -= dma_reserve;
7836 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7837 }
7838
7839 if (!is_highmem_idx(j))
7840 nr_kernel_pages += freesize;
7841 /* Charge for highmem memmap if there are enough kernel pages */
7842 else if (nr_kernel_pages > memmap_pages * 2)
7843 nr_kernel_pages -= memmap_pages;
7844 nr_all_pages += freesize;
7845
7846 /*
7847 * Set an approximate value for lowmem here, it will be adjusted
7848 * when the bootmem allocator frees pages into the buddy system.
7849 * And all highmem pages will be managed by the buddy system.
7850 */
7851 zone_init_internals(zone, j, nid, freesize);
7852
7853 if (!size)
7854 continue;
7855
7856 set_pageblock_order();
7857 setup_usemap(zone);
7858 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7859 }
7860 }
7861
7862 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)7863 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7864 {
7865 unsigned long __maybe_unused start = 0;
7866 unsigned long __maybe_unused offset = 0;
7867
7868 /* Skip empty nodes */
7869 if (!pgdat->node_spanned_pages)
7870 return;
7871
7872 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7873 offset = pgdat->node_start_pfn - start;
7874 /* ia64 gets its own node_mem_map, before this, without bootmem */
7875 if (!pgdat->node_mem_map) {
7876 unsigned long size, end;
7877 struct page *map;
7878
7879 /*
7880 * The zone's endpoints aren't required to be MAX_ORDER
7881 * aligned but the node_mem_map endpoints must be in order
7882 * for the buddy allocator to function correctly.
7883 */
7884 end = pgdat_end_pfn(pgdat);
7885 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7886 size = (end - start) * sizeof(struct page);
7887 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7888 pgdat->node_id, false);
7889 if (!map)
7890 panic("Failed to allocate %ld bytes for node %d memory map\n",
7891 size, pgdat->node_id);
7892 pgdat->node_mem_map = map + offset;
7893 }
7894 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7895 __func__, pgdat->node_id, (unsigned long)pgdat,
7896 (unsigned long)pgdat->node_mem_map);
7897 #ifndef CONFIG_NUMA
7898 /*
7899 * With no DISCONTIG, the global mem_map is just set as node 0's
7900 */
7901 if (pgdat == NODE_DATA(0)) {
7902 mem_map = NODE_DATA(0)->node_mem_map;
7903 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7904 mem_map -= offset;
7905 }
7906 #endif
7907 }
7908 #else
alloc_node_mem_map(struct pglist_data * pgdat)7909 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7910 #endif /* CONFIG_FLATMEM */
7911
7912 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7913 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7914 {
7915 pgdat->first_deferred_pfn = ULONG_MAX;
7916 }
7917 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7918 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7919 #endif
7920
free_area_init_node(int nid)7921 static void __init free_area_init_node(int nid)
7922 {
7923 pg_data_t *pgdat = NODE_DATA(nid);
7924 unsigned long start_pfn = 0;
7925 unsigned long end_pfn = 0;
7926
7927 /* pg_data_t should be reset to zero when it's allocated */
7928 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7929
7930 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7931
7932 pgdat->node_id = nid;
7933 pgdat->node_start_pfn = start_pfn;
7934 pgdat->per_cpu_nodestats = NULL;
7935
7936 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7937 (u64)start_pfn << PAGE_SHIFT,
7938 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7939 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7940
7941 alloc_node_mem_map(pgdat);
7942 pgdat_set_deferred_range(pgdat);
7943
7944 free_area_init_core(pgdat);
7945 lru_gen_init_pgdat(pgdat);
7946 }
7947
free_area_init_memoryless_node(int nid)7948 void __init free_area_init_memoryless_node(int nid)
7949 {
7950 free_area_init_node(nid);
7951 }
7952
7953 #if MAX_NUMNODES > 1
7954 /*
7955 * Figure out the number of possible node ids.
7956 */
setup_nr_node_ids(void)7957 void __init setup_nr_node_ids(void)
7958 {
7959 unsigned int highest;
7960
7961 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7962 nr_node_ids = highest + 1;
7963 }
7964 #endif
7965
7966 /**
7967 * node_map_pfn_alignment - determine the maximum internode alignment
7968 *
7969 * This function should be called after node map is populated and sorted.
7970 * It calculates the maximum power of two alignment which can distinguish
7971 * all the nodes.
7972 *
7973 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7974 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7975 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7976 * shifted, 1GiB is enough and this function will indicate so.
7977 *
7978 * This is used to test whether pfn -> nid mapping of the chosen memory
7979 * model has fine enough granularity to avoid incorrect mapping for the
7980 * populated node map.
7981 *
7982 * Return: the determined alignment in pfn's. 0 if there is no alignment
7983 * requirement (single node).
7984 */
node_map_pfn_alignment(void)7985 unsigned long __init node_map_pfn_alignment(void)
7986 {
7987 unsigned long accl_mask = 0, last_end = 0;
7988 unsigned long start, end, mask;
7989 int last_nid = NUMA_NO_NODE;
7990 int i, nid;
7991
7992 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7993 if (!start || last_nid < 0 || last_nid == nid) {
7994 last_nid = nid;
7995 last_end = end;
7996 continue;
7997 }
7998
7999 /*
8000 * Start with a mask granular enough to pin-point to the
8001 * start pfn and tick off bits one-by-one until it becomes
8002 * too coarse to separate the current node from the last.
8003 */
8004 mask = ~((1 << __ffs(start)) - 1);
8005 while (mask && last_end <= (start & (mask << 1)))
8006 mask <<= 1;
8007
8008 /* accumulate all internode masks */
8009 accl_mask |= mask;
8010 }
8011
8012 /* convert mask to number of pages */
8013 return ~accl_mask + 1;
8014 }
8015
8016 /**
8017 * find_min_pfn_with_active_regions - Find the minimum PFN registered
8018 *
8019 * Return: the minimum PFN based on information provided via
8020 * memblock_set_node().
8021 */
find_min_pfn_with_active_regions(void)8022 unsigned long __init find_min_pfn_with_active_regions(void)
8023 {
8024 return PHYS_PFN(memblock_start_of_DRAM());
8025 }
8026
8027 /*
8028 * early_calculate_totalpages()
8029 * Sum pages in active regions for movable zone.
8030 * Populate N_MEMORY for calculating usable_nodes.
8031 */
early_calculate_totalpages(void)8032 static unsigned long __init early_calculate_totalpages(void)
8033 {
8034 unsigned long totalpages = 0;
8035 unsigned long start_pfn, end_pfn;
8036 int i, nid;
8037
8038 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8039 unsigned long pages = end_pfn - start_pfn;
8040
8041 totalpages += pages;
8042 if (pages)
8043 node_set_state(nid, N_MEMORY);
8044 }
8045 return totalpages;
8046 }
8047
8048 /*
8049 * Find the PFN the Movable zone begins in each node. Kernel memory
8050 * is spread evenly between nodes as long as the nodes have enough
8051 * memory. When they don't, some nodes will have more kernelcore than
8052 * others
8053 */
find_zone_movable_pfns_for_nodes(void)8054 static void __init find_zone_movable_pfns_for_nodes(void)
8055 {
8056 int i, nid;
8057 unsigned long usable_startpfn;
8058 unsigned long kernelcore_node, kernelcore_remaining;
8059 /* save the state before borrow the nodemask */
8060 nodemask_t saved_node_state = node_states[N_MEMORY];
8061 unsigned long totalpages = early_calculate_totalpages();
8062 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8063 struct memblock_region *r;
8064
8065 /* Need to find movable_zone earlier when movable_node is specified. */
8066 find_usable_zone_for_movable();
8067
8068 /*
8069 * If movable_node is specified, ignore kernelcore and movablecore
8070 * options.
