• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 
28 #include "disasm.h"
29 
30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
32 	[_id] = & _name ## _verifier_ops,
33 #define BPF_MAP_TYPE(_id, _ops)
34 #define BPF_LINK_TYPE(_id, _name)
35 #include <linux/bpf_types.h>
36 #undef BPF_PROG_TYPE
37 #undef BPF_MAP_TYPE
38 #undef BPF_LINK_TYPE
39 };
40 
41 /* bpf_check() is a static code analyzer that walks eBPF program
42  * instruction by instruction and updates register/stack state.
43  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44  *
45  * The first pass is depth-first-search to check that the program is a DAG.
46  * It rejects the following programs:
47  * - larger than BPF_MAXINSNS insns
48  * - if loop is present (detected via back-edge)
49  * - unreachable insns exist (shouldn't be a forest. program = one function)
50  * - out of bounds or malformed jumps
51  * The second pass is all possible path descent from the 1st insn.
52  * Since it's analyzing all paths through the program, the length of the
53  * analysis is limited to 64k insn, which may be hit even if total number of
54  * insn is less then 4K, but there are too many branches that change stack/regs.
55  * Number of 'branches to be analyzed' is limited to 1k
56  *
57  * On entry to each instruction, each register has a type, and the instruction
58  * changes the types of the registers depending on instruction semantics.
59  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60  * copied to R1.
61  *
62  * All registers are 64-bit.
63  * R0 - return register
64  * R1-R5 argument passing registers
65  * R6-R9 callee saved registers
66  * R10 - frame pointer read-only
67  *
68  * At the start of BPF program the register R1 contains a pointer to bpf_context
69  * and has type PTR_TO_CTX.
70  *
71  * Verifier tracks arithmetic operations on pointers in case:
72  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74  * 1st insn copies R10 (which has FRAME_PTR) type into R1
75  * and 2nd arithmetic instruction is pattern matched to recognize
76  * that it wants to construct a pointer to some element within stack.
77  * So after 2nd insn, the register R1 has type PTR_TO_STACK
78  * (and -20 constant is saved for further stack bounds checking).
79  * Meaning that this reg is a pointer to stack plus known immediate constant.
80  *
81  * Most of the time the registers have SCALAR_VALUE type, which
82  * means the register has some value, but it's not a valid pointer.
83  * (like pointer plus pointer becomes SCALAR_VALUE type)
84  *
85  * When verifier sees load or store instructions the type of base register
86  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87  * four pointer types recognized by check_mem_access() function.
88  *
89  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90  * and the range of [ptr, ptr + map's value_size) is accessible.
91  *
92  * registers used to pass values to function calls are checked against
93  * function argument constraints.
94  *
95  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96  * It means that the register type passed to this function must be
97  * PTR_TO_STACK and it will be used inside the function as
98  * 'pointer to map element key'
99  *
100  * For example the argument constraints for bpf_map_lookup_elem():
101  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102  *   .arg1_type = ARG_CONST_MAP_PTR,
103  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
104  *
105  * ret_type says that this function returns 'pointer to map elem value or null'
106  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107  * 2nd argument should be a pointer to stack, which will be used inside
108  * the helper function as a pointer to map element key.
109  *
110  * On the kernel side the helper function looks like:
111  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112  * {
113  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114  *    void *key = (void *) (unsigned long) r2;
115  *    void *value;
116  *
117  *    here kernel can access 'key' and 'map' pointers safely, knowing that
118  *    [key, key + map->key_size) bytes are valid and were initialized on
119  *    the stack of eBPF program.
120  * }
121  *
122  * Corresponding eBPF program may look like:
123  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
124  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
126  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127  * here verifier looks at prototype of map_lookup_elem() and sees:
128  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130  *
131  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133  * and were initialized prior to this call.
134  * If it's ok, then verifier allows this BPF_CALL insn and looks at
135  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
137  * returns either pointer to map value or NULL.
138  *
139  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140  * insn, the register holding that pointer in the true branch changes state to
141  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142  * branch. See check_cond_jmp_op().
143  *
144  * After the call R0 is set to return type of the function and registers R1-R5
145  * are set to NOT_INIT to indicate that they are no longer readable.
146  *
147  * The following reference types represent a potential reference to a kernel
148  * resource which, after first being allocated, must be checked and freed by
149  * the BPF program:
150  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151  *
152  * When the verifier sees a helper call return a reference type, it allocates a
153  * pointer id for the reference and stores it in the current function state.
154  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156  * passes through a NULL-check conditional. For the branch wherein the state is
157  * changed to CONST_IMM, the verifier releases the reference.
158  *
159  * For each helper function that allocates a reference, such as
160  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161  * bpf_sk_release(). When a reference type passes into the release function,
162  * the verifier also releases the reference. If any unchecked or unreleased
163  * reference remains at the end of the program, the verifier rejects it.
164  */
165 
166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
167 struct bpf_verifier_stack_elem {
168 	/* verifer state is 'st'
169 	 * before processing instruction 'insn_idx'
170 	 * and after processing instruction 'prev_insn_idx'
171 	 */
172 	struct bpf_verifier_state st;
173 	int insn_idx;
174 	int prev_insn_idx;
175 	struct bpf_verifier_stack_elem *next;
176 	/* length of verifier log at the time this state was pushed on stack */
177 	u32 log_pos;
178 };
179 
180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_KEY_POISON	(1ULL << 63)
184 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
185 
186 #define BPF_MAP_PTR_UNPRIV	1UL
187 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
188 					  POISON_POINTER_DELTA))
189 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190 
191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193 
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195 {
196 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
197 }
198 
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200 {
201 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
202 }
203 
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 			      const struct bpf_map *map, bool unpriv)
206 {
207 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 	unpriv |= bpf_map_ptr_unpriv(aux);
209 	aux->map_ptr_state = (unsigned long)map |
210 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211 }
212 
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_key_state & BPF_MAP_KEY_POISON;
216 }
217 
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219 {
220 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221 }
222 
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226 }
227 
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229 {
230 	bool poisoned = bpf_map_key_poisoned(aux);
231 
232 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
234 }
235 
bpf_pseudo_call(const struct bpf_insn * insn)236 static bool bpf_pseudo_call(const struct bpf_insn *insn)
237 {
238 	return insn->code == (BPF_JMP | BPF_CALL) &&
239 	       insn->src_reg == BPF_PSEUDO_CALL;
240 }
241 
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243 {
244 	return insn->code == (BPF_JMP | BPF_CALL) &&
245 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246 }
247 
248 struct bpf_call_arg_meta {
249 	struct bpf_map *map_ptr;
250 	bool raw_mode;
251 	bool pkt_access;
252 	u8 release_regno;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 	struct bpf_map_value_off_desc *kptr_off_desc;
266 	u8 uninit_dynptr_regno;
267 };
268 
269 struct btf *btf_vmlinux;
270 
271 static DEFINE_MUTEX(bpf_verifier_lock);
272 
273 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275 {
276 	const struct bpf_line_info *linfo;
277 	const struct bpf_prog *prog;
278 	u32 i, nr_linfo;
279 
280 	prog = env->prog;
281 	nr_linfo = prog->aux->nr_linfo;
282 
283 	if (!nr_linfo || insn_off >= prog->len)
284 		return NULL;
285 
286 	linfo = prog->aux->linfo;
287 	for (i = 1; i < nr_linfo; i++)
288 		if (insn_off < linfo[i].insn_off)
289 			break;
290 
291 	return &linfo[i - 1];
292 }
293 
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 		       va_list args)
296 {
297 	unsigned int n;
298 
299 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
300 
301 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 		  "verifier log line truncated - local buffer too short\n");
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306 
307 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
308 		return;
309 	}
310 
311 	n = min(log->len_total - log->len_used - 1, n);
312 	log->kbuf[n] = '\0';
313 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 		log->len_used += n;
315 	else
316 		log->ubuf = NULL;
317 }
318 
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320 {
321 	char zero = 0;
322 
323 	if (!bpf_verifier_log_needed(log))
324 		return;
325 
326 	log->len_used = new_pos;
327 	if (put_user(zero, log->ubuf + new_pos))
328 		log->ubuf = NULL;
329 }
330 
331 /* log_level controls verbosity level of eBPF verifier.
332  * bpf_verifier_log_write() is used to dump the verification trace to the log,
333  * so the user can figure out what's wrong with the program
334  */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 					   const char *fmt, ...)
337 {
338 	va_list args;
339 
340 	if (!bpf_verifier_log_needed(&env->log))
341 		return;
342 
343 	va_start(args, fmt);
344 	bpf_verifier_vlog(&env->log, fmt, args);
345 	va_end(args);
346 }
347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348 
verbose(void * private_data,const char * fmt,...)349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350 {
351 	struct bpf_verifier_env *env = private_data;
352 	va_list args;
353 
354 	if (!bpf_verifier_log_needed(&env->log))
355 		return;
356 
357 	va_start(args, fmt);
358 	bpf_verifier_vlog(&env->log, fmt, args);
359 	va_end(args);
360 }
361 
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 			    const char *fmt, ...)
364 {
365 	va_list args;
366 
367 	if (!bpf_verifier_log_needed(log))
368 		return;
369 
370 	va_start(args, fmt);
371 	bpf_verifier_vlog(log, fmt, args);
372 	va_end(args);
373 }
374 EXPORT_SYMBOL_GPL(bpf_log);
375 
ltrim(const char * s)376 static const char *ltrim(const char *s)
377 {
378 	while (isspace(*s))
379 		s++;
380 
381 	return s;
382 }
383 
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 					 u32 insn_off,
386 					 const char *prefix_fmt, ...)
387 {
388 	const struct bpf_line_info *linfo;
389 
390 	if (!bpf_verifier_log_needed(&env->log))
391 		return;
392 
393 	linfo = find_linfo(env, insn_off);
394 	if (!linfo || linfo == env->prev_linfo)
395 		return;
396 
397 	if (prefix_fmt) {
398 		va_list args;
399 
400 		va_start(args, prefix_fmt);
401 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 		va_end(args);
403 	}
404 
405 	verbose(env, "%s\n",
406 		ltrim(btf_name_by_offset(env->prog->aux->btf,
407 					 linfo->line_off)));
408 
409 	env->prev_linfo = linfo;
410 }
411 
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)412 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 				   struct bpf_reg_state *reg,
414 				   struct tnum *range, const char *ctx,
415 				   const char *reg_name)
416 {
417 	char tn_buf[48];
418 
419 	verbose(env, "At %s the register %s ", ctx, reg_name);
420 	if (!tnum_is_unknown(reg->var_off)) {
421 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 		verbose(env, "has value %s", tn_buf);
423 	} else {
424 		verbose(env, "has unknown scalar value");
425 	}
426 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 	verbose(env, " should have been in %s\n", tn_buf);
428 }
429 
type_is_pkt_pointer(enum bpf_reg_type type)430 static bool type_is_pkt_pointer(enum bpf_reg_type type)
431 {
432 	type = base_type(type);
433 	return type == PTR_TO_PACKET ||
434 	       type == PTR_TO_PACKET_META;
435 }
436 
type_is_sk_pointer(enum bpf_reg_type type)437 static bool type_is_sk_pointer(enum bpf_reg_type type)
438 {
439 	return type == PTR_TO_SOCKET ||
440 		type == PTR_TO_SOCK_COMMON ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_XDP_SOCK;
443 }
444 
reg_type_not_null(enum bpf_reg_type type)445 static bool reg_type_not_null(enum bpf_reg_type type)
446 {
447 	return type == PTR_TO_SOCKET ||
448 		type == PTR_TO_TCP_SOCK ||
449 		type == PTR_TO_MAP_VALUE ||
450 		type == PTR_TO_MAP_KEY ||
451 		type == PTR_TO_SOCK_COMMON;
452 }
453 
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455 {
456 	return reg->type == PTR_TO_MAP_VALUE &&
457 		map_value_has_spin_lock(reg->map_ptr);
458 }
459 
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
461 {
462 	type = base_type(type);
463 	return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK ||
464 		type == PTR_TO_MEM || type == PTR_TO_BTF_ID;
465 }
466 
type_is_rdonly_mem(u32 type)467 static bool type_is_rdonly_mem(u32 type)
468 {
469 	return type & MEM_RDONLY;
470 }
471 
type_may_be_null(u32 type)472 static bool type_may_be_null(u32 type)
473 {
474 	return type & PTR_MAYBE_NULL;
475 }
476 
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)477 static bool is_acquire_function(enum bpf_func_id func_id,
478 				const struct bpf_map *map)
479 {
480 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
481 
482 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
483 	    func_id == BPF_FUNC_sk_lookup_udp ||
484 	    func_id == BPF_FUNC_skc_lookup_tcp ||
485 	    func_id == BPF_FUNC_ringbuf_reserve ||
486 	    func_id == BPF_FUNC_kptr_xchg)
487 		return true;
488 
489 	if (func_id == BPF_FUNC_map_lookup_elem &&
490 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
491 	     map_type == BPF_MAP_TYPE_SOCKHASH))
492 		return true;
493 
494 	return false;
495 }
496 
is_ptr_cast_function(enum bpf_func_id func_id)497 static bool is_ptr_cast_function(enum bpf_func_id func_id)
498 {
499 	return func_id == BPF_FUNC_tcp_sock ||
500 		func_id == BPF_FUNC_sk_fullsock ||
501 		func_id == BPF_FUNC_skc_to_tcp_sock ||
502 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
503 		func_id == BPF_FUNC_skc_to_udp6_sock ||
504 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
505 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
506 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
507 }
508 
is_dynptr_ref_function(enum bpf_func_id func_id)509 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_dynptr_data;
512 }
513 
is_callback_calling_function(enum bpf_func_id func_id)514 static bool is_callback_calling_function(enum bpf_func_id func_id)
515 {
516 	return func_id == BPF_FUNC_for_each_map_elem ||
517 	       func_id == BPF_FUNC_timer_set_callback ||
518 	       func_id == BPF_FUNC_find_vma ||
519 	       func_id == BPF_FUNC_loop ||
520 	       func_id == BPF_FUNC_user_ringbuf_drain;
521 }
522 
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)523 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
524 					const struct bpf_map *map)
525 {
526 	int ref_obj_uses = 0;
527 
528 	if (is_ptr_cast_function(func_id))
529 		ref_obj_uses++;
530 	if (is_acquire_function(func_id, map))
531 		ref_obj_uses++;
532 	if (is_dynptr_ref_function(func_id))
533 		ref_obj_uses++;
534 
535 	return ref_obj_uses > 1;
536 }
537 
is_cmpxchg_insn(const struct bpf_insn * insn)538 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
539 {
540 	return BPF_CLASS(insn->code) == BPF_STX &&
541 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
542 	       insn->imm == BPF_CMPXCHG;
543 }
544 
545 /* string representation of 'enum bpf_reg_type'
546  *
547  * Note that reg_type_str() can not appear more than once in a single verbose()
548  * statement.
549  */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)550 static const char *reg_type_str(struct bpf_verifier_env *env,
551 				enum bpf_reg_type type)
552 {
553 	char postfix[16] = {0}, prefix[32] = {0};
554 	static const char * const str[] = {
555 		[NOT_INIT]		= "?",
556 		[SCALAR_VALUE]		= "scalar",
557 		[PTR_TO_CTX]		= "ctx",
558 		[CONST_PTR_TO_MAP]	= "map_ptr",
559 		[PTR_TO_MAP_VALUE]	= "map_value",
560 		[PTR_TO_STACK]		= "fp",
561 		[PTR_TO_PACKET]		= "pkt",
562 		[PTR_TO_PACKET_META]	= "pkt_meta",
563 		[PTR_TO_PACKET_END]	= "pkt_end",
564 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
565 		[PTR_TO_SOCKET]		= "sock",
566 		[PTR_TO_SOCK_COMMON]	= "sock_common",
567 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
568 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
569 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
570 		[PTR_TO_BTF_ID]		= "ptr_",
571 		[PTR_TO_MEM]		= "mem",
572 		[PTR_TO_BUF]		= "buf",
573 		[PTR_TO_FUNC]		= "func",
574 		[PTR_TO_MAP_KEY]	= "map_key",
575 		[PTR_TO_DYNPTR]		= "dynptr_ptr",
576 	};
577 
578 	if (type & PTR_MAYBE_NULL) {
579 		if (base_type(type) == PTR_TO_BTF_ID)
580 			strncpy(postfix, "or_null_", 16);
581 		else
582 			strncpy(postfix, "_or_null", 16);
583 	}
584 
585 	if (type & MEM_RDONLY)
586 		strncpy(prefix, "rdonly_", 32);
587 	if (type & MEM_ALLOC)
588 		strncpy(prefix, "alloc_", 32);
589 	if (type & MEM_USER)
590 		strncpy(prefix, "user_", 32);
591 	if (type & MEM_PERCPU)
592 		strncpy(prefix, "percpu_", 32);
593 	if (type & PTR_UNTRUSTED)
594 		strncpy(prefix, "untrusted_", 32);
595 
596 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
597 		 prefix, str[base_type(type)], postfix);
598 	return env->type_str_buf;
599 }
600 
601 static char slot_type_char[] = {
602 	[STACK_INVALID]	= '?',
603 	[STACK_SPILL]	= 'r',
604 	[STACK_MISC]	= 'm',
605 	[STACK_ZERO]	= '0',
606 	[STACK_DYNPTR]	= 'd',
607 };
608 
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)609 static void print_liveness(struct bpf_verifier_env *env,
610 			   enum bpf_reg_liveness live)
611 {
612 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
613 	    verbose(env, "_");
614 	if (live & REG_LIVE_READ)
615 		verbose(env, "r");
616 	if (live & REG_LIVE_WRITTEN)
617 		verbose(env, "w");
618 	if (live & REG_LIVE_DONE)
619 		verbose(env, "D");
620 }
621 
get_spi(s32 off)622 static int get_spi(s32 off)
623 {
624 	return (-off - 1) / BPF_REG_SIZE;
625 }
626 
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)627 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
628 {
629 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
630 
631 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
632 	 * within [0, allocated_stack).
633 	 *
634 	 * Please note that the spi grows downwards. For example, a dynptr
635 	 * takes the size of two stack slots; the first slot will be at
636 	 * spi and the second slot will be at spi - 1.
637 	 */
638 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
639 }
640 
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)641 static struct bpf_func_state *func(struct bpf_verifier_env *env,
642 				   const struct bpf_reg_state *reg)
643 {
644 	struct bpf_verifier_state *cur = env->cur_state;
645 
646 	return cur->frame[reg->frameno];
647 }
648 
kernel_type_name(const struct btf * btf,u32 id)649 static const char *kernel_type_name(const struct btf* btf, u32 id)
650 {
651 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
652 }
653 
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)654 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
655 {
656 	env->scratched_regs |= 1U << regno;
657 }
658 
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)659 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
660 {
661 	env->scratched_stack_slots |= 1ULL << spi;
662 }
663 
reg_scratched(const struct bpf_verifier_env * env,u32 regno)664 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
665 {
666 	return (env->scratched_regs >> regno) & 1;
667 }
668 
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)669 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
670 {
671 	return (env->scratched_stack_slots >> regno) & 1;
672 }
673 
verifier_state_scratched(const struct bpf_verifier_env * env)674 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
675 {
676 	return env->scratched_regs || env->scratched_stack_slots;
677 }
678 
mark_verifier_state_clean(struct bpf_verifier_env * env)679 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
680 {
681 	env->scratched_regs = 0U;
682 	env->scratched_stack_slots = 0ULL;
683 }
684 
685 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)686 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
687 {
688 	env->scratched_regs = ~0U;
689 	env->scratched_stack_slots = ~0ULL;
690 }
691 
arg_to_dynptr_type(enum bpf_arg_type arg_type)692 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
693 {
694 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
695 	case DYNPTR_TYPE_LOCAL:
696 		return BPF_DYNPTR_TYPE_LOCAL;
697 	case DYNPTR_TYPE_RINGBUF:
698 		return BPF_DYNPTR_TYPE_RINGBUF;
699 	default:
700 		return BPF_DYNPTR_TYPE_INVALID;
701 	}
702 }
703 
dynptr_type_refcounted(enum bpf_dynptr_type type)704 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
705 {
706 	return type == BPF_DYNPTR_TYPE_RINGBUF;
707 }
708 
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx)709 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
710 				   enum bpf_arg_type arg_type, int insn_idx)
711 {
712 	struct bpf_func_state *state = func(env, reg);
713 	enum bpf_dynptr_type type;
714 	int spi, i, id;
715 
716 	spi = get_spi(reg->off);
717 
718 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
719 		return -EINVAL;
720 
721 	for (i = 0; i < BPF_REG_SIZE; i++) {
722 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
723 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
724 	}
725 
726 	type = arg_to_dynptr_type(arg_type);
727 	if (type == BPF_DYNPTR_TYPE_INVALID)
728 		return -EINVAL;
729 
730 	state->stack[spi].spilled_ptr.dynptr.first_slot = true;
731 	state->stack[spi].spilled_ptr.dynptr.type = type;
732 	state->stack[spi - 1].spilled_ptr.dynptr.type = type;
733 
734 	if (dynptr_type_refcounted(type)) {
735 		/* The id is used to track proper releasing */
736 		id = acquire_reference_state(env, insn_idx);
737 		if (id < 0)
738 			return id;
739 
740 		state->stack[spi].spilled_ptr.id = id;
741 		state->stack[spi - 1].spilled_ptr.id = id;
742 	}
743 
744 	return 0;
745 }
746 
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)747 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
748 {
749 	struct bpf_func_state *state = func(env, reg);
750 	int spi, i;
751 
752 	spi = get_spi(reg->off);
753 
754 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
755 		return -EINVAL;
756 
757 	for (i = 0; i < BPF_REG_SIZE; i++) {
758 		state->stack[spi].slot_type[i] = STACK_INVALID;
759 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
760 	}
761 
762 	/* Invalidate any slices associated with this dynptr */
763 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
764 		release_reference(env, state->stack[spi].spilled_ptr.id);
765 		state->stack[spi].spilled_ptr.id = 0;
766 		state->stack[spi - 1].spilled_ptr.id = 0;
767 	}
768 
769 	state->stack[spi].spilled_ptr.dynptr.first_slot = false;
770 	state->stack[spi].spilled_ptr.dynptr.type = 0;
771 	state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
772 
773 	return 0;
774 }
775 
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)776 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
777 {
778 	struct bpf_func_state *state = func(env, reg);
779 	int spi = get_spi(reg->off);
780 	int i;
781 
782 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
783 		return true;
784 
785 	for (i = 0; i < BPF_REG_SIZE; i++) {
786 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
787 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
788 			return false;
789 	}
790 
791 	return true;
792 }
793 
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)794 bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
795 			      struct bpf_reg_state *reg)
796 {
797 	struct bpf_func_state *state = func(env, reg);
798 	int spi = get_spi(reg->off);
799 	int i;
800 
801 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
802 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
803 		return false;
804 
805 	for (i = 0; i < BPF_REG_SIZE; i++) {
806 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
807 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
808 			return false;
809 	}
810 
811 	return true;
812 }
813 
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)814 bool is_dynptr_type_expected(struct bpf_verifier_env *env,
815 			     struct bpf_reg_state *reg,
816 			     enum bpf_arg_type arg_type)
817 {
818 	struct bpf_func_state *state = func(env, reg);
819 	enum bpf_dynptr_type dynptr_type;
820 	int spi = get_spi(reg->off);
821 
822 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
823 	if (arg_type == ARG_PTR_TO_DYNPTR)
824 		return true;
825 
826 	dynptr_type = arg_to_dynptr_type(arg_type);
827 
828 	return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
829 }
830 
831 /* The reg state of a pointer or a bounded scalar was saved when
832  * it was spilled to the stack.
833  */
is_spilled_reg(const struct bpf_stack_state * stack)834 static bool is_spilled_reg(const struct bpf_stack_state *stack)
835 {
836 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
837 }
838 
scrub_spilled_slot(u8 * stype)839 static void scrub_spilled_slot(u8 *stype)
840 {
841 	if (*stype != STACK_INVALID)
842 		*stype = STACK_MISC;
843 }
844 
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state,bool print_all)845 static void print_verifier_state(struct bpf_verifier_env *env,
846 				 const struct bpf_func_state *state,
847 				 bool print_all)
848 {
849 	const struct bpf_reg_state *reg;
850 	enum bpf_reg_type t;
851 	int i;
852 
853 	if (state->frameno)
854 		verbose(env, " frame%d:", state->frameno);
855 	for (i = 0; i < MAX_BPF_REG; i++) {
856 		reg = &state->regs[i];
857 		t = reg->type;
858 		if (t == NOT_INIT)
859 			continue;
860 		if (!print_all && !reg_scratched(env, i))
861 			continue;
862 		verbose(env, " R%d", i);
863 		print_liveness(env, reg->live);
864 		verbose(env, "=");
865 		if (t == SCALAR_VALUE && reg->precise)
866 			verbose(env, "P");
867 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
868 		    tnum_is_const(reg->var_off)) {
869 			/* reg->off should be 0 for SCALAR_VALUE */
870 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
871 			verbose(env, "%lld", reg->var_off.value + reg->off);
872 		} else {
873 			const char *sep = "";
874 
875 			verbose(env, "%s", reg_type_str(env, t));
876 			if (base_type(t) == PTR_TO_BTF_ID)
877 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
878 			verbose(env, "(");
879 /*
880  * _a stands for append, was shortened to avoid multiline statements below.
881  * This macro is used to output a comma separated list of attributes.
882  */
883 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
884 
885 			if (reg->id)
886 				verbose_a("id=%d", reg->id);
887 			if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
888 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
889 			if (t != SCALAR_VALUE)
890 				verbose_a("off=%d", reg->off);
891 			if (type_is_pkt_pointer(t))
892 				verbose_a("r=%d", reg->range);
893 			else if (base_type(t) == CONST_PTR_TO_MAP ||
894 				 base_type(t) == PTR_TO_MAP_KEY ||
895 				 base_type(t) == PTR_TO_MAP_VALUE)
896 				verbose_a("ks=%d,vs=%d",
897 					  reg->map_ptr->key_size,
898 					  reg->map_ptr->value_size);
899 			if (tnum_is_const(reg->var_off)) {
900 				/* Typically an immediate SCALAR_VALUE, but
901 				 * could be a pointer whose offset is too big
902 				 * for reg->off
903 				 */
904 				verbose_a("imm=%llx", reg->var_off.value);
905 			} else {
906 				if (reg->smin_value != reg->umin_value &&
907 				    reg->smin_value != S64_MIN)
908 					verbose_a("smin=%lld", (long long)reg->smin_value);
909 				if (reg->smax_value != reg->umax_value &&
910 				    reg->smax_value != S64_MAX)
911 					verbose_a("smax=%lld", (long long)reg->smax_value);
912 				if (reg->umin_value != 0)
913 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
914 				if (reg->umax_value != U64_MAX)
915 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
916 				if (!tnum_is_unknown(reg->var_off)) {
917 					char tn_buf[48];
918 
919 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
920 					verbose_a("var_off=%s", tn_buf);
921 				}
922 				if (reg->s32_min_value != reg->smin_value &&
923 				    reg->s32_min_value != S32_MIN)
924 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
925 				if (reg->s32_max_value != reg->smax_value &&
926 				    reg->s32_max_value != S32_MAX)
927 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
928 				if (reg->u32_min_value != reg->umin_value &&
929 				    reg->u32_min_value != U32_MIN)
930 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
931 				if (reg->u32_max_value != reg->umax_value &&
932 				    reg->u32_max_value != U32_MAX)
933 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
934 			}
935 #undef verbose_a
936 
937 			verbose(env, ")");
938 		}
939 	}
940 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
941 		char types_buf[BPF_REG_SIZE + 1];
942 		bool valid = false;
943 		int j;
944 
945 		for (j = 0; j < BPF_REG_SIZE; j++) {
946 			if (state->stack[i].slot_type[j] != STACK_INVALID)
947 				valid = true;
948 			types_buf[j] = slot_type_char[
949 					state->stack[i].slot_type[j]];
950 		}
951 		types_buf[BPF_REG_SIZE] = 0;
952 		if (!valid)
953 			continue;
954 		if (!print_all && !stack_slot_scratched(env, i))
955 			continue;
956 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
957 		print_liveness(env, state->stack[i].spilled_ptr.live);
958 		if (is_spilled_reg(&state->stack[i])) {
959 			reg = &state->stack[i].spilled_ptr;
960 			t = reg->type;
961 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
962 			if (t == SCALAR_VALUE && reg->precise)
963 				verbose(env, "P");
964 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
965 				verbose(env, "%lld", reg->var_off.value + reg->off);
966 		} else {
967 			verbose(env, "=%s", types_buf);
968 		}
969 	}
970 	if (state->acquired_refs && state->refs[0].id) {
971 		verbose(env, " refs=%d", state->refs[0].id);
972 		for (i = 1; i < state->acquired_refs; i++)
973 			if (state->refs[i].id)
974 				verbose(env, ",%d", state->refs[i].id);
975 	}
976 	if (state->in_callback_fn)
977 		verbose(env, " cb");
978 	if (state->in_async_callback_fn)
979 		verbose(env, " async_cb");
980 	verbose(env, "\n");
981 	if (!print_all)
982 		mark_verifier_state_clean(env);
983 }
984 
vlog_alignment(u32 pos)985 static inline u32 vlog_alignment(u32 pos)
986 {
987 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
988 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
989 }
990 
print_insn_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)991 static void print_insn_state(struct bpf_verifier_env *env,
992 			     const struct bpf_func_state *state)
993 {
994 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
995 		/* remove new line character */
996 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
997 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
998 	} else {
999 		verbose(env, "%d:", env->insn_idx);
1000 	}
1001 	print_verifier_state(env, state, false);
1002 }
1003 
1004 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1005  * small to hold src. This is different from krealloc since we don't want to preserve
1006  * the contents of dst.
1007  *
1008  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1009  * not be allocated.
1010  */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1011 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1012 {
1013 	size_t alloc_bytes;
1014 	void *orig = dst;
1015 	size_t bytes;
1016 
1017 	if (ZERO_OR_NULL_PTR(src))
1018 		goto out;
1019 
1020 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1021 		return NULL;
1022 
1023 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1024 	dst = krealloc(orig, alloc_bytes, flags);
1025 	if (!dst) {
1026 		kfree(orig);
1027 		return NULL;
1028 	}
1029 
1030 	memcpy(dst, src, bytes);
1031 out:
1032 	return dst ? dst : ZERO_SIZE_PTR;
1033 }
1034 
1035 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1036  * small to hold new_n items. new items are zeroed out if the array grows.
1037  *
1038  * Contrary to krealloc_array, does not free arr if new_n is zero.
1039  */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1040 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1041 {
1042 	size_t alloc_size;
1043 	void *new_arr;
1044 
1045 	if (!new_n || old_n == new_n)
1046 		goto out;
1047 
1048 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1049 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1050 	if (!new_arr) {
1051 		kfree(arr);
1052 		return NULL;
1053 	}
1054 	arr = new_arr;
1055 
1056 	if (new_n > old_n)
1057 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1058 
1059 out:
1060 	return arr ? arr : ZERO_SIZE_PTR;
1061 }
1062 
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1063 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1064 {
1065 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1066 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1067 	if (!dst->refs)
1068 		return -ENOMEM;
1069 
1070 	dst->acquired_refs = src->acquired_refs;
1071 	return 0;
1072 }
1073 
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1074 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1075 {
1076 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1077 
1078 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1079 				GFP_KERNEL);
1080 	if (!dst->stack)
1081 		return -ENOMEM;
1082 
1083 	dst->allocated_stack = src->allocated_stack;
1084 	return 0;
1085 }
1086 
resize_reference_state(struct bpf_func_state * state,size_t n)1087 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1088 {
1089 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1090 				    sizeof(struct bpf_reference_state));
1091 	if (!state->refs)
1092 		return -ENOMEM;
1093 
1094 	state->acquired_refs = n;
1095 	return 0;
1096 }
1097 
grow_stack_state(struct bpf_func_state * state,int size)1098 static int grow_stack_state(struct bpf_func_state *state, int size)
1099 {
1100 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1101 
1102 	if (old_n >= n)
1103 		return 0;
1104 
1105 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1106 	if (!state->stack)
1107 		return -ENOMEM;
1108 
1109 	state->allocated_stack = size;
1110 	return 0;
1111 }
1112 
1113 /* Acquire a pointer id from the env and update the state->refs to include
1114  * this new pointer reference.
1115  * On success, returns a valid pointer id to associate with the register
1116  * On failure, returns a negative errno.
1117  */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1118 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1119 {
1120 	struct bpf_func_state *state = cur_func(env);
1121 	int new_ofs = state->acquired_refs;
1122 	int id, err;
1123 
1124 	err = resize_reference_state(state, state->acquired_refs + 1);
1125 	if (err)
1126 		return err;
1127 	id = ++env->id_gen;
1128 	state->refs[new_ofs].id = id;
1129 	state->refs[new_ofs].insn_idx = insn_idx;
1130 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1131 
1132 	return id;
1133 }
1134 
1135 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1136 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1137 {
1138 	int i, last_idx;
1139 
1140 	last_idx = state->acquired_refs - 1;
1141 	for (i = 0; i < state->acquired_refs; i++) {
1142 		if (state->refs[i].id == ptr_id) {
1143 			/* Cannot release caller references in callbacks */
1144 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1145 				return -EINVAL;
1146 			if (last_idx && i != last_idx)
1147 				memcpy(&state->refs[i], &state->refs[last_idx],
1148 				       sizeof(*state->refs));
1149 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1150 			state->acquired_refs--;
1151 			return 0;
1152 		}
1153 	}
1154 	return -EINVAL;
1155 }
1156 
free_func_state(struct bpf_func_state * state)1157 static void free_func_state(struct bpf_func_state *state)
1158 {
1159 	if (!state)
1160 		return;
1161 	kfree(state->refs);
1162 	kfree(state->stack);
1163 	kfree(state);
1164 }
1165 
clear_jmp_history(struct bpf_verifier_state * state)1166 static void clear_jmp_history(struct bpf_verifier_state *state)
1167 {
1168 	kfree(state->jmp_history);
1169 	state->jmp_history = NULL;
1170 	state->jmp_history_cnt = 0;
1171 }
1172 
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1173 static void free_verifier_state(struct bpf_verifier_state *state,
1174 				bool free_self)
1175 {
1176 	int i;
1177 
1178 	for (i = 0; i <= state->curframe; i++) {
1179 		free_func_state(state->frame[i]);
1180 		state->frame[i] = NULL;
1181 	}
1182 	clear_jmp_history(state);
1183 	if (free_self)
1184 		kfree(state);
1185 }
1186 
1187 /* copy verifier state from src to dst growing dst stack space
1188  * when necessary to accommodate larger src stack
1189  */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1190 static int copy_func_state(struct bpf_func_state *dst,
1191 			   const struct bpf_func_state *src)
1192 {
1193 	int err;
1194 
1195 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1196 	err = copy_reference_state(dst, src);
1197 	if (err)
1198 		return err;
1199 	return copy_stack_state(dst, src);
1200 }
1201 
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1202 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1203 			       const struct bpf_verifier_state *src)
1204 {
1205 	struct bpf_func_state *dst;
1206 	int i, err;
1207 
1208 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1209 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1210 					    GFP_USER);
1211 	if (!dst_state->jmp_history)
1212 		return -ENOMEM;
1213 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1214 
1215 	/* if dst has more stack frames then src frame, free them */
1216 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1217 		free_func_state(dst_state->frame[i]);
1218 		dst_state->frame[i] = NULL;
1219 	}
1220 	dst_state->speculative = src->speculative;
1221 	dst_state->curframe = src->curframe;
1222 	dst_state->active_spin_lock = src->active_spin_lock;
1223 	dst_state->branches = src->branches;
1224 	dst_state->parent = src->parent;
1225 	dst_state->first_insn_idx = src->first_insn_idx;
1226 	dst_state->last_insn_idx = src->last_insn_idx;
1227 	for (i = 0; i <= src->curframe; i++) {
1228 		dst = dst_state->frame[i];
1229 		if (!dst) {
1230 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1231 			if (!dst)
1232 				return -ENOMEM;
1233 			dst_state->frame[i] = dst;
1234 		}
1235 		err = copy_func_state(dst, src->frame[i]);
1236 		if (err)
1237 			return err;
1238 	}
1239 	return 0;
1240 }
1241 
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1242 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1243 {
1244 	while (st) {
1245 		u32 br = --st->branches;
1246 
1247 		/* WARN_ON(br > 1) technically makes sense here,
1248 		 * but see comment in push_stack(), hence:
1249 		 */
1250 		WARN_ONCE((int)br < 0,
1251 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1252 			  br);
1253 		if (br)
1254 			break;
1255 		st = st->parent;
1256 	}
1257 }
1258 
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)1259 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1260 		     int *insn_idx, bool pop_log)
1261 {
1262 	struct bpf_verifier_state *cur = env->cur_state;
1263 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1264 	int err;
1265 
1266 	if (env->head == NULL)
1267 		return -ENOENT;
1268 
1269 	if (cur) {
1270 		err = copy_verifier_state(cur, &head->st);
1271 		if (err)
1272 			return err;
1273 	}
1274 	if (pop_log)
1275 		bpf_vlog_reset(&env->log, head->log_pos);
1276 	if (insn_idx)
1277 		*insn_idx = head->insn_idx;
1278 	if (prev_insn_idx)
1279 		*prev_insn_idx = head->prev_insn_idx;
1280 	elem = head->next;
1281 	free_verifier_state(&head->st, false);
1282 	kfree(head);
1283 	env->head = elem;
1284 	env->stack_size--;
1285 	return 0;
1286 }
1287 
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)1288 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1289 					     int insn_idx, int prev_insn_idx,
1290 					     bool speculative)
1291 {
1292 	struct bpf_verifier_state *cur = env->cur_state;
1293 	struct bpf_verifier_stack_elem *elem;
1294 	int err;
1295 
1296 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1297 	if (!elem)
1298 		goto err;
1299 
1300 	elem->insn_idx = insn_idx;
1301 	elem->prev_insn_idx = prev_insn_idx;
1302 	elem->next = env->head;
1303 	elem->log_pos = env->log.len_used;
1304 	env->head = elem;
1305 	env->stack_size++;
1306 	err = copy_verifier_state(&elem->st, cur);
1307 	if (err)
1308 		goto err;
1309 	elem->st.speculative |= speculative;
1310 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1311 		verbose(env, "The sequence of %d jumps is too complex.\n",
1312 			env->stack_size);
1313 		goto err;
1314 	}
1315 	if (elem->st.parent) {
1316 		++elem->st.parent->branches;
1317 		/* WARN_ON(branches > 2) technically makes sense here,
1318 		 * but
1319 		 * 1. speculative states will bump 'branches' for non-branch
1320 		 * instructions
1321 		 * 2. is_state_visited() heuristics may decide not to create
1322 		 * a new state for a sequence of branches and all such current
1323 		 * and cloned states will be pointing to a single parent state
1324 		 * which might have large 'branches' count.
1325 		 */
1326 	}
1327 	return &elem->st;
1328 err:
1329 	free_verifier_state(env->cur_state, true);
1330 	env->cur_state = NULL;
1331 	/* pop all elements and return */
1332 	while (!pop_stack(env, NULL, NULL, false));
1333 	return NULL;
1334 }
1335 
1336 #define CALLER_SAVED_REGS 6
1337 static const int caller_saved[CALLER_SAVED_REGS] = {
1338 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1339 };
1340 
1341 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1342 				struct bpf_reg_state *reg);
1343 
1344 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1345 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1346 {
1347 	reg->var_off = tnum_const(imm);
1348 	reg->smin_value = (s64)imm;
1349 	reg->smax_value = (s64)imm;
1350 	reg->umin_value = imm;
1351 	reg->umax_value = imm;
1352 
1353 	reg->s32_min_value = (s32)imm;
1354 	reg->s32_max_value = (s32)imm;
1355 	reg->u32_min_value = (u32)imm;
1356 	reg->u32_max_value = (u32)imm;
1357 }
1358 
1359 /* Mark the unknown part of a register (variable offset or scalar value) as
1360  * known to have the value @imm.
1361  */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1362 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1363 {
1364 	/* Clear id, off, and union(map_ptr, range) */
1365 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1366 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1367 	___mark_reg_known(reg, imm);
1368 }
1369 
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1370 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1371 {
1372 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1373 	reg->s32_min_value = (s32)imm;
1374 	reg->s32_max_value = (s32)imm;
1375 	reg->u32_min_value = (u32)imm;
1376 	reg->u32_max_value = (u32)imm;
1377 }
1378 
1379 /* Mark the 'variable offset' part of a register as zero.  This should be
1380  * used only on registers holding a pointer type.
1381  */
__mark_reg_known_zero(struct bpf_reg_state * reg)1382 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1383 {
1384 	__mark_reg_known(reg, 0);
1385 }
1386 
__mark_reg_const_zero(struct bpf_reg_state * reg)1387 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1388 {
1389 	__mark_reg_known(reg, 0);
1390 	reg->type = SCALAR_VALUE;
1391 }
1392 
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1393 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1394 				struct bpf_reg_state *regs, u32 regno)
1395 {
1396 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1397 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1398 		/* Something bad happened, let's kill all regs */
1399 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1400 			__mark_reg_not_init(env, regs + regno);
1401 		return;
1402 	}
1403 	__mark_reg_known_zero(regs + regno);
1404 }
1405 
mark_ptr_not_null_reg(struct bpf_reg_state * reg)1406 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1407 {
1408 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1409 		const struct bpf_map *map = reg->map_ptr;
1410 
1411 		if (map->inner_map_meta) {
1412 			reg->type = CONST_PTR_TO_MAP;
1413 			reg->map_ptr = map->inner_map_meta;
1414 			/* transfer reg's id which is unique for every map_lookup_elem
1415 			 * as UID of the inner map.
1416 			 */
1417 			if (map_value_has_timer(map->inner_map_meta))
1418 				reg->map_uid = reg->id;
1419 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1420 			reg->type = PTR_TO_XDP_SOCK;
1421 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1422 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1423 			reg->type = PTR_TO_SOCKET;
1424 		} else {
1425 			reg->type = PTR_TO_MAP_VALUE;
1426 		}
1427 		return;
1428 	}
1429 
1430 	reg->type &= ~PTR_MAYBE_NULL;
1431 }
1432 
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1433 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1434 {
1435 	return type_is_pkt_pointer(reg->type);
1436 }
1437 
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1438 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1439 {
1440 	return reg_is_pkt_pointer(reg) ||
1441 	       reg->type == PTR_TO_PACKET_END;
1442 }
1443 
1444 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1445 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1446 				    enum bpf_reg_type which)
1447 {
1448 	/* The register can already have a range from prior markings.
1449 	 * This is fine as long as it hasn't been advanced from its
1450 	 * origin.
1451 	 */
1452 	return reg->type == which &&
1453 	       reg->id == 0 &&
1454 	       reg->off == 0 &&
1455 	       tnum_equals_const(reg->var_off, 0);
1456 }
1457 
1458 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1459 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1460 {
1461 	reg->smin_value = S64_MIN;
1462 	reg->smax_value = S64_MAX;
1463 	reg->umin_value = 0;
1464 	reg->umax_value = U64_MAX;
1465 
1466 	reg->s32_min_value = S32_MIN;
1467 	reg->s32_max_value = S32_MAX;
1468 	reg->u32_min_value = 0;
1469 	reg->u32_max_value = U32_MAX;
1470 }
1471 
__mark_reg64_unbounded(struct bpf_reg_state * reg)1472 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1473 {
1474 	reg->smin_value = S64_MIN;
1475 	reg->smax_value = S64_MAX;
1476 	reg->umin_value = 0;
1477 	reg->umax_value = U64_MAX;
1478 }
1479 
__mark_reg32_unbounded(struct bpf_reg_state * reg)1480 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1481 {
1482 	reg->s32_min_value = S32_MIN;
1483 	reg->s32_max_value = S32_MAX;
1484 	reg->u32_min_value = 0;
1485 	reg->u32_max_value = U32_MAX;
1486 }
1487 
__update_reg32_bounds(struct bpf_reg_state * reg)1488 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1489 {
1490 	struct tnum var32_off = tnum_subreg(reg->var_off);
1491 
1492 	/* min signed is max(sign bit) | min(other bits) */
1493 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1494 			var32_off.value | (var32_off.mask & S32_MIN));
1495 	/* max signed is min(sign bit) | max(other bits) */
1496 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1497 			var32_off.value | (var32_off.mask & S32_MAX));
1498 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1499 	reg->u32_max_value = min(reg->u32_max_value,
1500 				 (u32)(var32_off.value | var32_off.mask));
1501 }
1502 
__update_reg64_bounds(struct bpf_reg_state * reg)1503 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1504 {
1505 	/* min signed is max(sign bit) | min(other bits) */
1506 	reg->smin_value = max_t(s64, reg->smin_value,
1507 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1508 	/* max signed is min(sign bit) | max(other bits) */
1509 	reg->smax_value = min_t(s64, reg->smax_value,
1510 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1511 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1512 	reg->umax_value = min(reg->umax_value,
1513 			      reg->var_off.value | reg->var_off.mask);
1514 }
1515 
__update_reg_bounds(struct bpf_reg_state * reg)1516 static void __update_reg_bounds(struct bpf_reg_state *reg)
1517 {
1518 	__update_reg32_bounds(reg);
1519 	__update_reg64_bounds(reg);
1520 }
1521 
1522 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1523 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1524 {
1525 	/* Learn sign from signed bounds.
1526 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1527 	 * are the same, so combine.  This works even in the negative case, e.g.
1528 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1529 	 */
1530 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1531 		reg->s32_min_value = reg->u32_min_value =
1532 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1533 		reg->s32_max_value = reg->u32_max_value =
1534 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1535 		return;
1536 	}
1537 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1538 	 * boundary, so we must be careful.
1539 	 */
1540 	if ((s32)reg->u32_max_value >= 0) {
1541 		/* Positive.  We can't learn anything from the smin, but smax
1542 		 * is positive, hence safe.
1543 		 */
1544 		reg->s32_min_value = reg->u32_min_value;
1545 		reg->s32_max_value = reg->u32_max_value =
1546 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1547 	} else if ((s32)reg->u32_min_value < 0) {
1548 		/* Negative.  We can't learn anything from the smax, but smin
1549 		 * is negative, hence safe.
1550 		 */
1551 		reg->s32_min_value = reg->u32_min_value =
1552 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1553 		reg->s32_max_value = reg->u32_max_value;
1554 	}
1555 }
1556 
__reg64_deduce_bounds(struct bpf_reg_state * reg)1557 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1558 {
1559 	/* Learn sign from signed bounds.
1560 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1561 	 * are the same, so combine.  This works even in the negative case, e.g.
1562 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1563 	 */
1564 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1565 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1566 							  reg->umin_value);
1567 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1568 							  reg->umax_value);
1569 		return;
1570 	}
1571 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1572 	 * boundary, so we must be careful.
1573 	 */
1574 	if ((s64)reg->umax_value >= 0) {
1575 		/* Positive.  We can't learn anything from the smin, but smax
1576 		 * is positive, hence safe.
1577 		 */
1578 		reg->smin_value = reg->umin_value;
1579 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1580 							  reg->umax_value);
1581 	} else if ((s64)reg->umin_value < 0) {
1582 		/* Negative.  We can't learn anything from the smax, but smin
1583 		 * is negative, hence safe.
1584 		 */
1585 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1586 							  reg->umin_value);
1587 		reg->smax_value = reg->umax_value;
1588 	}
1589 }
1590 
__reg_deduce_bounds(struct bpf_reg_state * reg)1591 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1592 {
1593 	__reg32_deduce_bounds(reg);
1594 	__reg64_deduce_bounds(reg);
1595 }
1596 
1597 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1598 static void __reg_bound_offset(struct bpf_reg_state *reg)
1599 {
1600 	struct tnum var64_off = tnum_intersect(reg->var_off,
1601 					       tnum_range(reg->umin_value,
1602 							  reg->umax_value));
1603 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
1604 					       tnum_range(reg->u32_min_value,
1605 							  reg->u32_max_value));
1606 
1607 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1608 }
1609 
reg_bounds_sync(struct bpf_reg_state * reg)1610 static void reg_bounds_sync(struct bpf_reg_state *reg)
1611 {
1612 	/* We might have learned new bounds from the var_off. */
1613 	__update_reg_bounds(reg);
1614 	/* We might have learned something about the sign bit. */
1615 	__reg_deduce_bounds(reg);
1616 	/* We might have learned some bits from the bounds. */
1617 	__reg_bound_offset(reg);
1618 	/* Intersecting with the old var_off might have improved our bounds
1619 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1620 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1621 	 */
1622 	__update_reg_bounds(reg);
1623 }
1624 
__reg32_bound_s64(s32 a)1625 static bool __reg32_bound_s64(s32 a)
1626 {
1627 	return a >= 0 && a <= S32_MAX;
1628 }
1629 
__reg_assign_32_into_64(struct bpf_reg_state * reg)1630 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1631 {
1632 	reg->umin_value = reg->u32_min_value;
1633 	reg->umax_value = reg->u32_max_value;
1634 
1635 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1636 	 * be positive otherwise set to worse case bounds and refine later
1637 	 * from tnum.
1638 	 */
1639 	if (__reg32_bound_s64(reg->s32_min_value) &&
1640 	    __reg32_bound_s64(reg->s32_max_value)) {
1641 		reg->smin_value = reg->s32_min_value;
1642 		reg->smax_value = reg->s32_max_value;
1643 	} else {
1644 		reg->smin_value = 0;
1645 		reg->smax_value = U32_MAX;
1646 	}
1647 }
1648 
__reg_combine_32_into_64(struct bpf_reg_state * reg)1649 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1650 {
1651 	/* special case when 64-bit register has upper 32-bit register
1652 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1653 	 * allowing us to use 32-bit bounds directly,
1654 	 */
1655 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1656 		__reg_assign_32_into_64(reg);
1657 	} else {
1658 		/* Otherwise the best we can do is push lower 32bit known and
1659 		 * unknown bits into register (var_off set from jmp logic)
1660 		 * then learn as much as possible from the 64-bit tnum
1661 		 * known and unknown bits. The previous smin/smax bounds are
1662 		 * invalid here because of jmp32 compare so mark them unknown
1663 		 * so they do not impact tnum bounds calculation.
1664 		 */
1665 		__mark_reg64_unbounded(reg);
1666 	}
1667 	reg_bounds_sync(reg);
1668 }
1669 
__reg64_bound_s32(s64 a)1670 static bool __reg64_bound_s32(s64 a)
1671 {
1672 	return a >= S32_MIN && a <= S32_MAX;
1673 }
1674 
__reg64_bound_u32(u64 a)1675 static bool __reg64_bound_u32(u64 a)
1676 {
1677 	return a >= U32_MIN && a <= U32_MAX;
1678 }
1679 
__reg_combine_64_into_32(struct bpf_reg_state * reg)1680 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1681 {
1682 	__mark_reg32_unbounded(reg);
1683 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1684 		reg->s32_min_value = (s32)reg->smin_value;
1685 		reg->s32_max_value = (s32)reg->smax_value;
1686 	}
1687 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1688 		reg->u32_min_value = (u32)reg->umin_value;
1689 		reg->u32_max_value = (u32)reg->umax_value;
1690 	}
1691 	reg_bounds_sync(reg);
1692 }
1693 
1694 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1695 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1696 			       struct bpf_reg_state *reg)
1697 {
1698 	/*
1699 	 * Clear type, id, off, and union(map_ptr, range) and
1700 	 * padding between 'type' and union
1701 	 */
1702 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1703 	reg->type = SCALAR_VALUE;
1704 	reg->var_off = tnum_unknown;
1705 	reg->frameno = 0;
1706 	reg->precise = !env->bpf_capable;
1707 	__mark_reg_unbounded(reg);
1708 }
1709 
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1710 static void mark_reg_unknown(struct bpf_verifier_env *env,
1711 			     struct bpf_reg_state *regs, u32 regno)
1712 {
1713 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1714 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1715 		/* Something bad happened, let's kill all regs except FP */
1716 		for (regno = 0; regno < BPF_REG_FP; regno++)
1717 			__mark_reg_not_init(env, regs + regno);
1718 		return;
1719 	}
1720 	__mark_reg_unknown(env, regs + regno);
1721 }
1722 
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1723 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1724 				struct bpf_reg_state *reg)
1725 {
1726 	__mark_reg_unknown(env, reg);
1727 	reg->type = NOT_INIT;
1728 }
1729 
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1730 static void mark_reg_not_init(struct bpf_verifier_env *env,
1731 			      struct bpf_reg_state *regs, u32 regno)
1732 {
1733 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1734 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1735 		/* Something bad happened, let's kill all regs except FP */
1736 		for (regno = 0; regno < BPF_REG_FP; regno++)
1737 			__mark_reg_not_init(env, regs + regno);
1738 		return;
1739 	}
1740 	__mark_reg_not_init(env, regs + regno);
1741 }
1742 
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)1743 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1744 			    struct bpf_reg_state *regs, u32 regno,
1745 			    enum bpf_reg_type reg_type,
1746 			    struct btf *btf, u32 btf_id,
1747 			    enum bpf_type_flag flag)
1748 {
1749 	if (reg_type == SCALAR_VALUE) {
1750 		mark_reg_unknown(env, regs, regno);
1751 		return;
1752 	}
1753 	mark_reg_known_zero(env, regs, regno);
1754 	regs[regno].type = PTR_TO_BTF_ID | flag;
1755 	regs[regno].btf = btf;
1756 	regs[regno].btf_id = btf_id;
1757 }
1758 
1759 #define DEF_NOT_SUBREG	(0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1760 static void init_reg_state(struct bpf_verifier_env *env,
1761 			   struct bpf_func_state *state)
1762 {
1763 	struct bpf_reg_state *regs = state->regs;
1764 	int i;
1765 
1766 	for (i = 0; i < MAX_BPF_REG; i++) {
1767 		mark_reg_not_init(env, regs, i);
1768 		regs[i].live = REG_LIVE_NONE;
1769 		regs[i].parent = NULL;
1770 		regs[i].subreg_def = DEF_NOT_SUBREG;
1771 	}
1772 
1773 	/* frame pointer */
1774 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1775 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1776 	regs[BPF_REG_FP].frameno = state->frameno;
1777 }
1778 
1779 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1780 static void init_func_state(struct bpf_verifier_env *env,
1781 			    struct bpf_func_state *state,
1782 			    int callsite, int frameno, int subprogno)
1783 {
1784 	state->callsite = callsite;
1785 	state->frameno = frameno;
1786 	state->subprogno = subprogno;
1787 	state->callback_ret_range = tnum_range(0, 0);
1788 	init_reg_state(env, state);
1789 	mark_verifier_state_scratched(env);
1790 }
1791 
1792 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)1793 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1794 						int insn_idx, int prev_insn_idx,
1795 						int subprog)
1796 {
1797 	struct bpf_verifier_stack_elem *elem;
1798 	struct bpf_func_state *frame;
1799 
1800 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1801 	if (!elem)
1802 		goto err;
1803 
1804 	elem->insn_idx = insn_idx;
1805 	elem->prev_insn_idx = prev_insn_idx;
1806 	elem->next = env->head;
1807 	elem->log_pos = env->log.len_used;
1808 	env->head = elem;
1809 	env->stack_size++;
1810 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1811 		verbose(env,
1812 			"The sequence of %d jumps is too complex for async cb.\n",
1813 			env->stack_size);
1814 		goto err;
1815 	}
1816 	/* Unlike push_stack() do not copy_verifier_state().
1817 	 * The caller state doesn't matter.
1818 	 * This is async callback. It starts in a fresh stack.
1819 	 * Initialize it similar to do_check_common().
1820 	 */
1821 	elem->st.branches = 1;
1822 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1823 	if (!frame)
1824 		goto err;
1825 	init_func_state(env, frame,
1826 			BPF_MAIN_FUNC /* callsite */,
1827 			0 /* frameno within this callchain */,
1828 			subprog /* subprog number within this prog */);
1829 	elem->st.frame[0] = frame;
1830 	return &elem->st;
1831 err:
1832 	free_verifier_state(env->cur_state, true);
1833 	env->cur_state = NULL;
1834 	/* pop all elements and return */
1835 	while (!pop_stack(env, NULL, NULL, false));
1836 	return NULL;
1837 }
1838 
1839 
1840 enum reg_arg_type {
1841 	SRC_OP,		/* register is used as source operand */
1842 	DST_OP,		/* register is used as destination operand */
1843 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1844 };
1845 
cmp_subprogs(const void * a,const void * b)1846 static int cmp_subprogs(const void *a, const void *b)
1847 {
1848 	return ((struct bpf_subprog_info *)a)->start -
1849 	       ((struct bpf_subprog_info *)b)->start;
1850 }
1851 
find_subprog(struct bpf_verifier_env * env,int off)1852 static int find_subprog(struct bpf_verifier_env *env, int off)
1853 {
1854 	struct bpf_subprog_info *p;
1855 
1856 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1857 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1858 	if (!p)
1859 		return -ENOENT;
1860 	return p - env->subprog_info;
1861 
1862 }
1863 
add_subprog(struct bpf_verifier_env * env,int off)1864 static int add_subprog(struct bpf_verifier_env *env, int off)
1865 {
1866 	int insn_cnt = env->prog->len;
1867 	int ret;
1868 
1869 	if (off >= insn_cnt || off < 0) {
1870 		verbose(env, "call to invalid destination\n");
1871 		return -EINVAL;
1872 	}
1873 	ret = find_subprog(env, off);
1874 	if (ret >= 0)
1875 		return ret;
1876 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1877 		verbose(env, "too many subprograms\n");
1878 		return -E2BIG;
1879 	}
1880 	/* determine subprog starts. The end is one before the next starts */
1881 	env->subprog_info[env->subprog_cnt++].start = off;
1882 	sort(env->subprog_info, env->subprog_cnt,
1883 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1884 	return env->subprog_cnt - 1;
1885 }
1886 
1887 #define MAX_KFUNC_DESCS 256
1888 #define MAX_KFUNC_BTFS	256
1889 
1890 struct bpf_kfunc_desc {
1891 	struct btf_func_model func_model;
1892 	u32 func_id;
1893 	s32 imm;
1894 	u16 offset;
1895 };
1896 
1897 struct bpf_kfunc_btf {
1898 	struct btf *btf;
1899 	struct module *module;
1900 	u16 offset;
1901 };
1902 
1903 struct bpf_kfunc_desc_tab {
1904 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1905 	u32 nr_descs;
1906 };
1907 
1908 struct bpf_kfunc_btf_tab {
1909 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1910 	u32 nr_descs;
1911 };
1912 
kfunc_desc_cmp_by_id_off(const void * a,const void * b)1913 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1914 {
1915 	const struct bpf_kfunc_desc *d0 = a;
1916 	const struct bpf_kfunc_desc *d1 = b;
1917 
1918 	/* func_id is not greater than BTF_MAX_TYPE */
1919 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1920 }
1921 
kfunc_btf_cmp_by_off(const void * a,const void * b)1922 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1923 {
1924 	const struct bpf_kfunc_btf *d0 = a;
1925 	const struct bpf_kfunc_btf *d1 = b;
1926 
1927 	return d0->offset - d1->offset;
1928 }
1929 
1930 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)1931 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1932 {
1933 	struct bpf_kfunc_desc desc = {
1934 		.func_id = func_id,
1935 		.offset = offset,
1936 	};
1937 	struct bpf_kfunc_desc_tab *tab;
1938 
1939 	tab = prog->aux->kfunc_tab;
1940 	return bsearch(&desc, tab->descs, tab->nr_descs,
1941 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1942 }
1943 
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)1944 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1945 					 s16 offset)
1946 {
1947 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1948 	struct bpf_kfunc_btf_tab *tab;
1949 	struct bpf_kfunc_btf *b;
1950 	struct module *mod;
1951 	struct btf *btf;
1952 	int btf_fd;
1953 
1954 	tab = env->prog->aux->kfunc_btf_tab;
1955 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1956 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1957 	if (!b) {
1958 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1959 			verbose(env, "too many different module BTFs\n");
1960 			return ERR_PTR(-E2BIG);
1961 		}
1962 
1963 		if (bpfptr_is_null(env->fd_array)) {
1964 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1965 			return ERR_PTR(-EPROTO);
1966 		}
1967 
1968 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1969 					    offset * sizeof(btf_fd),
1970 					    sizeof(btf_fd)))
1971 			return ERR_PTR(-EFAULT);
1972 
1973 		btf = btf_get_by_fd(btf_fd);
1974 		if (IS_ERR(btf)) {
1975 			verbose(env, "invalid module BTF fd specified\n");
1976 			return btf;
1977 		}
1978 
1979 		if (!btf_is_module(btf)) {
1980 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1981 			btf_put(btf);
1982 			return ERR_PTR(-EINVAL);
1983 		}
1984 
1985 		mod = btf_try_get_module(btf);
1986 		if (!mod) {
1987 			btf_put(btf);
1988 			return ERR_PTR(-ENXIO);
1989 		}
1990 
1991 		b = &tab->descs[tab->nr_descs++];
1992 		b->btf = btf;
1993 		b->module = mod;
1994 		b->offset = offset;
1995 
1996 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1997 		     kfunc_btf_cmp_by_off, NULL);
1998 	}
1999 	return b->btf;
2000 }
2001 
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)2002 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2003 {
2004 	if (!tab)
2005 		return;
2006 
2007 	while (tab->nr_descs--) {
2008 		module_put(tab->descs[tab->nr_descs].module);
2009 		btf_put(tab->descs[tab->nr_descs].btf);
2010 	}
2011 	kfree(tab);
2012 }
2013 
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2014 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2015 {
2016 	if (offset) {
2017 		if (offset < 0) {
2018 			/* In the future, this can be allowed to increase limit
2019 			 * of fd index into fd_array, interpreted as u16.
2020 			 */
2021 			verbose(env, "negative offset disallowed for kernel module function call\n");
2022 			return ERR_PTR(-EINVAL);
2023 		}
2024 
2025 		return __find_kfunc_desc_btf(env, offset);
2026 	}
2027 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2028 }
2029 
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2030 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2031 {
2032 	const struct btf_type *func, *func_proto;
2033 	struct bpf_kfunc_btf_tab *btf_tab;
2034 	struct bpf_kfunc_desc_tab *tab;
2035 	struct bpf_prog_aux *prog_aux;
2036 	struct bpf_kfunc_desc *desc;
2037 	const char *func_name;
2038 	struct btf *desc_btf;
2039 	unsigned long call_imm;
2040 	unsigned long addr;
2041 	int err;
2042 
2043 	prog_aux = env->prog->aux;
2044 	tab = prog_aux->kfunc_tab;
2045 	btf_tab = prog_aux->kfunc_btf_tab;
2046 	if (!tab) {
2047 		if (!btf_vmlinux) {
2048 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2049 			return -ENOTSUPP;
2050 		}
2051 
2052 		if (!env->prog->jit_requested) {
2053 			verbose(env, "JIT is required for calling kernel function\n");
2054 			return -ENOTSUPP;
2055 		}
2056 
2057 		if (!bpf_jit_supports_kfunc_call()) {
2058 			verbose(env, "JIT does not support calling kernel function\n");
2059 			return -ENOTSUPP;
2060 		}
2061 
2062 		if (!env->prog->gpl_compatible) {
2063 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2064 			return -EINVAL;
2065 		}
2066 
2067 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2068 		if (!tab)
2069 			return -ENOMEM;
2070 		prog_aux->kfunc_tab = tab;
2071 	}
2072 
2073 	/* func_id == 0 is always invalid, but instead of returning an error, be
2074 	 * conservative and wait until the code elimination pass before returning
2075 	 * error, so that invalid calls that get pruned out can be in BPF programs
2076 	 * loaded from userspace.  It is also required that offset be untouched
2077 	 * for such calls.
