• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  * To Fix:
100  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101  *		and could be made very efficient with the addition of some virtual memory hacks to permit
102  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103  *		Output fragmentation wants updating along with the buffer management to use a single
104  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106  *		fragmentation anyway.
107  */
108 
109 #define pr_fmt(fmt) "IPv4: " fmt
110 
111 #include <linux/module.h>
112 #include <linux/types.h>
113 #include <linux/kernel.h>
114 #include <linux/string.h>
115 #include <linux/errno.h>
116 #include <linux/slab.h>
117 
118 #include <linux/net.h>
119 #include <linux/socket.h>
120 #include <linux/sockios.h>
121 #include <linux/in.h>
122 #include <linux/inet.h>
123 #include <linux/inetdevice.h>
124 #include <linux/netdevice.h>
125 #include <linux/etherdevice.h>
126 #include <linux/indirect_call_wrapper.h>
127 
128 #include <net/snmp.h>
129 #include <net/ip.h>
130 #include <net/protocol.h>
131 #include <net/route.h>
132 #include <linux/skbuff.h>
133 #include <net/sock.h>
134 #include <net/arp.h>
135 #include <net/icmp.h>
136 #include <net/raw.h>
137 #include <net/checksum.h>
138 #include <net/inet_ecn.h>
139 #include <linux/netfilter_ipv4.h>
140 #include <net/xfrm.h>
141 #include <linux/mroute.h>
142 #include <linux/netlink.h>
143 #include <net/dst_metadata.h>
144 
145 /*
146  *	Process Router Attention IP option (RFC 2113)
147  */
ip_call_ra_chain(struct sk_buff * skb)148 bool ip_call_ra_chain(struct sk_buff *skb)
149 {
150 	struct ip_ra_chain *ra;
151 	u8 protocol = ip_hdr(skb)->protocol;
152 	struct sock *last = NULL;
153 	struct net_device *dev = skb->dev;
154 	struct net *net = dev_net(dev);
155 
156 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 		struct sock *sk = ra->sk;
158 
159 		/* If socket is bound to an interface, only report
160 		 * the packet if it came  from that interface.
161 		 */
162 		if (sk && inet_sk(sk)->inet_num == protocol &&
163 		    (!sk->sk_bound_dev_if ||
164 		     sk->sk_bound_dev_if == dev->ifindex)) {
165 			if (ip_is_fragment(ip_hdr(skb))) {
166 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 					return true;
168 			}
169 			if (last) {
170 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 				if (skb2)
172 					raw_rcv(last, skb2);
173 			}
174 			last = sk;
175 		}
176 	}
177 
178 	if (last) {
179 		raw_rcv(last, skb);
180 		return true;
181 	}
182 	return false;
183 }
184 
185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
ip_protocol_deliver_rcu(struct net * net,struct sk_buff * skb,int protocol)187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188 {
189 	const struct net_protocol *ipprot;
190 	int raw, ret;
191 
192 resubmit:
193 	raw = raw_local_deliver(skb, protocol);
194 
195 	ipprot = rcu_dereference(inet_protos[protocol]);
196 	if (ipprot) {
197 		if (!ipprot->no_policy) {
198 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 				kfree_skb(skb);
200 				return;
201 			}
202 			nf_reset_ct(skb);
203 		}
204 		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
205 				      skb);
206 		if (ret < 0) {
207 			protocol = -ret;
208 			goto resubmit;
209 		}
210 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
211 	} else {
212 		if (!raw) {
213 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
214 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
215 				icmp_send(skb, ICMP_DEST_UNREACH,
216 					  ICMP_PROT_UNREACH, 0);
217 			}
218 			kfree_skb(skb);
219 		} else {
220 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
221 			consume_skb(skb);
222 		}
223 	}
224 }
225 
ip_local_deliver_finish(struct net * net,struct sock * sk,struct sk_buff * skb)226 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
227 {
228 	__skb_pull(skb, skb_network_header_len(skb));
229 
230 	rcu_read_lock();
231 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
232 	rcu_read_unlock();
233 
234 	return 0;
235 }
236 
237 /*
238  * 	Deliver IP Packets to the higher protocol layers.
239  */
ip_local_deliver(struct sk_buff * skb)240 int ip_local_deliver(struct sk_buff *skb)
241 {
242 	/*
243 	 *	Reassemble IP fragments.
