// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2019 Facebook */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* dummy _ops. The verifier will operate on target program's ops. */ const struct bpf_verifier_ops bpf_extension_verifier_ops = { }; const struct bpf_prog_ops bpf_extension_prog_ops = { }; /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */ #define TRAMPOLINE_HASH_BITS 10 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS) static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE]; /* serializes access to trampoline_table */ static DEFINE_MUTEX(trampoline_mutex); #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex); static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd) { struct bpf_trampoline *tr = ops->private; int ret = 0; if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) { /* This is called inside register_ftrace_direct_multi(), so * tr->mutex is already locked. */ lockdep_assert_held_once(&tr->mutex); /* Instead of updating the trampoline here, we propagate * -EAGAIN to register_ftrace_direct_multi(). Then we can * retry register_ftrace_direct_multi() after updating the * trampoline. */ if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) { if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY)) return -EBUSY; tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; return -EAGAIN; } return 0; } /* The normal locking order is * tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c) * * The following two commands are called from * * prepare_direct_functions_for_ipmodify * cleanup_direct_functions_after_ipmodify * * In both cases, direct_mutex is already locked. Use * mutex_trylock(&tr->mutex) to avoid deadlock in race condition * (something else is making changes to this same trampoline). */ if (!mutex_trylock(&tr->mutex)) { /* sleep 1 ms to make sure whatever holding tr->mutex makes * some progress. */ msleep(1); return -EAGAIN; } switch (cmd) { case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER: tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); break; case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER: tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY; if (tr->flags & BPF_TRAMP_F_ORIG_STACK) ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); break; default: ret = -EINVAL; break; } mutex_unlock(&tr->mutex); return ret; } #endif bool bpf_prog_has_trampoline(const struct bpf_prog *prog) { enum bpf_attach_type eatype = prog->expected_attach_type; enum bpf_prog_type ptype = prog->type; return (ptype == BPF_PROG_TYPE_TRACING && (eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT || eatype == BPF_MODIFY_RETURN)) || (ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC); } void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym) { ksym->start = (unsigned long) data; ksym->end = ksym->start + PAGE_SIZE; bpf_ksym_add(ksym); perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, PAGE_SIZE, false, ksym->name); } void bpf_image_ksym_del(struct bpf_ksym *ksym) { bpf_ksym_del(ksym); perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, PAGE_SIZE, true, ksym->name); } static struct bpf_trampoline *bpf_trampoline_lookup(u64 key) { struct bpf_trampoline *tr; struct hlist_head *head; int i; mutex_lock(&trampoline_mutex); head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)]; hlist_for_each_entry(tr, head, hlist) { if (tr->key == key) { refcount_inc(&tr->refcnt); goto out; } } tr = kzalloc(sizeof(*tr), GFP_KERNEL); if (!tr) goto out; #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL); if (!tr->fops) { kfree(tr); tr = NULL; goto out; } tr->fops->private = tr; tr->fops->ops_func = bpf_tramp_ftrace_ops_func; #endif tr->key = key; INIT_HLIST_NODE(&tr->hlist); hlist_add_head(&tr->hlist, head); refcount_set(&tr->refcnt, 1); mutex_init(&tr->mutex); for (i = 0; i < BPF_TRAMP_MAX; i++) INIT_HLIST_HEAD(&tr->progs_hlist[i]); out: mutex_unlock(&trampoline_mutex); return tr; } static int bpf_trampoline_module_get(struct bpf_trampoline *tr) { struct module *mod; int err = 0; preempt_disable(); mod = __module_text_address((unsigned long) tr->func.addr); if (mod && !try_module_get(mod)) err = -ENOENT; preempt_enable(); tr->mod = mod; return err; } static void bpf_trampoline_module_put(struct bpf_trampoline *tr) { module_put(tr->mod); tr->mod = NULL; } static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr) { void *ip = tr->func.addr; int ret; if (tr->func.ftrace_managed) ret = unregister_ftrace_direct_multi(tr->fops, (long)old_addr); else ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL); if (!ret) bpf_trampoline_module_put(tr); return ret; } static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr, bool lock_direct_mutex) { void *ip = tr->func.addr; int ret; if (tr->func.ftrace_managed) { if (lock_direct_mutex) ret = modify_ftrace_direct_multi(tr->fops, (long)new_addr); else ret = modify_ftrace_direct_multi_nolock(tr->fops, (long)new_addr); } else { ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr); } return ret; } /* first time registering */ static int register_fentry(struct bpf_trampoline *tr, void *new_addr) { void *ip = tr->func.addr; unsigned long faddr; int ret; faddr = ftrace_location((unsigned long)ip); if (faddr) { if (!tr->fops) return -ENOTSUPP; tr->func.ftrace_managed = true; } if (bpf_trampoline_module_get(tr)) return -ENOENT; if (tr->func.ftrace_managed) { ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1); ret = register_ftrace_direct_multi(tr->fops, (long)new_addr); } else { ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr); } if (ret) bpf_trampoline_module_put(tr); return ret; } static struct bpf_tramp_links * bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg) { struct bpf_tramp_link *link; struct bpf_tramp_links *tlinks; struct bpf_tramp_link **links; int kind; *total = 0; tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL); if (!tlinks) return ERR_PTR(-ENOMEM); for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { tlinks[kind].nr_links = tr->progs_cnt[kind]; *total += tr->progs_cnt[kind]; links = tlinks[kind].links; hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { *ip_arg |= link->link.prog->call_get_func_ip; *links++ = link; } } return tlinks; } static void bpf_tramp_image_free(struct bpf_tramp_image *im) { bpf_image_ksym_del(&im->ksym); bpf_jit_free_exec(im->image); bpf_jit_uncharge_modmem(PAGE_SIZE); percpu_ref_exit(&im->pcref); kfree_rcu(im, rcu); } static void __bpf_tramp_image_put_deferred(struct work_struct *work) { struct bpf_tramp_image *im; im = container_of(work, struct bpf_tramp_image, work); bpf_tramp_image_free(im); } /* callback, fexit step 3 or fentry step 2 */ static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu) { struct bpf_tramp_image *im; im = container_of(rcu, struct bpf_tramp_image, rcu); INIT_WORK(&im->work, __bpf_tramp_image_put_deferred); schedule_work(&im->work); } /* callback, fexit step 2. Called after percpu_ref_kill confirms. */ static void __bpf_tramp_image_release(struct percpu_ref *pcref) { struct bpf_tramp_image *im; im = container_of(pcref, struct bpf_tramp_image, pcref); call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); } /* callback, fexit or fentry step 1 */ static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu) { struct bpf_tramp_image *im; im = container_of(rcu, struct bpf_tramp_image, rcu); if (im->ip_after_call) /* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */ percpu_ref_kill(&im->pcref); else /* the case of fentry trampoline */ call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); } static void bpf_tramp_image_put(struct bpf_tramp_image *im) { /* The trampoline image that calls original function is using: * rcu_read_lock_trace to protect sleepable bpf progs * rcu_read_lock to protect normal bpf progs * percpu_ref to protect trampoline itself * rcu tasks to protect trampoline asm not covered by percpu_ref * (which are few asm insns before __bpf_tramp_enter and * after __bpf_tramp_exit) * * The trampoline is unreachable before bpf_tramp_image_put(). * * First, patch the trampoline to avoid calling into fexit progs. * The progs will be freed even if the original function is still * executing or sleeping. * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on * first few asm instructions to execute