2078 	 */
2079 	if (!func_id && !offset)
2080 		return 0;
2081 
2082 	if (!btf_tab && offset) {
2083 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2084 		if (!btf_tab)
2085 			return -ENOMEM;
2086 		prog_aux->kfunc_btf_tab = btf_tab;
2087 	}
2088 
2089 	desc_btf = find_kfunc_desc_btf(env, offset);
2090 	if (IS_ERR(desc_btf)) {
2091 		verbose(env, "failed to find BTF for kernel function\n");
2092 		return PTR_ERR(desc_btf);
2093 	}
2094 
2095 	if (find_kfunc_desc(env->prog, func_id, offset))
2096 		return 0;
2097 
2098 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2099 		verbose(env, "too many different kernel function calls\n");
2100 		return -E2BIG;
2101 	}
2102 
2103 	func = btf_type_by_id(desc_btf, func_id);
2104 	if (!func || !btf_type_is_func(func)) {
2105 		verbose(env, "kernel btf_id %u is not a function\n",
2106 			func_id);
2107 		return -EINVAL;
2108 	}
2109 	func_proto = btf_type_by_id(desc_btf, func->type);
2110 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2111 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2112 			func_id);
2113 		return -EINVAL;
2114 	}
2115 
2116 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2117 	addr = kallsyms_lookup_name(func_name);
2118 	if (!addr) {
2119 		verbose(env, "cannot find address for kernel function %s\n",
2120 			func_name);
2121 		return -EINVAL;
2122 	}
2123 
2124 	call_imm = BPF_CALL_IMM(addr);
2125 	/* Check whether or not the relative offset overflows desc->imm */
2126 	if ((unsigned long)(s32)call_imm != call_imm) {
2127 		verbose(env, "address of kernel function %s is out of range\n",
2128 			func_name);
2129 		return -EINVAL;
2130 	}
2131 
2132 	desc = &tab->descs[tab->nr_descs++];
2133 	desc->func_id = func_id;
2134 	desc->imm = call_imm;
2135 	desc->offset = offset;
2136 	err = btf_distill_func_proto(&env->log, desc_btf,
2137 				     func_proto, func_name,
2138 				     &desc->func_model);
2139 	if (!err)
2140 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2141 		     kfunc_desc_cmp_by_id_off, NULL);
2142 	return err;
2143 }
2144 
kfunc_desc_cmp_by_imm(const void * a,const void * b)2145 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2146 {
2147 	const struct bpf_kfunc_desc *d0 = a;
2148 	const struct bpf_kfunc_desc *d1 = b;
2149 
2150 	if (d0->imm > d1->imm)
2151 		return 1;
2152 	else if (d0->imm < d1->imm)
2153 		return -1;
2154 	return 0;
2155 }
2156 
sort_kfunc_descs_by_imm(struct bpf_prog * prog)2157 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2158 {
2159 	struct bpf_kfunc_desc_tab *tab;
2160 
2161 	tab = prog->aux->kfunc_tab;
2162 	if (!tab)
2163 		return;
2164 
2165 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2166 	     kfunc_desc_cmp_by_imm, NULL);
2167 }
2168 
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2169 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2170 {
2171 	return !!prog->aux->kfunc_tab;
2172 }
2173 
2174 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2175 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2176 			 const struct bpf_insn *insn)
2177 {
2178 	const struct bpf_kfunc_desc desc = {
2179 		.imm = insn->imm,
2180 	};
2181 	const struct bpf_kfunc_desc *res;
2182 	struct bpf_kfunc_desc_tab *tab;
2183 
2184 	tab = prog->aux->kfunc_tab;
2185 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2186 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2187 
2188 	return res ? &res->func_model : NULL;
2189 }
2190 
add_subprog_and_kfunc(struct bpf_verifier_env * env)2191 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2192 {
2193 	struct bpf_subprog_info *subprog = env->subprog_info;
2194 	struct bpf_insn *insn = env->prog->insnsi;
2195 	int i, ret, insn_cnt = env->prog->len;
2196 
2197 	/* Add entry function. */
2198 	ret = add_subprog(env, 0);
2199 	if (ret)
2200 		return ret;
2201 
2202 	for (i = 0; i < insn_cnt; i++, insn++) {
2203 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2204 		    !bpf_pseudo_kfunc_call(insn))
2205 			continue;
2206 
2207 		if (!env->bpf_capable) {
2208 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2209 			return -EPERM;
2210 		}
2211 
2212 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2213 			ret = add_subprog(env, i + insn->imm + 1);
2214 		else
2215 			ret = add_kfunc_call(env, insn->imm, insn->off);
2216 
2217 		if (ret < 0)
2218 			return ret;
2219 	}
2220 
2221 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2222 	 * logic. 'subprog_cnt' should not be increased.
2223 	 */
2224 	subprog[env->subprog_cnt].start = insn_cnt;
2225 
2226 	if (env->log.level & BPF_LOG_LEVEL2)
2227 		for (i = 0; i < env->subprog_cnt; i++)
2228 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2229 
2230 	return 0;
2231 }
2232 
check_subprogs(struct bpf_verifier_env * env)2233 static int check_subprogs(struct bpf_verifier_env *env)
2234 {
2235 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2236 	struct bpf_subprog_info *subprog = env->subprog_info;
2237 	struct bpf_insn *insn = env->prog->insnsi;
2238 	int insn_cnt = env->prog->len;
2239 
2240 	/* now check that all jumps are within the same subprog */
2241 	subprog_start = subprog[cur_subprog].start;
2242 	subprog_end = subprog[cur_subprog + 1].start;
2243 	for (i = 0; i < insn_cnt; i++) {
2244 		u8 code = insn[i].code;
2245 
2246 		if (code == (BPF_JMP | BPF_CALL) &&
2247 		    insn[i].imm == BPF_FUNC_tail_call &&
2248 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2249 			subprog[cur_subprog].has_tail_call = true;
2250 		if (BPF_CLASS(code) == BPF_LD &&
2251 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2252 			subprog[cur_subprog].has_ld_abs = true;
2253 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2254 			goto next;
2255 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2256 			goto next;
2257 		off = i + insn[i].off + 1;
2258 		if (off < subprog_start || off >= subprog_end) {
2259 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2260 			return -EINVAL;
2261 		}
2262 next:
2263 		if (i == subprog_end - 1) {
2264 			/* to avoid fall-through from one subprog into another
2265 			 * the last insn of the subprog should be either exit
2266 			 * or unconditional jump back
2267 			 */
2268 			if (code != (BPF_JMP | BPF_EXIT) &&
2269 			    code != (BPF_JMP | BPF_JA)) {
2270 				verbose(env, "last insn is not an exit or jmp\n");
2271 				return -EINVAL;
2272 			}
2273 			subprog_start = subprog_end;
2274 			cur_subprog++;
2275 			if (cur_subprog < env->subprog_cnt)
2276 				subprog_end = subprog[cur_subprog + 1].start;
2277 		}
2278 	}
2279 	return 0;
2280 }
2281 
2282 /* Parentage chain of this register (or stack slot) should take care of all
2283  * issues like callee-saved registers, stack slot allocation time, etc.
2284  */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)2285 static int mark_reg_read(struct bpf_verifier_env *env,
2286 			 const struct bpf_reg_state *state,
2287 			 struct bpf_reg_state *parent, u8 flag)
2288 {
2289 	bool writes = parent == state->parent; /* Observe write marks */
2290 	int cnt = 0;
2291 
2292 	while (parent) {
2293 		/* if read wasn't screened by an earlier write ... */
2294 		if (writes && state->live & REG_LIVE_WRITTEN)
2295 			break;
2296 		if (parent->live & REG_LIVE_DONE) {
2297 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2298 				reg_type_str(env, parent->type),
2299 				parent->var_off.value, parent->off);
2300 			return -EFAULT;
2301 		}
2302 		/* The first condition is more likely to be true than the
2303 		 * second, checked it first.
2304 		 */
2305 		if ((parent->live & REG_LIVE_READ) == flag ||
2306 		    parent->live & REG_LIVE_READ64)
2307 			/* The parentage chain never changes and
2308 			 * this parent was already marked as LIVE_READ.
2309 			 * There is no need to keep walking the chain again and
2310 			 * keep re-marking all parents as LIVE_READ.
2311 			 * This case happens when the same register is read
2312 			 * multiple times without writes into it in-between.
2313 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2314 			 * then no need to set the weak REG_LIVE_READ32.
2315 			 */
2316 			break;
2317 		/* ... then we depend on parent's value */
2318 		parent->live |= flag;
2319 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2320 		if (flag == REG_LIVE_READ64)
2321 			parent->live &= ~REG_LIVE_READ32;
2322 		state = parent;
2323 		parent = state->parent;
2324 		writes = true;
2325 		cnt++;
2326 	}
2327 
2328 	if (env->longest_mark_read_walk < cnt)
2329 		env->longest_mark_read_walk = cnt;
2330 	return 0;
2331 }
2332 
2333 /* This function is supposed to be used by the following 32-bit optimization
2334  * code only. It returns TRUE if the source or destination register operates
2335  * on 64-bit, otherwise return FALSE.
2336  */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)2337 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2338 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2339 {
2340 	u8 code, class, op;
2341 
2342 	code = insn->code;
2343 	class = BPF_CLASS(code);
2344 	op = BPF_OP(code);
2345 	if (class == BPF_JMP) {
2346 		/* BPF_EXIT for "main" will reach here. Return TRUE
2347 		 * conservatively.
2348 		 */
2349 		if (op == BPF_EXIT)
2350 			return true;
2351 		if (op == BPF_CALL) {
2352 			/* BPF to BPF call will reach here because of marking
2353 			 * caller saved clobber with DST_OP_NO_MARK for which we
2354 			 * don't care the register def because they are anyway
2355 			 * marked as NOT_INIT already.
2356 			 */
2357 			if (insn->src_reg == BPF_PSEUDO_CALL)
2358 				return false;
2359 			/* Helper call will reach here because of arg type
2360 			 * check, conservatively return TRUE.
2361 			 */
2362 			if (t == SRC_OP)
2363 				return true;
2364 
2365 			return false;
2366 		}
2367 	}
2368 
2369 	if (class == BPF_ALU64 || class == BPF_JMP ||
2370 	    /* BPF_END always use BPF_ALU class. */
2371 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2372 		return true;
2373 
2374 	if (class == BPF_ALU || class == BPF_JMP32)
2375 		return false;
2376 
2377 	if (class == BPF_LDX) {
2378 		if (t != SRC_OP)
2379 			return BPF_SIZE(code) == BPF_DW;
2380 		/* LDX source must be ptr. */
2381 		return true;
2382 	}
2383 
2384 	if (class == BPF_STX) {
2385 		/* BPF_STX (including atomic variants) has multiple source
2386 		 * operands, one of which is a ptr. Check whether the caller is
2387 		 * asking about it.
2388 		 */
2389 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2390 			return true;
2391 		return BPF_SIZE(code) == BPF_DW;
2392 	}
2393 
2394 	if (class == BPF_LD) {
2395 		u8 mode = BPF_MODE(code);
2396 
2397 		/* LD_IMM64 */
2398 		if (mode == BPF_IMM)
2399 			return true;
2400 
2401 		/* Both LD_IND and LD_ABS return 32-bit data. */
2402 		if (t != SRC_OP)
2403 			return  false;
2404 
2405 		/* Implicit ctx ptr. */
2406 		if (regno == BPF_REG_6)
2407 			return true;
2408 
2409 		/* Explicit source could be any width. */
2410 		return true;
2411 	}
2412 
2413 	if (class == BPF_ST)
2414 		/* The only source register for BPF_ST is a ptr. */
2415 		return true;
2416 
2417 	/* Conservatively return true at default. */
2418 	return true;
2419 }
2420 
2421 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)2422 static int insn_def_regno(const struct bpf_insn *insn)
2423 {
2424 	switch (BPF_CLASS(insn->code)) {
2425 	case BPF_JMP:
2426 	case BPF_JMP32:
2427 	case BPF_ST:
2428 		return -1;
2429 	case BPF_STX:
2430 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2431 		    (insn->imm & BPF_FETCH)) {
2432 			if (insn->imm == BPF_CMPXCHG)
2433 				return BPF_REG_0;
2434 			else
2435 				return insn->src_reg;
2436 		} else {
2437 			return -1;
2438 		}
2439 	default:
2440 		return insn->dst_reg;
2441 	}
2442 }
2443 
2444 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)2445 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2446 {
2447 	int dst_reg = insn_def_regno(insn);
2448 
2449 	if (dst_reg == -1)
2450 		return false;
2451 
2452 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2453 }
2454 
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)2455 static void mark_insn_zext(struct bpf_verifier_env *env,
2456 			   struct bpf_reg_state *reg)
2457 {
2458 	s32 def_idx = reg->subreg_def;
2459 
2460 	if (def_idx == DEF_NOT_SUBREG)
2461 		return;
2462 
2463 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2464 	/* The dst will be zero extended, so won't be sub-register anymore. */
2465 	reg->subreg_def = DEF_NOT_SUBREG;
2466 }
2467 
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)2468 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2469 			 enum reg_arg_type t)
2470 {
2471 	struct bpf_verifier_state *vstate = env->cur_state;
2472 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2473 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2474 	struct bpf_reg_state *reg, *regs = state->regs;
2475 	bool rw64;
2476 
2477 	if (regno >= MAX_BPF_REG) {
2478 		verbose(env, "R%d is invalid\n", regno);
2479 		return -EINVAL;
2480 	}
2481 
2482 	mark_reg_scratched(env, regno);
2483 
2484 	reg = &regs[regno];
2485 	rw64 = is_reg64(env, insn, regno, reg, t);
2486 	if (t == SRC_OP) {
2487 		/* check whether register used as source operand can be read */
2488 		if (reg->type == NOT_INIT) {
2489 			verbose(env, "R%d !read_ok\n", regno);
2490 			return -EACCES;
2491 		}
2492 		/* We don't need to worry about FP liveness because it's read-only */
2493 		if (regno == BPF_REG_FP)
2494 			return 0;
2495 
2496 		if (rw64)
2497 			mark_insn_zext(env, reg);
2498 
2499 		return mark_reg_read(env, reg, reg->parent,
2500 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2501 	} else {
2502 		/* check whether register used as dest operand can be written to */
2503 		if (regno == BPF_REG_FP) {
2504 			verbose(env, "frame pointer is read only\n");
2505 			return -EACCES;
2506 		}
2507 		reg->live |= REG_LIVE_WRITTEN;
2508 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2509 		if (t == DST_OP)
2510 			mark_reg_unknown(env, regs, regno);
2511 	}
2512 	return 0;
2513 }
2514 
2515 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)2516 static int push_jmp_history(struct bpf_verifier_env *env,
2517 			    struct bpf_verifier_state *cur)
2518 {
2519 	u32 cnt = cur->jmp_history_cnt;
2520 	struct bpf_idx_pair *p;
2521 	size_t alloc_size;
2522 
2523 	cnt++;
2524 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
2525 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
2526 	if (!p)
2527 		return -ENOMEM;
2528 	p[cnt - 1].idx = env->insn_idx;
2529 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2530 	cur->jmp_history = p;
2531 	cur->jmp_history_cnt = cnt;
2532 	return 0;
2533 }
2534 
2535 /* Backtrack one insn at a time. If idx is not at the top of recorded
2536  * history then previous instruction came from straight line execution.
2537  * Return -ENOENT if we exhausted all instructions within given state.
2538  *
2539  * It's legal to have a bit of a looping with the same starting and ending
2540  * insn index within the same state, e.g.: 3->4->5->3, so just because current
2541  * instruction index is the same as state's first_idx doesn't mean we are
2542  * done. If there is still some jump history left, we should keep going. We
2543  * need to take into account that we might have a jump history between given
2544  * state's parent and itself, due to checkpointing. In this case, we'll have
2545  * history entry recording a jump from last instruction of parent state and
2546  * first instruction of given state.
2547  */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)2548 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2549 			     u32 *history)
2550 {
2551 	u32 cnt = *history;
2552 
2553 	if (i == st->first_insn_idx) {
2554 		if (cnt == 0)
2555 			return -ENOENT;
2556 		if (cnt == 1 && st->jmp_history[0].idx == i)
2557 			return -ENOENT;
2558 	}
2559 
2560 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2561 		i = st->jmp_history[cnt - 1].prev_idx;
2562 		(*history)--;
2563 	} else {
2564 		i--;
2565 	}
2566 	return i;
2567 }
2568 
disasm_kfunc_name(void * data,const struct bpf_insn * insn)2569 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2570 {
2571 	const struct btf_type *func;
2572 	struct btf *desc_btf;
2573 
2574 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2575 		return NULL;
2576 
2577 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2578 	if (IS_ERR(desc_btf))
2579 		return "<error>";
2580 
2581 	func = btf_type_by_id(desc_btf, insn->imm);
2582 	return btf_name_by_offset(desc_btf, func->name_off);
2583 }
2584 
2585 /* For given verifier state backtrack_insn() is called from the last insn to
2586  * the first insn. Its purpose is to compute a bitmask of registers and
2587  * stack slots that needs precision in the parent verifier state.
2588  */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)2589 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2590 			  u32 *reg_mask, u64 *stack_mask)
2591 {
2592 	const struct bpf_insn_cbs cbs = {
2593 		.cb_call	= disasm_kfunc_name,
2594 		.cb_print	= verbose,
2595 		.private_data	= env,
2596 	};
2597 	struct bpf_insn *insn = env->prog->insnsi + idx;
2598 	u8 class = BPF_CLASS(insn->code);
2599 	u8 opcode = BPF_OP(insn->code);
2600 	u8 mode = BPF_MODE(insn->code);
2601 	u32 dreg = 1u << insn->dst_reg;
2602 	u32 sreg = 1u << insn->src_reg;
2603 	u32 spi;
2604 
2605 	if (insn->code == 0)
2606 		return 0;
2607 	if (env->log.level & BPF_LOG_LEVEL2) {
2608 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2609 		verbose(env, "%d: ", idx);
2610 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2611 	}
2612 
2613 	if (class == BPF_ALU || class == BPF_ALU64) {
2614 		if (!(*reg_mask & dreg))
2615 			return 0;
2616 		if (opcode == BPF_END || opcode == BPF_NEG) {
2617 			/* sreg is reserved and unused
2618 			 * dreg still need precision before this insn
2619 			 */
2620 			return 0;
2621 		} else if (opcode == BPF_MOV) {
2622 			if (BPF_SRC(insn->code) == BPF_X) {
2623 				/* dreg = sreg
2624 				 * dreg needs precision after this insn
2625 				 * sreg needs precision before this insn
2626 				 */
2627 				*reg_mask &= ~dreg;
2628 				*reg_mask |= sreg;
2629 			} else {
2630 				/* dreg = K
2631 				 * dreg needs precision after this insn.
2632 				 * Corresponding register is already marked
2633 				 * as precise=true in this verifier state.
2634 				 * No further markings in parent are necessary
2635 				 */
2636 				*reg_mask &= ~dreg;
2637 			}
2638 		} else {
2639 			if (BPF_SRC(insn->code) == BPF_X) {
2640 				/* dreg += sreg
2641 				 * both dreg and sreg need precision
2642 				 * before this insn
2643 				 */
2644 				*reg_mask |= sreg;
2645 			} /* else dreg += K
2646 			   * dreg still needs precision before this insn
2647 			   */
2648 		}
2649 	} else if (class == BPF_LDX) {
2650 		if (!(*reg_mask & dreg))
2651 			return 0;
2652 		*reg_mask &= ~dreg;
2653 
2654 		/* scalars can only be spilled into stack w/o losing precision.
2655 		 * Load from any other memory can be zero extended.
2656 		 * The desire to keep that precision is already indicated
2657 		 * by 'precise' mark in corresponding register of this state.
2658 		 * No further tracking necessary.
2659 		 */
2660 		if (insn->src_reg != BPF_REG_FP)
2661 			return 0;
2662 
2663 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2664 		 * that [fp - off] slot contains scalar that needs to be
2665 		 * tracked with precision
2666 		 */
2667 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2668 		if (spi >= 64) {
2669 			verbose(env, "BUG spi %d\n", spi);
2670 			WARN_ONCE(1, "verifier backtracking bug");
2671 			return -EFAULT;
2672 		}
2673 		*stack_mask |= 1ull << spi;
2674 	} else if (class == BPF_STX || class == BPF_ST) {
2675 		if (*reg_mask & dreg)
2676 			/* stx & st shouldn't be using _scalar_ dst_reg
2677 			 * to access memory. It means backtracking
2678 			 * encountered a case of pointer subtraction.
2679 			 */
2680 			return -ENOTSUPP;
2681 		/* scalars can only be spilled into stack */
2682 		if (insn->dst_reg != BPF_REG_FP)
2683 			return 0;
2684 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2685 		if (spi >= 64) {
2686 			verbose(env, "BUG spi %d\n", spi);
2687 			WARN_ONCE(1, "verifier backtracking bug");
2688 			return -EFAULT;
2689 		}
2690 		if (!(*stack_mask & (1ull << spi)))
2691 			return 0;
2692 		*stack_mask &= ~(1ull << spi);
2693 		if (class == BPF_STX)
2694 			*reg_mask |= sreg;
2695 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2696 		if (opcode == BPF_CALL) {
2697 			if (insn->src_reg == BPF_PSEUDO_CALL)
2698 				return -ENOTSUPP;
2699 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
2700 			 * catch this error later. Make backtracking conservative
2701 			 * with ENOTSUPP.
2702 			 */
2703 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
2704 				return -ENOTSUPP;
2705 			/* BPF helpers that invoke callback subprogs are
2706 			 * equivalent to BPF_PSEUDO_CALL above
2707 			 */
2708 			if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2709 				return -ENOTSUPP;
2710 			/* regular helper call sets R0 */
2711 			*reg_mask &= ~1;
2712 			if (*reg_mask & 0x3f) {
2713 				/* if backtracing was looking for registers R1-R5
2714 				 * they should have been found already.
2715 				 */
2716 				verbose(env, "BUG regs %x\n", *reg_mask);
2717 				WARN_ONCE(1, "verifier backtracking bug");
2718 				return -EFAULT;
2719 			}
2720 		} else if (opcode == BPF_EXIT) {
2721 			return -ENOTSUPP;
2722 		} else if (BPF_SRC(insn->code) == BPF_X) {
2723 			if (!(*reg_mask & (dreg | sreg)))
2724 				return 0;
2725 			/* dreg <cond> sreg
2726 			 * Both dreg and sreg need precision before
2727 			 * this insn. If only sreg was marked precise
2728 			 * before it would be equally necessary to
2729 			 * propagate it to dreg.
2730 			 */
2731 			*reg_mask |= (sreg | dreg);
2732 			 /* else dreg <cond> K
2733 			  * Only dreg still needs precision before
2734 			  * this insn, so for the K-based conditional
2735 			  * there is nothing new to be marked.
2736 			  */
2737 		}
2738 	} else if (class == BPF_LD) {
2739 		if (!(*reg_mask & dreg))
2740 			return 0;
2741 		*reg_mask &= ~dreg;
2742 		/* It's ld_imm64 or ld_abs or ld_ind.
2743 		 * For ld_imm64 no further tracking of precision
2744 		 * into parent is necessary
2745 		 */
2746 		if (mode == BPF_IND || mode == BPF_ABS)
2747 			/* to be analyzed */
2748 			return -ENOTSUPP;
2749 	}
2750 	return 0;
2751 }
2752 
2753 /* the scalar precision tracking algorithm:
2754  * . at the start all registers have precise=false.
2755  * . scalar ranges are tracked as normal through alu and jmp insns.
2756  * . once precise value of the scalar register is used in:
2757  *   .  ptr + scalar alu
2758  *   . if (scalar cond K|scalar)
2759  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2760  *   backtrack through the verifier states and mark all registers and
2761  *   stack slots with spilled constants that these scalar regisers
2762  *   should be precise.
2763  * . during state pruning two registers (or spilled stack slots)
2764  *   are equivalent if both are not precise.
2765  *
2766  * Note the verifier cannot simply walk register parentage chain,
2767  * since many different registers and stack slots could have been
2768  * used to compute single precise scalar.
2769  *
2770  * The approach of starting with precise=true for all registers and then
2771  * backtrack to mark a register as not precise when the verifier detects
2772  * that program doesn't care about specific value (e.g., when helper
2773  * takes register as ARG_ANYTHING parameter) is not safe.
2774  *
2775  * It's ok to walk single parentage chain of the verifier states.
2776  * It's possible that this backtracking will go all the way till 1st insn.
2777  * All other branches will be explored for needing precision later.
2778  *
2779  * The backtracking needs to deal with cases like:
2780  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2781  * r9 -= r8
2782  * r5 = r9
2783  * if r5 > 0x79f goto pc+7
2784  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2785  * r5 += 1
2786  * ...
2787  * call bpf_perf_event_output#25
2788  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2789  *
2790  * and this case:
2791  * r6 = 1
2792  * call foo // uses callee's r6 inside to compute r0
2793  * r0 += r6
2794  * if r0 == 0 goto
2795  *
2796  * to track above reg_mask/stack_mask needs to be independent for each frame.
2797  *
2798  * Also if parent's curframe > frame where backtracking started,
2799  * the verifier need to mark registers in both frames, otherwise callees
2800  * may incorrectly prune callers. This is similar to
2801  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2802  *
2803  * For now backtracking falls back into conservative marking.
2804  */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2805 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2806 				     struct bpf_verifier_state *st)
2807 {
2808 	struct bpf_func_state *func;
2809 	struct bpf_reg_state *reg;
2810 	int i, j;
2811 
2812 	/* big hammer: mark all scalars precise in this path.
2813 	 * pop_stack may still get !precise scalars.
2814 	 * We also skip current state and go straight to first parent state,
2815 	 * because precision markings in current non-checkpointed state are
2816 	 * not needed. See why in the comment in __mark_chain_precision below.
2817 	 */
2818 	for (st = st->parent; st; st = st->parent) {
2819 		for (i = 0; i <= st->curframe; i++) {
2820 			func = st->frame[i];
2821 			for (j = 0; j < BPF_REG_FP; j++) {
2822 				reg = &func->regs[j];
2823 				if (reg->type != SCALAR_VALUE)
2824 					continue;
2825 				reg->precise = true;
2826 			}
2827 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2828 				if (!is_spilled_reg(&func->stack[j]))
2829 					continue;
2830 				reg = &func->stack[j].spilled_ptr;
2831 				if (reg->type != SCALAR_VALUE)
2832 					continue;
2833 				reg->precise = true;
2834 			}
2835 		}
2836 	}
2837 }
2838 
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2839 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2840 {
2841 	struct bpf_func_state *func;
2842 	struct bpf_reg_state *reg;
2843 	int i, j;
2844 
2845 	for (i = 0; i <= st->curframe; i++) {
2846 		func = st->frame[i];
2847 		for (j = 0; j < BPF_REG_FP; j++) {
2848 			reg = &func->regs[j];
2849 			if (reg->type != SCALAR_VALUE)
2850 				continue;
2851 			reg->precise = false;
2852 		}
2853 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2854 			if (!is_spilled_reg(&func->stack[j]))
2855 				continue;
2856 			reg = &func->stack[j].spilled_ptr;
2857 			if (reg->type != SCALAR_VALUE)
2858 				continue;
2859 			reg->precise = false;
2860 		}
2861 	}
2862 }
2863 
2864 /*
2865  * __mark_chain_precision() backtracks BPF program instruction sequence and
2866  * chain of verifier states making sure that register *regno* (if regno >= 0)
2867  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2868  * SCALARS, as well as any other registers and slots that contribute to
2869  * a tracked state of given registers/stack slots, depending on specific BPF
2870  * assembly instructions (see backtrack_insns() for exact instruction handling
2871  * logic). This backtracking relies on recorded jmp_history and is able to
2872  * traverse entire chain of parent states. This process ends only when all the
2873  * necessary registers/slots and their transitive dependencies are marked as
2874  * precise.
2875  *
2876  * One important and subtle aspect is that precise marks *do not matter* in
2877  * the currently verified state (current state). It is important to understand
2878  * why this is the case.
2879  *
2880  * First, note that current state is the state that is not yet "checkpointed",
2881  * i.e., it is not yet put into env->explored_states, and it has no children
2882  * states as well. It's ephemeral, and can end up either a) being discarded if
2883  * compatible explored state is found at some point or BPF_EXIT instruction is
2884  * reached or b) checkpointed and put into env->explored_states, branching out
2885  * into one or more children states.
2886  *
2887  * In the former case, precise markings in current state are completely
2888  * ignored by state comparison code (see regsafe() for details). Only
2889  * checkpointed ("old") state precise markings are important, and if old
2890  * state's register/slot is precise, regsafe() assumes current state's
2891  * register/slot as precise and checks value ranges exactly and precisely. If
2892  * states turn out to be compatible, current state's necessary precise
2893  * markings and any required parent states' precise markings are enforced
2894  * after the fact with propagate_precision() logic, after the fact. But it's
2895  * important to realize that in this case, even after marking current state
2896  * registers/slots as precise, we immediately discard current state. So what
2897  * actually matters is any of the precise markings propagated into current
2898  * state's parent states, which are always checkpointed (due to b) case above).
2899  * As such, for scenario a) it doesn't matter if current state has precise
2900  * markings set or not.
2901  *
2902  * Now, for the scenario b), checkpointing and forking into child(ren)
2903  * state(s). Note that before current state gets to checkpointing step, any
2904  * processed instruction always assumes precise SCALAR register/slot
2905  * knowledge: if precise value or range is useful to prune jump branch, BPF
2906  * verifier takes this opportunity enthusiastically. Similarly, when
2907  * register's value is used to calculate offset or memory address, exact
2908  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2909  * what we mentioned above about state comparison ignoring precise markings
2910  * during state comparison, BPF verifier ignores and also assumes precise
2911  * markings *at will* during instruction verification process. But as verifier
2912  * assumes precision, it also propagates any precision dependencies across
2913  * parent states, which are not yet finalized, so can be further restricted
2914  * based on new knowledge gained from restrictions enforced by their children
2915  * states. This is so that once those parent states are finalized, i.e., when
2916  * they have no more active children state, state comparison logic in
2917  * is_state_visited() would enforce strict and precise SCALAR ranges, if
2918  * required for correctness.
2919  *
2920  * To build a bit more intuition, note also that once a state is checkpointed,
2921  * the path we took to get to that state is not important. This is crucial
2922  * property for state pruning. When state is checkpointed and finalized at
2923  * some instruction index, it can be correctly and safely used to "short
2924  * circuit" any *compatible* state that reaches exactly the same instruction
2925  * index. I.e., if we jumped to that instruction from a completely different
2926  * code path than original finalized state was derived from, it doesn't
2927  * matter, current state can be discarded because from that instruction
2928  * forward having a compatible state will ensure we will safely reach the
2929  * exit. States describe preconditions for further exploration, but completely
2930  * forget the history of how we got here.
2931  *
2932  * This also means that even if we needed precise SCALAR range to get to
2933  * finalized state, but from that point forward *that same* SCALAR register is
2934  * never used in a precise context (i.e., it's precise value is not needed for
2935  * correctness), it's correct and safe to mark such register as "imprecise"
2936  * (i.e., precise marking set to false). This is what we rely on when we do
2937  * not set precise marking in current state. If no child state requires
2938  * precision for any given SCALAR register, it's safe to dictate that it can
2939  * be imprecise. If any child state does require this register to be precise,
2940  * we'll mark it precise later retroactively during precise markings
2941  * propagation from child state to parent states.
2942  *
2943  * Skipping precise marking setting in current state is a mild version of
2944  * relying on the above observation. But we can utilize this property even
2945  * more aggressively by proactively forgetting any precise marking in the
2946  * current state (which we inherited from the parent state), right before we
2947  * checkpoint it and branch off into new child state. This is done by
2948  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2949  * finalized states which help in short circuiting more future states.
2950  */
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2951 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2952 				  int spi)
2953 {
2954 	struct bpf_verifier_state *st = env->cur_state;
2955 	int first_idx = st->first_insn_idx;
2956 	int last_idx = env->insn_idx;
2957 	struct bpf_func_state *func;
2958 	struct bpf_reg_state *reg;
2959 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2960 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2961 	bool skip_first = true;
2962 	bool new_marks = false;
2963 	int i, err;
2964 
2965 	if (!env->bpf_capable)
2966 		return 0;
2967 
2968 	/* Do sanity checks against current state of register and/or stack
2969 	 * slot, but don't set precise flag in current state, as precision
2970 	 * tracking in the current state is unnecessary.
2971 	 */
2972 	func = st->frame[frame];
2973 	if (regno >= 0) {
2974 		reg = &func->regs[regno];
2975 		if (reg->type != SCALAR_VALUE) {
2976 			WARN_ONCE(1, "backtracing misuse");
2977 			return -EFAULT;
2978 		}
2979 		new_marks = true;
2980 	}
2981 
2982 	while (spi >= 0) {
2983 		if (!is_spilled_reg(&func->stack[spi])) {
2984 			stack_mask = 0;
2985 			break;
2986 		}
2987 		reg = &func->stack[spi].spilled_ptr;
2988 		if (reg->type != SCALAR_VALUE) {
2989 			stack_mask = 0;
2990 			break;
2991 		}
2992 		new_marks = true;
2993 		break;
2994 	}
2995 
2996 	if (!new_marks)
2997 		return 0;
2998 	if (!reg_mask && !stack_mask)
2999 		return 0;
3000 
3001 	for (;;) {
3002 		DECLARE_BITMAP(mask, 64);
3003 		u32 history = st->jmp_history_cnt;
3004 
3005 		if (env->log.level & BPF_LOG_LEVEL2)
3006 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
3007 
3008 		if (last_idx < 0) {
3009 			/* we are at the entry into subprog, which
3010 			 * is expected for global funcs, but only if
3011 			 * requested precise registers are R1-R5
3012 			 * (which are global func's input arguments)
3013 			 */
3014 			if (st->curframe == 0 &&
3015 			    st->frame[0]->subprogno > 0 &&
3016 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
3017 			    stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
3018 				bitmap_from_u64(mask, reg_mask);
3019 				for_each_set_bit(i, mask, 32) {
3020 					reg = &st->frame[0]->regs[i];
3021 					if (reg->type != SCALAR_VALUE) {
3022 						reg_mask &= ~(1u << i);
3023 						continue;
3024 					}
3025 					reg->precise = true;
3026 				}
3027 				return 0;
3028 			}
3029 
3030 			verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
3031 				st->frame[0]->subprogno, reg_mask, stack_mask);
3032 			WARN_ONCE(1, "verifier backtracking bug");
3033 			return -EFAULT;
3034 		}
3035 
3036 		for (i = last_idx;;) {
3037 			if (skip_first) {
3038 				err = 0;
3039 				skip_first = false;
3040 			} else {
3041 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
3042 			}
3043 			if (err == -ENOTSUPP) {
3044 				mark_all_scalars_precise(env, st);
3045 				return 0;
3046 			} else if (err) {
3047 				return err;
3048 			}
3049 			if (!reg_mask && !stack_mask)
3050 				/* Found assignment(s) into tracked register in this state.
3051 				 * Since this state is already marked, just return.
3052 				 * Nothing to be tracked further in the parent state.
3053 				 */
3054 				return 0;
3055 			i = get_prev_insn_idx(st, i, &history);
3056 			if (i == -ENOENT)
3057 				break;
3058 			if (i >= env->prog->len) {
3059 				/* This can happen if backtracking reached insn 0
3060 				 * and there are still reg_mask or stack_mask
3061 				 * to backtrack.
3062 				 * It means the backtracking missed the spot where
3063 				 * particular register was initialized with a constant.
3064 				 */
3065 				verbose(env, "BUG backtracking idx %d\n", i);
3066 				WARN_ONCE(1, "verifier backtracking bug");
3067 				return -EFAULT;
3068 			}
3069 		}
3070 		st = st->parent;
3071 		if (!st)
3072 			break;
3073 
3074 		new_marks = false;
3075 		func = st->frame[frame];
3076 		bitmap_from_u64(mask, reg_mask);
3077 		for_each_set_bit(i, mask, 32) {
3078 			reg = &func->regs[i];
3079 			if (reg->type != SCALAR_VALUE) {
3080 				reg_mask &= ~(1u << i);
3081 				continue;
3082 			}
3083 			if (!reg->precise)
3084 				new_marks = true;
3085 			reg->precise = true;
3086 		}
3087 
3088 		bitmap_from_u64(mask, stack_mask);
3089 		for_each_set_bit(i, mask, 64) {
3090 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
3091 				/* the sequence of instructions:
3092 				 * 2: (bf) r3 = r10
3093 				 * 3: (7b) *(u64 *)(r3 -8) = r0
3094 				 * 4: (79) r4 = *(u64 *)(r10 -8)
3095 				 * doesn't contain jmps. It's backtracked
3096 				 * as a single block.
3097 				 * During backtracking insn 3 is not recognized as
3098 				 * stack access, so at the end of backtracking
3099 				 * stack slot fp-8 is still marked in stack_mask.
3100 				 * However the parent state may not have accessed
3101 				 * fp-8 and it's "unallocated" stack space.
3102 				 * In such case fallback to conservative.
3103 				 */
3104 				mark_all_scalars_precise(env, st);
3105 				return 0;
3106 			}
3107 
3108 			if (!is_spilled_reg(&func->stack[i])) {
3109 				stack_mask &= ~(1ull << i);
3110 				continue;
3111 			}
3112 			reg = &func->stack[i].spilled_ptr;
3113 			if (reg->type != SCALAR_VALUE) {
3114 				stack_mask &= ~(1ull << i);
3115 				continue;
3116 			}
3117 			if (!reg->precise)
3118 				new_marks = true;
3119 			reg->precise = true;
3120 		}
3121 		if (env->log.level & BPF_LOG_LEVEL2) {
3122 			verbose(env, "parent %s regs=%x stack=%llx marks:",
3123 				new_marks ? "didn't have" : "already had",
3124 				reg_mask, stack_mask);
3125 			print_verifier_state(env, func, true);
3126 		}
3127 
3128 		if (!reg_mask && !stack_mask)
3129 			break;
3130 		if (!new_marks)
3131 			break;
3132 
3133 		last_idx = st->last_insn_idx;
3134 		first_idx = st->first_insn_idx;
3135 	}
3136 	return 0;
3137 }
3138 
mark_chain_precision(struct bpf_verifier_env * env,int regno)3139 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
3140 {
3141 	return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
3142 }
3143 
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)3144 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
3145 {
3146 	return __mark_chain_precision(env, frame, regno, -1);
3147 }
3148 
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)3149 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
3150 {
3151 	return __mark_chain_precision(env, frame, -1, spi);
3152 }
3153 
is_spillable_regtype(enum bpf_reg_type type)3154 static bool is_spillable_regtype(enum bpf_reg_type type)
3155 {
3156 	switch (base_type(type)) {
3157 	case PTR_TO_MAP_VALUE:
3158 	case PTR_TO_STACK:
3159 	case PTR_TO_CTX:
3160 	case PTR_TO_PACKET:
3161 	case PTR_TO_PACKET_META:
3162 	case PTR_TO_PACKET_END:
3163 	case PTR_TO_FLOW_KEYS:
3164 	case CONST_PTR_TO_MAP:
3165 	case PTR_TO_SOCKET:
3166 	case PTR_TO_SOCK_COMMON:
3167 	case PTR_TO_TCP_SOCK:
3168 	case PTR_TO_XDP_SOCK:
3169 	case PTR_TO_BTF_ID:
3170 	case PTR_TO_BUF:
3171 	case PTR_TO_MEM:
3172 	case PTR_TO_FUNC:
3173 	case PTR_TO_MAP_KEY:
3174 		return true;
3175 	default:
3176 		return false;
3177 	}
3178 }
3179 
3180 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)3181 static bool register_is_null(struct bpf_reg_state *reg)
3182 {
3183 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3184 }
3185 
register_is_const(struct bpf_reg_state * reg)3186 static bool register_is_const(struct bpf_reg_state *reg)
3187 {
3188 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3189 }
3190 
__is_scalar_unbounded(struct bpf_reg_state * reg)3191 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3192 {
3193 	return tnum_is_unknown(reg->var_off) &&
3194 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3195 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3196 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3197 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3198 }
3199 
register_is_bounded(struct bpf_reg_state * reg)3200 static bool register_is_bounded(struct bpf_reg_state *reg)
3201 {
3202 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3203 }
3204 
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)3205 static bool __is_pointer_value(bool allow_ptr_leaks,
3206 			       const struct bpf_reg_state *reg)
3207 {
3208 	if (allow_ptr_leaks)
3209 		return false;
3210 
3211 	return reg->type != SCALAR_VALUE;
3212 }
3213 
3214 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)3215 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
3216 {
3217 	struct bpf_reg_state *parent = dst->parent;
3218 	enum bpf_reg_liveness live = dst->live;
3219 
3220 	*dst = *src;
3221 	dst->parent = parent;
3222 	dst->live = live;
3223 }
3224 
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)3225 static void save_register_state(struct bpf_func_state *state,
3226 				int spi, struct bpf_reg_state *reg,
3227 				int size)
3228 {
3229 	int i;
3230 
3231 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
3232 	if (size == BPF_REG_SIZE)
3233 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3234 
3235 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3236 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
3237 
3238 	/* size < 8 bytes spill */
3239 	for (; i; i--)
3240 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
3241 }
3242 
is_bpf_st_mem(struct bpf_insn * insn)3243 static bool is_bpf_st_mem(struct bpf_insn *insn)
3244 {
3245 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
3246 }
3247 
3248 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
3249  * stack boundary and alignment are checked in check_mem_access()
3250  */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)3251 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3252 				       /* stack frame we're writing to */
3253 				       struct bpf_func_state *state,
3254 				       int off, int size, int value_regno,
3255 				       int insn_idx)
3256 {
3257 	struct bpf_func_state *cur; /* state of the current function */
3258 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3259 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3260 	struct bpf_reg_state *reg = NULL;
3261 	u32 dst_reg = insn->dst_reg;
3262 
3263 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3264 	if (err)
3265 		return err;
3266 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3267 	 * so it's aligned access and [off, off + size) are within stack limits
3268 	 */
3269 	if (!env->allow_ptr_leaks &&
3270 	    is_spilled_reg(&state->stack[spi]) &&
3271 	    size != BPF_REG_SIZE) {
3272 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3273 		return -EACCES;
3274 	}
3275 
3276 	cur = env->cur_state->frame[env->cur_state->curframe];
3277 	if (value_regno >= 0)
3278 		reg = &cur->regs[value_regno];
3279 	if (!env->bypass_spec_v4) {
3280 		bool sanitize = reg && is_spillable_regtype(reg->type);
3281 
3282 		for (i = 0; i < size; i++) {
3283 			u8 type = state->stack[spi].slot_type[i];
3284 
3285 			if (type != STACK_MISC && type != STACK_ZERO) {
3286 				sanitize = true;
3287 				break;
3288 			}
3289 		}
3290 
3291 		if (sanitize)
3292 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3293 	}
3294 
3295 	mark_stack_slot_scratched(env, spi);
3296 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3297 	    !register_is_null(reg) && env->bpf_capable) {
3298 		if (dst_reg != BPF_REG_FP) {
3299 			/* The backtracking logic can only recognize explicit
3300 			 * stack slot address like [fp - 8]. Other spill of
3301 			 * scalar via different register has to be conservative.
3302 			 * Backtrack from here and mark all registers as precise
3303 			 * that contributed into 'reg' being a constant.
3304 			 */
3305 			err = mark_chain_precision(env, value_regno);
3306 			if (err)
3307 				return err;
3308 		}
3309 		save_register_state(state, spi, reg, size);
3310 		/* Break the relation on a narrowing spill. */
3311 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
3312 			state->stack[spi].spilled_ptr.id = 0;
3313 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
3314 		   insn->imm != 0 && env->bpf_capable) {
3315 		struct bpf_reg_state fake_reg = {};
3316 
3317 		__mark_reg_known(&fake_reg, insn->imm);
3318 		fake_reg.type = SCALAR_VALUE;
3319 		save_register_state(state, spi, &fake_reg, size);
3320 	} else if (reg && is_spillable_regtype(reg->type)) {
3321 		/* register containing pointer is being spilled into stack */
3322 		if (size != BPF_REG_SIZE) {
3323 			verbose_linfo(env, insn_idx, "; ");
3324 			verbose(env, "invalid size of register spill\n");
3325 			return -EACCES;
3326 		}
3327 		if (state != cur && reg->type == PTR_TO_STACK) {
3328 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3329 			return -EINVAL;
3330 		}
3331 		save_register_state(state, spi, reg, size);
3332 	} else {
3333 		u8 type = STACK_MISC;
3334 
3335 		/* regular write of data into stack destroys any spilled ptr */
3336 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3337 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3338 		if (is_spilled_reg(&state->stack[spi]))
3339 			for (i = 0; i < BPF_REG_SIZE; i++)
3340 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3341 
3342 		/* only mark the slot as written if all 8 bytes were written
3343 		 * otherwise read propagation may incorrectly stop too soon
3344 		 * when stack slots are partially written.
3345 		 * This heuristic means that read propagation will be
3346 		 * conservative, since it will add reg_live_read marks
3347 		 * to stack slots all the way to first state when programs
3348 		 * writes+reads less than 8 bytes
3349 		 */
3350 		if (size == BPF_REG_SIZE)
3351 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3352 
3353 		/* when we zero initialize stack slots mark them as such */
3354 		if ((reg && register_is_null(reg)) ||
3355 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
3356 			/* backtracking doesn't work for STACK_ZERO yet. */
3357 			err = mark_chain_precision(env, value_regno);
3358 			if (err)
3359 				return err;
3360 			type = STACK_ZERO;
3361 		}
3362 
3363 		/* Mark slots affected by this stack write. */
3364 		for (i = 0; i < size; i++)
3365 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3366 				type;
3367 	}
3368 	return 0;
3369 }
3370 
3371 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3372  * known to contain a variable offset.
3373  * This function checks whether the write is permitted and conservatively
3374  * tracks the effects of the write, considering that each stack slot in the
3375  * dynamic range is potentially written to.
3376  *
3377  * 'off' includes 'regno->off'.
3378  * 'value_regno' can be -1, meaning that an unknown value is being written to
3379  * the stack.
3380  *
3381  * Spilled pointers in range are not marked as written because we don't know
3382  * what's going to be actually written. This means that read propagation for
3383  * future reads cannot be terminated by this write.
3384  *
3385  * For privileged programs, uninitialized stack slots are considered
3386  * initialized by this write (even though we don't know exactly what offsets
3387  * are going to be written to). The idea is that we don't want the verifier to
3388  * reject future reads that access slots written to through variable offsets.
3389  */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)3390 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3391 				     /* func where register points to */
3392 				     struct bpf_func_state *state,
3393 				     int ptr_regno, int off, int size,
3394 				     int value_regno, int insn_idx)
3395 {
3396 	struct bpf_func_state *cur; /* state of the current function */
3397 	int min_off, max_off;
3398 	int i, err;
3399 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3400 	bool writing_zero = false;
3401 	/* set if the fact that we're writing a zero is used to let any
3402 	 * stack slots remain STACK_ZERO
3403 	 */
3404 	bool zero_used = false;
3405 
3406 	cur = env->cur_state->frame[env->cur_state->curframe];
3407 	ptr_reg = &cur->regs[ptr_regno];
3408 	min_off = ptr_reg->smin_value + off;
3409 	max_off = ptr_reg->smax_value + off + size;
3410 	if (value_regno >= 0)
3411 		value_reg = &cur->regs[value_regno];
3412 	if (value_reg && register_is_null(value_reg))
3413 		writing_zero = true;
3414 
3415 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3416 	if (err)
3417 		return err;
3418 
3419 
3420 	/* Variable offset writes destroy any spilled pointers in range. */
3421 	for (i = min_off; i < max_off; i++) {
3422 		u8 new_type, *stype;
3423 		int slot, spi;
3424 
3425 		slot = -i - 1;
3426 		spi = slot / BPF_REG_SIZE;
3427 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3428 		mark_stack_slot_scratched(env, spi);
3429 
3430 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3431 			/* Reject the write if range we may write to has not
3432 			 * been initialized beforehand. If we didn't reject
3433 			 * here, the ptr status would be erased below (even
3434 			 * though not all slots are actually overwritten),
3435 			 * possibly opening the door to leaks.
3436 			 *
3437 			 * We do however catch STACK_INVALID case below, and
3438 			 * only allow reading possibly uninitialized memory
3439 			 * later for CAP_PERFMON, as the write may not happen to
3440 			 * that slot.
3441 			 */
3442 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3443 				insn_idx, i);
3444 			return -EINVAL;
3445 		}
3446 
3447 		/* Erase all spilled pointers. */
3448 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3449 
3450 		/* Update the slot type. */
3451 		new_type = STACK_MISC;
3452 		if (writing_zero && *stype == STACK_ZERO) {
3453 			new_type = STACK_ZERO;
3454 			zero_used = true;
3455 		}
3456 		/* If the slot is STACK_INVALID, we check whether it's OK to
3457 		 * pretend that it will be initialized by this write. The slot
3458 		 * might not actually be written to, and so if we mark it as
3459 		 * initialized future reads might leak uninitialized memory.
3460 		 * For privileged programs, we will accept such reads to slots
3461 		 * that may or may not be written because, if we're reject
3462 		 * them, the error would be too confusing.
3463 		 */
3464 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3465 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3466 					insn_idx, i);
3467 			return -EINVAL;
3468 		}
3469 		*stype = new_type;
3470 	}
3471 	if (zero_used) {
3472 		/* backtracking doesn't work for STACK_ZERO yet. */
3473 		err = mark_chain_precision(env, value_regno);
3474 		if (err)
3475 			return err;
3476 	}
3477 	return 0;
3478 }
3479 
3480 /* When register 'dst_regno' is assigned some values from stack[min_off,
3481  * max_off), we set the register's type according to the types of the
3482  * respective stack slots. If all the stack values are known to be zeros, then
3483  * so is the destination reg. Otherwise, the register is considered to be
3484  * SCALAR. This function does not deal with register filling; the caller must
3485  * ensure that all spilled registers in the stack range have been marked as
3486  * read.
3487  */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)3488 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3489 				/* func where src register points to */
3490 				struct bpf_func_state *ptr_state,
3491 				int min_off, int max_off, int dst_regno)
3492 {
3493 	struct bpf_verifier_state *vstate = env->cur_state;
3494 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3495 	int i, slot, spi;
3496 	u8 *stype;
3497 	int zeros = 0;
3498 
3499 	for (i = min_off; i < max_off; i++) {
3500 		slot = -i - 1;
3501 		spi = slot / BPF_REG_SIZE;
3502 		stype = ptr_state->stack[spi].slot_type;
3503 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3504 			break;
3505 		zeros++;
3506 	}
3507 	if (zeros == max_off - min_off) {
3508 		/* any access_size read into register is zero extended,
3509 		 * so the whole register == const_zero
3510 		 */
3511 		__mark_reg_const_zero(&state->regs[dst_regno]);
3512 		/* backtracking doesn't support STACK_ZERO yet,
3513 		 * so mark it precise here, so that later
3514 		 * backtracking can stop here.
3515 		 * Backtracking may not need this if this register
3516 		 * doesn't participate in pointer adjustment.
3517 		 * Forward propagation of precise flag is not
3518 		 * necessary either. This mark is only to stop
3519 		 * backtracking. Any register that contributed
3520 		 * to const 0 was marked precise before spill.
3521 		 */
3522 		state->regs[dst_regno].precise = true;
3523 	} else {
3524 		/* have read misc data from the stack */
3525 		mark_reg_unknown(env, state->regs, dst_regno);
3526 	}
3527 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3528 }
3529 
3530 /* Read the stack at 'off' and put the results into the register indicated by
3531  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3532  * spilled reg.
3533  *
3534  * 'dst_regno' can be -1, meaning that the read value is not going to a
3535  * register.
3536  *
3537  * The access is assumed to be within the current stack bounds.
3538  */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)3539 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3540 				      /* func where src register points to */
3541 				      struct bpf_func_state *reg_state,
3542 				      int off, int size, int dst_regno)
3543 {
3544 	struct bpf_verifier_state *vstate = env->cur_state;
3545 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3546 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3547 	struct bpf_reg_state *reg;
3548 	u8 *stype, type;
3549 
3550 	stype = reg_state->stack[spi].slot_type;
3551 	reg = &reg_state->stack[spi].spilled_ptr;
3552 
3553 	if (is_spilled_reg(&reg_state->stack[spi])) {
3554 		u8 spill_size = 1;
3555 
3556 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3557 			spill_size++;
3558 
3559 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3560 			if (reg->type != SCALAR_VALUE) {
3561 				verbose_linfo(env, env->insn_idx, "; ");
3562 				verbose(env, "invalid size of register fill\n");
3563 				return -EACCES;
3564 			}
3565 
3566 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3567 			if (dst_regno < 0)
3568 				return 0;
3569 
3570 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3571 				/* The earlier check_reg_arg() has decided the
3572 				 * subreg_def for this insn.  Save it first.
3573 				 */
3574 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3575 
3576 				copy_register_state(&state->regs[dst_regno], reg);
3577 				state->regs[dst_regno].subreg_def = subreg_def;
3578 			} else {
3579 				for (i = 0; i < size; i++) {
3580 					type = stype[(slot - i) % BPF_REG_SIZE];
3581 					if (type == STACK_SPILL)
3582 						continue;
3583 					if (type == STACK_MISC)
3584 						continue;
3585 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3586 						off, i, size);
3587 					return -EACCES;
3588 				}
3589 				mark_reg_unknown(env, state->regs, dst_regno);
3590 			}
3591 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3592 			return 0;
3593 		}
3594 
3595 		if (dst_regno >= 0) {
3596 			/* restore register state from stack */
3597 			copy_register_state(&state->regs[dst_regno], reg);
3598 			/* mark reg as written since spilled pointer state likely
3599 			 * has its liveness marks cleared by is_state_visited()
3600 			 * which resets stack/reg liveness for state transitions
3601 			 */
3602 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3603 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3604 			/* If dst_regno==-1, the caller is asking us whether
3605 			 * it is acceptable to use this value as a SCALAR_VALUE
3606 			 * (e.g. for XADD).
3607 			 * We must not allow unprivileged callers to do that
3608 			 * with spilled pointers.
3609 			 */
3610 			verbose(env, "leaking pointer from stack off %d\n",
3611 				off);
3612 			return -EACCES;
3613 		}
3614 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3615 	} else {
3616 		for (i = 0; i < size; i++) {
3617 			type = stype[(slot - i) % BPF_REG_SIZE];
3618 			if (type == STACK_MISC)
3619 				continue;
3620 			if (type == STACK_ZERO)
3621 				continue;
3622 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3623 				off, i, size);
3624 			return -EACCES;
3625 		}
3626 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3627 		if (dst_regno >= 0)
3628 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3629 	}
3630 	return 0;
3631 }
3632 
3633 enum bpf_access_src {
3634 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3635 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3636 };
3637 
3638 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3639 					 int regno, int off, int access_size,
3640 					 bool zero_size_allowed,
3641 					 enum bpf_access_src type,
3642 					 struct bpf_call_arg_meta *meta);
3643 
reg_state(struct bpf_verifier_env * env,int regno)3644 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3645 {
3646 	return cur_regs(env) + regno;
3647 }
3648 
3649 /* Read the stack at 'ptr_regno + off' and put the result into the register
3650  * 'dst_regno'.
3651  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3652  * but not its variable offset.
3653  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3654  *
3655  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3656  * filling registers (i.e. reads of spilled register cannot be detected when
3657  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3658  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3659  * offset; for a fixed offset check_stack_read_fixed_off should be used
3660  * instead.
3661  */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3662 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3663 				    int ptr_regno, int off, int size, int dst_regno)
3664 {
3665 	/* The state of the source register. */
3666 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3667 	struct bpf_func_state *ptr_state = func(env, reg);
3668 	int err;
3669 	int min_off, max_off;
3670 
3671 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3672 	 */
3673 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3674 					    false, ACCESS_DIRECT, NULL);
3675 	if (err)
3676 		return err;
3677 
3678 	min_off = reg->smin_value + off;
3679 	max_off = reg->smax_value + off;
3680 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3681 	return 0;
3682 }
3683 
3684 /* check_stack_read dispatches to check_stack_read_fixed_off or
3685  * check_stack_read_var_off.
3686  *
3687  * The caller must ensure that the offset falls within the allocated stack
3688  * bounds.
3689  *
3690  * 'dst_regno' is a register which will receive the value from the stack. It
3691  * can be -1, meaning that the read value is not going to a register.
3692  */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)3693 static int check_stack_read(struct bpf_verifier_env *env,
3694 			    int ptr_regno, int off, int size,
3695 			    int dst_regno)
3696 {
3697 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3698 	struct bpf_func_state *state = func(env, reg);
3699 	int err;
3700 	/* Some accesses are only permitted with a static offset. */
3701 	bool var_off = !tnum_is_const(reg->var_off);
3702 
3703 	/* The offset is required to be static when reads don't go to a
3704 	 * register, in order to not leak pointers (see
3705 	 * check_stack_read_fixed_off).
3706 	 */
3707 	if (dst_regno < 0 && var_off) {
3708 		char tn_buf[48];
3709 
3710 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3711 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3712 			tn_buf, off, size);
3713 		return -EACCES;
3714 	}
3715 	/* Variable offset is prohibited for unprivileged mode for simplicity
3716 	 * since it requires corresponding support in Spectre masking for stack
3717 	 * ALU. See also retrieve_ptr_limit(). The check in
3718 	 * check_stack_access_for_ptr_arithmetic() called by
3719 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
3720 	 * with variable offsets, therefore no check is required here. Further,
3721 	 * just checking it here would be insufficient as speculative stack
3722 	 * writes could still lead to unsafe speculative behaviour.
3723 	 */
3724 	if (!var_off) {
3725 		off += reg->var_off.value;
3726 		err = check_stack_read_fixed_off(env, state, off, size,
3727 						 dst_regno);
3728 	} else {
3729 		/* Variable offset stack reads need more conservative handling
3730 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3731 		 * branch.
3732 		 */
3733 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3734 					       dst_regno);
3735 	}
3736 	return err;
3737 }
3738 
3739 
3740 /* check_stack_write dispatches to check_stack_write_fixed_off or
3741  * check_stack_write_var_off.
3742  *
3743  * 'ptr_regno' is the register used as a pointer into the stack.
3744  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3745  * 'value_regno' is the register whose value we're writing to the stack. It can
3746  * be -1, meaning that we're not writing from a register.
3747  *
3748  * The caller must ensure that the offset falls within the maximum stack size.
3749  */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)3750 static int check_stack_write(struct bpf_verifier_env *env,
3751 			     int ptr_regno, int off, int size,
3752 			     int value_regno, int insn_idx)
3753 {
3754 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3755 	struct bpf_func_state *state = func(env, reg);
3756 	int err;
3757 
3758 	if (tnum_is_const(reg->var_off)) {
3759 		off += reg->var_off.value;
3760 		err = check_stack_write_fixed_off(env, state, off, size,
3761 						  value_regno, insn_idx);
3762 	} else {
3763 		/* Variable offset stack reads need more conservative handling
3764 		 * than fixed offset ones.
3765 		 */
3766 		err = check_stack_write_var_off(env, state,
3767 						ptr_regno, off, size,
3768 						value_regno, insn_idx);
3769 	}
3770 	return err;
3771 }
3772 
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)3773 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3774 				 int off, int size, enum bpf_access_type type)
3775 {
3776 	struct bpf_reg_state *regs = cur_regs(env);
3777 	struct bpf_map *map = regs[regno].map_ptr;
3778 	u32 cap = bpf_map_flags_to_cap(map);
3779 
3780 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3781 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3782 			map->value_size, off, size);
3783 		return -EACCES;
3784 	}
3785 
3786 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3787 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3788 			map->value_size, off, size);
3789 		return -EACCES;
3790 	}
3791 
3792 	return 0;
3793 }
3794 
3795 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)3796 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3797 			      int off, int size, u32 mem_size,
3798 			      bool zero_size_allowed)
3799 {
3800 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3801 	struct bpf_reg_state *reg;
3802 
3803 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3804 		return 0;
3805 
3806 	reg = &cur_regs(env)[regno];
3807 	switch (reg->type) {
3808 	case PTR_TO_MAP_KEY:
3809 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3810 			mem_size, off, size);
3811 		break;
3812 	case PTR_TO_MAP_VALUE:
3813 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3814 			mem_size, off, size);
3815 		break;
3816 	case PTR_TO_PACKET:
3817 	case PTR_TO_PACKET_META:
3818 	case PTR_TO_PACKET_END:
3819 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3820 			off, size, regno, reg->id, off, mem_size);
3821 		break;
3822 	case PTR_TO_MEM:
3823 	default:
3824 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3825 			mem_size, off, size);
3826 	}
3827 
3828 	return -EACCES;
3829 }
3830 
3831 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)3832 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3833 				   int off, int size, u32 mem_size,
3834 				   bool zero_size_allowed)
3835 {
3836 	struct bpf_verifier_state *vstate = env->cur_state;
3837 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3838 	struct bpf_reg_state *reg = &state->regs[regno];
3839 	int err;
3840 
3841 	/* We may have adjusted the register pointing to memory region, so we
3842 	 * need to try adding each of min_value and max_value to off
3843 	 * to make sure our theoretical access will be safe.
3844 	 *
3845 	 * The minimum value is only important with signed
3846 	 * comparisons where we can't assume the floor of a
3847 	 * value is 0.  If we are using signed variables for our
3848 	 * index'es we need to make sure that whatever we use
3849 	 * will have a set floor within our range.
3850 	 */
3851 	if (reg->smin_value < 0 &&
3852 	    (reg->smin_value == S64_MIN ||
3853 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3854 	      reg->smin_value + off < 0)) {
3855 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3856 			regno);
3857 		return -EACCES;
3858 	}
3859 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3860 				 mem_size, zero_size_allowed);
3861 	if (err) {
3862 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3863 			regno);
3864 		return err;
3865 	}
3866 
3867 	/* If we haven't set a max value then we need to bail since we can't be
3868 	 * sure we won't do bad things.
3869 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3870 	 */
3871 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3872 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3873 			regno);
3874 		return -EACCES;
3875 	}
3876 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3877 				 mem_size, zero_size_allowed);
3878 	if (err) {
3879 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3880 			regno);
3881 		return err;
3882 	}
3883 
3884 	return 0;
3885 }
3886 
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)3887 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3888 			       const struct bpf_reg_state *reg, int regno,
3889 			       bool fixed_off_ok)
3890 {
3891 	/* Access to this pointer-typed register or passing it to a helper
3892 	 * is only allowed in its original, unmodified form.
3893 	 */
3894 
3895 	if (reg->off < 0) {
3896 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3897 			reg_type_str(env, reg->type), regno, reg->off);
3898 		return -EACCES;
3899 	}
3900 
3901 	if (!fixed_off_ok && reg->off) {
3902 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3903 			reg_type_str(env, reg->type), regno, reg->off);
3904 		return -EACCES;
3905 	}
3906 
3907 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3908 		char tn_buf[48];
3909 
3910 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3911 		verbose(env, "variable %s access var_off=%s disallowed\n",
3912 			reg_type_str(env, reg->type), tn_buf);
3913 		return -EACCES;
3914 	}
3915 
3916 	return 0;
3917 }
3918 
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3919 int check_ptr_off_reg(struct bpf_verifier_env *env,
3920 		      const struct bpf_reg_state *reg, int regno)
3921 {
3922 	return __check_ptr_off_reg(env, reg, regno, false);
3923 }
3924 
map_kptr_match_type(struct bpf_verifier_env * env,struct bpf_map_value_off_desc * off_desc,struct bpf_reg_state * reg,u32 regno)3925 static int map_kptr_match_type(struct bpf_verifier_env *env,
3926 			       struct bpf_map_value_off_desc *off_desc,
3927 			       struct bpf_reg_state *reg, u32 regno)
3928 {
3929 	const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
3930 	int perm_flags = PTR_MAYBE_NULL;
3931 	const char *reg_name = "";
3932 
3933 	/* Only unreferenced case accepts untrusted pointers */
3934 	if (off_desc->type == BPF_KPTR_UNREF)
3935 		perm_flags |= PTR_UNTRUSTED;
3936 
3937 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3938 		goto bad_type;
3939 
3940 	if (!btf_is_kernel(reg->btf)) {
3941 		verbose(env, "R%d must point to kernel BTF\n", regno);
3942 		return -EINVAL;
3943 	}
3944 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3945 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3946 
3947 	/* For ref_ptr case, release function check should ensure we get one
3948 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3949 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3950 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3951 	 * reg->off and reg->ref_obj_id are not needed here.
3952 	 */
3953 	if (__check_ptr_off_reg(env, reg, regno, true))
3954 		return -EACCES;
3955 
3956 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3957 	 * we also need to take into account the reg->off.
3958 	 *
3959 	 * We want to support cases like:
3960 	 *
3961 	 * struct foo {
3962 	 *         struct bar br;
3963 	 *         struct baz bz;
3964 	 * };
3965 	 *
3966 	 * struct foo *v;
3967 	 * v = func();	      // PTR_TO_BTF_ID
3968 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3969 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3970 	 *                    // first member type of struct after comparison fails
3971 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3972 	 *                    // to match type
3973 	 *
3974 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3975 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3976 	 * the struct to match type against first member of struct, i.e. reject
3977 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3978 	 * strict mode to true for type match.
