• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/android_kabi.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_ORDER 11
31 #else
32 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
35 
36 /*
37  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
38  * costly to service.  That is between allocation orders which should
39  * coalesce naturally under reasonable reclaim pressure and those which
40  * will not.
41  */
42 #define PAGE_ALLOC_COSTLY_ORDER 3
43 
44 #define MAX_KSWAPD_THREADS 16
45 
46 enum migratetype {
47 	MIGRATE_UNMOVABLE,
48 	MIGRATE_MOVABLE,
49 	MIGRATE_RECLAIMABLE,
50 #ifdef CONFIG_CMA
51 	/*
52 	 * MIGRATE_CMA migration type is designed to mimic the way
53 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
54 	 * from MIGRATE_CMA pageblocks and page allocator never
55 	 * implicitly change migration type of MIGRATE_CMA pageblock.
56 	 *
57 	 * The way to use it is to change migratetype of a range of
58 	 * pageblocks to MIGRATE_CMA which can be done by
59 	 * __free_pageblock_cma() function.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 	MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
64 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
65 #ifdef CONFIG_MEMORY_ISOLATION
66 	MIGRATE_ISOLATE,	/* can't allocate from here */
67 #endif
68 	MIGRATE_TYPES
69 };
70 
71 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
72 extern const char * const migratetype_names[MIGRATE_TYPES];
73 
74 #ifdef CONFIG_CMA
75 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
76 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
77 #  define get_cma_migrate_type() MIGRATE_CMA
78 #else
79 #  define is_migrate_cma(migratetype) false
80 #  define is_migrate_cma_page(_page) false
81 #  define get_cma_migrate_type() MIGRATE_MOVABLE
82 #endif
83 
is_migrate_movable(int mt)84 static inline bool is_migrate_movable(int mt)
85 {
86 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
87 }
88 
89 /*
90  * Check whether a migratetype can be merged with another migratetype.
91  *
92  * It is only mergeable when it can fall back to other migratetypes for
93  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
94  */
migratetype_is_mergeable(int mt)95 static inline bool migratetype_is_mergeable(int mt)
96 {
97 	return mt <= MIGRATE_RECLAIMABLE;
98 }
99 
100 #define for_each_migratetype_order(order, type) \
101 	for (order = 0; order < MAX_ORDER; order++) \
102 		for (type = 0; type < MIGRATE_TYPES; type++)
103 
104 extern int page_group_by_mobility_disabled;
105 
106 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
107 
108 #define get_pageblock_migratetype(page)					\
109 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
110 
111 struct free_area {
112 	struct list_head	free_list[MIGRATE_TYPES];
113 	unsigned long		nr_free;
114 };
115 
get_page_from_free_area(struct free_area * area,int migratetype)116 static inline struct page *get_page_from_free_area(struct free_area *area,
117 					    int migratetype)
118 {
119 	return list_first_entry_or_null(&area->free_list[migratetype],
120 					struct page, lru);
121 }
122 
free_area_empty(struct free_area * area,int migratetype)123 static inline bool free_area_empty(struct free_area *area, int migratetype)
124 {
125 	return list_empty(&area->free_list[migratetype]);
126 }
127 
128 struct pglist_data;
129 
130 #ifdef CONFIG_NUMA
131 enum numa_stat_item {
132 	NUMA_HIT,		/* allocated in intended node */
133 	NUMA_MISS,		/* allocated in non intended node */
134 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
135 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
136 	NUMA_LOCAL,		/* allocation from local node */
137 	NUMA_OTHER,		/* allocation from other node */
138 	NR_VM_NUMA_EVENT_ITEMS
139 };
140 #else
141 #define NR_VM_NUMA_EVENT_ITEMS 0
142 #endif
143 
144 enum zone_stat_item {
145 	/* First 128 byte cacheline (assuming 64 bit words) */
146 	NR_FREE_PAGES,
147 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 	NR_ZONE_ACTIVE_ANON,
150 	NR_ZONE_INACTIVE_FILE,
151 	NR_ZONE_ACTIVE_FILE,
152 	NR_ZONE_UNEVICTABLE,
153 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
154 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
155 	/* Second 128 byte cacheline */
156 	NR_BOUNCE,
157 	NR_ZSPAGES,		/* allocated in zsmalloc */
158 	NR_FREE_CMA_PAGES,
159 	NR_VM_ZONE_STAT_ITEMS };
160 
161 enum node_stat_item {
162 	NR_LRU_BASE,
163 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
164 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
165 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
166 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
167 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
168 	NR_SLAB_RECLAIMABLE_B,
169 	NR_SLAB_UNRECLAIMABLE_B,
170 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
171 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
172 	WORKINGSET_NODES,
173 	WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
175 	WORKINGSET_REFAULT_FILE,
176 	WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
178 	WORKINGSET_ACTIVATE_FILE,
179 	WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
181 	WORKINGSET_RESTORE_FILE,
182 	WORKINGSET_NODERECLAIM,
183 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
184 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
185 			   only modified from process context */
186 	NR_FILE_PAGES,
187 	NR_FILE_DIRTY,
188 	NR_WRITEBACK,
189 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
190 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
191 	NR_SHMEM_THPS,
192 	NR_SHMEM_PMDMAPPED,
193 	NR_FILE_THPS,
194 	NR_FILE_PMDMAPPED,
195 	NR_ANON_THPS,
196 	NR_VMSCAN_WRITE,
197 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
198 	NR_DIRTIED,		/* page dirtyings since bootup */
199 	NR_WRITTEN,		/* page writings since bootup */
200 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
201 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
202 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
203 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
204 	NR_KERNEL_STACK_KB,	/* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 	NR_KERNEL_SCS_KB,	/* measured in KiB */
207 #endif
208 	NR_PAGETABLE,		/* used for pagetables */
209 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
210 #ifdef CONFIG_SWAP
211 	NR_SWAPCACHE,
212 #endif
213 #ifdef CONFIG_NUMA_BALANCING
214 	PGPROMOTE_SUCCESS,	/* promote successfully */
215 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
216 #endif
217 	NR_VM_NODE_STAT_ITEMS
218 };
219 
220 /*
221  * Returns true if the item should be printed in THPs (/proc/vmstat
222  * currently prints number of anon, file and shmem THPs. But the item
223  * is charged in pages).
