• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 #undef CREATE_TRACE_POINTS
47 #include <trace/hooks/mm.h>
48 
49 /* How many pages do we try to swap or page in/out together? */
50 int page_cluster;
51 
52 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
53 struct lru_rotate {
54 	local_lock_t lock;
55 	struct pagevec pvec;
56 };
57 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
58 	.lock = INIT_LOCAL_LOCK(lock),
59 };
60 
61 /*
62  * The following struct pagevec are grouped together because they are protected
63  * by disabling preemption (and interrupts remain enabled).
64  */
65 struct lru_pvecs {
66 	local_lock_t lock;
67 	struct pagevec lru_add;
68 	struct pagevec lru_deactivate_file;
69 	struct pagevec lru_deactivate;
70 	struct pagevec lru_lazyfree;
71 #ifdef CONFIG_SMP
72 	struct pagevec activate_page;
73 #endif
74 };
75 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
76 	.lock = INIT_LOCAL_LOCK(lock),
77 };
78 
79 /*
80  * This path almost never happens for VM activity - pages are normally
81  * freed via pagevecs.  But it gets used by networking.
82  */
__page_cache_release(struct page * page)83 static void __page_cache_release(struct page *page)
84 {
85 	if (PageLRU(page)) {
86 		struct lruvec *lruvec;
87 		unsigned long flags;
88 
89 		lruvec = lock_page_lruvec_irqsave(page, &flags);
90 		del_page_from_lru_list(page, lruvec);
91 		__clear_page_lru_flags(page);
92 		unlock_page_lruvec_irqrestore(lruvec, flags);
93 	}
94 	__ClearPageWaiters(page);
95 }
96 
__put_single_page(struct page * page)97 static void __put_single_page(struct page *page)
98 {
99 	__page_cache_release(page);
100 	mem_cgroup_uncharge(page);
101 	free_unref_page(page, 0);
102 }
103 
__put_compound_page(struct page * page)104 static void __put_compound_page(struct page *page)
105 {
106 	/*
107 	 * __page_cache_release() is supposed to be called for thp, not for
108 	 * hugetlb. This is because hugetlb page does never have PageLRU set
109 	 * (it's never listed to any LRU lists) and no memcg routines should
110 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
111 	 */
112 	if (!PageHuge(page))
113 		__page_cache_release(page);
114 	destroy_compound_page(page);
115 }
116 
__put_page(struct page * page)117 void __put_page(struct page *page)
118 {
119 	if (is_zone_device_page(page)) {
120 		put_dev_pagemap(page->pgmap);
121 
122 		/*
123 		 * The page belongs to the device that created pgmap. Do
124 		 * not return it to page allocator.
125 		 */
126 		return;
127 	}
128 
129 	if (unlikely(PageCompound(page)))
130 		__put_compound_page(page);
131 	else
132 		__put_single_page(page);
133 }
134 EXPORT_SYMBOL(__put_page);
135 
136 /**
137  * put_pages_list() - release a list of pages
138  * @pages: list of pages threaded on page->lru
139  *
140  * Release a list of pages which are strung together on page.lru.  Currently
141  * used by read_cache_pages() and related error recovery code.
142  */
put_pages_list(struct list_head * pages)143 void put_pages_list(struct list_head *pages)
144 {
145 	while (!list_empty(pages)) {
146 		struct page *victim;
147 
148 		victim = lru_to_page(pages);
149 		list_del(&victim->lru);
150 		put_page(victim);
151 	}
152 }
153 EXPORT_SYMBOL(put_pages_list);
154 
155 /*
156  * get_kernel_pages() - pin kernel pages in memory
157  * @kiov:	An array of struct kvec structures
158  * @nr_segs:	number of segments to pin
159  * @write:	pinning for read/write, currently ignored
160  * @pages:	array that receives pointers to the pages pinned.
161  *		Should be at least nr_segs long.
162  *
163  * Returns number of pages pinned. This may be fewer than the number
164  * requested. If nr_pages is 0 or negative, returns 0. If no pages
165  * were pinned, returns -errno. Each page returned must be released
166  * with a put_page() call when it is finished with.
