• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5  *     & Swedish University of Agricultural Sciences.
6  *
7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8  *     Agricultural Sciences.
9  *
10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11  *
12  * This work is based on the LPC-trie which is originally described in:
13  *
14  * An experimental study of compression methods for dynamic tries
15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16  * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17  *
18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20  *
21  * Code from fib_hash has been reused which includes the following header:
22  *
23  * INET		An implementation of the TCP/IP protocol suite for the LINUX
24  *		operating system.  INET is implemented using the  BSD Socket
25  *		interface as the means of communication with the user level.
26  *
27  *		IPv4 FIB: lookup engine and maintenance routines.
28  *
29  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30  *
31  * Substantial contributions to this work comes from:
32  *
33  *		David S. Miller, <davem@davemloft.net>
34  *		Stephen Hemminger <shemminger@osdl.org>
35  *		Paul E. McKenney <paulmck@us.ibm.com>
36  *		Patrick McHardy <kaber@trash.net>
37  */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 #include <linux/init.h>
58 #include <linux/list.h>
59 #include <linux/slab.h>
60 #include <linux/export.h>
61 #include <linux/vmalloc.h>
62 #include <linux/notifier.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <net/route.h>
67 #include <net/tcp.h>
68 #include <net/sock.h>
69 #include <net/ip_fib.h>
70 #include <net/fib_notifier.h>
71 #include <trace/events/fib.h>
72 #include "fib_lookup.h"
73 
call_fib_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)74 static int call_fib_entry_notifier(struct notifier_block *nb,
75 				   enum fib_event_type event_type, u32 dst,
76 				   int dst_len, struct fib_alias *fa,
77 				   struct netlink_ext_ack *extack)
78 {
79 	struct fib_entry_notifier_info info = {
80 		.info.extack = extack,
81 		.dst = dst,
82 		.dst_len = dst_len,
83 		.fi = fa->fa_info,
84 		.tos = fa->fa_tos,
85 		.type = fa->fa_type,
86 		.tb_id = fa->tb_id,
87 	};
88 	return call_fib4_notifier(nb, event_type, &info.info);
89 }
90 
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)91 static int call_fib_entry_notifiers(struct net *net,
92 				    enum fib_event_type event_type, u32 dst,
93 				    int dst_len, struct fib_alias *fa,
94 				    struct netlink_ext_ack *extack)
95 {
96 	struct fib_entry_notifier_info info = {
97 		.info.extack = extack,
98 		.dst = dst,
99 		.dst_len = dst_len,
100 		.fi = fa->fa_info,
101 		.tos = fa->fa_tos,
102 		.type = fa->fa_type,
103 		.tb_id = fa->tb_id,
104 	};
105 	return call_fib4_notifiers(net, event_type, &info.info);
106 }
107 
108 #define MAX_STAT_DEPTH 32
109 
110 #define KEYLENGTH	(8*sizeof(t_key))
111 #define KEY_MAX		((t_key)~0)
112 
113 typedef unsigned int t_key;
114 
115 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
116 #define IS_TNODE(n)	((n)->bits)
117 #define IS_LEAF(n)	(!(n)->bits)
118 
119 struct key_vector {
120 	t_key key;
121 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
122 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned char slen;
124 	union {
125 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 		struct hlist_head leaf;
127 		/* This array is valid if (pos | bits) > 0 (TNODE) */
128 		struct key_vector __rcu *tnode[0];
129 	};
130 };
131 
132 struct tnode {
133 	struct rcu_head rcu;
134 	t_key empty_children;		/* KEYLENGTH bits needed */
135 	t_key full_children;		/* KEYLENGTH bits needed */
136 	struct key_vector __rcu *parent;
137 	struct key_vector kv[1];
138 #define tn_bits kv[0].bits
139 };
140 
141 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
142 #define LEAF_SIZE	TNODE_SIZE(1)
143 
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats {
146 	unsigned int gets;
147 	unsigned int backtrack;
148 	unsigned int semantic_match_passed;
149 	unsigned int semantic_match_miss;
150 	unsigned int null_node_hit;
151 	unsigned int resize_node_skipped;
152 };
153 #endif
154 
155 struct trie_stat {
156 	unsigned int totdepth;
157 	unsigned int maxdepth;
158 	unsigned int tnodes;
159 	unsigned int leaves;
160 	unsigned int nullpointers;
161 	unsigned int prefixes;
162 	unsigned int nodesizes[MAX_STAT_DEPTH];
163 };
164 
165 struct trie {
166 	struct key_vector kv[1];
167 #ifdef CONFIG_IP_FIB_TRIE_STATS
168 	struct trie_use_stats __percpu *stats;
169 #endif
170 };
171 
172 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
173 static unsigned int tnode_free_size;
174 
175 /*
176  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177  * especially useful before resizing the root node with PREEMPT_NONE configs;
178  * the value was obtained experimentally, aiming to avoid visible slowdown.
179  */
180 unsigned int sysctl_fib_sync_mem = 512 * 1024;
181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
183 
184 static struct kmem_cache *fn_alias_kmem __ro_after_init;
185 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
186 
tn_info(struct key_vector * kv)187 static inline struct tnode *tn_info(struct key_vector *kv)
188 {
189 	return container_of(kv, struct tnode, kv[0]);
190 }
191 
192 /* caller must hold RTNL */
193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
195 
196 /* caller must hold RCU read lock or RTNL */
197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
199 
200 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
202 {
203 	if (n)
204 		rcu_assign_pointer(tn_info(n)->parent, tp);
205 }
206 
207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
208 
209 /* This provides us with the number of children in this node, in the case of a
210  * leaf this will return 0 meaning none of the children are accessible.
211  */
child_length(const struct key_vector * tn)212 static inline unsigned long child_length(const struct key_vector *tn)
213 {
214 	return (1ul << tn->bits) & ~(1ul);
215 }
216 
217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
218 
get_index(t_key key,struct key_vector * kv)219 static inline unsigned long get_index(t_key key, struct key_vector *kv)
220 {
221 	unsigned long index = key ^ kv->key;
222 
223 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
224 		return 0;
225 
226 	return index >> kv->pos;
227 }
228 
229 /* To understand this stuff, an understanding of keys and all their bits is
230  * necessary. Every node in the trie has a key associated with it, but not
231  * all of the bits in that key are significant.
232  *
233  * Consider a node 'n' and its parent 'tp'.
234  *
235  * If n is a leaf, every bit in its key is significant. Its presence is
236  * necessitated by path compression, since during a tree traversal (when
237  * searching for a leaf - unless we are doing an insertion) we will completely
238  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239  * a potentially successful search, that we have indeed been walking the
240  * correct key path.
241  *
242  * Note that we can never "miss" the correct key in the tree if present by
243  * following the wrong path. Path compression ensures that segments of the key
244  * that are the same for all keys with a given prefix are skipped, but the
245  * skipped part *is* identical for each node in the subtrie below the skipped
246  * bit! trie_insert() in this implementation takes care of that.
247  *
248  * if n is an internal node - a 'tnode' here, the various parts of its key
249  * have many different meanings.
250  *
251  * Example:
252  * _________________________________________________________________
253  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254  * -----------------------------------------------------------------
255  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
256  *
257  * _________________________________________________________________
258  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259  * -----------------------------------------------------------------
260  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
261  *
262  * tp->pos = 22
263  * tp->bits = 3
264  * n->pos = 13
265  * n->bits = 4
266  *
267  * First, let's just ignore the bits that come before the parent tp, that is
268  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269  * point we do not use them for anything.
270  *
271  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272  * index into the parent's child array. That is, they will be used to find
273  * 'n' among tp's children.
274  *
275  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
276  * for the node n.
277  *
278  * All the bits we have seen so far are significant to the node n. The rest
279  * of the bits are really not needed or indeed known in n->key.
280  *
281  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282  * n's child array, and will of course be different for each child.
283  *
284  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
285  * at this point.
286  */
287 
288 static const int halve_threshold = 25;
289 static const int inflate_threshold = 50;
290 static const int halve_threshold_root = 15;
291 static const int inflate_threshold_root = 30;
292 
__alias_free_mem(struct rcu_head * head)293 static void __alias_free_mem(struct rcu_head *head)
294 {
295 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 	kmem_cache_free(fn_alias_kmem, fa);
297 }
298 
alias_free_mem_rcu(struct fib_alias * fa)299 static inline void alias_free_mem_rcu(struct fib_alias *fa)
300 {
301 	call_rcu(&fa->rcu, __alias_free_mem);
302 }
303 
304 #define TNODE_VMALLOC_MAX \
305 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
306 
__node_free_rcu(struct rcu_head * head)307 static void __node_free_rcu(struct rcu_head *head)
308 {
309 	struct tnode *n = container_of(head, struct tnode, rcu);
310 
311 	if (!n->tn_bits)
312 		kmem_cache_free(trie_leaf_kmem, n);
313 	else
314 		kvfree(n);
315 }
316 
317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
318 
tnode_alloc(int bits)319 static struct tnode *tnode_alloc(int bits)
320 {
321 	size_t size;
322 
323 	/* verify bits is within bounds */
324 	if (bits > TNODE_VMALLOC_MAX)
325 		return NULL;
326 
327 	/* determine size and verify it is non-zero and didn't overflow */
328 	size = TNODE_SIZE(1ul << bits);
329 
330 	if (size <= PAGE_SIZE)
331 		return kzalloc(size, GFP_KERNEL);
332 	else
333 		return vzalloc(size);
334 }
335 
empty_child_inc(struct key_vector * n)336 static inline void empty_child_inc(struct key_vector *n)
337 {
338 	tn_info(n)->empty_children++;
339 
340 	if (!tn_info(n)->empty_children)
341 		tn_info(n)->full_children++;
342 }
343 
empty_child_dec(struct key_vector * n)344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 	if (!tn_info(n)->empty_children)
347 		tn_info(n)->full_children--;
348 
349 	tn_info(n)->empty_children--;
350 }
351 
leaf_new(t_key key,struct fib_alias * fa)352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
353 {
354 	struct key_vector *l;
355 	struct tnode *kv;
356 
357 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
358 	if (!kv)
359 		return NULL;
360 
361 	/* initialize key vector */
362 	l = kv->kv;
363 	l->key = key;
364 	l->pos = 0;
365 	l->bits = 0;
366 	l->slen = fa->fa_slen;
367 
368 	/* link leaf to fib alias */
369 	INIT_HLIST_HEAD(&l->leaf);
370 	hlist_add_head(&fa->fa_list, &l->leaf);
371 
372 	return l;
373 }
374 
tnode_new(t_key key,int pos,int bits)375 static struct key_vector *tnode_new(t_key key, int pos, int bits)
376 {
377 	unsigned int shift = pos + bits;
378 	struct key_vector *tn;
379 	struct tnode *tnode;
380 
381 	/* verify bits and pos their msb bits clear and values are valid */
382 	BUG_ON(!bits || (shift > KEYLENGTH));
383 
384 	tnode = tnode_alloc(bits);
385 	if (!tnode)
386 		return NULL;
387 
388 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
389 		 sizeof(struct key_vector *) << bits);
390 
391 	if (bits == KEYLENGTH)
392 		tnode->full_children = 1;
393 	else
394 		tnode->empty_children = 1ul << bits;
395 
396 	tn = tnode->kv;
397 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
398 	tn->pos = pos;
399 	tn->bits = bits;
400 	tn->slen = pos;
401 
402 	return tn;
403 }
404 
405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
406  * and no bits are skipped. See discussion in dyntree paper p. 6
407  */
tnode_full(struct key_vector * tn,struct key_vector * n)408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
409 {
410 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
411 }
412 
413 /* Add a child at position i overwriting the old value.
414  * Update the value of full_children and empty_children.
