1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 #include <linux/init.h>
58 #include <linux/list.h>
59 #include <linux/slab.h>
60 #include <linux/export.h>
61 #include <linux/vmalloc.h>
62 #include <linux/notifier.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <net/route.h>
67 #include <net/tcp.h>
68 #include <net/sock.h>
69 #include <net/ip_fib.h>
70 #include <net/fib_notifier.h>
71 #include <trace/events/fib.h>
72 #include "fib_lookup.h"
73
call_fib_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)74 static int call_fib_entry_notifier(struct notifier_block *nb,
75 enum fib_event_type event_type, u32 dst,
76 int dst_len, struct fib_alias *fa,
77 struct netlink_ext_ack *extack)
78 {
79 struct fib_entry_notifier_info info = {
80 .info.extack = extack,
81 .dst = dst,
82 .dst_len = dst_len,
83 .fi = fa->fa_info,
84 .tos = fa->fa_tos,
85 .type = fa->fa_type,
86 .tb_id = fa->tb_id,
87 };
88 return call_fib4_notifier(nb, event_type, &info.info);
89 }
90
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)91 static int call_fib_entry_notifiers(struct net *net,
92 enum fib_event_type event_type, u32 dst,
93 int dst_len, struct fib_alias *fa,
94 struct netlink_ext_ack *extack)
95 {
96 struct fib_entry_notifier_info info = {
97 .info.extack = extack,
98 .dst = dst,
99 .dst_len = dst_len,
100 .fi = fa->fa_info,
101 .tos = fa->fa_tos,
102 .type = fa->fa_type,
103 .tb_id = fa->tb_id,
104 };
105 return call_fib4_notifiers(net, event_type, &info.info);
106 }
107
108 #define MAX_STAT_DEPTH 32
109
110 #define KEYLENGTH (8*sizeof(t_key))
111 #define KEY_MAX ((t_key)~0)
112
113 typedef unsigned int t_key;
114
115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
116 #define IS_TNODE(n) ((n)->bits)
117 #define IS_LEAF(n) (!(n)->bits)
118
119 struct key_vector {
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned char slen;
124 union {
125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 struct hlist_head leaf;
127 /* This array is valid if (pos | bits) > 0 (TNODE) */
128 struct key_vector __rcu *tnode[0];
129 };
130 };
131
132 struct tnode {
133 struct rcu_head rcu;
134 t_key empty_children; /* KEYLENGTH bits needed */
135 t_key full_children; /* KEYLENGTH bits needed */
136 struct key_vector __rcu *parent;
137 struct key_vector kv[1];
138 #define tn_bits kv[0].bits
139 };
140
141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
142 #define LEAF_SIZE TNODE_SIZE(1)
143
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats {
146 unsigned int gets;
147 unsigned int backtrack;
148 unsigned int semantic_match_passed;
149 unsigned int semantic_match_miss;
150 unsigned int null_node_hit;
151 unsigned int resize_node_skipped;
152 };
153 #endif
154
155 struct trie_stat {
156 unsigned int totdepth;
157 unsigned int maxdepth;
158 unsigned int tnodes;
159 unsigned int leaves;
160 unsigned int nullpointers;
161 unsigned int prefixes;
162 unsigned int nodesizes[MAX_STAT_DEPTH];
163 };
164
165 struct trie {
166 struct key_vector kv[1];
167 #ifdef CONFIG_IP_FIB_TRIE_STATS
168 struct trie_use_stats __percpu *stats;
169 #endif
170 };
171
172 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
173 static unsigned int tnode_free_size;
174
175 /*
176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177 * especially useful before resizing the root node with PREEMPT_NONE configs;
178 * the value was obtained experimentally, aiming to avoid visible slowdown.
179 */
180 unsigned int sysctl_fib_sync_mem = 512 * 1024;
181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
183
184 static struct kmem_cache *fn_alias_kmem __ro_after_init;
185 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
186
tn_info(struct key_vector * kv)187 static inline struct tnode *tn_info(struct key_vector *kv)
188 {
189 return container_of(kv, struct tnode, kv[0]);
190 }
191
192 /* caller must hold RTNL */
193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
195
196 /* caller must hold RCU read lock or RTNL */
197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
199
200 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
202 {
203 if (n)
204 rcu_assign_pointer(tn_info(n)->parent, tp);
205 }
206
207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
208
209 /* This provides us with the number of children in this node, in the case of a
210 * leaf this will return 0 meaning none of the children are accessible.
211 */
child_length(const struct key_vector * tn)212 static inline unsigned long child_length(const struct key_vector *tn)
213 {
214 return (1ul << tn->bits) & ~(1ul);
215 }
216
217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
218
get_index(t_key key,struct key_vector * kv)219 static inline unsigned long get_index(t_key key, struct key_vector *kv)
220 {
221 unsigned long index = key ^ kv->key;
222
223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
224 return 0;
225
226 return index >> kv->pos;
227 }
228
229 /* To understand this stuff, an understanding of keys and all their bits is
230 * necessary. Every node in the trie has a key associated with it, but not
231 * all of the bits in that key are significant.
232 *
233 * Consider a node 'n' and its parent 'tp'.
234 *
235 * If n is a leaf, every bit in its key is significant. Its presence is
236 * necessitated by path compression, since during a tree traversal (when
237 * searching for a leaf - unless we are doing an insertion) we will completely
238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239 * a potentially successful search, that we have indeed been walking the
240 * correct key path.
241 *
242 * Note that we can never "miss" the correct key in the tree if present by
243 * following the wrong path. Path compression ensures that segments of the key
244 * that are the same for all keys with a given prefix are skipped, but the
245 * skipped part *is* identical for each node in the subtrie below the skipped
246 * bit! trie_insert() in this implementation takes care of that.
247 *
248 * if n is an internal node - a 'tnode' here, the various parts of its key
249 * have many different meanings.
250 *
251 * Example:
252 * _________________________________________________________________
253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254 * -----------------------------------------------------------------
255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
256 *
257 * _________________________________________________________________
258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259 * -----------------------------------------------------------------
260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
261 *
262 * tp->pos = 22
263 * tp->bits = 3
264 * n->pos = 13
265 * n->bits = 4
266 *
267 * First, let's just ignore the bits that come before the parent tp, that is
268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269 * point we do not use them for anything.
270 *
271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272 * index into the parent's child array. That is, they will be used to find
273 * 'n' among tp's children.
274 *
275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
276 * for the node n.
277 *
278 * All the bits we have seen so far are significant to the node n. The rest
279 * of the bits are really not needed or indeed known in n->key.
280 *
281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282 * n's child array, and will of course be different for each child.
283 *
284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
285 * at this point.
286 */
287
288 static const int halve_threshold = 25;
289 static const int inflate_threshold = 50;
290 static const int halve_threshold_root = 15;
291 static const int inflate_threshold_root = 30;
292
__alias_free_mem(struct rcu_head * head)293 static void __alias_free_mem(struct rcu_head *head)
294 {
295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 kmem_cache_free(fn_alias_kmem, fa);
297 }
298
alias_free_mem_rcu(struct fib_alias * fa)299 static inline void alias_free_mem_rcu(struct fib_alias *fa)
300 {
301 call_rcu(&fa->rcu, __alias_free_mem);
302 }
303
304 #define TNODE_VMALLOC_MAX \
305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
306
__node_free_rcu(struct rcu_head * head)307 static void __node_free_rcu(struct rcu_head *head)
308 {
309 struct tnode *n = container_of(head, struct tnode, rcu);
310
311 if (!n->tn_bits)
312 kmem_cache_free(trie_leaf_kmem, n);
313 else
314 kvfree(n);
315 }
316
317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
318
tnode_alloc(int bits)319 static struct tnode *tnode_alloc(int bits)
320 {
321 size_t size;
322
323 /* verify bits is within bounds */
324 if (bits > TNODE_VMALLOC_MAX)
325 return NULL;
326
327 /* determine size and verify it is non-zero and didn't overflow */
328 size = TNODE_SIZE(1ul << bits);
329
330 if (size <= PAGE_SIZE)
331 return kzalloc(size, GFP_KERNEL);
332 else
333 return vzalloc(size);
334 }
335
empty_child_inc(struct key_vector * n)336 static inline void empty_child_inc(struct key_vector *n)
337 {
338 tn_info(n)->empty_children++;
339
340 if (!tn_info(n)->empty_children)
341 tn_info(n)->full_children++;
342 }
343
empty_child_dec(struct key_vector * n)344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 if (!tn_info(n)->empty_children)
347 tn_info(n)->full_children--;
348
349 tn_info(n)->empty_children--;
350 }
351
leaf_new(t_key key,struct fib_alias * fa)352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
353 {
354 struct key_vector *l;
355 struct tnode *kv;
356
357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
358 if (!kv)
359 return NULL;
360
361 /* initialize key vector */
362 l = kv->kv;
363 l->key = key;
364 l->pos = 0;
365 l->bits = 0;
366 l->slen = fa->fa_slen;
367
368 /* link leaf to fib alias */
369 INIT_HLIST_HEAD(&l->leaf);
370 hlist_add_head(&fa->fa_list, &l->leaf);
371
372 return l;
373 }
374
tnode_new(t_key key,int pos,int bits)375 static struct key_vector *tnode_new(t_key key, int pos, int bits)
376 {
377 unsigned int shift = pos + bits;
378 struct key_vector *tn;
379 struct tnode *tnode;
380
381 /* verify bits and pos their msb bits clear and values are valid */
382 BUG_ON(!bits || (shift > KEYLENGTH));
383
384 tnode = tnode_alloc(bits);
385 if (!tnode)
386 return NULL;
387
388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
389 sizeof(struct key_vector *) << bits);
390
391 if (bits == KEYLENGTH)
392 tnode->full_children = 1;
393 else
394 tnode->empty_children = 1ul << bits;
395
396 tn = tnode->kv;
397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
398 tn->pos = pos;
399 tn->bits = bits;
400 tn->slen = pos;
401
402 return tn;
403 }
404
405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
406 * and no bits are skipped. See discussion in dyntree paper p. 6
407 */
tnode_full(struct key_vector * tn,struct key_vector * n)408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
409 {
410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
411 }
412
413 /* Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
415 */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)416 static void put_child(struct key_vector *tn, unsigned long i,
417 struct key_vector *n)
418 {
419 struct key_vector *chi = get_child(tn, i);
420 int isfull, wasfull;
421
422 BUG_ON(i >= child_length(tn));
423
424 /* update emptyChildren, overflow into fullChildren */
425 if (!n && chi)
426 empty_child_inc(tn);
427 if (n && !chi)
428 empty_child_dec(tn);
429
430 /* update fullChildren */
431 wasfull = tnode_full(tn, chi);
432 isfull = tnode_full(tn, n);
433
434 if (wasfull && !isfull)
435 tn_info(tn)->full_children--;
436 else if (!wasfull && isfull)
437 tn_info(tn)->full_children++;
438
439 if (n && (tn->slen < n->slen))
440 tn->slen = n->slen;
441
442 rcu_assign_pointer(tn->tnode[i], n);
443 }
444
update_children(struct key_vector * tn)445 static void update_children(struct key_vector *tn)
446 {
447 unsigned long i;
448
449 /* update all of the child parent pointers */
450 for (i = child_length(tn); i;) {
451 struct key_vector *inode = get_child(tn, --i);
452
453 if (!inode)
454 continue;
455
456 /* Either update the children of a tnode that
457 * already belongs to us or update the child
458 * to point to ourselves.