167  */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)168 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
169 		struct page **pages)
170 {
171 	int seg;
172 
173 	for (seg = 0; seg < nr_segs; seg++) {
174 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
175 			return seg;
176 
177 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
178 		get_page(pages[seg]);
179 	}
180 
181 	return seg;
182 }
183 EXPORT_SYMBOL_GPL(get_kernel_pages);
184 
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec))185 static void pagevec_lru_move_fn(struct pagevec *pvec,
186 	void (*move_fn)(struct page *page, struct lruvec *lruvec))
187 {
188 	int i;
189 	struct lruvec *lruvec = NULL;
190 	unsigned long flags = 0;
191 
192 	for (i = 0; i < pagevec_count(pvec); i++) {
193 		struct page *page = pvec->pages[i];
194 
195 		/* block memcg migration during page moving between lru */
196 		if (!TestClearPageLRU(page))
197 			continue;
198 
199 		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
200 		(*move_fn)(page, lruvec);
201 
202 		SetPageLRU(page);
203 	}
204 	if (lruvec)
205 		unlock_page_lruvec_irqrestore(lruvec, flags);
206 	release_pages(pvec->pages, pvec->nr);
207 	pagevec_reinit(pvec);
208 }
209 
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec)210 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
211 {
212 	if (!PageUnevictable(page)) {
213 		del_page_from_lru_list(page, lruvec);
214 		ClearPageActive(page);
215 		add_page_to_lru_list_tail(page, lruvec);
216 		__count_vm_events(PGROTATED, thp_nr_pages(page));
217 	}
218 }
219 
220 /* return true if pagevec needs to drain */
pagevec_add_and_need_flush(struct pagevec * pvec,struct page * page)221 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
222 {
223 	bool ret = false;
224 
225 	if (!pagevec_add(pvec, page) || PageCompound(page) ||
226 			lru_cache_disabled())
227 		ret = true;
228 
229 	trace_android_vh_pagevec_drain(page, &ret);
230 	return ret;
231 }
232 
233 /*
234  * Writeback is about to end against a page which has been marked for immediate
235  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
236  * inactive list.
237  *
238  * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
239  */
rotate_reclaimable_page(struct page * page)240 void rotate_reclaimable_page(struct page *page)
241 {
242 	if (!PageLocked(page) && !PageDirty(page) &&
243 	    !PageUnevictable(page) && PageLRU(page)) {
244 		struct pagevec *pvec;
245 		unsigned long flags;
246 
247 		get_page(page);
248 		local_lock_irqsave(&lru_rotate.lock, flags);
249 		pvec = this_cpu_ptr(&lru_rotate.pvec);
250 		if (pagevec_add_and_need_flush(pvec, page))
251 			pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
252 		local_unlock_irqrestore(&lru_rotate.lock, flags);
253 	}
254 }
255 
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_pages)256 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
257 {
258 	do {
259 		unsigned long lrusize;
260 
261 		/*
262 		 * Hold lruvec->lru_lock is safe here, since
263 		 * 1) The pinned lruvec in reclaim, or
264 		 * 2) From a pre-LRU page during refault (which also holds the
265 		 *    rcu lock, so would be safe even if the page was on the LRU
266 		 *    and could move simultaneously to a new lruvec).
267 		 */
268 		spin_lock_irq(&lruvec->lru_lock);
269 		/* Record cost event */
270 		if (file)
271 			lruvec->file_cost += nr_pages;
272 		else
273 			lruvec->anon_cost += nr_pages;
274 
275 		/*
276 		 * Decay previous events
277 		 *
278 		 * Because workloads change over time (and to avoid
279 		 * overflow) we keep these statistics as a floating
280 		 * average, which ends up weighing recent refaults
281 		 * more than old ones.
282 		 */
283 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
284 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
285 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
286 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
287 
288 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
289 			lruvec->file_cost /= 2;
290 			lruvec->anon_cost /= 2;
291 		}
292 		spin_unlock_irq(&lruvec->lru_lock);
293 	} while ((lruvec = parent_lruvec(lruvec)));
294 }
295 
lru_note_cost_page(struct page * page)296 void lru_note_cost_page(struct page *page)
297 {
298 	lru_note_cost(mem_cgroup_page_lruvec(page),
299 		      page_is_file_lru(page), thp_nr_pages(page));
300 }
301 
__activate_page(struct page * page,struct lruvec * lruvec)302 static void __activate_page(struct page *page, struct lruvec *lruvec)
303 {
304 	if (!PageActive(page) && !PageUnevictable(page)) {
305 		int nr_pages = thp_nr_pages(page);
306 
307 		del_page_from_lru_list(page, lruvec);
308 		SetPageActive(page);
309 		add_page_to_lru_list(page, lruvec);
310 		trace_mm_lru_activate(page);
311 
312 		__count_vm_events(PGACTIVATE, nr_pages);
313 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
314 				     nr_pages);
315 	}
316 }
317 
318 #ifdef CONFIG_SMP
activate_page_drain(int cpu)319 static void activate_page_drain(int cpu)
320 {
321 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
322 
323 	if (pagevec_count(pvec))
324 		pagevec_lru_move_fn(pvec, __activate_page);
325 }
326 
need_activate_page_drain(int cpu)327 static bool need_activate_page_drain(int cpu)
328 {
329 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
330 }
331 
activate_page(struct page * page)332 void activate_page(struct page *page)
333 {
334 	page = compound_head(page);
335 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
336 		struct pagevec *pvec;
337 
338 		local_lock(&lru_pvecs.lock);
339 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
340 		get_page(page);
341 		if (pagevec_add_and_need_flush(pvec, page))
342 			pagevec_lru_move_fn(pvec, __activate_page);
343 		local_unlock(&lru_pvecs.lock);
344 	}
345 }
346 
347 #else
activate_page_drain(int cpu)348 static inline void activate_page_drain(int cpu)
349 {
350 }
351 
activate_page(struct page * page)352 void activate_page(struct page *page)
353 {
354 	struct lruvec *lruvec;
355 
356 	page = compound_head(page);
357 	if (TestClearPageLRU(page)) {
358 		lruvec = lock_page_lruvec_irq(page);
359 		__activate_page(page, lruvec);
360 		unlock_page_lruvec_irq(lruvec);
361 		SetPageLRU(page);
362 	}
363 }
364 #endif
365 
__lru_cache_activate_page(struct page * page)366 static void __lru_cache_activate_page(struct page *page)
367 {
368 	struct pagevec *pvec;
369 	int i;
370 
371 	local_lock(&lru_pvecs.lock);
372 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
373 
374 	/*
375 	 * Search backwards on the optimistic assumption that the page being
376 	 * activated has just been added to this pagevec. Note that only
377 	 * the local pagevec is examined as a !PageLRU page could be in the
378 	 * process of being released, reclaimed, migrated or on a remote
379 	 * pagevec that is currently being drained. Furthermore, marking
380 	 * a remote pagevec's page PageActive potentially hits a race where
381 	 * a page is marked PageActive just after it is added to the inactive
382 	 * list causing accounting errors and BUG_ON checks to trigger.