415  */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)416 static void put_child(struct key_vector *tn, unsigned long i,
417 		      struct key_vector *n)
418 {
419 	struct key_vector *chi = get_child(tn, i);
420 	int isfull, wasfull;
421 
422 	BUG_ON(i >= child_length(tn));
423 
424 	/* update emptyChildren, overflow into fullChildren */
425 	if (!n && chi)
426 		empty_child_inc(tn);
427 	if (n && !chi)
428 		empty_child_dec(tn);
429 
430 	/* update fullChildren */
431 	wasfull = tnode_full(tn, chi);
432 	isfull = tnode_full(tn, n);
433 
434 	if (wasfull && !isfull)
435 		tn_info(tn)->full_children--;
436 	else if (!wasfull && isfull)
437 		tn_info(tn)->full_children++;
438 
439 	if (n && (tn->slen < n->slen))
440 		tn->slen = n->slen;
441 
442 	rcu_assign_pointer(tn->tnode[i], n);
443 }
444 
update_children(struct key_vector * tn)445 static void update_children(struct key_vector *tn)
446 {
447 	unsigned long i;
448 
449 	/* update all of the child parent pointers */
450 	for (i = child_length(tn); i;) {
451 		struct key_vector *inode = get_child(tn, --i);
452 
453 		if (!inode)
454 			continue;
455 
456 		/* Either update the children of a tnode that
457 		 * already belongs to us or update the child
458 		 * to point to ourselves.
459 		 */
460 		if (node_parent(inode) == tn)
461 			update_children(inode);
462 		else
463 			node_set_parent(inode, tn);
464 	}
465 }
466 
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)467 static inline void put_child_root(struct key_vector *tp, t_key key,
468 				  struct key_vector *n)
469 {
470 	if (IS_TRIE(tp))
471 		rcu_assign_pointer(tp->tnode[0], n);
472 	else
473 		put_child(tp, get_index(key, tp), n);
474 }
475 
tnode_free_init(struct key_vector * tn)476 static inline void tnode_free_init(struct key_vector *tn)
477 {
478 	tn_info(tn)->rcu.next = NULL;
479 }
480 
tnode_free_append(struct key_vector * tn,struct key_vector * n)481 static inline void tnode_free_append(struct key_vector *tn,
482 				     struct key_vector *n)
483 {
484 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
485 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
486 }
487 
tnode_free(struct key_vector * tn)488 static void tnode_free(struct key_vector *tn)
489 {
490 	struct callback_head *head = &tn_info(tn)->rcu;
491 
492 	while (head) {
493 		head = head->next;
494 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
495 		node_free(tn);
496 
497 		tn = container_of(head, struct tnode, rcu)->kv;
498 	}
499 
500 	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
501 		tnode_free_size = 0;
502 		synchronize_rcu();
503 	}
504 }
505 
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)506 static struct key_vector *replace(struct trie *t,
507 				  struct key_vector *oldtnode,
508 				  struct key_vector *tn)
509 {
510 	struct key_vector *tp = node_parent(oldtnode);
511 	unsigned long i;
512 
513 	/* setup the parent pointer out of and back into this node */
514 	NODE_INIT_PARENT(tn, tp);
515 	put_child_root(tp, tn->key, tn);
516 
517 	/* update all of the child parent pointers */
518 	update_children(tn);
519 
520 	/* all pointers should be clean so we are done */
521 	tnode_free(oldtnode);
522 
523 	/* resize children now that oldtnode is freed */
524 	for (i = child_length(tn); i;) {
525 		struct key_vector *inode = get_child(tn, --i);
526 
527 		/* resize child node */
528 		if (tnode_full(tn, inode))
529 			tn = resize(t, inode);
530 	}
531 
532 	return tp;
533 }
534 
inflate(struct trie * t,struct key_vector * oldtnode)535 static struct key_vector *inflate(struct trie *t,
536 				  struct key_vector *oldtnode)
537 {
538 	struct key_vector *tn;
539 	unsigned long i;
540 	t_key m;
541 
542 	pr_debug("In inflate\n");
543 
544 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
545 	if (!tn)
546 		goto notnode;
547 
548 	/* prepare oldtnode to be freed */
549 	tnode_free_init(oldtnode);
550 
551 	/* Assemble all of the pointers in our cluster, in this case that
552 	 * represents all of the pointers out of our allocated nodes that
553 	 * point to existing tnodes and the links between our allocated
554 	 * nodes.
555 	 */
556 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
557 		struct key_vector *inode = get_child(oldtnode, --i);
558 		struct key_vector *node0, *node1;
559 		unsigned long j, k;
560 
561 		/* An empty child */
562 		if (!inode)
563 			continue;
564 
565 		/* A leaf or an internal node with skipped bits */
566 		if (!tnode_full(oldtnode, inode)) {
567 			put_child(tn, get_index(inode->key, tn), inode);
568 			continue;
569 		}
570 
571 		/* drop the node in the old tnode free list */
572 		tnode_free_append(oldtnode, inode);
573 
574 		/* An internal node with two children */
575 		if (inode->bits == 1) {
576 			put_child(tn, 2 * i + 1, get_child(inode, 1));
577 			put_child(tn, 2 * i, get_child(inode, 0));
578 			continue;
579 		}
580 
581 		/* We will replace this node 'inode' with two new
582 		 * ones, 'node0' and 'node1', each with half of the
583 		 * original children. The two new nodes will have
584 		 * a position one bit further down the key and this
585 		 * means that the "significant" part of their keys
586 		 * (see the discussion near the top of this file)
587 		 * will differ by one bit, which will be "0" in
588 		 * node0's key and "1" in node1's key. Since we are
589 		 * moving the key position by one step, the bit that
590 		 * we are moving away from - the bit at position
591 		 * (tn->pos) - is the one that will differ between
592 		 * node0 and node1. So... we synthesize that bit in the
593 		 * two new keys.
594 		 */
595 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
596 		if (!node1)
597 			goto nomem;
598 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
599 
600 		tnode_free_append(tn, node1);
601 		if (!node0)
602 			goto nomem;
603 		tnode_free_append(tn, node0);
604 
605 		/* populate child pointers in new nodes */
606 		for (k = child_length(inode), j = k / 2; j;) {
607 			put_child(node1, --j, get_child(inode, --k));
608 			put_child(node0, j, get_child(inode, j));
609 			put_child(node1, --j, get_child(inode, --k));
610 			put_child(node0, j, get_child(inode, j));
611 		}
612 
613 		/* link new nodes to parent */
614 		NODE_INIT_PARENT(node1, tn);
615 		NODE_INIT_PARENT(node0, tn);
616 
617 		/* link parent to nodes */
618 		put_child(tn, 2 * i + 1, node1);
619 		put_child(tn, 2 * i, node0);
620 	}
621 
622 	/* setup the parent pointers into and out of this node */
623 	return replace(t, oldtnode, tn);
624 nomem:
625 	/* all pointers should be clean so we are done */
626 	tnode_free(tn);
627 notnode:
628 	return NULL;
629 }
630 
halve(struct trie * t,struct key_vector * oldtnode)631 static struct key_vector *halve(struct trie *t,
632 				struct key_vector *oldtnode)
633 {
634 	struct key_vector *tn;
635 	unsigned long i;
636 
637 	pr_debug("In halve\n");
638 
639 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
640 	if (!tn)
641 		goto notnode;
642 
643 	/* prepare oldtnode to be freed */
644 	tnode_free_init(oldtnode);
645 
646 	/* Assemble all of the pointers in our cluster, in this case that
647 	 * represents all of the pointers out of our allocated nodes that
648 	 * point to existing tnodes and the links between our allocated
649 	 * nodes.
650 	 */
651 	for (i = child_length(oldtnode); i;) {
652 		struct key_vector *node1 = get_child(oldtnode, --i);
653 		struct key_vector *node0 = get_child(oldtnode, --i);
654 		struct key_vector *inode;
655 
656 		/* At least one of the children is empty */
657 		if (!node1 || !node0) {
658 			put_child(tn, i / 2, node1 ? : node0);
659 			continue;
660 		}
661 
662 		/* Two nonempty children */
663 		inode = tnode_new(node0->key, oldtnode->pos, 1);
664 		if (!inode)
665 			goto nomem;
666 		tnode_free_append(tn, inode);
667 
668 		/* initialize pointers out of node */
669 		put_child(inode, 1, node1);
670 		put_child(inode, 0, node0);
671 		NODE_INIT_PARENT(inode, tn);
672 
673 		/* link parent to node */
674 		put_child(tn, i / 2, inode);
675 	}
676 
677 	/* setup the parent pointers into and out of this node */
678 	return replace(t, oldtnode, tn);
679 nomem:
680 	/* all pointers should be clean so we are done */
681 	tnode_free(tn);
682 notnode:
683 	return NULL;
684 }
685 
collapse(struct trie * t,struct key_vector * oldtnode)686 static struct key_vector *collapse(struct trie *t,
687 				   struct key_vector *oldtnode)
688 {
689 	struct key_vector *n, *tp;
690 	unsigned long i;
691 
692 	/* scan the tnode looking for that one child that might still exist */
693 	for (n = NULL, i = child_length(oldtnode); !n && i;)
694 		n = get_child(oldtnode, --i);
695 
696 	/* compress one level */
697 	tp = node_parent(oldtnode);
698 	put_child_root(tp, oldtnode->key, n);
699 	node_set_parent(n, tp);
700 
701 	/* drop dead node */
702 	node_free(oldtnode);
703 
704 	return tp;
705 }
706 
update_suffix(struct key_vector * tn)707 static unsigned char update_suffix(struct key_vector *tn)
708 {
709 	unsigned char slen = tn->pos;
710 	unsigned long stride, i;
711 	unsigned char slen_max;
712 
713 	/* only vector 0 can have a suffix length greater than or equal to
714 	 * tn->pos + tn->bits, the second highest node will have a suffix
715 	 * length at most of tn->pos + tn->bits - 1
716 	 */
717 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
718 
719 	/* search though the list of children looking for nodes that might
720 	 * have a suffix greater than the one we currently have.  This is
721 	 * why we start with a stride of 2 since a stride of 1 would
722 	 * represent the nodes with suffix length equal to tn->pos
723 	 */
724 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
725 		struct key_vector *n = get_child(tn, i);
726 
727 		if (!n || (n->slen <= slen))
728 			continue;
729 
730 		/* update stride and slen based on new value */
731 		stride <<= (n->slen - slen);
732 		slen = n->slen;
733 		i &= ~(stride - 1);
734 
735 		/* stop searching if we have hit the maximum possible value */
736 		if (slen >= slen_max)
737 			break;
738 	}
739 
740 	tn->slen = slen;
741 
742 	return slen;
743 }
744 
745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746  * the Helsinki University of Technology and Matti Tikkanen of Nokia
747  * Telecommunications, page 6:
748  * "A node is doubled if the ratio of non-empty children to all
749  * children in the *doubled* node is at least 'high'."
750  *
751  * 'high' in this instance is the variable 'inflate_threshold'. It
752  * is expressed as a percentage, so we multiply it with
753  * child_length() and instead of multiplying by 2 (since the
754  * child array will be doubled by inflate()) and multiplying
755  * the left-hand side by 100 (to handle the percentage thing) we
756  * multiply the left-hand side by 50.
757  *
758  * The left-hand side may look a bit weird: child_length(tn)
759  * - tn->empty_children is of course the number of non-null children
760  * in the current node. tn->full_children is the number of "full"
761  * children, that is non-null tnodes with a skip value of 0.
762  * All of those will be doubled in the resulting inflated tnode, so
763  * we just count them one extra time here.