3979 	 */
3980 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3981 				  off_desc->kptr.btf, off_desc->kptr.btf_id,
3982 				  off_desc->type == BPF_KPTR_REF))
3983 		goto bad_type;
3984 	return 0;
3985 bad_type:
3986 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3987 		reg_type_str(env, reg->type), reg_name);
3988 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3989 	if (off_desc->type == BPF_KPTR_UNREF)
3990 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3991 			targ_name);
3992 	else
3993 		verbose(env, "\n");
3994 	return -EINVAL;
3995 }
3996 
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct bpf_map_value_off_desc * off_desc)3997 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3998 				 int value_regno, int insn_idx,
3999 				 struct bpf_map_value_off_desc *off_desc)
4000 {
4001 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4002 	int class = BPF_CLASS(insn->code);
4003 	struct bpf_reg_state *val_reg;
4004 
4005 	/* Things we already checked for in check_map_access and caller:
4006 	 *  - Reject cases where variable offset may touch kptr
4007 	 *  - size of access (must be BPF_DW)
4008 	 *  - tnum_is_const(reg->var_off)
4009 	 *  - off_desc->offset == off + reg->var_off.value
4010 	 */
4011 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
4012 	if (BPF_MODE(insn->code) != BPF_MEM) {
4013 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
4014 		return -EACCES;
4015 	}
4016 
4017 	/* We only allow loading referenced kptr, since it will be marked as
4018 	 * untrusted, similar to unreferenced kptr.
4019 	 */
4020 	if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
4021 		verbose(env, "store to referenced kptr disallowed\n");
4022 		return -EACCES;
4023 	}
4024 
4025 	if (class == BPF_LDX) {
4026 		val_reg = reg_state(env, value_regno);
4027 		/* We can simply mark the value_regno receiving the pointer
4028 		 * value from map as PTR_TO_BTF_ID, with the correct type.
4029 		 */
4030 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
4031 				off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
4032 		/* For mark_ptr_or_null_reg */
4033 		val_reg->id = ++env->id_gen;
4034 	} else if (class == BPF_STX) {
4035 		val_reg = reg_state(env, value_regno);
4036 		if (!register_is_null(val_reg) &&
4037 		    map_kptr_match_type(env, off_desc, val_reg, value_regno))
4038 			return -EACCES;
4039 	} else if (class == BPF_ST) {
4040 		if (insn->imm) {
4041 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
4042 				off_desc->offset);
4043 			return -EACCES;
4044 		}
4045 	} else {
4046 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
4047 		return -EACCES;
4048 	}
4049 	return 0;
4050 }
4051 
4052 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)4053 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
4054 			    int off, int size, bool zero_size_allowed,
4055 			    enum bpf_access_src src)
4056 {
4057 	struct bpf_verifier_state *vstate = env->cur_state;
4058 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4059 	struct bpf_reg_state *reg = &state->regs[regno];
4060 	struct bpf_map *map = reg->map_ptr;
4061 	int err;
4062 
4063 	err = check_mem_region_access(env, regno, off, size, map->value_size,
4064 				      zero_size_allowed);
4065 	if (err)
4066 		return err;
4067 
4068 	if (map_value_has_spin_lock(map)) {
4069 		u32 lock = map->spin_lock_off;
4070 
4071 		/* if any part of struct bpf_spin_lock can be touched by
4072 		 * load/store reject this program.
4073 		 * To check that [x1, x2) overlaps with [y1, y2)
4074 		 * it is sufficient to check x1 < y2 && y1 < x2.
4075 		 */
4076 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
4077 		     lock < reg->umax_value + off + size) {
4078 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
4079 			return -EACCES;
4080 		}
4081 	}
4082 	if (map_value_has_timer(map)) {
4083 		u32 t = map->timer_off;
4084 
4085 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
4086 		     t < reg->umax_value + off + size) {
4087 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
4088 			return -EACCES;
4089 		}
4090 	}
4091 	if (map_value_has_kptrs(map)) {
4092 		struct bpf_map_value_off *tab = map->kptr_off_tab;
4093 		int i;
4094 
4095 		for (i = 0; i < tab->nr_off; i++) {
4096 			u32 p = tab->off[i].offset;
4097 
4098 			if (reg->smin_value + off < p + sizeof(u64) &&
4099 			    p < reg->umax_value + off + size) {
4100 				if (src != ACCESS_DIRECT) {
4101 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
4102 					return -EACCES;
4103 				}
4104 				if (!tnum_is_const(reg->var_off)) {
4105 					verbose(env, "kptr access cannot have variable offset\n");
4106 					return -EACCES;
4107 				}
4108 				if (p != off + reg->var_off.value) {
4109 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4110 						p, off + reg->var_off.value);
4111 					return -EACCES;
4112 				}
4113 				if (size != bpf_size_to_bytes(BPF_DW)) {
4114 					verbose(env, "kptr access size must be BPF_DW\n");
4115 					return -EACCES;
4116 				}
4117 				break;
4118 			}
4119 		}
4120 	}
4121 	return err;
4122 }
4123 
4124 #define MAX_PACKET_OFF 0xffff
4125 
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)4126 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
4127 				       const struct bpf_call_arg_meta *meta,
4128 				       enum bpf_access_type t)
4129 {
4130 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4131 
4132 	switch (prog_type) {
4133 	/* Program types only with direct read access go here! */
4134 	case BPF_PROG_TYPE_LWT_IN:
4135 	case BPF_PROG_TYPE_LWT_OUT:
4136 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
4137 	case BPF_PROG_TYPE_SK_REUSEPORT:
4138 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4139 	case BPF_PROG_TYPE_CGROUP_SKB:
4140 		if (t == BPF_WRITE)
4141 			return false;
4142 		fallthrough;
4143 
4144 	/* Program types with direct read + write access go here! */
4145 	case BPF_PROG_TYPE_SCHED_CLS:
4146 	case BPF_PROG_TYPE_SCHED_ACT:
4147 	case BPF_PROG_TYPE_XDP:
4148 	case BPF_PROG_TYPE_LWT_XMIT:
4149 	case BPF_PROG_TYPE_SK_SKB:
4150 	case BPF_PROG_TYPE_SK_MSG:
4151 		if (meta)
4152 			return meta->pkt_access;
4153 
4154 		env->seen_direct_write = true;
4155 		return true;
4156 
4157 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4158 		if (t == BPF_WRITE)
4159 			env->seen_direct_write = true;
4160 
4161 		return true;
4162 
4163 	default:
4164 		return false;
4165 	}
4166 }
4167 
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)4168 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
4169 			       int size, bool zero_size_allowed)
4170 {
4171 	struct bpf_reg_state *regs = cur_regs(env);
4172 	struct bpf_reg_state *reg = &regs[regno];
4173 	int err;
4174 
4175 	/* We may have added a variable offset to the packet pointer; but any
4176 	 * reg->range we have comes after that.  We are only checking the fixed
4177 	 * offset.
4178 	 */
4179 
4180 	/* We don't allow negative numbers, because we aren't tracking enough
4181 	 * detail to prove they're safe.
4182 	 */
4183 	if (reg->smin_value < 0) {
4184 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4185 			regno);
4186 		return -EACCES;
4187 	}
4188 
4189 	err = reg->range < 0 ? -EINVAL :
4190 	      __check_mem_access(env, regno, off, size, reg->range,
4191 				 zero_size_allowed);
4192 	if (err) {
4193 		verbose(env, "R%d offset is outside of the packet\n", regno);
4194 		return err;
4195 	}
4196 
4197 	/* __check_mem_access has made sure "off + size - 1" is within u16.
4198 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4199 	 * otherwise find_good_pkt_pointers would have refused to set range info
4200 	 * that __check_mem_access would have rejected this pkt access.
4201 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4202 	 */
4203 	env->prog->aux->max_pkt_offset =
4204 		max_t(u32, env->prog->aux->max_pkt_offset,
4205 		      off + reg->umax_value + size - 1);
4206 
4207 	return err;
4208 }
4209 
4210 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)4211 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
4212 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
4213 			    struct btf **btf, u32 *btf_id)
4214 {
4215 	struct bpf_insn_access_aux info = {
4216 		.reg_type = *reg_type,
4217 		.log = &env->log,
4218 	};
4219 
4220 	if (env->ops->is_valid_access &&
4221 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
4222 		/* A non zero info.ctx_field_size indicates that this field is a
4223 		 * candidate for later verifier transformation to load the whole
4224 		 * field and then apply a mask when accessed with a narrower
4225 		 * access than actual ctx access size. A zero info.ctx_field_size
4226 		 * will only allow for whole field access and rejects any other
4227 		 * type of narrower access.
4228 		 */
4229 		*reg_type = info.reg_type;
4230 
4231 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
4232 			*btf = info.btf;
4233 			*btf_id = info.btf_id;
4234 		} else {
4235 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
4236 		}
4237 		/* remember the offset of last byte accessed in ctx */
4238 		if (env->prog->aux->max_ctx_offset < off + size)
4239 			env->prog->aux->max_ctx_offset = off + size;
4240 		return 0;
4241 	}
4242 
4243 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
4244 	return -EACCES;
4245 }
4246 
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)4247 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4248 				  int size)
4249 {
4250 	if (size < 0 || off < 0 ||
4251 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
4252 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
4253 			off, size);
4254 		return -EACCES;
4255 	}
4256 	return 0;
4257 }
4258 
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)4259 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4260 			     u32 regno, int off, int size,
4261 			     enum bpf_access_type t)
4262 {
4263 	struct bpf_reg_state *regs = cur_regs(env);
4264 	struct bpf_reg_state *reg = &regs[regno];
4265 	struct bpf_insn_access_aux info = {};
4266 	bool valid;
4267 
4268 	if (reg->smin_value < 0) {
4269 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4270 			regno);
4271 		return -EACCES;
4272 	}
4273 
4274 	switch (reg->type) {
4275 	case PTR_TO_SOCK_COMMON:
4276 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4277 		break;
4278 	case PTR_TO_SOCKET:
4279 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4280 		break;
4281 	case PTR_TO_TCP_SOCK:
4282 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4283 		break;
4284 	case PTR_TO_XDP_SOCK:
4285 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4286 		break;
4287 	default:
4288 		valid = false;
4289 	}
4290 
4291 
4292 	if (valid) {
4293 		env->insn_aux_data[insn_idx].ctx_field_size =
4294 			info.ctx_field_size;
4295 		return 0;
4296 	}
4297 
4298 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4299 		regno, reg_type_str(env, reg->type), off, size);
4300 
4301 	return -EACCES;
4302 }
4303 
is_pointer_value(struct bpf_verifier_env * env,int regno)4304 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4305 {
4306 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4307 }
4308 
is_ctx_reg(struct bpf_verifier_env * env,int regno)4309 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4310 {
4311 	const struct bpf_reg_state *reg = reg_state(env, regno);
4312 
4313 	return reg->type == PTR_TO_CTX;
4314 }
4315 
is_sk_reg(struct bpf_verifier_env * env,int regno)4316 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4317 {
4318 	const struct bpf_reg_state *reg = reg_state(env, regno);
4319 
4320 	return type_is_sk_pointer(reg->type);
4321 }
4322 
is_pkt_reg(struct bpf_verifier_env * env,int regno)4323 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4324 {
4325 	const struct bpf_reg_state *reg = reg_state(env, regno);
4326 
4327 	return type_is_pkt_pointer(reg->type);
4328 }
4329 
is_flow_key_reg(struct bpf_verifier_env * env,int regno)4330 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4331 {
4332 	const struct bpf_reg_state *reg = reg_state(env, regno);
4333 
4334 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4335 	return reg->type == PTR_TO_FLOW_KEYS;
4336 }
4337 
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)4338 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4339 				   const struct bpf_reg_state *reg,
4340 				   int off, int size, bool strict)
4341 {
4342 	struct tnum reg_off;
4343 	int ip_align;
4344 
4345 	/* Byte size accesses are always allowed. */
4346 	if (!strict || size == 1)
4347 		return 0;
4348 
4349 	/* For platforms that do not have a Kconfig enabling
4350 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4351 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4352 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4353 	 * to this code only in strict mode where we want to emulate
4354 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4355 	 * unconditional IP align value of '2'.
4356 	 */
4357 	ip_align = 2;
4358 
4359 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4360 	if (!tnum_is_aligned(reg_off, size)) {
4361 		char tn_buf[48];
4362 
4363 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4364 		verbose(env,
4365 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4366 			ip_align, tn_buf, reg->off, off, size);
4367 		return -EACCES;
4368 	}
4369 
4370 	return 0;
4371 }
4372 
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)4373 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4374 				       const struct bpf_reg_state *reg,
4375 				       const char *pointer_desc,
4376 				       int off, int size, bool strict)
4377 {
4378 	struct tnum reg_off;
4379 
4380 	/* Byte size accesses are always allowed. */
4381 	if (!strict || size == 1)
4382 		return 0;
4383 
4384 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4385 	if (!tnum_is_aligned(reg_off, size)) {
4386 		char tn_buf[48];
4387 
4388 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4389 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4390 			pointer_desc, tn_buf, reg->off, off, size);
4391 		return -EACCES;
4392 	}
4393 
4394 	return 0;
4395 }
4396 
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)4397 static int check_ptr_alignment(struct bpf_verifier_env *env,
4398 			       const struct bpf_reg_state *reg, int off,
4399 			       int size, bool strict_alignment_once)
4400 {
4401 	bool strict = env->strict_alignment || strict_alignment_once;
4402 	const char *pointer_desc = "";
4403 
4404 	switch (reg->type) {
4405 	case PTR_TO_PACKET:
4406 	case PTR_TO_PACKET_META:
4407 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4408 		 * right in front, treat it the very same way.
4409 		 */
4410 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4411 	case PTR_TO_FLOW_KEYS:
4412 		pointer_desc = "flow keys ";
4413 		break;
4414 	case PTR_TO_MAP_KEY:
4415 		pointer_desc = "key ";
4416 		break;
4417 	case PTR_TO_MAP_VALUE:
4418 		pointer_desc = "value ";
4419 		break;
4420 	case PTR_TO_CTX:
4421 		pointer_desc = "context ";
4422 		break;
4423 	case PTR_TO_STACK:
4424 		pointer_desc = "stack ";
4425 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4426 		 * and check_stack_read_fixed_off() relies on stack accesses being
4427 		 * aligned.
4428 		 */
4429 		strict = true;
4430 		break;
4431 	case PTR_TO_SOCKET:
4432 		pointer_desc = "sock ";
4433 		break;
4434 	case PTR_TO_SOCK_COMMON:
4435 		pointer_desc = "sock_common ";
4436 		break;
4437 	case PTR_TO_TCP_SOCK:
4438 		pointer_desc = "tcp_sock ";
4439 		break;
4440 	case PTR_TO_XDP_SOCK:
4441 		pointer_desc = "xdp_sock ";
4442 		break;
4443 	default:
4444 		break;
4445 	}
4446 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4447 					   strict);
4448 }
4449 
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)4450 static int update_stack_depth(struct bpf_verifier_env *env,
4451 			      const struct bpf_func_state *func,
4452 			      int off)
4453 {
4454 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4455 
4456 	if (stack >= -off)
4457 		return 0;
4458 
4459 	/* update known max for given subprogram */
4460 	env->subprog_info[func->subprogno].stack_depth = -off;
4461 	return 0;
4462 }
4463 
4464 /* starting from main bpf function walk all instructions of the function
4465  * and recursively walk all callees that given function can call.
4466  * Ignore jump and exit insns.
4467  * Since recursion is prevented by check_cfg() this algorithm
4468  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4469  */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx)4470 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
4471 {
4472 	struct bpf_subprog_info *subprog = env->subprog_info;
4473 	struct bpf_insn *insn = env->prog->insnsi;
4474 	int depth = 0, frame = 0, i, subprog_end;
4475 	bool tail_call_reachable = false;
4476 	int ret_insn[MAX_CALL_FRAMES];
4477 	int ret_prog[MAX_CALL_FRAMES];
4478 	int j;
4479 
4480 	i = subprog[idx].start;
4481 process_func:
4482 	/* protect against potential stack overflow that might happen when
4483 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4484 	 * depth for such case down to 256 so that the worst case scenario
4485 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4486 	 * 8k).
4487 	 *
4488 	 * To get the idea what might happen, see an example:
4489 	 * func1 -> sub rsp, 128
4490 	 *  subfunc1 -> sub rsp, 256
4491 	 *  tailcall1 -> add rsp, 256
4492 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4493 	 *   subfunc2 -> sub rsp, 64
4494 	 *   subfunc22 -> sub rsp, 128
4495 	 *   tailcall2 -> add rsp, 128
4496 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4497 	 *
4498 	 * tailcall will unwind the current stack frame but it will not get rid
4499 	 * of caller's stack as shown on the example above.
4500 	 */
4501 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4502 		verbose(env,
4503 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4504 			depth);
4505 		return -EACCES;
4506 	}
4507 	/* round up to 32-bytes, since this is granularity
4508 	 * of interpreter stack size
4509 	 */
4510 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4511 	if (depth > MAX_BPF_STACK) {
4512 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4513 			frame + 1, depth);
4514 		return -EACCES;
4515 	}
4516 continue_func:
4517 	subprog_end = subprog[idx + 1].start;
4518 	for (; i < subprog_end; i++) {
4519 		int next_insn, sidx;
4520 
4521 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4522 			continue;
4523 		/* remember insn and function to return to */
4524 		ret_insn[frame] = i + 1;
4525 		ret_prog[frame] = idx;
4526 
4527 		/* find the callee */
4528 		next_insn = i + insn[i].imm + 1;
4529 		sidx = find_subprog(env, next_insn);
4530 		if (sidx < 0) {
4531 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4532 				  next_insn);
4533 			return -EFAULT;
4534 		}
4535 		if (subprog[sidx].is_async_cb) {
4536 			if (subprog[sidx].has_tail_call) {
4537 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4538 				return -EFAULT;
4539 			}
4540 			/* async callbacks don't increase bpf prog stack size unless called directly */
4541 			if (!bpf_pseudo_call(insn + i))
4542 				continue;
4543 		}
4544 		i = next_insn;
4545 		idx = sidx;
4546 
4547 		if (subprog[idx].has_tail_call)
4548 			tail_call_reachable = true;
4549 
4550 		frame++;
4551 		if (frame >= MAX_CALL_FRAMES) {
4552 			verbose(env, "the call stack of %d frames is too deep !\n",
4553 				frame);
4554 			return -E2BIG;
4555 		}
4556 		goto process_func;
4557 	}
4558 	/* if tail call got detected across bpf2bpf calls then mark each of the
4559 	 * currently present subprog frames as tail call reachable subprogs;
4560 	 * this info will be utilized by JIT so that we will be preserving the
4561 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4562 	 */
4563 	if (tail_call_reachable)
4564 		for (j = 0; j < frame; j++)
4565 			subprog[ret_prog[j]].tail_call_reachable = true;
4566 	if (subprog[0].tail_call_reachable)
4567 		env->prog->aux->tail_call_reachable = true;
4568 
4569 	/* end of for() loop means the last insn of the 'subprog'
4570 	 * was reached. Doesn't matter whether it was JA or EXIT
4571 	 */
4572 	if (frame == 0)
4573 		return 0;
4574 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4575 	frame--;
4576 	i = ret_insn[frame];
4577 	idx = ret_prog[frame];
4578 	goto continue_func;
4579 }
4580 
check_max_stack_depth(struct bpf_verifier_env * env)4581 static int check_max_stack_depth(struct bpf_verifier_env *env)
4582 {
4583 	struct bpf_subprog_info *si = env->subprog_info;
4584 	int ret;
4585 
4586 	for (int i = 0; i < env->subprog_cnt; i++) {
4587 		if (!i || si[i].is_async_cb) {
4588 			ret = check_max_stack_depth_subprog(env, i);
4589 			if (ret < 0)
4590 				return ret;
4591 		}
4592 		continue;
4593 	}
4594 	return 0;
4595 }
4596 
4597 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)4598 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4599 				  const struct bpf_insn *insn, int idx)
4600 {
4601 	int start = idx + insn->imm + 1, subprog;
4602 
4603 	subprog = find_subprog(env, start);
4604 	if (subprog < 0) {
4605 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4606 			  start);
4607 		return -EFAULT;
4608 	}
4609 	return env->subprog_info[subprog].stack_depth;
4610 }
4611 #endif
4612 
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)4613 static int __check_buffer_access(struct bpf_verifier_env *env,
4614 				 const char *buf_info,
4615 				 const struct bpf_reg_state *reg,
4616 				 int regno, int off, int size)
4617 {
4618 	if (off < 0) {
4619 		verbose(env,
4620 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4621 			regno, buf_info, off, size);
4622 		return -EACCES;
4623 	}
4624 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4625 		char tn_buf[48];
4626 
4627 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4628 		verbose(env,
4629 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4630 			regno, off, tn_buf);
4631 		return -EACCES;
4632 	}
4633 
4634 	return 0;
4635 }
4636 
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)4637 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4638 				  const struct bpf_reg_state *reg,
4639 				  int regno, int off, int size)
4640 {
4641 	int err;
4642 
4643 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4644 	if (err)
4645 		return err;
4646 
4647 	if (off + size > env->prog->aux->max_tp_access)
4648 		env->prog->aux->max_tp_access = off + size;
4649 
4650 	return 0;
4651 }
4652 
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)4653 static int check_buffer_access(struct bpf_verifier_env *env,
4654 			       const struct bpf_reg_state *reg,
4655 			       int regno, int off, int size,
4656 			       bool zero_size_allowed,
4657 			       u32 *max_access)
4658 {
4659 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4660 	int err;
4661 
4662 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4663 	if (err)
4664 		return err;
4665 
4666 	if (off + size > *max_access)
4667 		*max_access = off + size;
4668 
4669 	return 0;
4670 }
4671 
4672 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)4673 static void zext_32_to_64(struct bpf_reg_state *reg)
4674 {
4675 	reg->var_off = tnum_subreg(reg->var_off);
4676 	__reg_assign_32_into_64(reg);
4677 }
4678 
4679 /* truncate register to smaller size (in bytes)
4680  * must be called with size < BPF_REG_SIZE
4681  */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)4682 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4683 {
4684 	u64 mask;
4685 
4686 	/* clear high bits in bit representation */
4687 	reg->var_off = tnum_cast(reg->var_off, size);
4688 
4689 	/* fix arithmetic bounds */
4690 	mask = ((u64)1 << (size * 8)) - 1;
4691 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4692 		reg->umin_value &= mask;
4693 		reg->umax_value &= mask;
4694 	} else {
4695 		reg->umin_value = 0;
4696 		reg->umax_value = mask;
4697 	}
4698 	reg->smin_value = reg->umin_value;
4699 	reg->smax_value = reg->umax_value;
4700 
4701 	/* If size is smaller than 32bit register the 32bit register
4702 	 * values are also truncated so we push 64-bit bounds into
4703 	 * 32-bit bounds. Above were truncated < 32-bits already.
4704 	 */
4705 	if (size >= 4)
4706 		return;
4707 	__reg_combine_64_into_32(reg);
4708 }
4709 
bpf_map_is_rdonly(const struct bpf_map * map)4710 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4711 {
4712 	/* A map is considered read-only if the following condition are true:
4713 	 *
4714 	 * 1) BPF program side cannot change any of the map content. The
4715 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4716 	 *    and was set at map creation time.
4717 	 * 2) The map value(s) have been initialized from user space by a
4718 	 *    loader and then "frozen", such that no new map update/delete
4719 	 *    operations from syscall side are possible for the rest of
4720 	 *    the map's lifetime from that point onwards.
4721 	 * 3) Any parallel/pending map update/delete operations from syscall
4722 	 *    side have been completed. Only after that point, it's safe to
4723 	 *    assume that map value(s) are immutable.
4724 	 */
4725 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4726 	       READ_ONCE(map->frozen) &&
4727 	       !bpf_map_write_active(map);
4728 }
4729 
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)4730 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4731 {
4732 	void *ptr;
4733 	u64 addr;
4734 	int err;
4735 
4736 	err = map->ops->map_direct_value_addr(map, &addr, off);
4737 	if (err)
4738 		return err;
4739 	ptr = (void *)(long)addr + off;
4740 
4741 	switch (size) {
4742 	case sizeof(u8):
4743 		*val = (u64)*(u8 *)ptr;
4744 		break;
4745 	case sizeof(u16):
4746 		*val = (u64)*(u16 *)ptr;
4747 		break;
4748 	case sizeof(u32):
4749 		*val = (u64)*(u32 *)ptr;
4750 		break;
4751 	case sizeof(u64):
4752 		*val = *(u64 *)ptr;
4753 		break;
4754 	default:
4755 		return -EINVAL;
4756 	}
4757 	return 0;
4758 }
4759 
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4760 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4761 				   struct bpf_reg_state *regs,
4762 				   int regno, int off, int size,
4763 				   enum bpf_access_type atype,
4764 				   int value_regno)
4765 {
4766 	struct bpf_reg_state *reg = regs + regno;
4767 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4768 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4769 	enum bpf_type_flag flag = 0;
4770 	u32 btf_id;
4771 	int ret;
4772 
4773 	if (off < 0) {
4774 		verbose(env,
4775 			"R%d is ptr_%s invalid negative access: off=%d\n",
4776 			regno, tname, off);
4777 		return -EACCES;
4778 	}
4779 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4780 		char tn_buf[48];
4781 
4782 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4783 		verbose(env,
4784 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4785 			regno, tname, off, tn_buf);
4786 		return -EACCES;
4787 	}
4788 
4789 	if (reg->type & MEM_USER) {
4790 		verbose(env,
4791 			"R%d is ptr_%s access user memory: off=%d\n",
4792 			regno, tname, off);
4793 		return -EACCES;
4794 	}
4795 
4796 	if (reg->type & MEM_PERCPU) {
4797 		verbose(env,
4798 			"R%d is ptr_%s access percpu memory: off=%d\n",
4799 			regno, tname, off);
4800 		return -EACCES;
4801 	}
4802 
4803 	if (env->ops->btf_struct_access) {
4804 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4805 						  off, size, atype, &btf_id, &flag);
4806 	} else {
4807 		if (atype != BPF_READ) {
4808 			verbose(env, "only read is supported\n");
4809 			return -EACCES;
4810 		}
4811 
4812 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4813 					atype, &btf_id, &flag);
4814 	}
4815 
4816 	if (ret < 0)
4817 		return ret;
4818 
4819 	/* If this is an untrusted pointer, all pointers formed by walking it
4820 	 * also inherit the untrusted flag.
4821 	 */
4822 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4823 		flag |= PTR_UNTRUSTED;
4824 
4825 	if (atype == BPF_READ && value_regno >= 0)
4826 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4827 
4828 	return 0;
4829 }
4830 
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)4831 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4832 				   struct bpf_reg_state *regs,
4833 				   int regno, int off, int size,
4834 				   enum bpf_access_type atype,
4835 				   int value_regno)
4836 {
4837 	struct bpf_reg_state *reg = regs + regno;
4838 	struct bpf_map *map = reg->map_ptr;
4839 	enum bpf_type_flag flag = 0;
4840 	const struct btf_type *t;
4841 	const char *tname;
4842 	u32 btf_id;
4843 	int ret;
4844 
4845 	if (!btf_vmlinux) {
4846 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4847 		return -ENOTSUPP;
4848 	}
4849 
4850 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4851 		verbose(env, "map_ptr access not supported for map type %d\n",
4852 			map->map_type);
4853 		return -ENOTSUPP;
4854 	}
4855 
4856 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4857 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4858 
4859 	if (!env->allow_ptr_to_map_access) {
4860 		verbose(env,
4861 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4862 			tname);
4863 		return -EPERM;
4864 	}
4865 
4866 	if (off < 0) {
4867 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4868 			regno, tname, off);
4869 		return -EACCES;
4870 	}
4871 
4872 	if (atype != BPF_READ) {
4873 		verbose(env, "only read from %s is supported\n", tname);
4874 		return -EACCES;
4875 	}
4876 
4877 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
4878 	if (ret < 0)
4879 		return ret;
4880 
4881 	if (value_regno >= 0)
4882 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4883 
4884 	return 0;
4885 }
4886 
4887 /* Check that the stack access at the given offset is within bounds. The
4888  * maximum valid offset is -1.
4889  *
4890  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4891  * -state->allocated_stack for reads.
4892  */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)4893 static int check_stack_slot_within_bounds(int off,
4894 					  struct bpf_func_state *state,
4895 					  enum bpf_access_type t)
4896 {
4897 	int min_valid_off;
4898 
4899 	if (t == BPF_WRITE)
4900 		min_valid_off = -MAX_BPF_STACK;
4901 	else
4902 		min_valid_off = -state->allocated_stack;
4903 
4904 	if (off < min_valid_off || off > -1)
4905 		return -EACCES;
4906 	return 0;
4907 }
4908 
4909 /* Check that the stack access at 'regno + off' falls within the maximum stack
4910  * bounds.
4911  *
4912  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4913  */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)4914 static int check_stack_access_within_bounds(
4915 		struct bpf_verifier_env *env,
4916 		int regno, int off, int access_size,
4917 		enum bpf_access_src src, enum bpf_access_type type)
4918 {
4919 	struct bpf_reg_state *regs = cur_regs(env);
4920 	struct bpf_reg_state *reg = regs + regno;
4921 	struct bpf_func_state *state = func(env, reg);
4922 	int min_off, max_off;
4923 	int err;
4924 	char *err_extra;
4925 
4926 	if (src == ACCESS_HELPER)
4927 		/* We don't know if helpers are reading or writing (or both). */
4928 		err_extra = " indirect access to";
4929 	else if (type == BPF_READ)
4930 		err_extra = " read from";
4931 	else
4932 		err_extra = " write to";
4933 
4934 	if (tnum_is_const(reg->var_off)) {
4935 		min_off = reg->var_off.value + off;
4936 		max_off = min_off + access_size;
4937 	} else {
4938 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4939 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4940 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4941 				err_extra, regno);
4942 			return -EACCES;
4943 		}
4944 		min_off = reg->smin_value + off;
4945 		max_off = reg->smax_value + off + access_size;
4946 	}
4947 
4948 	err = check_stack_slot_within_bounds(min_off, state, type);
4949 	if (!err && max_off > 0)
4950 		err = -EINVAL; /* out of stack access into non-negative offsets */
4951 
4952 	if (err) {
4953 		if (tnum_is_const(reg->var_off)) {
4954 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4955 				err_extra, regno, off, access_size);
4956 		} else {
4957 			char tn_buf[48];
4958 
4959 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4960 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4961 				err_extra, regno, tn_buf, access_size);
4962 		}
4963 	}
4964 	return err;
4965 }
4966 
4967 /* check whether memory at (regno + off) is accessible for t = (read | write)
4968  * if t==write, value_regno is a register which value is stored into memory
4969  * if t==read, value_regno is a register which will receive the value from memory
4970  * if t==write && value_regno==-1, some unknown value is stored into memory
4971  * if t==read && value_regno==-1, don't care what we read from memory
4972  */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)4973 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4974 			    int off, int bpf_size, enum bpf_access_type t,
4975 			    int value_regno, bool strict_alignment_once)
4976 {
4977 	struct bpf_reg_state *regs = cur_regs(env);
4978 	struct bpf_reg_state *reg = regs + regno;
4979 	struct bpf_func_state *state;
4980 	int size, err = 0;
4981 
4982 	size = bpf_size_to_bytes(bpf_size);
4983 	if (size < 0)
4984 		return size;
4985 
4986 	/* alignment checks will add in reg->off themselves */
4987 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4988 	if (err)
4989 		return err;
4990 
4991 	/* for access checks, reg->off is just part of off */
4992 	off += reg->off;
4993 
4994 	if (reg->type == PTR_TO_MAP_KEY) {
4995 		if (t == BPF_WRITE) {
4996 			verbose(env, "write to change key R%d not allowed\n", regno);
4997 			return -EACCES;
4998 		}
4999 
5000 		err = check_mem_region_access(env, regno, off, size,
5001 					      reg->map_ptr->key_size, false);
5002 		if (err)
5003 			return err;
5004 		if (value_regno >= 0)
5005 			mark_reg_unknown(env, regs, value_regno);
5006 	} else if (reg->type == PTR_TO_MAP_VALUE) {
5007 		struct bpf_map_value_off_desc *kptr_off_desc = NULL;
5008 
5009 		if (t == BPF_WRITE && value_regno >= 0 &&
5010 		    is_pointer_value(env, value_regno)) {
5011 			verbose(env, "R%d leaks addr into map\n", value_regno);
5012 			return -EACCES;
5013 		}
5014 		err = check_map_access_type(env, regno, off, size, t);
5015 		if (err)
5016 			return err;
5017 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
5018 		if (err)
5019 			return err;
5020 		if (tnum_is_const(reg->var_off))
5021 			kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
5022 								  off + reg->var_off.value);
5023 		if (kptr_off_desc) {
5024 			err = check_map_kptr_access(env, regno, value_regno, insn_idx,
5025 						    kptr_off_desc);
5026 		} else if (t == BPF_READ && value_regno >= 0) {
5027 			struct bpf_map *map = reg->map_ptr;
5028 
5029 			/* if map is read-only, track its contents as scalars */
5030 			if (tnum_is_const(reg->var_off) &&
5031 			    bpf_map_is_rdonly(map) &&
5032 			    map->ops->map_direct_value_addr) {
5033 				int map_off = off + reg->var_off.value;
5034 				u64 val = 0;
5035 
5036 				err = bpf_map_direct_read(map, map_off, size,
5037 							  &val);
5038 				if (err)
5039 					return err;
5040 
5041 				regs[value_regno].type = SCALAR_VALUE;
5042 				__mark_reg_known(&regs[value_regno], val);
5043 			} else {
5044 				mark_reg_unknown(env, regs, value_regno);
5045 			}
5046 		}
5047 	} else if (base_type(reg->type) == PTR_TO_MEM) {
5048 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5049 
5050 		if (type_may_be_null(reg->type)) {
5051 			verbose(env, "R%d invalid mem access '%s'\n", regno,
5052 				reg_type_str(env, reg->type));
5053 			return -EACCES;
5054 		}
5055 
5056 		if (t == BPF_WRITE && rdonly_mem) {
5057 			verbose(env, "R%d cannot write into %s\n",
5058 				regno, reg_type_str(env, reg->type));
5059 			return -EACCES;
5060 		}
5061 
5062 		if (t == BPF_WRITE && value_regno >= 0 &&
5063 		    is_pointer_value(env, value_regno)) {
5064 			verbose(env, "R%d leaks addr into mem\n", value_regno);
5065 			return -EACCES;
5066 		}
5067 
5068 		err = check_mem_region_access(env, regno, off, size,
5069 					      reg->mem_size, false);
5070 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
5071 			mark_reg_unknown(env, regs, value_regno);
5072 	} else if (reg->type == PTR_TO_CTX) {
5073 		enum bpf_reg_type reg_type = SCALAR_VALUE;
5074 		struct btf *btf = NULL;
5075 		u32 btf_id = 0;
5076 
5077 		if (t == BPF_WRITE && value_regno >= 0 &&
5078 		    is_pointer_value(env, value_regno)) {
5079 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
5080 			return -EACCES;
5081 		}
5082 
5083 		err = check_ptr_off_reg(env, reg, regno);
5084 		if (err < 0)
5085 			return err;
5086 
5087 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5088 				       &btf_id);
5089 		if (err)
5090 			verbose_linfo(env, insn_idx, "; ");
5091 		if (!err && t == BPF_READ && value_regno >= 0) {
5092 			/* ctx access returns either a scalar, or a
5093 			 * PTR_TO_PACKET[_META,_END]. In the latter
5094 			 * case, we know the offset is zero.
5095 			 */
5096 			if (reg_type == SCALAR_VALUE) {
5097 				mark_reg_unknown(env, regs, value_regno);
5098 			} else {
5099 				mark_reg_known_zero(env, regs,
5100 						    value_regno);
5101 				if (type_may_be_null(reg_type))
5102 					regs[value_regno].id = ++env->id_gen;
5103 				/* A load of ctx field could have different
5104 				 * actual load size with the one encoded in the
5105 				 * insn. When the dst is PTR, it is for sure not
5106 				 * a sub-register.
5107 				 */
5108 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
5109 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
5110 					regs[value_regno].btf = btf;
5111 					regs[value_regno].btf_id = btf_id;
5112 				}
5113 			}
5114 			regs[value_regno].type = reg_type;
5115 		}
5116 
5117 	} else if (reg->type == PTR_TO_STACK) {
5118 		/* Basic bounds checks. */
5119 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
5120 		if (err)
5121 			return err;
5122 
5123 		state = func(env, reg);
5124 		err = update_stack_depth(env, state, off);
5125 		if (err)
5126 			return err;
5127 
5128 		if (t == BPF_READ)
5129 			err = check_stack_read(env, regno, off, size,
5130 					       value_regno);
5131 		else
5132 			err = check_stack_write(env, regno, off, size,
5133 						value_regno, insn_idx);
5134 	} else if (reg_is_pkt_pointer(reg)) {
5135 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
5136 			verbose(env, "cannot write into packet\n");
5137 			return -EACCES;
5138 		}
5139 		if (t == BPF_WRITE && value_regno >= 0 &&
5140 		    is_pointer_value(env, value_regno)) {
5141 			verbose(env, "R%d leaks addr into packet\n",
5142 				value_regno);
5143 			return -EACCES;
5144 		}
5145 		err = check_packet_access(env, regno, off, size, false);
5146 		if (!err && t == BPF_READ && value_regno >= 0)
5147 			mark_reg_unknown(env, regs, value_regno);
5148 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
5149 		if (t == BPF_WRITE && value_regno >= 0 &&
5150 		    is_pointer_value(env, value_regno)) {
5151 			verbose(env, "R%d leaks addr into flow keys\n",
5152 				value_regno);
5153 			return -EACCES;
5154 		}
5155 
5156 		err = check_flow_keys_access(env, off, size);
5157 		if (!err && t == BPF_READ && value_regno >= 0)
5158 			mark_reg_unknown(env, regs, value_regno);
5159 	} else if (type_is_sk_pointer(reg->type)) {
5160 		if (t == BPF_WRITE) {
5161 			verbose(env, "R%d cannot write into %s\n",
5162 				regno, reg_type_str(env, reg->type));
5163 			return -EACCES;
5164 		}
5165 		err = check_sock_access(env, insn_idx, regno, off, size, t);
5166 		if (!err && value_regno >= 0)
5167 			mark_reg_unknown(env, regs, value_regno);
5168 	} else if (reg->type == PTR_TO_TP_BUFFER) {
5169 		err = check_tp_buffer_access(env, reg, regno, off, size);
5170 		if (!err && t == BPF_READ && value_regno >= 0)
5171 			mark_reg_unknown(env, regs, value_regno);
5172 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5173 		   !type_may_be_null(reg->type)) {
5174 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5175 					      value_regno);
5176 	} else if (reg->type == CONST_PTR_TO_MAP) {
5177 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5178 					      value_regno);
5179 	} else if (base_type(reg->type) == PTR_TO_BUF) {
5180 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
5181 		u32 *max_access;
5182 
5183 		if (rdonly_mem) {
5184 			if (t == BPF_WRITE) {
5185 				verbose(env, "R%d cannot write into %s\n",
5186 					regno, reg_type_str(env, reg->type));
5187 				return -EACCES;
5188 			}
5189 			max_access = &env->prog->aux->max_rdonly_access;
5190 		} else {
5191 			max_access = &env->prog->aux->max_rdwr_access;
5192 		}
5193 
5194 		err = check_buffer_access(env, reg, regno, off, size, false,
5195 					  max_access);
5196 
5197 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
5198 			mark_reg_unknown(env, regs, value_regno);
5199 	} else {
5200 		verbose(env, "R%d invalid mem access '%s'\n", regno,
5201 			reg_type_str(env, reg->type));
5202 		return -EACCES;
5203 	}
5204 
5205 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
5206 	    regs[value_regno].type == SCALAR_VALUE) {
5207 		/* b/h/w load zero-extends, mark upper bits as known 0 */
5208 		coerce_reg_to_size(&regs[value_regno], size);
5209 	}
5210 	return err;
5211 }
5212 
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)5213 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
5214 {
5215 	int load_reg;
5216 	int err;
5217 
5218 	switch (insn->imm) {
5219 	case BPF_ADD:
5220 	case BPF_ADD | BPF_FETCH:
5221 	case BPF_AND:
5222 	case BPF_AND | BPF_FETCH:
5223 	case BPF_OR:
5224 	case BPF_OR | BPF_FETCH:
5225 	case BPF_XOR:
5226 	case BPF_XOR | BPF_FETCH:
5227 	case BPF_XCHG:
5228 	case BPF_CMPXCHG:
5229 		break;
5230 	default:
5231 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5232 		return -EINVAL;
5233 	}
5234 
5235 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5236 		verbose(env, "invalid atomic operand size\n");
5237 		return -EINVAL;
5238 	}
5239 
5240 	/* check src1 operand */
5241 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
5242 	if (err)
5243 		return err;
5244 
5245 	/* check src2 operand */
5246 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5247 	if (err)
5248 		return err;
5249 
5250 	if (insn->imm == BPF_CMPXCHG) {
5251 		/* Check comparison of R0 with memory location */
5252 		const u32 aux_reg = BPF_REG_0;
5253 
5254 		err = check_reg_arg(env, aux_reg, SRC_OP);
5255 		if (err)
5256 			return err;
5257 
5258 		if (is_pointer_value(env, aux_reg)) {
5259 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
5260 			return -EACCES;
5261 		}
5262 	}
5263 
5264 	if (is_pointer_value(env, insn->src_reg)) {
5265 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
5266 		return -EACCES;
5267 	}
5268 
5269 	if (is_ctx_reg(env, insn->dst_reg) ||
5270 	    is_pkt_reg(env, insn->dst_reg) ||
5271 	    is_flow_key_reg(env, insn->dst_reg) ||
5272 	    is_sk_reg(env, insn->dst_reg)) {
5273 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
5274 			insn->dst_reg,
5275 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
5276 		return -EACCES;
5277 	}
5278 
5279 	if (insn->imm & BPF_FETCH) {
5280 		if (insn->imm == BPF_CMPXCHG)
5281 			load_reg = BPF_REG_0;
5282 		else
5283 			load_reg = insn->src_reg;
5284 
5285 		/* check and record load of old value */
5286 		err = check_reg_arg(env, load_reg, DST_OP);
5287 		if (err)
5288 			return err;
5289 	} else {
5290 		/* This instruction accesses a memory location but doesn't
5291 		 * actually load it into a register.
5292 		 */
5293 		load_reg = -1;
5294 	}
5295 
5296 	/* Check whether we can read the memory, with second call for fetch
5297 	 * case to simulate the register fill.
5298 	 */
5299 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5300 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5301 	if (!err && load_reg >= 0)
5302 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5303 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5304 				       true);
5305 	if (err)
5306 		return err;
5307 
5308 	/* Check whether we can write into the same memory. */
5309 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5310 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5311 	if (err)
5312 		return err;
5313 
5314 	return 0;
5315 }
5316 
5317 /* When register 'regno' is used to read the stack (either directly or through
5318  * a helper function) make sure that it's within stack boundary and, depending
5319  * on the access type, that all elements of the stack are initialized.
5320  *
5321  * 'off' includes 'regno->off', but not its dynamic part (if any).
5322  *
5323  * All registers that have been spilled on the stack in the slots within the
5324  * read offsets are marked as read.
5325  */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)5326 static int check_stack_range_initialized(
5327 		struct bpf_verifier_env *env, int regno, int off,
5328 		int access_size, bool zero_size_allowed,
5329 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5330 {
5331 	struct bpf_reg_state *reg = reg_state(env, regno);
5332 	struct bpf_func_state *state = func(env, reg);
5333 	int err, min_off, max_off, i, j, slot, spi;
5334 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5335 	enum bpf_access_type bounds_check_type;
5336 	/* Some accesses can write anything into the stack, others are
5337 	 * read-only.
5338 	 */
5339 	bool clobber = false;
5340 
5341 	if (access_size == 0 && !zero_size_allowed) {
5342 		verbose(env, "invalid zero-sized read\n");
5343 		return -EACCES;
5344 	}
5345 
5346 	if (type == ACCESS_HELPER) {
5347 		/* The bounds checks for writes are more permissive than for
5348 		 * reads. However, if raw_mode is not set, we'll do extra
5349 		 * checks below.
5350 		 */
5351 		bounds_check_type = BPF_WRITE;
5352 		clobber = true;
5353 	} else {
5354 		bounds_check_type = BPF_READ;
5355 	}
5356 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5357 					       type, bounds_check_type);
5358 	if (err)
5359 		return err;
5360 
5361 
5362 	if (tnum_is_const(reg->var_off)) {
5363 		min_off = max_off = reg->var_off.value + off;
5364 	} else {
5365 		/* Variable offset is prohibited for unprivileged mode for
5366 		 * simplicity since it requires corresponding support in
5367 		 * Spectre masking for stack ALU.
5368 		 * See also retrieve_ptr_limit().
5369 		 */
5370 		if (!env->bypass_spec_v1) {
5371 			char tn_buf[48];
5372 
5373 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5374 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5375 				regno, err_extra, tn_buf);
5376 			return -EACCES;
5377 		}
5378 		/* Only initialized buffer on stack is allowed to be accessed
5379 		 * with variable offset. With uninitialized buffer it's hard to
5380 		 * guarantee that whole memory is marked as initialized on
5381 		 * helper return since specific bounds are unknown what may
5382 		 * cause uninitialized stack leaking.
5383 		 */
5384 		if (meta && meta->raw_mode)
5385 			meta = NULL;
5386 
5387 		min_off = reg->smin_value + off;
5388 		max_off = reg->smax_value + off;
5389 	}
5390 
5391 	if (meta && meta->raw_mode) {
5392 		meta->access_size = access_size;
5393 		meta->regno = regno;
5394 		return 0;
5395 	}
5396 
5397 	for (i = min_off; i < max_off + access_size; i++) {
5398 		u8 *stype;
5399 
5400 		slot = -i - 1;
5401 		spi = slot / BPF_REG_SIZE;
5402 		if (state->allocated_stack <= slot)
5403 			goto err;
5404 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5405 		if (*stype == STACK_MISC)
5406 			goto mark;
5407 		if (*stype == STACK_ZERO) {
5408 			if (clobber) {
5409 				/* helper can write anything into the stack */
5410 				*stype = STACK_MISC;
5411 			}
5412 			goto mark;
5413 		}
5414 
5415 		if (is_spilled_reg(&state->stack[spi]) &&
5416 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5417 		     env->allow_ptr_leaks)) {
5418 			if (clobber) {
5419 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5420 				for (j = 0; j < BPF_REG_SIZE; j++)
5421 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5422 			}
5423 			goto mark;
5424 		}
5425 
5426 err:
5427 		if (tnum_is_const(reg->var_off)) {
5428 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5429 				err_extra, regno, min_off, i - min_off, access_size);
5430 		} else {
5431 			char tn_buf[48];
5432 
5433 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5434 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5435 				err_extra, regno, tn_buf, i - min_off, access_size);
5436 		}
5437 		return -EACCES;
5438 mark:
5439 		/* reading any byte out of 8-byte 'spill_slot' will cause
5440 		 * the whole slot to be marked as 'read'
5441 		 */
5442 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5443 			      state->stack[spi].spilled_ptr.parent,
5444 			      REG_LIVE_READ64);
5445 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5446 		 * be sure that whether stack slot is written to or not. Hence,
5447 		 * we must still conservatively propagate reads upwards even if
5448 		 * helper may write to the entire memory range.
5449 		 */
5450 	}
5451 	return update_stack_depth(env, state, min_off);
5452 }
5453 
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)5454 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5455 				   int access_size, bool zero_size_allowed,
5456 				   struct bpf_call_arg_meta *meta)
5457 {
5458 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5459 	u32 *max_access;
5460 
5461 	switch (base_type(reg->type)) {
5462 	case PTR_TO_PACKET:
5463 	case PTR_TO_PACKET_META:
5464 		return check_packet_access(env, regno, reg->off, access_size,
5465 					   zero_size_allowed);
5466 	case PTR_TO_MAP_KEY:
5467 		if (meta && meta->raw_mode) {
5468 			verbose(env, "R%d cannot write into %s\n", regno,
5469 				reg_type_str(env, reg->type));
5470 			return -EACCES;
5471 		}
5472 		return check_mem_region_access(env, regno, reg->off, access_size,
5473 					       reg->map_ptr->key_size, false);
5474 	case PTR_TO_MAP_VALUE:
5475 		if (check_map_access_type(env, regno, reg->off, access_size,
5476 					  meta && meta->raw_mode ? BPF_WRITE :
5477 					  BPF_READ))
5478 			return -EACCES;
5479 		return check_map_access(env, regno, reg->off, access_size,
5480 					zero_size_allowed, ACCESS_HELPER);
5481 	case PTR_TO_MEM:
5482 		if (type_is_rdonly_mem(reg->type)) {
5483 			if (meta && meta->raw_mode) {
5484 				verbose(env, "R%d cannot write into %s\n", regno,
5485 					reg_type_str(env, reg->type));
5486 				return -EACCES;
5487 			}
5488 		}
5489 		return check_mem_region_access(env, regno, reg->off,
5490 					       access_size, reg->mem_size,
5491 					       zero_size_allowed);
5492 	case PTR_TO_BUF:
5493 		if (type_is_rdonly_mem(reg->type)) {
5494 			if (meta && meta->raw_mode) {
5495 				verbose(env, "R%d cannot write into %s\n", regno,
5496 					reg_type_str(env, reg->type));
5497 				return -EACCES;
5498 			}
5499 
5500 			max_access = &env->prog->aux->max_rdonly_access;
5501 		} else {
5502 			max_access = &env->prog->aux->max_rdwr_access;
5503 		}
5504 		return check_buffer_access(env, reg, regno, reg->off,
5505 					   access_size, zero_size_allowed,
5506 					   max_access);
5507 	case PTR_TO_STACK:
5508 		return check_stack_range_initialized(
5509 				env,
5510 				regno, reg->off, access_size,
5511 				zero_size_allowed, ACCESS_HELPER, meta);
5512 	case PTR_TO_CTX:
5513 		/* in case the function doesn't know how to access the context,
5514 		 * (because we are in a program of type SYSCALL for example), we
5515 		 * can not statically check its size.
5516 		 * Dynamically check it now.
5517 		 */
5518 		if (!env->ops->convert_ctx_access) {
5519 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5520 			int offset = access_size - 1;
5521 
5522 			/* Allow zero-byte read from PTR_TO_CTX */
5523 			if (access_size == 0)
5524 				return zero_size_allowed ? 0 : -EACCES;
5525 
5526 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5527 						atype, -1, false);
5528 		}
5529 
5530 		fallthrough;
5531 	default: /* scalar_value or invalid ptr */
5532 		/* Allow zero-byte read from NULL, regardless of pointer type */
5533 		if (zero_size_allowed && access_size == 0 &&
5534 		    register_is_null(reg))
5535 			return 0;
5536 
5537 		verbose(env, "R%d type=%s ", regno,
5538 			reg_type_str(env, reg->type));
5539 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5540 		return -EACCES;
5541 	}
5542 }
5543 
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,bool zero_size_allowed,struct bpf_call_arg_meta * meta)5544 static int check_mem_size_reg(struct bpf_verifier_env *env,
5545 			      struct bpf_reg_state *reg, u32 regno,
5546 			      bool zero_size_allowed,
5547 			      struct bpf_call_arg_meta *meta)
5548 {
5549 	int err;
5550 
5551 	/* This is used to refine r0 return value bounds for helpers
5552 	 * that enforce this value as an upper bound on return values.
5553 	 * See do_refine_retval_range() for helpers that can refine
5554 	 * the return value. C type of helper is u32 so we pull register
5555 	 * bound from umax_value however, if negative verifier errors
5556 	 * out. Only upper bounds can be learned because retval is an
5557 	 * int type and negative retvals are allowed.
5558 	 */
5559 	meta->msize_max_value = reg->umax_value;
5560 
5561 	/* The register is SCALAR_VALUE; the access check
5562 	 * happens using its boundaries.
5563 	 */
5564 	if (!tnum_is_const(reg->var_off))
5565 		/* For unprivileged variable accesses, disable raw
5566 		 * mode so that the program is required to
5567 		 * initialize all the memory that the helper could
5568 		 * just partially fill up.
5569 		 */
5570 		meta = NULL;
5571 
5572 	if (reg->smin_value < 0) {
5573 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5574 			regno);
5575 		return -EACCES;
5576 	}
5577 
5578 	if (reg->umin_value == 0) {
5579 		err = check_helper_mem_access(env, regno - 1, 0,
5580 					      zero_size_allowed,
5581 					      meta);
5582 		if (err)
5583 			return err;
5584 	}
5585 
5586 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5587 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5588 			regno);
5589 		return -EACCES;
5590 	}
5591 	err = check_helper_mem_access(env, regno - 1,
5592 				      reg->umax_value,
5593 				      zero_size_allowed, meta);
5594 	if (!err)
5595 		err = mark_chain_precision(env, regno);
5596 	return err;
5597 }
5598 
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)5599 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5600 		   u32 regno, u32 mem_size)
5601 {
5602 	bool may_be_null = type_may_be_null(reg->type);
5603 	struct bpf_reg_state saved_reg;
5604 	struct bpf_call_arg_meta meta;
5605 	int err;
5606 
5607 	if (register_is_null(reg))
5608 		return 0;
5609 
5610 	memset(&meta, 0, sizeof(meta));
5611 	/* Assuming that the register contains a value check if the memory
5612 	 * access is safe. Temporarily save and restore the register's state as
5613 	 * the conversion shouldn't be visible to a caller.
5614 	 */
5615 	if (may_be_null) {
5616 		saved_reg = *reg;
5617 		mark_ptr_not_null_reg(reg);
5618 	}
5619 
5620 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5621 	/* Check access for BPF_WRITE */
5622 	meta.raw_mode = true;
5623 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5624 
5625 	if (may_be_null)
5626 		*reg = saved_reg;
5627 
5628 	return err;
5629 }
5630 
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)5631 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5632 			     u32 regno)
5633 {
5634 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5635 	bool may_be_null = type_may_be_null(mem_reg->type);
5636 	struct bpf_reg_state saved_reg;
5637 	struct bpf_call_arg_meta meta;
5638 	int err;
5639 
5640 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5641 
5642 	memset(&meta, 0, sizeof(meta));
5643 
5644 	if (may_be_null) {
5645 		saved_reg = *mem_reg;
5646 		mark_ptr_not_null_reg(mem_reg);
5647 	}
5648 
5649 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5650 	/* Check access for BPF_WRITE */
5651 	meta.raw_mode = true;
5652 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5653 
5654 	if (may_be_null)
5655 		*mem_reg = saved_reg;
5656 	return err;
5657 }
5658 
5659 /* Implementation details:
5660  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5661  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5662  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5663  * value_or_null->value transition, since the verifier only cares about
5664  * the range of access to valid map value pointer and doesn't care about actual
5665  * address of the map element.
5666  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5667  * reg->id > 0 after value_or_null->value transition. By doing so
5668  * two bpf_map_lookups will be considered two different pointers that
5669  * point to different bpf_spin_locks.
5670  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5671  * dead-locks.
5672  * Since only one bpf_spin_lock is allowed the checks are simpler than
5673  * reg_is_refcounted() logic. The verifier needs to remember only
5674  * one spin_lock instead of array of acquired_refs.
5675  * cur_state->active_spin_lock remembers which map value element got locked
5676  * and clears it after bpf_spin_unlock.
5677  */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)5678 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5679 			     bool is_lock)
5680 {
5681 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5682 	struct bpf_verifier_state *cur = env->cur_state;
5683 	bool is_const = tnum_is_const(reg->var_off);
5684 	struct bpf_map *map = reg->map_ptr;
5685 	u64 val = reg->var_off.value;
5686 
5687 	if (!is_const) {
5688 		verbose(env,
5689 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5690 			regno);
5691 		return -EINVAL;
5692 	}
5693 	if (!map->btf) {
5694 		verbose(env,
5695 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5696 			map->name);
5697 		return -EINVAL;
5698 	}
5699 	if (!map_value_has_spin_lock(map)) {
5700 		if (map->spin_lock_off == -E2BIG)
5701 			verbose(env,
5702 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
5703 				map->name);
5704 		else if (map->spin_lock_off == -ENOENT)
5705 			verbose(env,
5706 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
5707 				map->name);
5708 		else
5709 			verbose(env,
5710 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5711 				map->name);
5712 		return -EINVAL;
5713 	}
5714 	if (map->spin_lock_off != val + reg->off) {
5715 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5716 			val + reg->off);
5717 		return -EINVAL;
5718 	}
5719 	if (is_lock) {
5720 		if (cur->active_spin_lock) {
5721 			verbose(env,
5722 				"Locking two bpf_spin_locks are not allowed\n");
5723 			return -EINVAL;
5724 		}
5725 		cur->active_spin_lock = reg->id;
5726 	} else {
5727 		if (!cur->active_spin_lock) {
5728 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5729 			return -EINVAL;
5730 		}
5731 		if (cur->active_spin_lock != reg->id) {
5732 			verbose(env, "bpf_spin_unlock of different lock\n");
5733 			return -EINVAL;
5734 		}
5735 		cur->active_spin_lock = 0;
5736 	}
5737 	return 0;
5738 }
5739 
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)5740 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5741 			      struct bpf_call_arg_meta *meta)
5742 {
5743 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5744 	bool is_const = tnum_is_const(reg->var_off);
5745 	struct bpf_map *map = reg->map_ptr;
5746 	u64 val = reg->var_off.value;
5747 
5748 	if (!is_const) {
5749 		verbose(env,
5750 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5751 			regno);
5752 		return -EINVAL;
5753 	}
5754 	if (!map->btf) {
5755 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5756 			map->name);
5757 		return -EINVAL;
5758 	}
5759 	if (!map_value_has_timer(map)) {
5760 		if (map->timer_off == -E2BIG)
5761 			verbose(env,
5762 				"map '%s' has more than one 'struct bpf_timer'\n",
5763 				map->name);
5764 		else if (map->timer_off == -ENOENT)
5765 			verbose(env,
5766 				"map '%s' doesn't have 'struct bpf_timer'\n",
5767 				map->name);
5768 		else
5769 			verbose(env,
5770 				"map '%s' is not a struct type or bpf_timer is mangled\n",
5771 				map->name);
5772 		return -EINVAL;
5773 	}
5774 	if (map->timer_off != val + reg->off) {
5775 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5776 			val + reg->off, map->timer_off);
5777 		return -EINVAL;
5778 	}
5779 	if (meta->map_ptr) {
5780 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5781 		return -EFAULT;
5782 	}
5783 	meta->map_uid = reg->map_uid;
5784 	meta->map_ptr = map;
5785 	return 0;
5786 }
5787 
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)5788 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5789 			     struct bpf_call_arg_meta *meta)
5790 {
5791 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5792 	struct bpf_map_value_off_desc *off_desc;
5793 	struct bpf_map *map_ptr = reg->map_ptr;
5794 	u32 kptr_off;
5795 	int ret;
5796 
5797 	if (!tnum_is_const(reg->var_off)) {
5798 		verbose(env,
5799 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5800 			regno);
5801 		return -EINVAL;
5802 	}
5803 	if (!map_ptr->btf) {
5804 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5805 			map_ptr->name);
5806 		return -EINVAL;
5807 	}
5808 	if (!map_value_has_kptrs(map_ptr)) {
5809 		ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab);
5810 		if (ret == -E2BIG)
5811 			verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
5812 				BPF_MAP_VALUE_OFF_MAX);
5813 		else if (ret == -EEXIST)
5814 			verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
5815 		else
5816 			verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5817 		return -EINVAL;
5818 	}
5819 
5820 	meta->map_ptr = map_ptr;
5821 	kptr_off = reg->off + reg->var_off.value;
5822 	off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
5823 	if (!off_desc) {
5824 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5825 		return -EACCES;
5826 	}
5827 	if (off_desc->type != BPF_KPTR_REF) {
5828 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5829 		return -EACCES;
5830 	}
5831 	meta->kptr_off_desc = off_desc;
5832 	return 0;
5833 }
5834 
arg_type_is_mem_size(enum bpf_arg_type type)5835 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5836 {
5837 	return type == ARG_CONST_SIZE ||
5838 	       type == ARG_CONST_SIZE_OR_ZERO;
5839 }
5840 
arg_type_is_release(enum bpf_arg_type type)5841 static bool arg_type_is_release(enum bpf_arg_type type)
5842 {
5843 	return type & OBJ_RELEASE;
5844 }
5845 
arg_type_is_dynptr(enum bpf_arg_type type)5846 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5847 {
5848 	return base_type(type) == ARG_PTR_TO_DYNPTR;
5849 }
5850 
int_ptr_type_to_size(enum bpf_arg_type type)5851 static int int_ptr_type_to_size(enum bpf_arg_type type)
5852 {
5853 	if (type == ARG_PTR_TO_INT)
5854 		return sizeof(u32);
5855 	else if (type == ARG_PTR_TO_LONG)
5856 		return sizeof(u64);
5857 
5858 	return -EINVAL;
5859 }
5860 
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)5861 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5862 				 const struct bpf_call_arg_meta *meta,
5863 				 enum bpf_arg_type *arg_type)
5864 {
5865 	if (!meta->map_ptr) {
5866 		/* kernel subsystem misconfigured verifier */
5867 		verbose(env, "invalid map_ptr to access map->type\n");
5868 		return -EACCES;
5869 	}
5870 
5871 	switch (meta->map_ptr->map_type) {
5872 	case BPF_MAP_TYPE_SOCKMAP:
5873 	case BPF_MAP_TYPE_SOCKHASH:
5874 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5875 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5876 		} else {
5877 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5878 			return -EINVAL;
5879 		}
5880 		break;
5881 	case BPF_MAP_TYPE_BLOOM_FILTER:
5882 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5883 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5884 		break;
5885 	default:
5886 		break;
5887 	}
5888 	return 0;
5889 }
5890 
5891 struct bpf_reg_types {
5892 	const enum bpf_reg_type types[10];
5893 	u32 *btf_id;
5894 };
5895 
5896 static const struct bpf_reg_types map_key_value_types = {
5897 	.types = {
5898 		PTR_TO_STACK,
5899 		PTR_TO_PACKET,
5900 		PTR_TO_PACKET_META,
5901 		PTR_TO_MAP_KEY,
5902 		PTR_TO_MAP_VALUE,
5903 	},
5904 };
5905 
5906 static const struct bpf_reg_types sock_types = {
5907 	.types = {
5908 		PTR_TO_SOCK_COMMON,
5909 		PTR_TO_SOCKET,
5910 		PTR_TO_TCP_SOCK,
5911 		PTR_TO_XDP_SOCK,
5912 	},
5913 };
5914 
5915 #ifdef CONFIG_NET
5916 static const struct bpf_reg_types btf_id_sock_common_types = {
5917 	.types = {
5918 		PTR_TO_SOCK_COMMON,
5919 		PTR_TO_SOCKET,
5920 		PTR_TO_TCP_SOCK,
5921 		PTR_TO_XDP_SOCK,
5922 		PTR_TO_BTF_ID,
5923 	},
5924 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5925 };
5926 #endif
5927 
5928 static const struct bpf_reg_types mem_types = {
5929 	.types = {
5930 		PTR_TO_STACK,
5931 		PTR_TO_PACKET,
5932 		PTR_TO_PACKET_META,
5933 		PTR_TO_MAP_KEY,
5934 		PTR_TO_MAP_VALUE,
5935 		PTR_TO_MEM,
5936 		PTR_TO_MEM | MEM_ALLOC,
5937 		PTR_TO_BUF,
5938 	},
5939 };
5940 
5941 static const struct bpf_reg_types int_ptr_types = {
5942 	.types = {
5943 		PTR_TO_STACK,
5944 		PTR_TO_PACKET,
5945 		PTR_TO_PACKET_META,
5946 		PTR_TO_MAP_KEY,
5947 		PTR_TO_MAP_VALUE,
5948 	},
5949 };
5950 
5951 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5952 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5953 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5954 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
5955 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5956 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5957 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5958 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
5959 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5960 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5961 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5962 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5963 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5964 static const struct bpf_reg_types dynptr_types = {
5965 	.types = {
5966 		PTR_TO_STACK,
5967 		PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5968 	}
5969 };
5970 
5971 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5972 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5973 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5974 	[ARG_CONST_SIZE]		= &scalar_types,
5975 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5976 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5977 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5978 	[ARG_PTR_TO_CTX]		= &context_types,
5979 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5980 #ifdef CONFIG_NET
5981 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5982 #endif
5983 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5984 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5985 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5986 	[ARG_PTR_TO_MEM]		= &mem_types,
5987 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5988 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5989 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5990 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5991 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5992 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
5993 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5994 	[ARG_PTR_TO_TIMER]		= &timer_types,
5995 	[ARG_PTR_TO_KPTR]		= &kptr_types,
5996 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
5997 };
5998 
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)5999 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
6000 			  enum bpf_arg_type arg_type,
6001 			  const u32 *arg_btf_id,
6002 			  struct bpf_call_arg_meta *meta)
6003 {
6004 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6005 	enum bpf_reg_type expected, type = reg->type;
6006 	const struct bpf_reg_types *compatible;
6007 	int i, j;
6008 
6009 	compatible = compatible_reg_types[base_type(arg_type)];
6010 	if (!compatible) {
6011 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
6012 		return -EFAULT;
6013 	}
6014 
6015 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
6016 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
6017 	 *
6018 	 * Same for MAYBE_NULL:
6019 	 *
6020 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
6021 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
6022 	 *
6023 	 * Therefore we fold these flags depending on the arg_type before comparison.