383 	 */
384 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
385 		struct page *pagevec_page = pvec->pages[i];
386 
387 		if (pagevec_page == page) {
388 			SetPageActive(page);
389 			break;
390 		}
391 	}
392 
393 	local_unlock(&lru_pvecs.lock);
394 }
395 
396 #ifdef CONFIG_LRU_GEN
page_inc_refs(struct page * page)397 static void page_inc_refs(struct page *page)
398 {
399 	unsigned long new_flags, old_flags = READ_ONCE(page->flags);
400 
401 	if (PageUnevictable(page))
402 		return;
403 
404 	if (!PageReferenced(page)) {
405 		SetPageReferenced(page);
406 		return;
407 	}
408 
409 	if (!PageWorkingset(page)) {
410 		SetPageWorkingset(page);
411 		return;
412 	}
413 
414 	/* see the comment on MAX_NR_TIERS */
415 	do {
416 		new_flags = old_flags & LRU_REFS_MASK;
417 		if (new_flags == LRU_REFS_MASK)
418 			break;
419 
420 		new_flags += BIT(LRU_REFS_PGOFF);
421 		new_flags |= old_flags & ~LRU_REFS_MASK;
422 	} while (!try_cmpxchg(&page->flags, &old_flags, new_flags));
423 }
424 #else
page_inc_refs(struct page * page)425 static void page_inc_refs(struct page *page)
426 {
427 }
428 #endif /* CONFIG_LRU_GEN */
429 
430 /*
431  * Mark a page as having seen activity.
432  *
433  * inactive,unreferenced	->	inactive,referenced
434  * inactive,referenced		->	active,unreferenced
435  * active,unreferenced		->	active,referenced
436  *
437  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
438  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
439  */
mark_page_accessed(struct page * page)440 void mark_page_accessed(struct page *page)
441 {
442 	page = compound_head(page);
443 
444 	if (lru_gen_enabled()) {
445 		page_inc_refs(page);
446 		return;
447 	}
448 
449 	if (!PageReferenced(page)) {
450 		SetPageReferenced(page);
451 	} else if (PageUnevictable(page)) {
452 		/*
453 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
454 		 * this list is never rotated or maintained, so marking an
455 		 * evictable page accessed has no effect.
456 		 */
457 	} else if (!PageActive(page)) {
458 		/*
459 		 * If the page is on the LRU, queue it for activation via
460 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
461 		 * pagevec, mark it active and it'll be moved to the active
462 		 * LRU on the next drain.
463 		 */
464 		if (PageLRU(page))
465 			activate_page(page);
466 		else
467 			__lru_cache_activate_page(page);
468 		ClearPageReferenced(page);
469 		workingset_activation(page);
470 	}
471 	if (page_is_idle(page))
472 		clear_page_idle(page);
473 }
474 EXPORT_SYMBOL(mark_page_accessed);
475 
476 /**
477  * lru_cache_add - add a page to a page list
478  * @page: the page to be added to the LRU.
479  *
480  * Queue the page for addition to the LRU via pagevec. The decision on whether
481  * to add the page to the [in]active [file|anon] list is deferred until the
482  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
483  * have the page added to the active list using mark_page_accessed().
484  */
lru_cache_add(struct page * page)485 void lru_cache_add(struct page *page)
486 {
487 	struct pagevec *pvec;
488 
489 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
490 	VM_BUG_ON_PAGE(PageLRU(page), page);
491 
492 	/* see the comment in lru_gen_add_page() */
493 	if (lru_gen_enabled() && !PageUnevictable(page) &&
494 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
495 		SetPageActive(page);
496 
497 	get_page(page);
498 	local_lock(&lru_pvecs.lock);
499 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
500 	if (pagevec_add_and_need_flush(pvec, page))
501 		__pagevec_lru_add(pvec);
502 	local_unlock(&lru_pvecs.lock);
503 }
504 EXPORT_SYMBOL(lru_cache_add);
505 
506 /**
507  * lru_cache_add_inactive_or_unevictable
508  * @page:  the page to be added to LRU
509  * @vma:   vma in which page is mapped for determining reclaimability
510  *
511  * Place @page on the inactive or unevictable LRU list, depending on its
512  * evictability.
