// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com * Copyright (c) 2016,2017 Facebook */ #include #include #include #include #include #include #include #include #include #include #include "map_in_map.h" #define ARRAY_CREATE_FLAG_MASK \ (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) static void bpf_array_free_percpu(struct bpf_array *array) { int i; for (i = 0; i < array->map.max_entries; i++) { free_percpu(array->pptrs[i]); cond_resched(); } } static int bpf_array_alloc_percpu(struct bpf_array *array) { void __percpu *ptr; int i; for (i = 0; i < array->map.max_entries; i++) { ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, GFP_USER | __GFP_NOWARN); if (!ptr) { bpf_array_free_percpu(array); return -ENOMEM; } array->pptrs[i] = ptr; cond_resched(); } return 0; } /* Called from syscall */ int array_map_alloc_check(union bpf_attr *attr) { bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; int numa_node = bpf_map_attr_numa_node(attr); /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size != 4 || attr->value_size == 0 || attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || !bpf_map_flags_access_ok(attr->map_flags) || (percpu && numa_node != NUMA_NO_NODE)) return -EINVAL; if (attr->map_type != BPF_MAP_TYPE_ARRAY && attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) return -EINVAL; if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && attr->map_flags & BPF_F_PRESERVE_ELEMS) return -EINVAL; /* avoid overflow on round_up(map->value_size) */ if (attr->value_size > INT_MAX) return -E2BIG; return 0; } static struct bpf_map *array_map_alloc(union bpf_attr *attr) { bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; int numa_node = bpf_map_attr_numa_node(attr); u32 elem_size, index_mask, max_entries; bool bypass_spec_v1 = bpf_bypass_spec_v1(); u64 array_size, mask64; struct bpf_array *array; elem_size = round_up(attr->value_size, 8); max_entries = attr->max_entries; /* On 32 bit archs roundup_pow_of_two() with max_entries that has * upper most bit set in u32 space is undefined behavior due to * resulting 1U << 32, so do it manually here in u64 space. */ mask64 = fls_long(max_entries - 1); mask64 = 1ULL << mask64; mask64 -= 1; index_mask = mask64; if (!bypass_spec_v1) { /* round up array size to nearest power of 2, * since cpu will speculate within index_mask limits */ max_entries = index_mask + 1; /* Check for overflows. */ if (max_entries < attr->max_entries) return ERR_PTR(-E2BIG); } array_size = sizeof(*array); if (percpu) { array_size += (u64) max_entries * sizeof(void *); } else { /* rely on vmalloc() to return page-aligned memory and * ensure array->value is exactly page-aligned */ if (attr->map_flags & BPF_F_MMAPABLE) { array_size = PAGE_ALIGN(array_size); array_size += PAGE_ALIGN((u64) max_entries * elem_size); } else { array_size += (u64) max_entries * elem_size; } } /* allocate all map elements and zero-initialize them */ if (attr->map_flags & BPF_F_MMAPABLE) { void *data; /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ data = bpf_map_area_mmapable_alloc(array_size, numa_node); if (!data) return ERR_PTR(-ENOMEM); array = data + PAGE_ALIGN(sizeof(struct bpf_array)) - offsetof(struct bpf_array, value); } else { array = bpf_map_area_alloc(array_size, numa_node); } if (!array) return ERR_PTR(-ENOMEM); array->index_mask = index_mask; array->map.bypass_spec_v1 = bypass_spec_v1; /* copy mandatory map attributes */ bpf_map_init_from_attr(&array->map, attr); array->elem_size = elem_size; if (percpu && bpf_array_alloc_percpu(array)) { bpf_map_area_free(array); return ERR_PTR(-ENOMEM); } return &array->map; } static void *array_map_elem_ptr(struct bpf_array* array, u32 index) { return array->value + (u64)array->elem_size * index; } /* Called from syscall or from eBPF program */ static void *array_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; if (unlikely(index >= array->map.max_entries)) return NULL; return array->value + (u64)array->elem_size * (index & array->index_mask); } static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) { struct bpf_array *array = container_of(map, struct bpf_array, map); if (map->max_entries != 1) return -ENOTSUPP; if (off >= map->value_size) return -EINVAL; *imm = (unsigned long)array->value; return 0; } static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, u32 *off) { struct bpf_array *array = container_of(map, struct bpf_array, map); u64 base = (unsigned long)array->value; u64 range = array->elem_size; if (map->max_entries != 1) return -ENOTSUPP; if (imm < base || imm >= base + range) return -ENOENT; *off = imm - base; return 0; } /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_insn *insn = insn_buf; u32 elem_size = array->elem_size; const int ret = BPF_REG_0; const int map_ptr = BPF_REG_1; const int index = BPF_REG_2; if (map->map_flags & BPF_F_INNER_MAP) return -EOPNOTSUPP; *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); if (!map->bypass_spec_v1) { *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); } else { *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); } if (is_power_of_2(elem_size)) { *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); } else { *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); } *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); *insn++ = BPF_MOV64_IMM(ret, 0); return insn - insn_buf; } /* Called from eBPF program */ static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; if (unlikely(index >= array->map.max_entries)) return NULL; return this_cpu_ptr(array->pptrs[index & array->index_mask]); } static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; if (cpu >= nr_cpu_ids) return NULL; if (unlikely(index >= array->map.max_entries)) return NULL; return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); } int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; void __percpu *pptr; int cpu, off = 0; u32 size; if (unlikely(index >= array->map.max_entries)) return -ENOENT; /* per_cpu areas are zero-filled and bpf programs can only * access 'value_size' of them, so copying rounded areas * will not leak any kernel data */ size = array->elem_size; rcu_read_lock(); pptr = array->pptrs[index & array->index_mask]; for_each_possible_cpu(cpu) { copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); check_and_init_map_value(map, value + off); off += size; } rcu_read_unlock(); return 0; } /* Called from syscall */ static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = key ? *(u32 *)key : U32_MAX; u32 *next = (u32 *)next_key; if (index >= array->map.max_entries) { *next = 0; return 0; } if (index == array->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } static void check_and_free_fields(struct bpf_array *arr, void *val) { if (map_value_has_timer(&arr->map)) bpf_timer_cancel_and_free(val + arr->map.timer_off); if (map_value_has_kptrs(&arr->map)) bpf_map_free_kptrs(&arr->map, val); } /* Called from syscall or from eBPF program */ static int array_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; char *val; if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) /* unknown flags */ return -EINVAL; if (unlikely(index >= array->map.max_entries)) /* all elements were pre-allocated, cannot insert a new one */ return -E2BIG; if (unlikely(map_flags & BPF_NOEXIST)) /* all elements already exist */ return -EEXIST; if (unlikely((map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) return -EINVAL; if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { val = this_cpu_ptr(array->pptrs[index & array->index_mask]); copy_map_value(map, val, value); check_and_free_fields(array, val); } else { val = array->value + (u64)array->elem_size * (index & array->index_mask); if (map_flags & BPF_F_LOCK) copy_map_value_locked(map, val, value, false); else copy_map_value(map, val, value); check_and_free_fields(array, val); } return 0; } int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; void __percpu *pptr; int cpu, off = 0; u32 size; if (unlikely(map_flags > BPF_EXIST)) /* unknown flags */ return -EINVAL; if (unlikely(index >= array->map.max_entries)) /* all elements were pre-allocated, cannot insert a new one */ return -E2BIG; if (unlikely(map_flags == BPF_NOEXIST)) /* all elements already exist */ return -EEXIST; /* the user space will provide round_up(value_size, 8) bytes that * will be copied into per-cpu area. bpf programs can only access * value_size of it. During lookup the same extra bytes will be * returned or zeros which were zero-filled by percpu_alloc, * so no kernel data leaks possible */ size = array->elem_size; rcu_read_lock(); pptr = array->pptrs[index & array->index_mask]; for_each_possible_cpu(cpu) { copy_map_value_long(map, per_cpu_ptr(pptr, cpu), value + off); check_and_free_fields(array, per_cpu_ptr(pptr, cpu)); off += size; } rcu_read_unlock(); return 0; } /* Called from syscall or from eBPF program */ static int array_map_delete_elem(struct bpf_map *map, void *key) { return -EINVAL; } static void *array_map_vmalloc_addr(struct bpf_array *array) { return (void *)round_down((unsigned long)array, PAGE_SIZE); } static void array_map_free_timers(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; /* We don't reset or free kptr on uref dropping to zero. */ if (!map_value_has_timer(map)) return; for (i = 0; i < array->map.max_entries; i++) bpf_timer_cancel_and_free(array_map_elem_ptr(array, i) + map->timer_off); } /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ static void array_map_free(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; if (map_value_has_kptrs(map)) { if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { for (i = 0; i < array->map.max_entries; i++) { void __percpu *pptr = array->pptrs[i & array->index_mask]; int cpu; for_each_possible_cpu(cpu) { bpf_map_free_kptrs(map, per_cpu_ptr(pptr, cpu)); cond_resched(); } } } else { for (i = 0; i < array->map.max_entries; i++) bpf_map_free_kptrs(map, array_map_elem_ptr(array, i)); } bpf_map_free_kptr_off_tab(map); } if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) bpf_array_free_percpu(array); if (array->map.map_flags & BPF_F_MMAPABLE) bpf_map_area_free(array_map_vmalloc_addr(array)); else bpf_map_area_free(array); } static void array_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { void *value; rcu_read_lock(); value = array_map_lookup_elem(map, key); if (!value) { rcu_read_unlock(); return; } if (map->btf_key_type_id) seq_printf(m, "%u: ", *(u32 *)key); btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); seq_puts(m, "\n"); rcu_read_unlock(); } static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 index = *(u32 *)key; void __percpu *pptr; int cpu; rcu_read_lock(); seq_printf(m, "%u: {\n", *(u32 *)key); pptr = array->pptrs[index & array->index_mask]; for_each_possible_cpu(cpu) { seq_printf(m, "\tcpu%d: ", cpu); btf_type_seq_show(map->btf, map->btf_value_type_id, per_cpu_ptr(pptr, cpu), m); seq_puts(m, "\n"); } seq_puts(m, "}\n"); rcu_read_unlock(); } static int array_map_check_btf(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type) { u32 int_data; /* One exception for keyless BTF: .bss/.data/.rodata map */ if (btf_type_is_void(key_type)) { if (map->map_type != BPF_MAP_TYPE_ARRAY || map->max_entries != 1) return -EINVAL; if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) return -EINVAL; return 0; } if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) return -EINVAL; int_data = *(u32 *)(key_type + 1); /* bpf array can only take a u32 key. This check makes sure * that the btf matches the attr used during map_create. */ if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) return -EINVAL; return 0; } static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) { struct bpf_array *array = container_of(map, struct bpf_array, map); pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; if (!