/* * Copyright 2014 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "dp.h" #include "conn.h" #include "head.h" #include "ior.h" #include #include #include #include #include #include /* IED scripts are no longer used by UEFI/RM from Ampere, but have been updated for * the x86 option ROM. However, the relevant VBIOS table versions weren't modified, * so we're unable to detect this in a nice way. */ #define AMPERE_IED_HACK(disp) ((disp)->engine.subdev.device->card_type >= GA100) struct lt_state { struct nvkm_outp *outp; int repeaters; int repeater; u8 stat[6]; u8 conf[4]; bool pc2; u8 pc2stat; u8 pc2conf[2]; }; static int nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay) { struct nvkm_outp *outp = lt->outp; u32 addr; int ret; usleep_range(delay, delay * 2); if (lt->repeater) addr = DPCD_LTTPR_LANE0_1_STATUS(lt->repeater); else addr = DPCD_LS02; ret = nvkm_rdaux(outp->dp.aux, addr, <->stat[0], 3); if (ret) return ret; if (lt->repeater) addr = DPCD_LTTPR_LANE0_1_ADJUST(lt->repeater); else addr = DPCD_LS06; ret = nvkm_rdaux(outp->dp.aux, addr, <->stat[4], 2); if (ret) return ret; if (pc) { ret = nvkm_rdaux(outp->dp.aux, DPCD_LS0C, <->pc2stat, 1); if (ret) lt->pc2stat = 0x00; OUTP_TRACE(outp, "status %6ph pc2 %02x", lt->stat, lt->pc2stat); } else { OUTP_TRACE(outp, "status %6ph", lt->stat); } return 0; } static int nvkm_dp_train_drive(struct lt_state *lt, bool pc) { struct nvkm_outp *outp = lt->outp; struct nvkm_ior *ior = outp->ior; struct nvkm_bios *bios = ior->disp->engine.subdev.device->bios; struct nvbios_dpout info; struct nvbios_dpcfg ocfg; u8 ver, hdr, cnt, len; u32 addr; u32 data; int ret, i; for (i = 0; i < ior->dp.nr; i++) { u8 lane = (lt->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf; u8 lpc2 = (lt->pc2stat >> (i * 2)) & 0x3; u8 lpre = (lane & 0x0c) >> 2; u8 lvsw = (lane & 0x03) >> 0; u8 hivs = 3 - lpre; u8 hipe = 3; u8 hipc = 3; if (lpc2 >= hipc) lpc2 = hipc | DPCD_LC0F_LANE0_MAX_POST_CURSOR2_REACHED; if (lpre >= hipe) { lpre = hipe | DPCD_LC03_MAX_SWING_REACHED; /* yes. */ lvsw = hivs = 3 - (lpre & 3); } else if (lvsw >= hivs) { lvsw = hivs | DPCD_LC03_MAX_SWING_REACHED; } lt->conf[i] = (lpre << 3) | lvsw; lt->pc2conf[i >> 1] |= lpc2 << ((i & 1) * 4); OUTP_TRACE(outp, "config lane %d %02x %02x", i, lt->conf[i], lpc2); if (lt->repeater != lt->repeaters) continue; data = nvbios_dpout_match(bios, outp->info.hasht, outp->info.hashm, &ver, &hdr, &cnt, &len, &info); if (!data) continue; data = nvbios_dpcfg_match(bios, data, lpc2 & 3, lvsw & 3, lpre & 3, &ver, &hdr, &cnt, &len, &ocfg); if (!data) continue; ior->func->dp->drive(ior, i, ocfg.pc, ocfg.dc, ocfg.pe, ocfg.tx_pu); } if (lt->repeater) addr = DPCD_LTTPR_LANE0_SET(lt->repeater); else addr = DPCD_LC03(0); ret = nvkm_wraux(outp->dp.aux, addr, lt->conf, 4); if (ret) return ret; if (pc) { ret = nvkm_wraux(outp->dp.aux, DPCD_LC0F, lt->pc2conf, 2); if (ret) return ret; } return 0; } static void nvkm_dp_train_pattern(struct lt_state *lt, u8 pattern) { struct nvkm_outp *outp = lt->outp; u32 