764  *
765  * A clearer way to write this would be:
766  *
767  * to_be_doubled = tn->full_children;
768  * not_to_be_doubled = child_length(tn) - tn->empty_children -
769  *     tn->full_children;
770  *
771  * new_child_length = child_length(tn) * 2;
772  *
773  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
774  *      new_child_length;
775  * if (new_fill_factor >= inflate_threshold)
776  *
777  * ...and so on, tho it would mess up the while () loop.
778  *
779  * anyway,
780  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781  *      inflate_threshold
782  *
783  * avoid a division:
784  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785  *      inflate_threshold * new_child_length
786  *
787  * expand not_to_be_doubled and to_be_doubled, and shorten:
788  * 100 * (child_length(tn) - tn->empty_children +
789  *    tn->full_children) >= inflate_threshold * new_child_length
790  *
791  * expand new_child_length:
792  * 100 * (child_length(tn) - tn->empty_children +
793  *    tn->full_children) >=
794  *      inflate_threshold * child_length(tn) * 2
795  *
796  * shorten again:
797  * 50 * (tn->full_children + child_length(tn) -
798  *    tn->empty_children) >= inflate_threshold *
799  *    child_length(tn)
800  *
801  */
should_inflate(struct key_vector * tp,struct key_vector * tn)802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
803 {
804 	unsigned long used = child_length(tn);
805 	unsigned long threshold = used;
806 
807 	/* Keep root node larger */
808 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
809 	used -= tn_info(tn)->empty_children;
810 	used += tn_info(tn)->full_children;
811 
812 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
813 
814 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
815 }
816 
should_halve(struct key_vector * tp,struct key_vector * tn)817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
818 {
819 	unsigned long used = child_length(tn);
820 	unsigned long threshold = used;
821 
822 	/* Keep root node larger */
823 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
824 	used -= tn_info(tn)->empty_children;
825 
826 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
827 
828 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
829 }
830 
should_collapse(struct key_vector * tn)831 static inline bool should_collapse(struct key_vector *tn)
832 {
833 	unsigned long used = child_length(tn);
834 
835 	used -= tn_info(tn)->empty_children;
836 
837 	/* account for bits == KEYLENGTH case */
838 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
839 		used -= KEY_MAX;
840 
841 	/* One child or none, time to drop us from the trie */
842 	return used < 2;
843 }
844 
845 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)846 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
847 {
848 #ifdef CONFIG_IP_FIB_TRIE_STATS
849 	struct trie_use_stats __percpu *stats = t->stats;
850 #endif
851 	struct key_vector *tp = node_parent(tn);
852 	unsigned long cindex = get_index(tn->key, tp);
853 	int max_work = MAX_WORK;
854 
855 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 		 tn, inflate_threshold, halve_threshold);
857 
858 	/* track the tnode via the pointer from the parent instead of
859 	 * doing it ourselves.  This way we can let RCU fully do its
860 	 * thing without us interfering
861 	 */
862 	BUG_ON(tn != get_child(tp, cindex));
863 
864 	/* Double as long as the resulting node has a number of
865 	 * nonempty nodes that are above the threshold.
866 	 */
867 	while (should_inflate(tp, tn) && max_work) {
868 		tp = inflate(t, tn);
869 		if (!tp) {
870 #ifdef CONFIG_IP_FIB_TRIE_STATS
871 			this_cpu_inc(stats->resize_node_skipped);
872 #endif
873 			break;
874 		}
875 
876 		max_work--;
877 		tn = get_child(tp, cindex);
878 	}
879 
880 	/* update parent in case inflate failed */
881 	tp = node_parent(tn);
882 
883 	/* Return if at least one inflate is run */
884 	if (max_work != MAX_WORK)
885 		return tp;
886 
887 	/* Halve as long as the number of empty children in this
888 	 * node is above threshold.
889 	 */
890 	while (should_halve(tp, tn) && max_work) {
891 		tp = halve(t, tn);
892 		if (!tp) {
893 #ifdef CONFIG_IP_FIB_TRIE_STATS
894 			this_cpu_inc(stats->resize_node_skipped);
895 #endif
896 			break;
897 		}
898 
899 		max_work--;
900 		tn = get_child(tp, cindex);
901 	}
902 
903 	/* Only one child remains */
904 	if (should_collapse(tn))
905 		return collapse(t, tn);
906 
907 	/* update parent in case halve failed */
908 	return node_parent(tn);
909 }
910 
node_pull_suffix(struct key_vector * tn,unsigned char slen)911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
912 {
913 	unsigned char node_slen = tn->slen;
914 
915 	while ((node_slen > tn->pos) && (node_slen > slen)) {
916 		slen = update_suffix(tn);
917 		if (node_slen == slen)
918 			break;
919 
920 		tn = node_parent(tn);
921 		node_slen = tn->slen;
922 	}
923 }
924 
node_push_suffix(struct key_vector * tn,unsigned char slen)925 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
926 {
927 	while (tn->slen < slen) {
928 		tn->slen = slen;
929 		tn = node_parent(tn);
930 	}
931 }
932 
933 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)934 static struct key_vector *fib_find_node(struct trie *t,
935 					struct key_vector **tp, u32 key)
936 {
937 	struct key_vector *pn, *n = t->kv;
938 	unsigned long index = 0;
939 
940 	do {
941 		pn = n;
942 		n = get_child_rcu(n, index);
943 
944 		if (!n)
945 			break;
946 
947 		index = get_cindex(key, n);
948 
949 		/* This bit of code is a bit tricky but it combines multiple
950 		 * checks into a single check.  The prefix consists of the
951 		 * prefix plus zeros for the bits in the cindex. The index
952 		 * is the difference between the key and this value.  From
953 		 * this we can actually derive several pieces of data.
954 		 *   if (index >= (1ul << bits))
955 		 *     we have a mismatch in skip bits and failed
956 		 *   else
957 		 *     we know the value is cindex
958 		 *
959 		 * This check is safe even if bits == KEYLENGTH due to the
960 		 * fact that we can only allocate a node with 32 bits if a
961 		 * long is greater than 32 bits.
962 		 */
963 		if (index >= (1ul << n->bits)) {
964 			n = NULL;
965 			break;
966 		}
967 
968 		/* keep searching until we find a perfect match leaf or NULL */
969 	} while (IS_TNODE(n));
970 
971 	*tp = pn;
972 
973 	return n;
974 }
975 
976 /* Return the first fib alias matching TOS with
977  * priority less than or equal to PRIO.
978  * If 'find_first' is set, return the first matching
979  * fib alias, regardless of TOS and priority.
980  */
fib_find_alias(struct hlist_head * fah,u8 slen,u8 tos,u32 prio,u32 tb_id,bool find_first)981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
982 					u8 tos, u32 prio, u32 tb_id,
983 					bool find_first)
984 {
985 	struct fib_alias *fa;
986 
987 	if (!fah)
988 		return NULL;
989 
990 	hlist_for_each_entry(fa, fah, fa_list) {
991 		if (fa->fa_slen < slen)
992 			continue;
993 		if (fa->fa_slen != slen)
994 			break;
995 		if (fa->tb_id > tb_id)
996 			continue;
997 		if (fa->tb_id != tb_id)
998 			break;
999 		if (find_first)
1000 			return fa;
1001 		if (fa->fa_tos > tos)
1002 			continue;
1003 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 			return fa;
1005 	}
1006 
1007 	return NULL;
1008 }
1009 
1010 static struct fib_alias *
fib_find_matching_alias(struct net * net,const struct fib_rt_info * fri)1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012 {
1013 	u8 slen = KEYLENGTH - fri->dst_len;
1014 	struct key_vector *l, *tp;
1015 	struct fib_table *tb;
1016 	struct fib_alias *fa;
1017 	struct trie *t;
1018 
1019 	tb = fib_get_table(net, fri->tb_id);
1020 	if (!tb)
1021 		return NULL;
1022 
1023 	t = (struct trie *)tb->tb_data;
1024 	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 	if (!l)
1026 		return NULL;
1027 
1028 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 		    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031 		    fa->fa_type == fri->type)
1032 			return fa;
1033 	}
1034 
1035 	return NULL;
1036 }
1037 
fib_alias_hw_flags_set(struct net * net,const struct fib_rt_info * fri)1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039 {
1040 	u8 fib_notify_on_flag_change;
1041 	struct fib_alias *fa_match;
1042 	struct sk_buff *skb;
1043 	int err;
1044 
1045 	rcu_read_lock();
1046 
1047 	fa_match = fib_find_matching_alias(net, fri);
1048 	if (!fa_match)
1049 		goto out;
1050 
1051 	/* These are paired with the WRITE_ONCE() happening in this function.
1052 	 * The reason is that we are only protected by RCU at this point.
1053 	 */
1054 	if (READ_ONCE(fa_match->offload) == fri->offload &&
1055 	    READ_ONCE(fa_match->trap) == fri->trap &&
1056 	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057 		goto out;
1058 
1059 	WRITE_ONCE(fa_match->offload, fri->offload);
1060 	WRITE_ONCE(fa_match->trap, fri->trap);
1061 
1062 	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063 
1064 	/* 2 means send notifications only if offload_failed was changed. */
1065 	if (fib_notify_on_flag_change == 2 &&
1066 	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067 		goto out;
1068 
1069 	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070 
1071 	if (!fib_notify_on_flag_change)
1072 		goto out;
1073 
1074 	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075 	if (!skb) {
1076 		err = -ENOBUFS;
1077 		goto errout;
1078 	}
1079 
1080 	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081 	if (err < 0) {
1082 		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083 		WARN_ON(err == -EMSGSIZE);
1084 		kfree_skb(skb);
1085 		goto errout;
1086 	}
1087 
1088 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089 	goto out;
1090 
1091 errout:
1092 	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093 out:
1094 	rcu_read_unlock();
1095 }
1096 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097 
trie_rebalance(struct trie * t,struct key_vector * tn)1098 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099 {
1100 	while (!IS_TRIE(tn))
1101 		tn = resize(t, tn);
1102 }
1103 
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1104 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105 			   struct fib_alias *new, t_key key)
1106 {
1107 	struct key_vector *n, *l;
1108 
1109 	l = leaf_new(key, new);
1110 	if (!l)
1111 		goto noleaf;
1112 
1113 	/* retrieve child from parent node */
1114 	n = get_child(tp, get_index(key, tp));
1115 
1116 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117 	 *
1118 	 *  Add a new tnode here
1119 	 *  first tnode need some special handling
1120 	 *  leaves us in position for handling as case 3
1121 	 */
1122 	if (n) {
1123 		struct key_vector *tn;
1124 
1125 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1126 		if (!tn)
1127 			goto notnode;
1128 
1129 		/* initialize routes out of node */
1130 		NODE_INIT_PARENT(tn, tp);
1131 		put_child(tn, get_index(key, tn) ^ 1, n);
1132 
1133 		/* start adding routes into the node */
1134 		put_child_root(tp, key, tn);
1135 		node_set_parent(n, tn);
1136 
1137 		/* parent now has a NULL spot where the leaf can go */
1138 		tp = tn;
1139 	}
1140 
1141 	/* Case 3: n is NULL, and will just insert a new leaf */
1142 	node_push_suffix(tp, new->fa_slen);
1143 	NODE_INIT_PARENT(l, tp);
1144 	put_child_root(tp, key, l);
1145 	trie_rebalance(t, tp);
1146 
1147 	return 0;
1148 notnode:
1149 	node_free(l);
1150 noleaf:
1151 	return -ENOMEM;
1152 }
1153 
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1154 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155 			    struct key_vector *l, struct fib_alias *new,
1156 			    struct fib_alias *fa, t_key key)
1157 {
1158 	if (!l)
1159 		return fib_insert_node(t, tp, new, key);
1160 
1161 	if (fa) {
1162 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163 	} else {
1164 		struct fib_alias *last;
1165 
1166 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1167 			if (new->fa_slen < last->fa_slen)
1168 				break;
1169 			if ((new->fa_slen == last->fa_slen) &&
1170 			    (new->tb_id > last->tb_id))
1171 				break;
1172 			fa = last;
1173 		}
1174 
1175 		if (fa)
1176 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177 		else
1178 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179 	}
1180 
1181 	/* if we added to the tail node then we need to update slen */
1182 	if (l->slen < new->fa_slen) {
1183 		l->slen = new->fa_slen;
1184 		node_push_suffix(tp, new->fa_slen);
1185 	}
1186 
1187 	return 0;
1188 }
1189 
fib_valid_key_len(u32 key,u8 plen,struct netlink_ext_ack * extack)1190 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1191 {
1192 	if (plen > KEYLENGTH) {
1193 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1194 		return false;
1195 	}
1196 
1197 	if ((plen < KEYLENGTH) && (key << plen)) {
1198 		NL_SET_ERR_MSG(extack,
1199 			       "Invalid prefix for given prefix length");
1200 		return false;
1201 	}
1202 
1203 	return true;
1204 }
1205 
1206 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1207 			     struct key_vector *l, struct fib_alias *old);
1208 
1209 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1210 int fib_table_insert(struct net *net, struct fib_table *tb,
1211 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1212 {
1213 	struct trie *t = (struct trie *)tb->tb_data;
1214 	struct fib_alias *fa, *new_fa;
1215 	struct key_vector *l, *tp;
1216 	u16 nlflags = NLM_F_EXCL;
1217 	struct fib_info *fi;
1218 	u8 plen = cfg->fc_dst_len;
1219 	u8 slen = KEYLENGTH - plen;
1220 	u8 tos = cfg->fc_tos;
1221 	u32 key;
1222 	int err;
1223 
1224 	key = ntohl(cfg->fc_dst);
1225 
1226 	if (!fib_valid_key_len(key, plen, extack))
1227 		return -EINVAL;
1228 
1229 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1230 
1231 	fi = fib_create_info(cfg, extack);
1232 	if (IS_ERR(fi)) {
1233 		err = PTR_ERR(fi);
1234 		goto err;
1235 	}
1236 
1237 	l = fib_find_node(t, &tp, key);
1238 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1239 				tb->tb_id, false) : NULL;
1240 
1241 	/* Now fa, if non-NULL, points to the first fib alias
1242 	 * with the same keys [prefix,tos,priority], if such key already
1243 	 * exists or to the node before which we will insert new one.