224  */
vmstat_item_print_in_thp(enum node_stat_item item)225 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
226 {
227 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
228 		return false;
229 
230 	return item == NR_ANON_THPS ||
231 	       item == NR_FILE_THPS ||
232 	       item == NR_SHMEM_THPS ||
233 	       item == NR_SHMEM_PMDMAPPED ||
234 	       item == NR_FILE_PMDMAPPED;
235 }
236 
237 /*
238  * Returns true if the value is measured in bytes (most vmstat values are
239  * measured in pages). This defines the API part, the internal representation
240  * might be different.
241  */
vmstat_item_in_bytes(int idx)242 static __always_inline bool vmstat_item_in_bytes(int idx)
243 {
244 	/*
245 	 * Global and per-node slab counters track slab pages.
246 	 * It's expected that changes are multiples of PAGE_SIZE.
247 	 * Internally values are stored in pages.
248 	 *
249 	 * Per-memcg and per-lruvec counters track memory, consumed
250 	 * by individual slab objects. These counters are actually
251 	 * byte-precise.
252 	 */
253 	return (idx == NR_SLAB_RECLAIMABLE_B ||
254 		idx == NR_SLAB_UNRECLAIMABLE_B);
255 }
256 
257 /*
258  * We do arithmetic on the LRU lists in various places in the code,
259  * so it is important to keep the active lists LRU_ACTIVE higher in
260  * the array than the corresponding inactive lists, and to keep
261  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
262  *
263  * This has to be kept in sync with the statistics in zone_stat_item
264  * above and the descriptions in vmstat_text in mm/vmstat.c
265  */
266 #define LRU_BASE 0
267 #define LRU_ACTIVE 1
268 #define LRU_FILE 2
269 
270 enum lru_list {
271 	LRU_INACTIVE_ANON = LRU_BASE,
272 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
273 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
274 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
275 	LRU_UNEVICTABLE,
276 	NR_LRU_LISTS
277 };
278 
279 enum vmscan_throttle_state {
280 	VMSCAN_THROTTLE_WRITEBACK,
281 	VMSCAN_THROTTLE_ISOLATED,
282 	VMSCAN_THROTTLE_NOPROGRESS,
283 	VMSCAN_THROTTLE_CONGESTED,
284 	NR_VMSCAN_THROTTLE,
285 };
286 
287 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
288 
289 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
290 
is_file_lru(enum lru_list lru)291 static inline bool is_file_lru(enum lru_list lru)
292 {
293 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
294 }
295 
is_active_lru(enum lru_list lru)296 static inline bool is_active_lru(enum lru_list lru)
297 {
298 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
299 }
300 
301 #define WORKINGSET_ANON 0
302 #define WORKINGSET_FILE 1
303 #define ANON_AND_FILE 2
304 
305 enum lruvec_flags {
306 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
307 					 * backed by a congested BDI
308 					 */
309 };
310 
311 #endif /* !__GENERATING_BOUNDS_H */
312 
313 /*
314  * Evictable pages are divided into multiple generations. The youngest and the
315  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
316  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
317  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
318  * corresponding generation. The gen counter in folio->flags stores gen+1 while
319  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
320  *
321  * A page is added to the youngest generation on faulting. The aging needs to
322  * check the accessed bit at least twice before handing this page over to the
323  * eviction. The first check takes care of the accessed bit set on the initial
324  * fault; the second check makes sure this page hasn't been used since then.
325  * This process, AKA second chance, requires a minimum of two generations,
326  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
327  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
328  * rest of generations, if they exist, are considered inactive. See
329  * lru_gen_is_active().
330  *
331  * PG_active is always cleared while a page is on one of lrugen->folios[] so
332  * that the aging needs not to worry about it. And it's set again when a page
333  * considered active is isolated for non-reclaiming purposes, e.g., migration.
334  * See lru_gen_add_folio() and lru_gen_del_folio().
335  *
336  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
337  * number of categories of the active/inactive LRU when keeping track of
338  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
339  * in folio->flags.
340  */
341 #define MIN_NR_GENS		2U
342 #define MAX_NR_GENS		4U
343 
344 /*
345  * Each generation is divided into multiple tiers. A page accessed N times
346  * through file descriptors is in tier order_base_2(N). A page in the first tier
347  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
348  * tables or read ahead. A page in any other tier (N>1) is marked by
349  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
350  * supported without using additional bits in folio->flags.
