// SPDX-License-Identifier: GPL-2.0 /* * Ioctl to enable verity on a file * * Copyright 2019 Google LLC */ #include "fsverity_private.h" #include #include #include #include struct block_buffer { u32 filled; bool is_root_hash; u8 *data; }; /* Hash a block, writing the result to the next level's pending block buffer. */ static int hash_one_block(struct inode *inode, const struct merkle_tree_params *params, struct ahash_request *req, struct block_buffer *cur) { struct block_buffer *next = cur + 1; int err; /* * Safety check to prevent a buffer overflow in case of a filesystem bug * that allows the file size to change despite deny_write_access(), or a * bug in the Merkle tree logic itself */ if (WARN_ON_ONCE(next->is_root_hash && next->filled != 0)) return -EINVAL; /* Zero-pad the block if it's shorter than the block size. */ memset(&cur->data[cur->filled], 0, params->block_size - cur->filled); err = fsverity_hash_block(params, inode, req, virt_to_page(cur->data), offset_in_page(cur->data), &next->data[next->filled]); if (err) return err; next->filled += params->digest_size; cur->filled = 0; return 0; } static int write_merkle_tree_block(struct inode *inode, const u8 *buf, unsigned long index, const struct merkle_tree_params *params) { u64 pos = (u64)index << params->log_blocksize; int err; err = inode->i_sb->s_vop->write_merkle_tree_block(inode, buf, pos, params->block_size); if (err) fsverity_err(inode, "Error %d writing Merkle tree block %lu", err, index); return err; } /* * Build the Merkle tree for the given file using the given parameters, and * return the root hash in @root_hash. * * The tree is written to a filesystem-specific location as determined by the * ->write_merkle_tree_block() method. However, the blocks that comprise the * tree are the same for all filesystems. */ static int build_merkle_tree(struct file *filp, const struct merkle_tree_params *params, u8 *root_hash) { struct inode *inode = file_inode(filp); const u64 data_size = inode->i_size; const int num_levels = params->num_levels; struct ahash_request *req; struct block_buffer _buffers[1 + FS_VERITY_MAX_LEVELS + 1] = {}; struct block_buffer *buffers = &_buffers[1]; unsigned long level_offset[FS_VERITY_MAX_LEVELS]; int level; u64 offset; int err; if (data_size == 0) { /* Empty file is a special case; root hash is all 0's */ memset(root_hash, 0, params->digest_size); return 0; } /* This allocation never fails, since it's mempool-backed. */ req = fsverity_alloc_hash_request(params->hash_alg, GFP_KERNEL); /* * Allocate the block buffers. Buffer "-1" is for data blocks. * Buffers 0 <= level < num_levels are for the actual tree levels. * Buffer 'num_levels' is for the root hash. */ for (level = -1; level < num_levels; level++) { buffers[level].data = kzalloc(params->block_size, GFP_KERNEL); if (!buffers[level].data) { err = -ENOMEM; goto out; } } buffers[num_levels].data = root_hash; buffers[num_levels].is_root_hash = true; BUILD_BUG_ON(sizeof(level_offset) != sizeof(params->level_start)); memcpy(level_offset, params->level_start, sizeof(level_offset)); /* Hash each data block, also hashing the tree blocks as they fill up */ for (offset = 0; offset < data_size; offset += params->block_size) { ssize_t bytes_read; loff_t pos = offset; buffers[-1].filled = min_t(u64, params->block_size, data_size - offset); bytes_read = __kernel_read(filp, buffers[-1].data, buffers[-1].filled, &pos); if (bytes_read < 0) { err = bytes_read; fsverity_err(inode, "Error %d reading file data", err); goto out; } if (bytes_read != buffers[-1].filled) { err = -EINVAL; fsverity_err(inode, "Short read of file data"); goto out; } err = hash_one_block(inode, params, req, &buffers[-1]); if (err) goto out; for (level = 0; level < num_levels; level++) { if (buffers[level].filled + params->digest_size <= params->block_size) { /* Next block at @level isn't full yet */ break; } /* Next block at @level is full */ err = hash_one_block(inode, params, req, &buffers[level]); if (err) goto out; err = write_merkle_tree_block(inode, buffers[level].data, level_offset[level], params); if (err) goto out; level_offset[level]++; } if (fatal_signal_pending(current)) { err = -EINTR; goto out; } cond_resched(); } /* Finish all nonempty pending tree blocks. */ for (level = 0; level < num_levels; level++) { if (buffers[level].filled != 0) { err = hash_one_block(inode, params, req, &buffers[level]); if (err) goto out; err = write_merkle_tree_block(inode, buffers[level].data, level_offset[level], params); if (err) goto out; } } /* The root hash was filled by the last call to hash_one_block(). */ if (WARN_ON(buffers[num_levels].filled != params->digest_size)) { err = -EINVAL; goto out; } err = 0; out: for (level = -1; level < num_levels; level++) kfree(buffers[level].data); fsverity_free_hash_request(params->hash_alg, req); return err; } static int enable_verity(struct file *filp, const struct fsverity_enable_arg *arg) { struct inode *inode = file_inode(filp); const struct fsverity_operations *vops = inode->i_sb->s_vop; struct merkle_tree_params params = { }; struct fsverity_descriptor *desc; size_t desc_size = struct_size(desc, signature, arg->sig_size); struct fsverity_info *vi; int err; /* Start initializing the fsverity_descriptor */ desc = kzalloc(desc_size, GFP_KERNEL); if (!desc) return -ENOMEM; desc->version = 1; desc->hash_algorithm = arg->hash_algorithm; desc->log_blocksize = ilog2(arg->block_size); /* Get the salt if the user provided one */ if (arg->salt_size && copy_from_user(desc->salt, u64_to_user_ptr(arg->salt_ptr), arg->salt_size)) { err = -EFAULT; goto out; } desc->salt_size = arg->salt_size; /* Get the signature if the user provided one */ if (arg->sig_size && copy_from_user(desc->signature, u64_to_user_ptr(arg->sig_ptr), arg->sig_size)) { err = -EFAULT; goto out; } desc->sig_size = cpu_to_le32(arg->sig_size); desc->data_size = cpu_to_le64(inode->i_size); /* Prepare the Merkle tree parameters */ err = fsverity_init_merkle_tree_params(¶ms, inode, arg->hash_algorithm, desc->log_blocksize, desc->salt, desc->salt_size); if (err) goto out; /* * Start enabling verity on this file, serialized by the inode lock. * Fail if verity is already enabled or is already being enabled. */ inode_lock(inode); if (IS_VERITY(inode)) err = -EEXIST; else err = vops->begin_enable_verity(filp); inode_unlock(inode); if (err) goto out; /* * Build the Merkle tree. Don't hold the inode lock during this, since * on huge files this may take a very long time and we don't want to * force unrelated syscalls like chown() to block forever. We don't * need the inode lock here because deny_write_access() already prevents * the file from being written to or truncated, and we still serialize * ->begin_enable_verity() and ->end_enable_verity() using the inode * lock and only allow one process to be here at a time on a given file. */ BUILD_BUG_ON(sizeof(desc->root_hash) < FS_VERITY_MAX_DIGEST_SIZE); err = build_merkle_tree(filp, ¶ms, desc->root_hash); if (err) { fsverity_err(inode, "Error %d building Merkle tree", err); goto rollback; } /* * Create the fsverity_info. Don't bother trying to save work by * reusing the merkle_tree_params from above. Instead, just create the * fsverity_info from the fsverity_descriptor as if it were just loaded * from disk. This is simpler, and it serves as an extra check that the * metadata we're writing is valid before actually enabling verity. */ vi = fsverity_create_info(inode, desc); if (IS_ERR(vi)) { err = PTR_ERR(vi); goto