6024 	 */
6025 	if (arg_type & MEM_RDONLY)
6026 		type &= ~MEM_RDONLY;
6027 	if (arg_type & PTR_MAYBE_NULL)
6028 		type &= ~PTR_MAYBE_NULL;
6029 
6030 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
6031 		expected = compatible->types[i];
6032 		if (expected == NOT_INIT)
6033 			break;
6034 
6035 		if (type == expected)
6036 			goto found;
6037 	}
6038 
6039 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
6040 	for (j = 0; j + 1 < i; j++)
6041 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
6042 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
6043 	return -EACCES;
6044 
6045 found:
6046 	if (reg->type == PTR_TO_BTF_ID) {
6047 		/* For bpf_sk_release, it needs to match against first member
6048 		 * 'struct sock_common', hence make an exception for it. This
6049 		 * allows bpf_sk_release to work for multiple socket types.
6050 		 */
6051 		bool strict_type_match = arg_type_is_release(arg_type) &&
6052 					 meta->func_id != BPF_FUNC_sk_release;
6053 
6054 		if (!arg_btf_id) {
6055 			if (!compatible->btf_id) {
6056 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6057 				return -EFAULT;
6058 			}
6059 			arg_btf_id = compatible->btf_id;
6060 		}
6061 
6062 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
6063 			if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
6064 				return -EACCES;
6065 		} else {
6066 			if (arg_btf_id == BPF_PTR_POISON) {
6067 				verbose(env, "verifier internal error:");
6068 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6069 					regno);
6070 				return -EACCES;
6071 			}
6072 
6073 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6074 						  btf_vmlinux, *arg_btf_id,
6075 						  strict_type_match)) {
6076 				verbose(env, "R%d is of type %s but %s is expected\n",
6077 					regno, kernel_type_name(reg->btf, reg->btf_id),
6078 					kernel_type_name(btf_vmlinux, *arg_btf_id));
6079 				return -EACCES;
6080 			}
6081 		}
6082 	}
6083 
6084 	return 0;
6085 }
6086 
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)6087 int check_func_arg_reg_off(struct bpf_verifier_env *env,
6088 			   const struct bpf_reg_state *reg, int regno,
6089 			   enum bpf_arg_type arg_type)
6090 {
6091 	enum bpf_reg_type type = reg->type;
6092 	bool fixed_off_ok = false;
6093 
6094 	switch ((u32)type) {
6095 	/* Pointer types where reg offset is explicitly allowed: */
6096 	case PTR_TO_STACK:
6097 		if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
6098 			verbose(env, "cannot pass in dynptr at an offset\n");
6099 			return -EINVAL;
6100 		}
6101 		fallthrough;
6102 	case PTR_TO_PACKET:
6103 	case PTR_TO_PACKET_META:
6104 	case PTR_TO_MAP_KEY:
6105 	case PTR_TO_MAP_VALUE:
6106 	case PTR_TO_MEM:
6107 	case PTR_TO_MEM | MEM_RDONLY:
6108 	case PTR_TO_MEM | MEM_ALLOC:
6109 	case PTR_TO_BUF:
6110 	case PTR_TO_BUF | MEM_RDONLY:
6111 	case SCALAR_VALUE:
6112 		/* Some of the argument types nevertheless require a
6113 		 * zero register offset.
6114 		 */
6115 		if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
6116 			return 0;
6117 		break;
6118 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6119 	 * fixed offset.
6120 	 */
6121 	case PTR_TO_BTF_ID:
6122 		/* When referenced PTR_TO_BTF_ID is passed to release function,
6123 		 * it's fixed offset must be 0.	In the other cases, fixed offset
6124 		 * can be non-zero.
6125 		 */
6126 		if (arg_type_is_release(arg_type) && reg->off) {
6127 			verbose(env, "R%d must have zero offset when passed to release func\n",
6128 				regno);
6129 			return -EINVAL;
6130 		}
6131 		/* For arg is release pointer, fixed_off_ok must be false, but
6132 		 * we already checked and rejected reg->off != 0 above, so set
6133 		 * to true to allow fixed offset for all other cases.
6134 		 */
6135 		fixed_off_ok = true;
6136 		break;
6137 	default:
6138 		break;
6139 	}
6140 	return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
6141 }
6142 
stack_slot_get_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)6143 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6144 {
6145 	struct bpf_func_state *state = func(env, reg);
6146 	int spi = get_spi(reg->off);
6147 
6148 	return state->stack[spi].spilled_ptr.id;
6149 }
6150 
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)6151 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6152 			  struct bpf_call_arg_meta *meta,
6153 			  const struct bpf_func_proto *fn)
6154 {
6155 	u32 regno = BPF_REG_1 + arg;
6156 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6157 	enum bpf_arg_type arg_type = fn->arg_type[arg];
6158 	enum bpf_reg_type type = reg->type;
6159 	u32 *arg_btf_id = NULL;
6160 	int err = 0;
6161 
6162 	if (arg_type == ARG_DONTCARE)
6163 		return 0;
6164 
6165 	err = check_reg_arg(env, regno, SRC_OP);
6166 	if (err)
6167 		return err;
6168 
6169 	if (arg_type == ARG_ANYTHING) {
6170 		if (is_pointer_value(env, regno)) {
6171 			verbose(env, "R%d leaks addr into helper function\n",
6172 				regno);
6173 			return -EACCES;
6174 		}
6175 		return 0;
6176 	}
6177 
6178 	if (type_is_pkt_pointer(type) &&
6179 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
6180 		verbose(env, "helper access to the packet is not allowed\n");
6181 		return -EACCES;
6182 	}
6183 
6184 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
6185 		err = resolve_map_arg_type(env, meta, &arg_type);
6186 		if (err)
6187 			return err;
6188 	}
6189 
6190 	if (register_is_null(reg) && type_may_be_null(arg_type))
6191 		/* A NULL register has a SCALAR_VALUE type, so skip
6192 		 * type checking.
6193 		 */
6194 		goto skip_type_check;
6195 
6196 	/* arg_btf_id and arg_size are in a union. */
6197 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
6198 		arg_btf_id = fn->arg_btf_id[arg];
6199 
6200 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
6201 	if (err)
6202 		return err;
6203 
6204 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
6205 	if (err)
6206 		return err;
6207 
6208 skip_type_check:
6209 	if (arg_type_is_release(arg_type)) {
6210 		if (arg_type_is_dynptr(arg_type)) {
6211 			struct bpf_func_state *state = func(env, reg);
6212 			int spi = get_spi(reg->off);
6213 
6214 			if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
6215 			    !state->stack[spi].spilled_ptr.id) {
6216 				verbose(env, "arg %d is an unacquired reference\n", regno);
6217 				return -EINVAL;
6218 			}
6219 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
6220 			verbose(env, "R%d must be referenced when passed to release function\n",
6221 				regno);
6222 			return -EINVAL;
6223 		}
6224 		if (meta->release_regno) {
6225 			verbose(env, "verifier internal error: more than one release argument\n");
6226 			return -EFAULT;
6227 		}
6228 		meta->release_regno = regno;
6229 	}
6230 
6231 	if (reg->ref_obj_id) {
6232 		if (meta->ref_obj_id) {
6233 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6234 				regno, reg->ref_obj_id,
6235 				meta->ref_obj_id);
6236 			return -EFAULT;
6237 		}
6238 		meta->ref_obj_id = reg->ref_obj_id;
6239 	}
6240 
6241 	switch (base_type(arg_type)) {
6242 	case ARG_CONST_MAP_PTR:
6243 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
6244 		if (meta->map_ptr) {
6245 			/* Use map_uid (which is unique id of inner map) to reject:
6246 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6247 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6248 			 * if (inner_map1 && inner_map2) {
6249 			 *     timer = bpf_map_lookup_elem(inner_map1);
6250 			 *     if (timer)
6251 			 *         // mismatch would have been allowed
6252 			 *         bpf_timer_init(timer, inner_map2);
6253 			 * }
6254 			 *
6255 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
6256 			 */
6257 			if (meta->map_ptr != reg->map_ptr ||
6258 			    meta->map_uid != reg->map_uid) {
6259 				verbose(env,
6260 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6261 					meta->map_uid, reg->map_uid);
6262 				return -EINVAL;
6263 			}
6264 		}
6265 		meta->map_ptr = reg->map_ptr;
6266 		meta->map_uid = reg->map_uid;
6267 		break;
6268 	case ARG_PTR_TO_MAP_KEY:
6269 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
6270 		 * check that [key, key + map->key_size) are within
6271 		 * stack limits and initialized
6272 		 */
6273 		if (!meta->map_ptr) {
6274 			/* in function declaration map_ptr must come before
6275 			 * map_key, so that it's verified and known before
6276 			 * we have to check map_key here. Otherwise it means
6277 			 * that kernel subsystem misconfigured verifier
6278 			 */
6279 			verbose(env, "invalid map_ptr to access map->key\n");
6280 			return -EACCES;
6281 		}
6282 		err = check_helper_mem_access(env, regno,
6283 					      meta->map_ptr->key_size, false,
6284 					      NULL);
6285 		break;
6286 	case ARG_PTR_TO_MAP_VALUE:
6287 		if (type_may_be_null(arg_type) && register_is_null(reg))
6288 			return 0;
6289 
6290 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
6291 		 * check [value, value + map->value_size) validity
6292 		 */
6293 		if (!meta->map_ptr) {
6294 			/* kernel subsystem misconfigured verifier */
6295 			verbose(env, "invalid map_ptr to access map->value\n");
6296 			return -EACCES;
6297 		}
6298 		meta->raw_mode = arg_type & MEM_UNINIT;
6299 		err = check_helper_mem_access(env, regno,
6300 					      meta->map_ptr->value_size, false,
6301 					      meta);
6302 		break;
6303 	case ARG_PTR_TO_PERCPU_BTF_ID:
6304 		if (!reg->btf_id) {
6305 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6306 			return -EACCES;
6307 		}
6308 		meta->ret_btf = reg->btf;
6309 		meta->ret_btf_id = reg->btf_id;
6310 		break;
6311 	case ARG_PTR_TO_SPIN_LOCK:
6312 		if (meta->func_id == BPF_FUNC_spin_lock) {
6313 			if (process_spin_lock(env, regno, true))
6314 				return -EACCES;
6315 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
6316 			if (process_spin_lock(env, regno, false))
6317 				return -EACCES;
6318 		} else {
6319 			verbose(env, "verifier internal error\n");
6320 			return -EFAULT;
6321 		}
6322 		break;
6323 	case ARG_PTR_TO_TIMER:
6324 		if (process_timer_func(env, regno, meta))
6325 			return -EACCES;
6326 		break;
6327 	case ARG_PTR_TO_FUNC:
6328 		meta->subprogno = reg->subprogno;
6329 		break;
6330 	case ARG_PTR_TO_MEM:
6331 		/* The access to this pointer is only checked when we hit the
6332 		 * next is_mem_size argument below.
6333 		 */
6334 		meta->raw_mode = arg_type & MEM_UNINIT;
6335 		if (arg_type & MEM_FIXED_SIZE) {
6336 			err = check_helper_mem_access(env, regno,
6337 						      fn->arg_size[arg], false,
6338 						      meta);
6339 		}
6340 		break;
6341 	case ARG_CONST_SIZE:
6342 		err = check_mem_size_reg(env, reg, regno, false, meta);
6343 		break;
6344 	case ARG_CONST_SIZE_OR_ZERO:
6345 		err = check_mem_size_reg(env, reg, regno, true, meta);
6346 		break;
6347 	case ARG_PTR_TO_DYNPTR:
6348 		/* We only need to check for initialized / uninitialized helper
6349 		 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6350 		 * assumption is that if it is, that a helper function
6351 		 * initialized the dynptr on behalf of the BPF program.
6352 		 */
6353 		if (base_type(reg->type) == PTR_TO_DYNPTR)
6354 			break;
6355 		if (arg_type & MEM_UNINIT) {
6356 			if (!is_dynptr_reg_valid_uninit(env, reg)) {
6357 				verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6358 				return -EINVAL;
6359 			}
6360 
6361 			/* We only support one dynptr being uninitialized at the moment,
6362 			 * which is sufficient for the helper functions we have right now.
6363 			 */
6364 			if (meta->uninit_dynptr_regno) {
6365 				verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6366 				return -EFAULT;
6367 			}
6368 
6369 			meta->uninit_dynptr_regno = regno;
6370 		} else if (!is_dynptr_reg_valid_init(env, reg)) {
6371 			verbose(env,
6372 				"Expected an initialized dynptr as arg #%d\n",
6373 				arg + 1);
6374 			return -EINVAL;
6375 		} else if (!is_dynptr_type_expected(env, reg, arg_type)) {
6376 			const char *err_extra = "";
6377 
6378 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6379 			case DYNPTR_TYPE_LOCAL:
6380 				err_extra = "local";
6381 				break;
6382 			case DYNPTR_TYPE_RINGBUF:
6383 				err_extra = "ringbuf";
6384 				break;
6385 			default:
6386 				err_extra = "<unknown>";
6387 				break;
6388 			}
6389 			verbose(env,
6390 				"Expected a dynptr of type %s as arg #%d\n",
6391 				err_extra, arg + 1);
6392 			return -EINVAL;
6393 		}
6394 		break;
6395 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6396 		if (!tnum_is_const(reg->var_off)) {
6397 			verbose(env, "R%d is not a known constant'\n",
6398 				regno);
6399 			return -EACCES;
6400 		}
6401 		meta->mem_size = reg->var_off.value;
6402 		err = mark_chain_precision(env, regno);
6403 		if (err)
6404 			return err;
6405 		break;
6406 	case ARG_PTR_TO_INT:
6407 	case ARG_PTR_TO_LONG:
6408 	{
6409 		int size = int_ptr_type_to_size(arg_type);
6410 
6411 		err = check_helper_mem_access(env, regno, size, false, meta);
6412 		if (err)
6413 			return err;
6414 		err = check_ptr_alignment(env, reg, 0, size, true);
6415 		break;
6416 	}
6417 	case ARG_PTR_TO_CONST_STR:
6418 	{
6419 		struct bpf_map *map = reg->map_ptr;
6420 		int map_off;
6421 		u64 map_addr;
6422 		char *str_ptr;
6423 
6424 		if (!bpf_map_is_rdonly(map)) {
6425 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6426 			return -EACCES;
6427 		}
6428 
6429 		if (!tnum_is_const(reg->var_off)) {
6430 			verbose(env, "R%d is not a constant address'\n", regno);
6431 			return -EACCES;
6432 		}
6433 
6434 		if (!map->ops->map_direct_value_addr) {
6435 			verbose(env, "no direct value access support for this map type\n");
6436 			return -EACCES;
6437 		}
6438 
6439 		err = check_map_access(env, regno, reg->off,
6440 				       map->value_size - reg->off, false,
6441 				       ACCESS_HELPER);
6442 		if (err)
6443 			return err;
6444 
6445 		map_off = reg->off + reg->var_off.value;
6446 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6447 		if (err) {
6448 			verbose(env, "direct value access on string failed\n");
6449 			return err;
6450 		}
6451 
6452 		str_ptr = (char *)(long)(map_addr);
6453 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6454 			verbose(env, "string is not zero-terminated\n");
6455 			return -EINVAL;
6456 		}
6457 		break;
6458 	}
6459 	case ARG_PTR_TO_KPTR:
6460 		if (process_kptr_func(env, regno, meta))
6461 			return -EACCES;
6462 		break;
6463 	}
6464 
6465 	return err;
6466 }
6467 
may_update_sockmap(struct bpf_verifier_env * env,int func_id)6468 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6469 {
6470 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6471 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6472 
6473 	if (func_id != BPF_FUNC_map_update_elem)
6474 		return false;
6475 
6476 	/* It's not possible to get access to a locked struct sock in these
6477 	 * contexts, so updating is safe.
6478 	 */
6479 	switch (type) {
6480 	case BPF_PROG_TYPE_TRACING:
6481 		if (eatype == BPF_TRACE_ITER)
6482 			return true;
6483 		break;
6484 	case BPF_PROG_TYPE_SOCKET_FILTER:
6485 	case BPF_PROG_TYPE_SCHED_CLS:
6486 	case BPF_PROG_TYPE_SCHED_ACT:
6487 	case BPF_PROG_TYPE_XDP:
6488 	case BPF_PROG_TYPE_SK_REUSEPORT:
6489 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6490 	case BPF_PROG_TYPE_SK_LOOKUP:
6491 		return true;
6492 	default:
6493 		break;
6494 	}
6495 
6496 	verbose(env, "cannot update sockmap in this context\n");
6497 	return false;
6498 }
6499 
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)6500 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6501 {
6502 	return env->prog->jit_requested &&
6503 	       bpf_jit_supports_subprog_tailcalls();
6504 }
6505 
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)6506 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6507 					struct bpf_map *map, int func_id)
6508 {
6509 	if (!map)
6510 		return 0;
6511 
6512 	/* We need a two way check, first is from map perspective ... */
6513 	switch (map->map_type) {
6514 	case BPF_MAP_TYPE_PROG_ARRAY:
6515 		if (func_id != BPF_FUNC_tail_call)
6516 			goto error;
6517 		break;
6518 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6519 		if (func_id != BPF_FUNC_perf_event_read &&
6520 		    func_id != BPF_FUNC_perf_event_output &&
6521 		    func_id != BPF_FUNC_skb_output &&
6522 		    func_id != BPF_FUNC_perf_event_read_value &&
6523 		    func_id != BPF_FUNC_xdp_output)
6524 			goto error;
6525 		break;
6526 	case BPF_MAP_TYPE_RINGBUF:
6527 		if (func_id != BPF_FUNC_ringbuf_output &&
6528 		    func_id != BPF_FUNC_ringbuf_reserve &&
6529 		    func_id != BPF_FUNC_ringbuf_query &&
6530 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6531 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6532 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6533 			goto error;
6534 		break;
6535 	case BPF_MAP_TYPE_USER_RINGBUF:
6536 		if (func_id != BPF_FUNC_user_ringbuf_drain)
6537 			goto error;
6538 		break;
6539 	case BPF_MAP_TYPE_STACK_TRACE:
6540 		if (func_id != BPF_FUNC_get_stackid)
6541 			goto error;
6542 		break;
6543 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6544 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6545 		    func_id != BPF_FUNC_current_task_under_cgroup)
6546 			goto error;
6547 		break;
6548 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6549 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6550 		if (func_id != BPF_FUNC_get_local_storage)
6551 			goto error;
6552 		break;
6553 	case BPF_MAP_TYPE_DEVMAP:
6554 	case BPF_MAP_TYPE_DEVMAP_HASH:
6555 		if (func_id != BPF_FUNC_redirect_map &&
6556 		    func_id != BPF_FUNC_map_lookup_elem)
6557 			goto error;
6558 		break;
6559 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6560 	 * appear.
6561 	 */
6562 	case BPF_MAP_TYPE_CPUMAP:
6563 		if (func_id != BPF_FUNC_redirect_map)
6564 			goto error;
6565 		break;
6566 	case BPF_MAP_TYPE_XSKMAP:
6567 		if (func_id != BPF_FUNC_redirect_map &&
6568 		    func_id != BPF_FUNC_map_lookup_elem)
6569 			goto error;
6570 		break;
6571 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6572 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6573 		if (func_id != BPF_FUNC_map_lookup_elem)
6574 			goto error;
6575 		break;
6576 	case BPF_MAP_TYPE_SOCKMAP:
6577 		if (func_id != BPF_FUNC_sk_redirect_map &&
6578 		    func_id != BPF_FUNC_sock_map_update &&
6579 		    func_id != BPF_FUNC_map_delete_elem &&
6580 		    func_id != BPF_FUNC_msg_redirect_map &&
6581 		    func_id != BPF_FUNC_sk_select_reuseport &&
6582 		    func_id != BPF_FUNC_map_lookup_elem &&
6583 		    !may_update_sockmap(env, func_id))
6584 			goto error;
6585 		break;
6586 	case BPF_MAP_TYPE_SOCKHASH:
6587 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6588 		    func_id != BPF_FUNC_sock_hash_update &&
6589 		    func_id != BPF_FUNC_map_delete_elem &&
6590 		    func_id != BPF_FUNC_msg_redirect_hash &&
6591 		    func_id != BPF_FUNC_sk_select_reuseport &&
6592 		    func_id != BPF_FUNC_map_lookup_elem &&
6593 		    !may_update_sockmap(env, func_id))
6594 			goto error;
6595 		break;
6596 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6597 		if (func_id != BPF_FUNC_sk_select_reuseport)
6598 			goto error;
6599 		break;
6600 	case BPF_MAP_TYPE_QUEUE:
6601 	case BPF_MAP_TYPE_STACK:
6602 		if (func_id != BPF_FUNC_map_peek_elem &&
6603 		    func_id != BPF_FUNC_map_pop_elem &&
6604 		    func_id != BPF_FUNC_map_push_elem)
6605 			goto error;
6606 		break;
6607 	case BPF_MAP_TYPE_SK_STORAGE:
6608 		if (func_id != BPF_FUNC_sk_storage_get &&
6609 		    func_id != BPF_FUNC_sk_storage_delete)
6610 			goto error;
6611 		break;
6612 	case BPF_MAP_TYPE_INODE_STORAGE:
6613 		if (func_id != BPF_FUNC_inode_storage_get &&
6614 		    func_id != BPF_FUNC_inode_storage_delete)
6615 			goto error;
6616 		break;
6617 	case BPF_MAP_TYPE_TASK_STORAGE:
6618 		if (func_id != BPF_FUNC_task_storage_get &&
6619 		    func_id != BPF_FUNC_task_storage_delete)
6620 			goto error;
6621 		break;
6622 	case BPF_MAP_TYPE_BLOOM_FILTER:
6623 		if (func_id != BPF_FUNC_map_peek_elem &&
6624 		    func_id != BPF_FUNC_map_push_elem)
6625 			goto error;
6626 		break;
6627 	default:
6628 		break;
6629 	}
6630 
6631 	/* ... and second from the function itself. */
6632 	switch (func_id) {
6633 	case BPF_FUNC_tail_call:
6634 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6635 			goto error;
6636 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6637 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6638 			return -EINVAL;
6639 		}
6640 		break;
6641 	case BPF_FUNC_perf_event_read:
6642 	case BPF_FUNC_perf_event_output:
6643 	case BPF_FUNC_perf_event_read_value:
6644 	case BPF_FUNC_skb_output:
6645 	case BPF_FUNC_xdp_output:
6646 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6647 			goto error;
6648 		break;
6649 	case BPF_FUNC_ringbuf_output:
6650 	case BPF_FUNC_ringbuf_reserve:
6651 	case BPF_FUNC_ringbuf_query:
6652 	case BPF_FUNC_ringbuf_reserve_dynptr:
6653 	case BPF_FUNC_ringbuf_submit_dynptr:
6654 	case BPF_FUNC_ringbuf_discard_dynptr:
6655 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6656 			goto error;
6657 		break;
6658 	case BPF_FUNC_user_ringbuf_drain:
6659 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6660 			goto error;
6661 		break;
6662 	case BPF_FUNC_get_stackid:
6663 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6664 			goto error;
6665 		break;
6666 	case BPF_FUNC_current_task_under_cgroup:
6667 	case BPF_FUNC_skb_under_cgroup:
6668 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6669 			goto error;
6670 		break;
6671 	case BPF_FUNC_redirect_map:
6672 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6673 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6674 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6675 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6676 			goto error;
6677 		break;
6678 	case BPF_FUNC_sk_redirect_map:
6679 	case BPF_FUNC_msg_redirect_map:
6680 	case BPF_FUNC_sock_map_update:
6681 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6682 			goto error;
6683 		break;
6684 	case BPF_FUNC_sk_redirect_hash:
6685 	case BPF_FUNC_msg_redirect_hash:
6686 	case BPF_FUNC_sock_hash_update:
6687 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6688 			goto error;
6689 		break;
6690 	case BPF_FUNC_get_local_storage:
6691 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6692 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6693 			goto error;
6694 		break;
6695 	case BPF_FUNC_sk_select_reuseport:
6696 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6697 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6698 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6699 			goto error;
6700 		break;
6701 	case BPF_FUNC_map_pop_elem:
6702 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6703 		    map->map_type != BPF_MAP_TYPE_STACK)
6704 			goto error;
6705 		break;
6706 	case BPF_FUNC_map_peek_elem:
6707 	case BPF_FUNC_map_push_elem:
6708 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6709 		    map->map_type != BPF_MAP_TYPE_STACK &&
6710 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6711 			goto error;
6712 		break;
6713 	case BPF_FUNC_map_lookup_percpu_elem:
6714 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6715 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6716 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6717 			goto error;
6718 		break;
6719 	case BPF_FUNC_sk_storage_get:
6720 	case BPF_FUNC_sk_storage_delete:
6721 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6722 			goto error;
6723 		break;
6724 	case BPF_FUNC_inode_storage_get:
6725 	case BPF_FUNC_inode_storage_delete:
6726 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6727 			goto error;
6728 		break;
6729 	case BPF_FUNC_task_storage_get:
6730 	case BPF_FUNC_task_storage_delete:
6731 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6732 			goto error;
6733 		break;
6734 	default:
6735 		break;
6736 	}
6737 
6738 	return 0;
6739 error:
6740 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6741 		map->map_type, func_id_name(func_id), func_id);
6742 	return -EINVAL;
6743 }
6744 
check_raw_mode_ok(const struct bpf_func_proto * fn)6745 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6746 {
6747 	int count = 0;
6748 
6749 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6750 		count++;
6751 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6752 		count++;
6753 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6754 		count++;
6755 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6756 		count++;
6757 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6758 		count++;
6759 
6760 	/* We only support one arg being in raw mode at the moment,
6761 	 * which is sufficient for the helper functions we have
6762 	 * right now.
6763 	 */
6764 	return count <= 1;
6765 }
6766 
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)6767 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6768 {
6769 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6770 	bool has_size = fn->arg_size[arg] != 0;
6771 	bool is_next_size = false;
6772 
6773 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6774 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6775 
6776 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6777 		return is_next_size;
6778 
6779 	return has_size == is_next_size || is_next_size == is_fixed;
6780 }
6781 
check_arg_pair_ok(const struct bpf_func_proto * fn)6782 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6783 {
6784 	/* bpf_xxx(..., buf, len) call will access 'len'
6785 	 * bytes from memory 'buf'. Both arg types need
6786 	 * to be paired, so make sure there's no buggy
6787 	 * helper function specification.
6788 	 */
6789 	if (arg_type_is_mem_size(fn->arg1_type) ||
6790 	    check_args_pair_invalid(fn, 0) ||
6791 	    check_args_pair_invalid(fn, 1) ||
6792 	    check_args_pair_invalid(fn, 2) ||
6793 	    check_args_pair_invalid(fn, 3) ||
6794 	    check_args_pair_invalid(fn, 4))
6795 		return false;
6796 
6797 	return true;
6798 }
6799 
check_btf_id_ok(const struct bpf_func_proto * fn)6800 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6801 {
6802 	int i;
6803 
6804 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6805 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6806 			return false;
6807 
6808 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6809 		    /* arg_btf_id and arg_size are in a union. */
6810 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6811 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6812 			return false;
6813 	}
6814 
6815 	return true;
6816 }
6817 
check_func_proto(const struct bpf_func_proto * fn,int func_id)6818 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
6819 {
6820 	return check_raw_mode_ok(fn) &&
6821 	       check_arg_pair_ok(fn) &&
6822 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
6823 }
6824 
6825 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6826  * are now invalid, so turn them into unknown SCALAR_VALUE.
6827  */
clear_all_pkt_pointers(struct bpf_verifier_env * env)6828 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6829 {
6830 	struct bpf_func_state *state;
6831 	struct bpf_reg_state *reg;
6832 
6833 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6834 		if (reg_is_pkt_pointer_any(reg))
6835 			__mark_reg_unknown(env, reg);
6836 	}));
6837 }
6838 
6839 enum {
6840 	AT_PKT_END = -1,
6841 	BEYOND_PKT_END = -2,
6842 };
6843 
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)6844 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6845 {
6846 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6847 	struct bpf_reg_state *reg = &state->regs[regn];
6848 
6849 	if (reg->type != PTR_TO_PACKET)
6850 		/* PTR_TO_PACKET_META is not supported yet */
6851 		return;
6852 
6853 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6854 	 * How far beyond pkt_end it goes is unknown.
6855 	 * if (!range_open) it's the case of pkt >= pkt_end
6856 	 * if (range_open) it's the case of pkt > pkt_end
6857 	 * hence this pointer is at least 1 byte bigger than pkt_end
6858 	 */
6859 	if (range_open)
6860 		reg->range = BEYOND_PKT_END;
6861 	else
6862 		reg->range = AT_PKT_END;
6863 }
6864 
6865 /* The pointer with the specified id has released its reference to kernel
6866  * resources. Identify all copies of the same pointer and clear the reference.
6867  */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)6868 static int release_reference(struct bpf_verifier_env *env,
6869 			     int ref_obj_id)
6870 {
6871 	struct bpf_func_state *state;
6872 	struct bpf_reg_state *reg;
6873 	int err;
6874 
6875 	err = release_reference_state(cur_func(env), ref_obj_id);
6876 	if (err)
6877 		return err;
6878 
6879 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
6880 		if (reg->ref_obj_id == ref_obj_id) {
6881 			if (!env->allow_ptr_leaks)
6882 				__mark_reg_not_init(env, reg);
6883 			else
6884 				__mark_reg_unknown(env, reg);
6885 		}
6886 	}));
6887 
6888 	return 0;
6889 }
6890 
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)6891 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6892 				    struct bpf_reg_state *regs)
6893 {
6894 	int i;
6895 
6896 	/* after the call registers r0 - r5 were scratched */
6897 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6898 		mark_reg_not_init(env, regs, caller_saved[i]);
6899 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6900 	}
6901 }
6902 
6903 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6904 				   struct bpf_func_state *caller,
6905 				   struct bpf_func_state *callee,
6906 				   int insn_idx);
6907 
6908 static int set_callee_state(struct bpf_verifier_env *env,
6909 			    struct bpf_func_state *caller,
6910 			    struct bpf_func_state *callee, int insn_idx);
6911 
__check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)6912 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6913 			     int *insn_idx, int subprog,
6914 			     set_callee_state_fn set_callee_state_cb)
6915 {
6916 	struct bpf_verifier_state *state = env->cur_state;
6917 	struct bpf_func_info_aux *func_info_aux;
6918 	struct bpf_func_state *caller, *callee;
6919 	int err;
6920 	bool is_global = false;
6921 
6922 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6923 		verbose(env, "the call stack of %d frames is too deep\n",
6924 			state->curframe + 2);
6925 		return -E2BIG;
6926 	}
6927 
6928 	caller = state->frame[state->curframe];
6929 	if (state->frame[state->curframe + 1]) {
6930 		verbose(env, "verifier bug. Frame %d already allocated\n",
6931 			state->curframe + 1);
6932 		return -EFAULT;
6933 	}
6934 
6935 	func_info_aux = env->prog->aux->func_info_aux;
6936 	if (func_info_aux)
6937 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6938 	err = btf_check_subprog_call(env, subprog, caller->regs);
6939 	if (err == -EFAULT)
6940 		return err;
6941 	if (is_global) {
6942 		if (err) {
6943 			verbose(env, "Caller passes invalid args into func#%d\n",
6944 				subprog);
6945 			return err;
6946 		} else {
6947 			if (env->log.level & BPF_LOG_LEVEL)
6948 				verbose(env,
6949 					"Func#%d is global and valid. Skipping.\n",
6950 					subprog);
6951 			clear_caller_saved_regs(env, caller->regs);
6952 
6953 			/* All global functions return a 64-bit SCALAR_VALUE */
6954 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6955 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6956 
6957 			/* continue with next insn after call */
6958 			return 0;
6959 		}
6960 	}
6961 
6962 	/* set_callee_state is used for direct subprog calls, but we are
6963 	 * interested in validating only BPF helpers that can call subprogs as
6964 	 * callbacks
6965 	 */
6966 	if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
6967 		verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
6968 			func_id_name(insn->imm), insn->imm);
6969 		return -EFAULT;
6970 	}
6971 
6972 	if (insn->code == (BPF_JMP | BPF_CALL) &&
6973 	    insn->src_reg == 0 &&
6974 	    insn->imm == BPF_FUNC_timer_set_callback) {
6975 		struct bpf_verifier_state *async_cb;
6976 
6977 		/* there is no real recursion here. timer callbacks are async */
6978 		env->subprog_info[subprog].is_async_cb = true;
6979 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6980 					 *insn_idx, subprog);
6981 		if (!async_cb)
6982 			return -EFAULT;
6983 		callee = async_cb->frame[0];
6984 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
6985 
6986 		/* Convert bpf_timer_set_callback() args into timer callback args */
6987 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
6988 		if (err)
6989 			return err;
6990 
6991 		clear_caller_saved_regs(env, caller->regs);
6992 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
6993 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6994 		/* continue with next insn after call */
6995 		return 0;
6996 	}
6997 
6998 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6999 	if (!callee)
7000 		return -ENOMEM;
7001 	state->frame[state->curframe + 1] = callee;
7002 
7003 	/* callee cannot access r0, r6 - r9 for reading and has to write
7004 	 * into its own stack before reading from it.
7005 	 * callee can read/write into caller's stack
7006 	 */
7007 	init_func_state(env, callee,
7008 			/* remember the callsite, it will be used by bpf_exit */
7009 			*insn_idx /* callsite */,
7010 			state->curframe + 1 /* frameno within this callchain */,
7011 			subprog /* subprog number within this prog */);
7012 
7013 	/* Transfer references to the callee */
7014 	err = copy_reference_state(callee, caller);
7015 	if (err)
7016 		goto err_out;
7017 
7018 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
7019 	if (err)
7020 		goto err_out;
7021 
7022 	clear_caller_saved_regs(env, caller->regs);
7023 
7024 	/* only increment it after check_reg_arg() finished */
7025 	state->curframe++;
7026 
7027 	/* and go analyze first insn of the callee */
7028 	*insn_idx = env->subprog_info[subprog].start - 1;
7029 
7030 	if (env->log.level & BPF_LOG_LEVEL) {
7031 		verbose(env, "caller:\n");
7032 		print_verifier_state(env, caller, true);
7033 		verbose(env, "callee:\n");
7034 		print_verifier_state(env, callee, true);
7035 	}
7036 	return 0;
7037 
7038 err_out:
7039 	free_func_state(callee);
7040 	state->frame[state->curframe + 1] = NULL;
7041 	return err;
7042 }
7043 
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)7044 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7045 				   struct bpf_func_state *caller,
7046 				   struct bpf_func_state *callee)
7047 {
7048 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7049 	 *      void *callback_ctx, u64 flags);
7050 	 * callback_fn(struct bpf_map *map, void *key, void *value,
7051 	 *      void *callback_ctx);
7052 	 */
7053 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7054 
7055 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7056 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7057 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7058 
7059 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7060 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7061 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7062 
7063 	/* pointer to stack or null */
7064 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7065 
7066 	/* unused */
7067 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7068 	return 0;
7069 }
7070 
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)7071 static int set_callee_state(struct bpf_verifier_env *env,
7072 			    struct bpf_func_state *caller,
7073 			    struct bpf_func_state *callee, int insn_idx)
7074 {
7075 	int i;
7076 
7077 	/* copy r1 - r5 args that callee can access.  The copy includes parent
7078 	 * pointers, which connects us up to the liveness chain
7079 	 */
7080 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7081 		callee->regs[i] = caller->regs[i];
7082 	return 0;
7083 }
7084 
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)7085 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7086 			   int *insn_idx)
7087 {
7088 	int subprog, target_insn;
7089 
7090 	target_insn = *insn_idx + insn->imm + 1;
7091 	subprog = find_subprog(env, target_insn);
7092 	if (subprog < 0) {
7093 		verbose(env, "verifier bug. No program starts at insn %d\n",
7094 			target_insn);
7095 		return -EFAULT;
7096 	}
7097 
7098 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7099 }
7100 
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)7101 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7102 				       struct bpf_func_state *caller,
7103 				       struct bpf_func_state *callee,
7104 				       int insn_idx)
7105 {
7106 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7107 	struct bpf_map *map;
7108 	int err;
7109 
7110 	if (bpf_map_ptr_poisoned(insn_aux)) {
7111 		verbose(env, "tail_call abusing map_ptr\n");
7112 		return -EINVAL;
7113 	}
7114 
7115 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7116 	if (!map->ops->map_set_for_each_callback_args ||
7117 	    !map->ops->map_for_each_callback) {
7118 		verbose(env, "callback function not allowed for map\n");
7119 		return -ENOTSUPP;
7120 	}
7121 
7122 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7123 	if (err)
7124 		return err;
7125 
7126 	callee->in_callback_fn = true;
7127 	callee->callback_ret_range = tnum_range(0, 1);
7128 	return 0;
7129 }
7130 
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)7131 static int set_loop_callback_state(struct bpf_verifier_env *env,
7132 				   struct bpf_func_state *caller,
7133 				   struct bpf_func_state *callee,
7134 				   int insn_idx)
7135 {
7136 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7137 	 *	    u64 flags);
7138 	 * callback_fn(u32 index, void *callback_ctx);
7139 	 */
7140 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7141 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7142 
7143 	/* unused */
7144 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7145 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7146 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7147 
7148 	callee->in_callback_fn = true;
7149 	callee->callback_ret_range = tnum_range(0, 1);
7150 	return 0;
7151 }
7152 
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)7153 static int set_timer_callback_state(struct bpf_verifier_env *env,
7154 				    struct bpf_func_state *caller,
7155 				    struct bpf_func_state *callee,
7156 				    int insn_idx)
7157 {
7158 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7159 
7160 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7161 	 * callback_fn(struct bpf_map *map, void *key, void *value);
7162 	 */
7163 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7164 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7165 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
7166 
7167 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7168 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7169 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
7170 
7171 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7172 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7173 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
7174 
7175 	/* unused */
7176 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7177 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7178 	callee->in_async_callback_fn = true;
7179 	callee->callback_ret_range = tnum_range(0, 1);
7180 	return 0;
7181 }
7182 
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)7183 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7184 				       struct bpf_func_state *caller,
7185 				       struct bpf_func_state *callee,
7186 				       int insn_idx)
7187 {
7188 	/* bpf_find_vma(struct task_struct *task, u64 addr,
7189 	 *               void *callback_fn, void *callback_ctx, u64 flags)
7190 	 * (callback_fn)(struct task_struct *task,
7191 	 *               struct vm_area_struct *vma, void *callback_ctx);
7192 	 */
7193 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7194 
7195 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7196 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7197 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
7198 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7199 
7200 	/* pointer to stack or null */
7201 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7202 
7203 	/* unused */
7204 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7205 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7206 	callee->in_callback_fn = true;
7207 	callee->callback_ret_range = tnum_range(0, 1);
7208 	return 0;
7209 }
7210 
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)7211 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7212 					   struct bpf_func_state *caller,
7213 					   struct bpf_func_state *callee,
7214 					   int insn_idx)
7215 {
7216 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7217 	 *			  callback_ctx, u64 flags);
7218 	 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
7219 	 */
7220 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7221 	callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
7222 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7223 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7224 
7225 	/* unused */
7226 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7227 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7228 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7229 
7230 	callee->in_callback_fn = true;
7231 	callee->callback_ret_range = tnum_range(0, 1);
7232 	return 0;
7233 }
7234 
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)7235 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7236 {
7237 	struct bpf_verifier_state *state = env->cur_state;
7238 	struct bpf_func_state *caller, *callee;
7239 	struct bpf_reg_state *r0;
7240 	int err;
7241 
7242 	callee = state->frame[state->curframe];
7243 	r0 = &callee->regs[BPF_REG_0];
7244 	if (r0->type == PTR_TO_STACK) {
7245 		/* technically it's ok to return caller's stack pointer
7246 		 * (or caller's caller's pointer) back to the caller,
7247 		 * since these pointers are valid. Only current stack
7248 		 * pointer will be invalid as soon as function exits,
7249 		 * but let's be conservative
7250 		 */
7251 		verbose(env, "cannot return stack pointer to the caller\n");
7252 		return -EINVAL;
7253 	}
7254 
7255 	caller = state->frame[state->curframe - 1];
7256 	if (callee->in_callback_fn) {
7257 		/* enforce R0 return value range [0, 1]. */
7258 		struct tnum range = callee->callback_ret_range;
7259 
7260 		if (r0->type != SCALAR_VALUE) {
7261 			verbose(env, "R0 not a scalar value\n");
7262 			return -EACCES;
7263 		}
7264 
7265 		/* we are going to rely on register's precise value */
7266 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
7267 		err = err ?: mark_chain_precision(env, BPF_REG_0);
7268 		if (err)
7269 			return err;
7270 
7271 		if (!tnum_in(range, r0->var_off)) {
7272 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7273 			return -EINVAL;
7274 		}
7275 	} else {
7276 		/* return to the caller whatever r0 had in the callee */
7277 		caller->regs[BPF_REG_0] = *r0;
7278 	}
7279 
7280 	/* callback_fn frame should have released its own additions to parent's
7281 	 * reference state at this point, or check_reference_leak would
7282 	 * complain, hence it must be the same as the caller. There is no need
7283 	 * to copy it back.
7284 	 */
7285 	if (!callee->in_callback_fn) {
7286 		/* Transfer references to the caller */
7287 		err = copy_reference_state(caller, callee);
7288 		if (err)
7289 			return err;
7290 	}
7291 
7292 	*insn_idx = callee->callsite + 1;
7293 	if (env->log.level & BPF_LOG_LEVEL) {
7294 		verbose(env, "returning from callee:\n");
7295 		print_verifier_state(env, callee, true);
7296 		verbose(env, "to caller at %d:\n", *insn_idx);
7297 		print_verifier_state(env, caller, true);
7298 	}
7299 	/* clear everything in the callee */
7300 	free_func_state(callee);
7301 	state->frame[state->curframe--] = NULL;
7302 	return 0;
7303 }
7304 
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)7305 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7306 				   int func_id,
7307 				   struct bpf_call_arg_meta *meta)
7308 {
7309 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7310 
7311 	if (ret_type != RET_INTEGER ||
7312 	    (func_id != BPF_FUNC_get_stack &&
7313 	     func_id != BPF_FUNC_get_task_stack &&
7314 	     func_id != BPF_FUNC_probe_read_str &&
7315 	     func_id != BPF_FUNC_probe_read_kernel_str &&
7316 	     func_id != BPF_FUNC_probe_read_user_str))
7317 		return;
7318 
7319 	ret_reg->smax_value = meta->msize_max_value;
7320 	ret_reg->s32_max_value = meta->msize_max_value;
7321 	ret_reg->smin_value = -MAX_ERRNO;
7322 	ret_reg->s32_min_value = -MAX_ERRNO;
7323 	reg_bounds_sync(ret_reg);
7324 }
7325 
7326 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)7327 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7328 		int func_id, int insn_idx)
7329 {
7330 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7331 	struct bpf_map *map = meta->map_ptr;
7332 
7333 	if (func_id != BPF_FUNC_tail_call &&
7334 	    func_id != BPF_FUNC_map_lookup_elem &&
7335 	    func_id != BPF_FUNC_map_update_elem &&
7336 	    func_id != BPF_FUNC_map_delete_elem &&
7337 	    func_id != BPF_FUNC_map_push_elem &&
7338 	    func_id != BPF_FUNC_map_pop_elem &&
7339 	    func_id != BPF_FUNC_map_peek_elem &&
7340 	    func_id != BPF_FUNC_for_each_map_elem &&
7341 	    func_id != BPF_FUNC_redirect_map &&
7342 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7343 		return 0;
7344 
7345 	if (map == NULL) {
7346 		verbose(env, "kernel subsystem misconfigured verifier\n");
7347 		return -EINVAL;
7348 	}
7349 
7350 	/* In case of read-only, some additional restrictions
7351 	 * need to be applied in order to prevent altering the
7352 	 * state of the map from program side.
7353 	 */
7354 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7355 	    (func_id == BPF_FUNC_map_delete_elem ||
7356 	     func_id == BPF_FUNC_map_update_elem ||
7357 	     func_id == BPF_FUNC_map_push_elem ||
7358 	     func_id == BPF_FUNC_map_pop_elem)) {
7359 		verbose(env, "write into map forbidden\n");
7360 		return -EACCES;
7361 	}
7362 
7363 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7364 		bpf_map_ptr_store(aux, meta->map_ptr,
7365 				  !meta->map_ptr->bypass_spec_v1);
7366 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7367 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7368 				  !meta->map_ptr->bypass_spec_v1);
7369 	return 0;
7370 }
7371 
7372 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)7373 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7374 		int func_id, int insn_idx)
7375 {
7376 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7377 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7378 	struct bpf_map *map = meta->map_ptr;
7379 	u64 val, max;
7380 	int err;
7381 
7382 	if (func_id != BPF_FUNC_tail_call)
7383 		return 0;
7384 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7385 		verbose(env, "kernel subsystem misconfigured verifier\n");
7386 		return -EINVAL;
7387 	}
7388 
7389 	reg = &regs[BPF_REG_3];
7390 	val = reg->var_off.value;
7391 	max = map->max_entries;
7392 
7393 	if (!(register_is_const(reg) && val < max)) {
7394 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7395 		return 0;
7396 	}
7397 
7398 	err = mark_chain_precision(env, BPF_REG_3);
7399 	if (err)
7400 		return err;
7401 	if (bpf_map_key_unseen(aux))
7402 		bpf_map_key_store(aux, val);
7403 	else if (!bpf_map_key_poisoned(aux) &&
7404 		  bpf_map_key_immediate(aux) != val)
7405 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7406 	return 0;
7407 }
7408 
check_reference_leak(struct bpf_verifier_env * env)7409 static int check_reference_leak(struct bpf_verifier_env *env)
7410 {
7411 	struct bpf_func_state *state = cur_func(env);
7412 	bool refs_lingering = false;
7413 	int i;
7414 
7415 	if (state->frameno && !state->in_callback_fn)
7416 		return 0;
7417 
7418 	for (i = 0; i < state->acquired_refs; i++) {
7419 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7420 			continue;
7421 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7422 			state->refs[i].id, state->refs[i].insn_idx);
7423 		refs_lingering = true;
7424 	}
7425 	return refs_lingering ? -EINVAL : 0;
7426 }
7427 
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)7428 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7429 				   struct bpf_reg_state *regs)
7430 {
7431 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7432 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7433 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7434 	struct bpf_bprintf_data data = {};
7435 	int err, fmt_map_off, num_args;
7436 	u64 fmt_addr;
7437 	char *fmt;
7438 
7439 	/* data must be an array of u64 */
7440 	if (data_len_reg->var_off.value % 8)
7441 		return -EINVAL;
7442 	num_args = data_len_reg->var_off.value / 8;
7443 
7444 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7445 	 * and map_direct_value_addr is set.
7446 	 */
7447 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7448 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7449 						  fmt_map_off);
7450 	if (err) {
7451 		verbose(env, "verifier bug\n");
7452 		return -EFAULT;
7453 	}
7454 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7455 
7456 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7457 	 * can focus on validating the format specifiers.
7458 	 */
7459 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
7460 	if (err < 0)
7461 		verbose(env, "Invalid format string\n");
7462 
7463 	return err;
7464 }
7465 
check_get_func_ip(struct bpf_verifier_env * env)7466 static int check_get_func_ip(struct bpf_verifier_env *env)
7467 {
7468 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7469 	int func_id = BPF_FUNC_get_func_ip;
7470 
7471 	if (type == BPF_PROG_TYPE_TRACING) {
7472 		if (!bpf_prog_has_trampoline(env->prog)) {
7473 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7474 				func_id_name(func_id), func_id);
7475 			return -ENOTSUPP;
7476 		}
7477 		return 0;
7478 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7479 		return 0;
7480 	}
7481 
7482 	verbose(env, "func %s#%d not supported for program type %d\n",
7483 		func_id_name(func_id), func_id, type);
7484 	return -ENOTSUPP;
7485 }
7486 
cur_aux(struct bpf_verifier_env * env)7487 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7488 {
7489 	return &env->insn_aux_data[env->insn_idx];
7490 }
7491 
loop_flag_is_zero(struct bpf_verifier_env * env)7492 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7493 {
7494 	struct bpf_reg_state *regs = cur_regs(env);
7495 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7496 	bool reg_is_null = register_is_null(reg);
7497 
7498 	if (reg_is_null)
7499 		mark_chain_precision(env, BPF_REG_4);
7500 
7501 	return reg_is_null;
7502 }
7503 
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)7504 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7505 {
7506 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7507 
7508 	if (!state->initialized) {
7509 		state->initialized = 1;
7510 		state->fit_for_inline = loop_flag_is_zero(env);
7511 		state->callback_subprogno = subprogno;
7512 		return;
7513 	}
7514 
7515 	if (!state->fit_for_inline)
7516 		return;
7517 
7518 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7519 				 state->callback_subprogno == subprogno);
7520 }
7521 
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)7522 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7523 			     int *insn_idx_p)
7524 {
7525 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7526 	const struct bpf_func_proto *fn = NULL;
7527 	enum bpf_return_type ret_type;
7528 	enum bpf_type_flag ret_flag;
7529 	struct bpf_reg_state *regs;
7530 	struct bpf_call_arg_meta meta;
7531 	int insn_idx = *insn_idx_p;
7532 	bool changes_data;
7533 	int i, err, func_id;
7534 
7535 	/* find function prototype */
7536 	func_id = insn->imm;
7537 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7538 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7539 			func_id);
7540 		return -EINVAL;
7541 	}
7542 
7543 	if (env->ops->get_func_proto)
7544 		fn = env->ops->get_func_proto(func_id, env->prog);
7545 	if (!fn) {
7546 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7547 			func_id);
7548 		return -EINVAL;
7549 	}
7550 
7551 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7552 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7553 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7554 		return -EINVAL;
7555 	}
7556 
7557 	if (fn->allowed && !fn->allowed(env->prog)) {
7558 		verbose(env, "helper call is not allowed in probe\n");
7559 		return -EINVAL;
7560 	}
7561 
7562 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7563 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7564 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7565 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7566 			func_id_name(func_id), func_id);
7567 		return -EINVAL;
7568 	}
7569 
7570 	memset(&meta, 0, sizeof(meta));
7571 	meta.pkt_access = fn->pkt_access;
7572 
7573 	err = check_func_proto(fn, func_id);
7574 	if (err) {
7575 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7576 			func_id_name(func_id), func_id);
7577 		return err;
7578 	}
7579 
7580 	meta.func_id = func_id;
7581 	/* check args */
7582 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7583 		err = check_func_arg(env, i, &meta, fn);
7584 		if (err)
7585 			return err;
7586 	}
7587 
7588 	err = record_func_map(env, &meta, func_id, insn_idx);
7589 	if (err)
7590 		return err;
7591 
7592 	err = record_func_key(env, &meta, func_id, insn_idx);
7593 	if (err)
7594 		return err;
7595 
7596 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7597 	 * is inferred from register state.
7598 	 */
7599 	for (i = 0; i < meta.access_size; i++) {
7600 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7601 				       BPF_WRITE, -1, false);
7602 		if (err)
7603 			return err;
7604 	}
7605 
7606 	regs = cur_regs(env);
7607 
7608 	if (meta.uninit_dynptr_regno) {
7609 		/* we write BPF_DW bits (8 bytes) at a time */
7610 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7611 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7612 					       i, BPF_DW, BPF_WRITE, -1, false);
7613 			if (err)
7614 				return err;
7615 		}
7616 
7617 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7618 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7619 					      insn_idx);
7620 		if (err)
7621 			return err;
7622 	}
7623 
7624 	if (meta.release_regno) {
7625 		err = -EINVAL;
7626 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7627 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7628 		else if (meta.ref_obj_id)
7629 			err = release_reference(env, meta.ref_obj_id);
7630 		/* meta.ref_obj_id can only be 0 if register that is meant to be
7631 		 * released is NULL, which must be > R0.
7632 		 */
7633 		else if (register_is_null(&regs[meta.release_regno]))
7634 			err = 0;
7635 		if (err) {
7636 			verbose(env, "func %s#%d reference has not been acquired before\n",
7637 				func_id_name(func_id), func_id);
7638 			return err;
7639 		}
7640 	}
7641 
7642 	switch (func_id) {
7643 	case BPF_FUNC_tail_call:
7644 		err = check_reference_leak(env);
7645 		if (err) {
7646 			verbose(env, "tail_call would lead to reference leak\n");
7647 			return err;
7648 		}
7649 		break;
7650 	case BPF_FUNC_get_local_storage:
7651 		/* check that flags argument in get_local_storage(map, flags) is 0,
7652 		 * this is required because get_local_storage() can't return an error.
7653 		 */
7654 		if (!register_is_null(&regs[BPF_REG_2])) {
7655 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7656 			return -EINVAL;
7657 		}
7658 		break;
7659 	case BPF_FUNC_for_each_map_elem:
7660 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7661 					set_map_elem_callback_state);
7662 		break;
7663 	case BPF_FUNC_timer_set_callback:
7664 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7665 					set_timer_callback_state);
7666 		break;
7667 	case BPF_FUNC_find_vma:
7668 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7669 					set_find_vma_callback_state);
7670 		break;
7671 	case BPF_FUNC_snprintf:
7672 		err = check_bpf_snprintf_call(env, regs);
7673 		break;
7674 	case BPF_FUNC_loop:
7675 		update_loop_inline_state(env, meta.subprogno);
7676 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7677 					set_loop_callback_state);
7678 		break;
7679 	case BPF_FUNC_dynptr_from_mem:
7680 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7681 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7682 				reg_type_str(env, regs[BPF_REG_1].type));
7683 			return -EACCES;
7684 		}
7685 		break;
7686 	case BPF_FUNC_set_retval:
7687 		if (prog_type == BPF_PROG_TYPE_LSM &&
7688 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7689 			if (!env->prog->aux->attach_func_proto->type) {
7690 				/* Make sure programs that attach to void
7691 				 * hooks don't try to modify return value.
7692 				 */
7693 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7694 				return -EINVAL;
7695 			}
7696 		}
7697 		break;
7698 	case BPF_FUNC_dynptr_data:
7699 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7700 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7701 				struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7702 
7703 				if (meta.ref_obj_id) {
7704 					verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7705 					return -EFAULT;
7706 				}
7707 
7708 				if (base_type(reg->type) != PTR_TO_DYNPTR)
7709 					/* Find the id of the dynptr we're
7710 					 * tracking the reference of
7711 					 */
7712 					meta.ref_obj_id = stack_slot_get_id(env, reg);
7713 				break;
7714 			}
7715 		}
7716 		if (i == MAX_BPF_FUNC_REG_ARGS) {
7717 			verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7718 			return -EFAULT;
7719 		}
7720 		break;
7721 	case BPF_FUNC_user_ringbuf_drain:
7722 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7723 					set_user_ringbuf_callback_state);
7724 		break;
7725 	}
7726 
7727 	if (err)
7728 		return err;
7729 
7730 	/* reset caller saved regs */
7731 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7732 		mark_reg_not_init(env, regs, caller_saved[i]);
7733 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7734 	}
7735 
7736 	/* helper call returns 64-bit value. */
7737 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7738 
7739 	/* update return register (already marked as written above) */
7740 	ret_type = fn->ret_type;
7741 	ret_flag = type_flag(ret_type);
7742 
7743 	switch (base_type(ret_type)) {
7744 	case RET_INTEGER:
7745 		/* sets type to SCALAR_VALUE */
7746 		mark_reg_unknown(env, regs, BPF_REG_0);
7747 		break;
7748 	case RET_VOID:
7749 		regs[BPF_REG_0].type = NOT_INIT;
7750 		break;
7751 	case RET_PTR_TO_MAP_VALUE:
7752 		/* There is no offset yet applied, variable or fixed */
7753 		mark_reg_known_zero(env, regs, BPF_REG_0);
7754 		/* remember map_ptr, so that check_map_access()
7755 		 * can check 'value_size' boundary of memory access
7756 		 * to map element returned from bpf_map_lookup_elem()
7757 		 */
7758 		if (meta.map_ptr == NULL) {
7759 			verbose(env,
7760 				"kernel subsystem misconfigured verifier\n");
7761 			return -EINVAL;
7762 		}
7763 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7764 		regs[BPF_REG_0].map_uid = meta.map_uid;
7765 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7766 		if (!type_may_be_null(ret_type) &&
7767 		    map_value_has_spin_lock(meta.map_ptr)) {
7768 			regs[BPF_REG_0].id = ++env->id_gen;
7769 		}
7770 		break;
7771 	case RET_PTR_TO_SOCKET:
7772 		mark_reg_known_zero(env, regs, BPF_REG_0);
7773 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7774 		break;
7775 	case RET_PTR_TO_SOCK_COMMON:
7776 		mark_reg_known_zero(env, regs, BPF_REG_0);
7777 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7778 		break;
7779 	case RET_PTR_TO_TCP_SOCK:
7780 		mark_reg_known_zero(env, regs, BPF_REG_0);
7781 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7782 		break;
7783 	case RET_PTR_TO_ALLOC_MEM:
7784 		mark_reg_known_zero(env, regs, BPF_REG_0);
7785 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7786 		regs[BPF_REG_0].mem_size = meta.mem_size;
7787 		break;
7788 	case RET_PTR_TO_MEM_OR_BTF_ID:
7789 	{
7790 		const struct btf_type *t;
7791 
7792 		mark_reg_known_zero(env, regs, BPF_REG_0);
7793 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7794 		if (!btf_type_is_struct(t)) {
7795 			u32 tsize;
7796 			const struct btf_type *ret;
7797 			const char *tname;
7798 
7799 			/* resolve the type size of ksym. */
7800 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7801 			if (IS_ERR(ret)) {
7802 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7803 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
7804 					tname, PTR_ERR(ret));
7805 				return -EINVAL;
7806 			}
7807 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7808 			regs[BPF_REG_0].mem_size = tsize;
7809 		} else {
7810 			/* MEM_RDONLY may be carried from ret_flag, but it
7811 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7812 			 * it will confuse the check of PTR_TO_BTF_ID in
7813 			 * check_mem_access().
7814 			 */
7815 			ret_flag &= ~MEM_RDONLY;
7816 
7817 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7818 			regs[BPF_REG_0].btf = meta.ret_btf;
7819 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7820 		}
7821 		break;
7822 	}
7823 	case RET_PTR_TO_BTF_ID:
7824 	{
7825 		struct btf *ret_btf;
7826 		int ret_btf_id;
7827 
7828 		mark_reg_known_zero(env, regs, BPF_REG_0);
7829 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7830 		if (func_id == BPF_FUNC_kptr_xchg) {
7831 			ret_btf = meta.kptr_off_desc->kptr.btf;
7832 			ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
7833 		} else {
7834 			if (fn->ret_btf_id == BPF_PTR_POISON) {
7835 				verbose(env, "verifier internal error:");
7836 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7837 					func_id_name(func_id));
7838 				return -EINVAL;
7839 			}
7840 			ret_btf = btf_vmlinux;
7841 			ret_btf_id = *fn->ret_btf_id;
7842 		}
7843 		if (ret_btf_id == 0) {
7844 			verbose(env, "invalid return type %u of func %s#%d\n",
7845 				base_type(ret_type), func_id_name(func_id),
7846 				func_id);
7847 			return -EINVAL;
7848 		}
7849 		regs[BPF_REG_0].btf = ret_btf;
7850 		regs[BPF_REG_0].btf_id = ret_btf_id;
7851 		break;
7852 	}
7853 	default:
7854 		verbose(env, "unknown return type %u of func %s#%d\n",
7855 			base_type(ret_type), func_id_name(func_id), func_id);
7856 		return -EINVAL;
7857 	}
7858 
7859 	if (type_may_be_null(regs[BPF_REG_0].type))
7860 		regs[BPF_REG_0].id = ++env->id_gen;
7861 
7862 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7863 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7864 			func_id_name(func_id), func_id);
7865 		return -EFAULT;
7866 	}
7867 
7868 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
7869 		/* For release_reference() */
7870 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7871 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
7872 		int id = acquire_reference_state(env, insn_idx);
7873 
7874 		if (id < 0)
7875 			return id;
7876 		/* For mark_ptr_or_null_reg() */
7877 		regs[BPF_REG_0].id = id;
7878 		/* For release_reference() */
7879 		regs[BPF_REG_0].ref_obj_id = id;
7880 	}
7881 
7882 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7883 
7884 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7885 	if (err)
7886 		return err;
7887 
7888 	if ((func_id == BPF_FUNC_get_stack ||
7889 	     func_id == BPF_FUNC_get_task_stack) &&
7890 	    !env->prog->has_callchain_buf) {
7891 		const char *err_str;
7892 
7893 #ifdef CONFIG_PERF_EVENTS
7894 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
7895 		err_str = "cannot get callchain buffer for func %s#%d\n";
7896 #else
7897 		err = -ENOTSUPP;
7898 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7899 #endif
7900 		if (err) {
7901 			verbose(env, err_str, func_id_name(func_id), func_id);
7902 			return err;
7903 		}
7904 
7905 		env->prog->has_callchain_buf = true;
7906 	}
7907 
7908 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7909 		env->prog->call_get_stack = true;
7910 
7911 	if (func_id == BPF_FUNC_get_func_ip) {
7912 		if (check_get_func_ip(env))
7913 			return -ENOTSUPP;
7914 		env->prog->call_get_func_ip = true;
7915 	}
7916 
7917 	if (changes_data)
7918 		clear_all_pkt_pointers(env);
7919 	return 0;
7920 }
7921 
7922 /* mark_btf_func_reg_size() is used when the reg size is determined by
7923  * the BTF func_proto's return value size and argument.
7924  */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)7925 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7926 				   size_t reg_size)
7927 {
7928 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
7929 
7930 	if (regno == BPF_REG_0) {
7931 		/* Function return value */
7932 		reg->live |= REG_LIVE_WRITTEN;
7933 		reg->subreg_def = reg_size == sizeof(u64) ?
