// SPDX-License-Identifier: GPL-2.0-only /* * HD-audio core bus driver */ #include <linux/init.h> #include <linux/io.h> #include <linux/device.h> #include <linux/module.h> #include <linux/export.h> #include <sound/hdaudio.h> #include "local.h" #include "trace.h" static void snd_hdac_bus_process_unsol_events(struct work_struct *work); static const struct hdac_bus_ops default_ops = { .command = snd_hdac_bus_send_cmd, .get_response = snd_hdac_bus_get_response, .link_power = snd_hdac_bus_link_power, }; /** * snd_hdac_bus_init - initialize a HD-audio bas bus * @bus: the pointer to bus object * @dev: device pointer * @ops: bus verb operators * * Returns 0 if successful, or a negative error code. */ int snd_hdac_bus_init(struct hdac_bus *bus, struct device *dev, const struct hdac_bus_ops *ops) { memset(bus, 0, sizeof(*bus)); bus->dev = dev; if (ops) bus->ops = ops; else bus->ops = &default_ops; bus->dma_type = SNDRV_DMA_TYPE_DEV; INIT_LIST_HEAD(&bus->stream_list); INIT_LIST_HEAD(&bus->codec_list); INIT_WORK(&bus->unsol_work, snd_hdac_bus_process_unsol_events); spin_lock_init(&bus->reg_lock); mutex_init(&bus->cmd_mutex); mutex_init(&bus->lock); INIT_LIST_HEAD(&bus->hlink_list); init_waitqueue_head(&bus->rirb_wq); bus->irq = -1; /* * Default value of '8' is as per the HD audio specification (Rev 1.0a). * Following relation is used to derive STRIPE control value. * For sample rate <= 48K: * { ((num_channels * bits_per_sample) / number of SDOs) >= 8 } * For sample rate > 48K: * { ((num_channels * bits_per_sample * rate/48000) / * number of SDOs) >= 8 } */ bus->sdo_limit = 8; return 0; } EXPORT_SYMBOL_GPL(snd_hdac_bus_init); /** * snd_hdac_bus_exit - clean up a HD-audio bas bus * @bus: the pointer to bus object */ void snd_hdac_bus_exit(struct hdac_bus *bus) { WARN_ON(!list_empty(&bus->stream_list)); WARN_ON(!list_empty(&bus->codec_list)); cancel_work_sync(&bus->unsol_work); } EXPORT_SYMBOL_GPL(snd_hdac_bus_exit); /** * snd_hdac_bus_exec_verb - execute a HD-audio verb on the given bus * @bus: bus object * @addr: the HDAC device address * @cmd: HD-audio encoded verb * @res: pointer to store the response, NULL if performing asynchronously * * Returns 0 if successful, or a negative error code. */ int snd_hdac_bus_exec_verb(struct hdac_bus *bus, unsigned int addr, unsigned int cmd, unsigned int *res) { int err; mutex_lock(&bus->cmd_mutex); err = snd_hdac_bus_exec_verb_unlocked(bus, addr, cmd, res); mutex_unlock(&bus->cmd_mutex); return err; } /** * snd_hdac_bus_exec_verb_unlocked - unlocked version * @bus: bus object * @addr: the HDAC device address * @cmd: HD-audio encoded verb * @res: pointer to store the response, NULL if performing asynchronously * * Returns 0 if successful, or a negative error code. */ int snd_hdac_bus_exec_verb_unlocked(struct hdac_bus *bus, unsigned int addr, unsigned int cmd, unsigned int *res) { unsigned int tmp; int err; if (cmd == ~0) return -EINVAL; if (res) *res = -1; else if (bus->sync_write) res = &tmp; for (;;) { trace_hda_send_cmd(bus, cmd); err = bus->ops->command(bus, cmd); if (err != -EAGAIN) break; /* process pending verbs */ err = bus->ops->get_response(bus, addr, &tmp); if (err) break; } if (!err && res) { err = bus->ops->get_response(bus, addr, res); trace_hda_get_response(bus, addr, *res); } return err; } EXPORT_SYMBOL_GPL(snd_hdac_bus_exec_verb_unlocked); /** * snd_hdac_bus_queue_event - add an unsolicited event to queue * @bus: the BUS * @res: unsolicited event (lower 32bit of RIRB entry) * @res_ex: codec addr and flags (upper 32bit or RIRB entry) * * Adds the given event to the queue. The events are processed in * the workqueue asynchronously. Call