and call into * __bpf_tramp_enter->percpu_ref_get. * Then use percpu_ref_kill to wait for the trampoline and the original * function to finish. * Then use call_rcu_tasks() to make sure few asm insns in * the trampoline epilogue are done as well. * * In !PREEMPT case the task that got interrupted in the first asm * insns won't go through an RCU quiescent state which the * percpu_ref_kill will be waiting for. Hence the first * call_rcu_tasks() is not necessary. */ if (im->ip_after_call) { int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP, NULL, im->ip_epilogue); WARN_ON(err); if (IS_ENABLED(CONFIG_PREEMPTION)) call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks); else percpu_ref_kill(&im->pcref); return; } /* The trampoline without fexit and fmod_ret progs doesn't call original * function and doesn't use percpu_ref. * Use call_rcu_tasks_trace() to wait for sleepable progs to finish. * Then use call_rcu_tasks() to wait for the rest of trampoline asm * and normal progs. */ call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks); } static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx) { struct bpf_tramp_image *im; struct bpf_ksym *ksym; void *image; int err = -ENOMEM; im = kzalloc(sizeof(*im), GFP_KERNEL); if (!im) goto out; err = bpf_jit_charge_modmem(PAGE_SIZE); if (err) goto out_free_im; err = -ENOMEM; im->image = image = bpf_jit_alloc_exec(PAGE_SIZE); if (!image) goto out_uncharge; set_vm_flush_reset_perms(image); err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL); if (err) goto out_free_image; ksym = &im->ksym; INIT_LIST_HEAD_RCU(&ksym->lnode); snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx); bpf_image_ksym_add(image, ksym); return im; out_free_image: bpf_jit_free_exec(im->image); out_uncharge: bpf_jit_uncharge_modmem(PAGE_SIZE); out_free_im: kfree(im); out: return ERR_PTR(err); } static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex) { struct bpf_tramp_image *im; struct bpf_tramp_links *tlinks; u32 orig_flags = tr->flags; bool ip_arg = false; int err, total; tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg); if (IS_ERR(tlinks)) return PTR_ERR(tlinks); if (total == 0) { err = unregister_fentry(tr, tr->cur_image->image); bpf_tramp_image_put(tr->cur_image); tr->cur_image = NULL; tr->selector = 0; goto out; } im = bpf_tramp_image_alloc(tr->key, tr->selector); if (IS_ERR(im)) { err = PTR_ERR(im); goto out; } /* clear all bits except SHARE_IPMODIFY and TAIL_CALL_CTX */ tr->flags &= (BPF_TRAMP_F_SHARE_IPMODIFY | BPF_TRAMP_F_TAIL_CALL_CTX); if (tlinks[BPF_TRAMP_FEXIT].nr_links || tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) { /* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME * should not be set together. */ tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME; } else { tr->flags |= BPF_TRAMP_F_RESTORE_REGS; } if (ip_arg) tr->flags |= BPF_TRAMP_F_IP_ARG; #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS again: if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) && (tr->flags & BPF_TRAMP_F_CALL_ORIG)) tr->flags |= BPF_TRAMP_F_ORIG_STACK; #endif err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE, &tr->func.model, tr->flags, tlinks, tr->func.addr); if (err < 0) goto out_free; set_memory_ro((long)im->image, 1); set_memory_x((long)im->image, 1); WARN_ON(tr->cur_image && tr->selector == 0); WARN_ON(!tr->cur_image && tr->selector); if (tr->cur_image) /* progs already running at this address */ err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex); else /* first time registering */ err = register_fentry(tr, im->image); #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS if (err == -EAGAIN) { /* -EAGAIN from bpf_tramp_ftrace_ops_func. Now * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the * trampoline again, and retry register. */ /* reset fops->func and fops->trampoline for re-register */ tr->fops->func = NULL; tr->fops->trampoline = 0; /* reset im->image memory attr for arch_prepare_bpf_trampoline */ set_memory_nx((long)im->image, 1); set_memory_rw((long)im->image, 1); goto again; } #endif if (err) goto out_free; if (tr->cur_image) bpf_tramp_image_put(tr->cur_image); tr->cur_image = im; tr->selector++; out: /* If any error happens, restore previous flags */ if (err) tr->flags = orig_flags; kfree(tlinks); return err; out_free: bpf_tramp_image_free(im); goto out; } static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog) { switch (prog->expected_attach_type) { case BPF_TRACE_FENTRY: return BPF_TRAMP_FENTRY; case BPF_MODIFY_RETURN: return BPF_TRAMP_MODIFY_RETURN; case BPF_TRACE_FEXIT: return BPF_TRAMP_FEXIT; case BPF_LSM_MAC: if (!prog->aux->attach_func_proto->type) /* The function returns void, we cannot modify its * return value. */ return BPF_TRAMP_FEXIT; else return BPF_TRAMP_MODIFY_RETURN; default: return BPF_TRAMP_REPLACE; } } static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) { enum bpf_tramp_prog_type kind; struct bpf_tramp_link *link_exiting; int err = 0; int cnt = 0, i; kind = bpf_attach_type_to_tramp(link->link.prog); if (tr->extension_prog) /* cannot attach fentry/fexit if extension prog is attached. * cannot overwrite extension prog either. */ return -EBUSY; for (i = 0; i < BPF_TRAMP_MAX; i++) cnt += tr->progs_cnt[i]; if (kind == BPF_TRAMP_REPLACE) { /* Cannot attach extension if fentry/fexit are in use. */ if (cnt) return -EBUSY; tr->extension_prog = link->link.prog; return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL, link->link.prog->bpf_func); } if (cnt >= BPF_MAX_TRAMP_LINKS) return -E2BIG; if (!hlist_unhashed(&link->tramp_hlist)) /* prog already linked */ return -EBUSY; hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) { if (link_exiting->link.prog != link->link.prog) continue; /* prog already linked */ return -EBUSY; } hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]); tr->progs_cnt[kind]++; err = bpf_trampoline_update(tr, true /* lock_direct_mutex */); if (err) { hlist_del_init(&link->tramp_hlist); tr->progs_cnt[kind]--; } return err; } int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) { int err; mutex_lock(&tr->mutex); err = __bpf_trampoline_link_prog(link, tr); mutex_unlock(&tr->mutex); return err; } static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) { enum bpf_tramp_prog_type kind; int err; kind = bpf_attach_type_to_tramp(link->link.prog); if (kind == BPF_TRAMP_REPLACE) { WARN_ON_ONCE(!tr->extension_prog); err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, tr->extension_prog->bpf_func, NULL); tr->extension_prog = NULL; return err; } hlist_del_init(&link->tramp_hlist); tr->progs_cnt[kind]--; return bpf_trampoline_update(tr, true /* lock_direct_mutex */); } /* bpf_trampoline_unlink_prog() should never fail. */ int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr) { int err; mutex_lock(&tr->mutex); err = __bpf_trampoline_unlink_prog(link, tr); mutex_unlock(&tr->mutex); return err; } #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) static void bpf_shim_tramp_link_release(struct bpf_link *link) { struct bpf_shim_tramp_link *shim_link = container_of(link, struct bpf_shim_tramp_link, link.link); /* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */ if (!shim_link->trampoline) return; WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline)); bpf_trampoline_put(shim_link->trampoline); } static void bpf_shim_tramp_link_dealloc(struct bpf_link *link) { struct bpf_shim_tramp_link *shim_link = container_of(link, struct bpf_shim_tramp_link, link.link); kfree(shim_link); } static const struct bpf_link_ops bpf_shim_tramp_link_lops = { .release = bpf_shim_tramp_link_release, .dealloc = bpf_shim_tramp_link_dealloc, }; static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog, bpf_func_t bpf_func, int cgroup_atype) { struct bpf_shim_tramp_link *shim_link = NULL; struct bpf_prog *p; shim_link = kzalloc(sizeof(*shim_link), GFP_USER); if (!shim_link) return NULL; p = bpf_prog_alloc(1, 0); if (!p) { kfree(shim_link); return NULL; } p->jited = false; p->bpf_func = bpf_func; p->aux->cgroup_atype = cgroup_atype; p->aux->attach_func_proto = prog->aux->attach_func_proto; p->aux->attach_btf_id = prog->aux->attach_btf_id; p->aux->attach_btf = prog->aux->attach_btf; btf_get(p->aux->attach_btf); p->type = BPF_PROG_TYPE_LSM; p->expected_attach_type = BPF_LSM_MAC; bpf_prog_inc(p); bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC, &bpf_shim_tramp_link_lops, p); bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype); return shim_link; } static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr, bpf_func_t bpf_func) { struct bpf_tramp_link *link; int kind; for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { struct bpf_prog *p = link->link.prog; if (p->bpf_func == bpf_func) return container_of(link, struct bpf_shim_tramp_link, link); } } return NULL; } int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, int cgroup_atype) { struct bpf_shim_tramp_link *shim_link = NULL; struct bpf_attach_target_info tgt_info = {}; struct bpf_trampoline *tr; bpf_func_t bpf_func; u64 key; int err; err = bpf_check_attach_target(NULL, prog, NULL, prog->aux->attach_btf_id, &tgt_info); if (err) return err; key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, prog->aux->attach_btf_id); bpf_lsm_find_cgroup_shim(prog, &bpf_func); tr = bpf_trampoline_get(key, &tgt_info); if (!tr) return -ENOMEM; mutex_lock(&tr->mutex); shim_link = cgroup_shim_find(tr, bpf_func); if (shim_link) { /* Reusing existing shim attached by the other program. */ bpf_link_inc(&shim_link->link.link); mutex_unlock(&tr->mutex); bpf_trampoline_put(tr); /* bpf_trampoline_get above */ return 0; } /* Allocate and install new shim. */ shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype); if (!shim_link) { err = -ENOMEM; goto err; } err = __bpf_trampoline_link_prog(&shim_link->link, tr); if (err) goto err; shim_link->trampoline = tr; /* note, we're still holding tr refcnt from above */ mutex_unlock(&tr->mutex); return 0; err: mutex_unlock(&tr->mutex); if (shim_link) bpf_link_put(&shim_link->link.link); /* have to release tr while _not_ holding its mutex */ bpf_trampoline_put(tr); /* bpf_trampoline_get above */ return err; } void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) { struct bpf_shim_tramp_link *shim_link = NULL; struct bpf_trampoline *tr; bpf_func_t bpf_func; u64 key; key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, prog->aux->attach_btf_id); bpf_lsm_find_cgroup_shim(prog, &bpf_func); tr = bpf_trampoline_lookup(key); if (WARN_ON_ONCE(!tr)) return; mutex_lock(&tr->mutex); shim_link = cgroup_shim_find(tr, bpf_func); mutex_unlock(&tr->mutex); if (shim_link) bpf_link_put(&shim_link->link.link); bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */ } #endif struct bpf_trampoline *bpf_trampoline_get(u64 key, struct bpf_attach_target_info *tgt_info) { struct bpf_trampoline *tr; tr = bpf_trampoline_lookup(key); if (!tr) return NULL; mutex_lock(&tr->mutex); if (tr->func.addr) goto out; memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel)); tr->func.addr = (void *)tgt_info->tgt_addr; out: mutex_unlock(&tr->mutex); return tr; } void bpf_trampoline_put(struct bpf_trampoline *tr) { int i; if (!tr) return; mutex_lock(&trampoline_mutex); if (!refcount_dec_and_test(&tr->refcnt)) goto out; WARN_ON_ONCE(mutex_is_locked(&tr->mutex)); for (i = 0; i < BPF_TRAMP_MAX; i++) if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i]))) goto out; /* This code will be executed even when the last bpf_tramp_image * is alive. All progs are detached from the trampoline and the * trampoline image is patched with jmp into epilogue to skip * fexit progs. The fentry-only trampoline will be freed via * multiple rcu callbacks. */ hlist_del(&tr->hlist); if (tr->fops) { ftrace_free_filter(tr->fops); kfree(tr->fops); } kfree(tr); out: mutex_unlock(&trampoline_mutex); } #define NO_START_TIME 1 static __always_inline u64 notrace bpf_prog_start_time(void) { u64 start = NO_START_TIME; if (static_branch_unlikely(&bpf_stats_enabled_key)) { start = sched_clock(); if (unlikely(!start)) start = NO_START_TIME; } return start; } /* The logic is similar to bpf_prog_run(), but with an explicit * rcu_read_lock() and migrate_disable() which are required * for the trampoline. The macro is split into * call __bpf_prog_enter * call prog->bpf_func * call __bpf_prog_exit * * __bpf_prog_enter returns: * 0 - skip execution of the bpf prog * 1 - execute bpf prog * [2..MAX_U64] - execute bpf