8071 */
8072 if (movable_node_is_enabled()) {
8073 for_each_mem_region(r) {
8074 if (!memblock_is_hotpluggable(r))
8075 continue;
8076
8077 nid = memblock_get_region_node(r);
8078
8079 usable_startpfn = PFN_DOWN(r->base);
8080 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8081 min(usable_startpfn, zone_movable_pfn[nid]) :
8082 usable_startpfn;
8083 }
8084
8085 goto out2;
8086 }
8087
8088 /*
8089 * If kernelcore=mirror is specified, ignore movablecore option
8090 */
8091 if (mirrored_kernelcore) {
8092 bool mem_below_4gb_not_mirrored = false;
8093
8094 for_each_mem_region(r) {
8095 if (memblock_is_mirror(r))
8096 continue;
8097
8098 nid = memblock_get_region_node(r);
8099
8100 usable_startpfn = memblock_region_memory_base_pfn(r);
8101
8102 if (usable_startpfn < 0x100000) {
8103 mem_below_4gb_not_mirrored = true;
8104 continue;
8105 }
8106
8107 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8108 min(usable_startpfn, zone_movable_pfn[nid]) :
8109 usable_startpfn;
8110 }
8111
8112 if (mem_below_4gb_not_mirrored)
8113 pr_warn("This configuration results in unmirrored kernel memory.\n");
8114
8115 goto out2;
8116 }
8117
8118 /*
8119 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8120 * amount of necessary memory.
8121 */
8122 if (required_kernelcore_percent)
8123 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8124 10000UL;
8125 if (required_movablecore_percent)
8126 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8127 10000UL;
8128
8129 /*
8130 * If movablecore= was specified, calculate what size of
8131 * kernelcore that corresponds so that memory usable for
8132 * any allocation type is evenly spread. If both kernelcore
8133 * and movablecore are specified, then the value of kernelcore
8134 * will be used for required_kernelcore if it's greater than
8135 * what movablecore would have allowed.
8136 */
8137 if (required_movablecore) {
8138 unsigned long corepages;
8139
8140 /*
8141 * Round-up so that ZONE_MOVABLE is at least as large as what
8142 * was requested by the user
8143 */
8144 required_movablecore =
8145 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8146 required_movablecore = min(totalpages, required_movablecore);
8147 corepages = totalpages - required_movablecore;
8148
8149 required_kernelcore = max(required_kernelcore, corepages);
8150 }
8151
8152 /*
8153 * If kernelcore was not specified or kernelcore size is larger
8154 * than totalpages, there is no ZONE_MOVABLE.
8155 */
8156 if (!required_kernelcore || required_kernelcore >= totalpages)
8157 goto out;
8158
8159 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8160 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8161
8162 restart:
8163 /* Spread kernelcore memory as evenly as possible throughout nodes */
8164 kernelcore_node = required_kernelcore / usable_nodes;
8165 for_each_node_state(nid, N_MEMORY) {
8166 unsigned long start_pfn, end_pfn;
8167
8168 /*
8169 * Recalculate kernelcore_node if the division per node
8170 * now exceeds what is necessary to satisfy the requested
8171 * amount of memory for the kernel
8172 */
8173 if (required_kernelcore < kernelcore_node)
8174 kernelcore_node = required_kernelcore / usable_nodes;
8175
8176 /*
8177 * As the map is walked, we track how much memory is usable
8178 * by the kernel using kernelcore_remaining. When it is
8179 * 0, the rest of the node is usable by ZONE_MOVABLE
8180 */
8181 kernelcore_remaining = kernelcore_node;
8182
8183 /* Go through each range of PFNs within this node */
8184 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8185 unsigned long size_pages;
8186
8187 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8188 if (start_pfn >= end_pfn)
8189 continue;
8190
8191 /* Account for what is only usable for kernelcore */
8192 if (start_pfn < usable_startpfn) {
8193 unsigned long kernel_pages;
8194 kernel_pages = min(end_pfn, usable_startpfn)
8195 - start_pfn;
8196
8197 kernelcore_remaining -= min(kernel_pages,
8198 kernelcore_remaining);
8199 required_kernelcore -= min(kernel_pages,
8200 required_kernelcore);
8201
8202 /* Continue if range is now fully accounted */
8203 if (end_pfn <= usable_startpfn) {
8204
8205 /*
8206 * Push zone_movable_pfn to the end so
8207 * that if we have to rebalance
8208 * kernelcore across nodes, we will
8209 * not double account here
8210 */
8211 zone_movable_pfn[nid] = end_pfn;
8212 continue;
8213 }
8214 start_pfn = usable_startpfn;
8215 }
8216
8217 /*
8218 * The usable PFN range for ZONE_MOVABLE is from
8219 * start_pfn->end_pfn. Calculate size_pages as the
8220 * number of pages used as kernelcore
8221 */
8222 size_pages = end_pfn - start_pfn;
8223 if (size_pages > kernelcore_remaining)
8224 size_pages = kernelcore_remaining;
8225 zone_movable_pfn[nid] = start_pfn + size_pages;
8226
8227 /*
8228 * Some kernelcore has been met, update counts and
8229 * break if the kernelcore for this node has been
8230 * satisfied
8231 */
8232 required_kernelcore -= min(required_kernelcore,
8233 size_pages);
8234 kernelcore_remaining -= size_pages;
8235 if (!kernelcore_remaining)
8236 break;
8237 }
8238 }
8239
8240 /*
8241 * If there is still required_kernelcore, we do another pass with one
8242 * less node in the count. This will push zone_movable_pfn[nid] further
8243 * along on the nodes that still have memory until kernelcore is
8244 * satisfied
8245 */
8246 usable_nodes--;
8247 if (usable_nodes && required_kernelcore > usable_nodes)
8248 goto restart;
8249
8250 out2:
8251 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8252 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8253 unsigned long start_pfn, end_pfn;
8254
8255 zone_movable_pfn[nid] =
8256 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8257
8258 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8259 if (zone_movable_pfn[nid] >= end_pfn)
8260 zone_movable_pfn[nid] = 0;
8261 }
8262
8263 out:
8264 /* restore the node_state */
8265 node_states[N_MEMORY] = saved_node_state;
8266 }
8267
8268 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)8269 static void check_for_memory(pg_data_t *pgdat, int nid)
8270 {
8271 enum zone_type zone_type;
8272
8273 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8274 struct zone *zone = &pgdat->node_zones[zone_type];
8275 if (populated_zone(zone)) {
8276 if (IS_ENABLED(CONFIG_HIGHMEM))
8277 node_set_state(nid, N_HIGH_MEMORY);
8278 if (zone_type <= ZONE_NORMAL)
8279 node_set_state(nid, N_NORMAL_MEMORY);
8280 break;
8281 }
8282 }
8283 }
8284
8285 /*
8286 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8287 * such cases we allow max_zone_pfn sorted in the descending order
8288 */
arch_has_descending_max_zone_pfns(void)8289 bool __weak arch_has_descending_max_zone_pfns(void)
8290 {
8291 return false;
8292 }
8293
8294 /**
8295 * free_area_init - Initialise all pg_data_t and zone data
8296 * @max_zone_pfn: an array of max PFNs for each zone
8297 *
8298 * This will call free_area_init_node() for each active node in the system.
8299 * Using the page ranges provided by memblock_set_node(), the size of each
8300 * zone in each node and their holes is calculated. If the maximum PFN
8301 * between two adjacent zones match, it is assumed that the zone is empty.
8302 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8303 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8304 * starts where the previous one ended. For example, ZONE_DMA32 starts
8305 * at arch_max_dma_pfn.
8306 */
free_area_init(unsigned long * max_zone_pfn)8307 void __init free_area_init(unsigned long *max_zone_pfn)
8308 {
8309 unsigned long start_pfn, end_pfn;
8310 int i, nid, zone;
8311 bool descending;
8312
8313 /* Record where the zone boundaries are */
8314 memset(arch_zone_lowest_possible_pfn, 0,
8315 sizeof(arch_zone_lowest_possible_pfn));
8316 memset(arch_zone_highest_possible_pfn, 0,
8317 sizeof(arch_zone_highest_possible_pfn));
8318
8319 start_pfn = find_min_pfn_with_active_regions();
8320 descending = arch_has_descending_max_zone_pfns();
8321
8322 for (i = 0; i < MAX_NR_ZONES; i++) {
8323 if (descending)
8324 zone = MAX_NR_ZONES - i - 1;
8325 else
8326 zone = i;
8327
8328 if (zone == ZONE_MOVABLE)
8329 continue;
8330
8331 end_pfn = max(max_zone_pfn[zone], start_pfn);
8332 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8333 arch_zone_highest_possible_pfn[zone] = end_pfn;
8334
8335 start_pfn = end_pfn;
8336 }
8337
8338 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8339 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8340 find_zone_movable_pfns_for_nodes();
8341
8342 /* Print out the zone ranges */
8343 pr_info("Zone ranges:\n");
8344 for (i = 0; i < MAX_NR_ZONES; i++) {
8345 if (i == ZONE_MOVABLE)
8346 continue;
8347 pr_info(" %-8s ", zone_names[i]);
8348 if (arch_zone_lowest_possible_pfn[i] ==
8349 arch_zone_highest_possible_pfn[i])
8350 pr_cont("empty\n");
8351 else
8352 pr_cont("[mem %#018Lx-%#018Lx]\n",
8353 (u64)arch_zone_lowest_possible_pfn[i]
8354 << PAGE_SHIFT,
8355 ((u64)arch_zone_highest_possible_pfn[i]
8356 << PAGE_SHIFT) - 1);
8357 }
8358
8359 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8360 pr_info("Movable zone start for each node\n");
8361 for (i = 0; i < MAX_NUMNODES; i++) {
8362 if (zone_movable_pfn[i])
8363 pr_info(" Node %d: %#018Lx\n", i,
8364 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8365 }
8366
8367 /*
8368 * Print out the early node map, and initialize the
8369 * subsection-map relative to active online memory ranges to
8370 * enable future "sub-section" extensions of the memory map.