513  */
lru_cache_add_inactive_or_unevictable(struct page * page,struct vm_area_struct * vma)514 void lru_cache_add_inactive_or_unevictable(struct page *page,
515 					 struct vm_area_struct *vma)
516 {
517 	bool unevictable;
518 
519 	VM_BUG_ON_PAGE(PageLRU(page), page);
520 
521 	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
522 	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
523 		int nr_pages = thp_nr_pages(page);
524 		/*
525 		 * We use the irq-unsafe __mod_zone_page_state because this
526 		 * counter is not modified from interrupt context, and the pte
527 		 * lock is held(spinlock), which implies preemption disabled.
528 		 */
529 		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
530 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
531 	}
532 	lru_cache_add(page);
533 }
534 
535 /*
536  * If the page can not be invalidated, it is moved to the
537  * inactive list to speed up its reclaim.  It is moved to the
538  * head of the list, rather than the tail, to give the flusher
539  * threads some time to write it out, as this is much more
540  * effective than the single-page writeout from reclaim.
541  *
542  * If the page isn't page_mapped and dirty/writeback, the page
543  * could reclaim asap using PG_reclaim.
544  *
545  * 1. active, mapped page -> none
546  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
547  * 3. inactive, mapped page -> none
548  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
549  * 5. inactive, clean -> inactive, tail
550  * 6. Others -> none
551  *
552  * In 4, why it moves inactive's head, the VM expects the page would
553  * be write it out by flusher threads as this is much more effective
554  * than the single-page writeout from reclaim.
555  */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec)556 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
557 {
558 	bool active = PageActive(page);
559 	int nr_pages = thp_nr_pages(page);
560 
561 	if (PageUnevictable(page))
562 		return;
563 
564 	/* Some processes are using the page */
565 	if (page_mapped(page))
566 		return;
567 
568 	del_page_from_lru_list(page, lruvec);
569 	ClearPageActive(page);
570 	ClearPageReferenced(page);
571 
572 	if (PageWriteback(page) || PageDirty(page)) {
573 		/*
574 		 * PG_reclaim could be raced with end_page_writeback
575 		 * It can make readahead confusing.  But race window
576 		 * is _really_ small and  it's non-critical problem.
577 		 */
578 		add_page_to_lru_list(page, lruvec);
579 		SetPageReclaim(page);
580 	} else {
581 		/*
582 		 * The page's writeback ends up during pagevec
583 		 * We move that page into tail of inactive.
584 		 */
585 		add_page_to_lru_list_tail(page, lruvec);
586 		__count_vm_events(PGROTATED, nr_pages);
587 	}
588 
589 	if (active) {
590 		__count_vm_events(PGDEACTIVATE, nr_pages);
591 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
592 				     nr_pages);
593 	}
594 }
595 
lru_deactivate_fn(struct page * page,struct lruvec * lruvec)596 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
597 {
598 	if (!PageUnevictable(page) && (PageActive(page) || lru_gen_enabled())) {
599 		int nr_pages = thp_nr_pages(page);
600 
601 		del_page_from_lru_list(page, lruvec);
602 		ClearPageActive(page);
603 		ClearPageReferenced(page);
604 		add_page_to_lru_list(page, lruvec);
605 
606 		__count_vm_events(PGDEACTIVATE, nr_pages);
607 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
608 				     nr_pages);
609 	}
610 }
611 
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec)612 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
613 {
614 	if (PageAnon(page) && PageSwapBacked(page) &&
615 	    !PageSwapCache(page) && !PageUnevictable(page)) {
616 		int nr_pages = thp_nr_pages(page);
617 
618 		del_page_from_lru_list(page, lruvec);
619 		ClearPageActive(page);
620 		ClearPageReferenced(page);
621 		/*
622 		 * Lazyfree pages are clean anonymous pages.  They have
623 		 * PG_swapbacked flag cleared, to distinguish them from normal
624 		 * anonymous pages
625 		 */
626 		ClearPageSwapBacked(page);
627 		add_page_to_lru_list(page, lruvec);
628 
629 		__count_vm_events(PGLAZYFREE, nr_pages);
630 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
631 				     nr_pages);
632 	}
633 }
634 
635 /*
636  * Drain pages out of the cpu's pagevecs.
637  * Either "cpu" is the current CPU, and preemption has already been
638  * disabled; or "cpu" is being hot-unplugged, and is already dead.
