// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "data_mgmt.h" #include "format.h" #include "integrity.h" #include "sysfs.h" #include "verity.h" static int incfs_scan_metadata_chain(struct data_file *df); static void log_wake_up_all(struct work_struct *work) { struct delayed_work *dw = container_of(work, struct delayed_work, work); struct read_log *rl = container_of(dw, struct read_log, ml_wakeup_work); wake_up_all(&rl->ml_notif_wq); } static void zstd_free_workspace(struct work_struct *work) { struct delayed_work *dw = container_of(work, struct delayed_work, work); struct mount_info *mi = container_of(dw, struct mount_info, mi_zstd_cleanup_work); mutex_lock(&mi->mi_zstd_workspace_mutex); kvfree(mi->mi_zstd_workspace); mi->mi_zstd_workspace = NULL; mi->mi_zstd_stream = NULL; mutex_unlock(&mi->mi_zstd_workspace_mutex); } struct mount_info *incfs_alloc_mount_info(struct super_block *sb, struct mount_options *options, struct path *backing_dir_path) { struct mount_info *mi = NULL; int error = 0; struct incfs_sysfs_node *node; mi = kzalloc(sizeof(*mi), GFP_NOFS); if (!mi) return ERR_PTR(-ENOMEM); mi->mi_sb = sb; mi->mi_backing_dir_path = *backing_dir_path; mi->mi_owner = get_current_cred(); path_get(&mi->mi_backing_dir_path); mutex_init(&mi->mi_dir_struct_mutex); init_waitqueue_head(&mi->mi_pending_reads_notif_wq); init_waitqueue_head(&mi->mi_log.ml_notif_wq); init_waitqueue_head(&mi->mi_blocks_written_notif_wq); atomic_set(&mi->mi_blocks_written, 0); INIT_DELAYED_WORK(&mi->mi_log.ml_wakeup_work, log_wake_up_all); spin_lock_init(&mi->mi_log.rl_lock); spin_lock_init(&mi->pending_read_lock); INIT_LIST_HEAD(&mi->mi_reads_list_head); spin_lock_init(&mi->mi_per_uid_read_timeouts_lock); mutex_init(&mi->mi_zstd_workspace_mutex); INIT_DELAYED_WORK(&mi->mi_zstd_cleanup_work, zstd_free_workspace); mutex_init(&mi->mi_le_mutex); node = incfs_add_sysfs_node(options->sysfs_name, mi); if (IS_ERR(node)) { error = PTR_ERR(node); goto err; } mi->mi_sysfs_node = node; error = incfs_realloc_mount_info(mi, options); if (error) goto err; return mi; err: incfs_free_mount_info(mi); return ERR_PTR(error); } int incfs_realloc_mount_info(struct mount_info *mi, struct mount_options *options) { void *new_buffer = NULL; void *old_buffer; size_t new_buffer_size = 0; if (options->read_log_pages != mi->mi_options.read_log_pages) { struct read_log_state log_state; /* * Even though having two buffers allocated at once isn't * usually good, allocating a multipage buffer under a spinlock * is even worse, so let's optimize for the shorter lock * duration. It's not end of the world if we fail to increase * the buffer size anyway. */ if (options->read_log_pages > 0) { new_buffer_size = PAGE_SIZE * options->read_log_pages; new_buffer = kzalloc(new_buffer_size, GFP_NOFS); if (!new_buffer) return -ENOMEM; } spin_lock(&mi->mi_log.rl_lock); old_buffer = mi->mi_log.rl_ring_buf; mi->mi_log.rl_ring_buf = new_buffer; mi->mi_log.rl_size = new_buffer_size; log_state = (struct read_log_state){ .generation_id = mi->mi_log.rl_head.generation_id + 1, }; mi->mi_log.rl_head = log_state; mi->mi_log.rl_tail = log_state; spin_unlock(&mi->mi_log.rl_lock); kfree(old_buffer); } if (options->sysfs_name && !mi->mi_sysfs_node) mi->mi_sysfs_node = incfs_add_sysfs_node(options->sysfs_name, mi); else if (!options->sysfs_name && mi->mi_sysfs_node) { incfs_free_sysfs_node(mi->mi_sysfs_node); mi->mi_sysfs_node = NULL; } else if (options->sysfs_name && strcmp(options->sysfs_name, kobject_name(&mi->mi_sysfs_node->isn_sysfs_node))) { incfs_free_sysfs_node(mi->mi_sysfs_node); mi->mi_sysfs_node = incfs_add_sysfs_node(options->sysfs_name, mi); } if (IS_ERR(mi->mi_sysfs_node)) { int err = PTR_ERR(mi->mi_sysfs_node); mi->mi_sysfs_node = NULL; return err; } mi->mi_options = *options; return 0; } void incfs_free_mount_info(struct mount_info *mi) { int i; if (!mi) return; flush_delayed_work(&mi->mi_log.ml_wakeup_work); flush_delayed_work(&mi->mi_zstd_cleanup_work); dput(mi->mi_index_dir); dput(mi->mi_incomplete_dir); path_put(&mi->mi_backing_dir_path); mutex_destroy(&mi->mi_dir_struct_mutex); mutex_destroy(&mi->mi_zstd_workspace_mutex); put_cred(mi->mi_owner); kfree(mi->mi_log.rl_ring_buf); for (i = 0; i < ARRAY_SIZE(mi->pseudo_file_xattr); ++i) kfree(mi->pseudo_file_xattr[i].data); kfree(mi->mi_per_uid_read_timeouts); incfs_free_sysfs_node(mi->mi_sysfs_node); kfree(mi); } static void data_file_segment_init(struct data_file_segment *segment) { init_waitqueue_head(&segment->new_data_arrival_wq); init_rwsem(&segment->rwsem); INIT_LIST_HEAD(&segment->reads_list_head); } char *file_id_to_str(incfs_uuid_t id) { char *result = kmalloc(1 + sizeof(id.bytes) * 2, GFP_NOFS); char *end; if (!result) return NULL; end = bin2hex(result, id.bytes, sizeof(id.bytes)); *end = 0; return result; } struct dentry *incfs_lookup_dentry(struct dentry *parent, const char *name) { struct inode *inode; struct dentry *result = NULL; if (!parent) return ERR_PTR(-EFAULT); inode = d_inode(parent); inode_lock_nested(inode, I_MUTEX_PARENT); result = lookup_one_len(name, parent, strlen(name)); inode_unlock(inode); if (IS_ERR(result)) pr_warn("%s err:%ld\n", __func__, PTR_ERR(result)); return result; } static struct data_file *handle_mapped_file(struct mount_info *mi, struct data_file *df) { char *file_id_str; struct dentry *index_file_dentry; struct path path; struct file *bf; struct data_file *result = NULL; const struct cred *old_cred; file_id_str = file_id_to_str(df->df_id); if (!file_id_str) return ERR_PTR(-ENOENT); index_file_dentry = incfs_lookup_dentry(mi->mi_index_dir, file_id_str); kfree(file_id_str); if (!index_file_dentry) return ERR_PTR(-ENOENT); if (IS_ERR(index_file_dentry)) return ERR_CAST(index_file_dentry); if (!d_really_is_positive(index_file_dentry)) { result = ERR_PTR(-ENOENT); goto out; } path = (struct path) { .mnt = mi->mi_backing_dir_path.mnt, .dentry = index_file_dentry }; old_cred = override_creds(mi->mi_owner); bf = dentry_open(&path, O_RDWR | O_NOATIME | O_LARGEFILE, current_cred()); revert_creds(old_cred); if (IS_ERR(bf)) { result = ERR_CAST(bf); goto out; } result = incfs_open_data_file(mi, bf); fput(bf); if (IS_ERR(result)) goto out; result->df_mapped_offset = df->df_metadata_off; out: dput(index_file_dentry); return result; } struct data_file *incfs_open_data_file(struct mount_info *mi, struct file *bf) { struct data_file *df = NULL; struct backing_file_context *bfc = NULL; int md_records; u64 size; int error = 0; int i; if (!bf || !mi) return ERR_PTR(-EFAULT); if (!S_ISREG(bf->f_inode->i_mode)) return ERR_PTR(-EBADF); bfc = incfs_alloc_bfc(mi, bf); if (IS_ERR(bfc)) return ERR_CAST(bfc); df = kzalloc(sizeof(*df), GFP_NOFS); if (!df) { error = -ENOMEM; goto out; } mutex_init(&df->df_enable_verity); df->df_backing_file_context = bfc; df->df_mount_info = mi; for (i = 0; i < ARRAY_SIZE(df->df_segments); i++) data_file_segment_init(&df->df_segments[i]); error = incfs_read_file_header(bfc, &df->df_metadata_off, &df->df_id, &size, &df->df_header_flags); if (error) goto out; df->df_size = size; if (size > 0) df->df_data_block_count = get_blocks_count_for_size(size); if (df->df_header_flags & INCFS_FILE_MAPPED) { struct data_file *mapped_df = handle_mapped_file(mi, df); incfs_free_data_file(df); return mapped_df; } md_records = incfs_scan_metadata_chain(df); if (md_records < 0) error = md_records; out: if (error) { incfs_free_bfc(bfc); if (df) df->df_backing_file_context = NULL; incfs_free_data_file(df); return ERR_PTR(error); } return df; } void incfs_free_data_file(struct data_file *df) { u32 data_blocks_written, hash_blocks_written; if (!df) return; data_blocks_written = atomic_read(&df->df_data_blocks_written); hash_blocks_written = atomic_read(&df->df_hash_blocks_written); if (data_blocks_written != df->df_initial_data_blocks_written || hash_blocks_written != df->df_initial_hash_blocks_written) { struct backing_file_context *bfc = df->df_backing_file_context; int error = -1; if (bfc && !mutex_lock_interruptible(&bfc->bc_mutex)) { error = incfs_write_status_to_backing_file( df->df_backing_file_context, df->df_status_offset, data_blocks_written, hash_blocks_written); mutex_unlock(&bfc->bc_mutex); } if (error) /* Nothing can be done, just warn */ pr_warn("incfs: failed to write status to backing file\n"); } incfs_free_mtree(df->df_hash_tree); incfs_free_bfc(df->df_backing_file_context); kfree(df->df_signature); kfree(df->df_verity_file_digest.data); kfree(df->df_verity_signature); mutex_destroy(&df->df_enable_verity); kfree(df); } int make_inode_ready_for_data_ops(struct mount_info *mi, struct inode *inode, struct file *backing_file) { struct inode_info *node = get_incfs_node(inode); struct data_file *df = NULL; int err = 0; inode_lock(inode); if (S_ISREG(inode->i_mode)) { if (!node->n_file) { df = incfs_open_data_file(mi, backing_file); if (IS_ERR(df)) err = PTR_ERR(df); else node->n_file = df; } } else err = -EBADF; inode_unlock(inode); return err; } struct dir_file *incfs_open_dir_file(struct mount_info *mi, struct file *bf) { struct dir_file *dir = NULL; if (!S_ISDIR(bf->f_inode->i_mode)) return ERR_PTR(-EBADF); dir = kzalloc(sizeof(*dir), GFP_NOFS); if (!dir) return ERR_PTR(-ENOMEM); dir->backing_dir = get_file(bf); dir->mount_info = mi; return dir; } void incfs_free_dir_file(struct dir_file *dir) { if (!dir) return; if (dir->backing_dir) fput(dir->backing_dir); kfree(dir); } static ssize_t zstd_decompress_safe(struct mount_info *mi, struct mem_range src, struct mem_range dst) { ssize_t result; ZSTD_inBuffer inbuf = {.src = src.data, .size = src.len}; ZSTD_outBuffer outbuf = {.dst = dst.data, .size = dst.len}; result = mutex_lock_interruptible(&mi->mi_zstd_workspace_mutex); if (result) return result; if (!mi->mi_zstd_stream) { unsigned int workspace_size = zstd_dstream_workspace_bound( INCFS_DATA_FILE_BLOCK_SIZE); void *workspace = kvmalloc(workspace_size, GFP_NOFS); ZSTD_DStream *stream; if (!workspace) { result = -ENOMEM; goto out; } stream = zstd_init_dstream(INCFS_DATA_FILE_BLOCK_SIZE, workspace, workspace_size); if (!stream) { kvfree(workspace); result = -EIO; goto out; } mi->mi_zstd_workspace = workspace; mi->mi_zstd_stream = stream; } result = zstd_decompress_stream(mi->mi_zstd_stream, &outbuf, &inbuf) ? -EBADMSG : outbuf.pos; mod_delayed_work(system_wq, &mi->mi_zstd_cleanup_work, msecs_to_jiffies(5000)); out: mutex_unlock(&mi->mi_zstd_workspace_mutex); return result; } static ssize_t decompress(struct mount_info *mi, struct mem_range src, struct mem_range dst, int alg) { int result; switch (alg) { case INCFS_BLOCK_COMPRESSED_LZ4: result = LZ4_decompress_safe(src.data, dst.data, src.len, dst.len); if (result < 0) return -EBADMSG; return result; case INCFS_BLOCK_COMPRESSED_ZSTD: return zstd_decompress_safe(mi, src, dst); default: WARN_ON(true); return -EOPNOTSUPP; } } static void log_read_one_record(struct read_log *rl, struct read_log_state *rs) { union log_record *record = (union log_record *)((u8 *)rl->rl_ring_buf + rs->next_offset); size_t record_size; switch (record->full_record.type) { case FULL: rs->base_record = record->full_record; record_size = sizeof(record->full_record); break; case SAME_FILE: rs->base_record.block_index = record->same_file.block_index; rs->base_record.absolute_ts_us += record->same_file.relative_ts_us; rs->base_record.uid = record->same_file.uid; record_size = sizeof(record->same_file); break; case SAME_FILE_CLOSE_BLOCK: rs->base_record.block_index += record->same_file_close_block.block_index_delta; rs->base_record.absolute_ts_us += record->same_file_close_block.relative_ts_us; record_size = sizeof(record->same_file_close_block); break; case SAME_FILE_CLOSE_BLOCK_SHORT: rs->base_record.block_index += record->same_file_close_block_short.block_index_delta; rs->base_record.absolute_ts_us += record->same_file_close_block_short.relative_ts_tens_us * 10; record_size = sizeof(record->same_file_close_block_short); break; case SAME_FILE_NEXT_BLOCK: ++rs->base_record.block_index; rs->base_record.absolute_ts_us += record->same_file_next_block.relative_ts_us; record_size = sizeof(record->same_file_next_block); break; case SAME_FILE_NEXT_BLOCK_SHORT: ++rs->base_record.block_index; rs->base_record.absolute_ts_us += record->same_file_next_block_short.relative_ts_tens_us * 10; record_size = sizeof(record->same_file_next_block_short); break; } rs->next_offset += record_size; if (rs->next_offset > rl->rl_size - sizeof(*record)) { rs->next_offset = 0; ++rs->current_pass_no; } ++rs->current_record_no; } static void log_block_read(struct mount_info *mi, incfs_uuid_t *id, int block_index) { struct read_log *log = &mi->mi_log; struct read_log_state *head, *tail; s64 now_us; s64 relative_us; union log_record record; size_t record_size; uid_t uid = current_uid().val; int block_delta; bool same_file, same_uid; bool next_block, close_block, very_close_block; bool close_time, very_close_time, very_very_close_time; /* * This may read the old value, but it's OK to delay the logging start * right after the configuration update. */ if (READ_ONCE(log->rl_size) == 0) return; now_us = ktime_to_us(ktime_get()); spin_lock(&log->rl_lock); if (log->rl_size == 0) { spin_unlock(&log->rl_lock); return; } head = &log->rl_head; tail = &log->rl_tail; relative_us = now_us - head->base_record.absolute_ts_us; same_file = !memcmp(id, &head->base_record.file_id, sizeof(incfs_uuid_t)); same_uid = uid == head->base_record.uid; block_delta = block_index - head->base_record.block_index; next_block = block_delta == 1; very_close_block = block_delta >= S8_MIN && block_delta <= S8_MAX; close_block = block_delta >= S16_MIN && block_delta <= S16_MAX; very_very_close_time = relative_us < (1 << 5) * 10; very_close_time = relative_us < (1 << 13); close_time = relative_us < (1 << 16); if (same_file && same_uid && next_block && very_very_close_time) { record.same_file_next_block_short = (struct same_file_next_block_short){ .type = SAME_FILE_NEXT_BLOCK_SHORT, .relative_ts_tens_us = div_s64(relative_us, 10), }; record_size = sizeof(struct same_file_next_block_short); } else if (same_file && same_uid && next_block && very_close_time) { record.same_file_next_block = (struct same_file_next_block){ .type = SAME_FILE_NEXT_BLOCK, .relative_ts_us = relative_us, }; record_size = sizeof(struct same_file_next_block); } else if (same_file && same_uid && very_close_block && very_very_close_time) { record.same_file_close_block_short = (struct same_file_close_block_short){ .type = SAME_FILE_CLOSE_BLOCK_SHORT, .relative_ts_tens_us = div_s64(relative_us, 10), .block_index_delta = block_delta, }; record_size = sizeof(struct same_file_close_block_short); } else if (same_file && same_uid && close_block && very_close_time) { record.same_file_close_block = (struct same_file_close_block){ .type = SAME_FILE_CLOSE_BLOCK, .relative_ts_us = relative_us, .block_index_delta = block_delta, }; record_size = sizeof(struct same_file_close_block); } else if (same_file && close_time) { record.same_file = (struct same_file){ .type = SAME_FILE, .block_index = block_index, .relative_ts_us = relative_us, .uid = uid, }; record_size = sizeof(struct same_file); } else { record.full_record = (struct full_record){ .type = FULL, .block_index = block_index, .file_id = *id, .absolute_ts_us = now_us, .uid = uid, }; head->base_record.file_id = *id; record_size = sizeof(struct full_record); } head->base_record.block_index = block_index; head->base_record.absolute_ts_us = now_us; /* Advance tail beyond area we are going to overwrite */ while (tail->current_pass_no < head->current_pass_no && tail->next_offset < head->next_offset + record_size) log_read_one_record(log, tail); memcpy(((u8 *)log->rl_ring_buf) + head->next_offset, &record, record_size); head->next_offset += record_size; if (head->next_offset > log->rl_size - sizeof(record)) { head->next_offset = 0; ++head->current_pass_no; } ++head->current_record_no; spin_unlock(&log->rl_lock); schedule_delayed_work(&log->ml_wakeup_work, msecs_to_jiffies(16)); } static int validate_hash_tree(struct backing_file_context *bfc, struct file *f, int block_index, struct mem_range data, u8 *buf) { struct data_file *df = get_incfs_data_file(f); u8 stored_digest[INCFS_MAX_HASH_SIZE] = {}; u8 calculated_digest[INCFS_MAX_HASH_SIZE] = {}; struct mtree *tree = NULL; struct incfs_df_signature *sig = NULL; int digest_size; int hash_block_index = block_index; int lvl; int res; loff_t hash_block_offset[INCFS_MAX_MTREE_LEVELS]; size_t hash_offset_in_block[INCFS_MAX_MTREE_LEVELS]; int hash_per_block; pgoff_t file_pages; /* * Memory barrier to make sure tree is fully present if added via enable * verity */ tree = smp_load_acquire(&df->df_hash_tree); sig = df->df_signature; if (!tree || !sig) return 0; digest_size = tree->alg->digest_size; hash_per_block = INCFS_DATA_FILE_BLOCK_SIZE / digest_size; for (lvl = 0; lvl < tree->depth; lvl++) { loff_t lvl_off = tree->hash_level_suboffset[lvl]; hash_block_offset[lvl] = lvl_off + round_down(hash_block_index * digest_size, INCFS_DATA_FILE_BLOCK_SIZE); hash_offset_in_block[lvl] = hash_block_index * digest_size % INCFS_DATA_FILE_BLOCK_SIZE; hash_block_index /= hash_per_block; } memcpy(stored_digest, tree->root_hash, digest_size); file_pages = DIV_ROUND_UP(df->df_size, INCFS_DATA_FILE_BLOCK_SIZE); for (lvl = tree->depth - 1; lvl >= 0; lvl--) { pgoff_t hash_page = file_pages + hash_block_offset[lvl] / INCFS_DATA_FILE_BLOCK_SIZE; struct page *page = find_get_page_flags( f->f_inode->i_mapping, hash_page, FGP_ACCESSED); if (page && PageChecked(page)) { u8 *addr = kmap_atomic(page); memcpy(stored_digest, addr + hash_offset_in_block[lvl], digest_size); kunmap_atomic(addr); put_page(page); continue; } if (page) put_page(page); res = incfs_kread(bfc, buf, INCFS_DATA_FILE_BLOCK_SIZE, hash_block_offset[lvl] + sig->hash_offset); if (res < 0) return res; if (res != INCFS_DATA_FILE_BLOCK_SIZE) return -EIO; res = incfs_calc_digest(tree->alg, range(buf, INCFS_DATA_FILE_BLOCK_SIZE), range(calculated_digest, digest_size)); if (res) return res; if (memcmp(stored_digest, calculated_digest, digest_size)) { int i; bool zero = true; pr_warn("incfs: Hash mismatch lvl:%d blk:%d\n", lvl, block_index); for (i = 0; i < digest_size; i++) if (stored_digest[i]) { zero = false; break; } if (zero) pr_debug("Note saved_digest all zero - did you forget to load the hashes?\n"); return -EBADMSG; } memcpy(stored_digest, buf + hash_offset_in_block[lvl], digest_size); page = grab_cache_page(f->f_inode->i_mapping, hash_page); if (page) { u8 *addr = kmap_atomic(page); memcpy(addr, buf, INCFS_DATA_FILE_BLOCK_SIZE); kunmap_atomic(addr); SetPageChecked(page); SetPageUptodate(page); unlock_page(page); put_page(page); } } res = incfs_calc_digest(tree->alg, data, range(calculated_digest, digest_size)); if (res) return res; if (memcmp(stored_digest, calculated_digest, digest_size)) { pr_debug("Leaf hash mismatch blk:%d\n", block_index); return -EBADMSG; } return 0; } static struct data_file_segment *get_file_segment(struct data_file *df, int block_index) { int seg_idx = block_index % ARRAY_SIZE(df->df_segments); return &df->df_segments[seg_idx]; } static bool is_data_block_present(struct data_file_block *block) { return (block->db_backing_file_data_offset != 0) && (block->db_stored_size != 0); } static void convert_data_file_block(struct incfs_blockmap_entry *bme, struct data_file_block *res_block) { u16 flags = le16_to_cpu(bme->me_flags); res_block->db_backing_file_data_offset = le16_to_cpu(bme->me_data_offset_hi); res_block->db_backing_file_data_offset <<= 32; res_block->db_backing_file_data_offset |= le32_to_cpu(bme->me_data_offset_lo); res_block->db_stored_size = le16_to_cpu(bme->me_data_size); res_block->db_comp_alg = flags & INCFS_BLOCK_COMPRESSED_MASK; } static int get_data_file_block(struct data_file *df, int index, struct data_file_block *res_block) { struct incfs_blockmap_entry bme = {}; struct backing_file_context *bfc = NULL; loff_t blockmap_off = 0; int error = 0; if (!df || !res_block) return -EFAULT; blockmap_off = df->df_blockmap_off; bfc = df->df_backing_file_context; if (index < 0 || blockmap_off == 0) return -EINVAL; error = incfs_read_blockmap_entry(bfc, index, blockmap_off, &bme); if (error) return error; convert_data_file_block(&bme, res_block); return 0; } static int check_room_for_one_range(u32 size, u32 size_out) { if (size_out + sizeof(struct incfs_filled_range) > size) return -ERANGE; return 0; } static int copy_one_range(struct incfs_filled_range *range, void __user *buffer, u32 size, u32 *size_out) { int error = check_room_for_one_range(size, *size_out); if (error) return error; if (copy_to_user(((char __user *)buffer) + *size_out, range, sizeof(*range))) return -EFAULT; *size_out += sizeof(*range); return 0; } #define READ_BLOCKMAP_ENTRIES 512 int incfs_get_filled_blocks(struct data_file *df, struct incfs_file_data *fd, struct incfs_get_filled_blocks_args *arg) { int error = 0; bool in_range = false; struct incfs_filled_range range; void __user *buffer = u64_to_user_ptr(arg->range_buffer); u32 size = arg->range_buffer_size; u32 end_index = arg->end_index ? arg->end_index : df->df_total_block_count; u32 *size_out = &arg->range_buffer_size_out; int i = READ_BLOCKMAP_ENTRIES - 1; int entries_read = 0; struct incfs_blockmap_entry *bme; int data_blocks_filled = 0; int hash_blocks_filled = 0; *size_out = 0; if (end_index > df->df_total_block_count) end_index = df->df_total_block_count; arg->total_blocks_out = df->df_total_block_count; arg->data_blocks_out = df->df_data_block_count; if (atomic_read(&df->df_data_blocks_written) == df->df_data_block_count) { pr_debug("File marked full, fast get_filled_blocks"); if (arg->start_index > end_index) { arg->index_out = arg->start_index; return 0; } arg->index_out = arg->start_index; error = check_room_for_one_range(size, *size_out); if (error) return error; range = (struct incfs_filled_range){ .begin = arg->start_index, .end = end_index, }; error = copy_one_range(&range, buffer, size, size_out); if (error) return error; arg->index_out = end_index; return 0; } bme = kzalloc(sizeof(*bme) * READ_BLOCKMAP_ENTRIES, GFP_NOFS | __GFP_COMP); if (!bme) return -ENOMEM; for (arg->index_out = arg->start_index; arg->index_out < end_index; ++arg->index_out) { struct data_file_block dfb; if (++i == READ_BLOCKMAP_ENTRIES) { entries_read = incfs_read_blockmap_entries( df->df_backing_file_context, bme, arg->index_out, READ_BLOCKMAP_ENTRIES, df->df_blockmap_off); if (entries_read < 0) { error = entries_read; break; } i = 0; } if (i >= entries_read) { error = -EIO; break; } convert_data_file_block(bme + i, &dfb); if (is_data_block_present(&dfb)) { if (arg->index_out >= df->df_data_block_count) ++hash_blocks_filled; else ++data_blocks_filled; } if (is_data_block_present(&dfb) == in_range) continue; if (!in_range) { error = check_room_for_one_range(size, *size_out); if (error) break; in_range = true; range.begin = arg->index_out; } else { range.end = arg->index_out; error = copy_one_range(&range, buffer, size, size_out); if (error) { /* there will be another try out of the loop, * it will reset the index_out if it fails too */ break; } in_range = false; } } if (in_range) { range.end = arg->index_out; error = copy_one_range(&range, buffer, size, size_out); if (error) arg->index_out = range.begin; } if (arg->start_index == 0) { fd->fd_get_block_pos = 0; fd->fd_filled_data_blocks = 0; fd->fd_filled_hash_blocks = 0; } if (arg->start_index == fd->fd_get_block_pos) { fd->fd_get_block_pos = arg->index_out + 1; fd->fd_filled_data_blocks += data_blocks_filled; fd->fd_filled_hash_blocks += hash_blocks_filled; } if (fd->fd_get_block_pos == df->df_total_block_count + 1) { if (fd->fd_filled_data_blocks > atomic_read(&df->df_data_blocks_written)) atomic_set(&df->df_data_blocks_written, fd->fd_filled_data_blocks); if (fd->fd_filled_hash_blocks > atomic_read(&df->df_hash_blocks_written)) atomic_set(&df->df_hash_blocks_written, fd->fd_filled_hash_blocks); } kfree(bme); return error; } static bool is_read_done(struct pending_read *read) { return atomic_read_acquire(&read->done) != 0; } static void set_read_done(struct pending_read *read) { atomic_set_release(&read->done, 1); } /* * Notifies a given data file about pending read from a given block. * Returns a new pending read entry. */ static struct pending_read *add_pending_read(struct data_file *df, int block_index) { struct pending_read *result = NULL; struct data_file_segment *segment = NULL; struct mount_info *mi = NULL; segment = get_file_segment(df, block_index); mi = df->df_mount_info; result = kzalloc(sizeof(*result), GFP_NOFS); if (!result) return NULL; result->file_id = df->df_id; result->block_index = block_index; result->timestamp_us = ktime_to_us(ktime_get()); result->uid = current_uid().val; spin_lock(&mi->pending_read_lock); result->serial_number = ++mi->mi_last_pending_read_number; mi->mi_pending_reads_count++; list_add_rcu(&result->mi_reads_list, &mi->mi_reads_list_head); list_add_rcu(&result->segment_reads_list, &segment->reads_list_head); spin_unlock(&mi->pending_read_lock); wake_up_all(&mi->mi_pending_reads_notif_wq); return result; } static void free_pending_read_entry(struct rcu_head *entry) { struct pending_read *read; read = container_of(entry, struct pending_read, rcu); kfree(read); } /* Notifies a given data file that pending read is completed. */ static void remove_pending_read(struct data_file *df, struct pending_read *read) { struct mount_info *mi = NULL; if (!df || !read) { WARN_ON(!df); WARN_ON(!read); return; } mi = df->df_mount_info; spin_lock(&mi->pending_read_lock); list_del_rcu(&read->mi_reads_list); list_del_rcu(&read->segment_reads_list); mi->mi_pending_reads_count--; spin_unlock(&mi->pending_read_lock); /* Don't free. Wait for readers */ call_rcu(&read->rcu, free_pending_read_entry); } static void notify_pending_reads(struct mount_info *mi, struct data_file_segment *segment, int index) { struct pending_read *entry = NULL; /* Notify pending reads waiting for this block. */ rcu_read_lock(); list_for_each_entry_rcu(entry, &segment->reads_list_head, segment_reads_list) { if (entry->block_index == index) set_read_done(entry); } rcu_read_unlock(); wake_up_all(&segment->new_data_arrival_wq); atomic_inc(&mi->mi_blocks_written); wake_up_all(&mi->mi_blocks_written_notif_wq); } static int wait_for_data_block(struct data_file *df, int block_index, struct data_file_block *res_block, struct incfs_read_data_file_timeouts *timeouts, unsigned int *delayed_min_us) { struct data_file_block block = {}; struct data_file_segment *segment = NULL; struct pending_read *read = NULL; struct mount_info *mi = NULL; int error; int wait_res = 0; unsigned int delayed_pending_us = 0; bool delayed_pending = false; if (!df || !res_block) return -EFAULT; if (block_index < 0 || block_index >= df->df_data_block_count) return -EINVAL; if (df->df_blockmap_off <= 0 || !df->df_mount_info) return -ENODATA; mi = df->df_mount_info; segment = get_file_segment(df, block_index); error = down_read_killable(&segment->rwsem); if (error) return error; /* Look up the given block */ error = get_data_file_block(df, block_index, &block); up_read(&segment->rwsem); if (error) return error; /* If the block was found, just return it. No need to wait. */ if (is_data_block_present(&block)) { *res_block = block; if (timeouts && timeouts->min_time_us) { *delayed_min_us = timeouts->min_time_us; goto out; } return 0; } else { /* If it's not found, create a pending read */ if (timeouts && timeouts->max_pending_time_us) { read = add_pending_read(df, block_index); if (!read) return -ENOMEM; } else { log_block_read(mi, &df->df_id, block_index); return -ETIME; } } /* Rest of function only applies if timeouts != NULL */ if (!timeouts) { pr_warn("incfs: timeouts unexpectedly NULL\n"); return -EFSCORRUPTED; } /* Wait for notifications about block's arrival */ wait_res = wait_event_interruptible_timeout(segment->new_data_arrival_wq, (is_read_done(read)), usecs_to_jiffies(timeouts->max_pending_time_us)); /* Woke up, the pending read is no longer needed. */ remove_pending_read(df, read); if (wait_res == 0) { /* Wait has timed out */ log_block_read(mi, &df->df_id, block_index); return -ETIME; } if (wait_res < 0) { /* * Only ERESTARTSYS is really expected here when a signal * comes while we wait. */ return wait_res; } delayed_pending = true; delayed_pending_us = timeouts->max_pending_time_us - jiffies_to_usecs(wait_res); if (timeouts->min_pending_time_us > delayed_pending_us) *delayed_min_us = timeouts->min_pending_time_us - delayed_pending_us; error = down_read_killable(&segment->rwsem); if (error) return error; /* * Re-read blocks info now, it has just arrived and * should be available. */ error = get_data_file_block(df, block_index, &block); if (!error) { if (is_data_block_present(&block)) *res_block = block; else { /* * Somehow wait finished successfully but block still * can't be found. It's not normal. */ pr_warn("incfs: Wait succeeded but block not found.\n"); error = -ENODATA; } } up_read(&segment->rwsem); out: if (error) return error; if (delayed_pending) { mi->mi_reads_delayed_pending++; mi->mi_reads_delayed_pending_us += delayed_pending_us; } if (delayed_min_us && *delayed_min_us) { mi->mi_reads_delayed_min++; mi->mi_reads_delayed_min_us += *delayed_min_us; } return 0; } static int incfs_update_sysfs_error(struct file *file, int index, int result, struct mount_info *mi, struct data_file *df) { int error; if (result >= 0) return 0; error = mutex_lock_interruptible(&mi->mi_le_mutex); if (error) return error; mi->mi_le_file_id = df->df_id; mi->mi_le_time_us = ktime_to_us(ktime_get()); mi->mi_le_page = index; mi->mi_le_errno = result; mi->mi_le_uid = current_uid().val; mutex_unlock(&mi->mi_le_mutex); return 0; } ssize_t incfs_read_data_file_block(struct mem_range dst, struct file *f, int index, struct mem_range tmp, struct incfs_read_data_file_timeouts *timeouts, unsigned int *delayed_min_us) { loff_t pos; ssize_t result; size_t bytes_to_read; struct mount_info *mi = NULL; struct backing_file_context *bfc = NULL; struct data_file_block block = {}; struct data_file *df = get_incfs_data_file(f); if (!dst.data || !df || !tmp.data) return -EFAULT; if (tmp.len < 2 * INCFS_DATA_FILE_BLOCK_SIZE) return -ERANGE; mi = df->df_mount_info; bfc = df->df_backing_file_context; result = wait_for_data_block(df, index, &block, timeouts, delayed_min_us); if (result < 0) goto out; pos = block.db_backing_file_data_offset; if (block.db_comp_alg == COMPRESSION_NONE) { bytes_to_read = min(dst.len, block.db_stored_size); result = incfs_kread(bfc, dst.data, bytes_to_read, pos); /* Some data was read, but not enough */ if (result >= 0 && result != bytes_to_read) result = -EIO; } else { bytes_to_read = min(tmp.len, block.db_stored_size); result = incfs_kread(bfc, tmp.data, bytes_to_read, pos); if (result == bytes_to_read) { result = decompress(mi, range(tmp.data, bytes_to_read), dst, block.db_comp_alg); if (result < 0) { const char *name = bfc->bc_file->f_path.dentry->d_name.name; pr_warn_once("incfs: Decompression error. %s", name); } } else if (result >= 0) { /* Some data was read, but not enough */ result = -EIO; } } if (result > 0) { int err = validate_hash_tree(bfc, f, index, dst, tmp.data); if (err < 0) result = err; } if (result >= 0) log_block_read(mi, &df->df_id, index); out: if (result == -ETIME) mi->mi_reads_failed_timed_out++; else if (result == -EBADMSG) mi->mi_reads_failed_hash_verification++; else if (result < 0) mi->mi_reads_failed_other++; incfs_update_sysfs_error(f, index, result, mi, df); return result; } ssize_t incfs_read_merkle_tree_blocks(struct mem_range dst, struct data_file *df, size_t offset) { struct backing_file_context *bfc = NULL; struct incfs_df_signature *sig = NULL; size_t to_read = dst.len; if (!dst.data || !df) return -EFAULT; sig = df->df_signature; bfc = df->df_backing_file_context; if (offset > sig->hash_size) return -ERANGE; if (offset + to_read > sig->hash_size) to_read = sig->hash_size - offset; return incfs_kread(bfc, dst.data, to_read, sig->hash_offset + offset); } int incfs_process_new_data_block(struct data_file *df, struct incfs_fill_block *block, u8 *data, bool *complete) { struct mount_info *mi = NULL; struct backing_file_context *bfc = NULL; struct data_file_segment *segment = NULL; struct data_file_block existing_block = {}; u16 flags = 0; int error = 0; if (!df || !block) return -EFAULT; bfc = df->df_backing_file_context; mi = df->df_mount_info; if (block->block_index >= df->df_data_block_count) return -ERANGE; segment = get_file_segment(df, block->block_index); if (!segment) return -EFAULT; if (block->compression == COMPRESSION_LZ4) flags |= INCFS_BLOCK_COMPRESSED_LZ4; else if (block->compression == COMPRESSION_ZSTD) flags |= INCFS_BLOCK_COMPRESSED_ZSTD; else if (block->compression) return -EINVAL; error = down_read_killable(&segment->rwsem); if (error) return error; error = get_data_file_block(df, block->block_index, &existing_block); up_read(&segment->rwsem); if (error) return error; if (is_data_block_present(&existing_block)) /* Block is already present, nothing to do here */ return 0; error = down_write_killable(&segment->rwsem); if (error) return error; /* Recheck inside write lock */ error = get_data_file_block(df, block->block_index, &existing_block); if (error) goto out_up_write; if (is_data_block_present(&existing_block)) goto out_up_write; error = mutex_lock_interruptible(&bfc->bc_mutex); if (error) goto out_up_write; error = incfs_write_data_block_to_backing_file(bfc, range(data, block->data_len), block->block_index, df->df_blockmap_off, flags); if (error) goto out_mutex_unlock; if (atomic_inc_return(&df->df_data_blocks_written) >= df->df_data_block_count) *complete = true; out_mutex_unlock: mutex_unlock(&bfc->bc_mutex); if (!error) notify_pending_reads(mi, segment, block->block_index); out_up_write: up_write(&segment->rwsem); if (error) pr_debug("%d error: %d\n", block->block_index, error); return error; } int incfs_read_file_signature(struct data_file *df, struct mem_range dst) { struct backing_file_context *bfc = df->df_backing_file_context; struct incfs_df_signature *sig; int read_res = 0; if (!dst.data) return -EFAULT; sig = df->df_signature; if (!sig) return 0; if (dst.len < sig->sig_size) return -E2BIG; read_res = incfs_kread(bfc, dst.data, sig->sig_size, sig->sig_offset); if (read_res < 0) return read_res; if (read_res != sig->sig_size) return -EIO; return read_res; } int incfs_process_new_hash_block(struct data_file *df, struct incfs_fill_block *block, u8 *data) { struct backing_file_context *bfc = NULL; struct mount_info *mi = NULL; struct mtree *hash_tree = NULL; struct incfs_df_signature *sig = NULL; loff_t hash_area_base = 0; loff_t hash_area_size = 0; int error = 0; if (!df || !block) return -EFAULT; if (!(block->flags & INCFS_BLOCK_FLAGS_HASH)) return -EINVAL; bfc = df->df_backing_file_context; mi = df->df_mount_info; if (!df) return -ENOENT; hash_tree = df->df_hash_tree; sig = df->df_signature; if (!hash_tree || !sig || sig->hash_offset == 0) return -ENOTSUPP; hash_area_base = sig->hash_offset; hash_area_size = sig->hash_size; if (hash_area_size < block->block_index * INCFS_DATA_FILE_BLOCK_SIZE + block->data_len) { /* Hash block goes beyond dedicated hash area of this file. */ return -ERANGE; } error = mutex_lock_interruptible(&bfc->bc_mutex); if (!error) { error = incfs_write_hash_block_to_backing_file( bfc, range(data, block->data_len), block->block_index, hash_area_base, df->df_blockmap_off, df->df_size); mutex_unlock(&bfc->bc_mutex); } if (!error) atomic_inc(&df->df_hash_blocks_written); return error; } static int process_blockmap_md(struct incfs_blockmap *bm, struct metadata_handler *handler) { struct data_file *df = handler->context; int error = 0; loff_t base_off = le64_to_cpu(bm->m_base_offset); u32 block_count = le32_to_cpu(bm->m_block_count); if (!df) return -EFAULT; if (df->df_data_block_count > block_count) return -EBADMSG; df->df_total_block_count = block_count; df->df_blockmap_off = base_off; return error; } static int process_file_signature_md(struct incfs_file_signature *sg, struct metadata_handler *handler) { struct data_file *df = handler->context; struct mtree *hash_tree = NULL; int error = 0; struct incfs_df_signature *signature = kzalloc(sizeof(*signature), GFP_NOFS); void *buf = NULL; ssize_t read; if (!signature) return -ENOMEM; if (!df || !df->df_backing_file_context || !df->df_backing_file_context->bc_file) { error = -ENOENT; goto out; } signature->hash_offset = le64_to_cpu(sg->sg_hash_tree_offset); signature->hash_size = le32_to_cpu(sg->sg_hash_tree_size); signature->sig_offset = le64_to_cpu(sg->sg_sig_offset); signature->sig_size = le32_to_cpu(sg->sg_sig_size); buf = kzalloc(signature->sig_size, GFP_NOFS); if (!buf) { error = -ENOMEM; goto out; } read = incfs_kread(df->df_backing_file_context, buf, signature->sig_size, signature->sig_offset); if (read < 0) { error = read; goto out; } if (read != signature->sig_size) { error = -EINVAL; goto out; } hash_tree = incfs_alloc_mtree(range(buf, signature->sig_size), df->df_data_block_count); if (IS_ERR(hash_tree)) { error = PTR_ERR(hash_tree); hash_tree = NULL; goto out; } if (hash_tree->hash_tree_area_size != signature->hash_size) { error = -EINVAL; goto out; } if (signature->hash_size > 0 && handler->md_record_offset <= signature->hash_offset) { error = -EINVAL; goto out; } if (handler->md_record_offset <= signature->sig_offset) { error = -EINVAL; goto out; } df->df_hash_tree = hash_tree; hash_tree = NULL; df->df_signature = signature; signature = NULL; out: incfs_free_mtree(hash_tree); kfree(signature); kfree(buf); return error; } static int process_status_md(struct incfs_status *is, struct metadata_handler *handler) { struct data_file *df = handler->context; df->df_initial_data_blocks_written = le32_to_cpu(is->is_data_blocks_written); atomic_set(&df->df_data_blocks_written, df->df_initial_data_blocks_written); df->df_initial_hash_blocks_written = le32_to_cpu(is->is_hash_blocks_written); atomic_set(&df->df_hash_blocks_written, df->df_initial_hash_blocks_written); df->df_status_offset = handler->md_record_offset; return 0; } static int process_file_verity_signature_md( struct incfs_file_verity_signature *vs, struct metadata_handler *handler) { struct data_file *df = handler->context; struct incfs_df_verity_signature *verity_signature; if (!df) return -EFAULT; verity_signature = kzalloc(sizeof(*verity_signature), GFP_NOFS); if (!verity_signature) return -ENOMEM; verity_signature->offset = le64_to_cpu(vs->vs_offset); verity_signature->size = le32_to_cpu(vs->vs_size); if (verity_signature->size > FS_VERITY_MAX_SIGNATURE_SIZE) { kfree(verity_signature); return -EFAULT; } df->df_verity_signature = verity_signature; return 0; } static int incfs_scan_metadata_chain(struct data_file *df) { struct