244 	 */
245 	struct net *net = dev_net(skb->dev);
246 
247 	if (ip_is_fragment(ip_hdr(skb))) {
248 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
249 			return 0;
250 	}
251 
252 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
253 		       net, NULL, skb, skb->dev, NULL,
254 		       ip_local_deliver_finish);
255 }
256 EXPORT_SYMBOL(ip_local_deliver);
257 
ip_rcv_options(struct sk_buff * skb,struct net_device * dev)258 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
259 {
260 	struct ip_options *opt;
261 	const struct iphdr *iph;
262 
263 	/* It looks as overkill, because not all
264 	   IP options require packet mangling.
265 	   But it is the easiest for now, especially taking
266 	   into account that combination of IP options
267 	   and running sniffer is extremely rare condition.
268 					      --ANK (980813)
269 	*/
270 	if (skb_cow(skb, skb_headroom(skb))) {
271 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
272 		goto drop;
273 	}
274 
275 	iph = ip_hdr(skb);
276 	opt = &(IPCB(skb)->opt);
277 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
278 
279 	if (ip_options_compile(dev_net(dev), opt, skb)) {
280 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
281 		goto drop;
282 	}
283 
284 	if (unlikely(opt->srr)) {
285 		struct in_device *in_dev = __in_dev_get_rcu(dev);
286 
287 		if (in_dev) {
288 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
289 				if (IN_DEV_LOG_MARTIANS(in_dev))
290 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
291 							     &iph->saddr,
292 							     &iph->daddr);
293 				goto drop;
294 			}
295 		}
296 
297 		if (ip_options_rcv_srr(skb, dev))
298 			goto drop;
299 	}
300 
301 	return false;
302 drop:
303 	return true;
304 }
305 
ip_can_use_hint(const struct sk_buff * skb,const struct iphdr * iph,const struct sk_buff * hint)306 static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
307 			    const struct sk_buff *hint)
308 {
309 	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
310 	       ip_hdr(hint)->tos == iph->tos;
311 }
312 
313 int tcp_v4_early_demux(struct sk_buff *skb);
314 int udp_v4_early_demux(struct sk_buff *skb);
ip_rcv_finish_core(struct net * net,struct sock * sk,struct sk_buff * skb,struct net_device * dev,const struct sk_buff * hint)315 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
316 			      struct sk_buff *skb, struct net_device *dev,
317 			      const struct sk_buff *hint)
318 {
319 	const struct iphdr *iph = ip_hdr(skb);
320 	int err, drop_reason;
321 	struct rtable *rt;
322 
323 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
324 
325 	if (ip_can_use_hint(skb, iph, hint)) {
326 		err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
327 					dev, hint);
328 		if (unlikely(err))
329 			goto drop_error;
330 	}
331 
332 	if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) &&
333 	    !skb_dst(skb) &&
334 	    !skb->sk &&
335 	    !ip_is_fragment(iph)) {
336 		switch (iph->protocol) {
337 		case IPPROTO_TCP:
338 			if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) {
339 				tcp_v4_early_demux(skb);
340 
341 				/* must reload iph, skb->head might have changed */
342 				iph = ip_hdr(skb);
343 			}
344 			break;
345 		case IPPROTO_UDP:
346 			if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) {
347 				err = udp_v4_early_demux(skb);
348 				if (unlikely(err))
349 					goto drop_error;
350 
351 				/* must reload iph, skb->head might have changed */
352 				iph = ip_hdr(skb);
353 			}
354 			break;
355 		}
356 	}
357 
358 	/*
359 	 *	Initialise the virtual path cache for the packet. It describes
360 	 *	how the packet travels inside Linux networking.
361 	 */
362 	if (!skb_valid_dst(skb)) {
363 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
364 					   iph->tos, dev);
365 		if (unlikely(err))
366 			goto drop_error;
367 	} else {
368 		struct in_device *in_dev = __in_dev_get_rcu(dev);
369 
370 		if (in_dev && IN_DEV_ORCONF(in_dev, NOPOLICY))
371 			IPCB(skb)->flags |= IPSKB_NOPOLICY;
372 	}
373 
374 #ifdef CONFIG_IP_ROUTE_CLASSID
375 	if (unlikely(skb_dst(skb)->tclassid)) {
376 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
377 		u32 idx = skb_dst(skb)->tclassid;
378 		st[idx&0xFF].o_packets++;
379 		st[idx&0xFF].o_bytes += skb->len;
380 		st[(idx>>16)&0xFF].i_packets++;
381 		st[(idx>>16)&0xFF].i_bytes += skb->len;
382 	}
383 #endif
384 
385 	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
386 		goto drop;
387 
388 	rt = skb_rtable(skb);
389 	if (rt->rt_type == RTN_MULTICAST) {
390 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
391 	} else if (rt->rt_type == RTN_BROADCAST) {
392 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
393 	} else if (skb->pkt_type == PACKET_BROADCAST ||
394 		   skb->pkt_type == PACKET_MULTICAST) {
395 		struct in_device *in_dev = __in_dev_get_rcu(dev);
396 
397 		/* RFC 1122 3.3.6:
398 		 *
399 		 *   When a host sends a datagram to a link-layer broadcast
400 		 *   address, the IP destination address MUST be a legal IP
401 		 *   broadcast or IP multicast address.