addr; u8 sink_tp; OUTP_TRACE(outp, "training pattern %d", pattern); outp->ior->func->dp->pattern(outp->ior, pattern); if (lt->repeater) addr = DPCD_LTTPR_PATTERN_SET(lt->repeater); else addr = DPCD_LC02; nvkm_rdaux(outp->dp.aux, addr, &sink_tp, 1); sink_tp &= ~DPCD_LC02_TRAINING_PATTERN_SET; sink_tp |= (pattern != 4) ? pattern : 7; if (pattern != 0) sink_tp |= DPCD_LC02_SCRAMBLING_DISABLE; else sink_tp &= ~DPCD_LC02_SCRAMBLING_DISABLE; nvkm_wraux(outp->dp.aux, addr, &sink_tp, 1); } static int nvkm_dp_train_eq(struct lt_state *lt) { struct nvkm_i2c_aux *aux = lt->outp->dp.aux; bool eq_done = false, cr_done = true; int tries = 0, usec = 0, i; u8 data; if (lt->repeater) { if (!nvkm_rdaux(aux, DPCD_LTTPR_AUX_RD_INTERVAL(lt->repeater), &data, sizeof(data))) usec = (data & DPCD_RC0E_AUX_RD_INTERVAL) * 4000; nvkm_dp_train_pattern(lt, 4); } else { if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] >= 0x14 && lt->outp->dp.dpcd[DPCD_RC03] & DPCD_RC03_TPS4_SUPPORTED) nvkm_dp_train_pattern(lt, 4); else if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] >= 0x12 && lt->outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED) nvkm_dp_train_pattern(lt, 3); else nvkm_dp_train_pattern(lt, 2); usec = (lt->outp->dp.dpcd[DPCD_RC0E] & DPCD_RC0E_AUX_RD_INTERVAL) * 4000; } do { if ((tries && nvkm_dp_train_drive(lt, lt->pc2)) || nvkm_dp_train_sense(lt, lt->pc2, usec ? usec : 400)) break; eq_done = !!(lt->stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE); for (i = 0; i < lt->outp->ior->dp.nr && eq_done; i++) { u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DPCD_LS02_LANE0_CR_DONE)) cr_done = false; if (!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) || !(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) eq_done = false; } } while (!eq_done && cr_done && ++tries <= 5); return eq_done ? 0 : -1; } static int nvkm_dp_train_cr(struct lt_state *lt) { bool cr_done = false, abort = false; int voltage = lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET; int tries = 0, usec = 0, i; nvkm_dp_train_pattern(lt, 1); if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] < 0x14 && !lt->repeater) usec = (lt->outp->dp.dpcd[DPCD_RC0E] & DPCD_RC0E_AUX_RD_INTERVAL) * 4000; do { if (nvkm_dp_train_drive(lt, false) || nvkm_dp_train_sense(lt, false, usec ? usec : 100)) break; cr_done = true; for (i = 0; i < lt->outp->ior->dp.nr; i++) { u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DPCD_LS02_LANE0_CR_DONE)) { cr_done = false; if (lt->conf[i] & DPCD_LC03_MAX_SWING_REACHED) abort = true; break; } } if ((lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET) != voltage) { voltage = lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET; tries = 0; } } while (!cr_done && !abort && ++tries < 5); return cr_done ? 