8371 */
8372 pr_info("Early memory node ranges\n");
8373 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8374 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8375 (u64)start_pfn << PAGE_SHIFT,
8376 ((u64)end_pfn << PAGE_SHIFT) - 1);
8377 subsection_map_init(start_pfn, end_pfn - start_pfn);
8378 }
8379
8380 /* Initialise every node */
8381 mminit_verify_pageflags_layout();
8382 setup_nr_node_ids();
8383 for_each_online_node(nid) {
8384 pg_data_t *pgdat = NODE_DATA(nid);
8385 free_area_init_node(nid);
8386
8387 /* Any memory on that node */
8388 if (pgdat->node_present_pages)
8389 node_set_state(nid, N_MEMORY);
8390 check_for_memory(pgdat, nid);
8391 }
8392
8393 memmap_init();
8394 }
8395
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)8396 static int __init cmdline_parse_core(char *p, unsigned long *core,
8397 unsigned long *percent)
8398 {
8399 unsigned long long coremem;
8400 char *endptr;
8401
8402 if (!p)
8403 return -EINVAL;
8404
8405 /* Value may be a percentage of total memory, otherwise bytes */
8406 coremem = simple_strtoull(p, &endptr, 0);
8407 if (*endptr == '%') {
8408 /* Paranoid check for percent values greater than 100 */
8409 WARN_ON(coremem > 100);
8410
8411 *percent = coremem;
8412 } else {
8413 coremem = memparse(p, &p);
8414 /* Paranoid check that UL is enough for the coremem value */
8415 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8416
8417 *core = coremem >> PAGE_SHIFT;
8418 *percent = 0UL;
8419 }
8420 return 0;
8421 }
8422
8423 /*
8424 * kernelcore=size sets the amount of memory for use for allocations that
8425 * cannot be reclaimed or migrated.
8426 */
cmdline_parse_kernelcore(char * p)8427 static int __init cmdline_parse_kernelcore(char *p)
8428 {
8429 /* parse kernelcore=mirror */
8430 if (parse_option_str(p, "mirror")) {
8431 mirrored_kernelcore = true;
8432 return 0;
8433 }
8434
8435 return cmdline_parse_core(p, &required_kernelcore,
8436 &required_kernelcore_percent);
8437 }
8438
8439 /*
8440 * movablecore=size sets the amount of memory for use for allocations that
8441 * can be reclaimed or migrated.
8442 */
cmdline_parse_movablecore(char * p)8443 static int __init cmdline_parse_movablecore(char *p)
8444 {
8445 return cmdline_parse_core(p, &required_movablecore,
8446 &required_movablecore_percent);
8447 }
8448
8449 early_param("kernelcore", cmdline_parse_kernelcore);
8450 early_param("movablecore", cmdline_parse_movablecore);
8451
adjust_managed_page_count(struct page * page,long count)8452 void adjust_managed_page_count(struct page *page, long count)
8453 {
8454 atomic_long_add(count, &page_zone(page)->managed_pages);
8455 totalram_pages_add(count);
8456 #ifdef CONFIG_HIGHMEM
8457 if (PageHighMem(page))
8458 totalhigh_pages_add(count);
8459 #endif
8460 }
8461 EXPORT_SYMBOL(adjust_managed_page_count);
8462
free_reserved_area(void * start,void * end,int poison,const char * s)8463 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8464 {
8465 void *pos;
8466 unsigned long pages = 0;
8467
8468 start = (void *)PAGE_ALIGN((unsigned long)start);
8469 end = (void *)((unsigned long)end & PAGE_MASK);
8470 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8471 struct page *page = virt_to_page(pos);
8472 void *direct_map_addr;
8473
8474 /*
8475 * 'direct_map_addr' might be different from 'pos'
8476 * because some architectures' virt_to_page()
8477 * work with aliases. Getting the direct map
8478 * address ensures that we get a _writeable_
8479 * alias for the memset().
8480 */
8481 direct_map_addr = page_address(page);
8482 /*
8483 * Perform a kasan-unchecked memset() since this memory
8484 * has not been initialized.
8485 */
8486 direct_map_addr = kasan_reset_tag(direct_map_addr);
8487 if ((unsigned int)poison <= 0xFF)
8488 memset(direct_map_addr, poison, PAGE_SIZE);
8489
8490 free_reserved_page(page);
8491 }
8492
8493 if (pages && s)
8494 pr_info("Freeing %s memory: %ldK\n",
8495 s, pages << (PAGE_SHIFT - 10));
8496
8497 return pages;
8498 }
8499
mem_init_print_info(void)8500 void __init mem_init_print_info(void)
8501 {
8502 unsigned long physpages, codesize, datasize, rosize, bss_size;
8503 unsigned long init_code_size, init_data_size;
8504
8505 physpages = get_num_physpages();
8506 codesize = _etext - _stext;
8507 datasize = _edata - _sdata;
8508 rosize = __end_rodata - __start_rodata;
8509 bss_size = __bss_stop - __bss_start;
8510 init_data_size = __init_end - __init_begin;
8511 init_code_size = _einittext - _sinittext;
8512
8513 /*
8514 * Detect special cases and adjust section sizes accordingly:
8515 * 1) .init.* may be embedded into .data sections
8516 * 2) .init.text.* may be out of [__init_begin, __init_end],
8517 * please refer to arch/tile/kernel/vmlinux.lds.S.
8518 * 3) .rodata.* may be embedded into .text or .data sections.
8519 */
8520 #define adj_init_size(start, end, size, pos, adj) \
8521 do { \
8522 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8523 size -= adj; \
8524 } while (0)
8525
8526 adj_init_size(__init_begin, __init_end, init_data_size,
8527 _sinittext, init_code_size);
8528 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8529 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8530 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8531 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8532
8533 #undef adj_init_size
8534
8535 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8536 #ifdef CONFIG_HIGHMEM
8537 ", %luK highmem"
8538 #endif
8539 ")\n",
8540 nr_free_pages() << (PAGE_SHIFT - 10),
8541 physpages << (PAGE_SHIFT - 10),
8542 codesize >> 10, datasize >> 10, rosize >> 10,
8543 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8544 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8545 totalcma_pages << (PAGE_SHIFT - 10)
8546 #ifdef CONFIG_HIGHMEM
8547 , totalhigh_pages() << (PAGE_SHIFT - 10)
8548 #endif
8549 );
8550 }
8551
8552 /**
8553 * set_dma_reserve - set the specified number of pages reserved in the first zone
8554 * @new_dma_reserve: The number of pages to mark reserved
8555 *
8556 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8557 * In the DMA zone, a significant percentage may be consumed by kernel image
8558 * and other unfreeable allocations which can skew the watermarks badly. This
8559 * function may optionally be used to account for unfreeable pages in the
8560 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8561 * smaller per-cpu batchsize.
8562 */
set_dma_reserve(unsigned long new_dma_reserve)8563 void __init set_dma_reserve(unsigned long new_dma_reserve)
8564 {
8565 dma_reserve = new_dma_reserve;
8566 }
8567
page_alloc_cpu_dead(unsigned int cpu)8568 static int page_alloc_cpu_dead(unsigned int cpu)
8569 {
8570 struct zone *zone;
8571
8572 lru_add_drain_cpu(cpu);
8573 drain_pages(cpu);
8574
8575 /*
8576 * Spill the event counters of the dead processor
8577 * into the current processors event counters.
8578 * This artificially elevates the count of the current
8579 * processor.