(map->map_flags & BPF_F_MMAPABLE)) return -EINVAL; if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) return -EINVAL; return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), vma->vm_pgoff + pgoff); } static bool array_map_meta_equal(const struct bpf_map *meta0, const struct bpf_map *meta1) { if (!bpf_map_meta_equal(meta0, meta1)) return false; return meta0->map_flags & BPF_F_INNER_MAP ? true : meta0->max_entries == meta1->max_entries; } struct bpf_iter_seq_array_map_info { struct bpf_map *map; void *percpu_value_buf; u32 index; }; static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) { struct bpf_iter_seq_array_map_info *info = seq->private; struct bpf_map *map = info->map; struct bpf_array *array; u32 index; if (info->index >= map->max_entries) return NULL; if (*pos == 0) ++*pos; array = container_of(map, struct bpf_array, map); index = info->index & array->index_mask; if (info->percpu_value_buf) return array->pptrs[index]; return array_map_elem_ptr(array, index); } static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bpf_iter_seq_array_map_info *info = seq->private; struct bpf_map *map = info->map; struct bpf_array *array; u32 index; ++*pos; ++info->index; if (info->index >= map->max_entries) return NULL; array = container_of(map, struct bpf_array, map); index = info->index & array->index_mask; if (info->percpu_value_buf) return array->pptrs[index]; return array_map_elem_ptr(array, index); } static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) { struct bpf_iter_seq_array_map_info *info = seq->private; struct bpf_iter__bpf_map_elem ctx = {}; struct bpf_map *map = info->map; struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_iter_meta meta; struct bpf_prog *prog; int off = 0, cpu = 0; void __percpu **pptr; u32 size; meta.seq = seq; prog = bpf_iter_get_info(&meta, v == NULL); if (!prog) return 0; ctx.meta = &meta; ctx.map = info->map; if (v) { ctx.key = &info->index; if (!info->percpu_value_buf) { ctx.value = v; } else { pptr = v; size = array->elem_size; for_each_possible_cpu(cpu) { copy_map_value_long(map, info->percpu_value_buf + off, per_cpu_ptr(pptr, cpu)); check_and_init_map_value(map, info->percpu_value_buf + off); off += size; } ctx.value = info->percpu_value_buf; } } return bpf_iter_run_prog(prog, &ctx); } static int bpf_array_map_seq_show(struct seq_file *seq, void *v) { return __bpf_array_map_seq_show(seq, v); } static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) { if (!v) (void)__bpf_array_map_seq_show(seq, NULL); } static int bpf_iter_init_array_map(void *priv_data, struct bpf_iter_aux_info *aux) { struct bpf_iter_seq_array_map_info *seq_info = priv_data; struct bpf_map *map = aux->map; struct bpf_array *array = container_of(map, struct bpf_array, map); void *value_buf; u32 buf_size; if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { buf_size = array->elem_size * num_possible_cpus(); value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); if (!value_buf) return -ENOMEM; seq_info->percpu_value_buf = value_buf; } /* bpf_iter_attach_map() acquires a map uref, and the uref may be * released before or in the middle of iterating map elements, so * acquire an extra map uref for iterator. */ bpf_map_inc_with_uref(map); seq_info->map = map; return 0; } static void bpf_iter_fini_array_map(void *priv_data) { struct bpf_iter_seq_array_map_info *seq_info = priv_data; bpf_map_put_with_uref(seq_info->map); kfree(seq_info->percpu_value_buf); } static const struct seq_operations bpf_array_map_seq_ops = { .start = bpf_array_map_seq_start, .next = bpf_array_map_seq_next, .stop = bpf_array_map_seq_stop, .show = bpf_array_map_seq_show, }; static const struct bpf_iter_seq_info iter_seq_info = { .seq_ops = &bpf_array_map_seq_ops, .init_seq_private = bpf_iter_init_array_map, .fini_seq_private = bpf_iter_fini_array_map, .