1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/io_uring_types.h>
8 #include <uapi/linux/eventpoll.h>
9 #include "io-wq.h"
10 #include "slist.h"
11 #include "filetable.h"
12
13 #ifndef CREATE_TRACE_POINTS
14 #include <trace/events/io_uring.h>
15 #endif
16
17 enum {
18 IOU_OK = 0,
19 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED,
20
21 /*
22 * Intended only when both IO_URING_F_MULTISHOT is passed
23 * to indicate to the poll runner that multishot should be
24 * removed and the result is set on req->cqe.res.
25 */
26 IOU_STOP_MULTISHOT = -ECANCELED,
27 };
28
29 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow);
30 bool io_req_cqe_overflow(struct io_kiocb *req);
31 int io_run_task_work_sig(struct io_ring_ctx *ctx);
32 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked);
33 int io_run_local_work(struct io_ring_ctx *ctx);
34 void io_req_complete_failed(struct io_kiocb *req, s32 res);
35 void __io_req_complete(struct io_kiocb *req, unsigned issue_flags);
36 void io_req_complete_post(struct io_kiocb *req);
37 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
38 bool allow_overflow);
39 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
40 bool allow_overflow);
41 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
42
43 struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
44
45 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
46 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
47 unsigned issue_flags);
48
io_req_ffs_set(struct io_kiocb * req)49 static inline bool io_req_ffs_set(struct io_kiocb *req)
50 {
51 return req->flags & REQ_F_FIXED_FILE;
52 }
53
54 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local);
55 bool io_is_uring_fops(struct file *file);
56 bool io_alloc_async_data(struct io_kiocb *req);
57 void io_req_task_queue(struct io_kiocb *req);
58 void io_queue_iowq(struct io_kiocb *req, bool *dont_use);
59 void io_req_task_complete(struct io_kiocb *req, bool *locked);
60 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
61 void io_req_task_submit(struct io_kiocb *req, bool *locked);
62 void tctx_task_work(struct callback_head *cb);
63 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
64 int io_uring_alloc_task_context(struct task_struct *task,
65 struct io_ring_ctx *ctx);
66
67 int io_poll_issue(struct io_kiocb *req, bool *locked);
68 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
69 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
70 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node);
71 int io_req_prep_async(struct io_kiocb *req);
72
73 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
74 void io_wq_submit_work(struct io_wq_work *work);
75
76 void io_free_req(struct io_kiocb *req);
77 void io_queue_next(struct io_kiocb *req);
78 void __io_put_task(struct task_struct *task, int nr);
79 void io_task_refs_refill(struct io_uring_task *tctx);
80 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
81
82 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
83 bool cancel_all);
84
io_req_task_work_add(struct io_kiocb * req)85 static inline void io_req_task_work_add(struct io_kiocb *req)
86 {
87 __io_req_task_work_add(req, true);
88 }
89
90 #define io_for_each_link(pos, head) \
91 for (pos = (head); pos; pos = pos->link)
92
io_cq_lock(struct io_ring_ctx * ctx)93 static inline void io_cq_lock(struct io_ring_ctx *ctx)
94 __acquires(ctx->completion_lock)
95 {
96 spin_lock(&ctx->completion_lock);
97 }
98
99 void io_cq_unlock_post(struct io_ring_ctx *ctx);
100
io_get_cqe_overflow(struct io_ring_ctx * ctx,bool overflow)101 static inline struct io_uring_cqe *io_get_cqe_overflow(struct io_ring_ctx *ctx,
102 bool overflow)
103 {
104 if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) {
105 struct io_uring_cqe *cqe = ctx->cqe_cached;
106
107 ctx->cached_cq_tail++;
108 ctx->cqe_cached++;
109 if (ctx->flags & IORING_SETUP_CQE32)
110 ctx->cqe_cached++;
111 return cqe;
112 }
113
114 return __io_get_cqe(ctx, overflow);
115 }
116
io_get_cqe(struct io_ring_ctx * ctx)117 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
118 {
119 return io_get_cqe_overflow(ctx, false);
120 }
121
__io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)122 static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx,
123 struct io_kiocb *req)
124 {
125 struct io_uring_cqe *cqe;
126
127 /*
128 * If we can't get a cq entry, userspace overflowed the
129 * submission (by quite a lot). Increment the overflow count in
130 * the ring.