1244 	 *
1245 	 * If fa is NULL, we will need to allocate a new one and
1246 	 * insert to the tail of the section matching the suffix length
1247 	 * of the new alias.
1248 	 */
1249 
1250 	if (fa && fa->fa_tos == tos &&
1251 	    fa->fa_info->fib_priority == fi->fib_priority) {
1252 		struct fib_alias *fa_first, *fa_match;
1253 
1254 		err = -EEXIST;
1255 		if (cfg->fc_nlflags & NLM_F_EXCL)
1256 			goto out;
1257 
1258 		nlflags &= ~NLM_F_EXCL;
1259 
1260 		/* We have 2 goals:
1261 		 * 1. Find exact match for type, scope, fib_info to avoid
1262 		 * duplicate routes
1263 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1264 		 */
1265 		fa_match = NULL;
1266 		fa_first = fa;
1267 		hlist_for_each_entry_from(fa, fa_list) {
1268 			if ((fa->fa_slen != slen) ||
1269 			    (fa->tb_id != tb->tb_id) ||
1270 			    (fa->fa_tos != tos))
1271 				break;
1272 			if (fa->fa_info->fib_priority != fi->fib_priority)
1273 				break;
1274 			if (fa->fa_type == cfg->fc_type &&
1275 			    fa->fa_info == fi) {
1276 				fa_match = fa;
1277 				break;
1278 			}
1279 		}
1280 
1281 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1282 			struct fib_info *fi_drop;
1283 			u8 state;
1284 
1285 			nlflags |= NLM_F_REPLACE;
1286 			fa = fa_first;
1287 			if (fa_match) {
1288 				if (fa == fa_match)
1289 					err = 0;
1290 				goto out;
1291 			}
1292 			err = -ENOBUFS;
1293 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1294 			if (!new_fa)
1295 				goto out;
1296 
1297 			fi_drop = fa->fa_info;
1298 			new_fa->fa_tos = fa->fa_tos;
1299 			new_fa->fa_info = fi;
1300 			new_fa->fa_type = cfg->fc_type;
1301 			state = fa->fa_state;
1302 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1303 			new_fa->fa_slen = fa->fa_slen;
1304 			new_fa->tb_id = tb->tb_id;
1305 			new_fa->fa_default = -1;
1306 			new_fa->offload = 0;
1307 			new_fa->trap = 0;
1308 			new_fa->offload_failed = 0;
1309 
1310 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1311 
1312 			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1313 					   tb->tb_id, true) == new_fa) {
1314 				enum fib_event_type fib_event;
1315 
1316 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1317 				err = call_fib_entry_notifiers(net, fib_event,
1318 							       key, plen,
1319 							       new_fa, extack);
1320 				if (err) {
1321 					hlist_replace_rcu(&new_fa->fa_list,
1322 							  &fa->fa_list);
1323 					goto out_free_new_fa;
1324 				}
1325 			}
1326 
1327 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1328 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1329 
1330 			alias_free_mem_rcu(fa);
1331 
1332 			fib_release_info(fi_drop);
1333 			if (state & FA_S_ACCESSED)
1334 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1335 
1336 			goto succeeded;
1337 		}
1338 		/* Error if we find a perfect match which
1339 		 * uses the same scope, type, and nexthop
1340 		 * information.
1341 		 */
1342 		if (fa_match)
1343 			goto out;
1344 
1345 		if (cfg->fc_nlflags & NLM_F_APPEND)
1346 			nlflags |= NLM_F_APPEND;
1347 		else
1348 			fa = fa_first;
1349 	}
1350 	err = -ENOENT;
1351 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1352 		goto out;
1353 
1354 	nlflags |= NLM_F_CREATE;
1355 	err = -ENOBUFS;
1356 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1357 	if (!new_fa)
1358 		goto out;
1359 
1360 	new_fa->fa_info = fi;
1361 	new_fa->fa_tos = tos;
1362 	new_fa->fa_type = cfg->fc_type;
1363 	new_fa->fa_state = 0;
1364 	new_fa->fa_slen = slen;
1365 	new_fa->tb_id = tb->tb_id;
1366 	new_fa->fa_default = -1;
1367 	new_fa->offload = 0;
1368 	new_fa->trap = 0;
1369 	new_fa->offload_failed = 0;
1370 
1371 	/* Insert new entry to the list. */
1372 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1373 	if (err)
1374 		goto out_free_new_fa;
1375 
1376 	/* The alias was already inserted, so the node must exist. */
1377 	l = l ? l : fib_find_node(t, &tp, key);
1378 	if (WARN_ON_ONCE(!l)) {
1379 		err = -ENOENT;
1380 		goto out_free_new_fa;
1381 	}
1382 
1383 	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1384 	    new_fa) {
1385 		enum fib_event_type fib_event;
1386 
1387 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1388 		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1389 					       new_fa, extack);
1390 		if (err)
1391 			goto out_remove_new_fa;
1392 	}
1393 
1394 	if (!plen)
1395 		tb->tb_num_default++;
1396 
1397 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1398 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1399 		  &cfg->fc_nlinfo, nlflags);
1400 succeeded:
1401 	return 0;
1402 
1403 out_remove_new_fa:
1404 	fib_remove_alias(t, tp, l, new_fa);
1405 out_free_new_fa:
1406 	kmem_cache_free(fn_alias_kmem, new_fa);
1407 out:
1408 	fib_release_info(fi);
1409 err:
1410 	return err;
1411 }
1412 
prefix_mismatch(t_key key,struct key_vector * n)1413 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1414 {
1415 	t_key prefix = n->key;
1416 
1417 	return (key ^ prefix) & (prefix | -prefix);
1418 }
1419 
fib_lookup_good_nhc(const struct fib_nh_common * nhc,int fib_flags,const struct flowi4 * flp)1420 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1421 			 const struct flowi4 *flp)
1422 {
1423 	if (nhc->nhc_flags & RTNH_F_DEAD)
1424 		return false;
1425 
1426 	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1427 	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1428 	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1429 		return false;
1430 
1431 	if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1432 		if (flp->flowi4_oif &&
1433 		    flp->flowi4_oif != nhc->nhc_oif)
1434 			return false;
1435 	}
1436 
1437 	return true;
1438 }
1439 
1440 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1441 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1442 		     struct fib_result *res, int fib_flags)
1443 {
1444 	struct trie *t = (struct trie *) tb->tb_data;
1445 #ifdef CONFIG_IP_FIB_TRIE_STATS
1446 	struct trie_use_stats __percpu *stats = t->stats;
1447 #endif
1448 	const t_key key = ntohl(flp->daddr);
1449 	struct key_vector *n, *pn;
1450 	struct fib_alias *fa;
1451 	unsigned long index;
1452 	t_key cindex;
1453 
1454 	pn = t->kv;
1455 	cindex = 0;
1456 
1457 	n = get_child_rcu(pn, cindex);
1458 	if (!n) {
1459 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1460 		return -EAGAIN;
1461 	}
1462 
1463 #ifdef CONFIG_IP_FIB_TRIE_STATS
1464 	this_cpu_inc(stats->gets);
1465 #endif
1466 
1467 	/* Step 1: Travel to the longest prefix match in the trie */
1468 	for (;;) {
1469 		index = get_cindex(key, n);
1470 
1471 		/* This bit of code is a bit tricky but it combines multiple
1472 		 * checks into a single check.  The prefix consists of the
1473 		 * prefix plus zeros for the "bits" in the prefix. The index
1474 		 * is the difference between the key and this value.  From
1475 		 * this we can actually derive several pieces of data.
1476 		 *   if (index >= (1ul << bits))
1477 		 *     we have a mismatch in skip bits and failed
1478 		 *   else
1479 		 *     we know the value is cindex
1480 		 *
1481 		 * This check is safe even if bits == KEYLENGTH due to the
1482 		 * fact that we can only allocate a node with 32 bits if a
1483 		 * long is greater than 32 bits.
1484 		 */
1485 		if (index >= (1ul << n->bits))
1486 			break;
1487 
1488 		/* we have found a leaf. Prefixes have already been compared */
1489 		if (IS_LEAF(n))
1490 			goto found;
1491 
1492 		/* only record pn and cindex if we are going to be chopping
1493 		 * bits later.  Otherwise we are just wasting cycles.
1494 		 */
1495 		if (n->slen > n->pos) {
1496 			pn = n;
1497 			cindex = index;
1498 		}
1499 
1500 		n = get_child_rcu(n, index);
1501 		if (unlikely(!n))
1502 			goto backtrace;
1503 	}
1504 
1505 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1506 	for (;;) {
1507 		/* record the pointer where our next node pointer is stored */
1508 		struct key_vector __rcu **cptr = n->tnode;
1509 
1510 		/* This test verifies that none of the bits that differ
1511 		 * between the key and the prefix exist in the region of
1512 		 * the lsb and higher in the prefix.
1513 		 */
1514 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1515 			goto backtrace;
1516 
1517 		/* exit out and process leaf */
1518 		if (unlikely(IS_LEAF(n)))
1519 			break;
1520 
1521 		/* Don't bother recording parent info.  Since we are in
1522 		 * prefix match mode we will have to come back to wherever
1523 		 * we started this traversal anyway
1524 		 */
1525 
1526 		while ((n = rcu_dereference(*cptr)) == NULL) {
1527 backtrace:
1528 #ifdef CONFIG_IP_FIB_TRIE_STATS
1529 			if (!n)
1530 				this_cpu_inc(stats->null_node_hit);
1531 #endif
1532 			/* If we are at cindex 0 there are no more bits for
1533 			 * us to strip at this level so we must ascend back
1534 			 * up one level to see if there are any more bits to
1535 			 * be stripped there.