639  */
lru_add_drain_cpu(int cpu)640 void lru_add_drain_cpu(int cpu)
641 {
642 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
643 
644 	if (pagevec_count(pvec))
645 		__pagevec_lru_add(pvec);
646 
647 	pvec = &per_cpu(lru_rotate.pvec, cpu);
648 	/* Disabling interrupts below acts as a compiler barrier. */
649 	if (data_race(pagevec_count(pvec))) {
650 		unsigned long flags;
651 
652 		/* No harm done if a racing interrupt already did this */
653 		local_lock_irqsave(&lru_rotate.lock, flags);
654 		pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
655 		local_unlock_irqrestore(&lru_rotate.lock, flags);
656 	}
657 
658 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
659 	if (pagevec_count(pvec))
660 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
661 
662 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
663 	if (pagevec_count(pvec))
664 		pagevec_lru_move_fn(pvec, lru_deactivate_fn);
665 
666 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
667 	if (pagevec_count(pvec))
668 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
669 
670 	activate_page_drain(cpu);
671 }
672 
673 /**
674  * deactivate_file_page - forcefully deactivate a file page
675  * @page: page to deactivate
676  *
677  * This function hints the VM that @page is a good reclaim candidate,
678  * for example if its invalidation fails due to the page being dirty
679  * or under writeback.
680  */
deactivate_file_page(struct page * page)681 void deactivate_file_page(struct page *page)
682 {
683 	/*
684 	 * In a workload with many unevictable page such as mprotect,
685 	 * unevictable page deactivation for accelerating reclaim is pointless.
686 	 */
687 	if (PageUnevictable(page))
688 		return;
689 
690 	if (likely(get_page_unless_zero(page))) {
691 		struct pagevec *pvec;
692 
693 		local_lock(&lru_pvecs.lock);
694 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
695 
696 		if (pagevec_add_and_need_flush(pvec, page))
697 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
698 		local_unlock(&lru_pvecs.lock);
699 	}
700 }
701 
702 /*
703  * deactivate_page - deactivate a page
704  * @page: page to deactivate
705  *
706  * deactivate_page() moves @page to the inactive list if @page was on the active
707  * list and was not an unevictable page.  This is done to accelerate the reclaim
708  * of @page.
709  */
deactivate_page(struct page * page)710 void deactivate_page(struct page *page)
711 {
712 	if (PageLRU(page) && !PageUnevictable(page) &&
713 	    (PageActive(page) || lru_gen_enabled())) {
714 		struct pagevec *pvec;
715 
716 		local_lock(&lru_pvecs.lock);
717 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
718 		get_page(page);
719 		if (pagevec_add_and_need_flush(pvec, page))
720 			pagevec_lru_move_fn(pvec, lru_deactivate_fn);
721 		local_unlock(&lru_pvecs.lock);
722 	}
723 }
724 
725 /**
726  * mark_page_lazyfree - make an anon page lazyfree
727  * @page: page to deactivate
728  *
729  * mark_page_lazyfree() moves @page to the inactive file list.
730  * This is done to accelerate the reclaim of @page.
731  */
mark_page_lazyfree(struct page * page)732 void mark_page_lazyfree(struct page *page)
733 {
734 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
735 	    !PageSwapCache(page) && !PageUnevictable(page)) {
736 		struct pagevec *pvec;
737 
738 		local_lock(&lru_pvecs.lock);
739 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
740 		get_page(page);
741 		if (pagevec_add_and_need_flush(pvec, page))
742 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
743 		local_unlock(&lru_pvecs.lock);
744 	}
745 }
746 
lru_add_drain(void)747 void lru_add_drain(void)
748 {
749 	local_lock(&lru_pvecs.lock);
750 	lru_add_drain_cpu(smp_processor_id());
751 	local_unlock(&lru_pvecs.lock);
752 }
753 
754 /*
755  * It's called from per-cpu workqueue context in SMP case so
756  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
757  * the same cpu. It shouldn't be a problem in !SMP case since
758  * the core is only one and the locks will disable preemption.
759  */
lru_add_and_bh_lrus_drain(void)760 static void lru_add_and_bh_lrus_drain(void)
761 {
762 	local_lock(&lru_pvecs.lock);
763 	lru_add_drain_cpu(smp_processor_id());
764 	local_unlock(&lru_pvecs.lock);
765 	invalidate_bh_lrus_cpu();
766 }
767 
lru_add_drain_cpu_zone(struct zone * zone)768 void lru_add_drain_cpu_zone(struct zone *zone)
769 {
770 	local_lock(&lru_pvecs.lock);
771 	lru_add_drain_cpu(smp_processor_id());
772 	drain_local_pages(zone);
773 	local_unlock(&lru_pvecs.lock);
774 }
775 
776 #ifdef CONFIG_SMP
777 
778 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
779 
lru_add_drain_per_cpu(struct work_struct * dummy)780 static void lru_add_drain_per_cpu(struct work_struct *dummy)
781 {
782 	lru_add_and_bh_lrus_drain();
783 }
784 
785 /*
786  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
787  * kworkers being shut down before our page_alloc_cpu_dead callback is
788  * executed on the offlined cpu.