7934 			DEF_NOT_SUBREG : env->insn_idx + 1;
7935 	} else {
7936 		/* Function argument */
7937 		if (reg_size == sizeof(u64)) {
7938 			mark_insn_zext(env, reg);
7939 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7940 		} else {
7941 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7942 		}
7943 	}
7944 }
7945 
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)7946 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7947 			    int *insn_idx_p)
7948 {
7949 	const struct btf_type *t, *func, *func_proto, *ptr_type;
7950 	struct bpf_reg_state *regs = cur_regs(env);
7951 	struct bpf_kfunc_arg_meta meta = { 0 };
7952 	const char *func_name, *ptr_type_name;
7953 	u32 i, nargs, func_id, ptr_type_id;
7954 	int err, insn_idx = *insn_idx_p;
7955 	const struct btf_param *args;
7956 	struct btf *desc_btf;
7957 	u32 *kfunc_flags;
7958 	bool acq;
7959 
7960 	/* skip for now, but return error when we find this in fixup_kfunc_call */
7961 	if (!insn->imm)
7962 		return 0;
7963 
7964 	desc_btf = find_kfunc_desc_btf(env, insn->off);
7965 	if (IS_ERR(desc_btf))
7966 		return PTR_ERR(desc_btf);
7967 
7968 	func_id = insn->imm;
7969 	func = btf_type_by_id(desc_btf, func_id);
7970 	func_name = btf_name_by_offset(desc_btf, func->name_off);
7971 	func_proto = btf_type_by_id(desc_btf, func->type);
7972 
7973 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
7974 	if (!kfunc_flags) {
7975 		verbose(env, "calling kernel function %s is not allowed\n",
7976 			func_name);
7977 		return -EACCES;
7978 	}
7979 	if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) {
7980 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n");
7981 		return -EACCES;
7982 	}
7983 
7984 	acq = *kfunc_flags & KF_ACQUIRE;
7985 
7986 	meta.flags = *kfunc_flags;
7987 
7988 	/* Check the arguments */
7989 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta);
7990 	if (err < 0)
7991 		return err;
7992 	/* In case of release function, we get register number of refcounted
7993 	 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7994 	 */
7995 	if (err) {
7996 		err = release_reference(env, regs[err].ref_obj_id);
7997 		if (err) {
7998 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7999 				func_name, func_id);
8000 			return err;
8001 		}
8002 	}
8003 
8004 	for (i = 0; i < CALLER_SAVED_REGS; i++)
8005 		mark_reg_not_init(env, regs, caller_saved[i]);
8006 
8007 	/* Check return type */
8008 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
8009 
8010 	if (acq && !btf_type_is_struct_ptr(desc_btf, t)) {
8011 		verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
8012 		return -EINVAL;
8013 	}
8014 
8015 	if (btf_type_is_scalar(t)) {
8016 		mark_reg_unknown(env, regs, BPF_REG_0);
8017 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
8018 	} else if (btf_type_is_ptr(t)) {
8019 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
8020 						   &ptr_type_id);
8021 		if (!btf_type_is_struct(ptr_type)) {
8022 			if (!meta.r0_size) {
8023 				ptr_type_name = btf_name_by_offset(desc_btf,
8024 								   ptr_type->name_off);
8025 				verbose(env,
8026 					"kernel function %s returns pointer type %s %s is not supported\n",
8027 					func_name,
8028 					btf_type_str(ptr_type),
8029 					ptr_type_name);
8030 				return -EINVAL;
8031 			}
8032 
8033 			mark_reg_known_zero(env, regs, BPF_REG_0);
8034 			regs[BPF_REG_0].type = PTR_TO_MEM;
8035 			regs[BPF_REG_0].mem_size = meta.r0_size;
8036 
8037 			if (meta.r0_rdonly)
8038 				regs[BPF_REG_0].type |= MEM_RDONLY;
8039 
8040 			/* Ensures we don't access the memory after a release_reference() */
8041 			if (meta.ref_obj_id)
8042 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
8043 		} else {
8044 			mark_reg_known_zero(env, regs, BPF_REG_0);
8045 			regs[BPF_REG_0].btf = desc_btf;
8046 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
8047 			regs[BPF_REG_0].btf_id = ptr_type_id;
8048 		}
8049 		if (*kfunc_flags & KF_RET_NULL) {
8050 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
8051 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
8052 			regs[BPF_REG_0].id = ++env->id_gen;
8053 		}
8054 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
8055 		if (acq) {
8056 			int id = acquire_reference_state(env, insn_idx);
8057 
8058 			if (id < 0)
8059 				return id;
8060 			regs[BPF_REG_0].id = id;
8061 			regs[BPF_REG_0].ref_obj_id = id;
8062 		}
8063 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
8064 
8065 	nargs = btf_type_vlen(func_proto);
8066 	args = (const struct btf_param *)(func_proto + 1);
8067 	for (i = 0; i < nargs; i++) {
8068 		u32 regno = i + 1;
8069 
8070 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
8071 		if (btf_type_is_ptr(t))
8072 			mark_btf_func_reg_size(env, regno, sizeof(void *));
8073 		else
8074 			/* scalar. ensured by btf_check_kfunc_arg_match() */
8075 			mark_btf_func_reg_size(env, regno, t->size);
8076 	}
8077 
8078 	return 0;
8079 }
8080 
signed_add_overflows(s64 a,s64 b)8081 static bool signed_add_overflows(s64 a, s64 b)
8082 {
8083 	/* Do the add in u64, where overflow is well-defined */
8084 	s64 res = (s64)((u64)a + (u64)b);
8085 
8086 	if (b < 0)
8087 		return res > a;
8088 	return res < a;
8089 }
8090 
signed_add32_overflows(s32 a,s32 b)8091 static bool signed_add32_overflows(s32 a, s32 b)
8092 {
8093 	/* Do the add in u32, where overflow is well-defined */
8094 	s32 res = (s32)((u32)a + (u32)b);
8095 
8096 	if (b < 0)
8097 		return res > a;
8098 	return res < a;
8099 }
8100 
signed_sub_overflows(s64 a,s64 b)8101 static bool signed_sub_overflows(s64 a, s64 b)
8102 {
8103 	/* Do the sub in u64, where overflow is well-defined */
8104 	s64 res = (s64)((u64)a - (u64)b);
8105 
8106 	if (b < 0)
8107 		return res < a;
8108 	return res > a;
8109 }
8110 
signed_sub32_overflows(s32 a,s32 b)8111 static bool signed_sub32_overflows(s32 a, s32 b)
8112 {
8113 	/* Do the sub in u32, where overflow is well-defined */
8114 	s32 res = (s32)((u32)a - (u32)b);
8115 
8116 	if (b < 0)
8117 		return res < a;
8118 	return res > a;
8119 }
8120 
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)8121 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
8122 				  const struct bpf_reg_state *reg,
8123 				  enum bpf_reg_type type)
8124 {
8125 	bool known = tnum_is_const(reg->var_off);
8126 	s64 val = reg->var_off.value;
8127 	s64 smin = reg->smin_value;
8128 
8129 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
8130 		verbose(env, "math between %s pointer and %lld is not allowed\n",
8131 			reg_type_str(env, type), val);
8132 		return false;
8133 	}
8134 
8135 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
8136 		verbose(env, "%s pointer offset %d is not allowed\n",
8137 			reg_type_str(env, type), reg->off);
8138 		return false;
8139 	}
8140 
8141 	if (smin == S64_MIN) {
8142 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
8143 			reg_type_str(env, type));
8144 		return false;
8145 	}
8146 
8147 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
8148 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
8149 			smin, reg_type_str(env, type));
8150 		return false;
8151 	}
8152 
8153 	return true;
8154 }
8155 
8156 enum {
8157 	REASON_BOUNDS	= -1,
8158 	REASON_TYPE	= -2,
8159 	REASON_PATHS	= -3,
8160 	REASON_LIMIT	= -4,
8161 	REASON_STACK	= -5,
8162 };
8163 
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)8164 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
8165 			      u32 *alu_limit, bool mask_to_left)
8166 {
8167 	u32 max = 0, ptr_limit = 0;
8168 
8169 	switch (ptr_reg->type) {
8170 	case PTR_TO_STACK:
8171 		/* Offset 0 is out-of-bounds, but acceptable start for the
8172 		 * left direction, see BPF_REG_FP. Also, unknown scalar
8173 		 * offset where we would need to deal with min/max bounds is
8174 		 * currently prohibited for unprivileged.
8175 		 */
8176 		max = MAX_BPF_STACK + mask_to_left;
8177 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
8178 		break;
8179 	case PTR_TO_MAP_VALUE:
8180 		max = ptr_reg->map_ptr->value_size;
8181 		ptr_limit = (mask_to_left ?
8182 			     ptr_reg->smin_value :
8183 			     ptr_reg->umax_value) + ptr_reg->off;
8184 		break;
8185 	default:
8186 		return REASON_TYPE;
8187 	}
8188 
8189 	if (ptr_limit >= max)
8190 		return REASON_LIMIT;
8191 	*alu_limit = ptr_limit;
8192 	return 0;
8193 }
8194 
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)8195 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
8196 				    const struct bpf_insn *insn)
8197 {
8198 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
8199 }
8200 
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)8201 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
8202 				       u32 alu_state, u32 alu_limit)
8203 {
8204 	/* If we arrived here from different branches with different
8205 	 * state or limits to sanitize, then this won't work.
8206 	 */
8207 	if (aux->alu_state &&
8208 	    (aux->alu_state != alu_state ||
8209 	     aux->alu_limit != alu_limit))
8210 		return REASON_PATHS;
8211 
8212 	/* Corresponding fixup done in do_misc_fixups(). */
8213 	aux->alu_state = alu_state;
8214 	aux->alu_limit = alu_limit;
8215 	return 0;
8216 }
8217 
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)8218 static int sanitize_val_alu(struct bpf_verifier_env *env,
8219 			    struct bpf_insn *insn)
8220 {
8221 	struct bpf_insn_aux_data *aux = cur_aux(env);
8222 
8223 	if (can_skip_alu_sanitation(env, insn))
8224 		return 0;
8225 
8226 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
8227 }
8228 
sanitize_needed(u8 opcode)8229 static bool sanitize_needed(u8 opcode)
8230 {
8231 	return opcode == BPF_ADD || opcode == BPF_SUB;
8232 }
8233 
8234 struct bpf_sanitize_info {
8235 	struct bpf_insn_aux_data aux;
8236 	bool mask_to_left;
8237 };
8238 
8239 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)8240 sanitize_speculative_path(struct bpf_verifier_env *env,
8241 			  const struct bpf_insn *insn,
8242 			  u32 next_idx, u32 curr_idx)
8243 {
8244 	struct bpf_verifier_state *branch;
8245 	struct bpf_reg_state *regs;
8246 
8247 	branch = push_stack(env, next_idx, curr_idx, true);
8248 	if (branch && insn) {
8249 		regs = branch->frame[branch->curframe]->regs;
8250 		if (BPF_SRC(insn->code) == BPF_K) {
8251 			mark_reg_unknown(env, regs, insn->dst_reg);
8252 		} else if (BPF_SRC(insn->code) == BPF_X) {
8253 			mark_reg_unknown(env, regs, insn->dst_reg);
8254 			mark_reg_unknown(env, regs, insn->src_reg);
8255 		}
8256 	}
8257 	return branch;
8258 }
8259 
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)8260 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
8261 			    struct bpf_insn *insn,
8262 			    const struct bpf_reg_state *ptr_reg,
8263 			    const struct bpf_reg_state *off_reg,
8264 			    struct bpf_reg_state *dst_reg,
8265 			    struct bpf_sanitize_info *info,
8266 			    const bool commit_window)
8267 {
8268 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
8269 	struct bpf_verifier_state *vstate = env->cur_state;
8270 	bool off_is_imm = tnum_is_const(off_reg->var_off);
8271 	bool off_is_neg = off_reg->smin_value < 0;
8272 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
8273 	u8 opcode = BPF_OP(insn->code);
8274 	u32 alu_state, alu_limit;
8275 	struct bpf_reg_state tmp;
8276 	bool ret;
8277 	int err;
8278 
8279 	if (can_skip_alu_sanitation(env, insn))
8280 		return 0;
8281 
8282 	/* We already marked aux for masking from non-speculative
8283 	 * paths, thus we got here in the first place. We only care
8284 	 * to explore bad access from here.
8285 	 */
8286 	if (vstate->speculative)
8287 		goto do_sim;
8288 
8289 	if (!commit_window) {
8290 		if (!tnum_is_const(off_reg->var_off) &&
8291 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
8292 			return REASON_BOUNDS;
8293 
8294 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
8295 				     (opcode == BPF_SUB && !off_is_neg);
8296 	}
8297 
8298 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
8299 	if (err < 0)
8300 		return err;
8301 
8302 	if (commit_window) {
8303 		/* In commit phase we narrow the masking window based on
8304 		 * the observed pointer move after the simulated operation.
8305 		 */
8306 		alu_state = info->aux.alu_state;
8307 		alu_limit = abs(info->aux.alu_limit - alu_limit);
8308 	} else {
8309 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
8310 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
8311 		alu_state |= ptr_is_dst_reg ?
8312 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
8313 
8314 		/* Limit pruning on unknown scalars to enable deep search for
8315 		 * potential masking differences from other program paths.
8316 		 */
8317 		if (!off_is_imm)
8318 			env->explore_alu_limits = true;
8319 	}
8320 
8321 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
8322 	if (err < 0)
8323 		return err;
8324 do_sim:
8325 	/* If we're in commit phase, we're done here given we already
8326 	 * pushed the truncated dst_reg into the speculative verification
8327 	 * stack.
8328 	 *
8329 	 * Also, when register is a known constant, we rewrite register-based
8330 	 * operation to immediate-based, and thus do not need masking (and as
8331 	 * a consequence, do not need to simulate the zero-truncation either).
8332 	 */
8333 	if (commit_window || off_is_imm)
8334 		return 0;
8335 
8336 	/* Simulate and find potential out-of-bounds access under
8337 	 * speculative execution from truncation as a result of
8338 	 * masking when off was not within expected range. If off
8339 	 * sits in dst, then we temporarily need to move ptr there
8340 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
8341 	 * for cases where we use K-based arithmetic in one direction
8342 	 * and truncated reg-based in the other in order to explore
8343 	 * bad access.
8344 	 */
8345 	if (!ptr_is_dst_reg) {
8346 		tmp = *dst_reg;
8347 		copy_register_state(dst_reg, ptr_reg);
8348 	}
8349 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
8350 					env->insn_idx);
8351 	if (!ptr_is_dst_reg && ret)
8352 		*dst_reg = tmp;
8353 	return !ret ? REASON_STACK : 0;
8354 }
8355 
sanitize_mark_insn_seen(struct bpf_verifier_env * env)8356 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
8357 {
8358 	struct bpf_verifier_state *vstate = env->cur_state;
8359 
8360 	/* If we simulate paths under speculation, we don't update the
8361 	 * insn as 'seen' such that when we verify unreachable paths in
8362 	 * the non-speculative domain, sanitize_dead_code() can still
8363 	 * rewrite/sanitize them.
8364 	 */
8365 	if (!vstate->speculative)
8366 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8367 }
8368 
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)8369 static int sanitize_err(struct bpf_verifier_env *env,
8370 			const struct bpf_insn *insn, int reason,
8371 			const struct bpf_reg_state *off_reg,
8372 			const struct bpf_reg_state *dst_reg)
8373 {
8374 	static const char *err = "pointer arithmetic with it prohibited for !root";
8375 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
8376 	u32 dst = insn->dst_reg, src = insn->src_reg;
8377 
8378 	switch (reason) {
8379 	case REASON_BOUNDS:
8380 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
8381 			off_reg == dst_reg ? dst : src, err);
8382 		break;
8383 	case REASON_TYPE:
8384 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
8385 			off_reg == dst_reg ? src : dst, err);
8386 		break;
8387 	case REASON_PATHS:
8388 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
8389 			dst, op, err);
8390 		break;
8391 	case REASON_LIMIT:
8392 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
8393 			dst, op, err);
8394 		break;
8395 	case REASON_STACK:
8396 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
8397 			dst, err);
8398 		break;
8399 	default:
8400 		verbose(env, "verifier internal error: unknown reason (%d)\n",
8401 			reason);
8402 		break;
8403 	}
8404 
8405 	return -EACCES;
8406 }
8407 
8408 /* check that stack access falls within stack limits and that 'reg' doesn't
8409  * have a variable offset.
8410  *
8411  * Variable offset is prohibited for unprivileged mode for simplicity since it
8412  * requires corresponding support in Spectre masking for stack ALU.  See also
8413  * retrieve_ptr_limit().
8414  *
8415  *
8416  * 'off' includes 'reg->off'.
8417  */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)8418 static int check_stack_access_for_ptr_arithmetic(
8419 				struct bpf_verifier_env *env,
8420 				int regno,
8421 				const struct bpf_reg_state *reg,
8422 				int off)
8423 {
8424 	if (!tnum_is_const(reg->var_off)) {
8425 		char tn_buf[48];
8426 
8427 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8428 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8429 			regno, tn_buf, off);
8430 		return -EACCES;
8431 	}
8432 
8433 	if (off >= 0 || off < -MAX_BPF_STACK) {
8434 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
8435 			"prohibited for !root; off=%d\n", regno, off);
8436 		return -EACCES;
8437 	}
8438 
8439 	return 0;
8440 }
8441 
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)8442 static int sanitize_check_bounds(struct bpf_verifier_env *env,
8443 				 const struct bpf_insn *insn,
8444 				 const struct bpf_reg_state *dst_reg)
8445 {
8446 	u32 dst = insn->dst_reg;
8447 
8448 	/* For unprivileged we require that resulting offset must be in bounds
8449 	 * in order to be able to sanitize access later on.
8450 	 */
8451 	if (env->bypass_spec_v1)
8452 		return 0;
8453 
8454 	switch (dst_reg->type) {
8455 	case PTR_TO_STACK:
8456 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
8457 					dst_reg->off + dst_reg->var_off.value))
8458 			return -EACCES;
8459 		break;
8460 	case PTR_TO_MAP_VALUE:
8461 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
8462 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
8463 				"prohibited for !root\n", dst);
8464 			return -EACCES;
8465 		}
8466 		break;
8467 	default:
8468 		break;
8469 	}
8470 
8471 	return 0;
8472 }
8473 
8474 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
8475  * Caller should also handle BPF_MOV case separately.
8476  * If we return -EACCES, caller may want to try again treating pointer as a
8477  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
8478  */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)8479 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
8480 				   struct bpf_insn *insn,
8481 				   const struct bpf_reg_state *ptr_reg,
8482 				   const struct bpf_reg_state *off_reg)
8483 {
8484 	struct bpf_verifier_state *vstate = env->cur_state;
8485 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8486 	struct bpf_reg_state *regs = state->regs, *dst_reg;
8487 	bool known = tnum_is_const(off_reg->var_off);
8488 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
8489 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
8490 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
8491 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
8492 	struct bpf_sanitize_info info = {};
8493 	u8 opcode = BPF_OP(insn->code);
8494 	u32 dst = insn->dst_reg;
8495 	int ret;
8496 
8497 	dst_reg = &regs[dst];
8498 
8499 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
8500 	    smin_val > smax_val || umin_val > umax_val) {
8501 		/* Taint dst register if offset had invalid bounds derived from
8502 		 * e.g. dead branches.
8503 		 */
8504 		__mark_reg_unknown(env, dst_reg);
8505 		return 0;
8506 	}
8507 
8508 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
8509 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
8510 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8511 			__mark_reg_unknown(env, dst_reg);
8512 			return 0;
8513 		}
8514 
8515 		verbose(env,
8516 			"R%d 32-bit pointer arithmetic prohibited\n",
8517 			dst);
8518 		return -EACCES;
8519 	}
8520 
8521 	if (ptr_reg->type & PTR_MAYBE_NULL) {
8522 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
8523 			dst, reg_type_str(env, ptr_reg->type));
8524 		return -EACCES;
8525 	}
8526 
8527 	switch (base_type(ptr_reg->type)) {
8528 	case PTR_TO_FLOW_KEYS:
8529 		if (known)
8530 			break;
8531 		fallthrough;
8532 	case CONST_PTR_TO_MAP:
8533 		/* smin_val represents the known value */
8534 		if (known && smin_val == 0 && opcode == BPF_ADD)
8535 			break;
8536 		fallthrough;
8537 	case PTR_TO_PACKET_END:
8538 	case PTR_TO_SOCKET:
8539 	case PTR_TO_SOCK_COMMON:
8540 	case PTR_TO_TCP_SOCK:
8541 	case PTR_TO_XDP_SOCK:
8542 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
8543 			dst, reg_type_str(env, ptr_reg->type));
8544 		return -EACCES;
8545 	default:
8546 		break;
8547 	}
8548 
8549 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
8550 	 * The id may be overwritten later if we create a new variable offset.
8551 	 */
8552 	dst_reg->type = ptr_reg->type;
8553 	dst_reg->id = ptr_reg->id;
8554 
8555 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
8556 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
8557 		return -EINVAL;
8558 
8559 	/* pointer types do not carry 32-bit bounds at the moment. */
8560 	__mark_reg32_unbounded(dst_reg);
8561 
8562 	if (sanitize_needed(opcode)) {
8563 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
8564 				       &info, false);
8565 		if (ret < 0)
8566 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8567 	}
8568 
8569 	switch (opcode) {
8570 	case BPF_ADD:
8571 		/* We can take a fixed offset as long as it doesn't overflow
8572 		 * the s32 'off' field
8573 		 */
8574 		if (known && (ptr_reg->off + smin_val ==
8575 			      (s64)(s32)(ptr_reg->off + smin_val))) {
8576 			/* pointer += K.  Accumulate it into fixed offset */
8577 			dst_reg->smin_value = smin_ptr;
8578 			dst_reg->smax_value = smax_ptr;
8579 			dst_reg->umin_value = umin_ptr;
8580 			dst_reg->umax_value = umax_ptr;
8581 			dst_reg->var_off = ptr_reg->var_off;
8582 			dst_reg->off = ptr_reg->off + smin_val;
8583 			dst_reg->raw = ptr_reg->raw;
8584 			break;
8585 		}
8586 		/* A new variable offset is created.  Note that off_reg->off
8587 		 * == 0, since it's a scalar.
8588 		 * dst_reg gets the pointer type and since some positive
8589 		 * integer value was added to the pointer, give it a new 'id'
8590 		 * if it's a PTR_TO_PACKET.
8591 		 * this creates a new 'base' pointer, off_reg (variable) gets
8592 		 * added into the variable offset, and we copy the fixed offset
8593 		 * from ptr_reg.
8594 		 */
8595 		if (signed_add_overflows(smin_ptr, smin_val) ||
8596 		    signed_add_overflows(smax_ptr, smax_val)) {
8597 			dst_reg->smin_value = S64_MIN;
8598 			dst_reg->smax_value = S64_MAX;
8599 		} else {
8600 			dst_reg->smin_value = smin_ptr + smin_val;
8601 			dst_reg->smax_value = smax_ptr + smax_val;
8602 		}
8603 		if (umin_ptr + umin_val < umin_ptr ||
8604 		    umax_ptr + umax_val < umax_ptr) {
8605 			dst_reg->umin_value = 0;
8606 			dst_reg->umax_value = U64_MAX;
8607 		} else {
8608 			dst_reg->umin_value = umin_ptr + umin_val;
8609 			dst_reg->umax_value = umax_ptr + umax_val;
8610 		}
8611 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
8612 		dst_reg->off = ptr_reg->off;
8613 		dst_reg->raw = ptr_reg->raw;
8614 		if (reg_is_pkt_pointer(ptr_reg)) {
8615 			dst_reg->id = ++env->id_gen;
8616 			/* something was added to pkt_ptr, set range to zero */
8617 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8618 		}
8619 		break;
8620 	case BPF_SUB:
8621 		if (dst_reg == off_reg) {
8622 			/* scalar -= pointer.  Creates an unknown scalar */
8623 			verbose(env, "R%d tried to subtract pointer from scalar\n",
8624 				dst);
8625 			return -EACCES;
8626 		}
8627 		/* We don't allow subtraction from FP, because (according to
8628 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
8629 		 * be able to deal with it.
8630 		 */
8631 		if (ptr_reg->type == PTR_TO_STACK) {
8632 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
8633 				dst);
8634 			return -EACCES;
8635 		}
8636 		if (known && (ptr_reg->off - smin_val ==
8637 			      (s64)(s32)(ptr_reg->off - smin_val))) {
8638 			/* pointer -= K.  Subtract it from fixed offset */
8639 			dst_reg->smin_value = smin_ptr;
8640 			dst_reg->smax_value = smax_ptr;
8641 			dst_reg->umin_value = umin_ptr;
8642 			dst_reg->umax_value = umax_ptr;
8643 			dst_reg->var_off = ptr_reg->var_off;
8644 			dst_reg->id = ptr_reg->id;
8645 			dst_reg->off = ptr_reg->off - smin_val;
8646 			dst_reg->raw = ptr_reg->raw;
8647 			break;
8648 		}
8649 		/* A new variable offset is created.  If the subtrahend is known
8650 		 * nonnegative, then any reg->range we had before is still good.
8651 		 */
8652 		if (signed_sub_overflows(smin_ptr, smax_val) ||
8653 		    signed_sub_overflows(smax_ptr, smin_val)) {
8654 			/* Overflow possible, we know nothing */
8655 			dst_reg->smin_value = S64_MIN;
8656 			dst_reg->smax_value = S64_MAX;
8657 		} else {
8658 			dst_reg->smin_value = smin_ptr - smax_val;
8659 			dst_reg->smax_value = smax_ptr - smin_val;
8660 		}
8661 		if (umin_ptr < umax_val) {
8662 			/* Overflow possible, we know nothing */
8663 			dst_reg->umin_value = 0;
8664 			dst_reg->umax_value = U64_MAX;
8665 		} else {
8666 			/* Cannot overflow (as long as bounds are consistent) */
8667 			dst_reg->umin_value = umin_ptr - umax_val;
8668 			dst_reg->umax_value = umax_ptr - umin_val;
8669 		}
8670 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
8671 		dst_reg->off = ptr_reg->off;
8672 		dst_reg->raw = ptr_reg->raw;
8673 		if (reg_is_pkt_pointer(ptr_reg)) {
8674 			dst_reg->id = ++env->id_gen;
8675 			/* something was added to pkt_ptr, set range to zero */
8676 			if (smin_val < 0)
8677 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8678 		}
8679 		break;
8680 	case BPF_AND:
8681 	case BPF_OR:
8682 	case BPF_XOR:
8683 		/* bitwise ops on pointers are troublesome, prohibit. */
8684 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
8685 			dst, bpf_alu_string[opcode >> 4]);
8686 		return -EACCES;
8687 	default:
8688 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
8689 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
8690 			dst, bpf_alu_string[opcode >> 4]);
8691 		return -EACCES;
8692 	}
8693 
8694 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
8695 		return -EINVAL;
8696 	reg_bounds_sync(dst_reg);
8697 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
8698 		return -EACCES;
8699 	if (sanitize_needed(opcode)) {
8700 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
8701 				       &info, true);
8702 		if (ret < 0)
8703 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8704 	}
8705 
8706 	return 0;
8707 }
8708 
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8709 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
8710 				 struct bpf_reg_state *src_reg)
8711 {
8712 	s32 smin_val = src_reg->s32_min_value;
8713 	s32 smax_val = src_reg->s32_max_value;
8714 	u32 umin_val = src_reg->u32_min_value;
8715 	u32 umax_val = src_reg->u32_max_value;
8716 
8717 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
8718 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
8719 		dst_reg->s32_min_value = S32_MIN;
8720 		dst_reg->s32_max_value = S32_MAX;
8721 	} else {
8722 		dst_reg->s32_min_value += smin_val;
8723 		dst_reg->s32_max_value += smax_val;
8724 	}
8725 	if (dst_reg->u32_min_value + umin_val < umin_val ||
8726 	    dst_reg->u32_max_value + umax_val < umax_val) {
8727 		dst_reg->u32_min_value = 0;
8728 		dst_reg->u32_max_value = U32_MAX;
8729 	} else {
8730 		dst_reg->u32_min_value += umin_val;
8731 		dst_reg->u32_max_value += umax_val;
8732 	}
8733 }
8734 
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8735 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
8736 			       struct bpf_reg_state *src_reg)
8737 {
8738 	s64 smin_val = src_reg->smin_value;
8739 	s64 smax_val = src_reg->smax_value;
8740 	u64 umin_val = src_reg->umin_value;
8741 	u64 umax_val = src_reg->umax_value;
8742 
8743 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8744 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
8745 		dst_reg->smin_value = S64_MIN;
8746 		dst_reg->smax_value = S64_MAX;
8747 	} else {
8748 		dst_reg->smin_value += smin_val;
8749 		dst_reg->smax_value += smax_val;
8750 	}
8751 	if (dst_reg->umin_value + umin_val < umin_val ||
8752 	    dst_reg->umax_value + umax_val < umax_val) {
8753 		dst_reg->umin_value = 0;
8754 		dst_reg->umax_value = U64_MAX;
8755 	} else {
8756 		dst_reg->umin_value += umin_val;
8757 		dst_reg->umax_value += umax_val;
8758 	}
8759 }
8760 
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8761 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8762 				 struct bpf_reg_state *src_reg)
8763 {
8764 	s32 smin_val = src_reg->s32_min_value;
8765 	s32 smax_val = src_reg->s32_max_value;
8766 	u32 umin_val = src_reg->u32_min_value;
8767 	u32 umax_val = src_reg->u32_max_value;
8768 
8769 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8770 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8771 		/* Overflow possible, we know nothing */
8772 		dst_reg->s32_min_value = S32_MIN;
8773 		dst_reg->s32_max_value = S32_MAX;
8774 	} else {
8775 		dst_reg->s32_min_value -= smax_val;
8776 		dst_reg->s32_max_value -= smin_val;
8777 	}
8778 	if (dst_reg->u32_min_value < umax_val) {
8779 		/* Overflow possible, we know nothing */
8780 		dst_reg->u32_min_value = 0;
8781 		dst_reg->u32_max_value = U32_MAX;
8782 	} else {
8783 		/* Cannot overflow (as long as bounds are consistent) */
8784 		dst_reg->u32_min_value -= umax_val;
8785 		dst_reg->u32_max_value -= umin_val;
8786 	}
8787 }
8788 
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8789 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8790 			       struct bpf_reg_state *src_reg)
8791 {
8792 	s64 smin_val = src_reg->smin_value;
8793 	s64 smax_val = src_reg->smax_value;
8794 	u64 umin_val = src_reg->umin_value;
8795 	u64 umax_val = src_reg->umax_value;
8796 
8797 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8798 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8799 		/* Overflow possible, we know nothing */
8800 		dst_reg->smin_value = S64_MIN;
8801 		dst_reg->smax_value = S64_MAX;
8802 	} else {
8803 		dst_reg->smin_value -= smax_val;
8804 		dst_reg->smax_value -= smin_val;
8805 	}
8806 	if (dst_reg->umin_value < umax_val) {
8807 		/* Overflow possible, we know nothing */
8808 		dst_reg->umin_value = 0;
8809 		dst_reg->umax_value = U64_MAX;
8810 	} else {
8811 		/* Cannot overflow (as long as bounds are consistent) */
8812 		dst_reg->umin_value -= umax_val;
8813 		dst_reg->umax_value -= umin_val;
8814 	}
8815 }
8816 
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8817 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8818 				 struct bpf_reg_state *src_reg)
8819 {
8820 	s32 smin_val = src_reg->s32_min_value;
8821 	u32 umin_val = src_reg->u32_min_value;
8822 	u32 umax_val = src_reg->u32_max_value;
8823 
8824 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8825 		/* Ain't nobody got time to multiply that sign */
8826 		__mark_reg32_unbounded(dst_reg);
8827 		return;
8828 	}
8829 	/* Both values are positive, so we can work with unsigned and
8830 	 * copy the result to signed (unless it exceeds S32_MAX).
8831 	 */
8832 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8833 		/* Potential overflow, we know nothing */
8834 		__mark_reg32_unbounded(dst_reg);
8835 		return;
8836 	}
8837 	dst_reg->u32_min_value *= umin_val;
8838 	dst_reg->u32_max_value *= umax_val;
8839 	if (dst_reg->u32_max_value > S32_MAX) {
8840 		/* Overflow possible, we know nothing */
8841 		dst_reg->s32_min_value = S32_MIN;
8842 		dst_reg->s32_max_value = S32_MAX;
8843 	} else {
8844 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8845 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8846 	}
8847 }
8848 
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8849 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8850 			       struct bpf_reg_state *src_reg)
8851 {
8852 	s64 smin_val = src_reg->smin_value;
8853 	u64 umin_val = src_reg->umin_value;
8854 	u64 umax_val = src_reg->umax_value;
8855 
8856 	if (smin_val < 0 || dst_reg->smin_value < 0) {
8857 		/* Ain't nobody got time to multiply that sign */
8858 		__mark_reg64_unbounded(dst_reg);
8859 		return;
8860 	}
8861 	/* Both values are positive, so we can work with unsigned and
8862 	 * copy the result to signed (unless it exceeds S64_MAX).
8863 	 */
8864 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8865 		/* Potential overflow, we know nothing */
8866 		__mark_reg64_unbounded(dst_reg);
8867 		return;
8868 	}
8869 	dst_reg->umin_value *= umin_val;
8870 	dst_reg->umax_value *= umax_val;
8871 	if (dst_reg->umax_value > S64_MAX) {
8872 		/* Overflow possible, we know nothing */
8873 		dst_reg->smin_value = S64_MIN;
8874 		dst_reg->smax_value = S64_MAX;
8875 	} else {
8876 		dst_reg->smin_value = dst_reg->umin_value;
8877 		dst_reg->smax_value = dst_reg->umax_value;
8878 	}
8879 }
8880 
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8881 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8882 				 struct bpf_reg_state *src_reg)
8883 {
8884 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8885 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8886 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8887 	s32 smin_val = src_reg->s32_min_value;
8888 	u32 umax_val = src_reg->u32_max_value;
8889 
8890 	if (src_known && dst_known) {
8891 		__mark_reg32_known(dst_reg, var32_off.value);
8892 		return;
8893 	}
8894 
8895 	/* We get our minimum from the var_off, since that's inherently
8896 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8897 	 */
8898 	dst_reg->u32_min_value = var32_off.value;
8899 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8900 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8901 		/* Lose signed bounds when ANDing negative numbers,
8902 		 * ain't nobody got time for that.
8903 		 */
8904 		dst_reg->s32_min_value = S32_MIN;
8905 		dst_reg->s32_max_value = S32_MAX;
8906 	} else {
8907 		/* ANDing two positives gives a positive, so safe to
8908 		 * cast result into s64.
8909 		 */
8910 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8911 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8912 	}
8913 }
8914 
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8915 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8916 			       struct bpf_reg_state *src_reg)
8917 {
8918 	bool src_known = tnum_is_const(src_reg->var_off);
8919 	bool dst_known = tnum_is_const(dst_reg->var_off);
8920 	s64 smin_val = src_reg->smin_value;
8921 	u64 umax_val = src_reg->umax_value;
8922 
8923 	if (src_known && dst_known) {
8924 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8925 		return;
8926 	}
8927 
8928 	/* We get our minimum from the var_off, since that's inherently
8929 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8930 	 */
8931 	dst_reg->umin_value = dst_reg->var_off.value;
8932 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8933 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8934 		/* Lose signed bounds when ANDing negative numbers,
8935 		 * ain't nobody got time for that.
8936 		 */
8937 		dst_reg->smin_value = S64_MIN;
8938 		dst_reg->smax_value = S64_MAX;
8939 	} else {
8940 		/* ANDing two positives gives a positive, so safe to
8941 		 * cast result into s64.
8942 		 */
8943 		dst_reg->smin_value = dst_reg->umin_value;
8944 		dst_reg->smax_value = dst_reg->umax_value;
8945 	}
8946 	/* We may learn something more from the var_off */
8947 	__update_reg_bounds(dst_reg);
8948 }
8949 
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8950 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8951 				struct bpf_reg_state *src_reg)
8952 {
8953 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8954 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8955 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8956 	s32 smin_val = src_reg->s32_min_value;
8957 	u32 umin_val = src_reg->u32_min_value;
8958 
8959 	if (src_known && dst_known) {
8960 		__mark_reg32_known(dst_reg, var32_off.value);
8961 		return;
8962 	}
8963 
8964 	/* We get our maximum from the var_off, and our minimum is the
8965 	 * maximum of the operands' minima
8966 	 */
8967 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8968 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8969 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8970 		/* Lose signed bounds when ORing negative numbers,
8971 		 * ain't nobody got time for that.
8972 		 */
8973 		dst_reg->s32_min_value = S32_MIN;
8974 		dst_reg->s32_max_value = S32_MAX;
8975 	} else {
8976 		/* ORing two positives gives a positive, so safe to
8977 		 * cast result into s64.
8978 		 */
8979 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8980 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8981 	}
8982 }
8983 
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)8984 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8985 			      struct bpf_reg_state *src_reg)
8986 {
8987 	bool src_known = tnum_is_const(src_reg->var_off);
8988 	bool dst_known = tnum_is_const(dst_reg->var_off);
8989 	s64 smin_val = src_reg->smin_value;
8990 	u64 umin_val = src_reg->umin_value;
8991 
8992 	if (src_known && dst_known) {
8993 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8994 		return;
8995 	}
8996 
8997 	/* We get our maximum from the var_off, and our minimum is the
8998 	 * maximum of the operands' minima
8999 	 */
9000 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
9001 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
9002 	if (dst_reg->smin_value < 0 || smin_val < 0) {
9003 		/* Lose signed bounds when ORing negative numbers,
9004 		 * ain't nobody got time for that.
9005 		 */
9006 		dst_reg->smin_value = S64_MIN;
9007 		dst_reg->smax_value = S64_MAX;
9008 	} else {
9009 		/* ORing two positives gives a positive, so safe to
9010 		 * cast result into s64.
9011 		 */
9012 		dst_reg->smin_value = dst_reg->umin_value;
9013 		dst_reg->smax_value = dst_reg->umax_value;
9014 	}
9015 	/* We may learn something more from the var_off */
9016 	__update_reg_bounds(dst_reg);
9017 }
9018 
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)9019 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
9020 				 struct bpf_reg_state *src_reg)
9021 {
9022 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
9023 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9024 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
9025 	s32 smin_val = src_reg->s32_min_value;
9026 
9027 	if (src_known && dst_known) {
9028 		__mark_reg32_known(dst_reg, var32_off.value);
9029 		return;
9030 	}
9031 
9032 	/* We get both minimum and maximum from the var32_off. */
9033 	dst_reg->u32_min_value = var32_off.value;
9034 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
9035 
9036 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
9037 		/* XORing two positive sign numbers gives a positive,
9038 		 * so safe to cast u32 result into s32.
9039 		 */
9040 		dst_reg->s32_min_value = dst_reg->u32_min_value;
9041 		dst_reg->s32_max_value = dst_reg->u32_max_value;
9042 	} else {
9043 		dst_reg->s32_min_value = S32_MIN;
9044 		dst_reg->s32_max_value = S32_MAX;
9045 	}
9046 }
9047 
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)9048 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
9049 			       struct bpf_reg_state *src_reg)
9050 {
9051 	bool src_known = tnum_is_const(src_reg->var_off);
9052 	bool dst_known = tnum_is_const(dst_reg->var_off);
9053 	s64 smin_val = src_reg->smin_value;
9054 
9055 	if (src_known && dst_known) {
9056 		/* dst_reg->var_off.value has been updated earlier */
9057 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
9058 		return;
9059 	}
9060 
9061 	/* We get both minimum and maximum from the var_off. */
9062 	dst_reg->umin_value = dst_reg->var_off.value;
9063 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
9064 
9065 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
9066 		/* XORing two positive sign numbers gives a positive,
9067 		 * so safe to cast u64 result into s64.
9068 		 */
9069 		dst_reg->smin_value = dst_reg->umin_value;
9070 		dst_reg->smax_value = dst_reg->umax_value;
9071 	} else {
9072 		dst_reg->smin_value = S64_MIN;
9073 		dst_reg->smax_value = S64_MAX;
9074 	}
9075 
9076 	__update_reg_bounds(dst_reg);
9077 }
9078 
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)9079 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
9080 				   u64 umin_val, u64 umax_val)
9081 {
9082 	/* We lose all sign bit information (except what we can pick
9083 	 * up from var_off)
9084 	 */
9085 	dst_reg->s32_min_value = S32_MIN;
9086 	dst_reg->s32_max_value = S32_MAX;
9087 	/* If we might shift our top bit out, then we know nothing */
9088 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
9089 		dst_reg->u32_min_value = 0;
9090 		dst_reg->u32_max_value = U32_MAX;
9091 	} else {
9092 		dst_reg->u32_min_value <<= umin_val;
9093 		dst_reg->u32_max_value <<= umax_val;
9094 	}
9095 }
9096 
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)9097 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
9098 				 struct bpf_reg_state *src_reg)
9099 {
9100 	u32 umax_val = src_reg->u32_max_value;
9101 	u32 umin_val = src_reg->u32_min_value;
9102 	/* u32 alu operation will zext upper bits */
9103 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
9104 
9105 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
9106 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
9107 	/* Not required but being careful mark reg64 bounds as unknown so
9108 	 * that we are forced to pick them up from tnum and zext later and
9109 	 * if some path skips this step we are still safe.
9110 	 */
9111 	__mark_reg64_unbounded(dst_reg);
9112 	__update_reg32_bounds(dst_reg);
9113 }
9114 
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)9115 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
9116 				   u64 umin_val, u64 umax_val)
9117 {
9118 	/* Special case <<32 because it is a common compiler pattern to sign
9119 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
9120 	 * positive we know this shift will also be positive so we can track
9121 	 * bounds correctly. Otherwise we lose all sign bit information except
9122 	 * what we can pick up from var_off. Perhaps we can generalize this
9123 	 * later to shifts of any length.
9124 	 */
9125 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
9126 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
9127 	else
9128 		dst_reg->smax_value = S64_MAX;
9129 
9130 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
9131 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
9132 	else
9133 		dst_reg->smin_value = S64_MIN;
9134 
9135 	/* If we might shift our top bit out, then we know nothing */
9136 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
9137 		dst_reg->umin_value = 0;
9138 		dst_reg->umax_value = U64_MAX;
9139 	} else {
9140 		dst_reg->umin_value <<= umin_val;
9141 		dst_reg->umax_value <<= umax_val;
9142 	}
9143 }
9144 
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)9145 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
9146 			       struct bpf_reg_state *src_reg)
9147 {
9148 	u64 umax_val = src_reg->umax_value;
9149 	u64 umin_val = src_reg->umin_value;
9150 
9151 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
9152 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
9153 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
9154 
9155 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
9156 	/* We may learn something more from the var_off */
9157 	__update_reg_bounds(dst_reg);
9158 }
9159 
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)9160 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
9161 				 struct bpf_reg_state *src_reg)
9162 {
9163 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
9164 	u32 umax_val = src_reg->u32_max_value;
9165 	u32 umin_val = src_reg->u32_min_value;
9166 
9167 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
9168 	 * be negative, then either:
9169 	 * 1) src_reg might be zero, so the sign bit of the result is
9170 	 *    unknown, so we lose our signed bounds
9171 	 * 2) it's known negative, thus the unsigned bounds capture the
9172 	 *    signed bounds
9173 	 * 3) the signed bounds cross zero, so they tell us nothing
9174 	 *    about the result
9175 	 * If the value in dst_reg is known nonnegative, then again the
9176 	 * unsigned bounds capture the signed bounds.
9177 	 * Thus, in all cases it suffices to blow away our signed bounds
9178 	 * and rely on inferring new ones from the unsigned bounds and
9179 	 * var_off of the result.
9180 	 */
9181 	dst_reg->s32_min_value = S32_MIN;
9182 	dst_reg->s32_max_value = S32_MAX;
9183 
9184 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
9185 	dst_reg->u32_min_value >>= umax_val;
9186 	dst_reg->u32_max_value >>= umin_val;
9187 
9188 	__mark_reg64_unbounded(dst_reg);
9189 	__update_reg32_bounds(dst_reg);
9190 }
9191 
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)9192 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
9193 			       struct bpf_reg_state *src_reg)
9194 {
9195 	u64 umax_val = src_reg->umax_value;
9196 	u64 umin_val = src_reg->umin_value;
9197 
9198 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
9199 	 * be negative, then either:
9200 	 * 1) src_reg might be zero, so the sign bit of the result is
9201 	 *    unknown, so we lose our signed bounds
9202 	 * 2) it's known negative, thus the unsigned bounds capture the
9203 	 *    signed bounds
9204 	 * 3) the signed bounds cross zero, so they tell us nothing
9205 	 *    about the result
9206 	 * If the value in dst_reg is known nonnegative, then again the
9207 	 * unsigned bounds capture the signed bounds.
9208 	 * Thus, in all cases it suffices to blow away our signed bounds
9209 	 * and rely on inferring new ones from the unsigned bounds and
9210 	 * var_off of the result.
9211 	 */
9212 	dst_reg->smin_value = S64_MIN;
9213 	dst_reg->smax_value = S64_MAX;
9214 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
9215 	dst_reg->umin_value >>= umax_val;
9216 	dst_reg->umax_value >>= umin_val;
9217 
9218 	/* Its not easy to operate on alu32 bounds here because it depends
9219 	 * on bits being shifted in. Take easy way out and mark unbounded
9220 	 * so we can recalculate later from tnum.
9221 	 */
9222 	__mark_reg32_unbounded(dst_reg);
9223 	__update_reg_bounds(dst_reg);
9224 }
9225 
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)9226 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
9227 				  struct bpf_reg_state *src_reg)
9228 {
9229 	u64 umin_val = src_reg->u32_min_value;
9230 
9231 	/* Upon reaching here, src_known is true and
9232 	 * umax_val is equal to umin_val.
9233 	 */
9234 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
9235 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
9236 
9237 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
9238 
9239 	/* blow away the dst_reg umin_value/umax_value and rely on
9240 	 * dst_reg var_off to refine the result.
9241 	 */
9242 	dst_reg->u32_min_value = 0;
9243 	dst_reg->u32_max_value = U32_MAX;
9244 
9245 	__mark_reg64_unbounded(dst_reg);
9246 	__update_reg32_bounds(dst_reg);
9247 }
9248 
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)9249 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
9250 				struct bpf_reg_state *src_reg)
9251 {
9252 	u64 umin_val = src_reg->umin_value;
9253 
9254 	/* Upon reaching here, src_known is true and umax_val is equal
9255 	 * to umin_val.
9256 	 */
9257 	dst_reg->smin_value >>= umin_val;
9258 	dst_reg->smax_value >>= umin_val;
9259 
9260 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
9261 
9262 	/* blow away the dst_reg umin_value/umax_value and rely on
9263 	 * dst_reg var_off to refine the result.
9264 	 */
9265 	dst_reg->umin_value = 0;
9266 	dst_reg->umax_value = U64_MAX;
9267 
9268 	/* Its not easy to operate on alu32 bounds here because it depends
9269 	 * on bits being shifted in from upper 32-bits. Take easy way out
9270 	 * and mark unbounded so we can recalculate later from tnum.
9271 	 */
9272 	__mark_reg32_unbounded(dst_reg);
9273 	__update_reg_bounds(dst_reg);
9274 }
9275 
9276 /* WARNING: This function does calculations on 64-bit values, but the actual
9277  * execution may occur on 32-bit values. Therefore, things like bitshifts
9278  * need extra checks in the 32-bit case.
9279  */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)9280 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
9281 				      struct bpf_insn *insn,
9282 				      struct bpf_reg_state *dst_reg,
9283 				      struct bpf_reg_state src_reg)
9284 {
9285 	struct bpf_reg_state *regs = cur_regs(env);
9286 	u8 opcode = BPF_OP(insn->code);
9287 	bool src_known;
9288 	s64 smin_val, smax_val;
9289 	u64 umin_val, umax_val;
9290 	s32 s32_min_val, s32_max_val;
9291 	u32 u32_min_val, u32_max_val;
9292 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
9293 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
9294 	int ret;
9295 
9296 	smin_val = src_reg.smin_value;
9297 	smax_val = src_reg.smax_value;
9298 	umin_val = src_reg.umin_value;
9299 	umax_val = src_reg.umax_value;
9300 
9301 	s32_min_val = src_reg.s32_min_value;
9302 	s32_max_val = src_reg.s32_max_value;
9303 	u32_min_val = src_reg.u32_min_value;
9304 	u32_max_val = src_reg.u32_max_value;
9305 
9306 	if (alu32) {
9307 		src_known = tnum_subreg_is_const(src_reg.var_off);
9308 		if ((src_known &&
9309 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
9310 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
9311 			/* Taint dst register if offset had invalid bounds
9312 			 * derived from e.g. dead branches.
9313 			 */
9314 			__mark_reg_unknown(env, dst_reg);
9315 			return 0;
9316 		}
9317 	} else {
9318 		src_known = tnum_is_const(src_reg.var_off);
9319 		if ((src_known &&
9320 		     (smin_val != smax_val || umin_val != umax_val)) ||
9321 		    smin_val > smax_val || umin_val > umax_val) {
9322 			/* Taint dst register if offset had invalid bounds
9323 			 * derived from e.g. dead branches.
9324 			 */
9325 			__mark_reg_unknown(env, dst_reg);
9326 			return 0;
9327 		}
9328 	}
9329 
9330 	if (!src_known &&
9331 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
9332 		__mark_reg_unknown(env, dst_reg);
9333 		return 0;
9334 	}
9335 
9336 	if (sanitize_needed(opcode)) {
9337 		ret = sanitize_val_alu(env, insn);
9338 		if (ret < 0)
9339 			return sanitize_err(env, insn, ret, NULL, NULL);
9340 	}
9341 
9342 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
9343 	 * There are two classes of instructions: The first class we track both
9344 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
9345 	 * greatest amount of precision when alu operations are mixed with jmp32
9346 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
9347 	 * and BPF_OR. This is possible because these ops have fairly easy to
9348 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
9349 	 * See alu32 verifier tests for examples. The second class of
9350 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
9351 	 * with regards to tracking sign/unsigned bounds because the bits may
9352 	 * cross subreg boundaries in the alu64 case. When this happens we mark
9353 	 * the reg unbounded in the subreg bound space and use the resulting
9354 	 * tnum to calculate an approximation of the sign/unsigned bounds.
9355 	 */
9356 	switch (opcode) {
9357 	case BPF_ADD:
9358 		scalar32_min_max_add(dst_reg, &src_reg);
9359 		scalar_min_max_add(dst_reg, &src_reg);
9360 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
9361 		break;
9362 	case BPF_SUB:
9363 		scalar32_min_max_sub(dst_reg, &src_reg);
9364 		scalar_min_max_sub(dst_reg, &src_reg);
9365 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
9366 		break;
9367 	case BPF_MUL:
9368 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
9369 		scalar32_min_max_mul(dst_reg, &src_reg);
9370 		scalar_min_max_mul(dst_reg, &src_reg);
9371 		break;
9372 	case BPF_AND:
9373 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
9374 		scalar32_min_max_and(dst_reg, &src_reg);
9375 		scalar_min_max_and(dst_reg, &src_reg);
9376 		break;
9377 	case BPF_OR:
9378 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
9379 		scalar32_min_max_or(dst_reg, &src_reg);
9380 		scalar_min_max_or(dst_reg, &src_reg);
9381 		break;
9382 	case BPF_XOR:
9383 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
9384 		scalar32_min_max_xor(dst_reg, &src_reg);
9385 		scalar_min_max_xor(dst_reg, &src_reg);
9386 		break;
9387 	case BPF_LSH:
9388 		if (umax_val >= insn_bitness) {
9389 			/* Shifts greater than 31 or 63 are undefined.
9390 			 * This includes shifts by a negative number.
9391 			 */
9392 			mark_reg_unknown(env, regs, insn->dst_reg);
9393 			break;
9394 		}
9395 		if (alu32)
9396 			scalar32_min_max_lsh(dst_reg, &src_reg);
9397 		else
9398 			scalar_min_max_lsh(dst_reg, &src_reg);
9399 		break;
9400 	case BPF_RSH:
9401 		if (umax_val >= insn_bitness) {
9402 			/* Shifts greater than 31 or 63 are undefined.
9403 			 * This includes shifts by a negative number.
9404 			 */
9405 			mark_reg_unknown(env, regs, insn->dst_reg);
9406 			break;
9407 		}
9408 		if (alu32)
9409 			scalar32_min_max_rsh(dst_reg, &src_reg);
9410 		else
9411 			scalar_min_max_rsh(dst_reg, &src_reg);
9412 		break;
9413 	case BPF_ARSH:
9414 		if (umax_val >= insn_bitness) {
9415 			/* Shifts greater than 31 or 63 are undefined.
9416 			 * This includes shifts by a negative number.
9417 			 */
9418 			mark_reg_unknown(env, regs, insn->dst_reg);
9419 			break;
9420 		}
9421 		if (alu32)
9422 			scalar32_min_max_arsh(dst_reg, &src_reg);
9423 		else
9424 			scalar_min_max_arsh(dst_reg, &src_reg);
9425 		break;
9426 	default:
9427 		mark_reg_unknown(env, regs, insn->dst_reg);
9428 		break;
9429 	}
9430 
9431 	/* ALU32 ops are zero extended into 64bit register */
9432 	if (alu32)
9433 		zext_32_to_64(dst_reg);
9434 	reg_bounds_sync(dst_reg);
9435 	return 0;
9436 }
9437 
9438 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9439  * and var_off.
9440  */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)9441 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9442 				   struct bpf_insn *insn)
9443 {
9444 	struct bpf_verifier_state *vstate = env->cur_state;
9445 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9446 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
9447 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
9448 	u8 opcode = BPF_OP(insn->code);
9449 	int err;
9450 
9451 	dst_reg = &regs[insn->dst_reg];
9452 	src_reg = NULL;
9453 	if (dst_reg->type != SCALAR_VALUE)
9454 		ptr_reg = dst_reg;
9455 	else
9456 		/* Make sure ID is cleared otherwise dst_reg min/max could be
9457 		 * incorrectly propagated into other registers by find_equal_scalars()
9458 		 */
9459 		dst_reg->id = 0;
9460 	if (BPF_SRC(insn->code) == BPF_X) {
9461 		src_reg = &regs[insn->src_reg];
9462 		if (src_reg->type != SCALAR_VALUE) {
9463 			if (dst_reg->type != SCALAR_VALUE) {
9464 				/* Combining two pointers by any ALU op yields
9465 				 * an arbitrary scalar. Disallow all math except
9466 				 * pointer subtraction
9467 				 */
9468 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9469 					mark_reg_unknown(env, regs, insn->dst_reg);
9470 					return 0;
9471 				}
9472 				verbose(env, "R%d pointer %s pointer prohibited\n",
9473 					insn->dst_reg,
9474 					bpf_alu_string[opcode >> 4]);
9475 				return -EACCES;
9476 			} else {
9477 				/* scalar += pointer
9478 				 * This is legal, but we have to reverse our
9479 				 * src/dest handling in computing the range
9480 				 */
9481 				err = mark_chain_precision(env, insn->dst_reg);
9482 				if (err)
9483 					return err;
9484 				return adjust_ptr_min_max_vals(env, insn,
9485 							       src_reg, dst_reg);
9486 			}
9487 		} else if (ptr_reg) {
9488 			/* pointer += scalar */
9489 			err = mark_chain_precision(env, insn->src_reg);
9490 			if (err)
9491 				return err;
9492 			return adjust_ptr_min_max_vals(env, insn,
9493 						       dst_reg, src_reg);
9494 		} else if (dst_reg->precise) {
9495 			/* if dst_reg is precise, src_reg should be precise as well */
9496 			err = mark_chain_precision(env, insn->src_reg);
9497 			if (err)
9498 				return err;
9499 		}
9500 	} else {
9501 		/* Pretend the src is a reg with a known value, since we only
9502 		 * need to be able to read from this state.
9503 		 */
9504 		off_reg.type = SCALAR_VALUE;
9505 		__mark_reg_known(&off_reg, insn->imm);
9506 		src_reg = &off_reg;
9507 		if (ptr_reg) /* pointer += K */
9508 			return adjust_ptr_min_max_vals(env, insn,
9509 						       ptr_reg, src_reg);
9510 	}
9511 
9512 	/* Got here implies adding two SCALAR_VALUEs */
9513 	if (WARN_ON_ONCE(ptr_reg)) {
9514 		print_verifier_state(env, state, true);
9515 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
9516 		return -EINVAL;
9517 	}
9518 	if (WARN_ON(!src_reg)) {
9519 		print_verifier_state(env, state, true);
9520 		verbose(env, "verifier internal error: no src_reg\n");
9521 		return -EINVAL;
9522 	}
9523 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
9524 }
9525 
9526 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)9527 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
9528 {
9529 	struct bpf_reg_state *regs = cur_regs(env);
9530 	u8 opcode = BPF_OP(insn->code);
9531 	int err;
9532 
9533 	if (opcode == BPF_END || opcode == BPF_NEG) {
9534 		if (opcode == BPF_NEG) {
9535 			if (BPF_SRC(insn->code) != BPF_K ||
9536 			    insn->src_reg != BPF_REG_0 ||
9537 			    insn->off != 0 || insn->imm != 0) {
9538 				verbose(env, "BPF_NEG uses reserved fields\n");
9539 				return -EINVAL;
9540 			}
9541 		} else {
9542 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
9543 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
9544 			    BPF_CLASS(insn->code) == BPF_ALU64) {
9545 				verbose(env, "BPF_END uses reserved fields\n");
9546 				return -EINVAL;
9547 			}
9548 		}
9549 
9550 		/* check src operand */
9551 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9552 		if (err)
9553 			return err;
9554 
9555 		if (is_pointer_value(env, insn->dst_reg)) {
9556 			verbose(env, "R%d pointer arithmetic prohibited\n",
9557 				insn->dst_reg);
9558 			return -EACCES;
9559 		}
9560 
9561 		/* check dest operand */
9562 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
9563 		if (err)
9564 			return err;
9565 
9566 	} else if (opcode == BPF_MOV) {
9567 
9568 		if (BPF_SRC(insn->code) == BPF_X) {
9569 			if (insn->imm != 0 || insn->off != 0) {
9570 				verbose(env, "BPF_MOV uses reserved fields\n");
9571 				return -EINVAL;
9572 			}
9573 
9574 			/* check src operand */
9575 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9576 			if (err)
9577 				return err;
9578 		} else {
9579 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9580 				verbose(env, "BPF_MOV uses reserved fields\n");
9581 				return -EINVAL;
9582 			}
9583 		}
9584 
9585 		/* check dest operand, mark as required later */
9586 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9587 		if (err)
9588 			return err;
9589 
9590 		if (BPF_SRC(insn->code) == BPF_X) {
9591 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
9592 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
9593 
9594 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9595 				/* case: R1 = R2
9596 				 * copy register state to dest reg
9597 				 */
9598 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
9599 					/* Assign src and dst registers the same ID
9600 					 * that will be used by find_equal_scalars()
9601 					 * to propagate min/max range.
9602 					 */
9603 					src_reg->id = ++env->id_gen;
9604 				copy_register_state(dst_reg, src_reg);
9605 				dst_reg->live |= REG_LIVE_WRITTEN;
9606 				dst_reg->subreg_def = DEF_NOT_SUBREG;
9607 			} else {
9608 				/* R1 = (u32) R2 */
9609 				if (is_pointer_value(env, insn->src_reg)) {
9610 					verbose(env,
9611 						"R%d partial copy of pointer\n",
9612 						insn->src_reg);
9613 					return -EACCES;
9614 				} else if (src_reg->type == SCALAR_VALUE) {
9615 					copy_register_state(dst_reg, src_reg);
9616 					/* Make sure ID is cleared otherwise
9617 					 * dst_reg min/max could be incorrectly
9618 					 * propagated into src_reg by find_equal_scalars()
9619 					 */
9620 					dst_reg->id = 0;
9621 					dst_reg->live |= REG_LIVE_WRITTEN;
9622 					dst_reg->subreg_def = env->insn_idx + 1;
9623 				} else {
9624 					mark_reg_unknown(env, regs,
9625 							 insn->dst_reg);
9626 				}
9627 				zext_32_to_64(dst_reg);
9628 				reg_bounds_sync(dst_reg);
9629 			}
9630 		} else {
9631 			/* case: R = imm
9632 			 * remember the value we stored into this reg
9633 			 */
9634 			/* clear any state __mark_reg_known doesn't set */
9635 			mark_reg_unknown(env, regs, insn->dst_reg);
9636 			regs[insn->dst_reg].type = SCALAR_VALUE;
9637 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9638 				__mark_reg_known(regs + insn->dst_reg,
9639 						 insn->imm);
9640 			} else {
9641 				__mark_reg_known(regs + insn->dst_reg,
9642 						 (u32)insn->imm);
9643 			}
9644 		}
9645 
9646 	} else if (opcode > BPF_END) {
9647 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
9648 		return -EINVAL;
9649 
9650 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
9651 
9652 		if (BPF_SRC(insn->code) == BPF_X) {
9653 			if (insn->imm != 0 || insn->off != 0) {
9654 				verbose(env, "BPF_ALU uses reserved fields\n");
9655 				return -EINVAL;
9656 			}
9657 			/* check src1 operand */
9658 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9659 			if (err)
9660 				return err;
9661 		} else {
9662 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9663 				verbose(env, "BPF_ALU uses reserved fields\n");
9664 				return -EINVAL;
9665 			}
9666 		}
9667 
9668 		/* check src2 operand */
9669 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9670 		if (err)
9671 			return err;
9672 
9673 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
9674 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
9675 			verbose(env, "div by zero\n");
9676 			return -EINVAL;
9677 		}
9678 
9679 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
9680 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
9681 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
9682 
9683 			if (insn->imm < 0 || insn->imm >= size) {
9684 				verbose(env, "invalid shift %d\n", insn->imm);
9685 				return -EINVAL;
9686 			}
9687 		}
9688 
9689 		/* check dest operand */
9690 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9691 		if (err)
9692 			return err;
9693 
9694 		return adjust_reg_min_max_vals(env, insn);
9695 	}
9696 
9697 	return 0;
9698 }
9699 
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)9700 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
9701 				   struct bpf_reg_state *dst_reg,
9702 				   enum bpf_reg_type type,
9703 				   bool range_right_open)
9704 {
9705 	struct bpf_func_state *state;
9706 	struct bpf_reg_state *reg;
9707 	int new_range;
9708 
9709 	if (dst_reg->off < 0 ||
9710 	    (dst_reg->off == 0 && range_right_open))
9711 		/* This doesn't give us any range */
9712 		return;
9713 
9714 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
9715 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
9716 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
9717 		 * than pkt_end, but that's because it's also less than pkt.
9718 		 */
9719 		return;
9720 
9721 	new_range = dst_reg->off;
9722 	if (range_right_open)
9723 		new_range++;
9724 
9725 	/* Examples for register markings:
9726 	 *
9727 	 * pkt_data in dst register:
9728 	 *
9729 	 *   r2 = r3;
9730 	 *   r2 += 8;
9731 	 *   if (r2 > pkt_end) goto <handle exception>
9732 	 *   <access okay>
9733 	 *
9734 	 *   r2 = r3;
9735 	 *   r2 += 8;
9736 	 *   if (r2 < pkt_end) goto <access okay>
9737 	 *   <handle exception>
9738 	 *
9739 	 *   Where:
9740 	 *     r2 == dst_reg, pkt_end == src_reg
9741 	 *     r2=pkt(id=n,off=8,r=0)
9742 	 *     r3=pkt(id=n,off=0,r=0)
9743 	 *
9744 	 * pkt_data in src register:
9745 	 *
9746 	 *   r2 = r3;
9747 	 *   r2 += 8;
9748 	 *   if (pkt_end >= r2) goto <access okay>
9749 	 *   <handle exception>
9750 	 *
9751 	 *   r2 = r3;
9752 	 *   r2 += 8;
9753 	 *   if (pkt_end <= r2) goto <handle exception>
9754 	 *   <access okay>
9755 	 *
9756 	 *   Where:
9757 	 *     pkt_end == dst_reg, r2 == src_reg
9758 	 *     r2=pkt(id=n,off=8,r=0)
9759 	 *     r3=pkt(id=n,off=0,r=0)
9760 	 *
9761 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
9762 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9763 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
9764 	 * the check.
9765 	 */
9766 
9767 	/* If our ids match, then we must have the same max_value.  And we
9768 	 * don't care about the other reg's fixed offset, since if it's too big
9769 	 * the range won't allow anything.
9770 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9771 	 */
9772 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
9773 		if (reg->type == type && reg->id == dst_reg->id)
9774 			/* keep the maximum range already checked */
9775 			reg->range = max(reg->range, new_range);
9776 	}));
9777 }
9778 
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)9779 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
9780 {
9781 	struct tnum subreg = tnum_subreg(reg->var_off);
9782 	s32 sval = (s32)val;
9783 
9784 	switch (opcode) {
9785 	case BPF_JEQ:
9786 		if (tnum_is_const(subreg))
9787 			return !!tnum_equals_const(subreg, val);
9788 		break;
9789 	case BPF_JNE:
9790 		if (tnum_is_const(subreg))
9791 			return !tnum_equals_const(subreg, val);
9792 		break;
9793 	case BPF_JSET:
9794 		if ((~subreg.mask & subreg.value) & val)
9795 			return 1;
9796 		if (!((subreg.mask | subreg.value) & val))
9797 			return 0;
9798 		break;
9799 	case BPF_JGT:
9800 		if (reg->u32_min_value > val)
9801 			return 1;
9802 		else if (reg->u32_max_value <= val)
9803 			return 0;
9804 		break;
9805 	case BPF_JSGT:
9806 		if (reg->s32_min_value > sval)
9807 			return 1;
9808 		else if (reg->s32_max_value <= sval)
9809 			return 0;
9810 		break;
9811 	case BPF_JLT:
9812 		if (reg->u32_max_value < val)
9813 			return 1;
9814 		else if (reg->u32_min_value >= val)
9815 			return 0;
9816 		break;
9817 	case BPF_JSLT:
9818 		if (reg->s32_max_value < sval)
9819 			return 1;
9820 		else if (reg->s32_min_value >= sval)
9821 			return 0;
9822 		break;
9823 	case BPF_JGE:
9824 		if (reg->u32_min_value >= val)
9825 			return 1;
9826 		else if (reg->u32_max_value < val)
9827 			return 0;
9828 		break;
9829 	case BPF_JSGE:
9830 		if (reg->s32_min_value >= sval)
9831 			return 1;
9832 		else if (reg->s32_max_value < sval)
9833 			return 0;
9834 		break;
9835 	case BPF_JLE:
9836 		if (reg->u32_max_value <= val)
9837 			return 1;
9838 		else if (reg->u32_min_value > val)
9839 			return 0;
9840 		break;
9841 	case BPF_JSLE:
9842 		if (reg->s32_max_value <= sval)
9843 			return 1;
9844 		else if (reg->s32_min_value > sval)
9845 			return 0;
9846 		break;
9847 	}
9848 
9849 	return -1;
9850 }
9851 
9852 
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)9853 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9854 {
9855 	s64 sval = (s64)val;
9856 
9857 	switch (opcode) {
9858 	case BPF_JEQ:
9859 		if (tnum_is_const(reg->var_off))
9860 			return !!tnum_equals_const(reg->var_off, val);
9861 		break;
9862 	case BPF_JNE:
9863 		if (tnum_is_const(reg->var_off))
9864 			return !tnum_equals_const(reg->var_off, val);
9865 		break;
9866 	case BPF_JSET:
9867 		if ((~reg->var_off.mask & reg->var_off.value) & val)
9868 			return 1;
9869 		if (!((reg->var_off.mask | reg->var_off.value) & val))
9870 			return 0;
9871 		break;
9872 	case BPF_JGT:
9873 		if (reg->umin_value > val)
9874 			return 1;
9875 		else if (reg->umax_value <= val)
9876 			return 0;
9877 		break;
9878 	case BPF_JSGT:
9879 		if (reg->smin_value > sval)
9880 			return 1;
9881 		else if (reg->smax_value <= sval)
9882 			return 0;
9883 		break;
9884 	case BPF_JLT:
9885 		if (reg->umax_value < val)
9886 			return 1;
9887 		else if (reg->umin_value >= val)
9888 			return 0;
9889 		break;
9890 	case BPF_JSLT:
9891 		if (reg->smax_value < sval)
9892 			return 1;
9893 		else if (reg->smin_value >= sval)
9894 			return 0;
9895 		break;
9896 	case BPF_JGE:
9897 		if (reg->umin_value >= val)
9898 			return 1;
9899 		else if (reg->umax_value < val)
9900 			return 0;
9901 		break;
9902 	case BPF_JSGE:
9903 		if (reg->smin_value >= sval)
9904 			return 1;
9905 		else if (reg->smax_value < sval)
9906 			return 0;
9907 		break;
9908 	case BPF_JLE:
9909 		if (reg->umax_value <= val)
9910 			return 1;
9911 		else if (reg->umin_value > val)
9912 			return 0;
9913 		break;
9914 	case BPF_JSLE:
9915 		if (reg->smax_value <= sval)
9916 			return 1;
9917 		else if (reg->smin_value > sval)
9918 			return 0;
9919 		break;
9920 	}
9921 
9922 	return -1;
9923 }
9924 
9925 /* compute branch direction of the expression "if (reg opcode val) goto target;"
9926  * and return:
9927  *  1 - branch will be taken and "goto target" will be executed
9928  *  0 - branch will not be taken and fall-through to next insn
9929  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9930  *      range [0,10]
9931  */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)9932 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9933 			   bool is_jmp32)
9934 {
9935 	if (__is_pointer_value(false, reg)) {
9936 		if (!reg_type_not_null(reg->type))
9937 			return -1;
9938 
9939 		/* If pointer is valid tests against zero will fail so we can
9940 		 * use this to direct branch taken.