1536 			 */
1537 			while (!cindex) {
1538 				t_key pkey = pn->key;
1539 
1540 				/* If we don't have a parent then there is
1541 				 * nothing for us to do as we do not have any
1542 				 * further nodes to parse.
1543 				 */
1544 				if (IS_TRIE(pn)) {
1545 					trace_fib_table_lookup(tb->tb_id, flp,
1546 							       NULL, -EAGAIN);
1547 					return -EAGAIN;
1548 				}
1549 #ifdef CONFIG_IP_FIB_TRIE_STATS
1550 				this_cpu_inc(stats->backtrack);
1551 #endif
1552 				/* Get Child's index */
1553 				pn = node_parent_rcu(pn);
1554 				cindex = get_index(pkey, pn);
1555 			}
1556 
1557 			/* strip the least significant bit from the cindex */
1558 			cindex &= cindex - 1;
1559 
1560 			/* grab pointer for next child node */
1561 			cptr = &pn->tnode[cindex];
1562 		}
1563 	}
1564 
1565 found:
1566 	/* this line carries forward the xor from earlier in the function */
1567 	index = key ^ n->key;
1568 
1569 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1570 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1571 		struct fib_info *fi = fa->fa_info;
1572 		struct fib_nh_common *nhc;
1573 		int nhsel, err;
1574 
1575 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1576 			if (index >= (1ul << fa->fa_slen))
1577 				continue;
1578 		}
1579 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1580 			continue;
1581 		/* Paired with WRITE_ONCE() in fib_release_info() */
1582 		if (READ_ONCE(fi->fib_dead))
1583 			continue;
1584 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1585 			continue;
1586 		fib_alias_accessed(fa);
1587 		err = fib_props[fa->fa_type].error;
1588 		if (unlikely(err < 0)) {
1589 out_reject:
1590 #ifdef CONFIG_IP_FIB_TRIE_STATS
1591 			this_cpu_inc(stats->semantic_match_passed);
1592 #endif
1593 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1594 			return err;
1595 		}
1596 		if (fi->fib_flags & RTNH_F_DEAD)
1597 			continue;
1598 
1599 		if (unlikely(fi->nh)) {
1600 			if (nexthop_is_blackhole(fi->nh)) {
1601 				err = fib_props[RTN_BLACKHOLE].error;
1602 				goto out_reject;
1603 			}
1604 
1605 			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1606 						     &nhsel);
1607 			if (nhc)
1608 				goto set_result;
1609 			goto miss;
1610 		}
1611 
1612 		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1613 			nhc = fib_info_nhc(fi, nhsel);
1614 
1615 			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1616 				continue;
1617 set_result:
1618 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1619 				refcount_inc(&fi->fib_clntref);
1620 
1621 			res->prefix = htonl(n->key);
1622 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1623 			res->nh_sel = nhsel;
1624 			res->nhc = nhc;
1625 			res->type = fa->fa_type;
1626 			res->scope = fi->fib_scope;
1627 			res->fi = fi;
1628 			res->table = tb;
1629 			res->fa_head = &n->leaf;
1630 #ifdef CONFIG_IP_FIB_TRIE_STATS
1631 			this_cpu_inc(stats->semantic_match_passed);
1632 #endif
1633 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1634 
1635 			return err;
1636 		}
1637 	}
1638 miss:
1639 #ifdef CONFIG_IP_FIB_TRIE_STATS
1640 	this_cpu_inc(stats->semantic_match_miss);
1641 #endif
1642 	goto backtrace;
1643 }
1644 EXPORT_SYMBOL_GPL(fib_table_lookup);
1645 
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1646 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1647 			     struct key_vector *l, struct fib_alias *old)
1648 {
1649 	/* record the location of the previous list_info entry */
1650 	struct hlist_node **pprev = old->fa_list.pprev;
1651 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1652 
1653 	/* remove the fib_alias from the list */
1654 	hlist_del_rcu(&old->fa_list);
1655 
1656 	/* if we emptied the list this leaf will be freed and we can sort
1657 	 * out parent suffix lengths as a part of trie_rebalance
1658 	 */
1659 	if (hlist_empty(&l->leaf)) {
1660 		if (tp->slen == l->slen)
1661 			node_pull_suffix(tp, tp->pos);
1662 		put_child_root(tp, l->key, NULL);
1663 		node_free(l);
1664 		trie_rebalance(t, tp);
1665 		return;
1666 	}
1667 
1668 	/* only access fa if it is pointing at the last valid hlist_node */
1669 	if (*pprev)
1670 		return;
1671 
1672 	/* update the trie with the latest suffix length */
1673 	l->slen = fa->fa_slen;
1674 	node_pull_suffix(tp, fa->fa_slen);
1675 }
1676 
fib_notify_alias_delete(struct net * net,u32 key,struct hlist_head * fah,struct fib_alias * fa_to_delete,struct netlink_ext_ack * extack)1677 static void fib_notify_alias_delete(struct net *net, u32 key,
1678 				    struct hlist_head *fah,
1679 				    struct fib_alias *fa_to_delete,
1680 				    struct netlink_ext_ack *extack)
1681 {
1682 	struct fib_alias *fa_next, *fa_to_notify;
1683 	u32 tb_id = fa_to_delete->tb_id;
1684 	u8 slen = fa_to_delete->fa_slen;
1685 	enum fib_event_type fib_event;
1686 
1687 	/* Do not notify if we do not care about the route. */
1688 	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1689 		return;
1690 
1691 	/* Determine if the route should be replaced by the next route in the
1692 	 * list.
1693 	 */
1694 	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1695 				   struct fib_alias, fa_list);
1696 	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1697 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1698 		fa_to_notify = fa_next;
1699 	} else {
1700 		fib_event = FIB_EVENT_ENTRY_DEL;
1701 		fa_to_notify = fa_to_delete;
1702 	}
1703 	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1704 				 fa_to_notify, extack);
1705 }
1706 
1707 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1708 int fib_table_delete(struct net *net, struct fib_table *tb,
1709 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1710 {
1711 	struct trie *t = (struct trie *) tb->tb_data;
1712 	struct fib_alias *fa, *fa_to_delete;
1713 	struct key_vector *l, *tp;
1714 	u8 plen = cfg->fc_dst_len;
1715 	u8 slen = KEYLENGTH - plen;
1716 	u8 tos = cfg->fc_tos;
1717 	u32 key;
1718 
1719 	key = ntohl(cfg->fc_dst);
1720 
1721 	if (!fib_valid_key_len(key, plen, extack))
1722 		return -EINVAL;
1723 
1724 	l = fib_find_node(t, &tp, key);
1725 	if (!l)
1726 		return -ESRCH;
1727 
1728 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1729 	if (!fa)
1730 		return -ESRCH;
1731 
1732 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1733 
1734 	fa_to_delete = NULL;
1735 	hlist_for_each_entry_from(fa, fa_list) {
1736 		struct fib_info *fi = fa->fa_info;
1737 
1738 		if ((fa->fa_slen != slen) ||
1739 		    (fa->tb_id != tb->tb_id) ||
1740 		    (fa->fa_tos != tos))
1741 			break;
1742 
1743 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1744 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1745 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1746 		    (!cfg->fc_prefsrc ||
1747 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1748 		    (!cfg->fc_protocol ||
1749 		     fi->fib_protocol == cfg->fc_protocol) &&
1750 		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1751 		    fib_metrics_match(cfg, fi)) {
1752 			fa_to_delete = fa;
1753 			break;
1754 		}
1755 	}
1756 
1757 	if (!fa_to_delete)
1758 		return -ESRCH;
1759 
1760 	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1761 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1762 		  &cfg->fc_nlinfo, 0);
1763 
1764 	if (!plen)
1765 		tb->tb_num_default--;
1766 
1767 	fib_remove_alias(t, tp, l, fa_to_delete);
1768 
1769 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1770 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1771 
1772 	fib_release_info(fa_to_delete->fa_info);
1773 	alias_free_mem_rcu(fa_to_delete);
1774 	return 0;
1775 }
1776 
1777 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1778 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1779 {
1780 	struct key_vector *pn, *n = *tn;
1781 	unsigned long cindex;
1782 
1783 	/* this loop is meant to try and find the key in the trie */
1784 	do {
1785 		/* record parent and next child index */
1786 		pn = n;
1787 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1788 
1789 		if (cindex >> pn->bits)
1790 			break;
1791 
1792 		/* descend into the next child */
1793 		n = get_child_rcu(pn, cindex++);
1794 		if (!n)
1795 			break;
1796 
1797 		/* guarantee forward progress on the keys */
1798 		if (IS_LEAF(n) && (n->key >= key))
1799 			goto found;
1800 	} while (IS_TNODE(n));
1801 
1802 	/* this loop will search for the next leaf with a greater key */
1803 	while (!IS_TRIE(pn)) {
1804 		/* if we exhausted the parent node we will need to climb */
1805 		if (cindex >= (1ul << pn->bits)) {
1806 			t_key pkey = pn->key;
1807 
1808 			pn = node_parent_rcu(pn);
1809 			cindex = get_index(pkey, pn) + 1;
1810 			continue;
1811 		}
1812 
1813 		/* grab the next available node */
1814 		n = get_child_rcu(pn, cindex++);
1815 		if (!n)
1816 			continue;
1817 
1818 		/* no need to compare keys since we bumped the index */
1819 		if (IS_LEAF(n))
1820 			goto found;
1821 
1822 		/* Rescan start scanning in new node */
1823 		pn = n;
1824 		cindex = 0;
1825 	}
1826 
1827 	*tn = pn;
1828 	return NULL; /* Root of trie */
1829 found:
1830 	/* if we are at the limit for keys just return NULL for the tnode */
1831 	*tn = pn;
1832 	return n;
1833 }
1834 
fib_trie_free(struct fib_table * tb)1835 static void fib_trie_free(struct fib_table *tb)
1836 {
1837 	struct trie *t = (struct trie *)tb->tb_data;
1838 	struct key_vector *pn = t->kv;
1839 	unsigned long cindex = 1;
1840 	struct hlist_node *tmp;
1841 	struct fib_alias *fa;
1842 
1843 	/* walk trie in reverse order and free everything */
1844 	for (;;) {
1845 		struct key_vector *n;
1846 
1847 		if (!(cindex--)) {
1848 			t_key pkey = pn->key;
1849 
1850 			if (IS_TRIE(pn))
1851 				break;
1852 
1853 			n = pn;
1854 			pn = node_parent(pn);
1855 
1856 			/* drop emptied tnode */
1857 			put_child_root(pn, n->key, NULL);
1858 			node_free(n);
1859 
1860 			cindex = get_index(pkey, pn);
1861 
1862 			continue;
1863 		}
1864 
1865 		/* grab the next available node */
1866 		n = get_child(pn, cindex);
1867 		if (!n)
1868 			continue;
1869 
1870 		if (IS_TNODE(n)) {
1871 			/* record pn and cindex for leaf walking */
1872 			pn = n;
1873 			cindex = 1ul << n->bits;
1874 
1875 			continue;
1876 		}
1877 
1878 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1879 			hlist_del_rcu(&fa->fa_list);
1880 			alias_free_mem_rcu(fa);
1881 		}
1882 
1883 		put_child_root(pn, n->key, NULL);
1884 		node_free(n);
1885 	}
1886 
1887 #ifdef CONFIG_IP_FIB_TRIE_STATS
1888 	free_percpu(t->stats);
1889 #endif
1890 	kfree(tb);
1891 }
1892 
fib_trie_unmerge(struct fib_table * oldtb)1893 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1894 {
1895 	struct trie *ot = (struct trie *)oldtb->tb_data;
1896 	struct key_vector *l, *tp = ot->kv;
1897 	struct fib_table *local_tb;
1898 	struct fib_alias *fa;
1899 	struct trie *lt;
1900 	t_key key = 0;
1901 
1902 	if (oldtb->tb_data == oldtb->__data)
1903 		return oldtb;
1904 
1905 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1906 	if (!local_tb)
1907 		return NULL;
1908 
1909 	lt = (struct trie *)local_tb->tb_data;
1910 
1911 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1912 		struct key_vector *local_l = NULL, *local_tp;
1913 
1914 		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1915 			struct fib_alias *new_fa;
1916 
1917 			if (local_tb->tb_id != fa->tb_id)
1918 				continue;
1919 
1920 			/* clone fa for new local table */
1921 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1922 			if (!new_fa)