402 		 *
403 		 *   A host SHOULD silently discard a datagram that is received
404 		 *   via a link-layer broadcast (see Section 2.4) but does not
405 		 *   specify an IP multicast or broadcast destination address.
406 		 *
407 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
408 		 * in a way a form of multicast and the most common use case for
409 		 * this is 802.11 protecting against cross-station spoofing (the
410 		 * so-called "hole-196" attack) so do it for both.
411 		 */
412 		if (in_dev &&
413 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
414 			drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
415 			goto drop;
416 		}
417 	}
418 
419 	return NET_RX_SUCCESS;
420 
421 drop:
422 	kfree_skb_reason(skb, drop_reason);
423 	return NET_RX_DROP;
424 
425 drop_error:
426 	if (err == -EXDEV) {
427 		drop_reason = SKB_DROP_REASON_IP_RPFILTER;
428 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
429 	}
430 	goto drop;
431 }
432 
ip_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)433 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
434 {
435 	struct net_device *dev = skb->dev;
436 	int ret;
437 
438 	/* if ingress device is enslaved to an L3 master device pass the
439 	 * skb to its handler for processing
440 	 */
441 	skb = l3mdev_ip_rcv(skb);
442 	if (!skb)
443 		return NET_RX_SUCCESS;
444 
445 	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
446 	if (ret != NET_RX_DROP)
447 		ret = dst_input(skb);
448 	return ret;
449 }
450 
451 /*
452  * 	Main IP Receive routine.
453  */
ip_rcv_core(struct sk_buff * skb,struct net * net)454 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
455 {
456 	const struct iphdr *iph;
457 	int drop_reason;
458 	u32 len;
459 
460 	/* When the interface is in promisc. mode, drop all the crap
461 	 * that it receives, do not try to analyse it.
462 	 */
463 	if (skb->pkt_type == PACKET_OTHERHOST) {
464 		drop_reason = SKB_DROP_REASON_OTHERHOST;
465 		goto drop;
466 	}
467 
468 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
469 
470 	skb = skb_share_check(skb, GFP_ATOMIC);
471 	if (!skb) {
472 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
473 		goto out;
474 	}
475 
476 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
477 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
478 		goto inhdr_error;
479 
480 	iph = ip_hdr(skb);
481 
482 	/*
483 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
484 	 *
485 	 *	Is the datagram acceptable?
486 	 *
487 	 *	1.	Length at least the size of an ip header
488 	 *	2.	Version of 4
489 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
490 	 *	4.	Doesn't have a bogus length
491 	 */
492 
493 	if (iph->ihl < 5 || iph->version != 4)
494 		goto inhdr_error;
495 
496 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
497 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
498 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
499 	__IP_ADD_STATS(net,
500 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
501 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
502 
503 	if (!pskb_may_pull(skb, iph->ihl*4))
504 		goto inhdr_error;
505 
506 	iph = ip_hdr(skb);
507 
508 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
509 		goto csum_error;
510 
511 	len = ntohs(iph->tot_len);
512 	if (skb->len < len) {
513 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
514 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
515 		goto drop;
516 	} else if (len < (iph->ihl*4))
517 		goto inhdr_error;
518 
519 	/* Our transport medium may have padded the buffer out. Now we know it
520 	 * is IP we can trim to the true length of the frame.
521 	 * Note this now means skb->len holds ntohs(iph->tot_len).