459 */
460 if (node_parent(inode) == tn)
461 update_children(inode);
462 else
463 node_set_parent(inode, tn);
464 }
465 }
466
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)467 static inline void put_child_root(struct key_vector *tp, t_key key,
468 struct key_vector *n)
469 {
470 if (IS_TRIE(tp))
471 rcu_assign_pointer(tp->tnode[0], n);
472 else
473 put_child(tp, get_index(key, tp), n);
474 }
475
tnode_free_init(struct key_vector * tn)476 static inline void tnode_free_init(struct key_vector *tn)
477 {
478 tn_info(tn)->rcu.next = NULL;
479 }
480
tnode_free_append(struct key_vector * tn,struct key_vector * n)481 static inline void tnode_free_append(struct key_vector *tn,
482 struct key_vector *n)
483 {
484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
485 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
486 }
487
tnode_free(struct key_vector * tn)488 static void tnode_free(struct key_vector *tn)
489 {
490 struct callback_head *head = &tn_info(tn)->rcu;
491
492 while (head) {
493 head = head->next;
494 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
495 node_free(tn);
496
497 tn = container_of(head, struct tnode, rcu)->kv;
498 }
499
500 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
501 tnode_free_size = 0;
502 synchronize_rcu();
503 }
504 }
505
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)506 static struct key_vector *replace(struct trie *t,
507 struct key_vector *oldtnode,
508 struct key_vector *tn)
509 {
510 struct key_vector *tp = node_parent(oldtnode);
511 unsigned long i;
512
513 /* setup the parent pointer out of and back into this node */
514 NODE_INIT_PARENT(tn, tp);
515 put_child_root(tp, tn->key, tn);
516
517 /* update all of the child parent pointers */
518 update_children(tn);
519
520 /* all pointers should be clean so we are done */
521 tnode_free(oldtnode);
522
523 /* resize children now that oldtnode is freed */
524 for (i = child_length(tn); i;) {
525 struct key_vector *inode = get_child(tn, --i);
526
527 /* resize child node */
528 if (tnode_full(tn, inode))
529 tn = resize(t, inode);
530 }
531
532 return tp;
533 }
534
inflate(struct trie * t,struct key_vector * oldtnode)535 static struct key_vector *inflate(struct trie *t,
536 struct key_vector *oldtnode)
537 {
538 struct key_vector *tn;
539 unsigned long i;
540 t_key m;
541
542 pr_debug("In inflate\n");
543
544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
545 if (!tn)
546 goto notnode;
547
548 /* prepare oldtnode to be freed */
549 tnode_free_init(oldtnode);
550
551 /* Assemble all of the pointers in our cluster, in this case that
552 * represents all of the pointers out of our allocated nodes that
553 * point to existing tnodes and the links between our allocated
554 * nodes.
555 */
556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
557 struct key_vector *inode = get_child(oldtnode, --i);
558 struct key_vector *node0, *node1;
559 unsigned long j, k;
560
561 /* An empty child */
562 if (!inode)
563 continue;
564
565 /* A leaf or an internal node with skipped bits */
566 if (!tnode_full(oldtnode, inode)) {
567 put_child(tn, get_index(inode->key, tn), inode);
568 continue;
569 }
570
571 /* drop the node in the old tnode free list */
572 tnode_free_append(oldtnode, inode);
573
574 /* An internal node with two children */
575 if (inode->bits == 1) {
576 put_child(tn, 2 * i + 1, get_child(inode, 1));
577 put_child(tn, 2 * i, get_child(inode, 0));
578 continue;
579 }
580
581 /* We will replace this node 'inode' with two new
582 * ones, 'node0' and 'node1', each with half of the
583 * original children. The two new nodes will have
584 * a position one bit further down the key and this
585 * means that the "significant" part of their keys
586 * (see the discussion near the top of this file)
587 * will differ by one bit, which will be "0" in
588 * node0's key and "1" in node1's key. Since we are
589 * moving the key position by one step, the bit that
590 * we are moving away from - the bit at position
591 * (tn->pos) - is the one that will differ between
592 * node0 and node1. So... we synthesize that bit in the
593 * two new keys.
594 */
595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
596 if (!node1)
597 goto nomem;
598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
599
600 tnode_free_append(tn, node1);
601 if (!node0)
602 goto nomem;
603 tnode_free_append(tn, node0);
604
605 /* populate child pointers in new nodes */
606 for (k = child_length(inode), j = k / 2; j;) {
607 put_child(node1, --j, get_child(inode, --k));
608 put_child(node0, j, get_child(inode, j));
609 put_child(node1, --j, get_child(inode, --k));
610 put_child(node0, j, get_child(inode, j));
611 }
612
613 /* link new nodes to parent */
614 NODE_INIT_PARENT(node1, tn);
615 NODE_INIT_PARENT(node0, tn);
616
617 /* link parent to nodes */
618 put_child(tn, 2 * i + 1, node1);
619 put_child(tn, 2 * i, node0);
620 }
621
622 /* setup the parent pointers into and out of this node */
623 return replace(t, oldtnode, tn);
624 nomem:
625 /* all pointers should be clean so we are done */
626 tnode_free(tn);
627 notnode:
628 return NULL;
629 }
630
halve(struct trie * t,struct key_vector * oldtnode)631 static struct key_vector *halve(struct trie *t,
632 struct key_vector *oldtnode)
633 {
634 struct key_vector *tn;
635 unsigned long i;
636
637 pr_debug("In halve\n");
638
639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
640 if (!tn)
641 goto notnode;
642
643 /* prepare oldtnode to be freed */
644 tnode_free_init(oldtnode);
645
646 /* Assemble all of the pointers in our cluster, in this case that
647 * represents all of the pointers out of our allocated nodes that
648 * point to existing tnodes and the links between our allocated
649 * nodes.
650 */
651 for (i = child_length(oldtnode); i;) {
652 struct key_vector *node1 = get_child(oldtnode, --i);
653 struct key_vector *node0 = get_child(oldtnode, --i);
654 struct key_vector *inode;
655
656 /* At least one of the children is empty */
657 if (!node1 || !node0) {
658 put_child(tn, i / 2, node1 ? : node0);
659 continue;
660 }
661
662 /* Two nonempty children */
663 inode = tnode_new(node0->key, oldtnode->pos, 1);
664 if (!inode)
665 goto nomem;
666 tnode_free_append(tn, inode);
667
668 /* initialize pointers out of node */
669 put_child(inode, 1, node1);
670 put_child(inode, 0, node0);
671 NODE_INIT_PARENT(inode, tn);
672
673 /* link parent to node */
674 put_child(tn, i / 2, inode);
675 }
676
677 /* setup the parent pointers into and out of this node */
678 return replace(t, oldtnode, tn);
679 nomem:
680 /* all pointers should be clean so we are done */
681 tnode_free(tn);
682 notnode:
683 return NULL;
684 }
685
collapse(struct trie * t,struct key_vector * oldtnode)686 static struct key_vector *collapse(struct trie *t,
687 struct key_vector *oldtnode)
688 {
689 struct key_vector *n, *tp;
690 unsigned long i;
691
692 /* scan the tnode looking for that one child that might still exist */
693 for (n = NULL, i = child_length(oldtnode); !n && i;)
694 n = get_child(oldtnode, --i);
695
696 /* compress one level */
697 tp = node_parent(oldtnode);
698 put_child_root(tp, oldtnode->key, n);
699 node_set_parent(n, tp);
700
701 /* drop dead node */
702 node_free(oldtnode);
703
704 return tp;
705 }
706
update_suffix(struct key_vector * tn)707 static unsigned char update_suffix(struct key_vector *tn)
708 {
709 unsigned char slen = tn->pos;
710 unsigned long stride, i;
711 unsigned char slen_max;
712
713 /* only vector 0 can have a suffix length greater than or equal to
714 * tn->pos + tn->bits, the second highest node will have a suffix
715 * length at most of tn->pos + tn->bits - 1
716 */
717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
718
719 /* search though the list of children looking for nodes that might
720 * have a suffix greater than the one we currently have. This is
721 * why we start with a stride of 2 since a stride of 1 would
722 * represent the nodes with suffix length equal to tn->pos
723 */
724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
725 struct key_vector *n = get_child(tn, i);
726
727 if (!n || (n->slen <= slen))
728 continue;
729
730 /* update stride and slen based on new value */
731 stride <<= (n->slen - slen);
732 slen = n->slen;
733 i &= ~(stride - 1);
734
735 /* stop searching if we have hit the maximum possible value */
736 if (slen >= slen_max)
737 break;
738 }
739
740 tn->slen = slen;
741
742 return slen;
743 }
744
745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
747 * Telecommunications, page 6:
748 * "A node is doubled if the ratio of non-empty children to all
749 * children in the *doubled* node is at least 'high'."
750 *
751 * 'high' in this instance is the variable 'inflate_threshold'. It
752 * is expressed as a percentage, so we multiply it with
753 * child_length() and instead of multiplying by 2 (since the
754 * child array will be doubled by inflate()) and multiplying
755 * the left-hand side by 100 (to handle the percentage thing) we
756 * multiply the left-hand side by 50.
757 *
758 * The left-hand side may look a bit weird: child_length(tn)
759 * - tn->empty_children is of course the number of non-null children
760 * in the current node. tn->full_children is the number of "full"
761 * children, that is non-null tnodes with a skip value of 0.
762 * All of those will be doubled in the resulting inflated tnode, so
763 * we just count them one extra time here.
764 *
765 * A clearer way to write this would be:
766 *
767 * to_be_doubled = tn->full_children;
768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
769 * tn->full_children;
770 *
771 * new_child_length = child_length(tn) * 2;
772 *
773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
774 * new_child_length;
775 * if (new_fill_factor >= inflate_threshold)
776 *
777 * ...and so on, tho it would mess up the while () loop.