8580 */
8581 vm_events_fold_cpu(cpu);
8582
8583 /*
8584 * Zero the differential counters of the dead processor
8585 * so that the vm statistics are consistent.
8586 *
8587 * This is only okay since the processor is dead and cannot
8588 * race with what we are doing.
8589 */
8590 cpu_vm_stats_fold(cpu);
8591
8592 for_each_populated_zone(zone)
8593 zone_pcp_update(zone, 0);
8594
8595 return 0;
8596 }
8597
page_alloc_cpu_online(unsigned int cpu)8598 static int page_alloc_cpu_online(unsigned int cpu)
8599 {
8600 struct zone *zone;
8601
8602 for_each_populated_zone(zone)
8603 zone_pcp_update(zone, 1);
8604 return 0;
8605 }
8606
8607 #ifdef CONFIG_NUMA
8608 int hashdist = HASHDIST_DEFAULT;
8609
set_hashdist(char * str)8610 static int __init set_hashdist(char *str)
8611 {
8612 if (!str)
8613 return 0;
8614 hashdist = simple_strtoul(str, &str, 0);
8615 return 1;
8616 }
8617 __setup("hashdist=", set_hashdist);
8618 #endif
8619
page_alloc_init(void)8620 void __init page_alloc_init(void)
8621 {
8622 int ret;
8623
8624 #ifdef CONFIG_NUMA
8625 if (num_node_state(N_MEMORY) == 1)
8626 hashdist = 0;
8627 #endif
8628
8629 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8630 "mm/page_alloc:pcp",
8631 page_alloc_cpu_online,
8632 page_alloc_cpu_dead);
8633 WARN_ON(ret < 0);
8634 }
8635
8636 /*
8637 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8638 * or min_free_kbytes changes.
8639 */
calculate_totalreserve_pages(void)8640 static void calculate_totalreserve_pages(void)
8641 {
8642 struct pglist_data *pgdat;
8643 unsigned long reserve_pages = 0;
8644 enum zone_type i, j;
8645
8646 for_each_online_pgdat(pgdat) {
8647
8648 pgdat->totalreserve_pages = 0;
8649
8650 for (i = 0; i < MAX_NR_ZONES; i++) {
8651 struct zone *zone = pgdat->node_zones + i;
8652 long max = 0;
8653 unsigned long managed_pages = zone_managed_pages(zone);
8654
8655 /* Find valid and maximum lowmem_reserve in the zone */
8656 for (j = i; j < MAX_NR_ZONES; j++) {
8657 if (zone->lowmem_reserve[j] > max)
8658 max = zone->lowmem_reserve[j];
8659 }
8660
8661 /* we treat the high watermark as reserved pages. */
8662 max += high_wmark_pages(zone);
8663
8664 if (max > managed_pages)
8665 max = managed_pages;
8666
8667 pgdat->totalreserve_pages += max;
8668
8669 reserve_pages += max;
8670 }
8671 }
8672 totalreserve_pages = reserve_pages;
8673 }
8674
8675 /*
8676 * setup_per_zone_lowmem_reserve - called whenever
8677 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8678 * has a correct pages reserved value, so an adequate number of
8679 * pages are left in the zone after a successful __alloc_pages().
8680 */
setup_per_zone_lowmem_reserve(void)8681 static void setup_per_zone_lowmem_reserve(void)
8682 {
8683 struct pglist_data *pgdat;
8684 enum zone_type i, j;
8685
8686 for_each_online_pgdat(pgdat) {
8687 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8688 struct zone *zone = &pgdat->node_zones[i];
8689 int ratio = sysctl_lowmem_reserve_ratio[i];
8690 bool clear = !ratio || !zone_managed_pages(zone);
8691 unsigned long managed_pages = 0;
8692
8693 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8694 struct zone *upper_zone = &pgdat->node_zones[j];
8695
8696 managed_pages += zone_managed_pages(upper_zone);
8697
8698 if (clear)
8699 zone->lowmem_reserve[j] = 0;
8700 else
8701 zone->lowmem_reserve[j] = managed_pages / ratio;
8702 }
8703 }
8704 }
8705
8706 /* update totalreserve_pages */
8707 calculate_totalreserve_pages();
8708 }
8709
__setup_per_zone_wmarks(void)8710 static void __setup_per_zone_wmarks(void)
8711 {
8712 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8713 unsigned long lowmem_pages = 0;
8714 struct zone *zone;
8715 unsigned long flags;
8716
8717 /* Calculate total number of !ZONE_HIGHMEM pages */
8718 for_each_zone(zone) {
8719 if (!is_highmem(zone))
8720 lowmem_pages += zone_managed_pages(zone);
8721 }
8722
8723 for_each_zone(zone) {
8724 u64 tmp;
8725
8726 spin_lock_irqsave(&zone->lock, flags);
8727 tmp = (u64)pages_min * zone_managed_pages(zone);
8728 do_div(tmp, lowmem_pages);
8729 if (is_highmem(zone)) {
8730 /*
8731 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8732 * need highmem pages, so cap pages_min to a small
8733 * value here.
8734 *
8735 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8736 * deltas control async page reclaim, and so should
8737 * not be capped for highmem.
8738 */
8739 unsigned long min_pages;
8740
8741 min_pages = zone_managed_pages(zone) / 1024;
8742 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8743 zone->_watermark[WMARK_MIN] = min_pages;
8744 } else {
8745 /*
8746 * If it's a lowmem zone, reserve a number of pages
8747 * proportionate to the zone's size.
8748 */
8749 zone->_watermark[WMARK_MIN] = tmp;
8750 }
8751
8752 /*
8753 * Set the kswapd watermarks distance according to the
8754 * scale factor in proportion to available memory, but
8755 * ensure a minimum size on small systems.
8756 */
8757 tmp = max_t(u64, tmp >> 2,
8758 mult_frac(zone_managed_pages(zone),
8759 watermark_scale_factor, 10000));
8760
8761 zone->watermark_boost = 0;
8762 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8763 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8764
8765 spin_unlock_irqrestore(&zone->lock, flags);
8766 }
8767
8768 /* update totalreserve_pages */
8769 calculate_totalreserve_pages();
8770 }
8771
8772 /**
8773 * setup_per_zone_wmarks - called when min_free_kbytes changes
8774 * or when memory is hot-{added|removed}
8775 *
8776 * Ensures that the watermark[min,low,high] values for each zone are set
8777 * correctly with respect to min_free_kbytes.
8778 */
setup_per_zone_wmarks(void)8779 void setup_per_zone_wmarks(void)
8780 {
8781 struct zone *zone;
8782 static DEFINE_SPINLOCK(lock);
8783
8784 spin_lock(&lock);
8785 __setup_per_zone_wmarks();
8786 spin_unlock(&lock);
8787
8788 /*
8789 * The watermark size have changed so update the pcpu batch
8790 * and high limits or the limits may be inappropriate.
8791 */
8792 for_each_zone(zone)
8793 zone_pcp_update(zone, 0);
8794 }
8795
8796 /*
8797 * Initialise min_free_kbytes.
8798 *
8799 * For small machines we want it small (128k min). For large machines
8800 * we want it large (256MB max). But it is not linear, because network
8801 * bandwidth does not increase linearly with machine size. We use
8802 *
8803 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8804 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8805 *
8806 * which yields
8807 *
8808 * 16MB: 512k
8809 * 32MB: 724k
8810 * 64MB: 1024k
8811 * 128MB: 1448k
8812 * 256MB: 2048k
8813 * 512MB: 2896k
8814 * 1024MB: 4096k
8815 * 2048MB: 5792k
8816 * 4096MB: 8192k
8817 * 8192MB: 11584k
8818 * 16384MB: 16384k
8819 */
calculate_min_free_kbytes(void)8820 void calculate_min_free_kbytes(void)
8821 {
8822 unsigned long lowmem_kbytes;
8823 int new_min_free_kbytes;
8824
8825 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8826 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8827
8828 if (new_min_free_kbytes > user_min_free_kbytes) {
8829 min_free_kbytes = new_min_free_kbytes;
8830 if (min_free_kbytes < 128)
8831 min_free_kbytes = 128;
8832 if (min_free_kbytes > 262144)
8833 min_free_kbytes = 262144;
8834 } else {
8835 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8836 new_min_free_kbytes, user_min_free_kbytes);
8837 }
8838 }
8839
init_per_zone_wmark_min(void)8840 int __meminit init_per_zone_wmark_min(void)
8841 {
8842 calculate_min_free_kbytes();
8843 setup_per_zone_wmarks();
8844 refresh_zone_stat_thresholds();
8845 setup_per_zone_lowmem_reserve();
8846
8847 #ifdef CONFIG_NUMA
8848 setup_min_unmapped_ratio();
8849 setup_min_slab_ratio();
8850 #endif
8851
8852 khugepaged_min_free_kbytes_update();
8853
8854 return 0;
8855 }
postcore_initcall(init_per_zone_wmark_min)8856 postcore_initcall(init_per_zone_wmark_min)
8857
8858 /*
8859 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8860 * that we can call two helper functions whenever min_free_kbytes
8861 * changes.