1923 				goto out;
1924 
1925 			memcpy(new_fa, fa, sizeof(*fa));
1926 
1927 			/* insert clone into table */
1928 			if (!local_l)
1929 				local_l = fib_find_node(lt, &local_tp, l->key);
1930 
1931 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1932 					     NULL, l->key)) {
1933 				kmem_cache_free(fn_alias_kmem, new_fa);
1934 				goto out;
1935 			}
1936 		}
1937 
1938 		/* stop loop if key wrapped back to 0 */
1939 		key = l->key + 1;
1940 		if (key < l->key)
1941 			break;
1942 	}
1943 
1944 	return local_tb;
1945 out:
1946 	fib_trie_free(local_tb);
1947 
1948 	return NULL;
1949 }
1950 
1951 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1952 void fib_table_flush_external(struct fib_table *tb)
1953 {
1954 	struct trie *t = (struct trie *)tb->tb_data;
1955 	struct key_vector *pn = t->kv;
1956 	unsigned long cindex = 1;
1957 	struct hlist_node *tmp;
1958 	struct fib_alias *fa;
1959 
1960 	/* walk trie in reverse order */
1961 	for (;;) {
1962 		unsigned char slen = 0;
1963 		struct key_vector *n;
1964 
1965 		if (!(cindex--)) {
1966 			t_key pkey = pn->key;
1967 
1968 			/* cannot resize the trie vector */
1969 			if (IS_TRIE(pn))
1970 				break;
1971 
1972 			/* update the suffix to address pulled leaves */
1973 			if (pn->slen > pn->pos)
1974 				update_suffix(pn);
1975 
1976 			/* resize completed node */
1977 			pn = resize(t, pn);
1978 			cindex = get_index(pkey, pn);
1979 
1980 			continue;
1981 		}
1982 
1983 		/* grab the next available node */
1984 		n = get_child(pn, cindex);
1985 		if (!n)
1986 			continue;
1987 
1988 		if (IS_TNODE(n)) {
1989 			/* record pn and cindex for leaf walking */
1990 			pn = n;
1991 			cindex = 1ul << n->bits;
1992 
1993 			continue;
1994 		}
1995 
1996 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1997 			/* if alias was cloned to local then we just
1998 			 * need to remove the local copy from main
1999 			 */
2000 			if (tb->tb_id != fa->tb_id) {
2001 				hlist_del_rcu(&fa->fa_list);
2002 				alias_free_mem_rcu(fa);
2003 				continue;
2004 			}
2005 
2006 			/* record local slen */
2007 			slen = fa->fa_slen;
2008 		}
2009 
2010 		/* update leaf slen */
2011 		n->slen = slen;
2012 
2013 		if (hlist_empty(&n->leaf)) {
2014 			put_child_root(pn, n->key, NULL);
2015 			node_free(n);
2016 		}
2017 	}
2018 }
2019 
2020 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)2021 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2022 {
2023 	struct trie *t = (struct trie *)tb->tb_data;
2024 	struct key_vector *pn = t->kv;
2025 	unsigned long cindex = 1;
2026 	struct hlist_node *tmp;
2027 	struct fib_alias *fa;
2028 	int found = 0;
2029 
2030 	/* walk trie in reverse order */
2031 	for (;;) {
2032 		unsigned char slen = 0;
2033 		struct key_vector *n;
2034 
2035 		if (!(cindex--)) {
2036 			t_key pkey = pn->key;
2037 
2038 			/* cannot resize the trie vector */
2039 			if (IS_TRIE(pn))
2040 				break;
2041 
2042 			/* update the suffix to address pulled leaves */
2043 			if (pn->slen > pn->pos)
2044 				update_suffix(pn);
2045 
2046 			/* resize completed node */
2047 			pn = resize(t, pn);
2048 			cindex = get_index(pkey, pn);
2049 
2050 			continue;
2051 		}
2052 
2053 		/* grab the next available node */
2054 		n = get_child(pn, cindex);
2055 		if (!n)
2056 			continue;
2057 
2058 		if (IS_TNODE(n)) {
2059 			/* record pn and cindex for leaf walking */
2060 			pn = n;
2061 			cindex = 1ul << n->bits;
2062 
2063 			continue;
2064 		}
2065 
2066 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2067 			struct fib_info *fi = fa->fa_info;
2068 
2069 			if (!fi || tb->tb_id != fa->tb_id ||
2070 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2071 			     !fib_props[fa->fa_type].error)) {
2072 				slen = fa->fa_slen;
2073 				continue;
2074 			}
2075 
2076 			/* Do not flush error routes if network namespace is
2077 			 * not being dismantled
2078 			 */
2079 			if (!flush_all && fib_props[fa->fa_type].error) {
2080 				slen = fa->fa_slen;
2081 				continue;
2082 			}
2083 
2084 			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2085 						NULL);
2086 			hlist_del_rcu(&fa->fa_list);
2087 			fib_release_info(fa->fa_info);
2088 			alias_free_mem_rcu(fa);
2089 			found++;
2090 		}
2091 
2092 		/* update leaf slen */
2093 		n->slen = slen;
2094 
2095 		if (hlist_empty(&n->leaf)) {
2096 			put_child_root(pn, n->key, NULL);
2097 			node_free(n);
2098 		}
2099 	}
2100 
2101 	pr_debug("trie_flush found=%d\n", found);
2102 	return found;
2103 }
2104 
2105 /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)2106 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2107 				     struct nl_info *info)
2108 {
2109 	struct trie *t = (struct trie *)tb->tb_data;
2110 	struct key_vector *pn = t->kv;
2111 	unsigned long cindex = 1;
2112 	struct fib_alias *fa;
2113 
2114 	for (;;) {
2115 		struct key_vector *n;
2116 
2117 		if (!(cindex--)) {
2118 			t_key pkey = pn->key;
2119 
2120 			if (IS_TRIE(pn))
2121 				break;
2122 
2123 			pn = node_parent(pn);
2124 			cindex = get_index(pkey, pn);
2125 			continue;
2126 		}
2127 
2128 		/* grab the next available node */
2129 		n = get_child(pn, cindex);
2130 		if (!n)
2131 			continue;
2132 
2133 		if (IS_TNODE(n)) {
2134 			/* record pn and cindex for leaf walking */
2135 			pn = n;
2136 			cindex = 1ul << n->bits;
2137 
2138 			continue;
2139 		}
2140 
2141 		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2142 			struct fib_info *fi = fa->fa_info;
2143 
2144 			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2145 				continue;
2146 
2147 			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2148 				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2149 				  info, NLM_F_REPLACE);
2150 		}
2151 	}
2152 }
2153 
fib_info_notify_update(struct net * net,struct nl_info * info)2154 void fib_info_notify_update(struct net *net, struct nl_info *info)
2155 {
2156 	unsigned int h;
2157 
2158 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2159 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2160 		struct fib_table *tb;
2161 
2162 		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2163 					 lockdep_rtnl_is_held())
2164 			__fib_info_notify_update(net, tb, info);
2165 	}
2166 }
2167 
fib_leaf_notify(struct key_vector * l,struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2168 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2169 			   struct notifier_block *nb,
2170 			   struct netlink_ext_ack *extack)
2171 {
2172 	struct fib_alias *fa;
2173 	int last_slen = -1;
2174 	int err;
2175 
2176 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2177 		struct fib_info *fi = fa->fa_info;
2178 
2179 		if (!fi)
2180 			continue;
2181 
2182 		/* local and main table can share the same trie,
2183 		 * so don't notify twice for the same entry.
2184 		 */
2185 		if (tb->tb_id != fa->tb_id)
2186 			continue;
2187 
2188 		if (fa->fa_slen == last_slen)
2189 			continue;
2190 
2191 		last_slen = fa->fa_slen;
2192 		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2193 					      l->key, KEYLENGTH - fa->fa_slen,
2194 					      fa, extack);
2195 		if (err)
2196 			return err;
2197 	}
2198 	return 0;
2199 }
2200 
fib_table_notify(struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2201 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2202 			    struct netlink_ext_ack *extack)
2203 {
2204 	struct trie *t = (struct trie *)tb->tb_data;
2205 	struct key_vector *l, *tp = t->kv;
2206 	t_key key = 0;
2207 	int err;
2208 
2209 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2210 		err = fib_leaf_notify(l, tb, nb, extack);
2211 		if (err)
2212 			return err;
2213 
2214 		key = l->key + 1;
2215 		/* stop in case of wrap around */
2216 		if (key < l->key)
2217 			break;
2218 	}
2219 	return 0;
2220 }
2221 
fib_notify(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)2222 int fib_notify(struct net *net, struct notifier_block *nb,
2223 	       struct netlink_ext_ack *extack)
2224 {
2225 	unsigned int h;
2226 	int err;
2227 
2228 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2229 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2230 		struct fib_table *tb;
2231 
2232 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2233 			err = fib_table_notify(tb, nb, extack);
2234 			if (err)
2235 				return err;
2236 		}
2237 	}
2238 	return 0;
2239 }
2240 
__trie_free_rcu(struct rcu_head * head)2241 static void __trie_free_rcu(struct rcu_head *head)
2242 {
2243 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2244 #ifdef CONFIG_IP_FIB_TRIE_STATS
2245 	struct trie *t = (struct trie *)tb->tb_data;
2246 
2247 	if (tb->tb_data == tb->__data)
2248 		free_percpu(t->stats);
2249 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2250 	kfree(tb);
2251 }
2252 
fib_free_table(struct fib_table * tb)2253 void fib_free_table(struct fib_table *tb)
2254 {
2255 	call_rcu(&tb->rcu, __trie_free_rcu);
2256 }
2257 
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2258 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2259 			     struct sk_buff *skb, struct netlink_callback *cb,
2260 			     struct fib_dump_filter *filter)
2261 {
2262 	unsigned int flags = NLM_F_MULTI;
2263 	__be32 xkey = htonl(l->key);
2264 	int i, s_i, i_fa, s_fa, err;
2265 	struct fib_alias *fa;
2266 
2267 	if (filter->filter_set ||
2268 	    !filter->dump_exceptions || !filter->dump_routes)
2269 		flags |= NLM_F_DUMP_FILTERED;
2270 
2271 	s_i = cb->args[4];
2272 	s_fa = cb->args[5];
2273 	i = 0;
2274 
2275 	/* rcu_read_lock is hold by caller */
2276 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2277 		struct fib_info *fi = fa->fa_info;
2278 
2279 		if (i < s_i)
2280 			goto next;
2281 
2282 		i_fa = 0;
2283 
2284 		if (tb->tb_id != fa->tb_id)
2285 			goto next;
2286 
2287 		if (filter->filter_set) {
2288 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2289 				goto next;
2290 
2291 			if ((filter->protocol &&
2292 			     fi->fib_protocol != filter->protocol))
2293 				goto next;
2294 
2295 			if (filter->dev &&
2296 			    !fib_info_nh_uses_dev(fi, filter->dev))
2297 				goto next;
2298 		}
2299 
2300 		if (filter->dump_routes) {
2301 			if (!s_fa) {
2302 				struct fib_rt_info fri;
2303 
2304 				fri.fi = fi;
2305 				fri.tb_id = tb->tb_id;
2306 				fri.dst = xkey;
2307 				fri.dst_len = KEYLENGTH - fa->fa_slen;
2308 				fri.tos = fa->fa_tos;
2309 				fri.type = fa->fa_type;
2310 				fri.offload = READ_ONCE(fa->offload);
2311 				fri.trap = READ_ONCE(fa->trap);
2312 				fri.offload_failed = READ_ONCE(fa->offload_failed);
2313 				err = fib_dump_info(skb,
2314 						    NETLINK_CB(cb->skb).portid,
2315 						    cb->nlh->nlmsg_seq,
2316 						    RTM_NEWROUTE, &fri, flags);
2317 				if (err < 0)
2318 					goto stop;
2319 			}
2320 
2321 			i_fa++;
2322 		}
2323 
2324 		if (filter->dump_exceptions) {
2325 			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2326 						 &i_fa, s_fa, flags);
2327 			if (err < 0)
2328 				goto stop;
2329 		}
2330 
2331 next:
2332 		i++;
2333 	}
2334 
2335 	cb->args[4] = i;
2336 	return skb->len;
2337 
2338 stop:
2339 	cb->args[4] = i;
2340 	cb->args[5] = i_fa;
2341 	return err;
2342 }
2343 
2344 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2345 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2346 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2347 {
2348 	struct trie *t = (struct trie *)tb->tb_data;
2349 	struct key_vector *l, *tp = t->kv;
2350 	/* Dump starting at last key.