778 *
779 * anyway,
780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781 * inflate_threshold
782 *
783 * avoid a division:
784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785 * inflate_threshold * new_child_length
786 *
787 * expand not_to_be_doubled and to_be_doubled, and shorten:
788 * 100 * (child_length(tn) - tn->empty_children +
789 * tn->full_children) >= inflate_threshold * new_child_length
790 *
791 * expand new_child_length:
792 * 100 * (child_length(tn) - tn->empty_children +
793 * tn->full_children) >=
794 * inflate_threshold * child_length(tn) * 2
795 *
796 * shorten again:
797 * 50 * (tn->full_children + child_length(tn) -
798 * tn->empty_children) >= inflate_threshold *
799 * child_length(tn)
800 *
801 */
should_inflate(struct key_vector * tp,struct key_vector * tn)802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
803 {
804 unsigned long used = child_length(tn);
805 unsigned long threshold = used;
806
807 /* Keep root node larger */
808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
809 used -= tn_info(tn)->empty_children;
810 used += tn_info(tn)->full_children;
811
812 /* if bits == KEYLENGTH then pos = 0, and will fail below */
813
814 return (used > 1) && tn->pos && ((50 * used) >= threshold);
815 }
816
should_halve(struct key_vector * tp,struct key_vector * tn)817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
818 {
819 unsigned long used = child_length(tn);
820 unsigned long threshold = used;
821
822 /* Keep root node larger */
823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
824 used -= tn_info(tn)->empty_children;
825
826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
827
828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
829 }
830
should_collapse(struct key_vector * tn)831 static inline bool should_collapse(struct key_vector *tn)
832 {
833 unsigned long used = child_length(tn);
834
835 used -= tn_info(tn)->empty_children;
836
837 /* account for bits == KEYLENGTH case */
838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
839 used -= KEY_MAX;
840
841 /* One child or none, time to drop us from the trie */
842 return used < 2;
843 }
844
845 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)846 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
847 {
848 #ifdef CONFIG_IP_FIB_TRIE_STATS
849 struct trie_use_stats __percpu *stats = t->stats;
850 #endif
851 struct key_vector *tp = node_parent(tn);
852 unsigned long cindex = get_index(tn->key, tp);
853 int max_work = MAX_WORK;
854
855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 tn, inflate_threshold, halve_threshold);
857
858 /* track the tnode via the pointer from the parent instead of
859 * doing it ourselves. This way we can let RCU fully do its
860 * thing without us interfering
861 */
862 BUG_ON(tn != get_child(tp, cindex));
863
864 /* Double as long as the resulting node has a number of
865 * nonempty nodes that are above the threshold.
866 */
867 while (should_inflate(tp, tn) && max_work) {
868 tp = inflate(t, tn);
869 if (!tp) {
870 #ifdef CONFIG_IP_FIB_TRIE_STATS
871 this_cpu_inc(stats->resize_node_skipped);
872 #endif
873 break;
874 }
875
876 max_work--;
877 tn = get_child(tp, cindex);
878 }
879
880 /* update parent in case inflate failed */
881 tp = node_parent(tn);
882
883 /* Return if at least one inflate is run */
884 if (max_work != MAX_WORK)
885 return tp;
886
887 /* Halve as long as the number of empty children in this
888 * node is above threshold.
889 */
890 while (should_halve(tp, tn) && max_work) {
891 tp = halve(t, tn);
892 if (!tp) {
893 #ifdef CONFIG_IP_FIB_TRIE_STATS
894 this_cpu_inc(stats->resize_node_skipped);
895 #endif
896 break;
897 }
898
899 max_work--;
900 tn = get_child(tp, cindex);
901 }
902
903 /* Only one child remains */
904 if (should_collapse(tn))
905 return collapse(t, tn);
906
907 /* update parent in case halve failed */
908 return node_parent(tn);
909 }
910
node_pull_suffix(struct key_vector * tn,unsigned char slen)911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
912 {
913 unsigned char node_slen = tn->slen;
914
915 while ((node_slen > tn->pos) && (node_slen > slen)) {
916 slen = update_suffix(tn);
917 if (node_slen == slen)
918 break;
919
920 tn = node_parent(tn);
921 node_slen = tn->slen;
922 }
923 }
924
node_push_suffix(struct key_vector * tn,unsigned char slen)925 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
926 {
927 while (tn->slen < slen) {
928 tn->slen = slen;
929 tn = node_parent(tn);
930 }
931 }
932
933 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)934 static struct key_vector *fib_find_node(struct trie *t,
935 struct key_vector **tp, u32 key)
936 {
937 struct key_vector *pn, *n = t->kv;
938 unsigned long index = 0;
939
940 do {
941 pn = n;
942 n = get_child_rcu(n, index);
943
944 if (!n)
945 break;
946
947 index = get_cindex(key, n);
948
949 /* This bit of code is a bit tricky but it combines multiple
950 * checks into a single check. The prefix consists of the
951 * prefix plus zeros for the bits in the cindex. The index
952 * is the difference between the key and this value. From
953 * this we can actually derive several pieces of data.
954 * if (index >= (1ul << bits))
955 * we have a mismatch in skip bits and failed
956 * else
957 * we know the value is cindex
958 *
959 * This check is safe even if bits == KEYLENGTH due to the
960 * fact that we can only allocate a node with 32 bits if a
961 * long is greater than 32 bits.
962 */
963 if (index >= (1ul << n->bits)) {
964 n = NULL;
965 break;
966 }
967
968 /* keep searching until we find a perfect match leaf or NULL */
969 } while (IS_TNODE(n));
970
971 *tp = pn;
972
973 return n;
974 }
975
976 /* Return the first fib alias matching TOS with
977 * priority less than or equal to PRIO.
978 * If 'find_first' is set, return the first matching
979 * fib alias, regardless of TOS and priority.
980 */
fib_find_alias(struct hlist_head * fah,u8 slen,u8 tos,u32 prio,u32 tb_id,bool find_first)981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
982 u8 tos, u32 prio, u32 tb_id,
983 bool find_first)
984 {
985 struct fib_alias *fa;
986
987 if (!fah)
988 return NULL;
989
990 hlist_for_each_entry(fa, fah, fa_list) {
991 if (fa->fa_slen < slen)
992 continue;
993 if (fa->fa_slen != slen)
994 break;
995 if (fa->tb_id > tb_id)
996 continue;
997 if (fa->tb_id != tb_id)
998 break;
999 if (find_first)
1000 return fa;
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008 }
1009
1010 static struct fib_alias *
fib_find_matching_alias(struct net * net,const struct fib_rt_info * fri)1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012 {
1013 u8 slen = KEYLENGTH - fri->dst_len;
1014 struct key_vector *l, *tp;
1015 struct fib_table *tb;
1016 struct fib_alias *fa;
1017 struct trie *t;
1018
1019 tb = fib_get_table(net, fri->tb_id);
1020 if (!tb)
1021 return NULL;
1022
1023 t = (struct trie *)tb->tb_data;
1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 if (!l)
1026 return NULL;
1027
1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031 fa->fa_type == fri->type)
1032 return fa;
1033 }
1034
1035 return NULL;
1036 }
1037
fib_alias_hw_flags_set(struct net * net,const struct fib_rt_info * fri)1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039 {
1040 u8 fib_notify_on_flag_change;
1041 struct fib_alias *fa_match;
1042 struct sk_buff *skb;
1043 int err;
1044
1045 rcu_read_lock();
1046
1047 fa_match = fib_find_matching_alias(net, fri);
1048 if (!fa_match)
1049 goto out;
1050
1051 /* These are paired with the WRITE_ONCE() happening in this function.
1052 * The reason is that we are only protected by RCU at this point.
1053 */
1054 if (READ_ONCE(fa_match->offload) == fri->offload &&
1055 READ_ONCE(fa_match->trap) == fri->trap &&
1056 READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1057 goto out;
1058
1059 WRITE_ONCE(fa_match->offload, fri->offload);
1060 WRITE_ONCE(fa_match->trap, fri->trap);
1061
1062 fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1063
1064 /* 2 means send notifications only if offload_failed was changed. */
1065 if (fib_notify_on_flag_change == 2 &&
1066 READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1067 goto out;
1068
1069 WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1070
1071 if (!fib_notify_on_flag_change)
1072 goto out;
1073
1074 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1075 if (!skb) {
1076 err = -ENOBUFS;
1077 goto errout;
1078 }
1079
1080 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1081 if (err < 0) {
1082 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083 WARN_ON(err == -EMSGSIZE);
1084 kfree_skb(skb);
1085 goto errout;
1086 }
1087
1088 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1089 goto out;
1090
1091 errout:
1092 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1093 out:
1094 rcu_read_unlock();
1095 }
1096 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1097
trie_rebalance(struct trie * t,struct key_vector * tn)1098 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1099 {
1100 while (!IS_TRIE(tn))
1101 tn = resize(t, tn);
1102 }
1103
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1104 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1105 struct fib_alias *new, t_key key)
1106 {
1107 struct key_vector *n, *l;
1108
1109 l = leaf_new(key, new);
1110 if (!l)
1111 goto noleaf;
1112
1113 /* retrieve child from parent node */
1114 n = get_child(tp, get_index(key, tp));
1115
1116 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1117 *
1118 * Add a new tnode here
1119 * first tnode need some special handling
1120 * leaves us in position for handling as case 3
1121 */
1122 if (n) {
1123 struct key_vector *tn;
1124
1125 tn = tnode_new(key, __fls(key ^ n->key), 1);
1126 if (!tn)
1127 goto notnode;
1128
1129 /* initialize routes out of node */
1130 NODE_INIT_PARENT(tn, tp);
1131 put_child(tn, get_index(key, tn) ^ 1, n);
1132
1133 /* start adding routes into the node */
1134 put_child_root(tp, key, tn);
1135 node_set_parent(n, tn);
1136
1137 /* parent now has a NULL spot where the leaf can go */
1138 tp = tn;
1139 }
1140
1141 /* Case 3: n is NULL, and will just insert a new leaf */
1142 node_push_suffix(tp, new->fa_slen);
1143 NODE_INIT_PARENT(l, tp);
1144 put_child_root(tp, key, l);
1145 trie_rebalance(t, tp);
1146
1147 return 0;
1148 notnode:
1149 node_free(l);
1150 noleaf:
1151 return -ENOMEM;
1152 }
1153
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1154 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1155 struct key_vector *l, struct fib_alias *new,
1156 struct fib_alias *fa, t_key key)
1157 {
1158 if (!l)
1159 return fib_insert_node(t, tp, new, key);
1160
1161 if (fa) {
1162 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1163 } else {
1164 struct fib_alias *last;
1165
1166 hlist_for_each_entry(last, &l->leaf, fa_list) {
1167 if (new->fa_slen < last->fa_slen)
1168 break;
1169 if ((new->fa_slen == last->fa_slen) &&
1170 (new->tb_id > last->tb_id))
1171 break;
1172 fa = last;
1173 }
1174
1175 if (fa)
1176 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1177 else
1178 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1179 }
1180
1181 /* if we added to the tail node then we need to update slen */
1182 if (l->slen < new->fa_slen) {
1183 l->slen = new->fa_slen;
1184 node_push_suffix(tp, new->fa_slen);
1185 }
1186
1187 return 0;
1188 }
1189
fib_valid_key_len(u32 key,u8 plen,struct netlink_ext_ack * extack)1190 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1191 {
1192 if (plen > KEYLENGTH) {
1193 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1194 return false;
1195 }
1196
1197 if ((plen < KEYLENGTH) && (key << plen)) {
1198 NL_SET_ERR_MSG(extack,
1199 "Invalid prefix for given prefix length");
1200 return false;
1201 }
1202
1203 return true;
1204 }
1205
1206 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1207 struct key_vector *l, struct fib_alias *old);
1208
1209 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1210 int fib_table_insert(struct net *net, struct fib_table *tb,
1211 struct fib_config *cfg, struct netlink_ext_ack *extack)
1212 {
1213 struct trie *t = (struct trie *)tb->tb_data;
1214 struct fib_alias *fa, *new_fa;
1215 struct key_vector *l, *tp;
1216 u16 nlflags = NLM_F_EXCL;
1217 struct fib_info *fi;
1218 u8 plen = cfg->fc_dst_len;
1219 u8 slen = KEYLENGTH - plen;
1220 u8 tos = cfg->fc_tos;
1221 u32 key;
1222 int err;
1223
1224 key = ntohl(cfg->fc_dst);
1225
1226 if (!fib_valid_key_len(key, plen, extack))
1227 return -EINVAL;
1228
1229 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1230
1231 fi = fib_create_info(cfg, extack);
1232 if (IS_ERR(fi)) {
1233 err = PTR_ERR(fi);
1234 goto err;
1235 }
1236
1237 l = fib_find_node(t, &tp, key);
1238 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1239 tb->tb_id, false) : NULL;
1240
1241 /* Now fa, if non-NULL, points to the first fib alias
1242 * with the same keys [prefix,tos,priority], if such key already
1243 * exists or to the node before which we will insert new one.