9941 		 */
9942 		if (val != 0)
9943 			return -1;
9944 
9945 		switch (opcode) {
9946 		case BPF_JEQ:
9947 			return 0;
9948 		case BPF_JNE:
9949 			return 1;
9950 		default:
9951 			return -1;
9952 		}
9953 	}
9954 
9955 	if (is_jmp32)
9956 		return is_branch32_taken(reg, val, opcode);
9957 	return is_branch64_taken(reg, val, opcode);
9958 }
9959 
flip_opcode(u32 opcode)9960 static int flip_opcode(u32 opcode)
9961 {
9962 	/* How can we transform "a <op> b" into "b <op> a"? */
9963 	static const u8 opcode_flip[16] = {
9964 		/* these stay the same */
9965 		[BPF_JEQ  >> 4] = BPF_JEQ,
9966 		[BPF_JNE  >> 4] = BPF_JNE,
9967 		[BPF_JSET >> 4] = BPF_JSET,
9968 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
9969 		[BPF_JGE  >> 4] = BPF_JLE,
9970 		[BPF_JGT  >> 4] = BPF_JLT,
9971 		[BPF_JLE  >> 4] = BPF_JGE,
9972 		[BPF_JLT  >> 4] = BPF_JGT,
9973 		[BPF_JSGE >> 4] = BPF_JSLE,
9974 		[BPF_JSGT >> 4] = BPF_JSLT,
9975 		[BPF_JSLE >> 4] = BPF_JSGE,
9976 		[BPF_JSLT >> 4] = BPF_JSGT
9977 	};
9978 	return opcode_flip[opcode >> 4];
9979 }
9980 
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)9981 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9982 				   struct bpf_reg_state *src_reg,
9983 				   u8 opcode)
9984 {
9985 	struct bpf_reg_state *pkt;
9986 
9987 	if (src_reg->type == PTR_TO_PACKET_END) {
9988 		pkt = dst_reg;
9989 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
9990 		pkt = src_reg;
9991 		opcode = flip_opcode(opcode);
9992 	} else {
9993 		return -1;
9994 	}
9995 
9996 	if (pkt->range >= 0)
9997 		return -1;
9998 
9999 	switch (opcode) {
10000 	case BPF_JLE:
10001 		/* pkt <= pkt_end */
10002 		fallthrough;
10003 	case BPF_JGT:
10004 		/* pkt > pkt_end */
10005 		if (pkt->range == BEYOND_PKT_END)
10006 			/* pkt has at last one extra byte beyond pkt_end */
10007 			return opcode == BPF_JGT;
10008 		break;
10009 	case BPF_JLT:
10010 		/* pkt < pkt_end */
10011 		fallthrough;
10012 	case BPF_JGE:
10013 		/* pkt >= pkt_end */
10014 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
10015 			return opcode == BPF_JGE;
10016 		break;
10017 	}
10018 	return -1;
10019 }
10020 
10021 /* Adjusts the register min/max values in the case that the dst_reg is the
10022  * variable register that we are working on, and src_reg is a constant or we're
10023  * simply doing a BPF_K check.
10024  * In JEQ/JNE cases we also adjust the var_off values.
10025  */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)10026 static void reg_set_min_max(struct bpf_reg_state *true_reg,
10027 			    struct bpf_reg_state *false_reg,
10028 			    u64 val, u32 val32,
10029 			    u8 opcode, bool is_jmp32)
10030 {
10031 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
10032 	struct tnum false_64off = false_reg->var_off;
10033 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
10034 	struct tnum true_64off = true_reg->var_off;
10035 	s64 sval = (s64)val;
10036 	s32 sval32 = (s32)val32;
10037 
10038 	/* If the dst_reg is a pointer, we can't learn anything about its
10039 	 * variable offset from the compare (unless src_reg were a pointer into
10040 	 * the same object, but we don't bother with that.
10041 	 * Since false_reg and true_reg have the same type by construction, we
10042 	 * only need to check one of them for pointerness.
10043 	 */
10044 	if (__is_pointer_value(false, false_reg))
10045 		return;
10046 
10047 	switch (opcode) {
10048 	/* JEQ/JNE comparison doesn't change the register equivalence.
10049 	 *
10050 	 * r1 = r2;
10051 	 * if (r1 == 42) goto label;
10052 	 * ...
10053 	 * label: // here both r1 and r2 are known to be 42.
10054 	 *
10055 	 * Hence when marking register as known preserve it's ID.
10056 	 */
10057 	case BPF_JEQ:
10058 		if (is_jmp32) {
10059 			__mark_reg32_known(true_reg, val32);
10060 			true_32off = tnum_subreg(true_reg->var_off);
10061 		} else {
10062 			___mark_reg_known(true_reg, val);
10063 			true_64off = true_reg->var_off;
10064 		}
10065 		break;
10066 	case BPF_JNE:
10067 		if (is_jmp32) {
10068 			__mark_reg32_known(false_reg, val32);
10069 			false_32off = tnum_subreg(false_reg->var_off);
10070 		} else {
10071 			___mark_reg_known(false_reg, val);
10072 			false_64off = false_reg->var_off;
10073 		}
10074 		break;
10075 	case BPF_JSET:
10076 		if (is_jmp32) {
10077 			false_32off = tnum_and(false_32off, tnum_const(~val32));
10078 			if (is_power_of_2(val32))
10079 				true_32off = tnum_or(true_32off,
10080 						     tnum_const(val32));
10081 		} else {
10082 			false_64off = tnum_and(false_64off, tnum_const(~val));
10083 			if (is_power_of_2(val))
10084 				true_64off = tnum_or(true_64off,
10085 						     tnum_const(val));
10086 		}
10087 		break;
10088 	case BPF_JGE:
10089 	case BPF_JGT:
10090 	{
10091 		if (is_jmp32) {
10092 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
10093 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
10094 
10095 			false_reg->u32_max_value = min(false_reg->u32_max_value,
10096 						       false_umax);
10097 			true_reg->u32_min_value = max(true_reg->u32_min_value,
10098 						      true_umin);
10099 		} else {
10100 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
10101 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
10102 
10103 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
10104 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
10105 		}
10106 		break;
10107 	}
10108 	case BPF_JSGE:
10109 	case BPF_JSGT:
10110 	{
10111 		if (is_jmp32) {
10112 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
10113 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
10114 
10115 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
10116 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
10117 		} else {
10118 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
10119 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
10120 
10121 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
10122 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
10123 		}
10124 		break;
10125 	}
10126 	case BPF_JLE:
10127 	case BPF_JLT:
10128 	{
10129 		if (is_jmp32) {
10130 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
10131 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
10132 
10133 			false_reg->u32_min_value = max(false_reg->u32_min_value,
10134 						       false_umin);
10135 			true_reg->u32_max_value = min(true_reg->u32_max_value,
10136 						      true_umax);
10137 		} else {
10138 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
10139 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
10140 
10141 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
10142 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
10143 		}
10144 		break;
10145 	}
10146 	case BPF_JSLE:
10147 	case BPF_JSLT:
10148 	{
10149 		if (is_jmp32) {
10150 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
10151 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
10152 
10153 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
10154 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
10155 		} else {
10156 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
10157 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
10158 
10159 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
10160 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
10161 		}
10162 		break;
10163 	}
10164 	default:
10165 		return;
10166 	}
10167 
10168 	if (is_jmp32) {
10169 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
10170 					     tnum_subreg(false_32off));
10171 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
10172 					    tnum_subreg(true_32off));
10173 		__reg_combine_32_into_64(false_reg);
10174 		__reg_combine_32_into_64(true_reg);
10175 	} else {
10176 		false_reg->var_off = false_64off;
10177 		true_reg->var_off = true_64off;
10178 		__reg_combine_64_into_32(false_reg);
10179 		__reg_combine_64_into_32(true_reg);
10180 	}
10181 }
10182 
10183 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
10184  * the variable reg.
10185  */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)10186 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
10187 				struct bpf_reg_state *false_reg,
10188 				u64 val, u32 val32,
10189 				u8 opcode, bool is_jmp32)
10190 {
10191 	opcode = flip_opcode(opcode);
10192 	/* This uses zero as "not present in table"; luckily the zero opcode,
10193 	 * BPF_JA, can't get here.
10194 	 */
10195 	if (opcode)
10196 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
10197 }
10198 
10199 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)10200 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
10201 				  struct bpf_reg_state *dst_reg)
10202 {
10203 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
10204 							dst_reg->umin_value);
10205 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
10206 							dst_reg->umax_value);
10207 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
10208 							dst_reg->smin_value);
10209 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
10210 							dst_reg->smax_value);
10211 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
10212 							     dst_reg->var_off);
10213 	reg_bounds_sync(src_reg);
10214 	reg_bounds_sync(dst_reg);
10215 }
10216 
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)10217 static void reg_combine_min_max(struct bpf_reg_state *true_src,
10218 				struct bpf_reg_state *true_dst,
10219 				struct bpf_reg_state *false_src,
10220 				struct bpf_reg_state *false_dst,
10221 				u8 opcode)
10222 {
10223 	switch (opcode) {
10224 	case BPF_JEQ:
10225 		__reg_combine_min_max(true_src, true_dst);
10226 		break;
10227 	case BPF_JNE:
10228 		__reg_combine_min_max(false_src, false_dst);
10229 		break;
10230 	}
10231 }
10232 
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)10233 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
10234 				 struct bpf_reg_state *reg, u32 id,
10235 				 bool is_null)
10236 {
10237 	if (type_may_be_null(reg->type) && reg->id == id &&
10238 	    !WARN_ON_ONCE(!reg->id)) {
10239 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
10240 				 !tnum_equals_const(reg->var_off, 0) ||
10241 				 reg->off)) {
10242 			/* Old offset (both fixed and variable parts) should
10243 			 * have been known-zero, because we don't allow pointer
10244 			 * arithmetic on pointers that might be NULL. If we
10245 			 * see this happening, don't convert the register.
10246 			 */
10247 			return;
10248 		}
10249 		if (is_null) {
10250 			reg->type = SCALAR_VALUE;
10251 			/* We don't need id and ref_obj_id from this point
10252 			 * onwards anymore, thus we should better reset it,
10253 			 * so that state pruning has chances to take effect.
10254 			 */
10255 			reg->id = 0;
10256 			reg->ref_obj_id = 0;
10257 
10258 			return;
10259 		}
10260 
10261 		mark_ptr_not_null_reg(reg);
10262 
10263 		if (!reg_may_point_to_spin_lock(reg)) {
10264 			/* For not-NULL ptr, reg->ref_obj_id will be reset
10265 			 * in release_reference().
10266 			 *
10267 			 * reg->id is still used by spin_lock ptr. Other
10268 			 * than spin_lock ptr type, reg->id can be reset.
10269 			 */
10270 			reg->id = 0;
10271 		}
10272 	}
10273 }
10274 
10275 /* The logic is similar to find_good_pkt_pointers(), both could eventually
10276  * be folded together at some point.
10277  */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)10278 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
10279 				  bool is_null)
10280 {
10281 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
10282 	struct bpf_reg_state *regs = state->regs, *reg;
10283 	u32 ref_obj_id = regs[regno].ref_obj_id;
10284 	u32 id = regs[regno].id;
10285 
10286 	if (ref_obj_id && ref_obj_id == id && is_null)
10287 		/* regs[regno] is in the " == NULL" branch.
10288 		 * No one could have freed the reference state before
10289 		 * doing the NULL check.
10290 		 */
10291 		WARN_ON_ONCE(release_reference_state(state, id));
10292 
10293 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10294 		mark_ptr_or_null_reg(state, reg, id, is_null);
10295 	}));
10296 }
10297 
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)10298 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
10299 				   struct bpf_reg_state *dst_reg,
10300 				   struct bpf_reg_state *src_reg,
10301 				   struct bpf_verifier_state *this_branch,
10302 				   struct bpf_verifier_state *other_branch)
10303 {
10304 	if (BPF_SRC(insn->code) != BPF_X)
10305 		return false;
10306 
10307 	/* Pointers are always 64-bit. */
10308 	if (BPF_CLASS(insn->code) == BPF_JMP32)
10309 		return false;
10310 
10311 	switch (BPF_OP(insn->code)) {
10312 	case BPF_JGT:
10313 		if ((dst_reg->type == PTR_TO_PACKET &&
10314 		     src_reg->type == PTR_TO_PACKET_END) ||
10315 		    (dst_reg->type == PTR_TO_PACKET_META &&
10316 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10317 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
10318 			find_good_pkt_pointers(this_branch, dst_reg,
10319 					       dst_reg->type, false);
10320 			mark_pkt_end(other_branch, insn->dst_reg, true);
10321 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
10322 			    src_reg->type == PTR_TO_PACKET) ||
10323 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10324 			    src_reg->type == PTR_TO_PACKET_META)) {
10325 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
10326 			find_good_pkt_pointers(other_branch, src_reg,
10327 					       src_reg->type, true);
10328 			mark_pkt_end(this_branch, insn->src_reg, false);
10329 		} else {
10330 			return false;
10331 		}
10332 		break;
10333 	case BPF_JLT:
10334 		if ((dst_reg->type == PTR_TO_PACKET &&
10335 		     src_reg->type == PTR_TO_PACKET_END) ||
10336 		    (dst_reg->type == PTR_TO_PACKET_META &&
10337 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10338 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
10339 			find_good_pkt_pointers(other_branch, dst_reg,
10340 					       dst_reg->type, true);
10341 			mark_pkt_end(this_branch, insn->dst_reg, false);
10342 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
10343 			    src_reg->type == PTR_TO_PACKET) ||
10344 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10345 			    src_reg->type == PTR_TO_PACKET_META)) {
10346 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
10347 			find_good_pkt_pointers(this_branch, src_reg,
10348 					       src_reg->type, false);
10349 			mark_pkt_end(other_branch, insn->src_reg, true);
10350 		} else {
10351 			return false;
10352 		}
10353 		break;
10354 	case BPF_JGE:
10355 		if ((dst_reg->type == PTR_TO_PACKET &&
10356 		     src_reg->type == PTR_TO_PACKET_END) ||
10357 		    (dst_reg->type == PTR_TO_PACKET_META &&
10358 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10359 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
10360 			find_good_pkt_pointers(this_branch, dst_reg,
10361 					       dst_reg->type, true);
10362 			mark_pkt_end(other_branch, insn->dst_reg, false);
10363 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
10364 			    src_reg->type == PTR_TO_PACKET) ||
10365 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10366 			    src_reg->type == PTR_TO_PACKET_META)) {
10367 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
10368 			find_good_pkt_pointers(other_branch, src_reg,
10369 					       src_reg->type, false);
10370 			mark_pkt_end(this_branch, insn->src_reg, true);
10371 		} else {
10372 			return false;
10373 		}
10374 		break;
10375 	case BPF_JLE:
10376 		if ((dst_reg->type == PTR_TO_PACKET &&
10377 		     src_reg->type == PTR_TO_PACKET_END) ||
10378 		    (dst_reg->type == PTR_TO_PACKET_META &&
10379 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
10380 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
10381 			find_good_pkt_pointers(other_branch, dst_reg,
10382 					       dst_reg->type, false);
10383 			mark_pkt_end(this_branch, insn->dst_reg, true);
10384 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
10385 			    src_reg->type == PTR_TO_PACKET) ||
10386 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
10387 			    src_reg->type == PTR_TO_PACKET_META)) {
10388 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
10389 			find_good_pkt_pointers(this_branch, src_reg,
10390 					       src_reg->type, true);
10391 			mark_pkt_end(other_branch, insn->src_reg, false);
10392 		} else {
10393 			return false;
10394 		}
10395 		break;
10396 	default:
10397 		return false;
10398 	}
10399 
10400 	return true;
10401 }
10402 
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)10403 static void find_equal_scalars(struct bpf_verifier_state *vstate,
10404 			       struct bpf_reg_state *known_reg)
10405 {
10406 	struct bpf_func_state *state;
10407 	struct bpf_reg_state *reg;
10408 
10409 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10410 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10411 			copy_register_state(reg, known_reg);
10412 	}));
10413 }
10414 
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)10415 static int check_cond_jmp_op(struct bpf_verifier_env *env,
10416 			     struct bpf_insn *insn, int *insn_idx)
10417 {
10418 	struct bpf_verifier_state *this_branch = env->cur_state;
10419 	struct bpf_verifier_state *other_branch;
10420 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
10421 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
10422 	u8 opcode = BPF_OP(insn->code);
10423 	bool is_jmp32;
10424 	int pred = -1;
10425 	int err;
10426 
10427 	/* Only conditional jumps are expected to reach here. */
10428 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
10429 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
10430 		return -EINVAL;
10431 	}
10432 
10433 	/* check src2 operand */
10434 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10435 	if (err)
10436 		return err;
10437 
10438 	dst_reg = &regs[insn->dst_reg];
10439 	if (BPF_SRC(insn->code) == BPF_X) {
10440 		if (insn->imm != 0) {
10441 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10442 			return -EINVAL;
10443 		}
10444 
10445 		/* check src1 operand */
10446 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10447 		if (err)
10448 			return err;
10449 
10450 		src_reg = &regs[insn->src_reg];
10451 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
10452 		    is_pointer_value(env, insn->src_reg)) {
10453 			verbose(env, "R%d pointer comparison prohibited\n",
10454 				insn->src_reg);
10455 			return -EACCES;
10456 		}
10457 	} else {
10458 		if (insn->src_reg != BPF_REG_0) {
10459 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10460 			return -EINVAL;
10461 		}
10462 	}
10463 
10464 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
10465 
10466 	if (BPF_SRC(insn->code) == BPF_K) {
10467 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
10468 	} else if (src_reg->type == SCALAR_VALUE &&
10469 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
10470 		pred = is_branch_taken(dst_reg,
10471 				       tnum_subreg(src_reg->var_off).value,
10472 				       opcode,
10473 				       is_jmp32);
10474 	} else if (src_reg->type == SCALAR_VALUE &&
10475 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
10476 		pred = is_branch_taken(dst_reg,
10477 				       src_reg->var_off.value,
10478 				       opcode,
10479 				       is_jmp32);
10480 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
10481 		   reg_is_pkt_pointer_any(src_reg) &&
10482 		   !is_jmp32) {
10483 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
10484 	}
10485 
10486 	if (pred >= 0) {
10487 		/* If we get here with a dst_reg pointer type it is because
10488 		 * above is_branch_taken() special cased the 0 comparison.
10489 		 */
10490 		if (!__is_pointer_value(false, dst_reg))
10491 			err = mark_chain_precision(env, insn->dst_reg);
10492 		if (BPF_SRC(insn->code) == BPF_X && !err &&
10493 		    !__is_pointer_value(false, src_reg))
10494 			err = mark_chain_precision(env, insn->src_reg);
10495 		if (err)
10496 			return err;
10497 	}
10498 
10499 	if (pred == 1) {
10500 		/* Only follow the goto, ignore fall-through. If needed, push
10501 		 * the fall-through branch for simulation under speculative
10502 		 * execution.
10503 		 */
10504 		if (!env->bypass_spec_v1 &&
10505 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
10506 					       *insn_idx))
10507 			return -EFAULT;
10508 		if (env->log.level & BPF_LOG_LEVEL)
10509 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
10510 		*insn_idx += insn->off;
10511 		return 0;
10512 	} else if (pred == 0) {
10513 		/* Only follow the fall-through branch, since that's where the
10514 		 * program will go. If needed, push the goto branch for
10515 		 * simulation under speculative execution.
10516 		 */
10517 		if (!env->bypass_spec_v1 &&
10518 		    !sanitize_speculative_path(env, insn,
10519 					       *insn_idx + insn->off + 1,
10520 					       *insn_idx))
10521 			return -EFAULT;
10522 		if (env->log.level & BPF_LOG_LEVEL)
10523 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
10524 		return 0;
10525 	}
10526 
10527 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
10528 				  false);
10529 	if (!other_branch)
10530 		return -EFAULT;
10531 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
10532 
10533 	/* detect if we are comparing against a constant value so we can adjust
10534 	 * our min/max values for our dst register.
10535 	 * this is only legit if both are scalars (or pointers to the same
10536 	 * object, I suppose, but we don't support that right now), because
10537 	 * otherwise the different base pointers mean the offsets aren't
10538 	 * comparable.
10539 	 */
10540 	if (BPF_SRC(insn->code) == BPF_X) {
10541 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
10542 
10543 		if (dst_reg->type == SCALAR_VALUE &&
10544 		    src_reg->type == SCALAR_VALUE) {
10545 			if (tnum_is_const(src_reg->var_off) ||
10546 			    (is_jmp32 &&
10547 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
10548 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
10549 						dst_reg,
10550 						src_reg->var_off.value,
10551 						tnum_subreg(src_reg->var_off).value,
10552 						opcode, is_jmp32);
10553 			else if (tnum_is_const(dst_reg->var_off) ||
10554 				 (is_jmp32 &&
10555 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
10556 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
10557 						    src_reg,
10558 						    dst_reg->var_off.value,
10559 						    tnum_subreg(dst_reg->var_off).value,
10560 						    opcode, is_jmp32);
10561 			else if (!is_jmp32 &&
10562 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
10563 				/* Comparing for equality, we can combine knowledge */
10564 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
10565 						    &other_branch_regs[insn->dst_reg],
10566 						    src_reg, dst_reg, opcode);
10567 			if (src_reg->id &&
10568 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
10569 				find_equal_scalars(this_branch, src_reg);
10570 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
10571 			}
10572 
10573 		}
10574 	} else if (dst_reg->type == SCALAR_VALUE) {
10575 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
10576 					dst_reg, insn->imm, (u32)insn->imm,
10577 					opcode, is_jmp32);
10578 	}
10579 
10580 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
10581 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
10582 		find_equal_scalars(this_branch, dst_reg);
10583 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
10584 	}
10585 
10586 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
10587 	 * NOTE: these optimizations below are related with pointer comparison
10588 	 *       which will never be JMP32.
10589 	 */
10590 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
10591 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
10592 	    type_may_be_null(dst_reg->type)) {
10593 		/* Mark all identical registers in each branch as either
10594 		 * safe or unknown depending R == 0 or R != 0 conditional.
10595 		 */
10596 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
10597 				      opcode == BPF_JNE);
10598 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
10599 				      opcode == BPF_JEQ);
10600 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
10601 					   this_branch, other_branch) &&
10602 		   is_pointer_value(env, insn->dst_reg)) {
10603 		verbose(env, "R%d pointer comparison prohibited\n",
10604 			insn->dst_reg);
10605 		return -EACCES;
10606 	}
10607 	if (env->log.level & BPF_LOG_LEVEL)
10608 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
10609 	return 0;
10610 }
10611 
10612 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)10613 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
10614 {
10615 	struct bpf_insn_aux_data *aux = cur_aux(env);
10616 	struct bpf_reg_state *regs = cur_regs(env);
10617 	struct bpf_reg_state *dst_reg;
10618 	struct bpf_map *map;
10619 	int err;
10620 
10621 	if (BPF_SIZE(insn->code) != BPF_DW) {
10622 		verbose(env, "invalid BPF_LD_IMM insn\n");
10623 		return -EINVAL;
10624 	}
10625 	if (insn->off != 0) {
10626 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
10627 		return -EINVAL;
10628 	}
10629 
10630 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
10631 	if (err)
10632 		return err;
10633 
10634 	dst_reg = &regs[insn->dst_reg];
10635 	if (insn->src_reg == 0) {
10636 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
10637 
10638 		dst_reg->type = SCALAR_VALUE;
10639 		__mark_reg_known(&regs[insn->dst_reg], imm);
10640 		return 0;
10641 	}
10642 
10643 	/* All special src_reg cases are listed below. From this point onwards
10644 	 * we either succeed and assign a corresponding dst_reg->type after
10645 	 * zeroing the offset, or fail and reject the program.
10646 	 */
10647 	mark_reg_known_zero(env, regs, insn->dst_reg);
10648 
10649 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
10650 		dst_reg->type = aux->btf_var.reg_type;
10651 		switch (base_type(dst_reg->type)) {
10652 		case PTR_TO_MEM:
10653 			dst_reg->mem_size = aux->btf_var.mem_size;
10654 			break;
10655 		case PTR_TO_BTF_ID:
10656 			dst_reg->btf = aux->btf_var.btf;
10657 			dst_reg->btf_id = aux->btf_var.btf_id;
10658 			break;
10659 		default:
10660 			verbose(env, "bpf verifier is misconfigured\n");
10661 			return -EFAULT;
10662 		}
10663 		return 0;
10664 	}
10665 
10666 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
10667 		struct bpf_prog_aux *aux = env->prog->aux;
10668 		u32 subprogno = find_subprog(env,
10669 					     env->insn_idx + insn->imm + 1);
10670 
10671 		if (!aux->func_info) {
10672 			verbose(env, "missing btf func_info\n");
10673 			return -EINVAL;
10674 		}
10675 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
10676 			verbose(env, "callback function not static\n");
10677 			return -EINVAL;
10678 		}
10679 
10680 		dst_reg->type = PTR_TO_FUNC;
10681 		dst_reg->subprogno = subprogno;
10682 		return 0;
10683 	}
10684 
10685 	map = env->used_maps[aux->map_index];
10686 	dst_reg->map_ptr = map;
10687 
10688 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
10689 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
10690 		dst_reg->type = PTR_TO_MAP_VALUE;
10691 		dst_reg->off = aux->map_off;
10692 		if (map_value_has_spin_lock(map))
10693 			dst_reg->id = ++env->id_gen;
10694 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10695 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
10696 		dst_reg->type = CONST_PTR_TO_MAP;
10697 	} else {
10698 		verbose(env, "bpf verifier is misconfigured\n");
10699 		return -EINVAL;
10700 	}
10701 
10702 	return 0;
10703 }
10704 
may_access_skb(enum bpf_prog_type type)10705 static bool may_access_skb(enum bpf_prog_type type)
10706 {
10707 	switch (type) {
10708 	case BPF_PROG_TYPE_SOCKET_FILTER:
10709 	case BPF_PROG_TYPE_SCHED_CLS:
10710 	case BPF_PROG_TYPE_SCHED_ACT:
10711 		return true;
10712 	default:
10713 		return false;
10714 	}
10715 }
10716 
10717 /* verify safety of LD_ABS|LD_IND instructions:
10718  * - they can only appear in the programs where ctx == skb
10719  * - since they are wrappers of function calls, they scratch R1-R5 registers,
10720  *   preserve R6-R9, and store return value into R0
10721  *
10722  * Implicit input:
10723  *   ctx == skb == R6 == CTX
10724  *
10725  * Explicit input:
10726  *   SRC == any register
10727  *   IMM == 32-bit immediate
10728  *
10729  * Output:
10730  *   R0 - 8/16/32-bit skb data converted to cpu endianness
10731  */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)10732 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
10733 {
10734 	struct bpf_reg_state *regs = cur_regs(env);
10735 	static const int ctx_reg = BPF_REG_6;
10736 	u8 mode = BPF_MODE(insn->code);
10737 	int i, err;
10738 
10739 	if (!may_access_skb(resolve_prog_type(env->prog))) {
10740 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
10741 		return -EINVAL;
10742 	}
10743 
10744 	if (!env->ops->gen_ld_abs) {
10745 		verbose(env, "bpf verifier is misconfigured\n");
10746 		return -EINVAL;
10747 	}
10748 
10749 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
10750 	    BPF_SIZE(insn->code) == BPF_DW ||
10751 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
10752 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
10753 		return -EINVAL;
10754 	}
10755 
10756 	/* check whether implicit source operand (register R6) is readable */
10757 	err = check_reg_arg(env, ctx_reg, SRC_OP);
10758 	if (err)
10759 		return err;
10760 
10761 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10762 	 * gen_ld_abs() may terminate the program at runtime, leading to
10763 	 * reference leak.
10764 	 */
10765 	err = check_reference_leak(env);
10766 	if (err) {
10767 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10768 		return err;
10769 	}
10770 
10771 	if (env->cur_state->active_spin_lock) {
10772 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10773 		return -EINVAL;
10774 	}
10775 
10776 	if (regs[ctx_reg].type != PTR_TO_CTX) {
10777 		verbose(env,
10778 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
10779 		return -EINVAL;
10780 	}
10781 
10782 	if (mode == BPF_IND) {
10783 		/* check explicit source operand */
10784 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10785 		if (err)
10786 			return err;
10787 	}
10788 
10789 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
10790 	if (err < 0)
10791 		return err;
10792 
10793 	/* reset caller saved regs to unreadable */
10794 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10795 		mark_reg_not_init(env, regs, caller_saved[i]);
10796 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10797 	}
10798 
10799 	/* mark destination R0 register as readable, since it contains
10800 	 * the value fetched from the packet.
10801 	 * Already marked as written above.
10802 	 */
10803 	mark_reg_unknown(env, regs, BPF_REG_0);
10804 	/* ld_abs load up to 32-bit skb data. */
10805 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
10806 	return 0;
10807 }
10808 
check_return_code(struct bpf_verifier_env * env)10809 static int check_return_code(struct bpf_verifier_env *env)
10810 {
10811 	struct tnum enforce_attach_type_range = tnum_unknown;
10812 	const struct bpf_prog *prog = env->prog;
10813 	struct bpf_reg_state *reg;
10814 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
10815 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10816 	int err;
10817 	struct bpf_func_state *frame = env->cur_state->frame[0];
10818 	const bool is_subprog = frame->subprogno;
10819 
10820 	/* LSM and struct_ops func-ptr's return type could be "void" */
10821 	if (!is_subprog) {
10822 		switch (prog_type) {
10823 		case BPF_PROG_TYPE_LSM:
10824 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
10825 				/* See below, can be 0 or 0-1 depending on hook. */
10826 				break;
10827 			fallthrough;
10828 		case BPF_PROG_TYPE_STRUCT_OPS:
10829 			if (!prog->aux->attach_func_proto->type)
10830 				return 0;
10831 			break;
10832 		default:
10833 			break;
10834 		}
10835 	}
10836 
10837 	/* eBPF calling convention is such that R0 is used
10838 	 * to return the value from eBPF program.
10839 	 * Make sure that it's readable at this time
10840 	 * of bpf_exit, which means that program wrote
10841 	 * something into it earlier
10842 	 */
10843 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10844 	if (err)
10845 		return err;
10846 
10847 	if (is_pointer_value(env, BPF_REG_0)) {
10848 		verbose(env, "R0 leaks addr as return value\n");
10849 		return -EACCES;
10850 	}
10851 
10852 	reg = cur_regs(env) + BPF_REG_0;
10853 
10854 	if (frame->in_async_callback_fn) {
10855 		/* enforce return zero from async callbacks like timer */
10856 		if (reg->type != SCALAR_VALUE) {
10857 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
10858 				reg_type_str(env, reg->type));
10859 			return -EINVAL;
10860 		}
10861 
10862 		if (!tnum_in(const_0, reg->var_off)) {
10863 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
10864 			return -EINVAL;
10865 		}
10866 		return 0;
10867 	}
10868 
10869 	if (is_subprog) {
10870 		if (reg->type != SCALAR_VALUE) {
10871 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
10872 				reg_type_str(env, reg->type));
10873 			return -EINVAL;
10874 		}
10875 		return 0;
10876 	}
10877 
10878 	switch (prog_type) {
10879 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10880 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
10881 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10882 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10883 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10884 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10885 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
10886 			range = tnum_range(1, 1);
10887 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10888 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10889 			range = tnum_range(0, 3);
10890 		break;
10891 	case BPF_PROG_TYPE_CGROUP_SKB:
10892 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10893 			range = tnum_range(0, 3);
10894 			enforce_attach_type_range = tnum_range(2, 3);
10895 		}
10896 		break;
10897 	case BPF_PROG_TYPE_CGROUP_SOCK:
10898 	case BPF_PROG_TYPE_SOCK_OPS:
10899 	case BPF_PROG_TYPE_CGROUP_DEVICE:
10900 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
10901 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
10902 		break;
10903 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10904 		if (!env->prog->aux->attach_btf_id)
10905 			return 0;
10906 		range = tnum_const(0);
10907 		break;
10908 	case BPF_PROG_TYPE_TRACING:
10909 		switch (env->prog->expected_attach_type) {
10910 		case BPF_TRACE_FENTRY:
10911 		case BPF_TRACE_FEXIT:
10912 			range = tnum_const(0);
10913 			break;
10914 		case BPF_TRACE_RAW_TP:
10915 		case BPF_MODIFY_RETURN:
10916 			return 0;
10917 		case BPF_TRACE_ITER:
10918 			break;
10919 		default:
10920 			return -ENOTSUPP;
10921 		}
10922 		break;
10923 	case BPF_PROG_TYPE_SK_LOOKUP:
10924 		range = tnum_range(SK_DROP, SK_PASS);
10925 		break;
10926 
10927 	case BPF_PROG_TYPE_LSM:
10928 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
10929 			/* Regular BPF_PROG_TYPE_LSM programs can return
10930 			 * any value.
10931 			 */
10932 			return 0;
10933 		}
10934 		if (!env->prog->aux->attach_func_proto->type) {
10935 			/* Make sure programs that attach to void
10936 			 * hooks don't try to modify return value.
10937 			 */
10938 			range = tnum_range(1, 1);
10939 		}
10940 		break;
10941 
10942 	case BPF_PROG_TYPE_EXT:
10943 		/* freplace program can return anything as its return value
10944 		 * depends on the to-be-replaced kernel func or bpf program.
10945 		 */
10946 	default:
10947 		return 0;
10948 	}
10949 
10950 	if (reg->type != SCALAR_VALUE) {
10951 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
10952 			reg_type_str(env, reg->type));
10953 		return -EINVAL;
10954 	}
10955 
10956 	if (!tnum_in(range, reg->var_off)) {
10957 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
10958 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
10959 		    prog_type == BPF_PROG_TYPE_LSM &&
10960 		    !prog->aux->attach_func_proto->type)
10961 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10962 		return -EINVAL;
10963 	}
10964 
10965 	if (!tnum_is_unknown(enforce_attach_type_range) &&
10966 	    tnum_in(enforce_attach_type_range, reg->var_off))
10967 		env->prog->enforce_expected_attach_type = 1;
10968 	return 0;
10969 }
10970 
10971 /* non-recursive DFS pseudo code
10972  * 1  procedure DFS-iterative(G,v):
10973  * 2      label v as discovered
10974  * 3      let S be a stack
10975  * 4      S.push(v)
10976  * 5      while S is not empty
10977  * 6            t <- S.pop()
10978  * 7            if t is what we're looking for:
10979  * 8                return t
10980  * 9            for all edges e in G.adjacentEdges(t) do
10981  * 10               if edge e is already labelled
10982  * 11                   continue with the next edge
10983  * 12               w <- G.adjacentVertex(t,e)
10984  * 13               if vertex w is not discovered and not explored
10985  * 14                   label e as tree-edge
10986  * 15                   label w as discovered
10987  * 16                   S.push(w)
10988  * 17                   continue at 5
10989  * 18               else if vertex w is discovered
10990  * 19                   label e as back-edge
10991  * 20               else
10992  * 21                   // vertex w is explored
10993  * 22                   label e as forward- or cross-edge
10994  * 23           label t as explored
10995  * 24           S.pop()
10996  *
10997  * convention:
10998  * 0x10 - discovered
10999  * 0x11 - discovered and fall-through edge labelled
11000  * 0x12 - discovered and fall-through and branch edges labelled
11001  * 0x20 - explored
11002  */
11003 
11004 enum {
11005 	DISCOVERED = 0x10,
11006 	EXPLORED = 0x20,
11007 	FALLTHROUGH = 1,
11008 	BRANCH = 2,
11009 };
11010 
state_htab_size(struct bpf_verifier_env * env)11011 static u32 state_htab_size(struct bpf_verifier_env *env)
11012 {
11013 	return env->prog->len;
11014 }
11015 
explored_state(struct bpf_verifier_env * env,int idx)11016 static struct bpf_verifier_state_list **explored_state(
11017 					struct bpf_verifier_env *env,
11018 					int idx)
11019 {
11020 	struct bpf_verifier_state *cur = env->cur_state;
11021 	struct bpf_func_state *state = cur->frame[cur->curframe];
11022 
11023 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
11024 }
11025 
init_explored_state(struct bpf_verifier_env * env,int idx)11026 static void init_explored_state(struct bpf_verifier_env *env, int idx)
11027 {
11028 	env->insn_aux_data[idx].prune_point = true;
11029 }
11030 
11031 enum {
11032 	DONE_EXPLORING = 0,
11033 	KEEP_EXPLORING = 1,
11034 };
11035 
11036 /* t, w, e - match pseudo-code above:
11037  * t - index of current instruction
11038  * w - next instruction
11039  * e - edge
11040  */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)11041 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
11042 		     bool loop_ok)
11043 {
11044 	int *insn_stack = env->cfg.insn_stack;
11045 	int *insn_state = env->cfg.insn_state;
11046 
11047 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
11048 		return DONE_EXPLORING;
11049 
11050 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
11051 		return DONE_EXPLORING;
11052 
11053 	if (w < 0 || w >= env->prog->len) {
11054 		verbose_linfo(env, t, "%d: ", t);
11055 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
11056 		return -EINVAL;
11057 	}
11058 
11059 	if (e == BRANCH)
11060 		/* mark branch target for state pruning */
11061 		init_explored_state(env, w);
11062 
11063 	if (insn_state[w] == 0) {
11064 		/* tree-edge */
11065 		insn_state[t] = DISCOVERED | e;
11066 		insn_state[w] = DISCOVERED;
11067 		if (env->cfg.cur_stack >= env->prog->len)
11068 			return -E2BIG;
11069 		insn_stack[env->cfg.cur_stack++] = w;
11070 		return KEEP_EXPLORING;
11071 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
11072 		if (loop_ok && env->bpf_capable)
11073 			return DONE_EXPLORING;
11074 		verbose_linfo(env, t, "%d: ", t);
11075 		verbose_linfo(env, w, "%d: ", w);
11076 		verbose(env, "back-edge from insn %d to %d\n", t, w);
11077 		return -EINVAL;
11078 	} else if (insn_state[w] == EXPLORED) {
11079 		/* forward- or cross-edge */
11080 		insn_state[t] = DISCOVERED | e;
11081 	} else {
11082 		verbose(env, "insn state internal bug\n");
11083 		return -EFAULT;
11084 	}
11085 	return DONE_EXPLORING;
11086 }
11087 
visit_func_call_insn(int t,int insn_cnt,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)11088 static int visit_func_call_insn(int t, int insn_cnt,
11089 				struct bpf_insn *insns,
11090 				struct bpf_verifier_env *env,
11091 				bool visit_callee)
11092 {
11093 	int ret;
11094 
11095 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
11096 	if (ret)
11097 		return ret;
11098 
11099 	if (t + 1 < insn_cnt)
11100 		init_explored_state(env, t + 1);
11101 	if (visit_callee) {
11102 		init_explored_state(env, t);
11103 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
11104 				/* It's ok to allow recursion from CFG point of
11105 				 * view. __check_func_call() will do the actual
11106 				 * check.
11107 				 */
11108 				bpf_pseudo_func(insns + t));
11109 	}
11110 	return ret;
11111 }
11112 
11113 /* Visits the instruction at index t and returns one of the following:
11114  *  < 0 - an error occurred
11115  *  DONE_EXPLORING - the instruction was fully explored
11116  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
11117  */
visit_insn(int t,int insn_cnt,struct bpf_verifier_env * env)11118 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
11119 {
11120 	struct bpf_insn *insns = env->prog->insnsi;
11121 	int ret;
11122 
11123 	if (bpf_pseudo_func(insns + t))
11124 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
11125 
11126 	/* All non-branch instructions have a single fall-through edge. */
11127 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
11128 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
11129 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
11130 
11131 	switch (BPF_OP(insns[t].code)) {
11132 	case BPF_EXIT:
11133 		return DONE_EXPLORING;
11134 
11135 	case BPF_CALL:
11136 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
11137 			/* Mark this call insn to trigger is_state_visited() check
11138 			 * before call itself is processed by __check_func_call().
11139 			 * Otherwise new async state will be pushed for further
11140 			 * exploration.
11141 			 */
11142 			init_explored_state(env, t);
11143 		return visit_func_call_insn(t, insn_cnt, insns, env,
11144 					    insns[t].src_reg == BPF_PSEUDO_CALL);
11145 
11146 	case BPF_JA:
11147 		if (BPF_SRC(insns[t].code) != BPF_K)
11148 			return -EINVAL;
11149 
11150 		/* unconditional jump with single edge */
11151 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
11152 				true);
11153 		if (ret)
11154 			return ret;
11155 
11156 		/* unconditional jmp is not a good pruning point,
11157 		 * but it's marked, since backtracking needs
11158 		 * to record jmp history in is_state_visited().
11159 		 */
11160 		init_explored_state(env, t + insns[t].off + 1);
11161 		/* tell verifier to check for equivalent states
11162 		 * after every call and jump
11163 		 */
11164 		if (t + 1 < insn_cnt)
11165 			init_explored_state(env, t + 1);
11166 
11167 		return ret;
11168 
11169 	default:
11170 		/* conditional jump with two edges */
11171 		init_explored_state(env, t);
11172 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
11173 		if (ret)
11174 			return ret;
11175 
11176 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
11177 	}
11178 }
11179 
11180 /* non-recursive depth-first-search to detect loops in BPF program
11181  * loop == back-edge in directed graph
11182  */
check_cfg(struct bpf_verifier_env * env)11183 static int check_cfg(struct bpf_verifier_env *env)
11184 {
11185 	int insn_cnt = env->prog->len;
11186 	int *insn_stack, *insn_state;
11187 	int ret = 0;
11188 	int i;
11189 
11190 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
11191 	if (!insn_state)
11192 		return -ENOMEM;
11193 
11194 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
11195 	if (!insn_stack) {
11196 		kvfree(insn_state);
11197 		return -ENOMEM;
11198 	}
11199 
11200 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
11201 	insn_stack[0] = 0; /* 0 is the first instruction */
11202 	env->cfg.cur_stack = 1;
11203 
11204 	while (env->cfg.cur_stack > 0) {
11205 		int t = insn_stack[env->cfg.cur_stack - 1];
11206 
11207 		ret = visit_insn(t, insn_cnt, env);
11208 		switch (ret) {
11209 		case DONE_EXPLORING:
11210 			insn_state[t] = EXPLORED;
11211 			env->cfg.cur_stack--;
11212 			break;
11213 		case KEEP_EXPLORING:
11214 			break;
11215 		default:
11216 			if (ret > 0) {
11217 				verbose(env, "visit_insn internal bug\n");
11218 				ret = -EFAULT;
11219 			}
11220 			goto err_free;
11221 		}
11222 	}
11223 
11224 	if (env->cfg.cur_stack < 0) {
11225 		verbose(env, "pop stack internal bug\n");
11226 		ret = -EFAULT;
11227 		goto err_free;
11228 	}
11229 
11230 	for (i = 0; i < insn_cnt; i++) {
11231 		if (insn_state[i] != EXPLORED) {
11232 			verbose(env, "unreachable insn %d\n", i);
11233 			ret = -EINVAL;
11234 			goto err_free;
11235 		}
11236 	}
11237 	ret = 0; /* cfg looks good */
11238 
11239 err_free:
11240 	kvfree(insn_state);
11241 	kvfree(insn_stack);
11242 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
11243 	return ret;
11244 }
11245 
check_abnormal_return(struct bpf_verifier_env * env)11246 static int check_abnormal_return(struct bpf_verifier_env *env)
11247 {
11248 	int i;
11249 
11250 	for (i = 1; i < env->subprog_cnt; i++) {
11251 		if (env->subprog_info[i].has_ld_abs) {
11252 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
11253 			return -EINVAL;
11254 		}
11255 		if (env->subprog_info[i].has_tail_call) {
11256 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
11257 			return -EINVAL;
11258 		}
11259 	}
11260 	return 0;
11261 }
11262 
11263 /* The minimum supported BTF func info size */
11264 #define MIN_BPF_FUNCINFO_SIZE	8
11265 #define MAX_FUNCINFO_REC_SIZE	252
11266 
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11267 static int check_btf_func(struct bpf_verifier_env *env,
11268 			  const union bpf_attr *attr,
11269 			  bpfptr_t uattr)
11270 {
11271 	const struct btf_type *type, *func_proto, *ret_type;
11272 	u32 i, nfuncs, urec_size, min_size;
11273 	u32 krec_size = sizeof(struct bpf_func_info);
11274 	struct bpf_func_info *krecord;
11275 	struct bpf_func_info_aux *info_aux = NULL;
11276 	struct bpf_prog *prog;
11277 	const struct btf *btf;
11278 	bpfptr_t urecord;
11279 	u32 prev_offset = 0;
11280 	bool scalar_return;
11281 	int ret = -ENOMEM;
11282 
11283 	nfuncs = attr->func_info_cnt;
11284 	if (!nfuncs) {
11285 		if (check_abnormal_return(env))
11286 			return -EINVAL;
11287 		return 0;
11288 	}
11289 
11290 	if (nfuncs != env->subprog_cnt) {
11291 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
11292 		return -EINVAL;
11293 	}
11294 
11295 	urec_size = attr->func_info_rec_size;
11296 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
11297 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
11298 	    urec_size % sizeof(u32)) {
11299 		verbose(env, "invalid func info rec size %u\n", urec_size);
11300 		return -EINVAL;
11301 	}
11302 
11303 	prog = env->prog;
11304 	btf = prog->aux->btf;
11305 
11306 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
11307 	min_size = min_t(u32, krec_size, urec_size);
11308 
11309 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
11310 	if (!krecord)
11311 		return -ENOMEM;
11312 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
11313 	if (!info_aux)
11314 		goto err_free;
11315 
11316 	for (i = 0; i < nfuncs; i++) {
11317 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
11318 		if (ret) {
11319 			if (ret == -E2BIG) {
11320 				verbose(env, "nonzero tailing record in func info");
11321 				/* set the size kernel expects so loader can zero
11322 				 * out the rest of the record.
11323 				 */
11324 				if (copy_to_bpfptr_offset(uattr,
11325 							  offsetof(union bpf_attr, func_info_rec_size),
11326 							  &min_size, sizeof(min_size)))
11327 					ret = -EFAULT;
11328 			}
11329 			goto err_free;
11330 		}
11331 
11332 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
11333 			ret = -EFAULT;
11334 			goto err_free;
11335 		}
11336 
11337 		/* check insn_off */
11338 		ret = -EINVAL;
11339 		if (i == 0) {
11340 			if (krecord[i].insn_off) {
11341 				verbose(env,
11342 					"nonzero insn_off %u for the first func info record",
11343 					krecord[i].insn_off);
11344 				goto err_free;
11345 			}
11346 		} else if (krecord[i].insn_off <= prev_offset) {
11347 			verbose(env,
11348 				"same or smaller insn offset (%u) than previous func info record (%u)",
11349 				krecord[i].insn_off, prev_offset);
11350 			goto err_free;
11351 		}
11352 
11353 		if (env->subprog_info[i].start != krecord[i].insn_off) {
11354 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
11355 			goto err_free;
11356 		}
11357 
11358 		/* check type_id */
11359 		type = btf_type_by_id(btf, krecord[i].type_id);
11360 		if (!type || !btf_type_is_func(type)) {
11361 			verbose(env, "invalid type id %d in func info",
11362 				krecord[i].type_id);
11363 			goto err_free;
11364 		}
11365 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
11366 
11367 		func_proto = btf_type_by_id(btf, type->type);
11368 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
11369 			/* btf_func_check() already verified it during BTF load */
11370 			goto err_free;
11371 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
11372 		scalar_return =
11373 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
11374 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
11375 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
11376 			goto err_free;
11377 		}
11378 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
11379 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
11380 			goto err_free;
11381 		}
11382 
11383 		prev_offset = krecord[i].insn_off;
11384 		bpfptr_add(&urecord, urec_size);
11385 	}
11386 
11387 	prog->aux->func_info = krecord;
11388 	prog->aux->func_info_cnt = nfuncs;
11389 	prog->aux->func_info_aux = info_aux;
11390 	return 0;
11391 
11392 err_free:
11393 	kvfree(krecord);
11394 	kfree(info_aux);
11395 	return ret;
11396 }
11397 
adjust_btf_func(struct bpf_verifier_env * env)11398 static void adjust_btf_func(struct bpf_verifier_env *env)
11399 {
11400 	struct bpf_prog_aux *aux = env->prog->aux;
11401 	int i;
11402 
11403 	if (!aux->func_info)
11404 		return;
11405 
11406 	for (i = 0; i < env->subprog_cnt; i++)
11407 		aux->func_info[i].insn_off = env->subprog_info[i].start;
11408 }
11409 
11410 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
11411 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
11412 
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11413 static int check_btf_line(struct bpf_verifier_env *env,
11414 			  const union bpf_attr *attr,
11415 			  bpfptr_t uattr)
11416 {
11417 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11418 	struct bpf_subprog_info *sub;
11419 	struct bpf_line_info *linfo;
11420 	struct bpf_prog *prog;
11421 	const struct btf *btf;
11422 	bpfptr_t ulinfo;
11423 	int err;
11424 
11425 	nr_linfo = attr->line_info_cnt;
11426 	if (!nr_linfo)
11427 		return 0;
11428 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
11429 		return -EINVAL;
11430 
11431 	rec_size = attr->line_info_rec_size;
11432 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
11433 	    rec_size > MAX_LINEINFO_REC_SIZE ||
11434 	    rec_size & (sizeof(u32) - 1))
11435 		return -EINVAL;
11436 
11437 	/* Need to zero it in case the userspace may
11438 	 * pass in a smaller bpf_line_info object.
11439 	 */
11440 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
11441 			 GFP_KERNEL | __GFP_NOWARN);
11442 	if (!linfo)
11443 		return -ENOMEM;
11444 
11445 	prog = env->prog;
11446 	btf = prog->aux->btf;
11447 
11448 	s = 0;
11449 	sub = env->subprog_info;
11450 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
11451 	expected_size = sizeof(struct bpf_line_info);
11452 	ncopy = min_t(u32, expected_size, rec_size);
11453 	for (i = 0; i < nr_linfo; i++) {
11454 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
11455 		if (err) {
11456 			if (err == -E2BIG) {
11457 				verbose(env, "nonzero tailing record in line_info");
11458 				if (copy_to_bpfptr_offset(uattr,
11459 							  offsetof(union bpf_attr, line_info_rec_size),
11460 							  &expected_size, sizeof(expected_size)))
11461 					err = -EFAULT;
11462 			}
11463 			goto err_free;
11464 		}
11465 
11466 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
11467 			err = -EFAULT;
11468 			goto err_free;
11469 		}
11470 
11471 		/*
11472 		 * Check insn_off to ensure
11473 		 * 1) strictly increasing AND
11474 		 * 2) bounded by prog->len
11475 		 *
11476 		 * The linfo[0].insn_off == 0 check logically falls into
11477 		 * the later "missing bpf_line_info for func..." case
11478 		 * because the first linfo[0].insn_off must be the
11479 		 * first sub also and the first sub must have
11480 		 * subprog_info[0].start == 0.
11481 		 */
11482 		if ((i && linfo[i].insn_off <= prev_offset) ||
11483 		    linfo[i].insn_off >= prog->len) {
11484 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
11485 				i, linfo[i].insn_off, prev_offset,
11486 				prog->len);
11487 			err = -EINVAL;
11488 			goto err_free;
11489 		}
11490 
11491 		if (!prog->insnsi[linfo[i].insn_off].code) {
11492 			verbose(env,
11493 				"Invalid insn code at line_info[%u].insn_off\n",
11494 				i);
11495 			err = -EINVAL;
11496 			goto err_free;
11497 		}
11498 
11499 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
11500 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
11501 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
11502 			err = -EINVAL;
11503 			goto err_free;
11504 		}
11505 
11506 		if (s != env->subprog_cnt) {
11507 			if (linfo[i].insn_off == sub[s].start) {
11508 				sub[s].linfo_idx = i;
11509 				s++;
11510 			} else if (sub[s].start < linfo[i].insn_off) {
11511 				verbose(env, "missing bpf_line_info for func#%u\n", s);
11512 				err = -EINVAL;
11513 				goto err_free;
11514 			}
11515 		}
11516 
11517 		prev_offset = linfo[i].insn_off;
11518 		bpfptr_add(&ulinfo, rec_size);
11519 	}
11520 
11521 	if (s != env->subprog_cnt) {
11522 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
11523 			env->subprog_cnt - s, s);
11524 		err = -EINVAL;
11525 		goto err_free;
11526 	}
11527 
11528 	prog->aux->linfo = linfo;
11529 	prog->aux->nr_linfo = nr_linfo;
11530 
11531 	return 0;
11532 
11533 err_free:
11534 	kvfree(linfo);
11535 	return err;
11536 }
11537 
11538 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
11539 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
11540 
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11541 static int check_core_relo(struct bpf_verifier_env *env,
11542 			   const union bpf_attr *attr,
11543 			   bpfptr_t uattr)
11544 {
11545 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
11546 	struct bpf_core_relo core_relo = {};
11547 	struct bpf_prog *prog = env->prog;
11548 	const struct btf *btf = prog->aux->btf;
11549 	struct bpf_core_ctx ctx = {
11550 		.log = &env->log,
11551 		.btf = btf,
11552 	};
11553 	bpfptr_t u_core_relo;
11554 	int err;
11555 
11556 	nr_core_relo = attr->core_relo_cnt;
11557 	if (!nr_core_relo)
11558 		return 0;
11559 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
11560 		return -EINVAL;
11561 
11562 	rec_size = attr->core_relo_rec_size;
11563 	if (rec_size < MIN_CORE_RELO_SIZE ||
11564 	    rec_size > MAX_CORE_RELO_SIZE ||
11565 	    rec_size % sizeof(u32))
11566 		return -EINVAL;
11567 
11568 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
11569 	expected_size = sizeof(struct bpf_core_relo);
11570 	ncopy = min_t(u32, expected_size, rec_size);
11571 
11572 	/* Unlike func_info and line_info, copy and apply each CO-RE
11573 	 * relocation record one at a time.
11574 	 */
11575 	for (i = 0; i < nr_core_relo; i++) {
11576 		/* future proofing when sizeof(bpf_core_relo) changes */
11577 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
11578 		if (err) {
11579 			if (err == -E2BIG) {
11580 				verbose(env, "nonzero tailing record in core_relo");
11581 				if (copy_to_bpfptr_offset(uattr,
11582 							  offsetof(union bpf_attr, core_relo_rec_size),
11583 							  &expected_size, sizeof(expected_size)))
11584 					err = -EFAULT;
11585 			}
11586 			break;
11587 		}
11588 
11589 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
11590 			err = -EFAULT;
11591 			break;
11592 		}
11593 
11594 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
11595 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
11596 				i, core_relo.insn_off, prog->len);
11597 			err = -EINVAL;
11598 			break;
11599 		}
11600 
11601 		err = bpf_core_apply(&ctx, &core_relo, i,
11602 				     &prog->insnsi[core_relo.insn_off / 8]);
11603 		if (err)
11604 			break;
11605 		bpfptr_add(&u_core_relo, rec_size);
11606 	}
11607 	return err;
11608 }
11609 
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)11610 static int check_btf_info(struct bpf_verifier_env *env,
11611 			  const union bpf_attr *attr,
11612 			  bpfptr_t uattr)
11613 {
11614 	struct btf *btf;
11615 	int err;
11616 
11617 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
11618 		if (check_abnormal_return(env))
11619 			return -EINVAL;
11620 		return 0;
11621 	}
11622 
11623 	btf = btf_get_by_fd(attr->prog_btf_fd);
11624 	if (IS_ERR(btf))
11625 		return PTR_ERR(btf);
11626 	if (btf_is_kernel(btf)) {
11627 		btf_put(btf);
11628 		return -EACCES;
11629 	}
11630 	env->prog->aux->btf = btf;
11631 
11632 	err = check_btf_func(env, attr, uattr);
11633 	if (err)
11634 		return err;
11635 
11636 	err = check_btf_line(env, attr, uattr);
11637 	if (err)
11638 		return err;
11639 
11640 	err = check_core_relo(env, attr, uattr);
11641 	if (err)
11642 		return err;
11643 
11644 	return 0;
11645 }
11646 
11647 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)11648 static bool range_within(struct bpf_reg_state *old,
11649 			 struct bpf_reg_state *cur)
11650 {
11651 	return old->umin_value <= cur->umin_value &&
11652 	       old->umax_value >= cur->umax_value &&
11653 	       old->smin_value <= cur->smin_value &&
11654 	       old->smax_value >= cur->smax_value &&
11655 	       old->u32_min_value <= cur->u32_min_value &&
11656 	       old->u32_max_value >= cur->u32_max_value &&
11657 	       old->s32_min_value <= cur->s32_min_value &&
11658 	       old->s32_max_value >= cur->s32_max_value;
11659 }
11660 
11661 /* If in the old state two registers had the same id, then they need to have
11662  * the same id in the new state as well.  But that id could be different from
11663  * the old state, so we need to track the mapping from old to new ids.
11664  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
11665  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
11666  * regs with a different old id could still have new id 9, we don't care about
11667  * that.
11668  * So we look through our idmap to see if this old id has been seen before.  If
11669  * so, we require the new id to match; otherwise, we add the id pair to the map.
11670  */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)11671 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
11672 {
11673 	unsigned int i;
11674 
11675 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
11676 		if (!idmap[i].old) {
11677 			/* Reached an empty slot; haven't seen this id before */
11678 			idmap[i].old = old_id;
11679 			idmap[i].cur = cur_id;
11680 			return true;
11681 		}
11682 		if (idmap[i].old == old_id)
11683 			return idmap[i].cur == cur_id;
11684 	}
11685 	/* We ran out of idmap slots, which should be impossible */
11686 	WARN_ON_ONCE(1);
11687 	return false;
11688 }
11689 
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)11690 static void clean_func_state(struct bpf_verifier_env *env,
11691 			     struct bpf_func_state *st)
11692 {
11693 	enum bpf_reg_liveness live;
11694 	int i, j;
11695 
11696 	for (i = 0; i < BPF_REG_FP; i++) {
11697 		live = st->regs[i].live;
11698 		/* liveness must not touch this register anymore */
11699 		st->regs[i].live |= REG_LIVE_DONE;
11700 		if (!(live & REG_LIVE_READ))
11701 			/* since the register is unused, clear its state
11702 			 * to make further comparison simpler
11703 			 */
11704 			__mark_reg_not_init(env, &st->regs[i]);
11705 	}
11706 
11707 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
11708 		live = st->stack[i].spilled_ptr.live;
11709 		/* liveness must not touch this stack slot anymore */
11710 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
11711 		if (!(live & REG_LIVE_READ)) {
11712 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
11713 			for (j = 0; j < BPF_REG_SIZE; j++)
11714 				st->stack[i].slot_type[j] = STACK_INVALID;
11715 		}
11716 	}
11717 }
11718 
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)11719 static void clean_verifier_state(struct bpf_verifier_env *env,
11720 				 struct bpf_verifier_state *st)
11721 {
11722 	int i;
11723 
11724 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11725 		/* all regs in this state in all frames were already marked */
11726 		return;
11727 
11728 	for (i = 0; i <= st->curframe; i++)
11729 		clean_func_state(env, st->frame[i]);
11730 }
11731 
11732 /* the parentage chains form a tree.
11733  * the verifier states are added to state lists at given insn and
11734  * pushed into state stack for future exploration.
11735  * when the verifier reaches bpf_exit insn some of the verifer states
11736  * stored in the state lists have their final liveness state already,
11737  * but a lot of states will get revised from liveness point of view when
11738  * the verifier explores other branches.
11739  * Example:
11740  * 1: r0 = 1
11741  * 2: if r1 == 100 goto pc+1
11742  * 3: r0 = 2
11743  * 4: exit
11744  * when the verifier reaches exit insn the register r0 in the state list of
11745  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11746  * of insn 2 and goes exploring further. At the insn 4 it will walk the
11747  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11748  *
11749  * Since the verifier pushes the branch states as it sees them while exploring
11750  * the program the condition of walking the branch instruction for the second
11751  * time means that all states below this branch were already explored and
11752  * their final liveness marks are already propagated.
11753  * Hence when the verifier completes the search of state list in is_state_visited()
11754  * we can call this clean_live_states() function to mark all liveness states
11755  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11756  * will not be used.
11757  * This function also clears the registers and stack for states that !READ
11758  * to simplify state merging.
11759  *
11760  * Important note here that walking the same branch instruction in the callee
11761  * doesn't meant that the states are DONE. The verifier has to compare
11762  * the callsites
11763  */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)11764 static void clean_live_states(struct bpf_verifier_env *env, int insn,
11765 			      struct bpf_verifier_state *cur)
11766 {
11767 	struct bpf_verifier_state_list *sl;
11768 	int i;
11769 
11770 	sl = *explored_state(env, insn);
11771 	while (sl) {
11772 		if (sl->state.branches)
11773 			goto next;
11774 		if (sl->state.insn_idx != insn ||
11775 		    sl->state.curframe != cur->curframe)
11776 			goto next;
11777 		for (i = 0; i <= cur->curframe; i++)
11778 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11779 				goto next;
11780 		clean_verifier_state(env, &sl->state);
11781 next:
11782 		sl = sl->next;
11783 	}
11784 }
11785 
11786 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)11787 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11788 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
11789 {
11790 	bool equal;
11791 
11792 	if (!(rold->live & REG_LIVE_READ))
11793 		/* explored state didn't use this */
11794 		return true;
11795 
11796 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
11797 
11798 	if (rold->type == PTR_TO_STACK)
11799 		/* two stack pointers are equal only if they're pointing to
11800 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
11801 		 */
11802 		return equal && rold->frameno == rcur->frameno;
11803 
11804 	if (equal)
11805 		return true;
11806 
11807 	if (rold->type == NOT_INIT)
11808 		/* explored state can't have used this */
11809 		return true;
11810 	if (rcur->type == NOT_INIT)
11811 		return false;
11812 	switch (base_type(rold->type)) {
11813 	case SCALAR_VALUE:
11814 		if (env->explore_alu_limits)
11815 			return false;
11816 		if (rcur->type == SCALAR_VALUE) {
11817 			if (!rold->precise)
11818 				return true;
11819 			/* new val must satisfy old val knowledge */
11820 			return range_within(rold, rcur) &&
11821 			       tnum_in(rold->var_off, rcur->var_off);
11822 		} else {
11823 			/* We're trying to use a pointer in place of a scalar.
11824 			 * Even if the scalar was unbounded, this could lead to
11825 			 * pointer leaks because scalars are allowed to leak
11826 			 * while pointers are not. We could make this safe in
11827 			 * special cases if root is calling us, but it's
11828 			 * probably not worth the hassle.
11829 			 */
11830 			return false;
11831 		}
11832 	case PTR_TO_MAP_KEY:
11833 	case PTR_TO_MAP_VALUE:
11834 		/* a PTR_TO_MAP_VALUE could be safe to use as a
11835 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11836 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11837 		 * checked, doing so could have affected others with the same
11838 		 * id, and we can't check for that because we lost the id when
11839 		 * we converted to a PTR_TO_MAP_VALUE.