metadata_handler *handler = NULL; int result = 0; int records_count = 0; int error = 0; struct backing_file_context *bfc = NULL; int nondata_block_count; if (!df || !df->df_backing_file_context) return -EFAULT; bfc = df->df_backing_file_context; handler = kzalloc(sizeof(*handler), GFP_NOFS); if (!handler) return -ENOMEM; handler->md_record_offset = df->df_metadata_off; handler->context = df; handler->handle_blockmap = process_blockmap_md; handler->handle_signature = process_file_signature_md; handler->handle_status = process_status_md; handler->handle_verity_signature = process_file_verity_signature_md; while (handler->md_record_offset > 0) { error = incfs_read_next_metadata_record(bfc, handler); if (error) { pr_warn("incfs: Error during reading incfs-metadata record. Offset: %lld Record #%d Error code: %d\n", handler->md_record_offset, records_count + 1, -error); break; } records_count++; } if (error) { pr_warn("incfs: Error %d after reading %d incfs-metadata records.\n", -error, records_count); result = error; } else result = records_count; nondata_block_count = df->df_total_block_count - df->df_data_block_count; if (df->df_hash_tree) { int hash_block_count = get_blocks_count_for_size( df->df_hash_tree->hash_tree_area_size); /* * Files that were created with a hash tree have the hash tree * included in the block map, i.e. nondata_block_count == * hash_block_count. Files whose hash tree was added by * FS_IOC_ENABLE_VERITY will still have the original block * count, i.e. nondata_block_count == 0. */ if (nondata_block_count != hash_block_count && nondata_block_count != 0) result = -EINVAL; } else if (nondata_block_count != 0) { result = -EINVAL; } kfree(handler); return result; } /* * Quickly checks if there are pending reads with a serial number larger * than a given one. */ bool incfs_fresh_pending_reads_exist(struct mount_info *mi, int last_number) { bool result = false; spin_lock(&mi->pending_read_lock); result = (mi->mi_last_pending_read_number > last_number) && (mi->mi_pending_reads_count > 0); spin_unlock(&mi->pending_read_lock); return result; } int incfs_collect_pending_reads(struct mount_info *mi, int sn_lowerbound, struct incfs_pending_read_info *reads, struct incfs_pending_read_info2 *reads2, int reads_size, int *new_max_sn) { int reported_reads = 0; struct pending_read *entry = NULL; if (!mi) return -EFAULT; if (reads_size <= 0) return 0; if (!incfs_fresh_pending_reads_exist(mi, sn_lowerbound)) return 0; rcu_read_lock(); list_for_each_entry_rcu(entry, &mi->mi_reads_list_head, mi_reads_list) { if (entry->serial_number <= sn_lowerbound) continue; if (reads) { reads[reported_reads].file_id = entry->file_id; reads[reported_reads].block_index = entry->block_index; reads[reported_reads].serial_number = entry->serial_number; reads[reported_reads].timestamp_us = entry->timestamp_us; } if (reads2) { reads2[reported_reads].file_id = entry->file_id; reads2[reported_reads].block_index = entry->block_index; reads2[reported_reads].serial_number = entry->serial_number; reads2[reported_reads].timestamp_us = entry->timestamp_us; reads2[reported_reads].uid = entry->uid; } if (entry->serial_number > *new_max_sn) *new_max_sn = entry->serial_number; reported_reads++; if (reported_reads >= reads_size) break; } rcu_read_unlock(); return reported_reads; } struct read_log_state incfs_get_log_state(struct mount_info *mi) { struct read_log *log = &mi->mi_log; struct read_log_state result; spin_lock(&log->rl_lock); result = log->rl_head; spin_unlock(&log->rl_lock); return result; } int incfs_get_uncollected_logs_count(struct mount_info *mi, const struct read_log_state *state) { struct read_log *log = &mi->mi_log; u32 generation; u64 head_no, tail_no; spin_lock(&log->rl_lock); tail_no = log->rl_tail.current_record_no; head_no = log->rl_head.current_record_no; generation = log->rl_head.generation_id; spin_unlock(&log->rl_lock); if (generation != state->generation_id) return head_no - tail_no; else return head_no - max_t(u64, tail_no, state->current_record_no); } int incfs_collect_logged_reads(struct mount_info *mi, struct read_log_state *state, struct incfs_pending_read_info *reads, struct incfs_pending_read_info2 *reads2, int reads_size) { int dst_idx; struct read_log *log = &mi->mi_log; struct read_log_state *head, *tail; spin_lock(&log->rl_lock); head = &log->rl_head; tail = &log->rl_tail; if (state->generation_id != head->generation_id) { pr_debug("read ptr is wrong generation: %u/%u", state->generation_id, head->generation_id); *state = (struct read_log_state){ .generation_id = head->generation_id, }; } if (state->current_record_no < tail->current_record_no) { pr_debug("read ptr is behind, moving: %u/%u -> %u/%u\n", (u32)state->next_offset, (u32)state->current_pass_no, (u32)tail->next_offset, (u32)tail->current_pass_no); *state = *tail; } for (dst_idx = 0; dst_idx < reads_size; dst_idx++) { if (state->current_record_no == head->current_record_no) break; log_read_one_record(log, state); if (reads) reads[dst_idx] = (struct incfs_pending_read_info) { .file_id = state->base_record.file_id, .block_index = state->base_record.block_index, .serial_number = state->current_record_no, .timestamp_us = state->base_record.absolute_ts_us, }; if (reads2) reads2[dst_idx] = (struct incfs_pending_read_info2) { .file_id = state->base_record.file_id, .block_index = state->base_record.block_index, .serial_number = state->current_record_no, .timestamp_us = state->base_record.absolute_ts_us, .uid = state->base_record.uid, }; } spin_unlock(&log->rl_lock); return dst_idx; }