789  * Calling this function with cpu hotplug locks held can actually lead
790  * to obscure indirect dependencies via WQ context.
791  */
__lru_add_drain_all(bool force_all_cpus)792 inline void __lru_add_drain_all(bool force_all_cpus)
793 {
794 	/*
795 	 * lru_drain_gen - Global pages generation number
796 	 *
797 	 * (A) Definition: global lru_drain_gen = x implies that all generations
798 	 *     0 < n <= x are already *scheduled* for draining.
799 	 *
800 	 * This is an optimization for the highly-contended use case where a
801 	 * user space workload keeps constantly generating a flow of pages for
802 	 * each CPU.
803 	 */
804 	static unsigned int lru_drain_gen;
805 	static struct cpumask has_work;
806 	static DEFINE_MUTEX(lock);
807 	unsigned cpu, this_gen;
808 
809 	/*
810 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
811 	 * initialized.
812 	 */
813 	if (WARN_ON(!mm_percpu_wq))
814 		return;
815 
816 	/*
817 	 * Guarantee pagevec counter stores visible by this CPU are visible to
818 	 * other CPUs before loading the current drain generation.
819 	 */
820 	smp_mb();
821 
822 	/*
823 	 * (B) Locally cache global LRU draining generation number
824 	 *
825 	 * The read barrier ensures that the counter is loaded before the mutex
826 	 * is taken. It pairs with smp_mb() inside the mutex critical section
827 	 * at (D).
828 	 */
829 	this_gen = smp_load_acquire(&lru_drain_gen);
830 
831 	mutex_lock(&lock);
832 
833 	/*
834 	 * (C) Exit the draining operation if a newer generation, from another
835 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
836 	 */
837 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
838 		goto done;
839 
840 	/*
841 	 * (D) Increment global generation number
842 	 *
843 	 * Pairs with smp_load_acquire() at (B), outside of the critical
844 	 * section. Use a full memory barrier to guarantee that the new global
845 	 * drain generation number is stored before loading pagevec counters.
846 	 *
847 	 * This pairing must be done here, before the for_each_online_cpu loop
848 	 * below which drains the page vectors.
849 	 *
850 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
851 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
852 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
853 	 * along, adds some pages to its per-cpu vectors, then calls
854 	 * lru_add_drain_all().
855 	 *
856 	 * If the paired barrier is done at any later step, e.g. after the
857 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
858 	 * added pages.
859 	 */
860 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
861 	smp_mb();
862 
863 	cpumask_clear(&has_work);
864 	for_each_online_cpu(cpu) {
865 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
866 
867 		if (force_all_cpus ||
868 		    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
869 		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
870 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
871 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
872 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
873 		    need_activate_page_drain(cpu) ||
874 		    has_bh_in_lru(cpu, NULL)) {
875 			INIT_WORK(work, lru_add_drain_per_cpu);
876 			queue_work_on(cpu, mm_percpu_wq, work);
877 			__cpumask_set_cpu(cpu, &has_work);
878 		}
879 	}
880 
881 	for_each_cpu(cpu, &has_work)
882 		flush_work(&per_cpu(lru_add_drain_work, cpu));
883 
884 done:
885 	mutex_unlock(&lock);
886 }
887 
lru_add_drain_all(void)888 void lru_add_drain_all(void)
889 {
890 	__lru_add_drain_all(false);
891 }
892 #else
lru_add_drain_all(void)893 void lru_add_drain_all(void)
894 {
895 	lru_add_drain();
896 }
897 #endif /* CONFIG_SMP */
898 
899 static atomic_t lru_disable_count = ATOMIC_INIT(0);
900 
lru_cache_disabled(void)901 bool lru_cache_disabled(void)
902 {
903 	return atomic_read(&lru_disable_count) != 0;
904 }
905 
lru_cache_enable(void)906 void lru_cache_enable(void)
907 {
908 	atomic_dec(&lru_disable_count);
909 }
910 EXPORT_SYMBOL_GPL(lru_cache_enable);
911 
912 /*
913  * lru_cache_disable() needs to be called before we start compiling
914  * a list of pages to be migrated using isolate_lru_page().
915  * It drains pages on LRU cache and then disable on all cpus until
916  * lru_cache_enable is called.
917  *
918  * Must be paired with a call to lru_cache_enable().
919  */
lru_cache_disable(void)920 void lru_cache_disable(void)
921 {
922 	/*
923 	 * If someone is already disabled lru_cache, just return with
924 	 * increasing the lru_disable_count.
925 	 */
926 	if (atomic_inc_not_zero(&lru_disable_count))
927 		return;
928 #ifdef CONFIG_SMP
929 	/*
930 	 * lru_add_drain_all in the force mode will schedule draining on
931 	 * all online CPUs so any calls of lru_cache_disabled wrapped by
932 	 * local_lock or preemption disabled would be ordered by that.
933 	 * The atomic operation doesn't need to have stronger ordering
934 	 * requirements because that is enforeced by the scheduling
935 	 * guarantees.