1244 *
1245 * If fa is NULL, we will need to allocate a new one and
1246 * insert to the tail of the section matching the suffix length
1247 * of the new alias.
1248 */
1249
1250 if (fa && fa->fa_tos == tos &&
1251 fa->fa_info->fib_priority == fi->fib_priority) {
1252 struct fib_alias *fa_first, *fa_match;
1253
1254 err = -EEXIST;
1255 if (cfg->fc_nlflags & NLM_F_EXCL)
1256 goto out;
1257
1258 nlflags &= ~NLM_F_EXCL;
1259
1260 /* We have 2 goals:
1261 * 1. Find exact match for type, scope, fib_info to avoid
1262 * duplicate routes
1263 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1264 */
1265 fa_match = NULL;
1266 fa_first = fa;
1267 hlist_for_each_entry_from(fa, fa_list) {
1268 if ((fa->fa_slen != slen) ||
1269 (fa->tb_id != tb->tb_id) ||
1270 (fa->fa_tos != tos))
1271 break;
1272 if (fa->fa_info->fib_priority != fi->fib_priority)
1273 break;
1274 if (fa->fa_type == cfg->fc_type &&
1275 fa->fa_info == fi) {
1276 fa_match = fa;
1277 break;
1278 }
1279 }
1280
1281 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1282 struct fib_info *fi_drop;
1283 u8 state;
1284
1285 nlflags |= NLM_F_REPLACE;
1286 fa = fa_first;
1287 if (fa_match) {
1288 if (fa == fa_match)
1289 err = 0;
1290 goto out;
1291 }
1292 err = -ENOBUFS;
1293 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1294 if (!new_fa)
1295 goto out;
1296
1297 fi_drop = fa->fa_info;
1298 new_fa->fa_tos = fa->fa_tos;
1299 new_fa->fa_info = fi;
1300 new_fa->fa_type = cfg->fc_type;
1301 state = fa->fa_state;
1302 new_fa->fa_state = state & ~FA_S_ACCESSED;
1303 new_fa->fa_slen = fa->fa_slen;
1304 new_fa->tb_id = tb->tb_id;
1305 new_fa->fa_default = -1;
1306 new_fa->offload = 0;
1307 new_fa->trap = 0;
1308 new_fa->offload_failed = 0;
1309
1310 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1311
1312 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1313 tb->tb_id, true) == new_fa) {
1314 enum fib_event_type fib_event;
1315
1316 fib_event = FIB_EVENT_ENTRY_REPLACE;
1317 err = call_fib_entry_notifiers(net, fib_event,
1318 key, plen,
1319 new_fa, extack);
1320 if (err) {
1321 hlist_replace_rcu(&new_fa->fa_list,
1322 &fa->fa_list);
1323 goto out_free_new_fa;
1324 }
1325 }
1326
1327 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1328 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1329
1330 alias_free_mem_rcu(fa);
1331
1332 fib_release_info(fi_drop);
1333 if (state & FA_S_ACCESSED)
1334 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1335
1336 goto succeeded;
1337 }
1338 /* Error if we find a perfect match which
1339 * uses the same scope, type, and nexthop
1340 * information.
1341 */
1342 if (fa_match)
1343 goto out;
1344
1345 if (cfg->fc_nlflags & NLM_F_APPEND)
1346 nlflags |= NLM_F_APPEND;
1347 else
1348 fa = fa_first;
1349 }
1350 err = -ENOENT;
1351 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1352 goto out;
1353
1354 nlflags |= NLM_F_CREATE;
1355 err = -ENOBUFS;
1356 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1357 if (!new_fa)
1358 goto out;
1359
1360 new_fa->fa_info = fi;
1361 new_fa->fa_tos = tos;
1362 new_fa->fa_type = cfg->fc_type;
1363 new_fa->fa_state = 0;
1364 new_fa->fa_slen = slen;
1365 new_fa->tb_id = tb->tb_id;
1366 new_fa->fa_default = -1;
1367 new_fa->offload = 0;
1368 new_fa->trap = 0;
1369 new_fa->offload_failed = 0;
1370
1371 /* Insert new entry to the list. */
1372 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1373 if (err)
1374 goto out_free_new_fa;
1375
1376 /* The alias was already inserted, so the node must exist. */
1377 l = l ? l : fib_find_node(t, &tp, key);
1378 if (WARN_ON_ONCE(!l)) {
1379 err = -ENOENT;
1380 goto out_free_new_fa;
1381 }
1382
1383 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1384 new_fa) {
1385 enum fib_event_type fib_event;
1386
1387 fib_event = FIB_EVENT_ENTRY_REPLACE;
1388 err = call_fib_entry_notifiers(net, fib_event, key, plen,
1389 new_fa, extack);
1390 if (err)
1391 goto out_remove_new_fa;
1392 }
1393
1394 if (!plen)
1395 tb->tb_num_default++;
1396
1397 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1398 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1399 &cfg->fc_nlinfo, nlflags);
1400 succeeded:
1401 return 0;
1402
1403 out_remove_new_fa:
1404 fib_remove_alias(t, tp, l, new_fa);
1405 out_free_new_fa:
1406 kmem_cache_free(fn_alias_kmem, new_fa);
1407 out:
1408 fib_release_info(fi);
1409 err:
1410 return err;
1411 }
1412
prefix_mismatch(t_key key,struct key_vector * n)1413 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1414 {
1415 t_key prefix = n->key;
1416
1417 return (key ^ prefix) & (prefix | -prefix);
1418 }
1419
fib_lookup_good_nhc(const struct fib_nh_common * nhc,int fib_flags,const struct flowi4 * flp)1420 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1421 const struct flowi4 *flp)
1422 {
1423 if (nhc->nhc_flags & RTNH_F_DEAD)
1424 return false;
1425
1426 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1427 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1428 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1429 return false;
1430
1431 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1432 if (flp->flowi4_oif &&
1433 flp->flowi4_oif != nhc->nhc_oif)
1434 return false;
1435 }
1436
1437 return true;
1438 }
1439
1440 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1441 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1442 struct fib_result *res, int fib_flags)
1443 {
1444 struct trie *t = (struct trie *) tb->tb_data;
1445 #ifdef CONFIG_IP_FIB_TRIE_STATS
1446 struct trie_use_stats __percpu *stats = t->stats;
1447 #endif
1448 const t_key key = ntohl(flp->daddr);
1449 struct key_vector *n, *pn;
1450 struct fib_alias *fa;
1451 unsigned long index;
1452 t_key cindex;
1453
1454 pn = t->kv;
1455 cindex = 0;
1456
1457 n = get_child_rcu(pn, cindex);
1458 if (!n) {
1459 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1460 return -EAGAIN;
1461 }
1462
1463 #ifdef CONFIG_IP_FIB_TRIE_STATS
1464 this_cpu_inc(stats->gets);
1465 #endif
1466
1467 /* Step 1: Travel to the longest prefix match in the trie */
1468 for (;;) {
1469 index = get_cindex(key, n);
1470
1471 /* This bit of code is a bit tricky but it combines multiple
1472 * checks into a single check. The prefix consists of the
1473 * prefix plus zeros for the "bits" in the prefix. The index
1474 * is the difference between the key and this value. From
1475 * this we can actually derive several pieces of data.
1476 * if (index >= (1ul << bits))
1477 * we have a mismatch in skip bits and failed
1478 * else
1479 * we know the value is cindex
1480 *
1481 * This check is safe even if bits == KEYLENGTH due to the
1482 * fact that we can only allocate a node with 32 bits if a
1483 * long is greater than 32 bits.
1484 */
1485 if (index >= (1ul << n->bits))
1486 break;
1487
1488 /* we have found a leaf. Prefixes have already been compared */
1489 if (IS_LEAF(n))
1490 goto found;
1491
1492 /* only record pn and cindex if we are going to be chopping
1493 * bits later. Otherwise we are just wasting cycles.
1494 */
1495 if (n->slen > n->pos) {
1496 pn = n;
1497 cindex = index;
1498 }
1499
1500 n = get_child_rcu(n, index);
1501 if (unlikely(!n))
1502 goto backtrace;
1503 }
1504
1505 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1506 for (;;) {
1507 /* record the pointer where our next node pointer is stored */
1508 struct key_vector __rcu **cptr = n->tnode;
1509
1510 /* This test verifies that none of the bits that differ
1511 * between the key and the prefix exist in the region of
1512 * the lsb and higher in the prefix.
1513 */
1514 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1515 goto backtrace;
1516
1517 /* exit out and process leaf */
1518 if (unlikely(IS_LEAF(n)))
1519 break;
1520
1521 /* Don't bother recording parent info. Since we are in
1522 * prefix match mode we will have to come back to wherever
1523 * we started this traversal anyway
1524 */
1525
1526 while ((n = rcu_dereference(*cptr)) == NULL) {
1527 backtrace:
1528 #ifdef CONFIG_IP_FIB_TRIE_STATS
1529 if (!n)
1530 this_cpu_inc(stats->null_node_hit);
1531 #endif
1532 /* If we are at cindex 0 there are no more bits for
1533 * us to strip at this level so we must ascend back
1534 * up one level to see if there are any more bits to
1535 * be stripped there.
1536 */
1537 while (!cindex) {
1538 t_key pkey = pn->key;
1539
1540 /* If we don't have a parent then there is
1541 * nothing for us to do as we do not have any
1542 * further nodes to parse.