this function in the interrupt * hanlder when RIRB receives an unsolicited event. */ void snd_hdac_bus_queue_event(struct hdac_bus *bus, u32 res, u32 res_ex) { unsigned int wp; if (!bus) return; trace_hda_unsol_event(bus, res, res_ex); wp = (bus->unsol_wp + 1) % HDA_UNSOL_QUEUE_SIZE; bus->unsol_wp = wp; wp <<= 1; bus->unsol_queue[wp] = res; bus->unsol_queue[wp + 1] = res_ex; schedule_work(&bus->unsol_work); } /* * process queued unsolicited events */ static void snd_hdac_bus_process_unsol_events(struct work_struct *work) { struct hdac_bus *bus = container_of(work, struct hdac_bus, unsol_work); struct hdac_device *codec; struct hdac_driver *drv; unsigned int rp, caddr, res; spin_lock_irq(&bus->reg_lock); while (bus->unsol_rp != bus->unsol_wp) { rp = (bus->unsol_rp + 1) % HDA_UNSOL_QUEUE_SIZE; bus->unsol_rp = rp; rp <<= 1; res = bus->unsol_queue[rp]; caddr = bus->unsol_queue[rp + 1]; if (!(caddr & (1 << 4))) /* no unsolicited event? */ continue; codec = bus->caddr_tbl[caddr & 0x0f]; if (!codec || !codec->registered) continue; spin_unlock_irq(&bus->reg_lock); drv = drv_to_hdac_driver(codec->dev.driver); if (drv->unsol_event) drv->unsol_event(codec, res); spin_lock_irq(&bus->reg_lock); } spin_unlock_irq(&bus->reg_lock); } /** * snd_hdac_bus_add_device - Add a codec to bus * @bus: HDA core bus * @codec: HDA core device to add * * Adds the given codec to the list in the bus. The caddr_tbl array * and codec_powered bits are updated, as well. * Returns zero if success, or a negative error code. */ int snd_hdac_bus_add_device(struct hdac_bus *bus, struct hdac_device *codec) { if (bus->caddr_tbl[codec->addr]) { dev_err(bus->dev, "address 0x%x is already occupied\n", codec->addr); return -EBUSY; } list_add_tail(&codec->list, &bus->codec_list); bus->caddr_tbl[codec->addr] = codec; set_bit(codec->addr, &bus->codec_powered); bus->num_codecs++; return 0; } /** * snd_hdac_bus_remove_device - Remove a codec from bus * @bus: HDA core bus * @codec: HDA core device to remove */ void snd_hdac_bus_remove_device(struct hdac_bus *bus, struct hdac_device *codec) { WARN_ON(bus != codec->bus); if (list_empty(&codec->list)) return; list_del_init(&codec->list); bus->caddr_tbl[codec->addr] = NULL; clear_bit(codec->addr, &bus->codec_powered); bus->num_codecs--; flush_work(&bus->unsol_work); } #ifdef CONFIG_SND_HDA_ALIGNED_MMIO /* Helpers for aligned read/write of mmio space, for Tegra */ unsigned int snd_hdac_aligned_read(void __iomem *addr, unsigned int mask) { void __iomem *aligned_addr = (void __iomem *)((unsigned long)(addr) & ~0x3); unsigned int shift = ((unsigned long)(addr) & 0x3) << 3; unsigned int v; v = readl(aligned_addr); return (v >> shift) & mask; } EXPORT_SYMBOL_GPL(snd_hdac_aligned_read); void snd_hdac_aligned_write(unsigned int val, void __iomem *addr, unsigned int mask) { void __iomem *aligned_addr = (void __iomem *)((unsigned long)(addr) & ~0x3); unsigned int shift = ((unsigned long)(addr) & 0x3) << 3; unsigned int v; v = readl(aligned_addr); v &= ~(mask << shift); v |= val << shift; writel(v, aligned_addr); } EXPORT_SYMBOL_GPL(snd_hdac_aligned_write); #endif /* CONFIG_SND_HDA_ALIGNED_MMIO */ void snd_hdac_codec_link_up(struct hdac_device *codec) { struct hdac_bus *bus = codec->bus; if (bus->ops->link_power) bus->ops->link_power(codec, true); else snd_hdac_bus_link_power(codec, true); } EXPORT_SYMBOL_GPL(snd_hdac_codec_link_up); void snd_hdac_codec_link_down(struct hdac_device *codec) { struct hdac_bus *bus = codec->bus; if (bus->ops->link_power) bus->ops->link_power(codec, false); else snd_hdac_bus_link_power(codec, false); } EXPORT_SYMBOL_GPL(snd_hdac_codec_link_down);