11840 		 */
11841 		if (type_may_be_null(rold->type)) {
11842 			if (!type_may_be_null(rcur->type))
11843 				return false;
11844 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11845 				return false;
11846 			/* Check our ids match any regs they're supposed to */
11847 			return check_ids(rold->id, rcur->id, idmap);
11848 		}
11849 
11850 		/* If the new min/max/var_off satisfy the old ones and
11851 		 * everything else matches, we are OK.
11852 		 * 'id' is not compared, since it's only used for maps with
11853 		 * bpf_spin_lock inside map element and in such cases if
11854 		 * the rest of the prog is valid for one map element then
11855 		 * it's valid for all map elements regardless of the key
11856 		 * used in bpf_map_lookup()
11857 		 */
11858 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11859 		       range_within(rold, rcur) &&
11860 		       tnum_in(rold->var_off, rcur->var_off);
11861 	case PTR_TO_PACKET_META:
11862 	case PTR_TO_PACKET:
11863 		if (rcur->type != rold->type)
11864 			return false;
11865 		/* We must have at least as much range as the old ptr
11866 		 * did, so that any accesses which were safe before are
11867 		 * still safe.  This is true even if old range < old off,
11868 		 * since someone could have accessed through (ptr - k), or
11869 		 * even done ptr -= k in a register, to get a safe access.
11870 		 */
11871 		if (rold->range > rcur->range)
11872 			return false;
11873 		/* If the offsets don't match, we can't trust our alignment;
11874 		 * nor can we be sure that we won't fall out of range.
11875 		 */
11876 		if (rold->off != rcur->off)
11877 			return false;
11878 		/* id relations must be preserved */
11879 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11880 			return false;
11881 		/* new val must satisfy old val knowledge */
11882 		return range_within(rold, rcur) &&
11883 		       tnum_in(rold->var_off, rcur->var_off);
11884 	case PTR_TO_CTX:
11885 	case CONST_PTR_TO_MAP:
11886 	case PTR_TO_PACKET_END:
11887 	case PTR_TO_FLOW_KEYS:
11888 	case PTR_TO_SOCKET:
11889 	case PTR_TO_SOCK_COMMON:
11890 	case PTR_TO_TCP_SOCK:
11891 	case PTR_TO_XDP_SOCK:
11892 		/* Only valid matches are exact, which memcmp() above
11893 		 * would have accepted
11894 		 */
11895 	default:
11896 		/* Don't know what's going on, just say it's not safe */
11897 		return false;
11898 	}
11899 
11900 	/* Shouldn't get here; if we do, say it's not safe */
11901 	WARN_ON_ONCE(1);
11902 	return false;
11903 }
11904 
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)11905 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11906 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
11907 {
11908 	int i, spi;
11909 
11910 	/* walk slots of the explored stack and ignore any additional
11911 	 * slots in the current stack, since explored(safe) state
11912 	 * didn't use them
11913 	 */
11914 	for (i = 0; i < old->allocated_stack; i++) {
11915 		spi = i / BPF_REG_SIZE;
11916 
11917 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11918 			i += BPF_REG_SIZE - 1;
11919 			/* explored state didn't use this */
11920 			continue;
11921 		}
11922 
11923 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11924 			continue;
11925 
11926 		/* explored stack has more populated slots than current stack
11927 		 * and these slots were used
11928 		 */
11929 		if (i >= cur->allocated_stack)
11930 			return false;
11931 
11932 		/* if old state was safe with misc data in the stack
11933 		 * it will be safe with zero-initialized stack.
11934 		 * The opposite is not true
11935 		 */
11936 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11937 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11938 			continue;
11939 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11940 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11941 			/* Ex: old explored (safe) state has STACK_SPILL in
11942 			 * this stack slot, but current has STACK_MISC ->
11943 			 * this verifier states are not equivalent,
11944 			 * return false to continue verification of this path
11945 			 */
11946 			return false;
11947 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
11948 			continue;
11949 		if (!is_spilled_reg(&old->stack[spi]))
11950 			continue;
11951 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
11952 			     &cur->stack[spi].spilled_ptr, idmap))
11953 			/* when explored and current stack slot are both storing
11954 			 * spilled registers, check that stored pointers types
11955 			 * are the same as well.
11956 			 * Ex: explored safe path could have stored
11957 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11958 			 * but current path has stored:
11959 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11960 			 * such verifier states are not equivalent.
11961 			 * return false to continue verification of this path
11962 			 */
11963 			return false;
11964 	}
11965 	return true;
11966 }
11967 
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)11968 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11969 {
11970 	if (old->acquired_refs != cur->acquired_refs)
11971 		return false;
11972 	return !memcmp(old->refs, cur->refs,
11973 		       sizeof(*old->refs) * old->acquired_refs);
11974 }
11975 
11976 /* compare two verifier states
11977  *
11978  * all states stored in state_list are known to be valid, since
11979  * verifier reached 'bpf_exit' instruction through them
11980  *
11981  * this function is called when verifier exploring different branches of
11982  * execution popped from the state stack. If it sees an old state that has
11983  * more strict register state and more strict stack state then this execution
11984  * branch doesn't need to be explored further, since verifier already
11985  * concluded that more strict state leads to valid finish.
11986  *
11987  * Therefore two states are equivalent if register state is more conservative
11988  * and explored stack state is more conservative than the current one.
11989  * Example:
11990  *       explored                   current
11991  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11992  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11993  *
11994  * In other words if current stack state (one being explored) has more
11995  * valid slots than old one that already passed validation, it means
11996  * the verifier can stop exploring and conclude that current state is valid too
11997  *
11998  * Similarly with registers. If explored state has register type as invalid
11999  * whereas register type in current state is meaningful, it means that
12000  * the current state will reach 'bpf_exit' instruction safely
12001  */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)12002 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
12003 			      struct bpf_func_state *cur)
12004 {
12005 	int i;
12006 
12007 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
12008 	for (i = 0; i < MAX_BPF_REG; i++)
12009 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
12010 			     env->idmap_scratch))
12011 			return false;
12012 
12013 	if (!stacksafe(env, old, cur, env->idmap_scratch))
12014 		return false;
12015 
12016 	if (!refsafe(old, cur))
12017 		return false;
12018 
12019 	return true;
12020 }
12021 
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)12022 static bool states_equal(struct bpf_verifier_env *env,
12023 			 struct bpf_verifier_state *old,
12024 			 struct bpf_verifier_state *cur)
12025 {
12026 	int i;
12027 
12028 	if (old->curframe != cur->curframe)
12029 		return false;
12030 
12031 	/* Verification state from speculative execution simulation
12032 	 * must never prune a non-speculative execution one.
12033 	 */
12034 	if (old->speculative && !cur->speculative)
12035 		return false;
12036 
12037 	if (old->active_spin_lock != cur->active_spin_lock)
12038 		return false;
12039 
12040 	/* for states to be equal callsites have to be the same
12041 	 * and all frame states need to be equivalent
12042 	 */
12043 	for (i = 0; i <= old->curframe; i++) {
12044 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
12045 			return false;
12046 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
12047 			return false;
12048 	}
12049 	return true;
12050 }
12051 
12052 /* Return 0 if no propagation happened. Return negative error code if error
12053  * happened. Otherwise, return the propagated bit.
12054  */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)12055 static int propagate_liveness_reg(struct bpf_verifier_env *env,
12056 				  struct bpf_reg_state *reg,
12057 				  struct bpf_reg_state *parent_reg)
12058 {
12059 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
12060 	u8 flag = reg->live & REG_LIVE_READ;
12061 	int err;
12062 
12063 	/* When comes here, read flags of PARENT_REG or REG could be any of
12064 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
12065 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
12066 	 */
12067 	if (parent_flag == REG_LIVE_READ64 ||
12068 	    /* Or if there is no read flag from REG. */
12069 	    !flag ||
12070 	    /* Or if the read flag from REG is the same as PARENT_REG. */
12071 	    parent_flag == flag)
12072 		return 0;
12073 
12074 	err = mark_reg_read(env, reg, parent_reg, flag);
12075 	if (err)
12076 		return err;
12077 
12078 	return flag;
12079 }
12080 
12081 /* A write screens off any subsequent reads; but write marks come from the
12082  * straight-line code between a state and its parent.  When we arrive at an
12083  * equivalent state (jump target or such) we didn't arrive by the straight-line
12084  * code, so read marks in the state must propagate to the parent regardless
12085  * of the state's write marks. That's what 'parent == state->parent' comparison
12086  * in mark_reg_read() is for.
12087  */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)12088 static int propagate_liveness(struct bpf_verifier_env *env,
12089 			      const struct bpf_verifier_state *vstate,
12090 			      struct bpf_verifier_state *vparent)
12091 {
12092 	struct bpf_reg_state *state_reg, *parent_reg;
12093 	struct bpf_func_state *state, *parent;
12094 	int i, frame, err = 0;
12095 
12096 	if (vparent->curframe != vstate->curframe) {
12097 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
12098 		     vparent->curframe, vstate->curframe);
12099 		return -EFAULT;
12100 	}
12101 	/* Propagate read liveness of registers... */
12102 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
12103 	for (frame = 0; frame <= vstate->curframe; frame++) {
12104 		parent = vparent->frame[frame];
12105 		state = vstate->frame[frame];
12106 		parent_reg = parent->regs;
12107 		state_reg = state->regs;
12108 		/* We don't need to worry about FP liveness, it's read-only */
12109 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
12110 			err = propagate_liveness_reg(env, &state_reg[i],
12111 						     &parent_reg[i]);
12112 			if (err < 0)
12113 				return err;
12114 			if (err == REG_LIVE_READ64)
12115 				mark_insn_zext(env, &parent_reg[i]);
12116 		}
12117 
12118 		/* Propagate stack slots. */
12119 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
12120 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
12121 			parent_reg = &parent->stack[i].spilled_ptr;
12122 			state_reg = &state->stack[i].spilled_ptr;
12123 			err = propagate_liveness_reg(env, state_reg,
12124 						     parent_reg);
12125 			if (err < 0)
12126 				return err;
12127 		}
12128 	}
12129 	return 0;
12130 }
12131 
12132 /* find precise scalars in the previous equivalent state and
12133  * propagate them into the current state
12134  */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)12135 static int propagate_precision(struct bpf_verifier_env *env,
12136 			       const struct bpf_verifier_state *old)
12137 {
12138 	struct bpf_reg_state *state_reg;
12139 	struct bpf_func_state *state;
12140 	int i, err = 0, fr;
12141 
12142 	for (fr = old->curframe; fr >= 0; fr--) {
12143 		state = old->frame[fr];
12144 		state_reg = state->regs;
12145 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
12146 			if (state_reg->type != SCALAR_VALUE ||
12147 			    !state_reg->precise ||
12148 			    !(state_reg->live & REG_LIVE_READ))
12149 				continue;
12150 			if (env->log.level & BPF_LOG_LEVEL2)
12151 				verbose(env, "frame %d: propagating r%d\n", fr, i);
12152 			err = mark_chain_precision_frame(env, fr, i);
12153 			if (err < 0)
12154 				return err;
12155 		}
12156 
12157 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
12158 			if (!is_spilled_reg(&state->stack[i]))
12159 				continue;
12160 			state_reg = &state->stack[i].spilled_ptr;
12161 			if (state_reg->type != SCALAR_VALUE ||
12162 			    !state_reg->precise ||
12163 			    !(state_reg->live & REG_LIVE_READ))
12164 				continue;
12165 			if (env->log.level & BPF_LOG_LEVEL2)
12166 				verbose(env, "frame %d: propagating fp%d\n",
12167 					fr, (-i - 1) * BPF_REG_SIZE);
12168 			err = mark_chain_precision_stack_frame(env, fr, i);
12169 			if (err < 0)
12170 				return err;
12171 		}
12172 	}
12173 	return 0;
12174 }
12175 
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)12176 static bool states_maybe_looping(struct bpf_verifier_state *old,
12177 				 struct bpf_verifier_state *cur)
12178 {
12179 	struct bpf_func_state *fold, *fcur;
12180 	int i, fr = cur->curframe;
12181 
12182 	if (old->curframe != fr)
12183 		return false;
12184 
12185 	fold = old->frame[fr];
12186 	fcur = cur->frame[fr];
12187 	for (i = 0; i < MAX_BPF_REG; i++)
12188 		if (memcmp(&fold->regs[i], &fcur->regs[i],
12189 			   offsetof(struct bpf_reg_state, parent)))
12190 			return false;
12191 	return true;
12192 }
12193 
12194 
is_state_visited(struct bpf_verifier_env * env,int insn_idx)12195 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
12196 {
12197 	struct bpf_verifier_state_list *new_sl;
12198 	struct bpf_verifier_state_list *sl, **pprev;
12199 	struct bpf_verifier_state *cur = env->cur_state, *new;
12200 	int i, j, err, states_cnt = 0;
12201 	bool add_new_state = env->test_state_freq ? true : false;
12202 
12203 	cur->last_insn_idx = env->prev_insn_idx;
12204 	if (!env->insn_aux_data[insn_idx].prune_point)
12205 		/* this 'insn_idx' instruction wasn't marked, so we will not
12206 		 * be doing state search here
12207 		 */
12208 		return 0;
12209 
12210 	/* bpf progs typically have pruning point every 4 instructions
12211 	 * http://vger.kernel.org/bpfconf2019.html#session-1
12212 	 * Do not add new state for future pruning if the verifier hasn't seen
12213 	 * at least 2 jumps and at least 8 instructions.
12214 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
12215 	 * In tests that amounts to up to 50% reduction into total verifier
12216 	 * memory consumption and 20% verifier time speedup.
12217 	 */
12218 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
12219 	    env->insn_processed - env->prev_insn_processed >= 8)
12220 		add_new_state = true;
12221 
12222 	pprev = explored_state(env, insn_idx);
12223 	sl = *pprev;
12224 
12225 	clean_live_states(env, insn_idx, cur);
12226 
12227 	while (sl) {
12228 		states_cnt++;
12229 		if (sl->state.insn_idx != insn_idx)
12230 			goto next;
12231 
12232 		if (sl->state.branches) {
12233 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
12234 
12235 			if (frame->in_async_callback_fn &&
12236 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
12237 				/* Different async_entry_cnt means that the verifier is
12238 				 * processing another entry into async callback.
12239 				 * Seeing the same state is not an indication of infinite
12240 				 * loop or infinite recursion.
12241 				 * But finding the same state doesn't mean that it's safe
12242 				 * to stop processing the current state. The previous state
12243 				 * hasn't yet reached bpf_exit, since state.branches > 0.
12244 				 * Checking in_async_callback_fn alone is not enough either.
12245 				 * Since the verifier still needs to catch infinite loops
12246 				 * inside async callbacks.
12247 				 */
12248 			} else if (states_maybe_looping(&sl->state, cur) &&
12249 				   states_equal(env, &sl->state, cur)) {
12250 				verbose_linfo(env, insn_idx, "; ");
12251 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
12252 				return -EINVAL;
12253 			}
12254 			/* if the verifier is processing a loop, avoid adding new state
12255 			 * too often, since different loop iterations have distinct
12256 			 * states and may not help future pruning.
12257 			 * This threshold shouldn't be too low to make sure that
12258 			 * a loop with large bound will be rejected quickly.
12259 			 * The most abusive loop will be:
12260 			 * r1 += 1
12261 			 * if r1 < 1000000 goto pc-2
12262 			 * 1M insn_procssed limit / 100 == 10k peak states.
12263 			 * This threshold shouldn't be too high either, since states
12264 			 * at the end of the loop are likely to be useful in pruning.
12265 			 */
12266 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
12267 			    env->insn_processed - env->prev_insn_processed < 100)
12268 				add_new_state = false;
12269 			goto miss;
12270 		}
12271 		if (states_equal(env, &sl->state, cur)) {
12272 			sl->hit_cnt++;
12273 			/* reached equivalent register/stack state,
12274 			 * prune the search.
12275 			 * Registers read by the continuation are read by us.
12276 			 * If we have any write marks in env->cur_state, they
12277 			 * will prevent corresponding reads in the continuation
12278 			 * from reaching our parent (an explored_state).  Our
12279 			 * own state will get the read marks recorded, but
12280 			 * they'll be immediately forgotten as we're pruning
12281 			 * this state and will pop a new one.
12282 			 */
12283 			err = propagate_liveness(env, &sl->state, cur);
12284 
12285 			/* if previous state reached the exit with precision and
12286 			 * current state is equivalent to it (except precsion marks)
12287 			 * the precision needs to be propagated back in
12288 			 * the current state.
12289 			 */
12290 			err = err ? : push_jmp_history(env, cur);
12291 			err = err ? : propagate_precision(env, &sl->state);
12292 			if (err)
12293 				return err;
12294 			return 1;
12295 		}
12296 miss:
12297 		/* when new state is not going to be added do not increase miss count.
12298 		 * Otherwise several loop iterations will remove the state
12299 		 * recorded earlier. The goal of these heuristics is to have
12300 		 * states from some iterations of the loop (some in the beginning
12301 		 * and some at the end) to help pruning.
12302 		 */
12303 		if (add_new_state)
12304 			sl->miss_cnt++;
12305 		/* heuristic to determine whether this state is beneficial
12306 		 * to keep checking from state equivalence point of view.
12307 		 * Higher numbers increase max_states_per_insn and verification time,
12308 		 * but do not meaningfully decrease insn_processed.
12309 		 */
12310 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
12311 			/* the state is unlikely to be useful. Remove it to
12312 			 * speed up verification
12313 			 */
12314 			*pprev = sl->next;
12315 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
12316 				u32 br = sl->state.branches;
12317 
12318 				WARN_ONCE(br,
12319 					  "BUG live_done but branches_to_explore %d\n",
12320 					  br);
12321 				free_verifier_state(&sl->state, false);
12322 				kfree(sl);
12323 				env->peak_states--;
12324 			} else {
12325 				/* cannot free this state, since parentage chain may
12326 				 * walk it later. Add it for free_list instead to
12327 				 * be freed at the end of verification
12328 				 */
12329 				sl->next = env->free_list;
12330 				env->free_list = sl;
12331 			}
12332 			sl = *pprev;
12333 			continue;
12334 		}
12335 next:
12336 		pprev = &sl->next;
12337 		sl = *pprev;
12338 	}
12339 
12340 	if (env->max_states_per_insn < states_cnt)
12341 		env->max_states_per_insn = states_cnt;
12342 
12343 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
12344 		return push_jmp_history(env, cur);
12345 
12346 	if (!add_new_state)
12347 		return push_jmp_history(env, cur);
12348 
12349 	/* There were no equivalent states, remember the current one.
12350 	 * Technically the current state is not proven to be safe yet,
12351 	 * but it will either reach outer most bpf_exit (which means it's safe)
12352 	 * or it will be rejected. When there are no loops the verifier won't be
12353 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
12354 	 * again on the way to bpf_exit.
12355 	 * When looping the sl->state.branches will be > 0 and this state
12356 	 * will not be considered for equivalence until branches == 0.
12357 	 */
12358 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
12359 	if (!new_sl)
12360 		return -ENOMEM;
12361 	env->total_states++;
12362 	env->peak_states++;
12363 	env->prev_jmps_processed = env->jmps_processed;
12364 	env->prev_insn_processed = env->insn_processed;
12365 
12366 	/* forget precise markings we inherited, see __mark_chain_precision */
12367 	if (env->bpf_capable)
12368 		mark_all_scalars_imprecise(env, cur);
12369 
12370 	/* add new state to the head of linked list */
12371 	new = &new_sl->state;
12372 	err = copy_verifier_state(new, cur);
12373 	if (err) {
12374 		free_verifier_state(new, false);
12375 		kfree(new_sl);
12376 		return err;
12377 	}
12378 	new->insn_idx = insn_idx;
12379 	WARN_ONCE(new->branches != 1,
12380 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
12381 
12382 	cur->parent = new;
12383 	cur->first_insn_idx = insn_idx;
12384 	clear_jmp_history(cur);
12385 	new_sl->next = *explored_state(env, insn_idx);
12386 	*explored_state(env, insn_idx) = new_sl;
12387 	/* connect new state to parentage chain. Current frame needs all
12388 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
12389 	 * to the stack implicitly by JITs) so in callers' frames connect just
12390 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
12391 	 * the state of the call instruction (with WRITTEN set), and r0 comes
12392 	 * from callee with its full parentage chain, anyway.
12393 	 */
12394 	/* clear write marks in current state: the writes we did are not writes
12395 	 * our child did, so they don't screen off its reads from us.
12396 	 * (There are no read marks in current state, because reads always mark
12397 	 * their parent and current state never has children yet.  Only
12398 	 * explored_states can get read marks.)
12399 	 */
12400 	for (j = 0; j <= cur->curframe; j++) {
12401 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12402 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12403 		for (i = 0; i < BPF_REG_FP; i++)
12404 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12405 	}
12406 
12407 	/* all stack frames are accessible from callee, clear them all */
12408 	for (j = 0; j <= cur->curframe; j++) {
12409 		struct bpf_func_state *frame = cur->frame[j];
12410 		struct bpf_func_state *newframe = new->frame[j];
12411 
12412 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
12413 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
12414 			frame->stack[i].spilled_ptr.parent =
12415 						&newframe->stack[i].spilled_ptr;
12416 		}
12417 	}
12418 	return 0;
12419 }
12420 
12421 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)12422 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
12423 {
12424 	switch (base_type(type)) {
12425 	case PTR_TO_CTX:
12426 	case PTR_TO_SOCKET:
12427 	case PTR_TO_SOCK_COMMON:
12428 	case PTR_TO_TCP_SOCK:
12429 	case PTR_TO_XDP_SOCK:
12430 	case PTR_TO_BTF_ID:
12431 		return false;
12432 	default:
12433 		return true;
12434 	}
12435 }
12436 
12437 /* If an instruction was previously used with particular pointer types, then we
12438  * need to be careful to avoid cases such as the below, where it may be ok
12439  * for one branch accessing the pointer, but not ok for the other branch:
12440  *
12441  * R1 = sock_ptr
12442  * goto X;
12443  * ...
12444  * R1 = some_other_valid_ptr;
12445  * goto X;
12446  * ...
12447  * R2 = *(u32 *)(R1 + 0);
12448  */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)12449 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
12450 {
12451 	return src != prev && (!reg_type_mismatch_ok(src) ||
12452 			       !reg_type_mismatch_ok(prev));
12453 }
12454 
do_check(struct bpf_verifier_env * env)12455 static int do_check(struct bpf_verifier_env *env)
12456 {
12457 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12458 	struct bpf_verifier_state *state = env->cur_state;
12459 	struct bpf_insn *insns = env->prog->insnsi;
12460 	struct bpf_reg_state *regs;
12461 	int insn_cnt = env->prog->len;
12462 	bool do_print_state = false;
12463 	int prev_insn_idx = -1;
12464 
12465 	for (;;) {
12466 		struct bpf_insn *insn;
12467 		u8 class;
12468 		int err;
12469 
12470 		env->prev_insn_idx = prev_insn_idx;
12471 		if (env->insn_idx >= insn_cnt) {
12472 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
12473 				env->insn_idx, insn_cnt);
12474 			return -EFAULT;
12475 		}
12476 
12477 		insn = &insns[env->insn_idx];
12478 		class = BPF_CLASS(insn->code);
12479 
12480 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
12481 			verbose(env,
12482 				"BPF program is too large. Processed %d insn\n",
12483 				env->insn_processed);
12484 			return -E2BIG;
12485 		}
12486 
12487 		err = is_state_visited(env, env->insn_idx);
12488 		if (err < 0)
12489 			return err;
12490 		if (err == 1) {
12491 			/* found equivalent state, can prune the search */
12492 			if (env->log.level & BPF_LOG_LEVEL) {
12493 				if (do_print_state)
12494 					verbose(env, "\nfrom %d to %d%s: safe\n",
12495 						env->prev_insn_idx, env->insn_idx,
12496 						env->cur_state->speculative ?
12497 						" (speculative execution)" : "");
12498 				else
12499 					verbose(env, "%d: safe\n", env->insn_idx);
12500 			}
12501 			goto process_bpf_exit;
12502 		}
12503 
12504 		if (signal_pending(current))
12505 			return -EAGAIN;
12506 
12507 		if (need_resched())
12508 			cond_resched();
12509 
12510 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
12511 			verbose(env, "\nfrom %d to %d%s:",
12512 				env->prev_insn_idx, env->insn_idx,
12513 				env->cur_state->speculative ?
12514 				" (speculative execution)" : "");
12515 			print_verifier_state(env, state->frame[state->curframe], true);
12516 			do_print_state = false;
12517 		}
12518 
12519 		if (env->log.level & BPF_LOG_LEVEL) {
12520 			const struct bpf_insn_cbs cbs = {
12521 				.cb_call	= disasm_kfunc_name,
12522 				.cb_print	= verbose,
12523 				.private_data	= env,
12524 			};
12525 
12526 			if (verifier_state_scratched(env))
12527 				print_insn_state(env, state->frame[state->curframe]);
12528 
12529 			verbose_linfo(env, env->insn_idx, "; ");
12530 			env->prev_log_len = env->log.len_used;
12531 			verbose(env, "%d: ", env->insn_idx);
12532 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12533 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
12534 			env->prev_log_len = env->log.len_used;
12535 		}
12536 
12537 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
12538 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
12539 							   env->prev_insn_idx);
12540 			if (err)
12541 				return err;
12542 		}
12543 
12544 		regs = cur_regs(env);
12545 		sanitize_mark_insn_seen(env);
12546 		prev_insn_idx = env->insn_idx;
12547 
12548 		if (class == BPF_ALU || class == BPF_ALU64) {
12549 			err = check_alu_op(env, insn);
12550 			if (err)
12551 				return err;
12552 
12553 		} else if (class == BPF_LDX) {
12554 			enum bpf_reg_type *prev_src_type, src_reg_type;
12555 
12556 			/* check for reserved fields is already done */
12557 
12558 			/* check src operand */
12559 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12560 			if (err)
12561 				return err;
12562 
12563 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12564 			if (err)
12565 				return err;
12566 
12567 			src_reg_type = regs[insn->src_reg].type;
12568 
12569 			/* check that memory (src_reg + off) is readable,
12570 			 * the state of dst_reg will be updated by this func
12571 			 */
12572 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
12573 					       insn->off, BPF_SIZE(insn->code),
12574 					       BPF_READ, insn->dst_reg, false);
12575 			if (err)
12576 				return err;
12577 
12578 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12579 
12580 			if (*prev_src_type == NOT_INIT) {
12581 				/* saw a valid insn
12582 				 * dst_reg = *(u32 *)(src_reg + off)
12583 				 * save type to validate intersecting paths
12584 				 */
12585 				*prev_src_type = src_reg_type;
12586 
12587 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
12588 				/* ABuser program is trying to use the same insn
12589 				 * dst_reg = *(u32*) (src_reg + off)
12590 				 * with different pointer types:
12591 				 * src_reg == ctx in one branch and
12592 				 * src_reg == stack|map in some other branch.
12593 				 * Reject it.
12594 				 */
12595 				verbose(env, "same insn cannot be used with different pointers\n");
12596 				return -EINVAL;
12597 			}
12598 
12599 		} else if (class == BPF_STX) {
12600 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
12601 
12602 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
12603 				err = check_atomic(env, env->insn_idx, insn);
12604 				if (err)
12605 					return err;
12606 				env->insn_idx++;
12607 				continue;
12608 			}
12609 
12610 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
12611 				verbose(env, "BPF_STX uses reserved fields\n");
12612 				return -EINVAL;
12613 			}
12614 
12615 			/* check src1 operand */
12616 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12617 			if (err)
12618 				return err;
12619 			/* check src2 operand */
12620 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12621 			if (err)
12622 				return err;
12623 
12624 			dst_reg_type = regs[insn->dst_reg].type;
12625 
12626 			/* check that memory (dst_reg + off) is writeable */
12627 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12628 					       insn->off, BPF_SIZE(insn->code),
12629 					       BPF_WRITE, insn->src_reg, false);
12630 			if (err)
12631 				return err;
12632 
12633 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12634 
12635 			if (*prev_dst_type == NOT_INIT) {
12636 				*prev_dst_type = dst_reg_type;
12637 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
12638 				verbose(env, "same insn cannot be used with different pointers\n");
12639 				return -EINVAL;
12640 			}
12641 
12642 		} else if (class == BPF_ST) {
12643 			if (BPF_MODE(insn->code) != BPF_MEM ||
12644 			    insn->src_reg != BPF_REG_0) {
12645 				verbose(env, "BPF_ST uses reserved fields\n");
12646 				return -EINVAL;
12647 			}
12648 			/* check src operand */
12649 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12650 			if (err)
12651 				return err;
12652 
12653 			if (is_ctx_reg(env, insn->dst_reg)) {
12654 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
12655 					insn->dst_reg,
12656 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
12657 				return -EACCES;
12658 			}
12659 
12660 			/* check that memory (dst_reg + off) is writeable */
12661 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12662 					       insn->off, BPF_SIZE(insn->code),
12663 					       BPF_WRITE, -1, false);
12664 			if (err)
12665 				return err;
12666 
12667 		} else if (class == BPF_JMP || class == BPF_JMP32) {
12668 			u8 opcode = BPF_OP(insn->code);
12669 
12670 			env->jmps_processed++;
12671 			if (opcode == BPF_CALL) {
12672 				if (BPF_SRC(insn->code) != BPF_K ||
12673 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
12674 				     && insn->off != 0) ||
12675 				    (insn->src_reg != BPF_REG_0 &&
12676 				     insn->src_reg != BPF_PSEUDO_CALL &&
12677 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
12678 				    insn->dst_reg != BPF_REG_0 ||
12679 				    class == BPF_JMP32) {
12680 					verbose(env, "BPF_CALL uses reserved fields\n");
12681 					return -EINVAL;
12682 				}
12683 
12684 				if (env->cur_state->active_spin_lock &&
12685 				    (insn->src_reg == BPF_PSEUDO_CALL ||
12686 				     insn->imm != BPF_FUNC_spin_unlock)) {
12687 					verbose(env, "function calls are not allowed while holding a lock\n");
12688 					return -EINVAL;
12689 				}
12690 				if (insn->src_reg == BPF_PSEUDO_CALL)
12691 					err = check_func_call(env, insn, &env->insn_idx);
12692 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
12693 					err = check_kfunc_call(env, insn, &env->insn_idx);
12694 				else
12695 					err = check_helper_call(env, insn, &env->insn_idx);
12696 				if (err)
12697 					return err;
12698 			} else if (opcode == BPF_JA) {
12699 				if (BPF_SRC(insn->code) != BPF_K ||
12700 				    insn->imm != 0 ||
12701 				    insn->src_reg != BPF_REG_0 ||
12702 				    insn->dst_reg != BPF_REG_0 ||
12703 				    class == BPF_JMP32) {
12704 					verbose(env, "BPF_JA uses reserved fields\n");
12705 					return -EINVAL;
12706 				}
12707 
12708 				env->insn_idx += insn->off + 1;
12709 				continue;
12710 
12711 			} else if (opcode == BPF_EXIT) {
12712 				if (BPF_SRC(insn->code) != BPF_K ||
12713 				    insn->imm != 0 ||
12714 				    insn->src_reg != BPF_REG_0 ||
12715 				    insn->dst_reg != BPF_REG_0 ||
12716 				    class == BPF_JMP32) {
12717 					verbose(env, "BPF_EXIT uses reserved fields\n");
12718 					return -EINVAL;
12719 				}
12720 
12721 				if (env->cur_state->active_spin_lock) {
12722 					verbose(env, "bpf_spin_unlock is missing\n");
12723 					return -EINVAL;
12724 				}
12725 
12726 				/* We must do check_reference_leak here before
12727 				 * prepare_func_exit to handle the case when
12728 				 * state->curframe > 0, it may be a callback
12729 				 * function, for which reference_state must
12730 				 * match caller reference state when it exits.
12731 				 */
12732 				err = check_reference_leak(env);
12733 				if (err)
12734 					return err;
12735 
12736 				if (state->curframe) {
12737 					/* exit from nested function */
12738 					err = prepare_func_exit(env, &env->insn_idx);
12739 					if (err)
12740 						return err;
12741 					do_print_state = true;
12742 					continue;
12743 				}
12744 
12745 				err = check_return_code(env);
12746 				if (err)
12747 					return err;
12748 process_bpf_exit:
12749 				mark_verifier_state_scratched(env);
12750 				update_branch_counts(env, env->cur_state);
12751 				err = pop_stack(env, &prev_insn_idx,
12752 						&env->insn_idx, pop_log);
12753 				if (err < 0) {
12754 					if (err != -ENOENT)
12755 						return err;
12756 					break;
12757 				} else {
12758 					do_print_state = true;
12759 					continue;
12760 				}
12761 			} else {
12762 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
12763 				if (err)
12764 					return err;
12765 			}
12766 		} else if (class == BPF_LD) {
12767 			u8 mode = BPF_MODE(insn->code);
12768 
12769 			if (mode == BPF_ABS || mode == BPF_IND) {
12770 				err = check_ld_abs(env, insn);
12771 				if (err)
12772 					return err;
12773 
12774 			} else if (mode == BPF_IMM) {
12775 				err = check_ld_imm(env, insn);
12776 				if (err)
12777 					return err;
12778 
12779 				env->insn_idx++;
12780 				sanitize_mark_insn_seen(env);
12781 			} else {
12782 				verbose(env, "invalid BPF_LD mode\n");
12783 				return -EINVAL;
12784 			}
12785 		} else {
12786 			verbose(env, "unknown insn class %d\n", class);
12787 			return -EINVAL;
12788 		}
12789 
12790 		env->insn_idx++;
12791 	}
12792 
12793 	return 0;
12794 }
12795 
find_btf_percpu_datasec(struct btf * btf)12796 static int find_btf_percpu_datasec(struct btf *btf)
12797 {
12798 	const struct btf_type *t;
12799 	const char *tname;
12800 	int i, n;
12801 
12802 	/*
12803 	 * Both vmlinux and module each have their own ".data..percpu"
12804 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12805 	 * types to look at only module's own BTF types.
12806 	 */
12807 	n = btf_nr_types(btf);
12808 	if (btf_is_module(btf))
12809 		i = btf_nr_types(btf_vmlinux);
12810 	else
12811 		i = 1;
12812 
12813 	for(; i < n; i++) {
12814 		t = btf_type_by_id(btf, i);
12815 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12816 			continue;
12817 
12818 		tname = btf_name_by_offset(btf, t->name_off);
12819 		if (!strcmp(tname, ".data..percpu"))
12820 			return i;
12821 	}
12822 
12823 	return -ENOENT;
12824 }
12825 
12826 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)12827 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12828 			       struct bpf_insn *insn,
12829 			       struct bpf_insn_aux_data *aux)
12830 {
12831 	const struct btf_var_secinfo *vsi;
12832 	const struct btf_type *datasec;
12833 	struct btf_mod_pair *btf_mod;
12834 	const struct btf_type *t;
12835 	const char *sym_name;
12836 	bool percpu = false;
12837 	u32 type, id = insn->imm;
12838 	struct btf *btf;
12839 	s32 datasec_id;
12840 	u64 addr;
12841 	int i, btf_fd, err;
12842 
12843 	btf_fd = insn[1].imm;
12844 	if (btf_fd) {
12845 		btf = btf_get_by_fd(btf_fd);
12846 		if (IS_ERR(btf)) {
12847 			verbose(env, "invalid module BTF object FD specified.\n");
12848 			return -EINVAL;
12849 		}
12850 	} else {
12851 		if (!btf_vmlinux) {
12852 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12853 			return -EINVAL;
12854 		}
12855 		btf = btf_vmlinux;
12856 		btf_get(btf);
12857 	}
12858 
12859 	t = btf_type_by_id(btf, id);
12860 	if (!t) {
12861 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
12862 		err = -ENOENT;
12863 		goto err_put;
12864 	}
12865 
12866 	if (!btf_type_is_var(t)) {
12867 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12868 		err = -EINVAL;
12869 		goto err_put;
12870 	}
12871 
12872 	sym_name = btf_name_by_offset(btf, t->name_off);
12873 	addr = kallsyms_lookup_name(sym_name);
12874 	if (!addr) {
12875 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12876 			sym_name);
12877 		err = -ENOENT;
12878 		goto err_put;
12879 	}
12880 
12881 	datasec_id = find_btf_percpu_datasec(btf);
12882 	if (datasec_id > 0) {
12883 		datasec = btf_type_by_id(btf, datasec_id);
12884 		for_each_vsi(i, datasec, vsi) {
12885 			if (vsi->type == id) {
12886 				percpu = true;
12887 				break;
12888 			}
12889 		}
12890 	}
12891 
12892 	insn[0].imm = (u32)addr;
12893 	insn[1].imm = addr >> 32;
12894 
12895 	type = t->type;
12896 	t = btf_type_skip_modifiers(btf, type, NULL);
12897 	if (percpu) {
12898 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
12899 		aux->btf_var.btf = btf;
12900 		aux->btf_var.btf_id = type;
12901 	} else if (!btf_type_is_struct(t)) {
12902 		const struct btf_type *ret;
12903 		const char *tname;
12904 		u32 tsize;
12905 
12906 		/* resolve the type size of ksym. */
12907 		ret = btf_resolve_size(btf, t, &tsize);
12908 		if (IS_ERR(ret)) {
12909 			tname = btf_name_by_offset(btf, t->name_off);
12910 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12911 				tname, PTR_ERR(ret));
12912 			err = -EINVAL;
12913 			goto err_put;
12914 		}
12915 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
12916 		aux->btf_var.mem_size = tsize;
12917 	} else {
12918 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
12919 		aux->btf_var.btf = btf;
12920 		aux->btf_var.btf_id = type;
12921 	}
12922 
12923 	/* check whether we recorded this BTF (and maybe module) already */
12924 	for (i = 0; i < env->used_btf_cnt; i++) {
12925 		if (env->used_btfs[i].btf == btf) {
12926 			btf_put(btf);
12927 			return 0;
12928 		}
12929 	}
12930 
12931 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
12932 		err = -E2BIG;
12933 		goto err_put;
12934 	}
12935 
12936 	btf_mod = &env->used_btfs[env->used_btf_cnt];
12937 	btf_mod->btf = btf;
12938 	btf_mod->module = NULL;
12939 
12940 	/* if we reference variables from kernel module, bump its refcount */
12941 	if (btf_is_module(btf)) {
12942 		btf_mod->module = btf_try_get_module(btf);
12943 		if (!btf_mod->module) {
12944 			err = -ENXIO;
12945 			goto err_put;
12946 		}
12947 	}
12948 
12949 	env->used_btf_cnt++;
12950 
12951 	return 0;
12952 err_put:
12953 	btf_put(btf);
12954 	return err;
12955 }
12956 
is_tracing_prog_type(enum bpf_prog_type type)12957 static bool is_tracing_prog_type(enum bpf_prog_type type)
12958 {
12959 	switch (type) {
12960 	case BPF_PROG_TYPE_KPROBE:
12961 	case BPF_PROG_TYPE_TRACEPOINT:
12962 	case BPF_PROG_TYPE_PERF_EVENT:
12963 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12964 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
12965 		return true;
12966 	default:
12967 		return false;
12968 	}
12969 }
12970 
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)12971 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12972 					struct bpf_map *map,
12973 					struct bpf_prog *prog)
12974 
12975 {
12976 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12977 
12978 	if (map_value_has_spin_lock(map)) {
12979 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12980 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12981 			return -EINVAL;
12982 		}
12983 
12984 		if (is_tracing_prog_type(prog_type)) {
12985 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12986 			return -EINVAL;
12987 		}
12988 
12989 		if (prog->aux->sleepable) {
12990 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12991 			return -EINVAL;
12992 		}
12993 	}
12994 
12995 	if (map_value_has_timer(map)) {
12996 		if (is_tracing_prog_type(prog_type)) {
12997 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
12998 			return -EINVAL;
12999 		}
13000 	}
13001 
13002 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
13003 	    !bpf_offload_prog_map_match(prog, map)) {
13004 		verbose(env, "offload device mismatch between prog and map\n");
13005 		return -EINVAL;
13006 	}
13007 
13008 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
13009 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
13010 		return -EINVAL;
13011 	}
13012 
13013 	if (prog->aux->sleepable)
13014 		switch (map->map_type) {
13015 		case BPF_MAP_TYPE_HASH:
13016 		case BPF_MAP_TYPE_LRU_HASH:
13017 		case BPF_MAP_TYPE_ARRAY:
13018 		case BPF_MAP_TYPE_PERCPU_HASH:
13019 		case BPF_MAP_TYPE_PERCPU_ARRAY:
13020 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
13021 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
13022 		case BPF_MAP_TYPE_HASH_OF_MAPS:
13023 		case BPF_MAP_TYPE_RINGBUF:
13024 		case BPF_MAP_TYPE_USER_RINGBUF:
13025 		case BPF_MAP_TYPE_INODE_STORAGE:
13026 		case BPF_MAP_TYPE_SK_STORAGE:
13027 		case BPF_MAP_TYPE_TASK_STORAGE:
13028 			break;
13029 		default:
13030 			verbose(env,
13031 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
13032 			return -EINVAL;
13033 		}
13034 
13035 	return 0;
13036 }
13037 
bpf_map_is_cgroup_storage(struct bpf_map * map)13038 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
13039 {
13040 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
13041 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
13042 }
13043 
13044 /* find and rewrite pseudo imm in ld_imm64 instructions:
13045  *
13046  * 1. if it accesses map FD, replace it with actual map pointer.
13047  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
13048  *
13049  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
13050  */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)13051 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
13052 {
13053 	struct bpf_insn *insn = env->prog->insnsi;
13054 	int insn_cnt = env->prog->len;
13055 	int i, j, err;
13056 
13057 	err = bpf_prog_calc_tag(env->prog);
13058 	if (err)
13059 		return err;
13060 
13061 	for (i = 0; i < insn_cnt; i++, insn++) {
13062 		if (BPF_CLASS(insn->code) == BPF_LDX &&
13063 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
13064 			verbose(env, "BPF_LDX uses reserved fields\n");
13065 			return -EINVAL;
13066 		}
13067 
13068 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
13069 			struct bpf_insn_aux_data *aux;
13070 			struct bpf_map *map;
13071 			struct fd f;
13072 			u64 addr;
13073 			u32 fd;
13074 
13075 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
13076 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
13077 			    insn[1].off != 0) {
13078 				verbose(env, "invalid bpf_ld_imm64 insn\n");
13079 				return -EINVAL;
13080 			}
13081 
13082 			if (insn[0].src_reg == 0)
13083 				/* valid generic load 64-bit imm */
13084 				goto next_insn;
13085 
13086 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
13087 				aux = &env->insn_aux_data[i];
13088 				err = check_pseudo_btf_id(env, insn, aux);
13089 				if (err)
13090 					return err;
13091 				goto next_insn;
13092 			}
13093 
13094 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
13095 				aux = &env->insn_aux_data[i];
13096 				aux->ptr_type = PTR_TO_FUNC;
13097 				goto next_insn;
13098 			}
13099 
13100 			/* In final convert_pseudo_ld_imm64() step, this is
13101 			 * converted into regular 64-bit imm load insn.
13102 			 */
13103 			switch (insn[0].src_reg) {
13104 			case BPF_PSEUDO_MAP_VALUE:
13105 			case BPF_PSEUDO_MAP_IDX_VALUE:
13106 				break;
13107 			case BPF_PSEUDO_MAP_FD:
13108 			case BPF_PSEUDO_MAP_IDX:
13109 				if (insn[1].imm == 0)
13110 					break;
13111 				fallthrough;
13112 			default:
13113 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
13114 				return -EINVAL;
13115 			}
13116 
13117 			switch (insn[0].src_reg) {
13118 			case BPF_PSEUDO_MAP_IDX_VALUE:
13119 			case BPF_PSEUDO_MAP_IDX:
13120 				if (bpfptr_is_null(env->fd_array)) {
13121 					verbose(env, "fd_idx without fd_array is invalid\n");
13122 					return -EPROTO;
13123 				}
13124 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
13125 							    insn[0].imm * sizeof(fd),
13126 							    sizeof(fd)))
13127 					return -EFAULT;
13128 				break;
13129 			default:
13130 				fd = insn[0].imm;
13131 				break;
13132 			}
13133 
13134 			f = fdget(fd);
13135 			map = __bpf_map_get(f);
13136 			if (IS_ERR(map)) {
13137 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
13138 					insn[0].imm);
13139 				return PTR_ERR(map);
13140 			}
13141 
13142 			err = check_map_prog_compatibility(env, map, env->prog);
13143 			if (err) {
13144 				fdput(f);
13145 				return err;
13146 			}
13147 
13148 			aux = &env->insn_aux_data[i];
13149 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
13150 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
13151 				addr = (unsigned long)map;
13152 			} else {
13153 				u32 off = insn[1].imm;
13154 
13155 				if (off >= BPF_MAX_VAR_OFF) {
13156 					verbose(env, "direct value offset of %u is not allowed\n", off);
13157 					fdput(f);
13158 					return -EINVAL;
13159 				}
13160 
13161 				if (!map->ops->map_direct_value_addr) {
13162 					verbose(env, "no direct value access support for this map type\n");
13163 					fdput(f);
13164 					return -EINVAL;
13165 				}
13166 
13167 				err = map->ops->map_direct_value_addr(map, &addr, off);
13168 				if (err) {
13169 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
13170 						map->value_size, off);
13171 					fdput(f);
13172 					return err;
13173 				}
13174 
13175 				aux->map_off = off;
13176 				addr += off;
13177 			}
13178 
13179 			insn[0].imm = (u32)addr;
13180 			insn[1].imm = addr >> 32;
13181 
13182 			/* check whether we recorded this map already */
13183 			for (j = 0; j < env->used_map_cnt; j++) {
13184 				if (env->used_maps[j] == map) {
13185 					aux->map_index = j;
13186 					fdput(f);
13187 					goto next_insn;
13188 				}
13189 			}
13190 
13191 			if (env->used_map_cnt >= MAX_USED_MAPS) {
13192 				fdput(f);
13193 				return -E2BIG;
13194 			}
13195 
13196 			/* hold the map. If the program is rejected by verifier,
13197 			 * the map will be released by release_maps() or it
13198 			 * will be used by the valid program until it's unloaded
13199 			 * and all maps are released in free_used_maps()
13200 			 */
13201 			bpf_map_inc(map);
13202 
13203 			aux->map_index = env->used_map_cnt;
13204 			env->used_maps[env->used_map_cnt++] = map;
13205 
13206 			if (bpf_map_is_cgroup_storage(map) &&
13207 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
13208 				verbose(env, "only one cgroup storage of each type is allowed\n");
13209 				fdput(f);
13210 				return -EBUSY;
13211 			}
13212 
13213 			fdput(f);
13214 next_insn:
13215 			insn++;
13216 			i++;
13217 			continue;
13218 		}
13219 
13220 		/* Basic sanity check before we invest more work here. */
13221 		if (!bpf_opcode_in_insntable(insn->code)) {
13222 			verbose(env, "unknown opcode %02x\n", insn->code);
13223 			return -EINVAL;
13224 		}
13225 	}
13226 
13227 	/* now all pseudo BPF_LD_IMM64 instructions load valid
13228 	 * 'struct bpf_map *' into a register instead of user map_fd.
13229 	 * These pointers will be used later by verifier to validate map access.
13230 	 */
13231 	return 0;
13232 }
13233 
13234 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)13235 static void release_maps(struct bpf_verifier_env *env)
13236 {
13237 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
13238 			     env->used_map_cnt);
13239 }
13240 
13241 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)13242 static void release_btfs(struct bpf_verifier_env *env)
13243 {
13244 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
13245 			     env->used_btf_cnt);
13246 }
13247 
13248 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)13249 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
13250 {
13251 	struct bpf_insn *insn = env->prog->insnsi;
13252 	int insn_cnt = env->prog->len;
13253 	int i;
13254 
13255 	for (i = 0; i < insn_cnt; i++, insn++) {
13256 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
13257 			continue;
13258 		if (insn->src_reg == BPF_PSEUDO_FUNC)
13259 			continue;
13260 		insn->src_reg = 0;
13261 	}
13262 }
13263 
13264 /* single env->prog->insni[off] instruction was replaced with the range
13265  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
13266  * [0, off) and [off, end) to new locations, so the patched range stays zero
13267  */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)13268 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
13269 				 struct bpf_insn_aux_data *new_data,
13270 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
13271 {
13272 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
13273 	struct bpf_insn *insn = new_prog->insnsi;
13274 	u32 old_seen = old_data[off].seen;
13275 	u32 prog_len;
13276 	int i;
13277 
13278 	/* aux info at OFF always needs adjustment, no matter fast path
13279 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
13280 	 * original insn at old prog.
13281 	 */
13282 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
13283 
13284 	if (cnt == 1)
13285 		return;
13286 	prog_len = new_prog->len;
13287 
13288 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
13289 	memcpy(new_data + off + cnt - 1, old_data + off,
13290 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
13291 	for (i = off; i < off + cnt - 1; i++) {
13292 		/* Expand insni[off]'s seen count to the patched range. */
13293 		new_data[i].seen = old_seen;
13294 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
13295 	}
13296 	env->insn_aux_data = new_data;
13297 	vfree(old_data);
13298 }
13299 
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)13300 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
13301 {
13302 	int i;
13303 
13304 	if (len == 1)
13305 		return;
13306 	/* NOTE: fake 'exit' subprog should be updated as well. */
13307 	for (i = 0; i <= env->subprog_cnt; i++) {
13308 		if (env->subprog_info[i].start <= off)
13309 			continue;
13310 		env->subprog_info[i].start += len - 1;
13311 	}
13312 }
13313 
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)13314 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
13315 {
13316 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
13317 	int i, sz = prog->aux->size_poke_tab;
13318 	struct bpf_jit_poke_descriptor *desc;
13319 
13320 	for (i = 0; i < sz; i++) {
13321 		desc = &tab[i];
13322 		if (desc->insn_idx <= off)
13323 			continue;
13324 		desc->insn_idx += len - 1;
13325 	}
13326 }
13327 
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)13328 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
13329 					    const struct bpf_insn *patch, u32 len)
13330 {
13331 	struct bpf_prog *new_prog;
13332 	struct bpf_insn_aux_data *new_data = NULL;
13333 
13334 	if (len > 1) {
13335 		new_data = vzalloc(array_size(env->prog->len + len - 1,
13336 					      sizeof(struct bpf_insn_aux_data)));
13337 		if (!new_data)
13338 			return NULL;
13339 	}
13340 
13341 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
13342 	if (IS_ERR(new_prog)) {
13343 		if (PTR_ERR(new_prog) == -ERANGE)
13344 			verbose(env,
13345 				"insn %d cannot be patched due to 16-bit range\n",
13346 				env->insn_aux_data[off].orig_idx);
13347 		vfree(new_data);
13348 		return NULL;
13349 	}
13350 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
13351 	adjust_subprog_starts(env, off, len);
13352 	adjust_poke_descs(new_prog, off, len);
13353 	return new_prog;
13354 }
13355 
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)13356 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13357 					      u32 off, u32 cnt)
13358 {
13359 	int i, j;
13360 
13361 	/* find first prog starting at or after off (first to remove) */
13362 	for (i = 0; i < env->subprog_cnt; i++)
13363 		if (env->subprog_info[i].start >= off)
13364 			break;
13365 	/* find first prog starting at or after off + cnt (first to stay) */
13366 	for (j = i; j < env->subprog_cnt; j++)
13367 		if (env->subprog_info[j].start >= off + cnt)
13368 			break;
13369 	/* if j doesn't start exactly at off + cnt, we are just removing
13370 	 * the front of previous prog
13371 	 */
13372 	if (env->subprog_info[j].start != off + cnt)
13373 		j--;
13374 
13375 	if (j > i) {
13376 		struct bpf_prog_aux *aux = env->prog->aux;
13377 		int move;
13378 
13379 		/* move fake 'exit' subprog as well */
13380 		move = env->subprog_cnt + 1 - j;
13381 
13382 		memmove(env->subprog_info + i,
13383 			env->subprog_info + j,
13384 			sizeof(*env->subprog_info) * move);
13385 		env->subprog_cnt -= j - i;
13386 
13387 		/* remove func_info */
13388 		if (aux->func_info) {
13389 			move = aux->func_info_cnt - j;
13390 
13391 			memmove(aux->func_info + i,
13392 				aux->func_info + j,
13393 				sizeof(*aux->func_info) * move);
13394 			aux->func_info_cnt -= j - i;
13395 			/* func_info->insn_off is set after all code rewrites,
13396 			 * in adjust_btf_func() - no need to adjust
13397 			 */
13398 		}
13399 	} else {
13400 		/* convert i from "first prog to remove" to "first to adjust" */
13401 		if (env->subprog_info[i].start == off)
13402 			i++;
13403 	}
13404 
13405 	/* update fake 'exit' subprog as well */
13406 	for (; i <= env->subprog_cnt; i++)
13407 		env->subprog_info[i].start -= cnt;
13408 
13409 	return 0;
13410 }
13411 
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)13412 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
13413 				      u32 cnt)
13414 {
13415 	struct bpf_prog *prog = env->prog;
13416 	u32 i, l_off, l_cnt, nr_linfo;
13417 	struct bpf_line_info *linfo;
13418 
13419 	nr_linfo = prog->aux->nr_linfo;
13420 	if (!nr_linfo)
13421 		return 0;
13422 
13423 	linfo = prog->aux->linfo;
13424 
13425 	/* find first line info to remove, count lines to be removed */
13426 	for (i = 0; i < nr_linfo; i++)
13427 		if (linfo[i].insn_off >= off)
13428 			break;
13429 
13430 	l_off = i;
13431 	l_cnt = 0;
13432 	for (; i < nr_linfo; i++)
13433 		if (linfo[i].insn_off < off + cnt)
13434 			l_cnt++;
13435 		else
13436 			break;
13437 
13438 	/* First live insn doesn't match first live linfo, it needs to "inherit"
13439 	 * last removed linfo.  prog is already modified, so prog->len == off
13440 	 * means no live instructions after (tail of the program was removed).
13441 	 */
13442 	if (prog->len != off && l_cnt &&
13443 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
13444 		l_cnt--;
13445 		linfo[--i].insn_off = off + cnt;
13446 	}
13447 
13448 	/* remove the line info which refer to the removed instructions */
13449 	if (l_cnt) {
13450 		memmove(linfo + l_off, linfo + i,
13451 			sizeof(*linfo) * (nr_linfo - i));
13452 
13453 		prog->aux->nr_linfo -= l_cnt;
13454 		nr_linfo = prog->aux->nr_linfo;
13455 	}
13456 
13457 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
13458 	for (i = l_off; i < nr_linfo; i++)
13459 		linfo[i].insn_off -= cnt;
13460 
13461 	/* fix up all subprogs (incl. 'exit') which start >= off */
13462 	for (i = 0; i <= env->subprog_cnt; i++)
13463 		if (env->subprog_info[i].linfo_idx > l_off) {
13464 			/* program may have started in the removed region but
13465 			 * may not be fully removed
13466 			 */
13467 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
13468 				env->subprog_info[i].linfo_idx -= l_cnt;
13469 			else
13470 				env->subprog_info[i].linfo_idx = l_off;
13471 		}
13472 
13473 	return 0;
13474 }
13475 
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)13476 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
13477 {
13478 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13479 	unsigned int orig_prog_len = env->prog->len;
13480 	int err;
13481 
13482 	if (bpf_prog_is_dev_bound(env->prog->aux))
13483 		bpf_prog_offload_remove_insns(env, off, cnt);
13484 
13485 	err = bpf_remove_insns(env->prog, off, cnt);
13486 	if (err)
13487 		return err;
13488 
13489 	err = adjust_subprog_starts_after_remove(env, off, cnt);
13490 	if (err)
13491 		return err;
13492 
13493 	err = bpf_adj_linfo_after_remove(env, off, cnt);
13494 	if (err)
13495 		return err;
13496 
13497 	memmove(aux_data + off,	aux_data + off + cnt,
13498 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
13499 
13500 	return 0;
13501 }
13502 
13503 /* The verifier does more data flow analysis than llvm and will not
13504  * explore branches that are dead at run time. Malicious programs can
13505  * have dead code too. Therefore replace all dead at-run-time code
13506  * with 'ja -1'.
13507  *
13508  * Just nops are not optimal, e.g. if they would sit at the end of the
13509  * program and through another bug we would manage to jump there, then
13510  * we'd execute beyond program memory otherwise. Returning exception
13511  * code also wouldn't work since we can have subprogs where the dead
13512  * code could be located.
13513  */
sanitize_dead_code(struct bpf_verifier_env * env)13514 static void sanitize_dead_code(struct bpf_verifier_env *env)
13515 {
13516 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13517 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
13518 	struct bpf_insn *insn = env->prog->insnsi;
13519 	const int insn_cnt = env->prog->len;
13520 	int i;
13521 
13522 	for (i = 0; i < insn_cnt; i++) {
13523 		if (aux_data[i].seen)
13524 			continue;
13525 		memcpy(insn + i, &trap, sizeof(trap));
13526 		aux_data[i].zext_dst = false;
13527 	}
13528 }
13529 
insn_is_cond_jump(u8 code)13530 static bool insn_is_cond_jump(u8 code)
13531 {
13532 	u8 op;
13533 
13534 	if (BPF_CLASS(code) == BPF_JMP32)
13535 		return true;
13536 
13537 	if (BPF_CLASS(code) != BPF_JMP)
13538 		return false;
13539 
13540 	op = BPF_OP(code);
13541 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
13542 }
13543 
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)13544 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
13545 {
13546 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13547 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13548 	struct bpf_insn *insn = env->prog->insnsi;
13549 	const int insn_cnt = env->prog->len;
13550 	int i;
13551 
13552 	for (i = 0; i < insn_cnt; i++, insn++) {
13553 		if (!insn_is_cond_jump(insn->code))
13554 			continue;
13555 
13556 		if (!aux_data[i + 1].seen)
13557 			ja.off = insn->off;
13558 		else if (!aux_data[i + 1 + insn->off].seen)
13559 			ja.off = 0;
13560 		else
13561 			continue;
13562 
13563 		if (bpf_prog_is_dev_bound(env->prog->aux))
13564 			bpf_prog_offload_replace_insn(env, i, &ja);
13565 
13566 		memcpy(insn, &ja, sizeof(ja));
13567 	}
13568 }
13569 
opt_remove_dead_code(struct bpf_verifier_env * env)13570 static int opt_remove_dead_code(struct bpf_verifier_env *env)
13571 {
13572 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13573 	int insn_cnt = env->prog->len;
13574 	int i, err;
13575 
13576 	for (i = 0; i < insn_cnt; i++) {
13577 		int j;
13578 
13579 		j = 0;
13580 		while (i + j < insn_cnt && !aux_data[i + j].seen)
13581 			j++;
13582 		if (!j)
13583 			continue;
13584 
13585 		err = verifier_remove_insns(env, i, j);
13586 		if (err)
13587 			return err;
13588 		insn_cnt = env->prog->len;
13589 	}
13590 
13591 	return 0;
13592 }
13593 
opt_remove_nops(struct bpf_verifier_env * env)13594 static int opt_remove_nops(struct bpf_verifier_env *env)
13595 {
13596 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13597 	struct bpf_insn *insn = env->prog->insnsi;
13598 	int insn_cnt = env->prog->len;
13599 	int i, err;
13600 
13601 	for (i = 0; i < insn_cnt; i++) {
13602 		if (memcmp(&insn[i], &ja, sizeof(ja)))
13603 			continue;
13604 
13605 		err = verifier_remove_insns(env, i, 1);
13606 		if (err)
13607 			return err;
13608 		insn_cnt--;
13609 		i--;
13610 	}
13611 
13612 	return 0;
13613 }
13614 
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)13615 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
13616 					 const union bpf_attr *attr)
13617 {
13618 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
13619 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
13620 	int i, patch_len, delta = 0, len = env->prog->len;
13621 	struct bpf_insn *insns = env->prog->insnsi;
13622 	struct bpf_prog *new_prog;
13623 	bool rnd_hi32;
13624 
13625 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
13626 	zext_patch[1] = BPF_ZEXT_REG(0);
13627 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
13628 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
13629 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
13630 	for (i = 0; i < len; i++) {
13631 		int adj_idx = i + delta;
13632 		struct bpf_insn insn;
13633 		int load_reg;
13634 
13635 		insn = insns[adj_idx];
13636 		load_reg = insn_def_regno(&insn);
13637 		if (!aux[adj_idx].zext_dst) {
13638 			u8 code, class;
13639 			u32 imm_rnd;
13640 
13641 			if (!rnd_hi32)
13642 				continue;
13643 
13644 			code = insn.code;
13645 			class = BPF_CLASS(code);
13646 			if (load_reg == -1)
13647 				continue;
13648 
13649 			/* NOTE: arg "reg" (the fourth one) is only used for
13650 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
13651 			 *       here.
13652 			 */
13653 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
13654 				if (class == BPF_LD &&
13655 				    BPF_MODE(code) == BPF_IMM)
13656 					i++;
13657 				continue;
13658 			}
13659 
13660 			/* ctx load could be transformed into wider load. */
13661 			if (class == BPF_LDX &&
13662 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
13663 				continue;
13664 
13665 			imm_rnd = get_random_u32();
13666 			rnd_hi32_patch[0] = insn;
13667 			rnd_hi32_patch[1].imm = imm_rnd;
13668 			rnd_hi32_patch[3].dst_reg = load_reg;
13669 			patch = rnd_hi32_patch;
13670 			patch_len = 4;
13671 			goto apply_patch_buffer;
13672 		}
13673 
13674 		/* Add in an zero-extend instruction if a) the JIT has requested
13675 		 * it or b) it's a CMPXCHG.
13676 		 *
13677 		 * The latter is because: BPF_CMPXCHG always loads a value into
13678 		 * R0, therefore always zero-extends. However some archs'
13679 		 * equivalent instruction only does this load when the
13680 		 * comparison is successful. This detail of CMPXCHG is
13681 		 * orthogonal to the general zero-extension behaviour of the
13682 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
13683 		 */
13684 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
13685 			continue;
13686 
13687 		/* Zero-extension is done by the caller. */
13688 		if (bpf_pseudo_kfunc_call(&insn))
13689 			continue;
13690 
13691 		if (WARN_ON(load_reg == -1)) {
13692 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13693 			return -EFAULT;
13694 		}
13695 
13696 		zext_patch[0] = insn;
13697 		zext_patch[1].dst_reg = load_reg;
13698 		zext_patch[1].src_reg = load_reg;
13699 		patch = zext_patch;
13700 		patch_len = 2;
13701 apply_patch_buffer:
13702 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
13703 		if (!new_prog)
13704 			return -ENOMEM;
13705 		env->prog = new_prog;
13706 		insns = new_prog->insnsi;
13707 		aux = env->insn_aux_data;
13708 		delta += patch_len - 1;
13709 	}
13710 
13711 	return 0;
13712 }
13713 
13714 /* convert load instructions that access fields of a context type into a
13715  * sequence of instructions that access fields of the underlying structure:
13716  *     struct __sk_buff    -> struct sk_buff
13717  *     struct bpf_sock_ops -> struct sock
13718  */
convert_ctx_accesses(struct bpf_verifier_env * env)13719 static int convert_ctx_accesses(struct bpf_verifier_env *env)
13720 {
13721 	const struct bpf_verifier_ops *ops = env->ops;
13722 	int i, cnt, size, ctx_field_size, delta = 0;
13723 	const int insn_cnt = env->prog->len;
13724 	struct bpf_insn insn_buf[16], *insn;
13725 	u32 target_size, size_default, off;
13726 	struct bpf_prog *new_prog;
13727 	enum bpf_access_type type;
13728 	bool is_narrower_load;
13729 
13730 	if (ops->gen_prologue || env->seen_direct_write) {
13731 		if (!ops->gen_prologue) {
13732 			verbose(env, "bpf verifier is misconfigured\n");
13733 			return -EINVAL;
13734 		}
13735 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13736 					env->prog);
13737 		if (cnt >= ARRAY_SIZE(insn_buf)) {
13738 			verbose(env, "bpf verifier is misconfigured\n");
13739 			return -EINVAL;
13740 		} else if (cnt) {
13741 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
13742 			if (!new_prog)
13743 				return -ENOMEM;
13744 
13745 			env->prog = new_prog;
13746 			delta += cnt - 1;
13747 		}
13748 	}
13749 
13750 	if (bpf_prog_is_dev_bound(env->prog->aux))
13751 		return 0;
13752 
13753 	insn = env->prog->insnsi + delta;
13754 
13755 	for (i = 0; i < insn_cnt; i++, insn++) {
13756 		bpf_convert_ctx_access_t convert_ctx_access;
13757 		bool ctx_access;
13758 
13759 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13760 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13761 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
13762 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
13763 			type = BPF_READ;
13764 			ctx_access = true;
13765 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13766 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13767 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13768 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13769 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13770 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13771 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13772 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
13773 			type = BPF_WRITE;
13774 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13775 		} else {
13776 			continue;
13777 		}
13778 
13779 		if (type == BPF_WRITE &&
13780 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
13781 			struct bpf_insn patch[] = {
13782 				*insn,
13783 				BPF_ST_NOSPEC(),
13784 			};
13785 
13786 			cnt = ARRAY_SIZE(patch);
13787 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13788 			if (!new_prog)
13789 				return -ENOMEM;
13790 
13791 			delta    += cnt - 1;
13792 			env->prog = new_prog;
13793 			insn      = new_prog->insnsi + i + delta;
13794 			continue;
13795 		}
13796 
13797 		if (!ctx_access)
13798 			continue;
13799 
13800 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
13801 		case PTR_TO_CTX:
13802 			if (!ops->convert_ctx_access)
13803 				continue;
13804 			convert_ctx_access = ops->convert_ctx_access;
13805 			break;
13806 		case PTR_TO_SOCKET:
13807 		case PTR_TO_SOCK_COMMON:
13808 			convert_ctx_access = bpf_sock_convert_ctx_access;
13809 			break;
13810 		case PTR_TO_TCP_SOCK:
13811 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13812 			break;
13813 		case PTR_TO_XDP_SOCK:
13814 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13815 			break;
13816 		case PTR_TO_BTF_ID:
13817 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
13818 			if (type == BPF_READ) {
13819 				insn->code = BPF_LDX | BPF_PROBE_MEM |
13820 					BPF_SIZE((insn)->code);
13821 				env->prog->aux->num_exentries++;
13822 			}
13823 			continue;
13824 		default:
13825 			continue;
13826 		}
13827 
13828 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
13829 		size = BPF_LDST_BYTES(insn);
13830 
13831 		/* If the read access is a narrower load of the field,
13832 		 * convert to a 4/8-byte load, to minimum program type specific
13833 		 * convert_ctx_access changes. If conversion is successful,
13834 		 * we will apply proper mask to the result.
