// SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include "futex.h" #include /* * Support for robust futexes: the kernel cleans up held futexes at * thread exit time. * * Implementation: user-space maintains a per-thread list of locks it * is holding. Upon do_exit(), the kernel carefully walks this list, * and marks all locks that are owned by this thread with the * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is * always manipulated with the lock held, so the list is private and * per-thread. Userspace also maintains a per-thread 'list_op_pending' * field, to allow the kernel to clean up if the thread dies after * acquiring the lock, but just before it could have added itself to * the list. There can only be one such pending lock. */ /** * sys_set_robust_list() - Set the robust-futex list head of a task * @head: pointer to the list-head * @len: length of the list-head, as userspace expects */ SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, size_t, len) { /* * The kernel knows only one size for now: */ if (unlikely(len != sizeof(*head))) return -EINVAL; current->robust_list = head; return 0; } /** * sys_get_robust_list() - Get the robust-futex list head of a task * @pid: pid of the process [zero for current task] * @head_ptr: pointer to a list-head pointer, the kernel fills it in * @len_ptr: pointer to a length field, the kernel fills in the header size */ SYSCALL_DEFINE3(get_robust_list, int, pid, struct robust_list_head __user * __user *, head_ptr, size_t __user *, len_ptr) { struct robust_list_head __user *head; unsigned long ret; struct task_struct *p; rcu_read_lock(); ret = -ESRCH; if (!pid) p = current; else { p = find_task_by_vpid(pid); if (!p) goto err_unlock; } ret = -EPERM; if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) goto err_unlock; head = p->robust_list; rcu_read_unlock(); if (put_user(sizeof(*head), len_ptr)) return -EFAULT; return put_user(head, head_ptr); err_unlock: rcu_read_unlock(); return ret; } long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, u32 __user *uaddr2, u32 val2, u32 val3) { int cmd = op & FUTEX_CMD_MASK; unsigned int flags = 0; if (!(op & FUTEX_PRIVATE_FLAG)) flags |= FLAGS_SHARED; if (op & FUTEX_CLOCK_REALTIME) { flags |= FLAGS_CLOCKRT; if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI && cmd != FUTEX_LOCK_PI2) return -ENOSYS; } trace_android_vh_do_futex(cmd, &flags, uaddr2); switch (cmd) { case FUTEX_WAIT: val3 = FUTEX_BITSET_MATCH_ANY; fallthrough; case FUTEX_WAIT_BITSET: return futex_wait(uaddr, flags, val, timeout, val3); case FUTEX_WAKE: val3 = FUTEX_BITSET_MATCH_ANY; fallthrough; case FUTEX_WAKE_BITSET: return futex_wake(uaddr, flags, val, val3); case FUTEX_REQUEUE: return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); case FUTEX_CMP_REQUEUE: return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); case FUTEX_WAKE_OP: return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); case FUTEX_LOCK_PI: flags |= FLAGS_CLOCKRT; fallthrough; case FUTEX_LOCK_PI2: return futex_lock_pi(uaddr, flags, timeout, 0); case FUTEX_UNLOCK_PI: return futex_unlock_pi(uaddr, flags); case FUTEX_TRYLOCK_PI: return futex_lock_pi(uaddr, flags, NULL, 1); case FUTEX_WAIT_REQUEUE_PI: val3 = FUTEX_BITSET_MATCH_ANY; return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, uaddr2); case FUTEX_CMP_REQUEUE_PI: return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); } return -ENOSYS; } static __always_inline bool futex_cmd_has_timeout(u32 cmd) { switch (cmd) { case FUTEX_WAIT: case FUTEX_LOCK_PI: case FUTEX_LOCK_PI2: case FUTEX_WAIT_BITSET: case FUTEX_WAIT_REQUEUE_PI: return true; } return false; } static __always_inline int futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t) { if (!timespec64_valid(ts)) return -EINVAL; *t = timespec64_to_ktime(*ts); if (cmd == FUTEX_WAIT) *t = ktime_add_safe(ktime_get(), *t); else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME)) *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t); return 0; } SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, const struct __kernel_timespec __user *, utime, u32 __user *, uaddr2, u32, val3) { int ret, cmd = op & FUTEX_CMD_MASK; ktime_t t, *tp = NULL; struct timespec64 ts; if (utime && futex_cmd_has_timeout(cmd)) { if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG)))) return -EFAULT; if (get_timespec64(&ts, utime)) return -EFAULT; ret = futex_init_timeout(cmd, op, &ts, &t); if (ret) return ret; tp = &t; } return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3); } /* Mask of available flags for each futex in futex_waitv list */ #define FUTEXV_WAITER_MASK (FUTEX_32 | FUTEX_PRIVATE_FLAG) /** * futex_parse_waitv - Parse a waitv array from userspace * @futexv: Kernel side list of waiters to be filled * @uwaitv: Userspace list to be parsed * @nr_futexes: Length of futexv * * Return: Error code on failure, 0 on success */ static int futex_parse_waitv(struct futex_vector *futexv, struct futex_waitv __user *uwaitv, unsigned int nr_futexes) { struct futex_waitv aux; unsigned int i; for (i = 0; i < nr_futexes; i++) { if (copy_from_user(&aux, &uwaitv[i], sizeof(aux))) return -EFAULT; if ((aux.flags & ~FUTEXV_WAITER_MASK) || aux.