1543 */
1544 if (IS_TRIE(pn)) {
1545 trace_fib_table_lookup(tb->tb_id, flp,
1546 NULL, -EAGAIN);
1547 return -EAGAIN;
1548 }
1549 #ifdef CONFIG_IP_FIB_TRIE_STATS
1550 this_cpu_inc(stats->backtrack);
1551 #endif
1552 /* Get Child's index */
1553 pn = node_parent_rcu(pn);
1554 cindex = get_index(pkey, pn);
1555 }
1556
1557 /* strip the least significant bit from the cindex */
1558 cindex &= cindex - 1;
1559
1560 /* grab pointer for next child node */
1561 cptr = &pn->tnode[cindex];
1562 }
1563 }
1564
1565 found:
1566 /* this line carries forward the xor from earlier in the function */
1567 index = key ^ n->key;
1568
1569 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1570 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1571 struct fib_info *fi = fa->fa_info;
1572 struct fib_nh_common *nhc;
1573 int nhsel, err;
1574
1575 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1576 if (index >= (1ul << fa->fa_slen))
1577 continue;
1578 }
1579 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1580 continue;
1581 /* Paired with WRITE_ONCE() in fib_release_info() */
1582 if (READ_ONCE(fi->fib_dead))
1583 continue;
1584 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1585 continue;
1586 fib_alias_accessed(fa);
1587 err = fib_props[fa->fa_type].error;
1588 if (unlikely(err < 0)) {
1589 out_reject:
1590 #ifdef CONFIG_IP_FIB_TRIE_STATS
1591 this_cpu_inc(stats->semantic_match_passed);
1592 #endif
1593 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1594 return err;
1595 }
1596 if (fi->fib_flags & RTNH_F_DEAD)
1597 continue;
1598
1599 if (unlikely(fi->nh)) {
1600 if (nexthop_is_blackhole(fi->nh)) {
1601 err = fib_props[RTN_BLACKHOLE].error;
1602 goto out_reject;
1603 }
1604
1605 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1606 &nhsel);
1607 if (nhc)
1608 goto set_result;
1609 goto miss;
1610 }
1611
1612 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1613 nhc = fib_info_nhc(fi, nhsel);
1614
1615 if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1616 continue;
1617 set_result:
1618 if (!(fib_flags & FIB_LOOKUP_NOREF))
1619 refcount_inc(&fi->fib_clntref);
1620
1621 res->prefix = htonl(n->key);
1622 res->prefixlen = KEYLENGTH - fa->fa_slen;
1623 res->nh_sel = nhsel;
1624 res->nhc = nhc;
1625 res->type = fa->fa_type;
1626 res->scope = fi->fib_scope;
1627 res->fi = fi;
1628 res->table = tb;
1629 res->fa_head = &n->leaf;
1630 #ifdef CONFIG_IP_FIB_TRIE_STATS
1631 this_cpu_inc(stats->semantic_match_passed);
1632 #endif
1633 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1634
1635 return err;
1636 }
1637 }
1638 miss:
1639 #ifdef CONFIG_IP_FIB_TRIE_STATS
1640 this_cpu_inc(stats->semantic_match_miss);
1641 #endif
1642 goto backtrace;
1643 }
1644 EXPORT_SYMBOL_GPL(fib_table_lookup);
1645
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1646 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1647 struct key_vector *l, struct fib_alias *old)
1648 {
1649 /* record the location of the previous list_info entry */
1650 struct hlist_node **pprev = old->fa_list.pprev;
1651 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1652
1653 /* remove the fib_alias from the list */
1654 hlist_del_rcu(&old->fa_list);
1655
1656 /* if we emptied the list this leaf will be freed and we can sort
1657 * out parent suffix lengths as a part of trie_rebalance
1658 */
1659 if (hlist_empty(&l->leaf)) {
1660 if (tp->slen == l->slen)
1661 node_pull_suffix(tp, tp->pos);
1662 put_child_root(tp, l->key, NULL);
1663 node_free(l);
1664 trie_rebalance(t, tp);
1665 return;
1666 }
1667
1668 /* only access fa if it is pointing at the last valid hlist_node */
1669 if (*pprev)
1670 return;
1671
1672 /* update the trie with the latest suffix length */
1673 l->slen = fa->fa_slen;
1674 node_pull_suffix(tp, fa->fa_slen);
1675 }
1676
fib_notify_alias_delete(struct net * net,u32 key,struct hlist_head * fah,struct fib_alias * fa_to_delete,struct netlink_ext_ack * extack)1677 static void fib_notify_alias_delete(struct net *net, u32 key,
1678 struct hlist_head *fah,
1679 struct fib_alias *fa_to_delete,
1680 struct netlink_ext_ack *extack)
1681 {
1682 struct fib_alias *fa_next, *fa_to_notify;
1683 u32 tb_id = fa_to_delete->tb_id;
1684 u8 slen = fa_to_delete->fa_slen;
1685 enum fib_event_type fib_event;
1686
1687 /* Do not notify if we do not care about the route. */
1688 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1689 return;
1690
1691 /* Determine if the route should be replaced by the next route in the
1692 * list.
1693 */
1694 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1695 struct fib_alias, fa_list);
1696 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1697 fib_event = FIB_EVENT_ENTRY_REPLACE;
1698 fa_to_notify = fa_next;
1699 } else {
1700 fib_event = FIB_EVENT_ENTRY_DEL;
1701 fa_to_notify = fa_to_delete;
1702 }
1703 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1704 fa_to_notify, extack);
1705 }
1706
1707 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1708 int fib_table_delete(struct net *net, struct fib_table *tb,
1709 struct fib_config *cfg, struct netlink_ext_ack *extack)
1710 {
1711 struct trie *t = (struct trie *) tb->tb_data;
1712 struct fib_alias *fa, *fa_to_delete;
1713 struct key_vector *l, *tp;
1714 u8 plen = cfg->fc_dst_len;
1715 u8 slen = KEYLENGTH - plen;
1716 u8 tos = cfg->fc_tos;
1717 u32 key;
1718
1719 key = ntohl(cfg->fc_dst);
1720
1721 if (!fib_valid_key_len(key, plen, extack))
1722 return -EINVAL;
1723
1724 l = fib_find_node(t, &tp, key);
1725 if (!l)
1726 return -ESRCH;
1727
1728 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1729 if (!fa)
1730 return -ESRCH;
1731
1732 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1733
1734 fa_to_delete = NULL;
1735 hlist_for_each_entry_from(fa, fa_list) {
1736 struct fib_info *fi = fa->fa_info;
1737
1738 if ((fa->fa_slen != slen) ||
1739 (fa->tb_id != tb->tb_id) ||
1740 (fa->fa_tos != tos))
1741 break;
1742
1743 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1744 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1745 fa->fa_info->fib_scope == cfg->fc_scope) &&
1746 (!cfg->fc_prefsrc ||
1747 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1748 (!cfg->fc_protocol ||
1749 fi->fib_protocol == cfg->fc_protocol) &&
1750 fib_nh_match(net, cfg, fi, extack) == 0 &&
1751 fib_metrics_match(cfg, fi)) {
1752 fa_to_delete = fa;
1753 break;
1754 }
1755 }
1756
1757 if (!fa_to_delete)
1758 return -ESRCH;
1759
1760 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1761 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1762 &cfg->fc_nlinfo, 0);
1763
1764 if (!plen)
1765 tb->tb_num_default--;
1766
1767 fib_remove_alias(t, tp, l, fa_to_delete);
1768
1769 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1770 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1771
1772 fib_release_info(fa_to_delete->fa_info);
1773 alias_free_mem_rcu(fa_to_delete);
1774 return 0;
1775 }
1776
1777 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1778 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1779 {
1780 struct key_vector *pn, *n = *tn;
1781 unsigned long cindex;
1782
1783 /* this loop is meant to try and find the key in the trie */
1784 do {
1785 /* record parent and next child index */
1786 pn = n;
1787 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1788
1789 if (cindex >> pn->bits)
1790 break;
1791
1792 /* descend into the next child */
1793 n = get_child_rcu(pn, cindex++);
1794 if (!n)
1795 break;
1796
1797 /* guarantee forward progress on the keys */
1798 if (IS_LEAF(n) && (n->key >= key))
1799 goto found;
1800 } while (IS_TNODE(n));
1801
1802 /* this loop will search for the next leaf with a greater key */
1803 while (!IS_TRIE(pn)) {
1804 /* if we exhausted the parent node we will need to climb */
1805 if (cindex >= (1ul << pn->bits)) {
1806 t_key pkey = pn->key;
1807
1808 pn = node_parent_rcu(pn);
1809 cindex = get_index(pkey, pn) + 1;
1810 continue;
1811 }
1812
1813 /* grab the next available node */
1814 n = get_child_rcu(pn, cindex++);
1815 if (!n)
1816 continue;
1817
1818 /* no need to compare keys since we bumped the index */
1819 if (IS_LEAF(n))
1820 goto found;
1821
1822 /* Rescan start scanning in new node */
1823 pn = n;
1824 cindex = 0;
1825 }
1826
1827 *tn = pn;
1828 return NULL; /* Root of trie */
1829 found:
1830 /* if we are at the limit for keys just return NULL for the tnode */
1831 *tn = pn;
1832 return n;
1833 }
1834
fib_trie_free(struct fib_table * tb)1835 static void fib_trie_free(struct fib_table *tb)
1836 {
1837 struct trie *t = (struct trie *)tb->tb_data;
1838 struct key_vector *pn = t->kv;
1839 unsigned long cindex = 1;
1840 struct hlist_node *tmp;
1841 struct fib_alias *fa;
1842
1843 /* walk trie in reverse order and free everything */
1844 for (;;) {
1845 struct key_vector *n;
1846
1847 if (!(cindex--)) {
1848 t_key pkey = pn->key;
1849
1850 if (IS_TRIE(pn))
1851 break;
1852
1853 n = pn;
1854 pn = node_parent(pn);
1855
1856 /* drop emptied tnode */
1857 put_child_root(pn, n->key, NULL);
1858 node_free(n);
1859
1860 cindex = get_index(pkey, pn);
1861
1862 continue;
1863 }
1864
1865 /* grab the next available node */
1866 n = get_child(pn, cindex);
1867 if (!n)
1868 continue;
1869
1870 if (IS_TNODE(n)) {
1871 /* record pn and cindex for leaf walking */
1872 pn = n;
1873 cindex = 1ul << n->bits;
1874
1875 continue;
1876 }
1877
1878 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1879 hlist_del_rcu(&fa->fa_list);
1880 alias_free_mem_rcu(fa);
1881 }
1882
1883 put_child_root(pn, n->key, NULL);
1884 node_free(n);
1885 }
1886
1887 #ifdef CONFIG_IP_FIB_TRIE_STATS
1888 free_percpu(t->stats);
1889 #endif
1890 kfree(tb);
1891 }
1892
fib_trie_unmerge(struct fib_table * oldtb)1893 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1894 {
1895 struct trie *ot = (struct trie *)oldtb->tb_data;
1896 struct key_vector *l, *tp = ot->kv;
1897 struct fib_table *local_tb;
1898 struct fib_alias *fa;
1899 struct trie *lt;
1900 t_key key = 0;
1901
1902 if (oldtb->tb_data == oldtb->__data)
1903 return oldtb;
1904
1905 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1906 if (!local_tb)
1907 return NULL;
1908
1909 lt = (struct trie *)local_tb->tb_data;
1910
1911 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1912 struct key_vector *local_l = NULL, *local_tp;
1913
1914 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1915 struct fib_alias *new_fa;
1916
1917 if (local_tb->tb_id != fa->tb_id)
1918 continue;
1919
1920 /* clone fa for new local table */
1921 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1922 if (!new_fa)