13835 		 */
13836 		is_narrower_load = size < ctx_field_size;
13837 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13838 		off = insn->off;
13839 		if (is_narrower_load) {
13840 			u8 size_code;
13841 
13842 			if (type == BPF_WRITE) {
13843 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
13844 				return -EINVAL;
13845 			}
13846 
13847 			size_code = BPF_H;
13848 			if (ctx_field_size == 4)
13849 				size_code = BPF_W;
13850 			else if (ctx_field_size == 8)
13851 				size_code = BPF_DW;
13852 
13853 			insn->off = off & ~(size_default - 1);
13854 			insn->code = BPF_LDX | BPF_MEM | size_code;
13855 		}
13856 
13857 		target_size = 0;
13858 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13859 					 &target_size);
13860 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13861 		    (ctx_field_size && !target_size)) {
13862 			verbose(env, "bpf verifier is misconfigured\n");
13863 			return -EINVAL;
13864 		}
13865 
13866 		if (is_narrower_load && size < target_size) {
13867 			u8 shift = bpf_ctx_narrow_access_offset(
13868 				off, size, size_default) * 8;
13869 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13870 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13871 				return -EINVAL;
13872 			}
13873 			if (ctx_field_size <= 4) {
13874 				if (shift)
13875 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13876 									insn->dst_reg,
13877 									shift);
13878 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13879 								(1 << size * 8) - 1);
13880 			} else {
13881 				if (shift)
13882 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13883 									insn->dst_reg,
13884 									shift);
13885 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13886 								(1ULL << size * 8) - 1);
13887 			}
13888 		}
13889 
13890 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13891 		if (!new_prog)
13892 			return -ENOMEM;
13893 
13894 		delta += cnt - 1;
13895 
13896 		/* keep walking new program and skip insns we just inserted */
13897 		env->prog = new_prog;
13898 		insn      = new_prog->insnsi + i + delta;
13899 	}
13900 
13901 	return 0;
13902 }
13903 
jit_subprogs(struct bpf_verifier_env * env)13904 static int jit_subprogs(struct bpf_verifier_env *env)
13905 {
13906 	struct bpf_prog *prog = env->prog, **func, *tmp;
13907 	int i, j, subprog_start, subprog_end = 0, len, subprog;
13908 	struct bpf_map *map_ptr;
13909 	struct bpf_insn *insn;
13910 	void *old_bpf_func;
13911 	int err, num_exentries;
13912 
13913 	if (env->subprog_cnt <= 1)
13914 		return 0;
13915 
13916 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13917 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
13918 			continue;
13919 
13920 		/* Upon error here we cannot fall back to interpreter but
13921 		 * need a hard reject of the program. Thus -EFAULT is
13922 		 * propagated in any case.
13923 		 */
13924 		subprog = find_subprog(env, i + insn->imm + 1);
13925 		if (subprog < 0) {
13926 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13927 				  i + insn->imm + 1);
13928 			return -EFAULT;
13929 		}
13930 		/* temporarily remember subprog id inside insn instead of
13931 		 * aux_data, since next loop will split up all insns into funcs
13932 		 */
13933 		insn->off = subprog;
13934 		/* remember original imm in case JIT fails and fallback
13935 		 * to interpreter will be needed
13936 		 */
13937 		env->insn_aux_data[i].call_imm = insn->imm;
13938 		/* point imm to __bpf_call_base+1 from JITs point of view */
13939 		insn->imm = 1;
13940 		if (bpf_pseudo_func(insn))
13941 			/* jit (e.g. x86_64) may emit fewer instructions
13942 			 * if it learns a u32 imm is the same as a u64 imm.
13943 			 * Force a non zero here.
13944 			 */
13945 			insn[1].imm = 1;
13946 	}
13947 
13948 	err = bpf_prog_alloc_jited_linfo(prog);
13949 	if (err)
13950 		goto out_undo_insn;
13951 
13952 	err = -ENOMEM;
13953 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
13954 	if (!func)
13955 		goto out_undo_insn;
13956 
13957 	for (i = 0; i < env->subprog_cnt; i++) {
13958 		subprog_start = subprog_end;
13959 		subprog_end = env->subprog_info[i + 1].start;
13960 
13961 		len = subprog_end - subprog_start;
13962 		/* bpf_prog_run() doesn't call subprogs directly,
13963 		 * hence main prog stats include the runtime of subprogs.
13964 		 * subprogs don't have IDs and not reachable via prog_get_next_id
13965 		 * func[i]->stats will never be accessed and stays NULL
13966 		 */
13967 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
13968 		if (!func[i])
13969 			goto out_free;
13970 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13971 		       len * sizeof(struct bpf_insn));
13972 		func[i]->type = prog->type;
13973 		func[i]->len = len;
13974 		if (bpf_prog_calc_tag(func[i]))
13975 			goto out_free;
13976 		func[i]->is_func = 1;
13977 		func[i]->aux->func_idx = i;
13978 		/* Below members will be freed only at prog->aux */
13979 		func[i]->aux->btf = prog->aux->btf;
13980 		func[i]->aux->func_info = prog->aux->func_info;
13981 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
13982 		func[i]->aux->poke_tab = prog->aux->poke_tab;
13983 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
13984 
13985 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
13986 			struct bpf_jit_poke_descriptor *poke;
13987 
13988 			poke = &prog->aux->poke_tab[j];
13989 			if (poke->insn_idx < subprog_end &&
13990 			    poke->insn_idx >= subprog_start)
13991 				poke->aux = func[i]->aux;
13992 		}
13993 
13994 		func[i]->aux->name[0] = 'F';
13995 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
13996 		func[i]->jit_requested = 1;
13997 		func[i]->blinding_requested = prog->blinding_requested;
13998 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
13999 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
14000 		func[i]->aux->linfo = prog->aux->linfo;
14001 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
14002 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
14003 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
14004 		num_exentries = 0;
14005 		insn = func[i]->insnsi;
14006 		for (j = 0; j < func[i]->len; j++, insn++) {
14007 			if (BPF_CLASS(insn->code) == BPF_LDX &&
14008 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
14009 				num_exentries++;
14010 		}
14011 		func[i]->aux->num_exentries = num_exentries;
14012 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
14013 		func[i] = bpf_int_jit_compile(func[i]);
14014 		if (!func[i]->jited) {
14015 			err = -ENOTSUPP;
14016 			goto out_free;
14017 		}
14018 		cond_resched();
14019 	}
14020 
14021 	/* at this point all bpf functions were successfully JITed
14022 	 * now populate all bpf_calls with correct addresses and
14023 	 * run last pass of JIT
14024 	 */
14025 	for (i = 0; i < env->subprog_cnt; i++) {
14026 		insn = func[i]->insnsi;
14027 		for (j = 0; j < func[i]->len; j++, insn++) {
14028 			if (bpf_pseudo_func(insn)) {
14029 				subprog = insn->off;
14030 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
14031 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
14032 				continue;
14033 			}
14034 			if (!bpf_pseudo_call(insn))
14035 				continue;
14036 			subprog = insn->off;
14037 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
14038 		}
14039 
14040 		/* we use the aux data to keep a list of the start addresses
14041 		 * of the JITed images for each function in the program
14042 		 *
14043 		 * for some architectures, such as powerpc64, the imm field
14044 		 * might not be large enough to hold the offset of the start
14045 		 * address of the callee's JITed image from __bpf_call_base
14046 		 *
14047 		 * in such cases, we can lookup the start address of a callee
14048 		 * by using its subprog id, available from the off field of
14049 		 * the call instruction, as an index for this list
14050 		 */
14051 		func[i]->aux->func = func;
14052 		func[i]->aux->func_cnt = env->subprog_cnt;
14053 	}
14054 	for (i = 0; i < env->subprog_cnt; i++) {
14055 		old_bpf_func = func[i]->bpf_func;
14056 		tmp = bpf_int_jit_compile(func[i]);
14057 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
14058 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
14059 			err = -ENOTSUPP;
14060 			goto out_free;
14061 		}
14062 		cond_resched();
14063 	}
14064 
14065 	/* finally lock prog and jit images for all functions and
14066 	 * populate kallsysm. Begin at the first subprogram, since
14067 	 * bpf_prog_load will add the kallsyms for the main program.
14068 	 */
14069 	for (i = 1; i < env->subprog_cnt; i++) {
14070 		bpf_prog_lock_ro(func[i]);
14071 		bpf_prog_kallsyms_add(func[i]);
14072 	}
14073 
14074 	/* Last step: make now unused interpreter insns from main
14075 	 * prog consistent for later dump requests, so they can
14076 	 * later look the same as if they were interpreted only.
14077 	 */
14078 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
14079 		if (bpf_pseudo_func(insn)) {
14080 			insn[0].imm = env->insn_aux_data[i].call_imm;
14081 			insn[1].imm = insn->off;
14082 			insn->off = 0;
14083 			continue;
14084 		}
14085 		if (!bpf_pseudo_call(insn))
14086 			continue;
14087 		insn->off = env->insn_aux_data[i].call_imm;
14088 		subprog = find_subprog(env, i + insn->off + 1);
14089 		insn->imm = subprog;
14090 	}
14091 
14092 	prog->jited = 1;
14093 	prog->bpf_func = func[0]->bpf_func;
14094 	prog->jited_len = func[0]->jited_len;
14095 	prog->aux->extable = func[0]->aux->extable;
14096 	prog->aux->num_exentries = func[0]->aux->num_exentries;
14097 	prog->aux->func = func;
14098 	prog->aux->func_cnt = env->subprog_cnt;
14099 	bpf_prog_jit_attempt_done(prog);
14100 	return 0;
14101 out_free:
14102 	/* We failed JIT'ing, so at this point we need to unregister poke
14103 	 * descriptors from subprogs, so that kernel is not attempting to
14104 	 * patch it anymore as we're freeing the subprog JIT memory.
14105 	 */
14106 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
14107 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
14108 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
14109 	}
14110 	/* At this point we're guaranteed that poke descriptors are not
14111 	 * live anymore. We can just unlink its descriptor table as it's
14112 	 * released with the main prog.
14113 	 */
14114 	for (i = 0; i < env->subprog_cnt; i++) {
14115 		if (!func[i])
14116 			continue;
14117 		func[i]->aux->poke_tab = NULL;
14118 		bpf_jit_free(func[i]);
14119 	}
14120 	kfree(func);
14121 out_undo_insn:
14122 	/* cleanup main prog to be interpreted */
14123 	prog->jit_requested = 0;
14124 	prog->blinding_requested = 0;
14125 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
14126 		if (!bpf_pseudo_call(insn))
14127 			continue;
14128 		insn->off = 0;
14129 		insn->imm = env->insn_aux_data[i].call_imm;
14130 	}
14131 	bpf_prog_jit_attempt_done(prog);
14132 	return err;
14133 }
14134 
fixup_call_args(struct bpf_verifier_env * env)14135 static int fixup_call_args(struct bpf_verifier_env *env)
14136 {
14137 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
14138 	struct bpf_prog *prog = env->prog;
14139 	struct bpf_insn *insn = prog->insnsi;
14140 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
14141 	int i, depth;
14142 #endif
14143 	int err = 0;
14144 
14145 	if (env->prog->jit_requested &&
14146 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
14147 		err = jit_subprogs(env);
14148 		if (err == 0)
14149 			return 0;
14150 		if (err == -EFAULT)
14151 			return err;
14152 	}
14153 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
14154 	if (has_kfunc_call) {
14155 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
14156 		return -EINVAL;
14157 	}
14158 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
14159 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
14160 		 * have to be rejected, since interpreter doesn't support them yet.
14161 		 */
14162 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
14163 		return -EINVAL;
14164 	}
14165 	for (i = 0; i < prog->len; i++, insn++) {
14166 		if (bpf_pseudo_func(insn)) {
14167 			/* When JIT fails the progs with callback calls
14168 			 * have to be rejected, since interpreter doesn't support them yet.
14169 			 */
14170 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
14171 			return -EINVAL;
14172 		}
14173 
14174 		if (!bpf_pseudo_call(insn))
14175 			continue;
14176 		depth = get_callee_stack_depth(env, insn, i);
14177 		if (depth < 0)
14178 			return depth;
14179 		bpf_patch_call_args(insn, depth);
14180 	}
14181 	err = 0;
14182 #endif
14183 	return err;
14184 }
14185 
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn)14186 static int fixup_kfunc_call(struct bpf_verifier_env *env,
14187 			    struct bpf_insn *insn)
14188 {
14189 	const struct bpf_kfunc_desc *desc;
14190 
14191 	if (!insn->imm) {
14192 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
14193 		return -EINVAL;
14194 	}
14195 
14196 	/* insn->imm has the btf func_id. Replace it with
14197 	 * an address (relative to __bpf_base_call).
14198 	 */
14199 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
14200 	if (!desc) {
14201 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
14202 			insn->imm);
14203 		return -EFAULT;
14204 	}
14205 
14206 	insn->imm = desc->imm;
14207 
14208 	return 0;
14209 }
14210 
14211 /* Do various post-verification rewrites in a single program pass.
14212  * These rewrites simplify JIT and interpreter implementations.
14213  */
do_misc_fixups(struct bpf_verifier_env * env)14214 static int do_misc_fixups(struct bpf_verifier_env *env)
14215 {
14216 	struct bpf_prog *prog = env->prog;
14217 	enum bpf_attach_type eatype = prog->expected_attach_type;
14218 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
14219 	struct bpf_insn *insn = prog->insnsi;
14220 	const struct bpf_func_proto *fn;
14221 	const int insn_cnt = prog->len;
14222 	const struct bpf_map_ops *ops;
14223 	struct bpf_insn_aux_data *aux;
14224 	struct bpf_insn insn_buf[16];
14225 	struct bpf_prog *new_prog;
14226 	struct bpf_map *map_ptr;
14227 	int i, ret, cnt, delta = 0;
14228 
14229 	for (i = 0; i < insn_cnt; i++, insn++) {
14230 		/* Make divide-by-zero exceptions impossible. */
14231 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
14232 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
14233 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
14234 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
14235 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
14236 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
14237 			struct bpf_insn *patchlet;
14238 			struct bpf_insn chk_and_div[] = {
14239 				/* [R,W]x div 0 -> 0 */
14240 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
14241 					     BPF_JNE | BPF_K, insn->src_reg,
14242 					     0, 2, 0),
14243 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
14244 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
14245 				*insn,
14246 			};
14247 			struct bpf_insn chk_and_mod[] = {
14248 				/* [R,W]x mod 0 -> [R,W]x */
14249 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
14250 					     BPF_JEQ | BPF_K, insn->src_reg,
14251 					     0, 1 + (is64 ? 0 : 1), 0),
14252 				*insn,
14253 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
14254 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
14255 			};
14256 
14257 			patchlet = isdiv ? chk_and_div : chk_and_mod;
14258 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
14259 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
14260 
14261 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
14262 			if (!new_prog)
14263 				return -ENOMEM;
14264 
14265 			delta    += cnt - 1;
14266 			env->prog = prog = new_prog;
14267 			insn      = new_prog->insnsi + i + delta;
14268 			continue;
14269 		}
14270 
14271 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
14272 		if (BPF_CLASS(insn->code) == BPF_LD &&
14273 		    (BPF_MODE(insn->code) == BPF_ABS ||
14274 		     BPF_MODE(insn->code) == BPF_IND)) {
14275 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
14276 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14277 				verbose(env, "bpf verifier is misconfigured\n");
14278 				return -EINVAL;
14279 			}
14280 
14281 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14282 			if (!new_prog)
14283 				return -ENOMEM;
14284 
14285 			delta    += cnt - 1;
14286 			env->prog = prog = new_prog;
14287 			insn      = new_prog->insnsi + i + delta;
14288 			continue;
14289 		}
14290 
14291 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
14292 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
14293 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
14294 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
14295 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
14296 			struct bpf_insn *patch = &insn_buf[0];
14297 			bool issrc, isneg, isimm;
14298 			u32 off_reg;
14299 
14300 			aux = &env->insn_aux_data[i + delta];
14301 			if (!aux->alu_state ||
14302 			    aux->alu_state == BPF_ALU_NON_POINTER)
14303 				continue;
14304 
14305 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
14306 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
14307 				BPF_ALU_SANITIZE_SRC;
14308 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
14309 
14310 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
14311 			if (isimm) {
14312 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14313 			} else {
14314 				if (isneg)
14315 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14316 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
14317 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
14318 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
14319 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
14320 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
14321 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
14322 			}
14323 			if (!issrc)
14324 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
14325 			insn->src_reg = BPF_REG_AX;
14326 			if (isneg)
14327 				insn->code = insn->code == code_add ?
14328 					     code_sub : code_add;
14329 			*patch++ = *insn;
14330 			if (issrc && isneg && !isimm)
14331 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
14332 			cnt = patch - insn_buf;
14333 
14334 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14335 			if (!new_prog)
14336 				return -ENOMEM;
14337 
14338 			delta    += cnt - 1;
14339 			env->prog = prog = new_prog;
14340 			insn      = new_prog->insnsi + i + delta;
14341 			continue;
14342 		}
14343 
14344 		if (insn->code != (BPF_JMP | BPF_CALL))
14345 			continue;
14346 		if (insn->src_reg == BPF_PSEUDO_CALL)
14347 			continue;
14348 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14349 			ret = fixup_kfunc_call(env, insn);
14350 			if (ret)
14351 				return ret;
14352 			continue;
14353 		}
14354 
14355 		if (insn->imm == BPF_FUNC_get_route_realm)
14356 			prog->dst_needed = 1;
14357 		if (insn->imm == BPF_FUNC_get_prandom_u32)
14358 			bpf_user_rnd_init_once();
14359 		if (insn->imm == BPF_FUNC_override_return)
14360 			prog->kprobe_override = 1;
14361 		if (insn->imm == BPF_FUNC_tail_call) {
14362 			/* If we tail call into other programs, we
14363 			 * cannot make any assumptions since they can
14364 			 * be replaced dynamically during runtime in
14365 			 * the program array.
14366 			 */
14367 			prog->cb_access = 1;
14368 			if (!allow_tail_call_in_subprogs(env))
14369 				prog->aux->stack_depth = MAX_BPF_STACK;
14370 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
14371 
14372 			/* mark bpf_tail_call as different opcode to avoid
14373 			 * conditional branch in the interpreter for every normal
14374 			 * call and to prevent accidental JITing by JIT compiler
14375 			 * that doesn't support bpf_tail_call yet
14376 			 */
14377 			insn->imm = 0;
14378 			insn->code = BPF_JMP | BPF_TAIL_CALL;
14379 
14380 			aux = &env->insn_aux_data[i + delta];
14381 			if (env->bpf_capable && !prog->blinding_requested &&
14382 			    prog->jit_requested &&
14383 			    !bpf_map_key_poisoned(aux) &&
14384 			    !bpf_map_ptr_poisoned(aux) &&
14385 			    !bpf_map_ptr_unpriv(aux)) {
14386 				struct bpf_jit_poke_descriptor desc = {
14387 					.reason = BPF_POKE_REASON_TAIL_CALL,
14388 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
14389 					.tail_call.key = bpf_map_key_immediate(aux),
14390 					.insn_idx = i + delta,
14391 				};
14392 
14393 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
14394 				if (ret < 0) {
14395 					verbose(env, "adding tail call poke descriptor failed\n");
14396 					return ret;
14397 				}
14398 
14399 				insn->imm = ret + 1;
14400 				continue;
14401 			}
14402 
14403 			if (!bpf_map_ptr_unpriv(aux))
14404 				continue;
14405 
14406 			/* instead of changing every JIT dealing with tail_call
14407 			 * emit two extra insns:
14408 			 * if (index >= max_entries) goto out;
14409 			 * index &= array->index_mask;
14410 			 * to avoid out-of-bounds cpu speculation
14411 			 */
14412 			if (bpf_map_ptr_poisoned(aux)) {
14413 				verbose(env, "tail_call abusing map_ptr\n");
14414 				return -EINVAL;
14415 			}
14416 
14417 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14418 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
14419 						  map_ptr->max_entries, 2);
14420 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
14421 						    container_of(map_ptr,
14422 								 struct bpf_array,
14423 								 map)->index_mask);
14424 			insn_buf[2] = *insn;
14425 			cnt = 3;
14426 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14427 			if (!new_prog)
14428 				return -ENOMEM;
14429 
14430 			delta    += cnt - 1;
14431 			env->prog = prog = new_prog;
14432 			insn      = new_prog->insnsi + i + delta;
14433 			continue;
14434 		}
14435 
14436 		if (insn->imm == BPF_FUNC_timer_set_callback) {
14437 			/* The verifier will process callback_fn as many times as necessary
14438 			 * with different maps and the register states prepared by
14439 			 * set_timer_callback_state will be accurate.
14440 			 *
14441 			 * The following use case is valid:
14442 			 *   map1 is shared by prog1, prog2, prog3.
14443 			 *   prog1 calls bpf_timer_init for some map1 elements
14444 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
14445 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
14446 			 *   prog3 calls bpf_timer_start for some map1 elements.
14447 			 *     Those that were not both bpf_timer_init-ed and
14448 			 *     bpf_timer_set_callback-ed will return -EINVAL.
14449 			 */
14450 			struct bpf_insn ld_addrs[2] = {
14451 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
14452 			};
14453 
14454 			insn_buf[0] = ld_addrs[0];
14455 			insn_buf[1] = ld_addrs[1];
14456 			insn_buf[2] = *insn;
14457 			cnt = 3;
14458 
14459 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14460 			if (!new_prog)
14461 				return -ENOMEM;
14462 
14463 			delta    += cnt - 1;
14464 			env->prog = prog = new_prog;
14465 			insn      = new_prog->insnsi + i + delta;
14466 			goto patch_call_imm;
14467 		}
14468 
14469 		if (insn->imm == BPF_FUNC_task_storage_get ||
14470 		    insn->imm == BPF_FUNC_sk_storage_get ||
14471 		    insn->imm == BPF_FUNC_inode_storage_get) {
14472 			if (env->prog->aux->sleepable)
14473 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
14474 			else
14475 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
14476 			insn_buf[1] = *insn;
14477 			cnt = 2;
14478 
14479 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14480 			if (!new_prog)
14481 				return -ENOMEM;
14482 
14483 			delta += cnt - 1;
14484 			env->prog = prog = new_prog;
14485 			insn = new_prog->insnsi + i + delta;
14486 			goto patch_call_imm;
14487 		}
14488 
14489 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
14490 		 * and other inlining handlers are currently limited to 64 bit
14491 		 * only.
14492 		 */
14493 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14494 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
14495 		     insn->imm == BPF_FUNC_map_update_elem ||
14496 		     insn->imm == BPF_FUNC_map_delete_elem ||
14497 		     insn->imm == BPF_FUNC_map_push_elem   ||
14498 		     insn->imm == BPF_FUNC_map_pop_elem    ||
14499 		     insn->imm == BPF_FUNC_map_peek_elem   ||
14500 		     insn->imm == BPF_FUNC_redirect_map    ||
14501 		     insn->imm == BPF_FUNC_for_each_map_elem ||
14502 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
14503 			aux = &env->insn_aux_data[i + delta];
14504 			if (bpf_map_ptr_poisoned(aux))
14505 				goto patch_call_imm;
14506 
14507 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14508 			ops = map_ptr->ops;
14509 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
14510 			    ops->map_gen_lookup) {
14511 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
14512 				if (cnt == -EOPNOTSUPP)
14513 					goto patch_map_ops_generic;
14514 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14515 					verbose(env, "bpf verifier is misconfigured\n");
14516 					return -EINVAL;
14517 				}
14518 
14519 				new_prog = bpf_patch_insn_data(env, i + delta,
14520 							       insn_buf, cnt);
14521 				if (!new_prog)
14522 					return -ENOMEM;
14523 
14524 				delta    += cnt - 1;
14525 				env->prog = prog = new_prog;
14526 				insn      = new_prog->insnsi + i + delta;
14527 				continue;
14528 			}
14529 
14530 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
14531 				     (void *(*)(struct bpf_map *map, void *key))NULL));
14532 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
14533 				     (int (*)(struct bpf_map *map, void *key))NULL));
14534 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
14535 				     (int (*)(struct bpf_map *map, void *key, void *value,
14536 					      u64 flags))NULL));
14537 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
14538 				     (int (*)(struct bpf_map *map, void *value,
14539 					      u64 flags))NULL));
14540 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
14541 				     (int (*)(struct bpf_map *map, void *value))NULL));
14542 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
14543 				     (int (*)(struct bpf_map *map, void *value))NULL));
14544 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
14545 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
14546 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
14547 				     (int (*)(struct bpf_map *map,
14548 					      bpf_callback_t callback_fn,
14549 					      void *callback_ctx,
14550 					      u64 flags))NULL));
14551 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
14552 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
14553 
14554 patch_map_ops_generic:
14555 			switch (insn->imm) {
14556 			case BPF_FUNC_map_lookup_elem:
14557 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
14558 				continue;
14559 			case BPF_FUNC_map_update_elem:
14560 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
14561 				continue;
14562 			case BPF_FUNC_map_delete_elem:
14563 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
14564 				continue;
14565 			case BPF_FUNC_map_push_elem:
14566 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
14567 				continue;
14568 			case BPF_FUNC_map_pop_elem:
14569 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
14570 				continue;
14571 			case BPF_FUNC_map_peek_elem:
14572 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
14573 				continue;
14574 			case BPF_FUNC_redirect_map:
14575 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
14576 				continue;
14577 			case BPF_FUNC_for_each_map_elem:
14578 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
14579 				continue;
14580 			case BPF_FUNC_map_lookup_percpu_elem:
14581 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
14582 				continue;
14583 			}
14584 
14585 			goto patch_call_imm;
14586 		}
14587 
14588 		/* Implement bpf_jiffies64 inline. */
14589 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14590 		    insn->imm == BPF_FUNC_jiffies64) {
14591 			struct bpf_insn ld_jiffies_addr[2] = {
14592 				BPF_LD_IMM64(BPF_REG_0,
14593 					     (unsigned long)&jiffies),
14594 			};
14595 
14596 			insn_buf[0] = ld_jiffies_addr[0];
14597 			insn_buf[1] = ld_jiffies_addr[1];
14598 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
14599 						  BPF_REG_0, 0);
14600 			cnt = 3;
14601 
14602 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
14603 						       cnt);
14604 			if (!new_prog)
14605 				return -ENOMEM;
14606 
14607 			delta    += cnt - 1;
14608 			env->prog = prog = new_prog;
14609 			insn      = new_prog->insnsi + i + delta;
14610 			continue;
14611 		}
14612 
14613 		/* Implement bpf_get_func_arg inline. */
14614 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14615 		    insn->imm == BPF_FUNC_get_func_arg) {
14616 			/* Load nr_args from ctx - 8 */
14617 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14618 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
14619 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
14620 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
14621 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
14622 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14623 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
14624 			insn_buf[7] = BPF_JMP_A(1);
14625 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
14626 			cnt = 9;
14627 
14628 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14629 			if (!new_prog)
14630 				return -ENOMEM;
14631 
14632 			delta    += cnt - 1;
14633 			env->prog = prog = new_prog;
14634 			insn      = new_prog->insnsi + i + delta;
14635 			continue;
14636 		}
14637 
14638 		/* Implement bpf_get_func_ret inline. */
14639 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14640 		    insn->imm == BPF_FUNC_get_func_ret) {
14641 			if (eatype == BPF_TRACE_FEXIT ||
14642 			    eatype == BPF_MODIFY_RETURN) {
14643 				/* Load nr_args from ctx - 8 */
14644 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14645 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
14646 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
14647 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14648 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
14649 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
14650 				cnt = 6;
14651 			} else {
14652 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
14653 				cnt = 1;
14654 			}
14655 
14656 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14657 			if (!new_prog)
14658 				return -ENOMEM;
14659 
14660 			delta    += cnt - 1;
14661 			env->prog = prog = new_prog;
14662 			insn      = new_prog->insnsi + i + delta;
14663 			continue;
14664 		}
14665 
14666 		/* Implement get_func_arg_cnt inline. */
14667 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14668 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
14669 			/* Load nr_args from ctx - 8 */
14670 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14671 
14672 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14673 			if (!new_prog)
14674 				return -ENOMEM;
14675 
14676 			env->prog = prog = new_prog;
14677 			insn      = new_prog->insnsi + i + delta;
14678 			continue;
14679 		}
14680 
14681 		/* Implement bpf_get_func_ip inline. */
14682 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14683 		    insn->imm == BPF_FUNC_get_func_ip) {
14684 			/* Load IP address from ctx - 16 */
14685 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
14686 
14687 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14688 			if (!new_prog)
14689 				return -ENOMEM;
14690 
14691 			env->prog = prog = new_prog;
14692 			insn      = new_prog->insnsi + i + delta;
14693 			continue;
14694 		}
14695 
14696 patch_call_imm:
14697 		fn = env->ops->get_func_proto(insn->imm, env->prog);
14698 		/* all functions that have prototype and verifier allowed
14699 		 * programs to call them, must be real in-kernel functions
14700 		 */
14701 		if (!fn->func) {
14702 			verbose(env,
14703 				"kernel subsystem misconfigured func %s#%d\n",
14704 				func_id_name(insn->imm), insn->imm);
14705 			return -EFAULT;
14706 		}
14707 		insn->imm = fn->func - __bpf_call_base;
14708 	}
14709 
14710 	/* Since poke tab is now finalized, publish aux to tracker. */
14711 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
14712 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
14713 		if (!map_ptr->ops->map_poke_track ||
14714 		    !map_ptr->ops->map_poke_untrack ||
14715 		    !map_ptr->ops->map_poke_run) {
14716 			verbose(env, "bpf verifier is misconfigured\n");
14717 			return -EINVAL;
14718 		}
14719 
14720 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14721 		if (ret < 0) {
14722 			verbose(env, "tracking tail call prog failed\n");
14723 			return ret;
14724 		}
14725 	}
14726 
14727 	sort_kfunc_descs_by_imm(env->prog);
14728 
14729 	return 0;
14730 }
14731 
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * cnt)14732 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
14733 					int position,
14734 					s32 stack_base,
14735 					u32 callback_subprogno,
14736 					u32 *cnt)
14737 {
14738 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
14739 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
14740 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
14741 	int reg_loop_max = BPF_REG_6;
14742 	int reg_loop_cnt = BPF_REG_7;
14743 	int reg_loop_ctx = BPF_REG_8;
14744 
14745 	struct bpf_prog *new_prog;
14746 	u32 callback_start;
14747 	u32 call_insn_offset;
14748 	s32 callback_offset;
14749 
14750 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
14751 	 * be careful to modify this code in sync.
14752 	 */
14753 	struct bpf_insn insn_buf[] = {
14754 		/* Return error and jump to the end of the patch if
14755 		 * expected number of iterations is too big.
14756 		 */
14757 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
14758 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
14759 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
14760 		/* spill R6, R7, R8 to use these as loop vars */
14761 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
14762 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
14763 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
14764 		/* initialize loop vars */
14765 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
14766 		BPF_MOV32_IMM(reg_loop_cnt, 0),
14767 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
14768 		/* loop header,
14769 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
14770 		 */
14771 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
14772 		/* callback call,
14773 		 * correct callback offset would be set after patching
14774 		 */
14775 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
14776 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
14777 		BPF_CALL_REL(0),
14778 		/* increment loop counter */
14779 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
14780 		/* jump to loop header if callback returned 0 */
14781 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
14782 		/* return value of bpf_loop,
14783 		 * set R0 to the number of iterations
14784 		 */
14785 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
14786 		/* restore original values of R6, R7, R8 */
14787 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
14788 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
14789 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
14790 	};
14791 
14792 	*cnt = ARRAY_SIZE(insn_buf);
14793 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
14794 	if (!new_prog)
14795 		return new_prog;
14796 
14797 	/* callback start is known only after patching */
14798 	callback_start = env->subprog_info[callback_subprogno].start;
14799 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
14800 	call_insn_offset = position + 12;
14801 	callback_offset = callback_start - call_insn_offset - 1;
14802 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
14803 
14804 	return new_prog;
14805 }
14806 
is_bpf_loop_call(struct bpf_insn * insn)14807 static bool is_bpf_loop_call(struct bpf_insn *insn)
14808 {
14809 	return insn->code == (BPF_JMP | BPF_CALL) &&
14810 		insn->src_reg == 0 &&
14811 		insn->imm == BPF_FUNC_loop;
14812 }
14813 
14814 /* For all sub-programs in the program (including main) check
14815  * insn_aux_data to see if there are bpf_loop calls that require
14816  * inlining. If such calls are found the calls are replaced with a
14817  * sequence of instructions produced by `inline_bpf_loop` function and
14818  * subprog stack_depth is increased by the size of 3 registers.
14819  * This stack space is used to spill values of the R6, R7, R8.  These
14820  * registers are used to store the loop bound, counter and context
14821  * variables.
14822  */
optimize_bpf_loop(struct bpf_verifier_env * env)14823 static int optimize_bpf_loop(struct bpf_verifier_env *env)
14824 {
14825 	struct bpf_subprog_info *subprogs = env->subprog_info;
14826 	int i, cur_subprog = 0, cnt, delta = 0;
14827 	struct bpf_insn *insn = env->prog->insnsi;
14828 	int insn_cnt = env->prog->len;
14829 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
14830 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14831 	u16 stack_depth_extra = 0;
14832 
14833 	for (i = 0; i < insn_cnt; i++, insn++) {
14834 		struct bpf_loop_inline_state *inline_state =
14835 			&env->insn_aux_data[i + delta].loop_inline_state;
14836 
14837 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
14838 			struct bpf_prog *new_prog;
14839 
14840 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
14841 			new_prog = inline_bpf_loop(env,
14842 						   i + delta,
14843 						   -(stack_depth + stack_depth_extra),
14844 						   inline_state->callback_subprogno,
14845 						   &cnt);
14846 			if (!new_prog)
14847 				return -ENOMEM;
14848 
14849 			delta     += cnt - 1;
14850 			env->prog  = new_prog;
14851 			insn       = new_prog->insnsi + i + delta;
14852 		}
14853 
14854 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
14855 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
14856 			cur_subprog++;
14857 			stack_depth = subprogs[cur_subprog].stack_depth;
14858 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14859 			stack_depth_extra = 0;
14860 		}
14861 	}
14862 
14863 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14864 
14865 	return 0;
14866 }
14867 
free_states(struct bpf_verifier_env * env)14868 static void free_states(struct bpf_verifier_env *env)
14869 {
14870 	struct bpf_verifier_state_list *sl, *sln;
14871 	int i;
14872 
14873 	sl = env->free_list;
14874 	while (sl) {
14875 		sln = sl->next;
14876 		free_verifier_state(&sl->state, false);
14877 		kfree(sl);
14878 		sl = sln;
14879 	}
14880 	env->free_list = NULL;
14881 
14882 	if (!env->explored_states)
14883 		return;
14884 
14885 	for (i = 0; i < state_htab_size(env); i++) {
14886 		sl = env->explored_states[i];
14887 
14888 		while (sl) {
14889 			sln = sl->next;
14890 			free_verifier_state(&sl->state, false);
14891 			kfree(sl);
14892 			sl = sln;
14893 		}
14894 		env->explored_states[i] = NULL;
14895 	}
14896 }
14897 
do_check_common(struct bpf_verifier_env * env,int subprog)14898 static int do_check_common(struct bpf_verifier_env *env, int subprog)
14899 {
14900 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14901 	struct bpf_verifier_state *state;
14902 	struct bpf_reg_state *regs;
14903 	int ret, i;
14904 
14905 	env->prev_linfo = NULL;
14906 	env->pass_cnt++;
14907 
14908 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14909 	if (!state)
14910 		return -ENOMEM;
14911 	state->curframe = 0;
14912 	state->speculative = false;
14913 	state->branches = 1;
14914 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14915 	if (!state->frame[0]) {
14916 		kfree(state);
14917 		return -ENOMEM;
14918 	}
14919 	env->cur_state = state;
14920 	init_func_state(env, state->frame[0],
14921 			BPF_MAIN_FUNC /* callsite */,
14922 			0 /* frameno */,
14923 			subprog);
14924 	state->first_insn_idx = env->subprog_info[subprog].start;
14925 	state->last_insn_idx = -1;
14926 
14927 	regs = state->frame[state->curframe]->regs;
14928 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
14929 		ret = btf_prepare_func_args(env, subprog, regs);
14930 		if (ret)
14931 			goto out;
14932 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14933 			if (regs[i].type == PTR_TO_CTX)
14934 				mark_reg_known_zero(env, regs, i);
14935 			else if (regs[i].type == SCALAR_VALUE)
14936 				mark_reg_unknown(env, regs, i);
14937 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
14938 				const u32 mem_size = regs[i].mem_size;
14939 
14940 				mark_reg_known_zero(env, regs, i);
14941 				regs[i].mem_size = mem_size;
14942 				regs[i].id = ++env->id_gen;
14943 			}
14944 		}
14945 	} else {
14946 		/* 1st arg to a function */
14947 		regs[BPF_REG_1].type = PTR_TO_CTX;
14948 		mark_reg_known_zero(env, regs, BPF_REG_1);
14949 		ret = btf_check_subprog_arg_match(env, subprog, regs);
14950 		if (ret == -EFAULT)
14951 			/* unlikely verifier bug. abort.
14952 			 * ret == 0 and ret < 0 are sadly acceptable for
14953 			 * main() function due to backward compatibility.
14954 			 * Like socket filter program may be written as:
14955 			 * int bpf_prog(struct pt_regs *ctx)
14956 			 * and never dereference that ctx in the program.
14957 			 * 'struct pt_regs' is a type mismatch for socket
14958 			 * filter that should be using 'struct __sk_buff'.
14959 			 */
14960 			goto out;
14961 	}
14962 
14963 	ret = do_check(env);
14964 out:
14965 	/* check for NULL is necessary, since cur_state can be freed inside
14966 	 * do_check() under memory pressure.
14967 	 */
14968 	if (env->cur_state) {
14969 		free_verifier_state(env->cur_state, true);
14970 		env->cur_state = NULL;
14971 	}
14972 	while (!pop_stack(env, NULL, NULL, false));
14973 	if (!ret && pop_log)
14974 		bpf_vlog_reset(&env->log, 0);
14975 	free_states(env);
14976 	return ret;
14977 }
14978 
14979 /* Verify all global functions in a BPF program one by one based on their BTF.
14980  * All global functions must pass verification. Otherwise the whole program is rejected.
14981  * Consider:
14982  * int bar(int);
14983  * int foo(int f)
14984  * {
14985  *    return bar(f);
14986  * }
14987  * int bar(int b)
14988  * {
14989  *    ...
14990  * }
14991  * foo() will be verified first for R1=any_scalar_value. During verification it
14992  * will be assumed that bar() already verified successfully and call to bar()
14993  * from foo() will be checked for type match only. Later bar() will be verified
14994  * independently to check that it's safe for R1=any_scalar_value.
14995  */
do_check_subprogs(struct bpf_verifier_env * env)14996 static int do_check_subprogs(struct bpf_verifier_env *env)
14997 {
14998 	struct bpf_prog_aux *aux = env->prog->aux;
14999 	int i, ret;
15000 
15001 	if (!aux->func_info)
15002 		return 0;
15003 
15004 	for (i = 1; i < env->subprog_cnt; i++) {
15005 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
15006 			continue;
15007 		env->insn_idx = env->subprog_info[i].start;
15008 		WARN_ON_ONCE(env->insn_idx == 0);
15009 		ret = do_check_common(env, i);
15010 		if (ret) {
15011 			return ret;
15012 		} else if (env->log.level & BPF_LOG_LEVEL) {
15013 			verbose(env,
15014 				"Func#%d is safe for any args that match its prototype\n",
15015 				i);
15016 		}
15017 	}
15018 	return 0;
15019 }
15020 
do_check_main(struct bpf_verifier_env * env)15021 static int do_check_main(struct bpf_verifier_env *env)
15022 {
15023 	int ret;
15024 
15025 	env->insn_idx = 0;
15026 	ret = do_check_common(env, 0);
15027 	if (!ret)
15028 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
15029 	return ret;
15030 }
15031 
15032 
print_verification_stats(struct bpf_verifier_env * env)15033 static void print_verification_stats(struct bpf_verifier_env *env)
15034 {
15035 	int i;
15036 
15037 	if (env->log.level & BPF_LOG_STATS) {
15038 		verbose(env, "verification time %lld usec\n",
15039 			div_u64(env->verification_time, 1000));
15040 		verbose(env, "stack depth ");
15041 		for (i = 0; i < env->subprog_cnt; i++) {
15042 			u32 depth = env->subprog_info[i].stack_depth;
15043 
15044 			verbose(env, "%d", depth);
15045 			if (i + 1 < env->subprog_cnt)
15046 				verbose(env, "+");
15047 		}
15048 		verbose(env, "\n");
15049 	}
15050 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
15051 		"total_states %d peak_states %d mark_read %d\n",
15052 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
15053 		env->max_states_per_insn, env->total_states,
15054 		env->peak_states, env->longest_mark_read_walk);
15055 }
15056 
check_struct_ops_btf_id(struct bpf_verifier_env * env)15057 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
15058 {
15059 	const struct btf_type *t, *func_proto;
15060 	const struct bpf_struct_ops *st_ops;
15061 	const struct btf_member *member;
15062 	struct bpf_prog *prog = env->prog;
15063 	u32 btf_id, member_idx;
15064 	const char *mname;
15065 
15066 	if (!prog->gpl_compatible) {
15067 		verbose(env, "struct ops programs must have a GPL compatible license\n");
15068 		return -EINVAL;
15069 	}
15070 
15071 	btf_id = prog->aux->attach_btf_id;
15072 	st_ops = bpf_struct_ops_find(btf_id);
15073 	if (!st_ops) {
15074 		verbose(env, "attach_btf_id %u is not a supported struct\n",
15075 			btf_id);
15076 		return -ENOTSUPP;
15077 	}
15078 
15079 	t = st_ops->type;
15080 	member_idx = prog->expected_attach_type;
15081 	if (member_idx >= btf_type_vlen(t)) {
15082 		verbose(env, "attach to invalid member idx %u of struct %s\n",
15083 			member_idx, st_ops->name);
15084 		return -EINVAL;
15085 	}
15086 
15087 	member = &btf_type_member(t)[member_idx];
15088 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
15089 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
15090 					       NULL);
15091 	if (!func_proto) {
15092 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
15093 			mname, member_idx, st_ops->name);
15094 		return -EINVAL;
15095 	}
15096 
15097 	if (st_ops->check_member) {
15098 		int err = st_ops->check_member(t, member);
15099 
15100 		if (err) {
15101 			verbose(env, "attach to unsupported member %s of struct %s\n",
15102 				mname, st_ops->name);
15103 			return err;
15104 		}
15105 	}
15106 
15107 	prog->aux->attach_func_proto = func_proto;
15108 	prog->aux->attach_func_name = mname;
15109 	env->ops = st_ops->verifier_ops;
15110 
15111 	return 0;
15112 }
15113 #define SECURITY_PREFIX "security_"
15114 
check_attach_modify_return(unsigned long addr,const char * func_name)15115 static int check_attach_modify_return(unsigned long addr, const char *func_name)
15116 {
15117 	if (within_error_injection_list(addr) ||
15118 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
15119 		return 0;
15120 
15121 	return -EINVAL;
15122 }
15123 
15124 /* list of non-sleepable functions that are otherwise on
15125  * ALLOW_ERROR_INJECTION list
15126  */
15127 BTF_SET_START(btf_non_sleepable_error_inject)
15128 /* Three functions below can be called from sleepable and non-sleepable context.
15129  * Assume non-sleepable from bpf safety point of view.
15130  */
BTF_ID(func,__filemap_add_folio)15131 BTF_ID(func, __filemap_add_folio)
15132 BTF_ID(func, should_fail_alloc_page)
15133 BTF_ID(func, should_failslab)
15134 BTF_SET_END(btf_non_sleepable_error_inject)
15135 
15136 static int check_non_sleepable_error_inject(u32 btf_id)
15137 {
15138 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
15139 }
15140 
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)15141 int bpf_check_attach_target(struct bpf_verifier_log *log,
15142 			    const struct bpf_prog *prog,
15143 			    const struct bpf_prog *tgt_prog,
15144 			    u32 btf_id,
15145 			    struct bpf_attach_target_info *tgt_info)
15146 {
15147 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
15148 	const char prefix[] = "btf_trace_";
15149 	int ret = 0, subprog = -1, i;
15150 	const struct btf_type *t;
15151 	bool conservative = true;
15152 	const char *tname;
15153 	struct btf *btf;
15154 	long addr = 0;
15155 
15156 	if (!btf_id) {
15157 		bpf_log(log, "Tracing programs must provide btf_id\n");
15158 		return -EINVAL;
15159 	}
15160 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
15161 	if (!btf) {
15162 		bpf_log(log,
15163 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
15164 		return -EINVAL;
15165 	}
15166 	t = btf_type_by_id(btf, btf_id);
15167 	if (!t) {
15168 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
15169 		return -EINVAL;
15170 	}
15171 	tname = btf_name_by_offset(btf, t->name_off);
15172 	if (!tname) {
15173 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
15174 		return -EINVAL;
15175 	}
15176 	if (tgt_prog) {
15177 		struct bpf_prog_aux *aux = tgt_prog->aux;
15178 
15179 		for (i = 0; i < aux->func_info_cnt; i++)
15180 			if (aux->func_info[i].type_id == btf_id) {
15181 				subprog = i;
15182 				break;
15183 			}
15184 		if (subprog == -1) {
15185 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
15186 			return -EINVAL;
15187 		}
15188 		conservative = aux->func_info_aux[subprog].unreliable;
15189 		if (prog_extension) {
15190 			if (conservative) {
15191 				bpf_log(log,
15192 					"Cannot replace static functions\n");
15193 				return -EINVAL;
15194 			}
15195 			if (!prog->jit_requested) {
15196 				bpf_log(log,
15197 					"Extension programs should be JITed\n");
15198 				return -EINVAL;
15199 			}
15200 		}
15201 		if (!tgt_prog->jited) {
15202 			bpf_log(log, "Can attach to only JITed progs\n");
15203 			return -EINVAL;
15204 		}
15205 		if (tgt_prog->type == prog->type) {
15206 			/* Cannot fentry/fexit another fentry/fexit program.
15207 			 * Cannot attach program extension to another extension.
15208 			 * It's ok to attach fentry/fexit to extension program.
15209 			 */
15210 			bpf_log(log, "Cannot recursively attach\n");
15211 			return -EINVAL;
15212 		}
15213 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
15214 		    prog_extension &&
15215 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
15216 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
15217 			/* Program extensions can extend all program types
15218 			 * except fentry/fexit. The reason is the following.
15219 			 * The fentry/fexit programs are used for performance
15220 			 * analysis, stats and can be attached to any program
15221 			 * type except themselves. When extension program is
15222 			 * replacing XDP function it is necessary to allow
15223 			 * performance analysis of all functions. Both original
15224 			 * XDP program and its program extension. Hence
15225 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
15226 			 * allowed. If extending of fentry/fexit was allowed it
15227 			 * would be possible to create long call chain
15228 			 * fentry->extension->fentry->extension beyond
15229 			 * reasonable stack size. Hence extending fentry is not
15230 			 * allowed.
15231 			 */
15232 			bpf_log(log, "Cannot extend fentry/fexit\n");
15233 			return -EINVAL;
15234 		}
15235 	} else {
15236 		if (prog_extension) {
15237 			bpf_log(log, "Cannot replace kernel functions\n");
15238 			return -EINVAL;
15239 		}
15240 	}
15241 
15242 	switch (prog->expected_attach_type) {
15243 	case BPF_TRACE_RAW_TP:
15244 		if (tgt_prog) {
15245 			bpf_log(log,
15246 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
15247 			return -EINVAL;
15248 		}
15249 		if (!btf_type_is_typedef(t)) {
15250 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
15251 				btf_id);
15252 			return -EINVAL;
15253 		}
15254 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
15255 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
15256 				btf_id, tname);
15257 			return -EINVAL;
15258 		}
15259 		tname += sizeof(prefix) - 1;
15260 		t = btf_type_by_id(btf, t->type);
15261 		if (!btf_type_is_ptr(t))
15262 			/* should never happen in valid vmlinux build */
15263 			return -EINVAL;
15264 		t = btf_type_by_id(btf, t->type);
15265 		if (!btf_type_is_func_proto(t))
15266 			/* should never happen in valid vmlinux build */
15267 			return -EINVAL;
15268 
15269 		break;
15270 	case BPF_TRACE_ITER:
15271 		if (!btf_type_is_func(t)) {
15272 			bpf_log(log, "attach_btf_id %u is not a function\n",
15273 				btf_id);
15274 			return -EINVAL;
15275 		}
15276 		t = btf_type_by_id(btf, t->type);
15277 		if (!btf_type_is_func_proto(t))
15278 			return -EINVAL;
15279 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
15280 		if (ret)
15281 			return ret;
15282 		break;
15283 	default:
15284 		if (!prog_extension)
15285 			return -EINVAL;
15286 		fallthrough;
15287 	case BPF_MODIFY_RETURN:
15288 	case BPF_LSM_MAC:
15289 	case BPF_LSM_CGROUP:
15290 	case BPF_TRACE_FENTRY:
15291 	case BPF_TRACE_FEXIT:
15292 		if (!btf_type_is_func(t)) {
15293 			bpf_log(log, "attach_btf_id %u is not a function\n",
15294 				btf_id);
15295 			return -EINVAL;
15296 		}
15297 		if (prog_extension &&
15298 		    btf_check_type_match(log, prog, btf, t))
15299 			return -EINVAL;
15300 		t = btf_type_by_id(btf, t->type);
15301 		if (!btf_type_is_func_proto(t))
15302 			return -EINVAL;
15303 
15304 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
15305 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
15306 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
15307 			return -EINVAL;
15308 
15309 		if (tgt_prog && conservative)
15310 			t = NULL;
15311 
15312 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
15313 		if (ret < 0)
15314 			return ret;
15315 
15316 		if (tgt_prog) {
15317 			if (subprog == 0)
15318 				addr = (long) tgt_prog->bpf_func;
15319 			else
15320 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
15321 		} else {
15322 			addr = kallsyms_lookup_name(tname);
15323 			if (!addr) {
15324 				bpf_log(log,
15325 					"The address of function %s cannot be found\n",
15326 					tname);
15327 				return -ENOENT;
15328 			}
15329 		}
15330 
15331 		if (prog->aux->sleepable) {
15332 			ret = -EINVAL;
15333 			switch (prog->type) {
15334 			case BPF_PROG_TYPE_TRACING:
15335 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
15336 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
15337 				 */
15338 				if (!check_non_sleepable_error_inject(btf_id) &&
15339 				    within_error_injection_list(addr))
15340 					ret = 0;
15341 				break;
15342 			case BPF_PROG_TYPE_LSM:
15343 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
15344 				 * Only some of them are sleepable.
15345 				 */
15346 				if (bpf_lsm_is_sleepable_hook(btf_id))
15347 					ret = 0;
15348 				break;
15349 			default:
15350 				break;
15351 			}
15352 			if (ret) {
15353 				bpf_log(log, "%s is not sleepable\n", tname);
15354 				return ret;
15355 			}
15356 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
15357 			if (tgt_prog) {
15358 				bpf_log(log, "can't modify return codes of BPF programs\n");
15359 				return -EINVAL;
15360 			}
15361 			ret = check_attach_modify_return(addr, tname);
15362 			if (ret) {
15363 				bpf_log(log, "%s() is not modifiable\n", tname);
15364 				return ret;
15365 			}
15366 		}
15367 
15368 		break;
15369 	}
15370 	tgt_info->tgt_addr = addr;
15371 	tgt_info->tgt_name = tname;
15372 	tgt_info->tgt_type = t;
15373 	return 0;
15374 }
15375 
BTF_SET_START(btf_id_deny)15376 BTF_SET_START(btf_id_deny)
15377 BTF_ID_UNUSED
15378 #ifdef CONFIG_SMP
15379 BTF_ID(func, migrate_disable)
15380 BTF_ID(func, migrate_enable)
15381 #endif
15382 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
15383 BTF_ID(func, rcu_read_unlock_strict)
15384 #endif
15385 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
15386 BTF_ID(func, preempt_count_add)
15387 BTF_ID(func, preempt_count_sub)
15388 #endif
15389 BTF_SET_END(btf_id_deny)
15390 
15391 static int check_attach_btf_id(struct bpf_verifier_env *env)
15392 {
15393 	struct bpf_prog *prog = env->prog;
15394 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
15395 	struct bpf_attach_target_info tgt_info = {};
15396 	u32 btf_id = prog->aux->attach_btf_id;
15397 	struct bpf_trampoline *tr;
15398 	int ret;
15399 	u64 key;
15400 
15401 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
15402 		if (prog->aux->sleepable)
15403 			/* attach_btf_id checked to be zero already */
15404 			return 0;
15405 		verbose(env, "Syscall programs can only be sleepable\n");
15406 		return -EINVAL;
15407 	}
15408 
15409 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
15410 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
15411 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
15412 		return -EINVAL;
15413 	}
15414 
15415 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
15416 		return check_struct_ops_btf_id(env);
15417 
15418 	if (prog->type != BPF_PROG_TYPE_TRACING &&
15419 	    prog->type != BPF_PROG_TYPE_LSM &&
15420 	    prog->type != BPF_PROG_TYPE_EXT)
15421 		return 0;
15422 
15423 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
15424 	if (ret)
15425 		return ret;
15426 
15427 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
15428 		/* to make freplace equivalent to their targets, they need to
15429 		 * inherit env->ops and expected_attach_type for the rest of the
15430 		 * verification
15431 		 */
15432 		env->ops = bpf_verifier_ops[tgt_prog->type];
15433 		prog->expected_attach_type = tgt_prog->expected_attach_type;
15434 	}
15435 
15436 	/* store info about the attachment target that will be used later */
15437 	prog->aux->attach_func_proto = tgt_info.tgt_type;
15438 	prog->aux->attach_func_name = tgt_info.tgt_name;
15439 
15440 	if (tgt_prog) {
15441 		prog->aux->saved_dst_prog_type = tgt_prog->type;
15442 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
15443 	}
15444 
15445 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
15446 		prog->aux->attach_btf_trace = true;
15447 		return 0;
15448 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
15449 		if (!bpf_iter_prog_supported(prog))
15450 			return -EINVAL;
15451 		return 0;
15452 	}
15453 
15454 	if (prog->type == BPF_PROG_TYPE_LSM) {
15455 		ret = bpf_lsm_verify_prog(&env->log, prog);
15456 		if (ret < 0)
15457 			return ret;
15458 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
15459 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
15460 		return -EINVAL;
15461 	}
15462 
15463 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
15464 	tr = bpf_trampoline_get(key, &tgt_info);
15465 	if (!tr)
15466 		return -ENOMEM;
15467 
15468 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
15469 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
15470 
15471 	prog->aux->dst_trampoline = tr;
15472 	return 0;
15473 }
15474 
bpf_get_btf_vmlinux(void)15475 struct btf *bpf_get_btf_vmlinux(void)
15476 {
15477 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
15478 		mutex_lock(&bpf_verifier_lock);
15479 		if (!btf_vmlinux)
15480 			btf_vmlinux = btf_parse_vmlinux();
15481 		mutex_unlock(&bpf_verifier_lock);
15482 	}
15483 	return btf_vmlinux;
15484 }
15485 
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr)15486 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
15487 {
15488 	u64 start_time = ktime_get_ns();
15489 	struct bpf_verifier_env *env;
15490 	struct bpf_verifier_log *log;
15491 	int i, len, ret = -EINVAL;
15492 	bool is_priv;
15493 
15494 	/* no program is valid */
15495 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
15496 		return -EINVAL;
15497 
15498 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
15499 	 * allocate/free it every time bpf_check() is called
15500 	 */
15501 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
15502 	if (!env)
15503 		return -ENOMEM;
15504 	log = &env->log;
15505 
15506 	len = (*prog)->len;
15507 	env->insn_aux_data =
15508 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
15509 	ret = -ENOMEM;
15510 	if (!env->insn_aux_data)
15511 		goto err_free_env;
15512 	for (i = 0; i < len; i++)
15513 		env->insn_aux_data[i].orig_idx = i;
15514 	env->prog = *prog;
15515 	env->ops = bpf_verifier_ops[env->prog->type];
15516 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
15517 	is_priv = bpf_capable();
15518 
15519 	bpf_get_btf_vmlinux();
15520 
15521 	/* grab the mutex to protect few globals used by verifier */
15522 	if (!is_priv)
15523 		mutex_lock(&bpf_verifier_lock);
15524 
15525 	if (attr->log_level || attr->log_buf || attr->log_size) {
15526 		/* user requested verbose verifier output
15527 		 * and supplied buffer to store the verification trace
15528 		 */
15529 		log->level = attr->log_level;
15530 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
15531 		log->len_total = attr->log_size;
15532 
15533 		/* log attributes have to be sane */
15534 		if (!bpf_verifier_log_attr_valid(log)) {
15535 			ret = -EINVAL;
15536 			goto err_unlock;
15537 		}
15538 	}
15539 
15540 	mark_verifier_state_clean(env);
15541 
15542 	if (IS_ERR(btf_vmlinux)) {
15543 		/* Either gcc or pahole or kernel are broken. */
15544 		verbose(env, "in-kernel BTF is malformed\n");
15545 		ret = PTR_ERR(btf_vmlinux);
15546 		goto skip_full_check;
15547 	}
15548 
15549 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
15550 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
15551 		env->strict_alignment = true;
15552 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
15553 		env->strict_alignment = false;
15554 
15555 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
15556 	env->allow_uninit_stack = bpf_allow_uninit_stack();
15557 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
15558 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
15559 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
15560 	env->bpf_capable = bpf_capable();
15561 
15562 	if (is_priv)
15563 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
15564 
15565 	env->explored_states = kvcalloc(state_htab_size(env),
15566 				       sizeof(struct bpf_verifier_state_list *),
15567 				       GFP_USER);
15568 	ret = -ENOMEM;
15569 	if (!env->explored_states)
15570 		goto skip_full_check;
15571 
15572 	ret = add_subprog_and_kfunc(env);
15573 	if (ret < 0)
15574 		goto skip_full_check;
15575 
15576 	ret = check_subprogs(env);
15577 	if (ret < 0)
15578 		goto skip_full_check;
15579 
15580 	ret = check_btf_info(env, attr, uattr);
15581 	if (ret < 0)
15582 		goto skip_full_check;
15583 
15584 	ret = check_attach_btf_id(env);
15585 	if (ret)
15586 		goto skip_full_check;
15587 
15588 	ret = resolve_pseudo_ldimm64(env);
15589 	if (ret < 0)
15590 		goto skip_full_check;
15591 
15592 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
15593 		ret = bpf_prog_offload_verifier_prep(env->prog);
15594 		if (ret)
15595 			goto skip_full_check;
15596 	}
15597 
15598 	ret = check_cfg(env);
15599 	if (ret < 0)
15600 		goto skip_full_check;
15601 
15602 	ret = do_check_subprogs(env);
15603 	ret = ret ?: do_check_main(env);
15604 
15605 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
15606 		ret = bpf_prog_offload_finalize(env);
15607 
15608 skip_full_check:
15609 	kvfree(env->explored_states);
15610 
15611 	if (ret == 0)
15612 		ret = check_max_stack_depth(env);
15613 
15614 	/* instruction rewrites happen after this point */
15615 	if (ret == 0)
15616 		ret = optimize_bpf_loop(env);
15617 
15618 	if (is_priv) {
15619 		if (ret == 0)
15620 			opt_hard_wire_dead_code_branches(env);
15621 		if (ret == 0)
15622 			ret = opt_remove_dead_code(env);
15623 		if (ret == 0)
15624 			ret = opt_remove_nops(env);
15625 	} else {
15626 		if (ret == 0)
15627 			sanitize_dead_code(env);
15628 	}
15629 
15630 	if (ret == 0)
15631 		/* program is valid, convert *(u32*)(ctx + off) accesses */
15632 		ret = convert_ctx_accesses(env);
15633 
15634 	if (ret == 0)
15635 		ret = do_misc_fixups(env);
15636 
15637 	/* do 32-bit optimization after insn patching has done so those patched
15638 	 * insns could be handled correctly.
15639 	 */
15640 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
15641 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
15642 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
15643 								     : false;
15644 	}
15645 
15646 	if (ret == 0)
15647 		ret = fixup_call_args(env);
15648 
15649 	env->verification_time = ktime_get_ns() - start_time;
15650 	print_verification_stats(env);
15651 	env->prog->aux->verified_insns = env->insn_processed;
15652 
15653 	if (log->level && bpf_verifier_log_full(log))
15654 		ret = -ENOSPC;
15655 	if (log->level && !log->ubuf) {
15656 		ret = -EFAULT;
15657 		goto err_release_maps;
15658 	}
15659 
15660 	if (ret)
15661 		goto err_release_maps;
15662 
15663 	if (env->used_map_cnt) {
15664 		/* if program passed verifier, update used_maps in bpf_prog_info */
15665 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
15666 							  sizeof(env->used_maps[0]),
15667 							  GFP_KERNEL);
15668 
15669 		if (!env->prog->aux->used_maps) {
15670 			ret = -ENOMEM;
15671 			goto err_release_maps;
15672 		}
15673 
15674 		memcpy(env->prog->aux->used_maps, env->used_maps,
15675 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
15676 		env->prog->aux->used_map_cnt = env->used_map_cnt;
15677 	}
15678 	if (env->used_btf_cnt) {
15679 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
15680 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
15681 							  sizeof(env->used_btfs[0]),
15682 							  GFP_KERNEL);
15683 		if (!env->prog->aux->used_btfs) {
15684 			ret = -ENOMEM;
15685 			goto err_release_maps;
15686 		}
15687 
15688 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
15689 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
15690 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
15691 	}
15692 	if (env->used_map_cnt || env->used_btf_cnt) {
15693 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
15694 		 * bpf_ld_imm64 instructions
15695 		 */
15696 		convert_pseudo_ld_imm64(env);
15697 	}
15698 
15699 	adjust_btf_func(env);
15700 
15701 err_release_maps:
15702 	if (!env->prog->aux->used_maps)
15703 		/* if we didn't copy map pointers into bpf_prog_info, release
15704 		 * them now. Otherwise free_used_maps() will release them.
15705 		 */
15706 		release_maps(env);
15707 	if (!env->prog->aux->used_btfs)
15708 		release_btfs(env);
15709 
15710 	/* extension progs temporarily inherit the attach_type of their targets
15711 	   for verification purposes, so set it back to zero before returning
15712 	 */
15713 	if (env->prog->type == BPF_PROG_TYPE_EXT)
15714 		env->prog->expected_attach_type = 0;
15715 
15716 	*prog = env->prog;
15717 err_unlock:
15718 	if (!is_priv)
15719 		mutex_unlock(&bpf_verifier_lock);
15720 	vfree(env->insn_aux_data);
15721 err_free_env:
15722 	kfree(env);
15723 	return ret;
15724 }
15725