8862 */
8863 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8864 void *buffer, size_t *length, loff_t *ppos)
8865 {
8866 int rc;
8867
8868 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8869 if (rc)
8870 return rc;
8871
8872 if (write) {
8873 user_min_free_kbytes = min_free_kbytes;
8874 setup_per_zone_wmarks();
8875 }
8876 return 0;
8877 }
8878
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8879 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8880 void *buffer, size_t *length, loff_t *ppos)
8881 {
8882 int rc;
8883
8884 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8885 if (rc)
8886 return rc;
8887
8888 if (write)
8889 setup_per_zone_wmarks();
8890
8891 return 0;
8892 }
8893
8894 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8895 static void setup_min_unmapped_ratio(void)
8896 {
8897 pg_data_t *pgdat;
8898 struct zone *zone;
8899
8900 for_each_online_pgdat(pgdat)
8901 pgdat->min_unmapped_pages = 0;
8902
8903 for_each_zone(zone)
8904 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8905 sysctl_min_unmapped_ratio) / 100;
8906 }
8907
8908
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8909 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8910 void *buffer, size_t *length, loff_t *ppos)
8911 {
8912 int rc;
8913
8914 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8915 if (rc)
8916 return rc;
8917
8918 setup_min_unmapped_ratio();
8919
8920 return 0;
8921 }
8922
setup_min_slab_ratio(void)8923 static void setup_min_slab_ratio(void)
8924 {
8925 pg_data_t *pgdat;
8926 struct zone *zone;
8927
8928 for_each_online_pgdat(pgdat)
8929 pgdat->min_slab_pages = 0;
8930
8931 for_each_zone(zone)
8932 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8933 sysctl_min_slab_ratio) / 100;
8934 }
8935
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8936 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8937 void *buffer, size_t *length, loff_t *ppos)
8938 {
8939 int rc;
8940
8941 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8942 if (rc)
8943 return rc;
8944
8945 setup_min_slab_ratio();
8946
8947 return 0;
8948 }
8949 #endif
8950
8951 /*
8952 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8953 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8954 * whenever sysctl_lowmem_reserve_ratio changes.
8955 *
8956 * The reserve ratio obviously has absolutely no relation with the
8957 * minimum watermarks. The lowmem reserve ratio can only make sense
8958 * if in function of the boot time zone sizes.
8959 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8960 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8961 void *buffer, size_t *length, loff_t *ppos)
8962 {
8963 int i;
8964
8965 proc_dointvec_minmax(table, write, buffer, length, ppos);
8966
8967 for (i = 0; i < MAX_NR_ZONES; i++) {
8968 if (sysctl_lowmem_reserve_ratio[i] < 1)
8969 sysctl_lowmem_reserve_ratio[i] = 0;
8970 }
8971
8972 setup_per_zone_lowmem_reserve();
8973 return 0;
8974 }
8975
8976 /*
8977 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8978 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8979 * pagelist can have before it gets flushed back to buddy allocator.
8980 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8981 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8982 int write, void *buffer, size_t *length, loff_t *ppos)
8983 {
8984 struct zone *zone;
8985 int old_percpu_pagelist_high_fraction;
8986 int ret;
8987
8988 mutex_lock(&pcp_batch_high_lock);
8989 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8990
8991 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8992 if (!write || ret < 0)
8993 goto out;
8994
8995 /* Sanity checking to avoid pcp imbalance */
8996 if (percpu_pagelist_high_fraction &&
8997 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8998 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8999 ret = -EINVAL;
9000 goto out;
9001 }
9002
9003 /* No change? */
9004 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9005 goto out;
9006
9007 for_each_populated_zone(zone)
9008 zone_set_pageset_high_and_batch(zone, 0);
9009 out:
9010 mutex_unlock(&pcp_batch_high_lock);
9011 return ret;
9012 }
9013
9014 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9015 /*
9016 * Returns the number of pages that arch has reserved but
9017 * is not known to alloc_large_system_hash().
9018 */
arch_reserved_kernel_pages(void)9019 static unsigned long __init arch_reserved_kernel_pages(void)
9020 {
9021 return 0;
9022 }
9023 #endif
9024
9025 /*
9026 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9027 * machines. As memory size is increased the scale is also increased but at
9028 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9029 * quadruples the scale is increased by one, which means the size of hash table
9030 * only doubles, instead of quadrupling as well.
9031 * Because 32-bit systems cannot have large physical memory, where this scaling
9032 * makes sense, it is disabled on such platforms.
9033 */
9034 #if __BITS_PER_LONG > 32
9035 #define ADAPT_SCALE_BASE (64ul << 30)
9036 #define ADAPT_SCALE_SHIFT 2
9037 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9038 #endif
9039
9040 /*
9041 * allocate a large system hash table from bootmem
9042 * - it is assumed that the hash table must contain an exact power-of-2
9043 * quantity of entries
9044 * - limit is the number of hash buckets, not the total allocation size
9045 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)9046 void *__init alloc_large_system_hash(const char *tablename,
9047 unsigned long bucketsize,
9048 unsigned long numentries,
9049 int scale,
9050 int flags,
9051 unsigned int *_hash_shift,
9052 unsigned int *_hash_mask,
9053 unsigned long low_limit,
9054 unsigned long high_limit)
9055 {
9056 unsigned long long max = high_limit;
9057 unsigned long log2qty, size;
9058 void *table = NULL;
9059 gfp_t gfp_flags;
9060 bool virt;
9061 bool huge;
9062
9063 /* allow the kernel cmdline to have a say */
9064 if (!numentries) {
9065 /* round applicable memory size up to nearest megabyte */
9066 numentries = nr_kernel_pages;
9067 numentries -= arch_reserved_kernel_pages();
9068
9069 /* It isn't necessary when PAGE_SIZE >= 1MB */
9070 if (PAGE_SHIFT < 20)
9071 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9072
9073 #if __BITS_PER_LONG > 32
9074 if (!high_limit) {
9075 unsigned long adapt;
9076
9077 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9078 adapt <<= ADAPT_SCALE_SHIFT)
9079 scale++;
9080 }
9081 #endif
9082
9083 /* limit to 1 bucket per 2^scale bytes of low memory */
9084 if (scale > PAGE_SHIFT)
9085 numentries >>= (scale - PAGE_SHIFT);
9086 else
9087 numentries <<= (PAGE_SHIFT - scale);
9088
9089 /* Make sure we've got at least a 0-order allocation.. */
9090 if (unlikely(flags & HASH_SMALL)) {
9091 /* Makes no sense without HASH_EARLY */
9092 WARN_ON(!(flags & HASH_EARLY));
9093 if (!(numentries >> *_hash_shift)) {
9094 numentries = 1UL << *_hash_shift;
9095 BUG_ON(!numentries);
9096 }
9097 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9098 numentries = PAGE_SIZE / bucketsize;
9099 }
9100 numentries = roundup_pow_of_two(numentries);
9101
9102 /* limit allocation size to 1/16 total memory by default */
9103 if (max == 0) {
9104 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9105 do_div(max, bucketsize);
9106 }
9107 max = min(max, 0x80000000ULL);
9108
9109 if (numentries < low_limit)
9110 numentries = low_limit;
9111 if (numentries > max)
9112 numentries = max;
9113
9114 log2qty = ilog2(numentries);
9115
9116 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9117 do {
9118 virt = false;
9119 size = bucketsize << log2qty;
9120 if (flags & HASH_EARLY) {
9121 if (flags & HASH_ZERO)
9122 table = memblock_alloc(size, SMP_CACHE_BYTES);
9123 else
9124 table = memblock_alloc_raw(size,
9125 SMP_CACHE_BYTES);
9126 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9127 table = __vmalloc(size, gfp_flags);
9128 virt = true;
9129 huge = is_vm_area_hugepages(table);
9130 } else {
9131 /*
9132 * If bucketsize is not a power-of-two, we may free
9133 * some pages at the end of hash table which
9134 * alloc_pages_exact() automatically does
9135 */
9136 table = alloc_pages_exact(size, gfp_flags);
9137 kmemleak_alloc(table, size, 1, gfp_flags);
9138 }
9139 } while (!table && size > PAGE_SIZE && --log2qty);
9140
9141 if (!table)
9142 panic("Failed to allocate %s hash table\n", tablename);
9143
9144 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9145 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9146 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9147
9148 if (_hash_shift)
9149 *_hash_shift = log2qty;
9150 if (_hash_mask)
9151 *_hash_mask = (1 << log2qty) - 1;
9152
9153 return table;
9154 }
9155
9156 /*
9157 * This function checks whether pageblock includes unmovable pages or not.