2351 	 * Note: 0.0.0.0/0 (ie default) is first key.
2352 	 */
2353 	int count = cb->args[2];
2354 	t_key key = cb->args[3];
2355 
2356 	/* First time here, count and key are both always 0. Count > 0
2357 	 * and key == 0 means the dump has wrapped around and we are done.
2358 	 */
2359 	if (count && !key)
2360 		return skb->len;
2361 
2362 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2363 		int err;
2364 
2365 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2366 		if (err < 0) {
2367 			cb->args[3] = key;
2368 			cb->args[2] = count;
2369 			return err;
2370 		}
2371 
2372 		++count;
2373 		key = l->key + 1;
2374 
2375 		memset(&cb->args[4], 0,
2376 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2377 
2378 		/* stop loop if key wrapped back to 0 */
2379 		if (key < l->key)
2380 			break;
2381 	}
2382 
2383 	cb->args[3] = key;
2384 	cb->args[2] = count;
2385 
2386 	return skb->len;
2387 }
2388 
fib_trie_init(void)2389 void __init fib_trie_init(void)
2390 {
2391 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2392 					  sizeof(struct fib_alias),
2393 					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2394 
2395 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2396 					   LEAF_SIZE,
2397 					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2398 }
2399 
fib_trie_table(u32 id,struct fib_table * alias)2400 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2401 {
2402 	struct fib_table *tb;
2403 	struct trie *t;
2404 	size_t sz = sizeof(*tb);
2405 
2406 	if (!alias)
2407 		sz += sizeof(struct trie);
2408 
2409 	tb = kzalloc(sz, GFP_KERNEL);
2410 	if (!tb)
2411 		return NULL;
2412 
2413 	tb->tb_id = id;
2414 	tb->tb_num_default = 0;
2415 	tb->tb_data = (alias ? alias->__data : tb->__data);
2416 
2417 	if (alias)
2418 		return tb;
2419 
2420 	t = (struct trie *) tb->tb_data;
2421 	t->kv[0].pos = KEYLENGTH;
2422 	t->kv[0].slen = KEYLENGTH;
2423 #ifdef CONFIG_IP_FIB_TRIE_STATS
2424 	t->stats = alloc_percpu(struct trie_use_stats);
2425 	if (!t->stats) {
2426 		kfree(tb);
2427 		tb = NULL;
2428 	}
2429 #endif
2430 
2431 	return tb;
2432 }
2433 
2434 #ifdef CONFIG_PROC_FS
2435 /* Depth first Trie walk iterator */
2436 struct fib_trie_iter {
2437 	struct seq_net_private p;
2438 	struct fib_table *tb;
2439 	struct key_vector *tnode;
2440 	unsigned int index;
2441 	unsigned int depth;
2442 };
2443 
fib_trie_get_next(struct fib_trie_iter * iter)2444 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2445 {
2446 	unsigned long cindex = iter->index;
2447 	struct key_vector *pn = iter->tnode;
2448 	t_key pkey;
2449 
2450 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2451 		 iter->tnode, iter->index, iter->depth);
2452 
2453 	while (!IS_TRIE(pn)) {
2454 		while (cindex < child_length(pn)) {
2455 			struct key_vector *n = get_child_rcu(pn, cindex++);
2456 
2457 			if (!n)
2458 				continue;
2459 
2460 			if (IS_LEAF(n)) {
2461 				iter->tnode = pn;
2462 				iter->index = cindex;
2463 			} else {
2464 				/* push down one level */
2465 				iter->tnode = n;
2466 				iter->index = 0;
2467 				++iter->depth;
2468 			}
2469 
2470 			return n;
2471 		}
2472 
2473 		/* Current node exhausted, pop back up */
2474 		pkey = pn->key;
2475 		pn = node_parent_rcu(pn);
2476 		cindex = get_index(pkey, pn) + 1;
2477 		--iter->depth;
2478 	}
2479 
2480 	/* record root node so further searches know we are done */
2481 	iter->tnode = pn;
2482 	iter->index = 0;
2483 
2484 	return NULL;
2485 }
2486 
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2487 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2488 					     struct trie *t)
2489 {
2490 	struct key_vector *n, *pn;
2491 
2492 	if (!t)
2493 		return NULL;
2494 
2495 	pn = t->kv;
2496 	n = rcu_dereference(pn->tnode[0]);
2497 	if (!n)
2498 		return NULL;
2499 
2500 	if (IS_TNODE(n)) {
2501 		iter->tnode = n;
2502 		iter->index = 0;
2503 		iter->depth = 1;
2504 	} else {
2505 		iter->tnode = pn;
2506 		iter->index = 0;
2507 		iter->depth = 0;
2508 	}
2509 
2510 	return n;
2511 }
2512 
trie_collect_stats(struct trie * t,struct trie_stat * s)2513 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2514 {
2515 	struct key_vector *n;
2516 	struct fib_trie_iter iter;
2517 
2518 	memset(s, 0, sizeof(*s));
2519 
2520 	rcu_read_lock();
2521 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2522 		if (IS_LEAF(n)) {
2523 			struct fib_alias *fa;
2524 
2525 			s->leaves++;
2526 			s->totdepth += iter.depth;
2527 			if (iter.depth > s->maxdepth)
2528 				s->maxdepth = iter.depth;
2529 
2530 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2531 				++s->prefixes;
2532 		} else {
2533 			s->tnodes++;
2534 			if (n->bits < MAX_STAT_DEPTH)
2535 				s->nodesizes[n->bits]++;
2536 			s->nullpointers += tn_info(n)->empty_children;
2537 		}
2538 	}
2539 	rcu_read_unlock();
2540 }
2541 
2542 /*
2543  *	This outputs /proc/net/fib_triestats
2544  */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2545 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2546 {
2547 	unsigned int i, max, pointers, bytes, avdepth;
2548 
2549 	if (stat->leaves)
2550 		avdepth = stat->totdepth*100 / stat->leaves;
2551 	else
2552 		avdepth = 0;
2553 
2554 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2555 		   avdepth / 100, avdepth % 100);
2556 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2557 
2558 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2559 	bytes = LEAF_SIZE * stat->leaves;
2560 
2561 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2562 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2563 
2564 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2565 	bytes += TNODE_SIZE(0) * stat->tnodes;
2566 
2567 	max = MAX_STAT_DEPTH;
2568 	while (max > 0 && stat->nodesizes[max-1] == 0)
2569 		max--;
2570 
2571 	pointers = 0;
2572 	for (i = 1; i < max; i++)
2573 		if (stat->nodesizes[i] != 0) {
2574 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2575 			pointers += (1<<i) * stat->nodesizes[i];
2576 		}
2577 	seq_putc(seq, '\n');
2578 	seq_printf(seq, "\tPointers: %u\n", pointers);
2579 
2580 	bytes += sizeof(struct key_vector *) * pointers;
2581 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2582 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2583 }
2584 
2585 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2586 static void trie_show_usage(struct seq_file *seq,
2587 			    const struct trie_use_stats __percpu *stats)
2588 {
2589 	struct trie_use_stats s = { 0 };
2590 	int cpu;
2591 
2592 	/* loop through all of the CPUs and gather up the stats */
2593 	for_each_possible_cpu(cpu) {
2594 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2595 
2596 		s.gets += pcpu->gets;
2597 		s.backtrack += pcpu->backtrack;
2598 		s.semantic_match_passed += pcpu->semantic_match_passed;
2599 		s.semantic_match_miss += pcpu->semantic_match_miss;
2600 		s.null_node_hit += pcpu->null_node_hit;
2601 		s.resize_node_skipped += pcpu->resize_node_skipped;
2602 	}
2603 
2604 	seq_printf(seq, "\nCounters:\n---------\n");
2605 	seq_printf(seq, "gets = %u\n", s.gets);
2606 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2607 	seq_printf(seq, "semantic match passed = %u\n",
2608 		   s.semantic_match_passed);
2609 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2610 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2611 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2612 }
2613 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2614 
fib_table_print(struct seq_file * seq,struct fib_table * tb)2615 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2616 {
2617 	if (tb->tb_id == RT_TABLE_LOCAL)
2618 		seq_puts(seq, "Local:\n");
2619 	else if (tb->tb_id == RT_TABLE_MAIN)
2620 		seq_puts(seq, "Main:\n");
2621 	else
2622 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2623 }
2624 
2625 
fib_triestat_seq_show(struct seq_file * seq,void * v)2626 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2627 {
2628 	struct net *net = (struct net *)seq->private;
2629 	unsigned int h;
2630 
2631 	seq_printf(seq,
2632 		   "Basic info: size of leaf:"
2633 		   " %zd bytes, size of tnode: %zd bytes.\n",
2634 		   LEAF_SIZE, TNODE_SIZE(0));
2635 
2636 	rcu_read_lock();
2637 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2638 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2639 		struct fib_table *tb;
2640 
2641 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2642 			struct trie *t = (struct trie *) tb->tb_data;
2643 			struct trie_stat stat;
2644 
2645 			if (!t)
2646 				continue;
2647 
2648 			fib_table_print(seq, tb);
2649 
2650 			trie_collect_stats(t, &stat);
2651 			trie_show_stats(seq, &stat);
2652 #ifdef CONFIG_IP_FIB_TRIE_STATS
2653 			trie_show_usage(seq, t->stats);
2654 #endif
2655 		}
2656 		cond_resched_rcu();
2657 	}
2658 	rcu_read_unlock();
2659 
2660 	return 0;
2661 }
2662 
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2663 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2664 {
2665 	struct fib_trie_iter *iter = seq->private;
2666 	struct net *net = seq_file_net(seq);
2667 	loff_t idx = 0;
2668 	unsigned int h;
2669 
2670 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2671 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2672 		struct fib_table *tb;
2673 
2674 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2675 			struct key_vector *n;
2676 
2677 			for (n = fib_trie_get_first(iter,
2678 						    (struct trie *) tb->tb_data);
2679 			     n; n = fib_trie_get_next(iter))
2680 				if (pos == idx++) {
2681 					iter->tb = tb;
2682 					return n;
2683 				}
2684 		}
2685 	}
2686 
2687 	return NULL;
2688 }
2689 
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2690 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2691 	__acquires(RCU)
2692 {
2693 	rcu_read_lock();
2694 	return fib_trie_get_idx(seq, *pos);
2695 }
2696 
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2697 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2698 {
2699 	struct fib_trie_iter *iter = seq->private;
2700 	struct net *net = seq_file_net(seq);