351  *
352  * In contrast to moving across generations which requires the LRU lock, moving
353  * across tiers only involves atomic operations on folio->flags and therefore
354  * has a negligible cost in the buffered access path. In the eviction path,
355  * comparisons of refaulted/(evicted+protected) from the first tier and the
356  * rest infer whether pages accessed multiple times through file descriptors
357  * are statistically hot and thus worth protecting.
358  *
359  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
360  * number of categories of the active/inactive LRU when keeping track of
361  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
362  * folio->flags.
363  */
364 #define MAX_NR_TIERS		4U
365 
366 #ifndef __GENERATING_BOUNDS_H
367 
368 struct lruvec;
369 struct page_vma_mapped_walk;
370 
371 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
372 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
373 
374 #ifdef CONFIG_LRU_GEN
375 
376 enum {
377 	LRU_GEN_ANON,
378 	LRU_GEN_FILE,
379 };
380 
381 enum {
382 	LRU_GEN_CORE,
383 	LRU_GEN_MM_WALK,
384 	LRU_GEN_NONLEAF_YOUNG,
385 	NR_LRU_GEN_CAPS
386 };
387 
388 #define MIN_LRU_BATCH		BITS_PER_LONG
389 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
390 
391 /* whether to keep historical stats from evicted generations */
392 #ifdef CONFIG_LRU_GEN_STATS
393 #define NR_HIST_GENS		MAX_NR_GENS
394 #else
395 #define NR_HIST_GENS		1U
396 #endif
397 
398 /*
399  * The youngest generation number is stored in max_seq for both anon and file
400  * types as they are aged on an equal footing. The oldest generation numbers are
401  * stored in min_seq[] separately for anon and file types as clean file pages
402  * can be evicted regardless of swap constraints.
403  *
404  * Normally anon and file min_seq are in sync. But if swapping is constrained,
405  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
406  * min_seq behind.
407  *
408  * The number of pages in each generation is eventually consistent and therefore
409  * can be transiently negative when reset_batch_size() is pending.
410  */
411 struct lru_gen_folio {
412 	/* the aging increments the youngest generation number */
413 	unsigned long max_seq;
414 	/* the eviction increments the oldest generation numbers */
415 	unsigned long min_seq[ANON_AND_FILE];
416 	/* the birth time of each generation in jiffies */
417 	unsigned long timestamps[MAX_NR_GENS];
418 	/* the multi-gen LRU lists, lazily sorted on eviction */
419 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
420 	/* the multi-gen LRU sizes, eventually consistent */
421 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
422 	/* the exponential moving average of refaulted */
423 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
424 	/* the exponential moving average of evicted+protected */
425 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
426 	/* the first tier doesn't need protection, hence the minus one */
427 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
428 	/* can be modified without holding the LRU lock */
429 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
430 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
431 	/* whether the multi-gen LRU is enabled */
432 	bool enabled;
433 #ifdef CONFIG_MEMCG
434 	/* the memcg generation this lru_gen_folio belongs to */
435 	u8 gen;
436 	/* the list segment this lru_gen_folio belongs to */
437 	u8 seg;
438 	/* per-node lru_gen_folio list for global reclaim */
439 	struct hlist_nulls_node list;
440 #endif
441 
442 	ANDROID_KABI_RESERVE(1);
443 	ANDROID_KABI_RESERVE(2);
444 };
445 
446 enum {
447 	MM_LEAF_TOTAL,		/* total leaf entries */
448 	MM_LEAF_OLD,		/* old leaf entries */
449 	MM_LEAF_YOUNG,		/* young leaf entries */
450 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
451 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
452 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
453 	NR_MM_STATS
454 };
455 
456 /* double-buffering Bloom filters */
457 #define NR_BLOOM_FILTERS	2
458 
459 struct lru_gen_mm_state {
460 	/* set to max_seq after each iteration */
461 	unsigned long seq;
462 	/* where the current iteration continues after */
463 	struct list_head *head;
464 	/* where the last iteration ended before */
465 	struct list_head *tail;
466 	/* Bloom filters flip after each iteration */
467 	unsigned long *filters[NR_BLOOM_FILTERS];
468 	/* the mm stats for debugging */
469 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
470 
471 	ANDROID_KABI_RESERVE(1);
472 };
473 
474 struct lru_gen_mm_walk {
475 	/* the lruvec under reclaim */
476 	struct lruvec *lruvec;
477 	/* unstable max_seq from lru_gen_folio */
478 	unsigned long max_seq;
479 	/* the next address within an mm to scan */
480 	unsigned long next_addr;
481 	/* to batch promoted pages */
482 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
483 	/* to batch the mm stats */
484 	int mm_stats[NR_MM_STATS];
485 	/* total batched items */
486 	int batched;
487 	bool can_swap;
488 	bool force_scan;
489 
490 	ANDROID_KABI_RESERVE(1);
491 	ANDROID_KABI_RESERVE(2);
492 };
493 
494 void lru_gen_init_lruvec(struct lruvec *lruvec);
495 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
496 
497 #ifdef CONFIG_MEMCG
498 
499 /*
500  * For each node, memcgs are divided into two generations: the old and the
501  * young. For each generation, memcgs are randomly sharded into multiple bins
502  * to improve scalability. For each bin, the hlist_nulls is virtually divided
503  * into three segments: the head, the tail and the default.
504  *
505  * An onlining memcg is added to the tail of a random bin in the old generation.
506  * The eviction starts at the head of a random bin in the old generation. The
507  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
508  * the old generation, is incremented when all its bins become empty.