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), }; static int bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, void *callback_ctx, u64 flags) { u32 i, key, num_elems = 0; struct bpf_array *array; bool is_percpu; u64 ret = 0; void *val; if (flags != 0) return -EINVAL; is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; array = container_of(map, struct bpf_array, map); if (is_percpu) migrate_disable(); for (i = 0; i < map->max_entries; i++) { if (is_percpu) val = this_cpu_ptr(array->pptrs[i]); else val = array_map_elem_ptr(array, i); num_elems++; key = i; ret = callback_fn((u64)(long)map, (u64)(long)&key, (u64)(long)val, (u64)(long)callback_ctx, 0); /* return value: 0 - continue, 1 - stop and return */ if (ret) break; } if (is_percpu) migrate_enable(); return num_elems; } BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) const struct bpf_map_ops array_map_ops = { .map_meta_equal = array_map_meta_equal, .map_alloc_check = array_map_alloc_check, .map_alloc = array_map_alloc, .map_free = array_map_free, .map_get_next_key = array_map_get_next_key, .map_release_uref = array_map_free_timers, .map_lookup_elem = array_map_lookup_elem, .map_update_elem = array_map_update_elem, .map_delete_elem = array_map_delete_elem, .map_gen_lookup = array_map_gen_lookup, .map_direct_value_addr = array_map_direct_value_addr, .map_direct_value_meta = array_map_direct_value_meta, .map_mmap = array_map_mmap, .map_seq_show_elem = array_map_seq_show_elem, .map_check_btf = array_map_check_btf, .map_lookup_batch = generic_map_lookup_batch, .map_update_batch = generic_map_update_batch, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_array_elem, .map_btf_id = &array_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; const struct bpf_map_ops percpu_array_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = array_map_alloc_check, .map_alloc = array_map_alloc, .map_free = array_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = percpu_array_map_lookup_elem, .map_update_elem = array_map_update_elem, .map_delete_elem = array_map_delete_elem, .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, .map_seq_show_elem = percpu_array_map_seq_show_elem, .map_check_btf = array_map_check_btf, .map_lookup_batch = generic_map_lookup_batch, .map_update_batch = generic_map_update_batch, .map_set_for_each_callback_args = map_set_for_each_callback_args, .map_for_each_callback = bpf_for_each_array_elem, .map_btf_id = &array_map_btf_ids[0], .iter_seq_info = &iter_seq_info, }; static int fd_array_map_alloc_check(union bpf_attr *attr) { /* only file descriptors can be stored in this type of map */ if (attr->value_size != sizeof(u32)) return -EINVAL; /* Program read-only/write-only not supported for special maps yet. */ if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) return -EINVAL; return array_map_alloc_check(attr); } static void fd_array_map_free(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; /* make sure it's empty */ for (i = 0; i < array->map.max_entries; i++) BUG_ON(array->ptrs[i] != NULL); bpf_map_area_free(array); } static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) { return ERR_PTR(-EOPNOTSUPP); } /* only called from syscall */ int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) { void **elem, *ptr; int ret = 0; if (!map->ops->map_fd_sys_lookup_elem) return -ENOTSUPP; rcu_read_lock(); elem = array_map_lookup_elem(map, key); if (elem && (ptr = READ_ONCE(*elem))) *value = map->ops->map_fd_sys_lookup_elem(ptr); else ret = -ENOENT; rcu_read_unlock(); return ret; } /* only called from syscall */ int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags) { struct bpf_array *array = container_of(map, struct bpf_array, map); void *new_ptr, *old_ptr; u32 index = *(u32 *)key, ufd; if (map_flags != BPF_ANY) return -EINVAL; if (index >= array->map.max_entries) return -E2BIG; ufd = *(u32 *)value; new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); if (IS_ERR(new_ptr)) return PTR_ERR(new_ptr); if (map->ops->map_poke_run) { mutex_lock(&array->aux->poke_mutex); old_ptr = xchg(array->ptrs + index, new_ptr); map->ops->map_poke_run(map, index, old_ptr, new_ptr); mutex_unlock(&array->aux->poke_mutex); } else { old_ptr = xchg(array->ptrs + index, new_ptr); } if (old_ptr) map->ops->map_fd_put_ptr(old_ptr); return 0; } static int fd_array_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_array *array = container_of(map, struct bpf_array, map); void *old_ptr; u32 index = *(u32 *)key; if (index >= array->map.max_entries) return -E2BIG; if (map->ops->map_poke_run) { mutex_lock(&array->aux->poke_mutex); old_ptr = xchg(array->ptrs + index, NULL); map->ops->map_poke_run(map, index, old_ptr, NULL); mutex_unlock(&array->aux->poke_mutex); } else { old_ptr = xchg(array->ptrs + index, NULL); } if (old_ptr) { map->ops->map_fd_put_ptr(old_ptr); return 0; } else { return -ENOENT; } } static void *prog_fd_array_get_ptr(struct bpf_map *map, struct file *map_file, int fd) { struct bpf_prog *prog = bpf_prog_get(fd); if (IS_ERR(prog)) return prog; if (!bpf_prog_map_compatible(map, prog)) { bpf_prog_put(prog); return ERR_PTR(-EINVAL); } return prog; } static void prog_fd_array_put_ptr(void *ptr) { bpf_prog_put(ptr); } static u32 prog_fd_array_sys_lookup_elem(void *ptr) { return ((struct bpf_prog *)ptr)->aux->id; } /* decrement refcnt of all bpf_progs that are stored in this map */ static void bpf_fd_array_map_clear(struct bpf_map *map) { struct bpf_array *array = container_of(map, struct bpf_array, map); int i; for (i = 0; i < array->map.max_entries; i++) fd_array_map_delete_elem(map, &i); } static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, struct seq_file *m) { void **elem, *ptr; u32 prog_id; rcu_read_lock(); elem = array_map_lookup_elem(map, key); if (elem) { ptr = READ_ONCE(*elem); if (ptr) { seq_printf(m, "%u: ", *(u32 *)key); prog_id = prog_fd_array_sys_lookup_elem(ptr); btf_type_seq_show(map->btf, map->btf_value_type_id, &prog_id, m); seq_puts(m, "\n"); } } rcu_read_unlock(); } struct prog_poke_elem { struct list_head list; struct bpf_prog_aux *aux; }; static int prog_array_map_poke_track(struct bpf_map *map, struct bpf_prog_aux *prog_aux) { struct prog_poke_elem *elem; struct bpf_array_aux *aux; int ret = 0; aux = container_of(map, struct bpf_array, map)->aux; mutex_lock(&aux->poke_mutex); list_for_each_entry(elem, &aux->poke_progs, list) { if (elem->aux == prog_aux) goto out; } elem = kmalloc(sizeof(*elem), GFP_KERNEL); if (!elem) { ret = -ENOMEM; goto out; } INIT_LIST_HEAD(&elem->list); /* We must track the program's aux info at this point in time * since the program pointer itself may not be stable yet, see * also comment in prog_array_map_poke_run(). */ elem->aux = prog_aux; list_add_tail(&elem->list, &aux->poke_progs); out: mutex_unlock(&aux->poke_mutex); return ret; } static void prog_array_map_poke_untrack(struct bpf_map *map, struct bpf_prog_aux *prog_aux) { struct prog_poke_elem *elem, *tmp; struct bpf_array_aux *aux; aux = container_of(map, struct bpf_array, map)->aux; mutex_lock(&aux->poke_mutex); list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { if (elem->aux == prog_aux) { list_del_init(&elem->list); kfree(elem); break; } } mutex_unlock(&aux->poke_mutex); } void __weak bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, struct bpf_prog *new, struct bpf_prog *old) { WARN_ON_ONCE(1); } static void prog_array_map_poke_run(struct bpf_map *map, u32 key, struct bpf_prog *old, struct bpf_prog *new) { struct prog_poke_elem *elem; struct bpf_array_aux *aux; aux = container_of(map, struct bpf_array, map)->aux; WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); list_for_each_entry(elem, &aux->poke_progs, list) { struct bpf_jit_poke_descriptor *poke; int i; for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; /* Few things to be aware of: * * 1) We can only ever access aux in this context, but * not aux->prog since it might not be stable yet and * there could be danger of use after free otherwise. * 2) Initially when we start tracking aux, the program * is not JITed yet and also does not have a kallsyms * entry. We skip these as poke->tailcall_target_stable * is not active yet. The JIT will do the final fixup * before setting it stable. The various * poke->tailcall_target_stable are successively * activated, so tail call updates can arrive from here * while JIT is still finishing its final fixup for * non-activated poke entries. * 3) Also programs reaching refcount of zero while patching * is in progress is okay since we're protected under * poke_mutex and untrack the programs before the JIT * buffer is freed. */ if (!READ_ONCE(poke->tailcall_target_stable)) continue; if (poke->reason != BPF_POKE_REASON_TAIL_CALL) continue; if (poke->tail_call.map != map || poke->tail_call.key != key) continue; bpf_arch_poke_desc_update(poke, new, old); } } } static void prog_array_map_clear_deferred(struct work_struct *work) { struct bpf_map *map = container_of(work, struct bpf_array_aux, work)->map; bpf_fd_array_map_clear(map); bpf_map_put(map); } static void prog_array_map_clear(struct bpf_map *map) { struct bpf_array_aux *aux = container_of(map, struct bpf_array, map)->aux; bpf_map_inc(map); schedule_work(&aux->work); } static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) { struct bpf_array_aux *aux; struct bpf_map *map; aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); if (!aux) return ERR_PTR(-ENOMEM); INIT_WORK(&aux->work, prog_array_map_clear_deferred); INIT_LIST_HEAD(&aux->poke_progs); mutex_init(&aux->poke_mutex); map = array_map_alloc(attr); if (IS_ERR(map)) { kfree(aux); return map; } container_of(map, struct bpf_array, map)->aux = aux; aux->map = map; return map; } static void prog_array_map_free(struct bpf_map *map) { struct prog_poke_elem *elem, *tmp; struct bpf_array_aux *aux; aux = container_of(map, struct bpf_array, map)->aux; list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { list_del_init(&elem->list); kfree(elem); } kfree(aux); fd_array_map_free(map); } /* prog_array->aux->{type,jited} is a runtime binding. * Doing static check alone in the verifier is not enough. * Thus, prog_array_map cannot be used as an inner_map * and map_meta_equal is not implemented. */ const struct bpf_map_ops prog_array_map_ops = { .map_alloc_check = fd_array_map_alloc_check, .map_alloc = prog_array_map_alloc, .map_free = prog_array_map_free, .map_poke_track = prog_array_map_poke_track, .map_poke_untrack = prog_array_map_poke_untrack, .map_poke_run = prog_array_map_poke_run, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = prog_fd_array_get_ptr, .map_fd_put_ptr = prog_fd_array_put_ptr, .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, .map_release_uref = prog_array_map_clear, .map_seq_show_elem = prog_array_map_seq_show_elem, .map_btf_id = &array_map_btf_ids[0], }; static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, struct file *map_file) { struct bpf_event_entry *ee; ee = kzalloc(sizeof(*ee), GFP_ATOMIC); if (ee) { ee->event = perf_file->private_data; ee->perf_file = perf_file; ee->map_file = map_file; } return ee; } static void __bpf_event_entry_free(struct rcu_head *rcu) { struct bpf_event_entry *ee; ee = container_of(rcu, struct bpf_event_entry, rcu); fput(ee->perf_file); kfree(ee); } static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) { call_rcu(&ee->rcu, __bpf_event_entry_free); } static void *perf_event_fd_array_get_ptr(struct bpf_map *map, struct file *map_file, int fd) { struct bpf_event_entry *ee; struct perf_event *event; struct file *perf_file; u64 value; perf_file = perf_event_get(fd); if (IS_ERR(perf_file)) return perf_file; ee = ERR_PTR(-EOPNOTSUPP); event = perf_file->private_data; if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) goto err_out; ee = bpf_event_entry_gen(perf_file, map_file); if (ee) return ee; ee = ERR_PTR(-ENOMEM); err_out: fput(perf_file); return ee; } static void perf_event_fd_array_put_ptr(void *ptr) { bpf_event_entry_free_rcu(ptr); } static void