2701 	struct fib_table *tb = iter->tb;
2702 	struct hlist_node *tb_node;
2703 	unsigned int h;
2704 	struct key_vector *n;
2705 
2706 	++*pos;
2707 	/* next node in same table */
2708 	n = fib_trie_get_next(iter);
2709 	if (n)
2710 		return n;
2711 
2712 	/* walk rest of this hash chain */
2713 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2714 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2715 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2716 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2717 		if (n)
2718 			goto found;
2719 	}
2720 
2721 	/* new hash chain */
2722 	while (++h < FIB_TABLE_HASHSZ) {
2723 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2724 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2725 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2726 			if (n)
2727 				goto found;
2728 		}
2729 	}
2730 	return NULL;
2731 
2732 found:
2733 	iter->tb = tb;
2734 	return n;
2735 }
2736 
fib_trie_seq_stop(struct seq_file * seq,void * v)2737 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2738 	__releases(RCU)
2739 {
2740 	rcu_read_unlock();
2741 }
2742 
seq_indent(struct seq_file * seq,int n)2743 static void seq_indent(struct seq_file *seq, int n)
2744 {
2745 	while (n-- > 0)
2746 		seq_puts(seq, "   ");
2747 }
2748 
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2749 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2750 {
2751 	switch (s) {
2752 	case RT_SCOPE_UNIVERSE: return "universe";
2753 	case RT_SCOPE_SITE:	return "site";
2754 	case RT_SCOPE_LINK:	return "link";
2755 	case RT_SCOPE_HOST:	return "host";
2756 	case RT_SCOPE_NOWHERE:	return "nowhere";
2757 	default:
2758 		snprintf(buf, len, "scope=%d", s);
2759 		return buf;
2760 	}
2761 }
2762 
2763 static const char *const rtn_type_names[__RTN_MAX] = {
2764 	[RTN_UNSPEC] = "UNSPEC",
2765 	[RTN_UNICAST] = "UNICAST",
2766 	[RTN_LOCAL] = "LOCAL",
2767 	[RTN_BROADCAST] = "BROADCAST",
2768 	[RTN_ANYCAST] = "ANYCAST",
2769 	[RTN_MULTICAST] = "MULTICAST",
2770 	[RTN_BLACKHOLE] = "BLACKHOLE",
2771 	[RTN_UNREACHABLE] = "UNREACHABLE",
2772 	[RTN_PROHIBIT] = "PROHIBIT",
2773 	[RTN_THROW] = "THROW",
2774 	[RTN_NAT] = "NAT",
2775 	[RTN_XRESOLVE] = "XRESOLVE",
2776 };
2777 
rtn_type(char * buf,size_t len,unsigned int t)2778 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2779 {
2780 	if (t < __RTN_MAX && rtn_type_names[t])
2781 		return rtn_type_names[t];
2782 	snprintf(buf, len, "type %u", t);
2783 	return buf;
2784 }
2785 
2786 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2787 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2788 {
2789 	const struct fib_trie_iter *iter = seq->private;
2790 	struct key_vector *n = v;
2791 
2792 	if (IS_TRIE(node_parent_rcu(n)))
2793 		fib_table_print(seq, iter->tb);
2794 
2795 	if (IS_TNODE(n)) {
2796 		__be32 prf = htonl(n->key);
2797 
2798 		seq_indent(seq, iter->depth-1);
2799 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2800 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2801 			   tn_info(n)->full_children,
2802 			   tn_info(n)->empty_children);
2803 	} else {
2804 		__be32 val = htonl(n->key);
2805 		struct fib_alias *fa;
2806 
2807 		seq_indent(seq, iter->depth);
2808 		seq_printf(seq, "  |-- %pI4\n", &val);
2809 
2810 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2811 			char buf1[32], buf2[32];
2812 
2813 			seq_indent(seq, iter->depth + 1);
2814 			seq_printf(seq, "  /%zu %s %s",
2815 				   KEYLENGTH - fa->fa_slen,
2816 				   rtn_scope(buf1, sizeof(buf1),
2817 					     fa->fa_info->fib_scope),
2818 				   rtn_type(buf2, sizeof(buf2),
2819 					    fa->fa_type));
2820 			if (fa->fa_tos)
2821 				seq_printf(seq, " tos=%d", fa->fa_tos);
2822 			seq_putc(seq, '\n');
2823 		}
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 static const struct seq_operations fib_trie_seq_ops = {
2830 	.start  = fib_trie_seq_start,
2831 	.next   = fib_trie_seq_next,
2832 	.stop   = fib_trie_seq_stop,
2833 	.show   = fib_trie_seq_show,
2834 };
2835 
2836 struct fib_route_iter {
2837 	struct seq_net_private p;
2838 	struct fib_table *main_tb;
2839 	struct key_vector *tnode;
2840 	loff_t	pos;
2841 	t_key	key;
2842 };
2843 
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2844 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2845 					    loff_t pos)
2846 {
2847 	struct key_vector *l, **tp = &iter->tnode;
2848 	t_key key;
2849 
2850 	/* use cached location of previously found key */
2851 	if (iter->pos > 0 && pos >= iter->pos) {
2852 		key = iter->key;
2853 	} else {
2854 		iter->pos = 1;
2855 		key = 0;
2856 	}
2857 
2858 	pos -= iter->pos;
2859 
2860 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2861 		key = l->key + 1;
2862 		iter->pos++;
2863 		l = NULL;
2864 
2865 		/* handle unlikely case of a key wrap */
2866 		if (!key)
2867 			break;
2868 	}
2869 
2870 	if (l)
2871 		iter->key = l->key;	/* remember it */
2872 	else
2873 		iter->pos = 0;		/* forget it */
2874 
2875 	return l;
2876 }
2877 
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2878 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2879 	__acquires(RCU)
2880 {
2881 	struct fib_route_iter *iter = seq->private;
2882 	struct fib_table *tb;
2883 	struct trie *t;
2884 
2885 	rcu_read_lock();
2886 
2887 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2888 	if (!tb)
2889 		return NULL;
2890 
2891 	iter->main_tb = tb;
2892 	t = (struct trie *)tb->tb_data;
2893 	iter->tnode = t->kv;
2894 
2895 	if (*pos != 0)
2896 		return fib_route_get_idx(iter, *pos);
2897 
2898 	iter->pos = 0;
2899 	iter->key = KEY_MAX;
2900 
2901 	return SEQ_START_TOKEN;
2902 }
2903 
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2904 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2905 {
2906 	struct fib_route_iter *iter = seq->private;
2907 	struct key_vector *l = NULL;
2908 	t_key key = iter->key + 1;
2909 
2910 	++*pos;
2911 
2912 	/* only allow key of 0 for start of sequence */
2913 	if ((v == SEQ_START_TOKEN) || key)
2914 		l = leaf_walk_rcu(&iter->tnode, key);
2915 
2916 	if (l) {
2917 		iter->key = l->key;
2918 		iter->pos++;
2919 	} else {
2920 		iter->pos = 0;
2921 	}
2922 
2923 	return l;
2924 }
2925 
fib_route_seq_stop(struct seq_file * seq,void * v)2926 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2927 	__releases(RCU)
2928 {
2929 	rcu_read_unlock();
2930 }
2931 
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2932 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2933 {
2934 	unsigned int flags = 0;
2935 
2936 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2937 		flags = RTF_REJECT;
2938 	if (fi) {
2939 		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2940 
2941 		if (nhc->nhc_gw.ipv4)
2942 			flags |= RTF_GATEWAY;
2943 	}
2944 	if (mask == htonl(0xFFFFFFFF))
2945 		flags |= RTF_HOST;
2946 	flags |= RTF_UP;
2947 	return flags;
2948 }
2949 
2950 /*
2951  *	This outputs /proc/net/route.
2952  *	The format of the file is not supposed to be changed
2953  *	and needs to be same as fib_hash output to avoid breaking
2954  *	legacy utilities
2955  */
fib_route_seq_show(struct seq_file * seq,void * v)2956 static int fib_route_seq_show(struct seq_file *seq, void *v)
2957 {
2958 	struct fib_route_iter *iter = seq->private;
2959 	struct fib_table *tb = iter->main_tb;
2960 	struct fib_alias *fa;
2961 	struct key_vector *l = v;
2962 	__be32 prefix;
2963 
2964 	if (v == SEQ_START_TOKEN) {
2965 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2966 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2967 			   "\tWindow\tIRTT");
2968 		return 0;
2969 	}
2970 
2971 	prefix = htonl(l->key);
2972 
2973 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2974 		struct fib_info *fi = fa->fa_info;
2975 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2976 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2977 
2978 		if ((fa->fa_type == RTN_BROADCAST) ||
2979 		    (fa->fa_type == RTN_MULTICAST))
2980 			continue;
2981 
2982 		if (fa->tb_id != tb->tb_id)
2983 			continue;
2984 
2985 		seq_setwidth(seq, 127);
2986 
2987 		if (fi) {
2988 			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2989 			__be32 gw = 0;
2990 
2991 			if (nhc->nhc_gw_family == AF_INET)
2992 				gw = nhc->nhc_gw.ipv4;
2993 
2994 			seq_printf(seq,
2995 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2996 				   "%d\t%08X\t%d\t%u\t%u",
2997 				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2998 				   prefix, gw, flags, 0, 0,
2999 				   fi->fib_priority,
3000 				   mask,
3001 				   (fi->fib_advmss ?
3002 				    fi->fib_advmss + 40 : 0),
3003 				   fi->fib_window,
3004 				   fi->fib_rtt >> 3);
3005 		} else {
3006 			seq_printf(seq,
3007 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3008 				   "%d\t%08X\t%d\t%u\t%u",
3009 				   prefix, 0, flags, 0, 0, 0,
3010 				   mask, 0, 0, 0);
3011 		}
3012 		seq_pad(seq, '\n');
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 static const struct seq_operations fib_route_seq_ops = {
3019 	.start  = fib_route_seq_start,
3020 	.next   = fib_route_seq_next,
3021 	.stop   = fib_route_seq_stop,
3022 	.show   = fib_route_seq_show,
3023 };
3024 
fib_proc_init(struct net * net)3025 int __net_init fib_proc_init(struct net *net)
3026 {
3027 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3028 			sizeof(struct fib_trie_iter)))
3029 		goto out1;
3030 
3031 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3032 			fib_triestat_seq_show, NULL))
3033 		goto out2;
3034 
3035 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3036 			sizeof(struct fib_route_iter)))
3037 		goto out3;
3038 
3039 	return 0;
3040 
3041 out3:
3042 	remove_proc_entry("fib_triestat", net->proc_net);
3043 out2:
3044 	remove_proc_entry("fib_trie", net->proc_net);
3045 out1:
3046 	return -ENOMEM;
3047 }
3048 
fib_proc_exit(struct net * net)3049 void __net_exit fib_proc_exit(struct net *net)
3050 {
3051 	remove_proc_entry("fib_trie", net->proc_net);
3052 	remove_proc_entry("fib_triestat", net->proc_net);
3053 	remove_proc_entry("route", net->proc_net);
3054 }
3055 
3056 #endif /* CONFIG_PROC_FS */
3057