prog and record execution time. * This is start time. */ static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) __acquires(RCU) { rcu_read_lock(); migrate_disable(); run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { bpf_prog_inc_misses_counter(prog); return 0; } return bpf_prog_start_time(); } static void notrace update_prog_stats(struct bpf_prog *prog, u64 start) { struct bpf_prog_stats *stats; if (static_branch_unlikely(&bpf_stats_enabled_key) && /* static_key could be enabled in __bpf_prog_enter* * and disabled in __bpf_prog_exit*. * And vice versa. * Hence check that 'start' is valid. */ start > NO_START_TIME) { unsigned long flags; stats = this_cpu_ptr(prog->stats); flags = u64_stats_update_begin_irqsave(&stats->syncp); u64_stats_inc(&stats->cnt); u64_stats_add(&stats->nsecs, sched_clock() - start); u64_stats_update_end_irqrestore(&stats->syncp, flags); } } static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx) __releases(RCU) { bpf_reset_run_ctx(run_ctx->saved_run_ctx); update_prog_stats(prog, start); this_cpu_dec(*(prog->active)); migrate_enable(); rcu_read_unlock(); } static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) __acquires(RCU) { /* Runtime stats are exported via actual BPF_LSM_CGROUP * programs, not the shims. */ rcu_read_lock(); migrate_disable(); run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); return NO_START_TIME; } static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx) __releases(RCU) { bpf_reset_run_ctx(run_ctx->saved_run_ctx); migrate_enable(); rcu_read_unlock(); } u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) { rcu_read_lock_trace(); migrate_disable(); might_fault(); run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { bpf_prog_inc_misses_counter(prog); return 0; } return bpf_prog_start_time(); } void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx) { bpf_reset_run_ctx(run_ctx->saved_run_ctx); update_prog_stats(prog, start); this_cpu_dec(*(prog->active)); migrate_enable(); rcu_read_unlock_trace(); } static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) { rcu_read_lock_trace(); migrate_disable(); might_fault(); run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); return bpf_prog_start_time(); } static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx) { bpf_reset_run_ctx(run_ctx->saved_run_ctx); update_prog_stats(prog, start); migrate_enable(); rcu_read_unlock_trace(); } static u64 notrace __bpf_prog_enter(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) __acquires(RCU) { rcu_read_lock(); migrate_disable(); run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); return bpf_prog_start_time(); } static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx) __releases(RCU) { bpf_reset_run_ctx(run_ctx->saved_run_ctx); update_prog_stats(prog, start); migrate_enable(); rcu_read_unlock(); } void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr) { percpu_ref_get(&tr->pcref); } void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr) { percpu_ref_put(&tr->pcref); } bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog) { bool sleepable = prog->aux->sleepable; if (bpf_prog_check_recur(prog)) return sleepable ? __bpf_prog_enter_sleepable_recur : __bpf_prog_enter_recur; if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && prog->expected_attach_type == BPF_LSM_CGROUP) return __bpf_prog_enter_lsm_cgroup; return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter; } bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog) { bool sleepable = prog->aux->sleepable; if (bpf_prog_check_recur(prog)) return sleepable ? __bpf_prog_exit_sleepable_recur : __bpf_prog_exit_recur; if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && prog->expected_attach_type == BPF_LSM_CGROUP) return __bpf_prog_exit_lsm_cgroup; return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit; } int __weak arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *orig_call) { return -ENOTSUPP; } static int __init init_trampolines(void) { int i; for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++) INIT_HLIST_HEAD(&trampoline_table[i]); return 0; } late_initcall(init_trampolines);