9158 *
9159 * PageLRU check without isolation or lru_lock could race so that
9160 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
9161 * check without lock_page also may miss some movable non-lru pages at
9162 * race condition. So you can't expect this function should be exact.
9163 *
9164 * Returns a page without holding a reference. If the caller wants to
9165 * dereference that page (e.g., dumping), it has to make sure that it
9166 * cannot get removed (e.g., via memory unplug) concurrently.
9167 *
9168 */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)9169 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
9170 int migratetype, int flags)
9171 {
9172 unsigned long iter = 0;
9173 unsigned long pfn = page_to_pfn(page);
9174 unsigned long offset = pfn % pageblock_nr_pages;
9175
9176 if (is_migrate_cma_page(page)) {
9177 /*
9178 * CMA allocations (alloc_contig_range) really need to mark
9179 * isolate CMA pageblocks even when they are not movable in fact
9180 * so consider them movable here.
9181 */
9182 if (is_migrate_cma(migratetype))
9183 return NULL;
9184
9185 return page;
9186 }
9187
9188 for (; iter < pageblock_nr_pages - offset; iter++) {
9189 page = pfn_to_page(pfn + iter);
9190
9191 /*
9192 * Both, bootmem allocations and memory holes are marked
9193 * PG_reserved and are unmovable. We can even have unmovable
9194 * allocations inside ZONE_MOVABLE, for example when
9195 * specifying "movablecore".
9196 */
9197 if (PageReserved(page))
9198 return page;
9199
9200 /*
9201 * If the zone is movable and we have ruled out all reserved
9202 * pages then it should be reasonably safe to assume the rest
9203 * is movable.
9204 */
9205 if (zone_idx(zone) == ZONE_MOVABLE)
9206 continue;
9207
9208 /*
9209 * Hugepages are not in LRU lists, but they're movable.
9210 * THPs are on the LRU, but need to be counted as #small pages.
9211 * We need not scan over tail pages because we don't
9212 * handle each tail page individually in migration.
9213 */
9214 if (PageHuge(page) || PageTransCompound(page)) {
9215 struct page *head = compound_head(page);
9216 unsigned int skip_pages;
9217
9218 if (PageHuge(page)) {
9219 if (!hugepage_migration_supported(page_hstate(head)))
9220 return page;
9221 } else if (!PageLRU(head) && !__PageMovable(head)) {
9222 return page;
9223 }
9224
9225 skip_pages = compound_nr(head) - (page - head);
9226 iter += skip_pages - 1;
9227 continue;
9228 }
9229
9230 /*
9231 * We can't use page_count without pin a page
9232 * because another CPU can free compound page.
9233 * This check already skips compound tails of THP
9234 * because their page->_refcount is zero at all time.
9235 */
9236 if (!page_ref_count(page)) {
9237 if (PageBuddy(page))
9238 iter += (1 << buddy_order(page)) - 1;
9239 continue;
9240 }
9241
9242 /*
9243 * The HWPoisoned page may be not in buddy system, and
9244 * page_count() is not 0.
9245 */
9246 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
9247 continue;
9248
9249 /*
9250 * We treat all PageOffline() pages as movable when offlining
9251 * to give drivers a chance to decrement their reference count
9252 * in MEM_GOING_OFFLINE in order to indicate that these pages
9253 * can be offlined as there are no direct references anymore.
9254 * For actually unmovable PageOffline() where the driver does
9255 * not support this, we will fail later when trying to actually
9256 * move these pages that still have a reference count > 0.
9257 * (false negatives in this function only)
9258 */
9259 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9260 continue;
9261
9262 if (__PageMovable(page) || PageLRU(page))
9263 continue;
9264
9265 /*
9266 * If there are RECLAIMABLE pages, we need to check
9267 * it. But now, memory offline itself doesn't call
9268 * shrink_node_slabs() and it still to be fixed.
9269 */
9270 return page;
9271 }
9272 return NULL;
9273 }
9274
9275 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)9276 static unsigned long pfn_max_align_down(unsigned long pfn)
9277 {
9278 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
9279 pageblock_nr_pages) - 1);
9280 }
9281
pfn_max_align_up(unsigned long pfn)9282 unsigned long pfn_max_align_up(unsigned long pfn)
9283 {
9284 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
9285 pageblock_nr_pages));
9286 }
9287
9288 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9289 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9290 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)9291 static void alloc_contig_dump_pages(struct list_head *page_list)
9292 {
9293 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9294
9295 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9296 struct page *page;
9297
9298 dump_stack();
9299 list_for_each_entry(page, page_list, lru)
9300 dump_page(page, "migration failure");
9301 }
9302 }
9303 #else
alloc_contig_dump_pages(struct list_head * page_list)9304 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9305 {
9306 }
9307 #endif
9308
9309 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,struct acr_info * info)9310 static int __alloc_contig_migrate_range(struct compact_control *cc,
9311 unsigned long start, unsigned long end,
9312 struct acr_info *info)
9313 {
9314 /* This function is based on compact_zone() from compaction.c. */
9315 unsigned int nr_reclaimed;
9316 unsigned long pfn = start;
9317 unsigned int tries = 0;
9318 unsigned int max_tries = 5;
9319 int ret = 0;
9320 bool skip = false;
9321 struct page *page;
9322 struct migration_target_control mtc = {
9323 .nid = zone_to_nid(cc->zone),
9324 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9325 };
9326
9327 if (cc->alloc_contig && cc->mode == MIGRATE_ASYNC)
9328 max_tries = 1;
9329
9330 trace_android_vh_skip_lru_disable(&skip);
9331 if (!skip)
9332 lru_cache_disable();
9333
9334 while (pfn < end || !list_empty(&cc->migratepages)) {
9335 if (fatal_signal_pending(current)) {
9336 ret = -EINTR;
9337 break;
9338 }
9339
9340 if (list_empty(&cc->migratepages)) {
9341 cc->nr_migratepages = 0;
9342 ret = isolate_migratepages_range(cc, pfn, end);
9343 if (ret && ret != -EAGAIN)
9344 break;
9345 pfn = cc->migrate_pfn;
9346 tries = 0;
9347 } else if (++tries == max_tries) {
9348 ret = -EBUSY;
9349 break;
9350 }
9351
9352 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9353 &cc->migratepages);
9354 info->nr_reclaimed += nr_reclaimed;
9355 cc->nr_migratepages -= nr_reclaimed;
9356
9357 list_for_each_entry(page, &cc->migratepages, lru)
9358 info->nr_mapped += page_mapcount(page);
9359
9360 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9361 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9362
9363 if (!ret)
9364 info->nr_migrated += cc->nr_migratepages;
9365
9366 /*
9367 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9368 * to retry again over this error, so do the same here.
9369 */
9370 if (ret == -ENOMEM)
9371 break;
9372 }
9373
9374 if (!skip)
9375 lru_cache_enable();
9376 if (ret < 0) {
9377 if (ret == -EBUSY) {
9378 struct page *page;
9379
9380 alloc_contig_dump_pages(&cc->migratepages);
9381 list_for_each_entry(page, &cc->migratepages, lru) {
9382 /* The page will be freed by putback_movable_pages soon */
9383 if (page_count(page) == 1)
9384 continue;
9385 page_pinner_failure_detect(page);
9386 }
9387 }
9388
9389 if (!list_empty(&cc->migratepages)) {
9390 page = list_first_entry(&cc->migratepages, struct page , lru);
9391 info->failed_pfn = page_to_pfn(page);
9392 }
9393
9394 putback_movable_pages(&cc->migratepages);
9395 info->err |= ACR_ERR_MIGRATE;
9396 return ret;
9397 }
9398 return 0;
9399 }
9400
9401 /**
9402 * alloc_contig_range() -- tries to allocate given range of pages
9403 * @start: start PFN to allocate
9404 * @end: one-past-the-last PFN to allocate
9405 * @migratetype: migratetype of the underlying pageblocks (either
9406 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9407 * in range must have the same migratetype and it must
9408 * be either of the two.