0 : -1; } static int nvkm_dp_train_links(struct nvkm_outp *outp, int rate) { struct nvkm_ior *ior = outp->ior; struct nvkm_disp *disp = outp->disp; struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_bios *bios = subdev->device->bios; struct lt_state lt = { .outp = outp, }; u32 lnkcmp; u8 sink[2], data; int ret; OUTP_DBG(outp, "training %d x %d MB/s", ior->dp.nr, ior->dp.bw * 27); /* Intersect misc. capabilities of the OR and sink. */ if (disp->engine.subdev.device->chipset < 0x110) outp->dp.dpcd[DPCD_RC03] &= ~DPCD_RC03_TPS4_SUPPORTED; if (disp->engine.subdev.device->chipset < 0xd0) outp->dp.dpcd[DPCD_RC02] &= ~DPCD_RC02_TPS3_SUPPORTED; lt.pc2 = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED; if (AMPERE_IED_HACK(disp) && (lnkcmp = lt.outp->dp.info.script[0])) { /* Execute BeforeLinkTraining script from DP Info table. */ while (ior->dp.bw < nvbios_rd08(bios, lnkcmp)) lnkcmp += 3; lnkcmp = nvbios_rd16(bios, lnkcmp + 1); nvbios_init(&outp->disp->engine.subdev, lnkcmp, init.outp = &outp->info; init.or = ior->id; init.link = ior->asy.link; ); } /* Set desired link configuration on the source. */ if ((lnkcmp = lt.outp->dp.info.lnkcmp)) { if (outp->dp.version < 0x30) { while ((ior->dp.bw * 2700) < nvbios_rd16(bios, lnkcmp)) lnkcmp += 4; lnkcmp = nvbios_rd16(bios, lnkcmp + 2); } else { while (ior->dp.bw < nvbios_rd08(bios, lnkcmp)) lnkcmp += 3; lnkcmp = nvbios_rd16(bios, lnkcmp + 1); } nvbios_init(subdev, lnkcmp, init.outp = &outp->info; init.or = ior->id; init.link = ior->asy.link; ); } ret = ior->func->dp->links(ior, outp->dp.aux); if (ret) { if (ret < 0) { OUTP_ERR(outp, "train failed with %d", ret); return ret; } return 0; } ior->func->dp->power(ior, ior->dp.nr); /* Select LTTPR non-transparent mode if we have a valid configuration, * use transparent mode otherwise. */ if (outp->dp.lttpr[0] >= 0x14) { data = DPCD_LTTPR_MODE_TRANSPARENT; nvkm_wraux(outp->dp.aux, DPCD_LTTPR_MODE, &data, sizeof(data)); if (outp->dp.lttprs) { data = DPCD_LTTPR_MODE_NON_TRANSPARENT; nvkm_wraux(outp->dp.aux, DPCD_LTTPR_MODE, &data, sizeof(data)); lt.repeaters = outp->dp.lttprs; } } /* Set desired link configuration on the sink. */ sink[0] = (outp->dp.rate[rate].dpcd < 0) ? ior->dp.bw : 0; sink[1] = ior->dp.nr; if (ior->dp.ef) sink[1] |= DPCD_LC01_ENHANCED_FRAME_EN; ret = nvkm_wraux(outp->dp.aux, DPCD_LC00_LINK_BW_SET, sink, 2); if (ret) return ret; if (outp->dp.rate[rate].dpcd >= 0) { ret = nvkm_rdaux(outp->dp.aux, DPCD_LC15_LINK_RATE_SET, &sink[0], sizeof(sink[0])); if (ret) return ret; sink[0] &= ~DPCD_LC15_LINK_RATE_SET_MASK; sink[0] |= outp->dp.rate[rate].dpcd; ret = nvkm_wraux(outp->dp.aux, DPCD_LC15_LINK_RATE_SET, &sink[0], sizeof(sink[0])); if (ret) return ret; } /* Attempt to train the link in this configuration. */ for (lt.repeater = lt.repeaters; lt.repeater >= 0; lt.repeater--) { if (lt.repeater) OUTP_DBG(outp, "training LTTPR%d", lt.repeater); else OUTP_DBG(outp, "training sink"); memset(lt.stat, 0x00, sizeof(lt.stat)); ret = nvkm_dp_train_cr(<); if (ret == 0) ret = nvkm_dp_train_eq(<); nvkm_dp_train_pattern(<, 0); } return ret; } static void nvkm_dp_train_fini(struct nvkm_outp *outp) { /* Execute AfterLinkTraining script from DP Info table. */ nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[1], init.outp = &outp->info; init.or = outp->ior->id; init.link = outp->ior->asy.link; ); } static void nvkm_dp_train_init(struct nvkm_outp *outp) { /* Execute EnableSpread/DisableSpread script from DP Info table. */ if (outp->dp.dpcd[DPCD_RC03] & DPCD_RC03_MAX_DOWNSPREAD) { nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[2], init.outp = &outp->info; init.or = outp->ior->id; init.link = outp->ior->asy.link; ); } else { nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[3], init.outp = &outp->info; init.or = outp->ior->id; init.link = outp->ior->asy.link; ); } if (!AMPERE_IED_HACK(outp->disp)) { /* Execute BeforeLinkTraining script from DP Info table. */ nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[0], init.outp = &outp->info; init.or = outp->ior->id; init.link = outp->ior->asy.link; ); } } static int nvkm_dp_train(struct nvkm_outp *outp, u32 dataKBps) { struct nvkm_ior *ior = outp->ior; int ret = -EINVAL, nr, rate; u8 pwr; /* Ensure sink is not in a low-power state. */ if (!nvkm_rdaux(outp->dp.aux, DPCD_SC00, &pwr, 1)) { if ((pwr & DPCD_SC00_SET_POWER) != DPCD_SC00_SET_POWER_D0) { pwr &= ~DPCD_SC00_SET_POWER; pwr |= DPCD_SC00_SET_POWER_D0; nvkm_wraux(outp->dp.aux, DPCD_SC00, &pwr, 1); } } ior->dp.mst = outp->dp.lt.mst; ior->dp.ef = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP; ior->dp.nr = 0; /* Link training. */ OUTP_DBG(outp, "training"); nvkm_dp_train_init(outp); for (nr = outp->dp.links; ret < 0 && nr; nr >>= 1) { for (rate = 0; ret < 0 && rate < outp->dp.rates; rate++) { if (outp->dp.rate[rate].rate * nr >= dataKBps || WARN_ON(!ior->dp.nr)) { /* Program selected link configuration. */ ior->dp.bw = outp->dp.rate[rate].rate / 27000; ior->dp.nr = nr; ret = nvkm_dp_train_links(outp, rate); } } } nvkm_dp_train_fini(outp); if (ret < 0) OUTP_ERR(outp, "training failed"); else OUTP_DBG(outp, "training done"); atomic_set(&outp->dp.lt.done, 1); return ret; } /* XXX: This is a big fat hack, and this is just drm_dp_read_dpcd_caps() * converted to work inside nvkm. This is a temporary holdover until we start * passing the drm_dp_aux device through NVKM */ static int nvkm_dp_read_dpcd_caps(struct nvkm_outp *outp) { struct nvkm_i2c_aux *aux = outp->dp.aux; u8 dpcd_ext[DP_RECEIVER_CAP_SIZE]; int ret; ret = nvkm_rdaux(aux, DPCD_RC00_DPCD_REV, outp->dp.dpcd, DP_RECEIVER_CAP_SIZE); if (ret < 0) return ret; /* * Prior to DP1.3 the bit represented by * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. * If it is set DP_DPCD_REV at 0000h could be at a value less than * the true capability of the panel. The only way to check is to * then compare 0000h and 2200h. */ if (!