perf_event_fd_array_release(struct bpf_map *map, struct file *map_file) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct bpf_event_entry *ee; int i; if (map->map_flags & BPF_F_PRESERVE_ELEMS) return; rcu_read_lock(); for (i = 0; i < array->map.max_entries; i++) { ee = READ_ONCE(array->ptrs[i]); if (ee && ee->map_file == map_file) fd_array_map_delete_elem(map, &i); } rcu_read_unlock(); } static void perf_event_fd_array_map_free(struct bpf_map *map) { if (map->map_flags & BPF_F_PRESERVE_ELEMS) bpf_fd_array_map_clear(map); fd_array_map_free(map); } const struct bpf_map_ops perf_event_array_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = fd_array_map_alloc_check, .map_alloc = array_map_alloc, .map_free = perf_event_fd_array_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = perf_event_fd_array_get_ptr, .map_fd_put_ptr = perf_event_fd_array_put_ptr, .map_release = perf_event_fd_array_release, .map_check_btf = map_check_no_btf, .map_btf_id = &array_map_btf_ids[0], }; #ifdef CONFIG_CGROUPS static void *cgroup_fd_array_get_ptr(struct bpf_map *map, struct file *map_file /* not used */, int fd) { return cgroup_get_from_fd(fd); } static void cgroup_fd_array_put_ptr(void *ptr) { /* cgroup_put free cgrp after a rcu grace period */ cgroup_put(ptr); } static void cgroup_fd_array_free(struct bpf_map *map) { bpf_fd_array_map_clear(map); fd_array_map_free(map); } const struct bpf_map_ops cgroup_array_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = fd_array_map_alloc_check, .map_alloc = array_map_alloc, .map_free = cgroup_fd_array_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = fd_array_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = cgroup_fd_array_get_ptr, .map_fd_put_ptr = cgroup_fd_array_put_ptr, .map_check_btf = map_check_no_btf, .map_btf_id = &array_map_btf_ids[0], }; #endif static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) { struct bpf_map *map, *inner_map_meta; inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); if (IS_ERR(inner_map_meta)) return inner_map_meta; map = array_map_alloc(attr); if (IS_ERR(map)) { bpf_map_meta_free(inner_map_meta); return map; } map->inner_map_meta = inner_map_meta; return map; } static void array_of_map_free(struct bpf_map *map) { /* map->inner_map_meta is only accessed by syscall which * is protected by fdget/fdput. */ bpf_map_meta_free(map->inner_map_meta); bpf_fd_array_map_clear(map); fd_array_map_free(map); } static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_map **inner_map = array_map_lookup_elem(map, key); if (!inner_map) return NULL; return READ_ONCE(*inner_map); } static int array_of_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { struct bpf_array *array = container_of(map, struct bpf_array, map); u32 elem_size = array->elem_size; struct bpf_insn *insn = insn_buf; const int ret = BPF_REG_0; const int map_ptr = BPF_REG_1; const int index = BPF_REG_2; *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); if (!map->bypass_spec_v1) { *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); } else { *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); } if (is_power_of_2(elem_size)) *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); else *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); *insn++ = BPF_MOV64_IMM(ret, 0); return insn - insn_buf; } const struct bpf_map_ops array_of_maps_map_ops = { .map_alloc_check = fd_array_map_alloc_check, .map_alloc = array_of_map_alloc, .map_free = array_of_map_free, .map_get_next_key = array_map_get_next_key, .map_lookup_elem = array_of_map_lookup_elem, .map_delete_elem = fd_array_map_delete_elem, .map_fd_get_ptr = bpf_map_fd_get_ptr, .map_fd_put_ptr = bpf_map_fd_put_ptr, .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, .map_gen_lookup = array_of_map_gen_lookup, .map_lookup_batch = generic_map_lookup_batch, .map_update_batch = generic_map_update_batch, .map_check_btf = map_check_no_btf, .map_btf_id = &array_map_btf_ids[0], };