509  *
510  * There are four operations:
511  * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
512  *    current generation (old or young) and updates its "seg" to "head";
513  * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
514  *    current generation (old or young) and updates its "seg" to "tail";
515  * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
516  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
517  * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
518  *    young generation, updates its "gen" to "young" and resets its "seg" to
519  *    "default".
520  *
521  * The events that trigger the above operations are:
522  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
523  * 2. The first attempt to reclaim an memcg below low, which triggers
524  *    MEMCG_LRU_TAIL;
525  * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
526  *    which triggers MEMCG_LRU_TAIL;
527  * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
528  *    which triggers MEMCG_LRU_YOUNG;
529  * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
530  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
531  * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
532  *
533  * Note that memcg LRU only applies to global reclaim, and the round-robin
534  * incrementing of their max_seq counters ensures the eventual fairness to all
535  * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
536  */
537 #define MEMCG_NR_GENS	2
538 #define MEMCG_NR_BINS	8
539 
540 struct lru_gen_memcg {
541 	/* the per-node memcg generation counter */
542 	unsigned long seq;
543 	/* each memcg has one lru_gen_folio per node */
544 	unsigned long nr_memcgs[MEMCG_NR_GENS];
545 	/* per-node lru_gen_folio list for global reclaim */
546 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
547 	/* protects the above */
548 	spinlock_t lock;
549 
550 	ANDROID_KABI_RESERVE(1);
551 	ANDROID_KABI_RESERVE(2);
552 };
553 
554 void lru_gen_init_pgdat(struct pglist_data *pgdat);
555 
556 void lru_gen_init_memcg(struct mem_cgroup *memcg);
557 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
558 void lru_gen_online_memcg(struct mem_cgroup *memcg);
559 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
560 void lru_gen_release_memcg(struct mem_cgroup *memcg);
561 void lru_gen_soft_reclaim(struct lruvec *lruvec);
562 
563 #else /* !CONFIG_MEMCG */
564 
565 #define MEMCG_NR_GENS	1
566 
567 struct lru_gen_memcg {
568 };
569 
lru_gen_init_pgdat(struct pglist_data * pgdat)570 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
571 {
572 }
573 
574 #endif /* CONFIG_MEMCG */
575 
576 #else /* !CONFIG_LRU_GEN */
577 
lru_gen_init_pgdat(struct pglist_data * pgdat)578 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
579 {
580 }
581 
lru_gen_init_lruvec(struct lruvec * lruvec)582 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
583 {
584 }
585 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)586 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
587 {
588 }
589 
590 #ifdef CONFIG_MEMCG
591 
lru_gen_init_memcg(struct mem_cgroup * memcg)592 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
593 {
594 }
595 
lru_gen_exit_memcg(struct mem_cgroup * memcg)596 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
597 {
598 }
599 
lru_gen_online_memcg(struct mem_cgroup * memcg)600 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
601 {
602 }
603 
lru_gen_offline_memcg(struct mem_cgroup * memcg)604 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
605 {
606 }
607 
lru_gen_release_memcg(struct mem_cgroup * memcg)608 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
609 {
610 }
611 
lru_gen_soft_reclaim(struct lruvec * lruvec)612 static inline void lru_gen_soft_reclaim(struct lruvec *lruvec)
613 {
614 }
615 
616 #endif /* CONFIG_MEMCG */
617 
618 #endif /* CONFIG_LRU_GEN */
619 
620 struct lruvec {
621 	struct list_head		lists[NR_LRU_LISTS];
622 	/* per lruvec lru_lock for memcg */
623 	spinlock_t			lru_lock;
624 	/*
625 	 * These track the cost of reclaiming one LRU - file or anon -
626 	 * over the other. As the observed cost of reclaiming one LRU
627 	 * increases, the reclaim scan balance tips toward the other.
628 	 */
629 	unsigned long			anon_cost;
630 	unsigned long			file_cost;
631 	/* Non-resident age, driven by LRU movement */
632 	atomic_long_t			nonresident_age;
633 	/* Refaults at the time of last reclaim cycle */
634 	unsigned long			refaults[ANON_AND_FILE];
635 	/* Various lruvec state flags (enum lruvec_flags) */
636 	unsigned long			flags;
637 #ifdef CONFIG_LRU_GEN
638 	/* evictable pages divided into generations */
639 	struct lru_gen_folio		lrugen;
640 	/* to concurrently iterate lru_gen_mm_list */
641 	struct lru_gen_mm_state		mm_state;
642 #endif
643 #ifdef CONFIG_MEMCG
644 	struct pglist_data *pgdat;
645 #endif
646 	ANDROID_VENDOR_DATA(1);
647 	ANDROID_KABI_RESERVE(1);
648 	ANDROID_KABI_RESERVE(2);
649 };
650 
651 /* Isolate unmapped pages */
652 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
653 /* Isolate for asynchronous migration */
654 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
655 /* Isolate unevictable pages */
656 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
657 
658 /* LRU Isolation modes. */
659 typedef unsigned __bitwise isolate_mode_t;
660 
661 enum zone_watermarks {
662 	WMARK_MIN,
663 	WMARK_LOW,
664 	WMARK_HIGH,
665 	WMARK_PROMO,
666 	NR_WMARK
667 };
668 
669 /*
670  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
671  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
672  * it should not contribute to serious fragmentation causing THP allocation
673  * failures.