(outp->dp.dpcd[DP_TRAINING_AUX_RD_INTERVAL] & DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) return 0; ret = nvkm_rdaux(aux, DP_DP13_DPCD_REV, dpcd_ext, sizeof(dpcd_ext)); if (ret < 0) return ret; if (outp->dp.dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { OUTP_DBG(outp, "Extended DPCD rev less than base DPCD rev (%d > %d)\n", outp->dp.dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]); return 0; } if (!memcmp(outp->dp.dpcd, dpcd_ext, sizeof(dpcd_ext))) return 0; memcpy(outp->dp.dpcd, dpcd_ext, sizeof(dpcd_ext)); return 0; } void nvkm_dp_disable(struct nvkm_outp *outp, struct nvkm_ior *ior) { /* Execute DisableLT script from DP Info Table. */ nvbios_init(&ior->disp->engine.subdev, outp->dp.info.script[4], init.outp = &outp->info; init.or = ior->id; init.link = ior->arm.link; ); } static void nvkm_dp_release(struct nvkm_outp *outp) { /* Prevent link from being retrained if sink sends an IRQ. */ atomic_set(&outp->dp.lt.done, 0); outp->ior->dp.nr = 0; } static int nvkm_dp_acquire(struct nvkm_outp *outp) { struct nvkm_ior *ior = outp->ior; struct nvkm_head *head; bool retrain = true; u32 datakbps = 0; u32 dataKBps; u32 linkKBps; u8 stat[3]; int ret, i; mutex_lock(&outp->dp.mutex); /* Check that link configuration meets current requirements. */ list_for_each_entry(head, &outp->disp->heads, head) { if (ior->asy.head & (1 << head->id)) { u32 khz = (head->asy.hz >> ior->asy.rgdiv) / 1000; datakbps += khz * head->asy.or.depth; } } linkKBps = ior->dp.bw * 27000 * ior->dp.nr; dataKBps = DIV_ROUND_UP(datakbps, 8); OUTP_DBG(outp, "data %d KB/s link %d KB/s mst %d->%d", dataKBps, linkKBps, ior->dp.mst, outp->dp.lt.mst); if (linkKBps < dataKBps || ior->dp.mst != outp->dp.lt.mst) { OUTP_DBG(outp, "link requirements changed"); goto done; } /* Check that link is still trained. */ ret = nvkm_rdaux(outp->dp.aux, DPCD_LS02, stat, 3); if (ret) { OUTP_DBG(outp, "failed to read link status, assuming no sink"); goto done; } if (stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE) { for (i = 0; i < ior->dp.nr; i++) { u8 lane = (stat[i >> 1] >> ((i & 1) * 4)) & 0x0f; if (!(lane & DPCD_LS02_LANE0_CR_DONE) || !(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) || !(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) { OUTP_DBG(outp, "lane %d not equalised", lane); goto done; } } retrain = false; } else { OUTP_DBG(outp, "no inter-lane alignment"); } done: if (retrain || !atomic_read(&outp->dp.lt.done)) ret = nvkm_dp_train(outp, dataKBps); mutex_unlock(&outp->dp.mutex); return ret; } static bool nvkm_dp_enable_supported_link_rates(struct nvkm_outp *outp) { u8 sink_rates[DPCD_RC10_SUPPORTED_LINK_RATES__SIZE]; int i, j, k; if (outp->conn->info.type != DCB_CONNECTOR_eDP || outp->dp.dpcd[DPCD_RC00_DPCD_REV] < 0x13 || nvkm_rdaux(outp->dp.aux, DPCD_RC10_SUPPORTED_LINK_RATES(0), sink_rates, sizeof(sink_rates))) return false; for (i = 0; i < ARRAY_SIZE(sink_rates); i += 2) { const u32 rate = ((sink_rates[i + 1] << 8) | sink_rates[i]) * 200 / 10; if (!rate || WARN_ON(outp->dp.rates == ARRAY_SIZE(outp->dp.rate))) break; if (rate > outp->info.dpconf.link_bw * 27000) { OUTP_DBG(outp, "rate %d !outp", rate); continue; } for (j = 0; j < outp->dp.rates; j++) { if (rate > outp->dp.rate[j].rate) { for (k = outp->dp.rates; k > j; k--) outp->dp.rate[k] = outp->dp.rate[k - 1]; break; } } outp->dp.rate[j].dpcd = i / 2; outp->dp.rate[j].rate = rate; outp->dp.rates++; } for (i = 0; i < outp->dp.rates; i++) OUTP_DBG(outp, "link_rate[%d] = %d", outp->dp.rate[i].dpcd, outp->dp.rate[i].rate); return outp->dp.rates != 0; } static bool nvkm_dp_enable(struct nvkm_outp *outp, bool enable) { struct nvkm_i2c_aux *aux = outp->dp.aux; if (enable) { if (!outp->dp.present) { OUTP_DBG(outp, "aux power -> always"); nvkm_i2c_aux_monitor(aux, true); outp->dp.present = true; } /* Detect any LTTPRs before reading DPCD receiver caps. */ if (!nvkm_rdaux(aux, DPCD_LTTPR_REV, outp->dp.lttpr, sizeof(outp->dp.lttpr)) && outp->dp.lttpr[0] >= 0x14 && outp->dp.lttpr[2]) { switch (outp->dp.lttpr[2]) { case 0x80: outp->dp.lttprs = 1; break; case 0x40: outp->dp.lttprs = 2; break; case 0x20: outp->dp.lttprs = 3; break; case 0x10: outp->dp.lttprs = 4; break; case 0x08: outp->dp.lttprs = 5; break; case 0x04: outp->dp.lttprs = 6; break; case 0x02: outp->dp.lttprs = 7; break; case 0x01: outp->dp.lttprs = 8; break; default: /* Unknown LTTPR count, we'll switch to transparent mode. */ WARN_ON(1); outp->dp.lttprs = 0; break; } } else { /* No LTTPR support, or zero LTTPR count - don't touch it at all. */ memset(outp->dp.lttpr, 0x00, sizeof(outp->dp.lttpr)); } if (!nvkm_dp_read_dpcd_caps(outp)) { const u8 rates[] = { 0x1e, 0x14, 0x0a, 0x06, 0 }; const u8 *rate; int rate_max; outp->dp.rates = 0; outp->dp.links = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_MAX_LANE_COUNT; outp->dp.links = min(outp->dp.links, outp->info.dpconf.link_nr); if (outp->dp.lttprs && outp->dp.lttpr[4]) outp->dp.links = min_t(int, outp->dp.links, outp->dp.lttpr[4]); rate_max = outp->dp.dpcd[DPCD_RC01_MAX_LINK_RATE]; rate_max = min(rate_max, outp->info.dpconf.link_bw); if (outp->dp.lttprs && outp->dp.lttpr[1]) rate_max = min_t(int, rate_max, outp->dp.lttpr[1]); if (!nvkm_dp_enable_supported_link_rates(outp)) { for (rate = rates; *rate; rate++) { if (*rate > rate_max) continue; if (WARN_ON(outp->dp.rates == ARRAY_SIZE(outp->dp.rate))) break; outp->dp.rate[outp->dp.rates].dpcd = -1; outp->dp.rate[outp->dp.rates].rate = *rate * 27000; outp->dp.rates++; } } return true; } } if (outp->dp.present) { OUTP_DBG(outp, "aux power -> demand"); nvkm_i2c_aux_monitor(aux, false); outp->dp.present = false; } atomic_set(&outp->dp.lt.done, 0); return false; } static int nvkm_dp_hpd(struct nvkm_notify *notify) { const struct nvkm_i2c_ntfy_rep *line = notify->data; struct nvkm_outp *outp = container_of(notify, typeof(*outp), dp.hpd); struct nvkm_conn *conn = outp->conn; struct nvkm_disp *disp = outp->disp; struct nvif_notify_conn_rep_v0 rep = {}; OUTP_DBG(outp, "HPD: %d", line->mask); if (line->mask & NVKM_I2C_IRQ) { if (atomic_read(&outp->dp.lt.done)) outp->func->acquire(outp); rep.mask |= NVIF_NOTIFY_CONN_V0_IRQ; } else { nvkm_dp_enable(outp, true); } if (line->mask & NVKM_I2C_UNPLUG) rep.mask |= NVIF_NOTIFY_CONN_V0_UNPLUG; if (line->mask & NVKM_I2C_PLUG) rep.mask |= NVIF_NOTIFY_CONN_V0_PLUG; nvkm_event_send(&disp->hpd, rep.mask, conn->index, &rep, sizeof(rep)); return