9409 * @gfp_mask: GFP mask to use during compaction
9410 *
9411 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9412 * aligned. The PFN range must belong to a single zone.
9413 *
9414 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9415 * pageblocks in the range. Once isolated, the pageblocks should not
9416 * be modified by others.
9417 *
9418 * Return: zero on success or negative error code. On success all
9419 * pages which PFN is in [start, end) are allocated for the caller and
9420 * need to be freed with free_contig_range().
9421 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask,struct acr_info * info)9422 int alloc_contig_range(unsigned long start, unsigned long end,
9423 unsigned migratetype, gfp_t gfp_mask,
9424 struct acr_info *info)
9425 {
9426 unsigned long outer_start, outer_end;
9427 unsigned int order;
9428 int ret = 0;
9429 bool skip_drain_all_pages = false;
9430
9431 struct compact_control cc = {
9432 .nr_migratepages = 0,
9433 .order = -1,
9434 .zone = page_zone(pfn_to_page(start)),
9435 .mode = gfp_mask & __GFP_NORETRY ? MIGRATE_ASYNC : MIGRATE_SYNC,
9436 .ignore_skip_hint = true,
9437 .no_set_skip_hint = true,
9438 .gfp_mask = current_gfp_context(gfp_mask),
9439 .alloc_contig = true,
9440 };
9441 INIT_LIST_HEAD(&cc.migratepages);
9442
9443 /*
9444 * What we do here is we mark all pageblocks in range as
9445 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9446 * have different sizes, and due to the way page allocator
9447 * work, we align the range to biggest of the two pages so
9448 * that page allocator won't try to merge buddies from
9449 * different pageblocks and change MIGRATE_ISOLATE to some
9450 * other migration type.
9451 *
9452 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9453 * migrate the pages from an unaligned range (ie. pages that
9454 * we are interested in). This will put all the pages in
9455 * range back to page allocator as MIGRATE_ISOLATE.
9456 *
9457 * When this is done, we take the pages in range from page
9458 * allocator removing them from the buddy system. This way
9459 * page allocator will never consider using them.
9460 *
9461 * This lets us mark the pageblocks back as
9462 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9463 * aligned range but not in the unaligned, original range are
9464 * put back to page allocator so that buddy can use them.
9465 */
9466
9467 ret = start_isolate_page_range(pfn_max_align_down(start),
9468 pfn_max_align_up(end), migratetype, 0,
9469 &info->failed_pfn);
9470 if (ret) {
9471 info->err |= ACR_ERR_ISOLATE;
9472 return ret;
9473 }
9474
9475 trace_android_vh_cma_drain_all_pages_bypass(migratetype,
9476 &skip_drain_all_pages);
9477 if (!skip_drain_all_pages)
9478 drain_all_pages(cc.zone);
9479
9480 /*
9481 * In case of -EBUSY, we'd like to know which page causes problem.
9482 * So, just fall through. test_pages_isolated() has a tracepoint
9483 * which will report the busy page.
9484 *
9485 * It is possible that busy pages could become available before
9486 * the call to test_pages_isolated, and the range will actually be
9487 * allocated. So, if we fall through be sure to clear ret so that
9488 * -EBUSY is not accidentally used or returned to caller.
9489 */
9490 ret = __alloc_contig_migrate_range(&cc, start, end, info);
9491 if (ret && (ret != -EBUSY || (gfp_mask & __GFP_NORETRY)))
9492 goto done;
9493 ret = 0;
9494
9495 /*
9496 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9497 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9498 * more, all pages in [start, end) are free in page allocator.
9499 * What we are going to do is to allocate all pages from
9500 * [start, end) (that is remove them from page allocator).
9501 *
9502 * The only problem is that pages at the beginning and at the
9503 * end of interesting range may be not aligned with pages that
9504 * page allocator holds, ie. they can be part of higher order
9505 * pages. Because of this, we reserve the bigger range and
9506 * once this is done free the pages we are not interested in.
9507 *
9508 * We don't have to hold zone->lock here because the pages are
9509 * isolated thus they won't get removed from buddy.
9510 */
9511
9512 order = 0;
9513 outer_start = start;
9514 while (!PageBuddy(pfn_to_page(outer_start))) {
9515 if (++order >= MAX_ORDER) {
9516 outer_start = start;
9517 break;
9518 }
9519 outer_start &= ~0UL << order;
9520 }
9521
9522 if (outer_start != start) {
9523 order = buddy_order(pfn_to_page(outer_start));
9524
9525 /*
9526 * outer_start page could be small order buddy page and
9527 * it doesn't include start page. Adjust outer_start
9528 * in this case to report failed page properly
9529 * on tracepoint in test_pages_isolated()
9530 */
9531 if (outer_start + (1UL << order) <= start)
9532 outer_start = start;
9533 }
9534
9535 /* Make sure the range is really isolated. */
9536 if (test_pages_isolated(outer_start, end, 0, &info->failed_pfn)) {
9537 ret = -EBUSY;
9538 info->err |= ACR_ERR_TEST;
9539 goto done;
9540 }
9541
9542 /* Grab isolated pages from freelists. */
9543 outer_end = isolate_freepages_range(&cc, outer_start, end);
9544 if (!outer_end) {
9545 ret = -EBUSY;
9546 goto done;
9547 }
9548
9549 /* Free head and tail (if any) */
9550 if (start != outer_start)
9551 free_contig_range(outer_start, start - outer_start);
9552 if (end != outer_end)
9553 free_contig_range(end, outer_end - end);
9554
9555 done:
9556 undo_isolate_page_range(pfn_max_align_down(start),
9557 pfn_max_align_up(end), migratetype);
9558 return ret;
9559 }
9560 EXPORT_SYMBOL(alloc_contig_range);
9561
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)9562 static int __alloc_contig_pages(unsigned long start_pfn,
9563 unsigned long nr_pages, gfp_t gfp_mask)
9564 {
9565 struct acr_info dummy;
9566 unsigned long end_pfn = start_pfn + nr_pages;
9567
9568 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9569 gfp_mask, &dummy);
9570 }
9571
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)9572 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9573 unsigned long nr_pages)
9574 {
9575 unsigned long i, end_pfn = start_pfn + nr_pages;
9576 struct page *page;
9577
9578 for (i = start_pfn; i < end_pfn; i++) {
9579 page = pfn_to_online_page(i);
9580 if (!page)
9581 return false;
9582
9583 if (page_zone(page) != z)
9584 return false;
9585
9586 if (PageReserved(page))
9587 return false;
9588
9589 if (PageHuge(page))
9590 return false;
9591 }
9592 return true;
9593 }
9594
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)9595 static bool zone_spans_last_pfn(const struct zone *zone,
9596 unsigned long start_pfn, unsigned long nr_pages)
9597 {
9598 unsigned long last_pfn = start_pfn + nr_pages - 1;
9599
9600 return zone_spans_pfn(zone, last_pfn);
9601 }
9602
9603 /**
9604 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9605 * @nr_pages: Number of contiguous pages to allocate
9606 * @gfp_mask: GFP mask to limit search and used during compaction
9607 * @nid: Target node
9608 * @nodemask: Mask for other possible nodes
9609 *
9610 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9611 * on an applicable zonelist to find a contiguous pfn range which can then be
9612 * tried for allocation with alloc_contig_range(). This routine is intended
9613 * for allocation requests which can not be fulfilled with the buddy allocator.
9614 *
9615 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9616 * power of two then the alignment is guaranteed to be to the given nr_pages
9617 * (e.g. 1GB request would be aligned to 1GB).
9618 *
9619 * Allocated pages can be freed with free_contig_range() or by manually calling
9620 * __free_page() on each allocated page.
9621 *
9622 * Return: pointer to contiguous pages on success, or NULL if not successful.