1923 goto out;
1924
1925 memcpy(new_fa, fa, sizeof(*fa));
1926
1927 /* insert clone into table */
1928 if (!local_l)
1929 local_l = fib_find_node(lt, &local_tp, l->key);
1930
1931 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1932 NULL, l->key)) {
1933 kmem_cache_free(fn_alias_kmem, new_fa);
1934 goto out;
1935 }
1936 }
1937
1938 /* stop loop if key wrapped back to 0 */
1939 key = l->key + 1;
1940 if (key < l->key)
1941 break;
1942 }
1943
1944 return local_tb;
1945 out:
1946 fib_trie_free(local_tb);
1947
1948 return NULL;
1949 }
1950
1951 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1952 void fib_table_flush_external(struct fib_table *tb)
1953 {
1954 struct trie *t = (struct trie *)tb->tb_data;
1955 struct key_vector *pn = t->kv;
1956 unsigned long cindex = 1;
1957 struct hlist_node *tmp;
1958 struct fib_alias *fa;
1959
1960 /* walk trie in reverse order */
1961 for (;;) {
1962 unsigned char slen = 0;
1963 struct key_vector *n;
1964
1965 if (!(cindex--)) {
1966 t_key pkey = pn->key;
1967
1968 /* cannot resize the trie vector */
1969 if (IS_TRIE(pn))
1970 break;
1971
1972 /* update the suffix to address pulled leaves */
1973 if (pn->slen > pn->pos)
1974 update_suffix(pn);
1975
1976 /* resize completed node */
1977 pn = resize(t, pn);
1978 cindex = get_index(pkey, pn);
1979
1980 continue;
1981 }
1982
1983 /* grab the next available node */
1984 n = get_child(pn, cindex);
1985 if (!n)
1986 continue;
1987
1988 if (IS_TNODE(n)) {
1989 /* record pn and cindex for leaf walking */
1990 pn = n;
1991 cindex = 1ul << n->bits;
1992
1993 continue;
1994 }
1995
1996 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1997 /* if alias was cloned to local then we just
1998 * need to remove the local copy from main
1999 */
2000 if (tb->tb_id != fa->tb_id) {
2001 hlist_del_rcu(&fa->fa_list);
2002 alias_free_mem_rcu(fa);
2003 continue;
2004 }
2005
2006 /* record local slen */
2007 slen = fa->fa_slen;
2008 }
2009
2010 /* update leaf slen */
2011 n->slen = slen;
2012
2013 if (hlist_empty(&n->leaf)) {
2014 put_child_root(pn, n->key, NULL);
2015 node_free(n);
2016 }
2017 }
2018 }
2019
2020 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)2021 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2022 {
2023 struct trie *t = (struct trie *)tb->tb_data;
2024 struct key_vector *pn = t->kv;
2025 unsigned long cindex = 1;
2026 struct hlist_node *tmp;
2027 struct fib_alias *fa;
2028 int found = 0;
2029
2030 /* walk trie in reverse order */
2031 for (;;) {
2032 unsigned char slen = 0;
2033 struct key_vector *n;
2034
2035 if (!(cindex--)) {
2036 t_key pkey = pn->key;
2037
2038 /* cannot resize the trie vector */
2039 if (IS_TRIE(pn))
2040 break;
2041
2042 /* update the suffix to address pulled leaves */
2043 if (pn->slen > pn->pos)
2044 update_suffix(pn);
2045
2046 /* resize completed node */
2047 pn = resize(t, pn);
2048 cindex = get_index(pkey, pn);
2049
2050 continue;
2051 }
2052
2053 /* grab the next available node */
2054 n = get_child(pn, cindex);
2055 if (!n)
2056 continue;
2057
2058 if (IS_TNODE(n)) {
2059 /* record pn and cindex for leaf walking */
2060 pn = n;
2061 cindex = 1ul << n->bits;
2062
2063 continue;
2064 }
2065
2066 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2067 struct fib_info *fi = fa->fa_info;
2068
2069 if (!fi || tb->tb_id != fa->tb_id ||
2070 (!(fi->fib_flags & RTNH_F_DEAD) &&
2071 !fib_props[fa->fa_type].error)) {
2072 slen = fa->fa_slen;
2073 continue;
2074 }
2075
2076 /* Do not flush error routes if network namespace is
2077 * not being dismantled
2078 */
2079 if (!flush_all && fib_props[fa->fa_type].error) {
2080 slen = fa->fa_slen;
2081 continue;
2082 }
2083
2084 fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2085 NULL);
2086 hlist_del_rcu(&fa->fa_list);
2087 fib_release_info(fa->fa_info);
2088 alias_free_mem_rcu(fa);
2089 found++;
2090 }
2091
2092 /* update leaf slen */
2093 n->slen = slen;
2094
2095 if (hlist_empty(&n->leaf)) {
2096 put_child_root(pn, n->key, NULL);
2097 node_free(n);
2098 }
2099 }
2100
2101 pr_debug("trie_flush found=%d\n", found);
2102 return found;
2103 }
2104
2105 /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)2106 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2107 struct nl_info *info)
2108 {
2109 struct trie *t = (struct trie *)tb->tb_data;
2110 struct key_vector *pn = t->kv;
2111 unsigned long cindex = 1;
2112 struct fib_alias *fa;
2113
2114 for (;;) {
2115 struct key_vector *n;
2116
2117 if (!(cindex--)) {
2118 t_key pkey = pn->key;
2119
2120 if (IS_TRIE(pn))
2121 break;
2122
2123 pn = node_parent(pn);
2124 cindex = get_index(pkey, pn);
2125 continue;
2126 }
2127
2128 /* grab the next available node */
2129 n = get_child(pn, cindex);
2130 if (!n)
2131 continue;
2132
2133 if (IS_TNODE(n)) {
2134 /* record pn and cindex for leaf walking */
2135 pn = n;
2136 cindex = 1ul << n->bits;
2137
2138 continue;
2139 }
2140
2141 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2142 struct fib_info *fi = fa->fa_info;
2143
2144 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2145 continue;
2146
2147 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2148 KEYLENGTH - fa->fa_slen, tb->tb_id,
2149 info, NLM_F_REPLACE);
2150 }
2151 }
2152 }
2153
fib_info_notify_update(struct net * net,struct nl_info * info)2154 void fib_info_notify_update(struct net *net, struct nl_info *info)
2155 {
2156 unsigned int h;
2157
2158 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2159 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2160 struct fib_table *tb;
2161
2162 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2163 lockdep_rtnl_is_held())
2164 __fib_info_notify_update(net, tb, info);
2165 }
2166 }
2167
fib_leaf_notify(struct key_vector * l,struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2168 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2169 struct notifier_block *nb,
2170 struct netlink_ext_ack *extack)
2171 {
2172 struct fib_alias *fa;
2173 int last_slen = -1;
2174 int err;
2175
2176 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2177 struct fib_info *fi = fa->fa_info;
2178
2179 if (!fi)
2180 continue;
2181
2182 /* local and main table can share the same trie,
2183 * so don't notify twice for the same entry.
2184 */
2185 if (tb->tb_id != fa->tb_id)
2186 continue;
2187
2188 if (fa->fa_slen == last_slen)
2189 continue;
2190
2191 last_slen = fa->fa_slen;
2192 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2193 l->key, KEYLENGTH - fa->fa_slen,
2194 fa, extack);
2195 if (err)
2196 return err;
2197 }
2198 return 0;
2199 }
2200
fib_table_notify(struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2201 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2202 struct netlink_ext_ack *extack)
2203 {
2204 struct trie *t = (struct trie *)tb->tb_data;
2205 struct key_vector *l, *tp = t->kv;
2206 t_key key = 0;
2207 int err;
2208
2209 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2210 err = fib_leaf_notify(l, tb, nb, extack);
2211 if (err)
2212 return err;
2213
2214 key = l->key + 1;
2215 /* stop in case of wrap around */
2216 if (key < l->key)
2217 break;
2218 }
2219 return 0;
2220 }
2221
fib_notify(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)2222 int fib_notify(struct net *net, struct notifier_block *nb,
2223 struct netlink_ext_ack *extack)
2224 {
2225 unsigned int h;
2226 int err;
2227
2228 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2229 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2230 struct fib_table *tb;
2231
2232 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2233 err = fib_table_notify(tb, nb, extack);
2234 if (err)
2235 return err;
2236 }
2237 }
2238 return 0;
2239 }
2240
__trie_free_rcu(struct rcu_head * head)2241 static void __trie_free_rcu(struct rcu_head *head)
2242 {
2243 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2244 #ifdef CONFIG_IP_FIB_TRIE_STATS
2245 struct trie *t = (struct trie *)tb->tb_data;
2246
2247 if (tb->tb_data == tb->__data)
2248 free_percpu(t->stats);
2249 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2250 kfree(tb);
2251 }
2252
fib_free_table(struct fib_table * tb)2253 void fib_free_table(struct fib_table *tb)
2254 {
2255 call_rcu(&tb->rcu, __trie_free_rcu);
2256 }
2257
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2258 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2259 struct sk_buff *skb, struct netlink_callback *cb,
2260 struct fib_dump_filter *filter)
2261 {
2262 unsigned int flags = NLM_F_MULTI;
2263 __be32 xkey = htonl(l->key);
2264 int i, s_i, i_fa, s_fa, err;
2265 struct fib_alias *fa;
2266
2267 if (filter->filter_set ||
2268 !filter->dump_exceptions || !filter->dump_routes)
2269 flags |= NLM_F_DUMP_FILTERED;
2270
2271 s_i = cb->args[4];
2272 s_fa = cb->args[5];
2273 i = 0;
2274
2275 /* rcu_read_lock is hold by caller */
2276 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2277 struct fib_info *fi = fa->fa_info;
2278
2279 if (i < s_i)
2280 goto next;
2281
2282 i_fa = 0;
2283
2284 if (tb->tb_id != fa->tb_id)
2285 goto next;
2286
2287 if (filter->filter_set) {
2288 if (filter->rt_type && fa->fa_type != filter->rt_type)
2289 goto next;
2290
2291 if ((filter->protocol &&
2292 fi->fib_protocol != filter->protocol))
2293 goto next;
2294
2295 if (filter->dev &&
2296 !fib_info_nh_uses_dev(fi, filter->dev))
2297 goto next;
2298 }
2299
2300 if (filter->dump_routes) {
2301 if (!s_fa) {
2302 struct fib_rt_info fri;
2303
2304 fri.fi = fi;
2305 fri.tb_id = tb->tb_id;
2306 fri.dst = xkey;
2307 fri.dst_len = KEYLENGTH - fa->fa_slen;
2308 fri.tos = fa->fa_tos;
2309 fri.type = fa->fa_type;
2310 fri.offload = READ_ONCE(fa->offload);
2311 fri.trap = READ_ONCE(fa->trap);
2312 fri.offload_failed = READ_ONCE(fa->offload_failed);
2313 err = fib_dump_info(skb,
2314 NETLINK_CB(cb->skb).portid,
2315 cb->nlh->nlmsg_seq,
2316 RTM_NEWROUTE, &fri, flags);
2317 if (err < 0)
2318 goto stop;
2319 }
2320
2321 i_fa++;
2322 }
2323
2324 if (filter->dump_exceptions) {
2325 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2326 &i_fa, s_fa, flags);
2327 if (err < 0)
2328 goto stop;
2329 }
2330
2331 next:
2332 i++;
2333 }
2334
2335 cb->args[4] = i;
2336 return skb->len;
2337
2338 stop:
2339 cb->args[4] = i;
2340 cb->args[5] = i_fa;
2341 return err;
2342 }
2343
2344 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2345 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2346 struct netlink_callback *cb, struct fib_dump_filter *filter)
2347 {
2348 struct trie *t = (struct trie *)tb->tb_data;
2349 struct key_vector *l, *tp = t->kv;
2350 /* Dump starting at last key.