NVKM_NOTIFY_KEEP; } static void nvkm_dp_fini(struct nvkm_outp *outp) { nvkm_notify_put(&outp->dp.hpd); nvkm_dp_enable(outp, false); } static void nvkm_dp_init(struct nvkm_outp *outp) { struct nvkm_gpio *gpio = outp->disp->engine.subdev.device->gpio; nvkm_notify_put(&outp->conn->hpd); /* eDP panels need powering on by us (if the VBIOS doesn't default it * to on) before doing any AUX channel transactions. LVDS panel power * is handled by the SOR itself, and not required for LVDS DDC. */ if (outp->conn->info.type == DCB_CONNECTOR_eDP) { int power = nvkm_gpio_get(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff); if (power == 0) nvkm_gpio_set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 1); /* We delay here unconditionally, even if already powered, * because some laptop panels having a significant resume * delay before the panel begins responding. * * This is likely a bit of a hack, but no better idea for * handling this at the moment. */ msleep(300); /* If the eDP panel can't be detected, we need to restore * the panel power GPIO to avoid breaking another output. */ if (!nvkm_dp_enable(outp, true) && power == 0) nvkm_gpio_set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 0); } else { nvkm_dp_enable(outp, true); } nvkm_notify_get(&outp->dp.hpd); } static void * nvkm_dp_dtor(struct nvkm_outp *outp) { nvkm_notify_fini(&outp->dp.hpd); return outp; } static const struct nvkm_outp_func nvkm_dp_func = { .dtor = nvkm_dp_dtor, .init = nvkm_dp_init, .fini = nvkm_dp_fini, .acquire = nvkm_dp_acquire, .release = nvkm_dp_release, .disable = nvkm_dp_disable, }; int nvkm_dp_new(struct nvkm_disp *disp, int index, struct dcb_output *dcbE, struct nvkm_outp **poutp) { struct nvkm_device *device = disp->engine.subdev.device; struct nvkm_bios *bios = device->bios; struct nvkm_i2c *i2c = device->i2c; struct nvkm_outp *outp; u8 hdr, cnt, len; u32 data; int ret; ret = nvkm_outp_new_(&nvkm_dp_func, disp, index, dcbE, poutp); outp = *poutp; if (ret) return ret; if (dcbE->location == 0) outp->dp.aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_CCB(dcbE->i2c_index)); else outp->dp.aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbE->extdev)); if (!outp->dp.aux) { OUTP_ERR(outp, "no aux"); return -EINVAL; } /* bios data is not optional */ data = nvbios_dpout_match(bios, outp->info.hasht, outp->info.hashm, &outp->dp.version, &hdr, &cnt, &len, &outp->dp.info); if (!data) { OUTP_ERR(outp, "no bios dp data"); return -EINVAL; } OUTP_DBG(outp, "bios dp %02x %02x %02x %02x", outp->dp.version, hdr, cnt, len); /* hotplug detect, replaces gpio-based mechanism with aux events */ ret = nvkm_notify_init(NULL, &i2c->event, nvkm_dp_hpd, true, &(struct nvkm_i2c_ntfy_req) { .mask = NVKM_I2C_PLUG | NVKM_I2C_UNPLUG | NVKM_I2C_IRQ, .port = outp->dp.aux->id, }, sizeof(struct nvkm_i2c_ntfy_req), sizeof(struct nvkm_i2c_ntfy_rep), &outp->dp.hpd); if (ret) { OUTP_ERR(outp, "error monitoring aux hpd: %d", ret); return ret; } mutex_init(&outp->dp.mutex); atomic_set(&outp->dp.lt.done, 0); return 0; }