9623 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)9624 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9625 int nid, nodemask_t *nodemask)
9626 {
9627 unsigned long ret, pfn, flags;
9628 struct zonelist *zonelist;
9629 struct zone *zone;
9630 struct zoneref *z;
9631
9632 zonelist = node_zonelist(nid, gfp_mask);
9633 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9634 gfp_zone(gfp_mask), nodemask) {
9635 spin_lock_irqsave(&zone->lock, flags);
9636
9637 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9638 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9639 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9640 /*
9641 * We release the zone lock here because
9642 * alloc_contig_range() will also lock the zone
9643 * at some point. If there's an allocation
9644 * spinning on this lock, it may win the race
9645 * and cause alloc_contig_range() to fail...
9646 */
9647 spin_unlock_irqrestore(&zone->lock, flags);
9648 ret = __alloc_contig_pages(pfn, nr_pages,
9649 gfp_mask);
9650 if (!ret)
9651 return pfn_to_page(pfn);
9652 spin_lock_irqsave(&zone->lock, flags);
9653 }
9654 pfn += nr_pages;
9655 }
9656 spin_unlock_irqrestore(&zone->lock, flags);
9657 }
9658 return NULL;
9659 }
9660 #endif /* CONFIG_CONTIG_ALLOC */
9661
free_contig_range(unsigned long pfn,unsigned long nr_pages)9662 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9663 {
9664 unsigned long count = 0;
9665
9666 for (; nr_pages--; pfn++) {
9667 struct page *page = pfn_to_page(pfn);
9668
9669 count += page_count(page) != 1;
9670 __free_page(page);
9671 }
9672 WARN(count != 0, "%lu pages are still in use!\n", count);
9673 }
9674 EXPORT_SYMBOL(free_contig_range);
9675
9676 /*
9677 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9678 * page high values need to be recalculated.
9679 */
zone_pcp_update(struct zone * zone,int cpu_online)9680 void zone_pcp_update(struct zone *zone, int cpu_online)
9681 {
9682 mutex_lock(&pcp_batch_high_lock);
9683 zone_set_pageset_high_and_batch(zone, cpu_online);
9684 mutex_unlock(&pcp_batch_high_lock);
9685 }
9686
9687 /*
9688 * Effectively disable pcplists for the zone by setting the high limit to 0
9689 * and draining all cpus. A concurrent page freeing on another CPU that's about
9690 * to put the page on pcplist will either finish before the drain and the page
9691 * will be drained, or observe the new high limit and skip the pcplist.
9692 *
9693 * Must be paired with a call to zone_pcp_enable().
9694 */
zone_pcp_disable(struct zone * zone)9695 void zone_pcp_disable(struct zone *zone)
9696 {
9697 mutex_lock(&pcp_batch_high_lock);
9698 __zone_set_pageset_high_and_batch(zone, 0, 1);
9699 __drain_all_pages(zone, true);
9700 }
9701
zone_pcp_enable(struct zone * zone)9702 void zone_pcp_enable(struct zone *zone)
9703 {
9704 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9705 mutex_unlock(&pcp_batch_high_lock);
9706 }
9707
zone_pcp_reset(struct zone * zone)9708 void zone_pcp_reset(struct zone *zone)
9709 {
9710 int cpu;
9711 struct per_cpu_zonestat *pzstats;
9712
9713 if (zone->per_cpu_pageset != &boot_pageset) {
9714 for_each_online_cpu(cpu) {
9715 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9716 drain_zonestat(zone, pzstats);
9717 }
9718 free_percpu(zone->per_cpu_pageset);
9719 free_percpu(zone->per_cpu_zonestats);
9720 zone->per_cpu_pageset = &boot_pageset;
9721 zone->per_cpu_zonestats = &boot_zonestats;
9722 }
9723 }
9724
9725 #ifdef CONFIG_MEMORY_HOTREMOVE
9726 /*
9727 * All pages in the range must be in a single zone, must not contain holes,
9728 * must span full sections, and must be isolated before calling this function.
9729 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)9730 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9731 {
9732 unsigned long pfn = start_pfn;
9733 struct page *page;
9734 struct zone *zone;
9735 unsigned int order;
9736 unsigned long flags;
9737
9738 offline_mem_sections(pfn, end_pfn);
9739 zone = page_zone(pfn_to_page(pfn));
9740 spin_lock_irqsave(&zone->lock, flags);
9741 while (pfn < end_pfn) {
9742 page = pfn_to_page(pfn);
9743 /*
9744 * The HWPoisoned page may be not in buddy system, and
9745 * page_count() is not 0.
9746 */
9747 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9748 pfn++;
9749 continue;
9750 }
9751 /*
9752 * At this point all remaining PageOffline() pages have a
9753 * reference count of 0 and can simply be skipped.
9754 */
9755 if (PageOffline(page)) {
9756 BUG_ON(page_count(page));
9757 BUG_ON(PageBuddy(page));
9758 pfn++;
9759 continue;
9760 }
9761
9762 BUG_ON(page_count(page));
9763 BUG_ON(!PageBuddy(page));
9764 order = buddy_order(page);
9765 del_page_from_free_list(page, zone, order);
9766 pfn += (1 << order);
9767 }
9768 spin_unlock_irqrestore(&zone->lock, flags);
9769 }
9770 #endif
9771
is_free_buddy_page(struct page * page)9772 bool is_free_buddy_page(struct page *page)
9773 {
9774 struct zone *zone = page_zone(page);
9775 unsigned long pfn = page_to_pfn(page);
9776 unsigned long flags;
9777 unsigned int order;
9778
9779 spin_lock_irqsave(&zone->lock, flags);
9780 for (order = 0; order < MAX_ORDER; order++) {
9781 struct page *page_head = page - (pfn & ((1 << order) - 1));
9782
9783 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9784 break;
9785 }
9786 spin_unlock_irqrestore(&zone->lock, flags);
9787
9788 return order < MAX_ORDER;
9789 }
9790
9791 #ifdef CONFIG_MEMORY_FAILURE
9792 /*
9793 * Break down a higher-order page in sub-pages, and keep our target out of
9794 * buddy allocator.
9795 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9796 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9797 struct page *target, int low, int high,
9798 int migratetype)
9799 {
9800 unsigned long size = 1 << high;
9801 struct page *current_buddy, *next_page;
9802
9803 while (high > low) {
9804 high--;
9805 size >>= 1;
9806
9807 if (target >= &page[size]) {
9808 next_page = page + size;
9809 current_buddy = page;
9810 } else {
9811 next_page = page;
9812 current_buddy = page + size;
9813 }
9814 page = next_page;
9815
9816 if (set_page_guard(zone, current_buddy, high, migratetype))
9817 continue;
9818
9819 if (current_buddy != target) {
9820 add_to_free_list(current_buddy, zone, high, migratetype);
9821 set_buddy_order(current_buddy, high);
9822 }
9823 }
9824 }
9825
9826 /*
9827 * Take a page that will be marked as poisoned off the buddy allocator.
9828 */
take_page_off_buddy(struct page * page)9829 bool take_page_off_buddy(struct page *page)
9830 {
9831 struct zone *zone = page_zone(page);
9832 unsigned long pfn = page_to_pfn(page);
9833 unsigned long flags;
9834 unsigned int order;
9835 bool ret = false;
9836
9837 spin_lock_irqsave(&zone->lock, flags);
9838 for (order = 0; order < MAX_ORDER; order++) {
9839 struct page *page_head = page - (pfn & ((1 << order) - 1));
9840 int page_order = buddy_order(page_head);
9841
9842 if (PageBuddy(page_head) && page_order >= order) {
9843 unsigned long pfn_head = page_to_pfn(page_head);
9844 int migratetype = get_pfnblock_migratetype(page_head,
9845 pfn_head);
9846
9847 del_page_from_free_list(page_head, zone, page_order);
9848 break_down_buddy_pages(zone, page_head, page, 0,
9849 page_order, migratetype);
9850 if (!is_migrate_isolate(migratetype))
9851 __mod_zone_freepage_state(zone, -1, migratetype);
9852 ret = true;
9853 break;
9854 }
9855 if (page_count(page_head) > 0)
9856 break;
9857 }
9858 spin_unlock_irqrestore(&zone->lock, flags);
9859 return ret;
9860 }
9861 #endif
9862
9863 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9864 bool has_managed_dma(void)
9865 {
9866 struct pglist_data *pgdat;
9867
9868 for_each_online_pgdat(pgdat) {
9869 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9870
9871 if (managed_zone(zone))
9872 return true;
9873 }
9874 return false;
9875 }
9876 #endif /* CONFIG_ZONE_DMA */
9877