522 	 */
523 	if (pskb_trim_rcsum(skb, len)) {
524 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
525 		goto drop;
526 	}
527 
528 	iph = ip_hdr(skb);
529 	skb->transport_header = skb->network_header + iph->ihl*4;
530 
531 	/* Remove any debris in the socket control block */
532 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
533 	IPCB(skb)->iif = skb->skb_iif;
534 
535 	/* Must drop socket now because of tproxy. */
536 	if (!skb_sk_is_prefetched(skb))
537 		skb_orphan(skb);
538 
539 	return skb;
540 
541 csum_error:
542 	drop_reason = SKB_DROP_REASON_IP_CSUM;
543 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
544 inhdr_error:
545 	if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
546 		drop_reason = SKB_DROP_REASON_IP_INHDR;
547 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
548 drop:
549 	kfree_skb_reason(skb, drop_reason);
550 out:
551 	return NULL;
552 }
553 
554 /*
555  * IP receive entry point
556  */
ip_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)557 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
558 	   struct net_device *orig_dev)
559 {
560 	struct net *net = dev_net(dev);
561 
562 	skb = ip_rcv_core(skb, net);
563 	if (skb == NULL)
564 		return NET_RX_DROP;
565 
566 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
567 		       net, NULL, skb, dev, NULL,
568 		       ip_rcv_finish);
569 }
570 
ip_sublist_rcv_finish(struct list_head * head)571 static void ip_sublist_rcv_finish(struct list_head *head)
572 {
573 	struct sk_buff *skb, *next;
574 
575 	list_for_each_entry_safe(skb, next, head, list) {
576 		skb_list_del_init(skb);
577 		dst_input(skb);
578 	}
579 }
580 
ip_extract_route_hint(const struct net * net,struct sk_buff * skb,int rt_type)581 static struct sk_buff *ip_extract_route_hint(const struct net *net,
582 					     struct sk_buff *skb, int rt_type)
583 {
584 	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST ||
585 	    IPCB(skb)->flags & IPSKB_MULTIPATH)
586 		return NULL;
587 
588 	return skb;
589 }
590 
ip_list_rcv_finish(struct net * net,struct sock * sk,struct list_head * head)591 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
592 			       struct list_head *head)
593 {
594 	struct sk_buff *skb, *next, *hint = NULL;
595 	struct dst_entry *curr_dst = NULL;
596 	struct list_head sublist;
597 
598 	INIT_LIST_HEAD(&sublist);
599 	list_for_each_entry_safe(skb, next, head, list) {
600 		struct net_device *dev = skb->dev;
601 		struct dst_entry *dst;
602 
603 		skb_list_del_init(skb);
604 		/* if ingress device is enslaved to an L3 master device pass the
605 		 * skb to its handler for processing
606 		 */
607 		skb = l3mdev_ip_rcv(skb);
608 		if (!skb)
609 			continue;
610 		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
611 			continue;
612 
613 		dst = skb_dst(skb);
614 		if (curr_dst != dst) {
615 			hint = ip_extract_route_hint(net, skb,
616 					       ((struct rtable *)dst)->rt_type);
617 
618 			/* dispatch old sublist */
619 			if (!list_empty(&sublist))
620 				ip_sublist_rcv_finish(&sublist);
621 			/* start new sublist */
622 			INIT_LIST_HEAD(&sublist);
623 			curr_dst = dst;
624 		}
625 		list_add_tail(&skb->list, &sublist);
626 	}
627 	/* dispatch final sublist */
628 	ip_sublist_rcv_finish(&sublist);
629 }
630 
ip_sublist_rcv(struct list_head * head,struct net_device * dev,struct net * net)631 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
632 			   struct net *net)
633 {
634 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
635 		     head, dev, NULL, ip_rcv_finish);
636 	ip_list_rcv_finish(net, NULL, head);
637 }
638 
639 /* Receive a list of IP packets */
ip_list_rcv(struct list_head * head,struct packet_type * pt,struct net_device * orig_dev)640 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
641 		 struct net_device *orig_dev)
642 {
643 	struct net_device *curr_dev = NULL;
644 	struct net *curr_net = NULL;
645 	struct sk_buff *skb, *next;
646 	struct list_head sublist;
647 
648 	INIT_LIST_HEAD(&sublist);
649 	list_for_each_entry_safe(skb, next, head, list) {
650 		struct net_device *dev = skb->dev;
651 		struct net *net = dev_net(dev);
652 
653 		skb_list_del_init(skb);
654 		skb = ip_rcv_core(skb, net);
655 		if (skb == NULL)
656 			continue;
657 
658 		if (curr_dev != dev || curr_net != net) {
659 			/* dispatch old sublist */
660 			if (!list_empty(&sublist))
661 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
662 			/* start new sublist */
663 			INIT_LIST_HEAD(&sublist);
664 			curr_dev = dev;
665 			curr_net = net;
666 		}
667 		list_add_tail(&skb->list, &sublist);
668 	}
669 	/* dispatch final sublist */
670 	if (!list_empty(&sublist))
671 		ip_sublist_rcv(&sublist, curr_dev, curr_net);
672 }
673