2351 * Note: 0.0.0.0/0 (ie default) is first key.
2352 */
2353 int count = cb->args[2];
2354 t_key key = cb->args[3];
2355
2356 /* First time here, count and key are both always 0. Count > 0
2357 * and key == 0 means the dump has wrapped around and we are done.
2358 */
2359 if (count && !key)
2360 return skb->len;
2361
2362 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2363 int err;
2364
2365 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2366 if (err < 0) {
2367 cb->args[3] = key;
2368 cb->args[2] = count;
2369 return err;
2370 }
2371
2372 ++count;
2373 key = l->key + 1;
2374
2375 memset(&cb->args[4], 0,
2376 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2377
2378 /* stop loop if key wrapped back to 0 */
2379 if (key < l->key)
2380 break;
2381 }
2382
2383 cb->args[3] = key;
2384 cb->args[2] = count;
2385
2386 return skb->len;
2387 }
2388
fib_trie_init(void)2389 void __init fib_trie_init(void)
2390 {
2391 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2392 sizeof(struct fib_alias),
2393 0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2394
2395 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2396 LEAF_SIZE,
2397 0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2398 }
2399
fib_trie_table(u32 id,struct fib_table * alias)2400 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2401 {
2402 struct fib_table *tb;
2403 struct trie *t;
2404 size_t sz = sizeof(*tb);
2405
2406 if (!alias)
2407 sz += sizeof(struct trie);
2408
2409 tb = kzalloc(sz, GFP_KERNEL);
2410 if (!tb)
2411 return NULL;
2412
2413 tb->tb_id = id;
2414 tb->tb_num_default = 0;
2415 tb->tb_data = (alias ? alias->__data : tb->__data);
2416
2417 if (alias)
2418 return tb;
2419
2420 t = (struct trie *) tb->tb_data;
2421 t->kv[0].pos = KEYLENGTH;
2422 t->kv[0].slen = KEYLENGTH;
2423 #ifdef CONFIG_IP_FIB_TRIE_STATS
2424 t->stats = alloc_percpu(struct trie_use_stats);
2425 if (!t->stats) {
2426 kfree(tb);
2427 tb = NULL;
2428 }
2429 #endif
2430
2431 return tb;
2432 }
2433
2434 #ifdef CONFIG_PROC_FS
2435 /* Depth first Trie walk iterator */
2436 struct fib_trie_iter {
2437 struct seq_net_private p;
2438 struct fib_table *tb;
2439 struct key_vector *tnode;
2440 unsigned int index;
2441 unsigned int depth;
2442 };
2443
fib_trie_get_next(struct fib_trie_iter * iter)2444 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2445 {
2446 unsigned long cindex = iter->index;
2447 struct key_vector *pn = iter->tnode;
2448 t_key pkey;
2449
2450 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2451 iter->tnode, iter->index, iter->depth);
2452
2453 while (!IS_TRIE(pn)) {
2454 while (cindex < child_length(pn)) {
2455 struct key_vector *n = get_child_rcu(pn, cindex++);
2456
2457 if (!n)
2458 continue;
2459
2460 if (IS_LEAF(n)) {
2461 iter->tnode = pn;
2462 iter->index = cindex;
2463 } else {
2464 /* push down one level */
2465 iter->tnode = n;
2466 iter->index = 0;
2467 ++iter->depth;
2468 }
2469
2470 return n;
2471 }
2472
2473 /* Current node exhausted, pop back up */
2474 pkey = pn->key;
2475 pn = node_parent_rcu(pn);
2476 cindex = get_index(pkey, pn) + 1;
2477 --iter->depth;
2478 }
2479
2480 /* record root node so further searches know we are done */
2481 iter->tnode = pn;
2482 iter->index = 0;
2483
2484 return NULL;
2485 }
2486
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2487 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2488 struct trie *t)
2489 {
2490 struct key_vector *n, *pn;
2491
2492 if (!t)
2493 return NULL;
2494
2495 pn = t->kv;
2496 n = rcu_dereference(pn->tnode[0]);
2497 if (!n)
2498 return NULL;
2499
2500 if (IS_TNODE(n)) {
2501 iter->tnode = n;
2502 iter->index = 0;
2503 iter->depth = 1;
2504 } else {
2505 iter->tnode = pn;
2506 iter->index = 0;
2507 iter->depth = 0;
2508 }
2509
2510 return n;
2511 }
2512
trie_collect_stats(struct trie * t,struct trie_stat * s)2513 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2514 {
2515 struct key_vector *n;
2516 struct fib_trie_iter iter;
2517
2518 memset(s, 0, sizeof(*s));
2519
2520 rcu_read_lock();
2521 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2522 if (IS_LEAF(n)) {
2523 struct fib_alias *fa;
2524
2525 s->leaves++;
2526 s->totdepth += iter.depth;
2527 if (iter.depth > s->maxdepth)
2528 s->maxdepth = iter.depth;
2529
2530 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2531 ++s->prefixes;
2532 } else {
2533 s->tnodes++;
2534 if (n->bits < MAX_STAT_DEPTH)
2535 s->nodesizes[n->bits]++;
2536 s->nullpointers += tn_info(n)->empty_children;
2537 }
2538 }
2539 rcu_read_unlock();
2540 }
2541
2542 /*
2543 * This outputs /proc/net/fib_triestats
2544 */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2545 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2546 {
2547 unsigned int i, max, pointers, bytes, avdepth;
2548
2549 if (stat->leaves)
2550 avdepth = stat->totdepth*100 / stat->leaves;
2551 else
2552 avdepth = 0;
2553
2554 seq_printf(seq, "\tAver depth: %u.%02d\n",
2555 avdepth / 100, avdepth % 100);
2556 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2557
2558 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2559 bytes = LEAF_SIZE * stat->leaves;
2560
2561 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2562 bytes += sizeof(struct fib_alias) * stat->prefixes;
2563
2564 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2565 bytes += TNODE_SIZE(0) * stat->tnodes;
2566
2567 max = MAX_STAT_DEPTH;
2568 while (max > 0 && stat->nodesizes[max-1] == 0)
2569 max--;
2570
2571 pointers = 0;
2572 for (i = 1; i < max; i++)
2573 if (stat->nodesizes[i] != 0) {
2574 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2575 pointers += (1<<i) * stat->nodesizes[i];
2576 }
2577 seq_putc(seq, '\n');
2578 seq_printf(seq, "\tPointers: %u\n", pointers);
2579
2580 bytes += sizeof(struct key_vector *) * pointers;
2581 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2582 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2583 }
2584
2585 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2586 static void trie_show_usage(struct seq_file *seq,
2587 const struct trie_use_stats __percpu *stats)
2588 {
2589 struct trie_use_stats s = { 0 };
2590 int cpu;
2591
2592 /* loop through all of the CPUs and gather up the stats */
2593 for_each_possible_cpu(cpu) {
2594 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2595
2596 s.gets += pcpu->gets;
2597 s.backtrack += pcpu->backtrack;
2598 s.semantic_match_passed += pcpu->semantic_match_passed;
2599 s.semantic_match_miss += pcpu->semantic_match_miss;
2600 s.null_node_hit += pcpu->null_node_hit;
2601 s.resize_node_skipped += pcpu->resize_node_skipped;
2602 }
2603
2604 seq_printf(seq, "\nCounters:\n---------\n");
2605 seq_printf(seq, "gets = %u\n", s.gets);
2606 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2607 seq_printf(seq, "semantic match passed = %u\n",
2608 s.semantic_match_passed);
2609 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2610 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2611 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2612 }
2613 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2614
fib_table_print(struct seq_file * seq,struct fib_table * tb)2615 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2616 {
2617 if (tb->tb_id == RT_TABLE_LOCAL)
2618 seq_puts(seq, "Local:\n");
2619 else if (tb->tb_id == RT_TABLE_MAIN)
2620 seq_puts(seq, "Main:\n");
2621 else
2622 seq_printf(seq, "Id %d:\n", tb->tb_id);
2623 }
2624
2625
fib_triestat_seq_show(struct seq_file * seq,void * v)2626 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2627 {
2628 struct net *net = (struct net *)seq->private;
2629 unsigned int h;
2630
2631 seq_printf(seq,
2632 "Basic info: size of leaf:"
2633 " %zd bytes, size of tnode: %zd bytes.\n",
2634 LEAF_SIZE, TNODE_SIZE(0));
2635
2636 rcu_read_lock();
2637 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2638 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2639 struct fib_table *tb;
2640
2641 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2642 struct trie *t = (struct trie *) tb->tb_data;
2643 struct trie_stat stat;
2644
2645 if (!t)
2646 continue;
2647
2648 fib_table_print(seq, tb);
2649
2650 trie_collect_stats(t, &stat);
2651 trie_show_stats(seq, &stat);
2652 #ifdef CONFIG_IP_FIB_TRIE_STATS
2653 trie_show_usage(seq, t->stats);
2654 #endif
2655 }
2656 cond_resched_rcu();
2657 }
2658 rcu_read_unlock();
2659
2660 return 0;
2661 }
2662
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2663 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2664 {
2665 struct fib_trie_iter *iter = seq->private;
2666 struct net *net = seq_file_net(seq);
2667 loff_t idx = 0;
2668 unsigned int h;
2669
2670 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2671 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2672 struct fib_table *tb;
2673
2674 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2675 struct key_vector *n;
2676
2677 for (n = fib_trie_get_first(iter,
2678 (struct trie *) tb->tb_data);
2679 n; n = fib_trie_get_next(iter))
2680 if (pos == idx++) {
2681 iter->tb = tb;
2682 return n;
2683 }
2684 }
2685 }
2686
2687 return NULL;
2688 }
2689
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2690 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2691 __acquires(RCU)
2692 {
2693 rcu_read_lock();
2694 return fib_trie_get_idx(seq, *pos);
2695 }
2696
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2697 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2698 {
2699 struct fib_trie_iter *iter = seq->private;
2700 struct net *net = seq_file_net(seq);