674  */
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 #define NR_PCP_THP 1
677 #else
678 #define NR_PCP_THP 0
679 #endif
680 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
681 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
682 
683 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
684 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
685 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
686 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
687 
688 /* Fields and list protected by pagesets local_lock in page_alloc.c */
689 struct per_cpu_pages {
690 	spinlock_t lock;	/* Protects lists field */
691 	int count;		/* number of pages in the list */
692 	int high;		/* high watermark, emptying needed */
693 	int batch;		/* chunk size for buddy add/remove */
694 	short free_factor;	/* batch scaling factor during free */
695 #ifdef CONFIG_NUMA
696 	short expire;		/* When 0, remote pagesets are drained */
697 #endif
698 
699 	/* Lists of pages, one per migrate type stored on the pcp-lists */
700 	struct list_head lists[NR_PCP_LISTS];
701 } ____cacheline_aligned_in_smp;
702 
703 struct per_cpu_zonestat {
704 #ifdef CONFIG_SMP
705 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
706 	s8 stat_threshold;
707 #endif
708 #ifdef CONFIG_NUMA
709 	/*
710 	 * Low priority inaccurate counters that are only folded
711 	 * on demand. Use a large type to avoid the overhead of
712 	 * folding during refresh_cpu_vm_stats.
713 	 */
714 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
715 #endif
716 };
717 
718 struct per_cpu_nodestat {
719 	s8 stat_threshold;
720 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
721 };
722 
723 #endif /* !__GENERATING_BOUNDS.H */
724 
725 enum zone_type {
726 	/*
727 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
728 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
729 	 * On architectures where this area covers the whole 32 bit address
730 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
731 	 * DMA addressing constraints. This distinction is important as a 32bit
732 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
733 	 * platforms may need both zones as they support peripherals with
734 	 * different DMA addressing limitations.
735 	 */
736 #ifdef CONFIG_ZONE_DMA
737 	ZONE_DMA,
738 #endif
739 #ifdef CONFIG_ZONE_DMA32
740 	ZONE_DMA32,
741 #endif
742 	/*
743 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
744 	 * performed on pages in ZONE_NORMAL if the DMA devices support
745 	 * transfers to all addressable memory.
746 	 */
747 	ZONE_NORMAL,
748 #ifdef CONFIG_HIGHMEM
749 	/*
750 	 * A memory area that is only addressable by the kernel through
751 	 * mapping portions into its own address space. This is for example
752 	 * used by i386 to allow the kernel to address the memory beyond
753 	 * 900MB. The kernel will set up special mappings (page
754 	 * table entries on i386) for each page that the kernel needs to
755 	 * access.
756 	 */
757 	ZONE_HIGHMEM,
758 #endif
759 	/*
760 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
761 	 * movable pages with few exceptional cases described below. Main use
762 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
763 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
764 	 * to increase the number of THP/huge pages. Notable special cases are:
765 	 *
766 	 * 1. Pinned pages: (long-term) pinning of movable pages might
767 	 *    essentially turn such pages unmovable. Therefore, we do not allow
768 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
769 	 *    faulted, they come from the right zone right away. However, it is
770 	 *    still possible that address space already has pages in
771 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
772 	 *    touches that memory before pinning). In such case we migrate them
773 	 *    to a different zone. When migration fails - pinning fails.
774 	 * 2. memblock allocations: kernelcore/movablecore setups might create
775 	 *    situations where ZONE_MOVABLE contains unmovable allocations
776 	 *    after boot. Memory offlining and allocations fail early.
777 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
778 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
779 	 *    for example, if we have sections that are only partially
780 	 *    populated. Memory offlining and allocations fail early.
781 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
782 	 *    memory offlining, such pages cannot be allocated.
783 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
784 	 *    hotplugged memory blocks might only partially be managed by the
785 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
786 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
787 	 *    some cases (virtio-mem), such pages can be skipped during
788 	 *    memory offlining, however, cannot be moved/allocated. These
789 	 *    techniques might use alloc_contig_range() to hide previously
790 	 *    exposed pages from the buddy again (e.g., to implement some sort
791 	 *    of memory unplug in virtio-mem).
792 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
793 	 *    situations where ZERO_PAGE(0) which is allocated differently
794 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
795 	 *    cannot be migrated.
796 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
797 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
798 	 *    such zone. Such pages cannot be really moved around as they are
799 	 *    self-stored in the range, but they are treated as movable when
800 	 *    the range they describe is about to be offlined.
801 	 *
802 	 * In general, no unmovable allocations that degrade memory offlining
803 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
804 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
805 	 * if has_unmovable_pages() states that there are no unmovable pages,
806 	 * there can be false negatives).
807 	 */
808 	ZONE_MOVABLE,
809 #ifdef CONFIG_ZONE_DEVICE
810 	ZONE_DEVICE,
811 #endif
812 	__MAX_NR_ZONES
813 
814 };
815 
816 #ifndef __GENERATING_BOUNDS_H
817 
818 #define ASYNC_AND_SYNC 2
819 
820 struct zone {
821 	/* Read-mostly fields */
822 
823 	/* zone watermarks, access with *_wmark_pages(zone) macros */
824 	unsigned long _watermark[NR_WMARK];
825 	unsigned long watermark_boost;
826 
827 	unsigned long nr_reserved_highatomic;
828 
829 	/*
830 	 * We don't know if the memory that we're going to allocate will be
831 	 * freeable or/and it will be released eventually, so to avoid totally
832 	 * wasting several GB of ram we must reserve some of the lower zone
833 	 * memory (otherwise we risk to run OOM on the lower zones despite
834 	 * there being tons of freeable ram on the higher zones).  This array is
835 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
836 	 * changes.