__reserved) return -EINVAL; if (!(aux.flags & FUTEX_32)) return -EINVAL; futexv[i].w.flags = aux.flags; futexv[i].w.val = aux.val; futexv[i].w.uaddr = aux.uaddr; futexv[i].q = futex_q_init; } return 0; } /** * sys_futex_waitv - Wait on a list of futexes * @waiters: List of futexes to wait on * @nr_futexes: Length of futexv * @flags: Flag for timeout (monotonic/realtime) * @timeout: Optional absolute timeout. * @clockid: Clock to be used for the timeout, realtime or monotonic. * * Given an array of `struct futex_waitv`, wait on each uaddr. The thread wakes * if a futex_wake() is performed at any uaddr. The syscall returns immediately * if any waiter has *uaddr != val. *timeout is an optional timeout value for * the operation. Each waiter has individual flags. The `flags` argument for * the syscall should be used solely for specifying the timeout as realtime, if * needed. Flags for private futexes, sizes, etc. should be used on the * individual flags of each waiter. * * Returns the array index of one of the woken futexes. No further information * is provided: any number of other futexes may also have been woken by the * same event, and if more than one futex was woken, the retrned index may * refer to any one of them. (It is not necessaryily the futex with the * smallest index, nor the one most recently woken, nor...) */ SYSCALL_DEFINE5(futex_waitv, struct futex_waitv __user *, waiters, unsigned int, nr_futexes, unsigned int, flags, struct __kernel_timespec __user *, timeout, clockid_t, clockid) { struct hrtimer_sleeper to; struct futex_vector *futexv; struct timespec64 ts; ktime_t time; int ret; /* This syscall supports no flags for now */ if (flags) return -EINVAL; if (!nr_futexes || nr_futexes > FUTEX_WAITV_MAX || !waiters) return -EINVAL; if (timeout) { int flag_clkid = 0, flag_init = 0; if (clockid == CLOCK_REALTIME) { flag_clkid = FLAGS_CLOCKRT; flag_init = FUTEX_CLOCK_REALTIME; } if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC) return -EINVAL; if (get_timespec64(&ts, timeout)) return -EFAULT; /* * Since there's no opcode for futex_waitv, use * FUTEX_WAIT_BITSET that uses absolute timeout as well */ ret = futex_init_timeout(FUTEX_WAIT_BITSET, flag_init, &ts, &time); if (ret) return ret; futex_setup_timer(&time, &to, flag_clkid, 0); } futexv = kcalloc(nr_futexes, sizeof(*futexv), GFP_KERNEL); if (!futexv) { ret = -ENOMEM; goto destroy_timer; } ret = futex_parse_waitv(futexv, waiters, nr_futexes); if (!ret) ret = futex_wait_multiple(futexv, nr_futexes, timeout ? &to : NULL); kfree(futexv); destroy_timer: if (timeout) { hrtimer_cancel(&to.timer); destroy_hrtimer_on_stack(&to.timer); } return ret; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(set_robust_list, struct compat_robust_list_head __user *, head, compat_size_t, len) { if (unlikely(len != sizeof(*head))) return -EINVAL; current->compat_robust_list = head; return 0; } COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid, compat_uptr_t __user *, head_ptr, compat_size_t __user *, len_ptr) { struct compat_robust_list_head __user *head; unsigned long ret; struct task_struct *p; rcu_read_lock(); ret = -ESRCH; if (!pid) p = current; else { p = find_task_by_vpid(pid); if (!p) goto err_unlock; } ret = -EPERM; if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) goto err_unlock; head = p->compat_robust_list; rcu_read_unlock(); if (put_user(sizeof(*head), len_ptr)) return -EFAULT; return put_user(ptr_to_compat(head), head_ptr); err_unlock: rcu_read_unlock(); return ret; } #endif /* CONFIG_COMPAT */ #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val, const struct old_timespec32 __user *, utime, u32 __user *, uaddr2, u32, val3) { int ret, cmd = op & FUTEX_CMD_MASK; ktime_t t, *tp = NULL; struct timespec64 ts; if (utime && futex_cmd_has_timeout(cmd)) { if (get_old_timespec32(&ts, utime)) return -EFAULT; ret = futex_init_timeout(cmd, op, &ts, &t); if (ret) return ret; tp = &t; } return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3); } #endif /* CONFIG_COMPAT_32BIT_TIME */