936 	 */
937 	__lru_add_drain_all(true);
938 #else
939 	lru_add_and_bh_lrus_drain();
940 #endif
941 	atomic_inc(&lru_disable_count);
942 }
943 EXPORT_SYMBOL_GPL(lru_cache_disable);
944 
945 /**
946  * release_pages - batched put_page()
947  * @pages: array of pages to release
948  * @nr: number of pages
949  *
950  * Decrement the reference count on all the pages in @pages.  If it
951  * fell to zero, remove the page from the LRU and free it.
952  */
release_pages(struct page ** pages,int nr)953 void release_pages(struct page **pages, int nr)
954 {
955 	int i;
956 	LIST_HEAD(pages_to_free);
957 	struct lruvec *lruvec = NULL;
958 	unsigned long flags;
959 	unsigned int lock_batch;
960 
961 	for (i = 0; i < nr; i++) {
962 		struct page *page = pages[i];
963 
964 		/*
965 		 * Make sure the IRQ-safe lock-holding time does not get
966 		 * excessive with a continuous string of pages from the
967 		 * same lruvec. The lock is held only if lruvec != NULL.
968 		 */
969 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
970 			unlock_page_lruvec_irqrestore(lruvec, flags);
971 			lruvec = NULL;
972 		}
973 
974 		page = compound_head(page);
975 		if (is_huge_zero_page(page))
976 			continue;
977 
978 		if (is_zone_device_page(page)) {
979 			if (lruvec) {
980 				unlock_page_lruvec_irqrestore(lruvec, flags);
981 				lruvec = NULL;
982 			}
983 			/*
984 			 * ZONE_DEVICE pages that return 'false' from
985 			 * page_is_devmap_managed() do not require special
986 			 * processing, and instead, expect a call to
987 			 * put_page_testzero().
988 			 */
989 			if (page_is_devmap_managed(page)) {
990 				put_devmap_managed_page(page);
991 				continue;
992 			}
993 			if (put_page_testzero(page))
994 				put_dev_pagemap(page->pgmap);
995 			continue;
996 		}
997 
998 		if (!put_page_testzero(page))
999 			continue;
1000 
1001 		if (PageCompound(page)) {
1002 			if (lruvec) {
1003 				unlock_page_lruvec_irqrestore(lruvec, flags);
1004 				lruvec = NULL;
1005 			}
1006 			__put_compound_page(page);
1007 			continue;
1008 		}
1009 
1010 		if (PageLRU(page)) {
1011 			struct lruvec *prev_lruvec = lruvec;
1012 
1013 			lruvec = relock_page_lruvec_irqsave(page, lruvec,
1014 									&flags);
1015 			if (prev_lruvec != lruvec)
1016 				lock_batch = 0;
1017 
1018 			del_page_from_lru_list(page, lruvec);
1019 			__clear_page_lru_flags(page);
1020 		}
1021 
1022 		__ClearPageWaiters(page);
1023 
1024 		list_add(&page->lru, &pages_to_free);
1025 	}
1026 	if (lruvec)
1027 		unlock_page_lruvec_irqrestore(lruvec, flags);
1028 
1029 	mem_cgroup_uncharge_list(&pages_to_free);
1030 	free_unref_page_list(&pages_to_free);
1031 }
1032 EXPORT_SYMBOL(release_pages);
1033 
1034 /*
1035  * The pages which we're about to release may be in the deferred lru-addition
1036  * queues.  That would prevent them from really being freed right now.  That's
1037  * OK from a correctness point of view but is inefficient - those pages may be
1038  * cache-warm and we want to give them back to the page allocator ASAP.
1039  *
1040  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
1041  * and __pagevec_lru_add_active() call release_pages() directly to avoid
1042  * mutual recursion.
1043  */
__pagevec_release(struct pagevec * pvec)1044 void __pagevec_release(struct pagevec *pvec)
1045 {
1046 	if (!pvec->percpu_pvec_drained) {
1047 		lru_add_drain();
1048 		pvec->percpu_pvec_drained = true;
1049 	}
1050 	release_pages(pvec->pages, pagevec_count(pvec));
1051 	pagevec_reinit(pvec);
1052 }
1053 EXPORT_SYMBOL(__pagevec_release);
1054 
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec)1055 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
1056 {
1057 	int was_unevictable = TestClearPageUnevictable(page);
1058 	int nr_pages = thp_nr_pages(page);
1059 
1060 	VM_BUG_ON_PAGE(PageLRU(page), page);
1061 
1062 	/*
1063 	 * Page becomes evictable in two ways:
1064 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1065 	 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1066 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1067 	 *   b) do PageLRU check before lock [clear_page_mlock]
1068 	 *
1069 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1070 	 * following strict ordering:
1071 	 *
1072 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1073 	 *
1074 	 * SetPageLRU()				TestClearPageMlocked()
1075 	 * smp_mb() // explicit ordering	// above provides strict
1076 	 *					// ordering
1077 	 * PageMlocked()			PageLRU()
1078 	 *
1079 	 *
1080 	 * if '#1' does not observe setting of PG_lru by '#0' and fails
1081 	 * isolation, the explicit barrier will make sure that page_evictable
1082 	 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1083 	 * can be reordered after PageMlocked check and can make '#1' to fail
1084 	 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1085 	 * looking at the same page) and the evictable page will be stranded
1086 	 * in an unevictable LRU.