837 	 */
838 	long lowmem_reserve[MAX_NR_ZONES];
839 
840 #ifdef CONFIG_NUMA
841 	int node;
842 #endif
843 	struct pglist_data	*zone_pgdat;
844 	struct per_cpu_pages	__percpu *per_cpu_pageset;
845 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
846 	/*
847 	 * the high and batch values are copied to individual pagesets for
848 	 * faster access
849 	 */
850 	int pageset_high;
851 	int pageset_batch;
852 
853 #ifndef CONFIG_SPARSEMEM
854 	/*
855 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
856 	 * In SPARSEMEM, this map is stored in struct mem_section
857 	 */
858 	unsigned long		*pageblock_flags;
859 #endif /* CONFIG_SPARSEMEM */
860 
861 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
862 	unsigned long		zone_start_pfn;
863 
864 	/*
865 	 * spanned_pages is the total pages spanned by the zone, including
866 	 * holes, which is calculated as:
867 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
868 	 *
869 	 * present_pages is physical pages existing within the zone, which
870 	 * is calculated as:
871 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
872 	 *
873 	 * present_early_pages is present pages existing within the zone
874 	 * located on memory available since early boot, excluding hotplugged
875 	 * memory.
876 	 *
877 	 * managed_pages is present pages managed by the buddy system, which
878 	 * is calculated as (reserved_pages includes pages allocated by the
879 	 * bootmem allocator):
880 	 *	managed_pages = present_pages - reserved_pages;
881 	 *
882 	 * cma pages is present pages that are assigned for CMA use
883 	 * (MIGRATE_CMA).
884 	 *
885 	 * So present_pages may be used by memory hotplug or memory power
886 	 * management logic to figure out unmanaged pages by checking
887 	 * (present_pages - managed_pages). And managed_pages should be used
888 	 * by page allocator and vm scanner to calculate all kinds of watermarks
889 	 * and thresholds.
890 	 *
891 	 * Locking rules:
892 	 *
893 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
894 	 * It is a seqlock because it has to be read outside of zone->lock,
895 	 * and it is done in the main allocator path.  But, it is written
896 	 * quite infrequently.
897 	 *
898 	 * The span_seq lock is declared along with zone->lock because it is
899 	 * frequently read in proximity to zone->lock.  It's good to
900 	 * give them a chance of being in the same cacheline.
901 	 *
902 	 * Write access to present_pages at runtime should be protected by
903 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
904 	 * present_pages should use get_online_mems() to get a stable value.
905 	 */
906 	atomic_long_t		managed_pages;
907 	unsigned long		spanned_pages;
908 	unsigned long		present_pages;
909 #if defined(CONFIG_MEMORY_HOTPLUG)
910 	unsigned long		present_early_pages;
911 #endif
912 #ifdef CONFIG_CMA
913 	unsigned long		cma_pages;
914 #endif
915 
916 	const char		*name;
917 
918 #ifdef CONFIG_MEMORY_ISOLATION
919 	/*
920 	 * Number of isolated pageblock. It is used to solve incorrect
921 	 * freepage counting problem due to racy retrieving migratetype
922 	 * of pageblock. Protected by zone->lock.
923 	 */
924 	unsigned long		nr_isolate_pageblock;
925 #endif
926 
927 #ifdef CONFIG_MEMORY_HOTPLUG
928 	/* see spanned/present_pages for more description */
929 	seqlock_t		span_seqlock;
930 #endif
931 
932 	int initialized;
933 
934 	/* Write-intensive fields used from the page allocator */
935 	CACHELINE_PADDING(_pad1_);
936 
937 	/* free areas of different sizes */
938 	struct free_area	free_area[MAX_ORDER];
939 
940 	/* zone flags, see below */
941 	unsigned long		flags;
942 
943 	/* Primarily protects free_area */
944 	spinlock_t		lock;
945 
946 	/* Write-intensive fields used by compaction and vmstats. */
947 	CACHELINE_PADDING(_pad2_);
948 
949 	/*
950 	 * When free pages are below this point, additional steps are taken
951 	 * when reading the number of free pages to avoid per-cpu counter
952 	 * drift allowing watermarks to be breached
953 	 */
954 	unsigned long percpu_drift_mark;
955 
956 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
957 	/* pfn where compaction free scanner should start */
958 	unsigned long		compact_cached_free_pfn;
959 	/* pfn where compaction migration scanner should start */
960 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
961 	unsigned long		compact_init_migrate_pfn;
962 	unsigned long		compact_init_free_pfn;
963 #endif
964 
965 #ifdef CONFIG_COMPACTION
966 	/*
967 	 * On compaction failure, 1<<compact_defer_shift compactions
968 	 * are skipped before trying again. The number attempted since
969 	 * last failure is tracked with compact_considered.
970 	 * compact_order_failed is the minimum compaction failed order.