2701 struct fib_table *tb = iter->tb;
2702 struct hlist_node *tb_node;
2703 unsigned int h;
2704 struct key_vector *n;
2705
2706 ++*pos;
2707 /* next node in same table */
2708 n = fib_trie_get_next(iter);
2709 if (n)
2710 return n;
2711
2712 /* walk rest of this hash chain */
2713 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2714 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2715 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2716 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2717 if (n)
2718 goto found;
2719 }
2720
2721 /* new hash chain */
2722 while (++h < FIB_TABLE_HASHSZ) {
2723 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2724 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2725 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2726 if (n)
2727 goto found;
2728 }
2729 }
2730 return NULL;
2731
2732 found:
2733 iter->tb = tb;
2734 return n;
2735 }
2736
fib_trie_seq_stop(struct seq_file * seq,void * v)2737 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2738 __releases(RCU)
2739 {
2740 rcu_read_unlock();
2741 }
2742
seq_indent(struct seq_file * seq,int n)2743 static void seq_indent(struct seq_file *seq, int n)
2744 {
2745 while (n-- > 0)
2746 seq_puts(seq, " ");
2747 }
2748
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2749 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2750 {
2751 switch (s) {
2752 case RT_SCOPE_UNIVERSE: return "universe";
2753 case RT_SCOPE_SITE: return "site";
2754 case RT_SCOPE_LINK: return "link";
2755 case RT_SCOPE_HOST: return "host";
2756 case RT_SCOPE_NOWHERE: return "nowhere";
2757 default:
2758 snprintf(buf, len, "scope=%d", s);
2759 return buf;
2760 }
2761 }
2762
2763 static const char *const rtn_type_names[__RTN_MAX] = {
2764 [RTN_UNSPEC] = "UNSPEC",
2765 [RTN_UNICAST] = "UNICAST",
2766 [RTN_LOCAL] = "LOCAL",
2767 [RTN_BROADCAST] = "BROADCAST",
2768 [RTN_ANYCAST] = "ANYCAST",
2769 [RTN_MULTICAST] = "MULTICAST",
2770 [RTN_BLACKHOLE] = "BLACKHOLE",
2771 [RTN_UNREACHABLE] = "UNREACHABLE",
2772 [RTN_PROHIBIT] = "PROHIBIT",
2773 [RTN_THROW] = "THROW",
2774 [RTN_NAT] = "NAT",
2775 [RTN_XRESOLVE] = "XRESOLVE",
2776 };
2777
rtn_type(char * buf,size_t len,unsigned int t)2778 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2779 {
2780 if (t < __RTN_MAX && rtn_type_names[t])
2781 return rtn_type_names[t];
2782 snprintf(buf, len, "type %u", t);
2783 return buf;
2784 }
2785
2786 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2787 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2788 {
2789 const struct fib_trie_iter *iter = seq->private;
2790 struct key_vector *n = v;
2791
2792 if (IS_TRIE(node_parent_rcu(n)))
2793 fib_table_print(seq, iter->tb);
2794
2795 if (IS_TNODE(n)) {
2796 __be32 prf = htonl(n->key);
2797
2798 seq_indent(seq, iter->depth-1);
2799 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2800 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2801 tn_info(n)->full_children,
2802 tn_info(n)->empty_children);
2803 } else {
2804 __be32 val = htonl(n->key);
2805 struct fib_alias *fa;
2806
2807 seq_indent(seq, iter->depth);
2808 seq_printf(seq, " |-- %pI4\n", &val);
2809
2810 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2811 char buf1[32], buf2[32];
2812
2813 seq_indent(seq, iter->depth + 1);
2814 seq_printf(seq, " /%zu %s %s",
2815 KEYLENGTH - fa->fa_slen,
2816 rtn_scope(buf1, sizeof(buf1),
2817 fa->fa_info->fib_scope),
2818 rtn_type(buf2, sizeof(buf2),
2819 fa->fa_type));
2820 if (fa->fa_tos)
2821 seq_printf(seq, " tos=%d", fa->fa_tos);
2822 seq_putc(seq, '\n');
2823 }
2824 }
2825
2826 return 0;
2827 }
2828
2829 static const struct seq_operations fib_trie_seq_ops = {
2830 .start = fib_trie_seq_start,
2831 .next = fib_trie_seq_next,
2832 .stop = fib_trie_seq_stop,
2833 .show = fib_trie_seq_show,
2834 };
2835
2836 struct fib_route_iter {
2837 struct seq_net_private p;
2838 struct fib_table *main_tb;
2839 struct key_vector *tnode;
2840 loff_t pos;
2841 t_key key;
2842 };
2843
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2844 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2845 loff_t pos)
2846 {
2847 struct key_vector *l, **tp = &iter->tnode;
2848 t_key key;
2849
2850 /* use cached location of previously found key */
2851 if (iter->pos > 0 && pos >= iter->pos) {
2852 key = iter->key;
2853 } else {
2854 iter->pos = 1;
2855 key = 0;
2856 }
2857
2858 pos -= iter->pos;
2859
2860 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2861 key = l->key + 1;
2862 iter->pos++;
2863 l = NULL;
2864
2865 /* handle unlikely case of a key wrap */
2866 if (!key)
2867 break;
2868 }
2869
2870 if (l)
2871 iter->key = l->key; /* remember it */
2872 else
2873 iter->pos = 0; /* forget it */
2874
2875 return l;
2876 }
2877
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2878 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2879 __acquires(RCU)
2880 {
2881 struct fib_route_iter *iter = seq->private;
2882 struct fib_table *tb;
2883 struct trie *t;
2884
2885 rcu_read_lock();
2886
2887 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2888 if (!tb)
2889 return NULL;
2890
2891 iter->main_tb = tb;
2892 t = (struct trie *)tb->tb_data;
2893 iter->tnode = t->kv;
2894
2895 if (*pos != 0)
2896 return fib_route_get_idx(iter, *pos);
2897
2898 iter->pos = 0;
2899 iter->key = KEY_MAX;
2900
2901 return SEQ_START_TOKEN;
2902 }
2903
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2904 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2905 {
2906 struct fib_route_iter *iter = seq->private;
2907 struct key_vector *l = NULL;
2908 t_key key = iter->key + 1;
2909
2910 ++*pos;
2911
2912 /* only allow key of 0 for start of sequence */
2913 if ((v == SEQ_START_TOKEN) || key)
2914 l = leaf_walk_rcu(&iter->tnode, key);
2915
2916 if (l) {
2917 iter->key = l->key;
2918 iter->pos++;
2919 } else {
2920 iter->pos = 0;
2921 }
2922
2923 return l;
2924 }
2925
fib_route_seq_stop(struct seq_file * seq,void * v)2926 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2927 __releases(RCU)
2928 {
2929 rcu_read_unlock();
2930 }
2931
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2932 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2933 {
2934 unsigned int flags = 0;
2935
2936 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2937 flags = RTF_REJECT;
2938 if (fi) {
2939 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2940
2941 if (nhc->nhc_gw.ipv4)
2942 flags |= RTF_GATEWAY;
2943 }
2944 if (mask == htonl(0xFFFFFFFF))
2945 flags |= RTF_HOST;
2946 flags |= RTF_UP;
2947 return flags;
2948 }
2949
2950 /*
2951 * This outputs /proc/net/route.
2952 * The format of the file is not supposed to be changed
2953 * and needs to be same as fib_hash output to avoid breaking
2954 * legacy utilities
2955 */
fib_route_seq_show(struct seq_file * seq,void * v)2956 static int fib_route_seq_show(struct seq_file *seq, void *v)
2957 {
2958 struct fib_route_iter *iter = seq->private;
2959 struct fib_table *tb = iter->main_tb;
2960 struct fib_alias *fa;
2961 struct key_vector *l = v;
2962 __be32 prefix;
2963
2964 if (v == SEQ_START_TOKEN) {
2965 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2966 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2967 "\tWindow\tIRTT");
2968 return 0;
2969 }
2970
2971 prefix = htonl(l->key);
2972
2973 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2974 struct fib_info *fi = fa->fa_info;
2975 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2976 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2977
2978 if ((fa->fa_type == RTN_BROADCAST) ||
2979 (fa->fa_type == RTN_MULTICAST))
2980 continue;
2981
2982 if (fa->tb_id != tb->tb_id)
2983 continue;
2984
2985 seq_setwidth(seq, 127);
2986
2987 if (fi) {
2988 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2989 __be32 gw = 0;
2990
2991 if (nhc->nhc_gw_family == AF_INET)
2992 gw = nhc->nhc_gw.ipv4;
2993
2994 seq_printf(seq,
2995 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2996 "%d\t%08X\t%d\t%u\t%u",
2997 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2998 prefix, gw, flags, 0, 0,
2999 fi->fib_priority,
3000 mask,
3001 (fi->fib_advmss ?
3002 fi->fib_advmss + 40 : 0),
3003 fi->fib_window,
3004 fi->fib_rtt >> 3);
3005 } else {
3006 seq_printf(seq,
3007 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3008 "%d\t%08X\t%d\t%u\t%u",
3009 prefix, 0, flags, 0, 0, 0,
3010 mask, 0, 0, 0);
3011 }
3012 seq_pad(seq, '\n');
3013 }
3014
3015 return 0;
3016 }
3017
3018 static const struct seq_operations fib_route_seq_ops = {
3019 .start = fib_route_seq_start,
3020 .next = fib_route_seq_next,
3021 .stop = fib_route_seq_stop,
3022 .show = fib_route_seq_show,
3023 };
3024
fib_proc_init(struct net * net)3025 int __net_init fib_proc_init(struct net *net)
3026 {
3027 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3028 sizeof(struct fib_trie_iter)))
3029 goto out1;
3030
3031 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3032 fib_triestat_seq_show, NULL))
3033 goto out2;
3034
3035 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3036 sizeof(struct fib_route_iter)))
3037 goto out3;
3038
3039 return 0;
3040
3041 out3:
3042 remove_proc_entry("fib_triestat", net->proc_net);
3043 out2:
3044 remove_proc_entry("fib_trie", net->proc_net);
3045 out1:
3046 return -ENOMEM;
3047 }
3048
fib_proc_exit(struct net * net)3049 void __net_exit fib_proc_exit(struct net *net)
3050 {
3051 remove_proc_entry("fib_trie", net->proc_net);
3052 remove_proc_entry("fib_triestat", net->proc_net);
3053 remove_proc_entry("route", net->proc_net);
3054 }
3055
3056 #endif /* CONFIG_PROC_FS */
3057