rollback; } /* * Tell the filesystem to finish enabling verity on the file. * Serialized with ->begin_enable_verity() by the inode lock. */ inode_lock(inode); err = vops->end_enable_verity(filp, desc, desc_size, params.tree_size); inode_unlock(inode); if (err) { fsverity_err(inode, "%ps() failed with err %d", vops->end_enable_verity, err); fsverity_free_info(vi); } else if (WARN_ON(!IS_VERITY(inode))) { err = -EINVAL; fsverity_free_info(vi); } else { /* Successfully enabled verity */ /* * Readers can start using ->i_verity_info immediately, so it * can't be rolled back once set. So don't set it until just * after the filesystem has successfully enabled verity. */ fsverity_set_info(inode, vi); } out: kfree(params.hashstate); kfree(desc); return err; rollback: inode_lock(inode); (void)vops->end_enable_verity(filp, NULL, 0, params.tree_size); inode_unlock(inode); goto out; } /** * fsverity_ioctl_enable() - enable verity on a file * @filp: file to enable verity on * @uarg: user pointer to fsverity_enable_arg * * Enable fs-verity on a file. See the "FS_IOC_ENABLE_VERITY" section of * Documentation/filesystems/fsverity.rst for the documentation. * * Return: 0 on success, -errno on failure */ int fsverity_ioctl_enable(struct file *filp, const void __user *uarg) { struct inode *inode = file_inode(filp); struct fsverity_enable_arg arg; int err; if (copy_from_user(&arg, uarg, sizeof(arg))) return -EFAULT; if (arg.version != 1) return -EINVAL; if (arg.__reserved1 || memchr_inv(arg.__reserved2, 0, sizeof(arg.__reserved2))) return -EINVAL; if (!is_power_of_2(arg.block_size)) return -EINVAL; if (arg.salt_size > sizeof_field(struct fsverity_descriptor, salt)) return -EMSGSIZE; if (arg.sig_size > FS_VERITY_MAX_SIGNATURE_SIZE) return -EMSGSIZE; /* * Require a regular file with write access. But the actual fd must * still be readonly so that we can lock out all writers. This is * needed to guarantee that no writable fds exist to the file once it * has verity enabled, and to stabilize the data being hashed. */ err = file_permission(filp, MAY_WRITE); if (err) return err; /* * __kernel_read() is used while building the Merkle tree. So, we can't * allow file descriptors that were opened for ioctl access only, using * the special nonstandard access mode 3. O_RDONLY only, please! */ if (!(filp->f_mode & FMODE_READ)) return -EBADF; if (IS_APPEND(inode)) return -EPERM; if (S_ISDIR(inode->i_mode)) return -EISDIR; if (!S_ISREG(inode->i_mode)) return -EINVAL; err = mnt_want_write_file(filp); if (err) /* -EROFS */ return err; err = deny_write_access(filp); if (err) /* -ETXTBSY */ goto out_drop_write; err = enable_verity(filp, &arg); /* * We no longer drop the inode's pagecache after enabling verity. This * used to be done to try to avoid a race condition where pages could be * evicted after being used in the Merkle tree construction, then * re-instantiated by a concurrent read. Such pages are unverified, and * the backing storage could have filled them with different content, so * they shouldn't be used to fulfill reads once verity is enabled. * * But, dropping the pagecache has a big performance impact, and it * doesn't fully solve the race condition anyway. So for those reasons, * and also because this race condition isn't very important relatively * speaking (especially for small-ish files, where the chance of a page * being used, evicted, *and* re-instantiated all while enabling verity * is quite small), we no longer drop the inode's pagecache. */ /* * allow_write_access() is needed to pair with deny_write_access(). * Regardless, the filesystem won't allow writing to verity files. */ allow_write_access(filp); out_drop_write: mnt_drop_write_file(filp); return err; } EXPORT_SYMBOL_GPL(fsverity_ioctl_enable);