971 	 */
972 	unsigned int		compact_considered;
973 	unsigned int		compact_defer_shift;
974 	int			compact_order_failed;
975 #endif
976 
977 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
978 	/* Set to true when the PG_migrate_skip bits should be cleared */
979 	bool			compact_blockskip_flush;
980 #endif
981 
982 	bool			contiguous;
983 
984 	CACHELINE_PADDING(_pad3_);
985 	/* Zone statistics */
986 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
987 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
988 
989 	ANDROID_KABI_RESERVE(1);
990 	ANDROID_KABI_RESERVE(2);
991 	ANDROID_KABI_RESERVE(3);
992 	ANDROID_KABI_RESERVE(4);
993 } ____cacheline_internodealigned_in_smp;
994 
995 enum pgdat_flags {
996 	PGDAT_DIRTY,			/* reclaim scanning has recently found
997 					 * many dirty file pages at the tail
998 					 * of the LRU.
999 					 */
1000 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1001 					 * many pages under writeback
1002 					 */
1003 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1004 };
1005 
1006 enum zone_flags {
1007 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1008 					 * Cleared when kswapd is woken.
1009 					 */
1010 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1011 };
1012 
zone_managed_pages(struct zone * zone)1013 static inline unsigned long zone_managed_pages(struct zone *zone)
1014 {
1015 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1016 }
1017 
zone_cma_pages(struct zone * zone)1018 static inline unsigned long zone_cma_pages(struct zone *zone)
1019 {
1020 #ifdef CONFIG_CMA
1021 	return zone->cma_pages;
1022 #else
1023 	return 0;
1024 #endif
1025 }
1026 
zone_end_pfn(const struct zone * zone)1027 static inline unsigned long zone_end_pfn(const struct zone *zone)
1028 {
1029 	return zone->zone_start_pfn + zone->spanned_pages;
1030 }
1031 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1032 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1033 {
1034 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1035 }
1036 
zone_is_initialized(struct zone * zone)1037 static inline bool zone_is_initialized(struct zone *zone)
1038 {
1039 	return zone->initialized;
1040 }
1041 
zone_is_empty(struct zone * zone)1042 static inline bool zone_is_empty(struct zone *zone)
1043 {
1044 	return zone->spanned_pages == 0;
1045 }
1046 
1047 #ifndef BUILD_VDSO32_64
1048 /*
1049  * The zone field is never updated after free_area_init_core()
1050  * sets it, so none of the operations on it need to be atomic.
1051  */
1052 
1053 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1054 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1055 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1056 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1057 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1058 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1059 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1060 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1061 
1062 /*
1063  * Define the bit shifts to access each section.  For non-existent
1064  * sections we define the shift as 0; that plus a 0 mask ensures
1065  * the compiler will optimise away reference to them.
1066  */
1067 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1068 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1069 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1070 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1071 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1072 
1073 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1074 #ifdef NODE_NOT_IN_PAGE_FLAGS
1075 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1076 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1077 						SECTIONS_PGOFF : ZONES_PGOFF)
1078 #else
1079 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1080 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1081 						NODES_PGOFF : ZONES_PGOFF)
1082 #endif
1083 
1084 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1085 
1086 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1087 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1088 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1089 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1090 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1091 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1092 
page_zonenum(const struct page * page)1093 static inline enum zone_type page_zonenum(const struct page *page)
1094 {
1095 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1096 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1097 }
1098 
folio_zonenum(const struct folio * folio)1099 static inline enum zone_type folio_zonenum(const struct folio *folio)
1100 {
1101 	return page_zonenum(&folio->page);
1102 }
1103 
1104 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1105 static inline bool is_zone_device_page(const struct page *page)
1106 {
1107 	return page_zonenum(page) == ZONE_DEVICE;
1108 }
1109 extern void memmap_init_zone_device(struct zone *, unsigned long,
1110 				    unsigned long, struct dev_pagemap *);
1111 #else
is_zone_device_page(const struct page * page)1112 static inline bool is_zone_device_page(const struct page *page)
1113 {
1114 	return false;
1115 }
1116 #endif
1117 
folio_is_zone_device(const struct folio * folio)1118 static inline bool folio_is_zone_device(const struct folio *folio)
1119 {
1120 	return is_zone_device_page(&folio->page);
1121 }
1122 
is_zone_movable_page(const struct page * page)1123 static inline bool is_zone_movable_page(const struct page *page)
1124 {
1125 	return page_zonenum(page) == ZONE_MOVABLE;
1126 }
1127 #endif
1128 
1129 /*
1130  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1131  * intersection with the given zone
1132  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1133 static inline bool zone_intersects(struct zone *zone,
1134 		unsigned long start_pfn, unsigned long nr_pages)
1135 {
1136 	if (zone_is_empty(zone))
1137 		return false;
1138 	if (start_pfn >= zone_end_pfn(zone) ||
1139 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1140 		return false;
1141 
1142 	return true;
1143 }
1144 
1145 /*
1146  * The "priority" of VM scanning is how much of the queues we will scan in one
1147  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1148  * queues ("queue_length >> 12") during an aging round.
1149  */
1150 #define DEF_PRIORITY 12
1151 
1152 /* Maximum number of zones on a zonelist */
1153 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1154 
1155 enum {
1156 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1157 #ifdef CONFIG_NUMA
1158 	/*
1159 	 * The NUMA zonelists are doubled because we need zonelists that
1160 	 * restrict the allocations to a single node for __GFP_THISNODE.
1161 	 */
1162 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1163 #endif
1164 	MAX_ZONELISTS
1165 };
1166 
1167 /*
1168  * This struct contains information about a zone in a zonelist. It is stored
1169  * here to avoid dereferences into large structures and lookups of tables
1170  */
1171 struct zoneref {
1172 	struct zone *zone;	/* Pointer to actual zone */
1173 	int zone_idx;		/* zone_idx(zoneref->zone) */
1174 };
1175 
1176 /*
1177  * One allocation request operates on a zonelist. A zonelist
1178  * is a list of zones, the first one is the 'goal' of the
1179  * allocation, the other zones are fallback zones, in decreasing
1180  * priority.