1087 	 */
1088 	SetPageLRU(page);
1089 	smp_mb__after_atomic();
1090 
1091 	if (page_evictable(page)) {
1092 		if (was_unevictable)
1093 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1094 	} else {
1095 		ClearPageActive(page);
1096 		SetPageUnevictable(page);
1097 		if (!was_unevictable)
1098 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1099 	}
1100 
1101 	add_page_to_lru_list(page, lruvec);
1102 	trace_mm_lru_insertion(page);
1103 }
1104 
1105 /*
1106  * Add the passed pages to the LRU, then drop the caller's refcount
1107  * on them.  Reinitialises the caller's pagevec.
1108  */
__pagevec_lru_add(struct pagevec * pvec)1109 void __pagevec_lru_add(struct pagevec *pvec)
1110 {
1111 	int i;
1112 	struct lruvec *lruvec = NULL;
1113 	unsigned long flags = 0;
1114 
1115 	for (i = 0; i < pagevec_count(pvec); i++) {
1116 		struct page *page = pvec->pages[i];
1117 
1118 		lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1119 		__pagevec_lru_add_fn(page, lruvec);
1120 	}
1121 	if (lruvec)
1122 		unlock_page_lruvec_irqrestore(lruvec, flags);
1123 	release_pages(pvec->pages, pvec->nr);
1124 	pagevec_reinit(pvec);
1125 }
1126 
1127 /**
1128  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1129  * @pvec:	The pagevec to prune
1130  *
1131  * find_get_entries() fills both pages and XArray value entries (aka
1132  * exceptional entries) into the pagevec.  This function prunes all
1133  * exceptionals from @pvec without leaving holes, so that it can be
1134  * passed on to page-only pagevec operations.
1135  */
pagevec_remove_exceptionals(struct pagevec * pvec)1136 void pagevec_remove_exceptionals(struct pagevec *pvec)
1137 {
1138 	int i, j;
1139 
1140 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1141 		struct page *page = pvec->pages[i];
1142 		if (!xa_is_value(page))
1143 			pvec->pages[j++] = page;
1144 	}
1145 	pvec->nr = j;
1146 }
1147 
1148 /**
1149  * pagevec_lookup_range - gang pagecache lookup
1150  * @pvec:	Where the resulting pages are placed
1151  * @mapping:	The address_space to search
1152  * @start:	The starting page index
1153  * @end:	The final page index
1154  *
1155  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1156  * pages in the mapping starting from index @start and upto index @end
1157  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1158  * reference against the pages in @pvec.
1159  *
1160  * The search returns a group of mapping-contiguous pages with ascending
1161  * indexes.  There may be holes in the indices due to not-present pages. We
1162  * also update @start to index the next page for the traversal.
1163  *
1164  * pagevec_lookup_range() returns the number of pages which were found. If this
1165  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1166  * reached.
1167  */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1168 unsigned pagevec_lookup_range(struct pagevec *pvec,
1169 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1170 {
1171 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1172 					pvec->pages);
1173 	return pagevec_count(pvec);
1174 }
1175 EXPORT_SYMBOL(pagevec_lookup_range);
1176 
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1177 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1178 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1179 		xa_mark_t tag)
1180 {
1181 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1182 					PAGEVEC_SIZE, pvec->pages);
1183 	return pagevec_count(pvec);
1184 }
1185 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1186 
1187 /*
1188  * Perform any setup for the swap system
1189  */
swap_setup(void)1190 void __init swap_setup(void)
1191 {
1192 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1193 
1194 	/* Use a smaller cluster for small-memory machines */
1195 	if (megs < 16)
1196 		page_cluster = 2;
1197 	else
1198 		page_cluster = 3;
1199 	/*
1200 	 * Right now other parts of the system means that we
1201 	 * _really_ don't want to cluster much more
1202 	 */
1203 }
1204 
1205 #ifdef CONFIG_DEV_PAGEMAP_OPS
put_devmap_managed_page(struct page * page)1206 void put_devmap_managed_page(struct page *page)
1207 {
1208 	int count;
1209 
1210 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1211 		return;
1212 
1213 	count = page_ref_dec_return(page);
1214 
1215 	/*
1216 	 * devmap page refcounts are 1-based, rather than 0-based: if
1217 	 * refcount is 1, then the page is free and the refcount is
1218 	 * stable because nobody holds a reference on the page.
1219 	 */
1220 	if (count == 1)
1221 		free_devmap_managed_page(page);
1222 	else if (!count)
1223 		__put_page(page);
1224 }
1225 EXPORT_SYMBOL(put_devmap_managed_page);
1226 #endif
1227