131 */
132 cqe = io_get_cqe(ctx);
133 if (unlikely(!cqe))
134 return io_req_cqe_overflow(req);
135
136 trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
137 req->cqe.res, req->cqe.flags,
138 (req->flags & REQ_F_CQE32_INIT) ? req->extra1 : 0,
139 (req->flags & REQ_F_CQE32_INIT) ? req->extra2 : 0);
140
141 memcpy(cqe, &req->cqe, sizeof(*cqe));
142
143 if (ctx->flags & IORING_SETUP_CQE32) {
144 u64 extra1 = 0, extra2 = 0;
145
146 if (req->flags & REQ_F_CQE32_INIT) {
147 extra1 = req->extra1;
148 extra2 = req->extra2;
149 }
150
151 WRITE_ONCE(cqe->big_cqe[0], extra1);
152 WRITE_ONCE(cqe->big_cqe[1], extra2);
153 }
154 return true;
155 }
156
req_set_fail(struct io_kiocb * req)157 static inline void req_set_fail(struct io_kiocb *req)
158 {
159 req->flags |= REQ_F_FAIL;
160 if (req->flags & REQ_F_CQE_SKIP) {
161 req->flags &= ~REQ_F_CQE_SKIP;
162 req->flags |= REQ_F_SKIP_LINK_CQES;
163 }
164 }
165
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)166 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
167 {
168 req->cqe.res = res;
169 req->cqe.flags = cflags;
170 }
171
req_has_async_data(struct io_kiocb * req)172 static inline bool req_has_async_data(struct io_kiocb *req)
173 {
174 return req->flags & REQ_F_ASYNC_DATA;
175 }
176
io_put_file(struct file * file)177 static inline void io_put_file(struct file *file)
178 {
179 if (file)
180 fput(file);
181 }
182
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)183 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
184 unsigned issue_flags)
185 {
186 lockdep_assert_held(&ctx->uring_lock);
187 if (issue_flags & IO_URING_F_UNLOCKED)
188 mutex_unlock(&ctx->uring_lock);
189 }
190
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)191 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
192 unsigned issue_flags)
193 {
194 /*
195 * "Normal" inline submissions always hold the uring_lock, since we
196 * grab it from the system call. Same is true for the SQPOLL offload.
197 * The only exception is when we've detached the request and issue it
198 * from an async worker thread, grab the lock for that case.
199 */
200 if (issue_flags & IO_URING_F_UNLOCKED)
201 mutex_lock(&ctx->uring_lock);
202 lockdep_assert_held(&ctx->uring_lock);
203 }
204
io_commit_cqring(struct io_ring_ctx * ctx)205 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
206 {
207 /* order cqe stores with ring update */
208 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
209 }
210
211 /* requires smb_mb() prior, see wq_has_sleeper() */
__io_cqring_wake(struct io_ring_ctx * ctx)212 static inline void __io_cqring_wake(struct io_ring_ctx *ctx)
213 {
214 /*
215 * Trigger waitqueue handler on all waiters on our waitqueue. This
216 * won't necessarily wake up all the tasks, io_should_wake() will make
217 * that decision.
218 *
219 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
220 * set in the mask so that if we recurse back into our own poll
221 * waitqueue handlers, we know we have a dependency between eventfd or
222 * epoll and should terminate multishot poll at that point.
223 */
224 if (waitqueue_active(&ctx->cq_wait))
225 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
226 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
227 }
228
io_cqring_wake(struct io_ring_ctx * ctx)229 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
230 {
231 smp_mb();
232 __io_cqring_wake(ctx);
233 }
234
io_sqring_full(struct io_ring_ctx * ctx)235 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
236 {
237 struct io_rings *r = ctx->rings;
238
239 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
240 }
241
io_sqring_entries(struct io_ring_ctx * ctx)242 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
243 {
244 struct io_rings *rings = ctx->rings;
245
246 /* make sure SQ entry isn't read before tail */
247 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
248 }
249
io_run_task_work(void)250 static inline int io_run_task_work(void)
251 {
252 /*
253 * Always check-and-clear the task_work notification signal. With how
254 * signaling works for task_work, we can find it set with nothing to
255 * run. We need to clear it for that case, like get_signal() does.
256 */
257 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
258 clear_notify_signal();
259 /*
260 * PF_IO_WORKER never returns to userspace, so check here if we have
261 * notify work that needs processing.
