// SPDX-License-Identifier: GPL-2.0 /* * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation * Function"), aka RFC 5869. See also the original paper (Krawczyk 2010): * "Cryptographic Extraction and Key Derivation: The HKDF Scheme". * * This is used to derive keys from the fscrypt master keys (or from the * "software secrets" which hardware derives from the fscrypt master keys, in * the case that the fscrypt master keys are hardware-wrapped keys). * * Copyright 2019 Google LLC */ #include #include #include "fscrypt_private.h" /* * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses * SHA-512 because it is well-established, secure, and reasonably efficient. * * HKDF-SHA256 was also considered, as its 256-bit security strength would be * sufficient here. A 512-bit security strength is "nice to have", though. * Also, on 64-bit CPUs, SHA-512 is usually just as fast as SHA-256. In the * common case of deriving an AES-256-XTS key (512 bits), that can result in * HKDF-SHA512 being much faster than HKDF-SHA256, as the longer digest size of * SHA-512 causes HKDF-Expand to only need to do one iteration rather than two. */ #define HKDF_HMAC_ALG "hmac(sha512)" #define HKDF_HASHLEN SHA512_DIGEST_SIZE /* * HKDF consists of two steps: * * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from * the input keying material and optional salt. * 2. HKDF-Expand: expand the pseudorandom key into output keying material of * any length, parameterized by an application-specific info string. * * HKDF-Extract can be skipped if the input is already a pseudorandom key of * length HKDF_HASHLEN bytes. However, cipher modes other than AES-256-XTS take * shorter keys, and we don't want to force users of those modes to provide * unnecessarily long master keys. Thus fscrypt still does HKDF-Extract. No * salt is used, since fscrypt master keys should already be pseudorandom and * there's no way to persist a random salt per master key from kernel mode. */ /* HKDF-Extract (RFC 5869 section 2.2), unsalted */ static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm, unsigned int ikmlen, u8 prk[HKDF_HASHLEN]) { static const u8 default_salt[HKDF_HASHLEN]; int err; err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN); if (err) return err; return crypto_shash_tfm_digest(hmac_tfm, ikm, ikmlen, prk); } /* * Compute HKDF-Extract using the given master key as the input keying material, * and prepare an HMAC transform object keyed by the resulting pseudorandom key. * * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many * times without having to recompute HKDF-Extract each time. */ int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, unsigned int master_key_size) { struct crypto_shash *hmac_tfm; u8 prk[HKDF_HASHLEN]; int err; hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0); if (IS_ERR(hmac_tfm)) { fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld", PTR_ERR(hmac_tfm)); return PTR_ERR(hmac_tfm); } if (WARN_ON_ONCE(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) { err = -EINVAL; goto err_free_tfm; } err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk); if (err) goto err_free_tfm; err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk)); if (err) goto err_free_tfm; hkdf->hmac_tfm = hmac_tfm; goto out; err_free_tfm: crypto_free_shash(hmac_tfm); out: memzero_explicit(prk, sizeof(prk)); return err; } /* * HKDF-Expand (RFC 5869 section 2.3). This expands the pseudorandom key, which * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen' * bytes of output keying material parameterized by the application-specific * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context' * byte. This is thread-safe and may be called by multiple threads in parallel. * * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt * adds to its application-specific info strings to guarantee that it doesn't * accidentally repeat an info string when using HKDF for different purposes.) */ int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, const u8 *info, unsigned int infolen, u8 *okm, unsigned int okmlen) { SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm); u8 prefix[9]; unsigned int i; int err; const u8 *prev = NULL; u8 counter = 1; u8 tmp[HKDF_HASHLEN]; if (WARN_ON_ONCE(okmlen > 255 * HKDF_HASHLEN)) return -EINVAL; desc->tfm = hkdf->hmac_tfm; memcpy(prefix, "fscrypt\0", 8); prefix[8] = context; for (i = 0; i < okmlen; i += HKDF_HASHLEN) { err = crypto_shash_init(desc); if (err) goto out; if (prev) { err = crypto_shash_update(desc, prev, HKDF_HASHLEN); if (err) goto out; } err = crypto_shash_update(desc, prefix, sizeof(prefix)); if (err) goto out; err = crypto_shash_update(desc, info, infolen); if (err) goto out; BUILD_BUG_ON(sizeof(counter) != 1); if (okmlen - i < HKDF_HASHLEN) { err = crypto_shash_finup(desc, &counter, 1, tmp); if (err) goto out; memcpy(&okm[i], tmp, okmlen - i); memzero_explicit(tmp, sizeof(tmp)); } else { err = crypto_shash_finup(desc, &counter, 1, &okm[i]); if (err) goto out; } counter++; prev = &okm[i]; } err = 0; out: if (unlikely(err)) memzero_explicit(okm, okmlen); /* so caller doesn't need to */ shash_desc_zero(desc); return err; } void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf) { crypto_free_shash(hkdf->hmac_tfm); }