262 */
263 if (current->flags & PF_IO_WORKER &&
264 test_thread_flag(TIF_NOTIFY_RESUME)) {
265 __set_current_state(TASK_RUNNING);
266 resume_user_mode_work(NULL);
267 }
268 if (task_work_pending(current)) {
269 __set_current_state(TASK_RUNNING);
270 task_work_run();
271 return 1;
272 }
273
274 return 0;
275 }
276
io_task_work_pending(struct io_ring_ctx * ctx)277 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
278 {
279 return test_thread_flag(TIF_NOTIFY_SIGNAL) ||
280 !wq_list_empty(&ctx->work_llist);
281 }
282
io_run_task_work_ctx(struct io_ring_ctx * ctx)283 static inline int io_run_task_work_ctx(struct io_ring_ctx *ctx)
284 {
285 int ret = 0;
286 int ret2;
287
288 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
289 ret = io_run_local_work(ctx);
290
291 /* want to run this after in case more is added */
292 ret2 = io_run_task_work();
293
294 /* Try propagate error in favour of if tasks were run,
295 * but still make sure to run them if requested
296 */
297 if (ret >= 0)
298 ret += ret2;
299
300 return ret;
301 }
302
io_run_local_work_locked(struct io_ring_ctx * ctx)303 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
304 {
305 bool locked;
306 int ret;
307
308 if (llist_empty(&ctx->work_llist))
309 return 0;
310
311 locked = true;
312 ret = __io_run_local_work(ctx, &locked);
313 /* shouldn't happen! */
314 if (WARN_ON_ONCE(!locked))
315 mutex_lock(&ctx->uring_lock);
316 return ret;
317 }
318
io_tw_lock(struct io_ring_ctx * ctx,bool * locked)319 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
320 {
321 if (!*locked) {
322 mutex_lock(&ctx->uring_lock);
323 *locked = true;
324 }
325 }
326
327 /*
328 * Don't complete immediately but use deferred completion infrastructure.
329 * Protected by ->uring_lock and can only be used either with
330 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
331 */
io_req_complete_defer(struct io_kiocb * req)332 static inline void io_req_complete_defer(struct io_kiocb *req)
333 __must_hold(&req->ctx->uring_lock)
334 {
335 struct io_submit_state *state = &req->ctx->submit_state;
336
337 lockdep_assert_held(&req->ctx->uring_lock);
338
339 wq_list_add_tail(&req->comp_list, &state->compl_reqs);
340 }
341
io_commit_cqring_flush(struct io_ring_ctx * ctx)342 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
343 {
344 if (unlikely(ctx->off_timeout_used || ctx->drain_active || ctx->has_evfd))
345 __io_commit_cqring_flush(ctx);
346 }
347
348 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task,int nr)349 static inline void io_put_task(struct task_struct *task, int nr)
350 {
351 if (likely(task == current))
352 task->io_uring->cached_refs += nr;
353 else
354 __io_put_task(task, nr);
355 }
356
io_get_task_refs(int nr)357 static inline void io_get_task_refs(int nr)
358 {
359 struct io_uring_task *tctx = current->io_uring;
360
361 tctx->cached_refs -= nr;
362 if (unlikely(tctx->cached_refs < 0))
363 io_task_refs_refill(tctx);
364 }
365
io_req_cache_empty(struct io_ring_ctx * ctx)366 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
367 {
368 return !ctx->submit_state.free_list.next;
369 }
370
io_alloc_req_refill(struct io_ring_ctx * ctx)371 static inline bool io_alloc_req_refill(struct io_ring_ctx *ctx)
372 {
373 if (unlikely(io_req_cache_empty(ctx)))
374 return __io_alloc_req_refill(ctx);
375 return true;
376 }
377
io_alloc_req(struct io_ring_ctx * ctx)378 static inline struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
379 {
380 struct io_wq_work_node *node;
381
382 node = wq_stack_extract(&ctx->submit_state.free_list);
383 return container_of(node, struct io_kiocb, comp_list);
384 }
385
io_allowed_run_tw(struct io_ring_ctx * ctx)386 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
387 {
388 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
389 ctx->submitter_task == current);
390 }
391
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)392 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
393 {
394 io_req_set_res(req, res, 0);
395 req->io_task_work.func = io_req_task_complete;
396 io_req_task_work_add(req);
397 }
398
399 #endif
400