1181  *
1182  * To speed the reading of the zonelist, the zonerefs contain the zone index
1183  * of the entry being read. Helper functions to access information given
1184  * a struct zoneref are
1185  *
1186  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1187  * zonelist_zone_idx()	- Return the index of the zone for an entry
1188  * zonelist_node_idx()	- Return the index of the node for an entry
1189  */
1190 struct zonelist {
1191 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1192 };
1193 
1194 /*
1195  * The array of struct pages for flatmem.
1196  * It must be declared for SPARSEMEM as well because there are configurations
1197  * that rely on that.
1198  */
1199 extern struct page *mem_map;
1200 
1201 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1202 struct deferred_split {
1203 	spinlock_t split_queue_lock;
1204 	struct list_head split_queue;
1205 	unsigned long split_queue_len;
1206 };
1207 #endif
1208 
1209 /*
1210  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1211  * it's memory layout. On UMA machines there is a single pglist_data which
1212  * describes the whole memory.
1213  *
1214  * Memory statistics and page replacement data structures are maintained on a
1215  * per-zone basis.
1216  */
1217 typedef struct pglist_data {
1218 	/*
1219 	 * node_zones contains just the zones for THIS node. Not all of the
1220 	 * zones may be populated, but it is the full list. It is referenced by
1221 	 * this node's node_zonelists as well as other node's node_zonelists.
1222 	 */
1223 	struct zone node_zones[MAX_NR_ZONES];
1224 
1225 	/*
1226 	 * node_zonelists contains references to all zones in all nodes.
1227 	 * Generally the first zones will be references to this node's
1228 	 * node_zones.
1229 	 */
1230 	struct zonelist node_zonelists[MAX_ZONELISTS];
1231 
1232 	int nr_zones; /* number of populated zones in this node */
1233 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1234 	struct page *node_mem_map;
1235 #ifdef CONFIG_PAGE_EXTENSION
1236 	struct page_ext *node_page_ext;
1237 #endif
1238 #endif
1239 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1240 	/*
1241 	 * Must be held any time you expect node_start_pfn,
1242 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1243 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1244 	 * init.
1245 	 *
1246 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1247 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1248 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1249 	 *
1250 	 * Nests above zone->lock and zone->span_seqlock
1251 	 */
1252 	spinlock_t node_size_lock;
1253 #endif
1254 	unsigned long node_start_pfn;
1255 	unsigned long node_present_pages; /* total number of physical pages */
1256 	unsigned long node_spanned_pages; /* total size of physical page
1257 					     range, including holes */
1258 	int node_id;
1259 	wait_queue_head_t kswapd_wait;
1260 	wait_queue_head_t pfmemalloc_wait;
1261 
1262 	/* workqueues for throttling reclaim for different reasons. */
1263 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1264 
1265 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1266 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1267 					 * when throttling started. */
1268 #ifdef CONFIG_MEMORY_HOTPLUG
1269 	struct mutex kswapd_lock;
1270 #endif
1271 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1272 	struct task_struct *mkswapd[MAX_KSWAPD_THREADS];
1273 	int kswapd_order;
1274 	enum zone_type kswapd_highest_zoneidx;
1275 
1276 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1277 
1278 	ANDROID_OEM_DATA(1);
1279 #ifdef CONFIG_COMPACTION
1280 	int kcompactd_max_order;
1281 	enum zone_type kcompactd_highest_zoneidx;
1282 	wait_queue_head_t kcompactd_wait;
1283 	struct task_struct *kcompactd;
1284 	bool proactive_compact_trigger;
1285 #endif
1286 	/*
1287 	 * This is a per-node reserve of pages that are not available
1288 	 * to userspace allocations.
1289 	 */
1290 	unsigned long		totalreserve_pages;
1291 
1292 #ifdef CONFIG_NUMA
1293 	/*
1294 	 * node reclaim becomes active if more unmapped pages exist.
1295 	 */
1296 	unsigned long		min_unmapped_pages;
1297 	unsigned long		min_slab_pages;
1298 #endif /* CONFIG_NUMA */
1299 
1300 	/* Write-intensive fields used by page reclaim */
1301 	CACHELINE_PADDING(_pad1_);
1302 
1303 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1304 	/*
1305 	 * If memory initialisation on large machines is deferred then this
1306 	 * is the first PFN that needs to be initialised.
1307 	 */
1308 	unsigned long first_deferred_pfn;
1309 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1310 
1311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312 	struct deferred_split deferred_split_queue;
1313 #endif
1314 
1315 #ifdef CONFIG_NUMA_BALANCING
1316 	/* start time in ms of current promote rate limit period */
1317 	unsigned int nbp_rl_start;
1318 	/* number of promote candidate pages at start time of current rate limit period */
1319 	unsigned long nbp_rl_nr_cand;
1320 	/* promote threshold in ms */
1321 	unsigned int nbp_threshold;
1322 	/* start time in ms of current promote threshold adjustment period */
1323 	unsigned int nbp_th_start;
1324 	/*
1325 	 * number of promote candidate pages at stat time of current promote
1326 	 * threshold adjustment period
1327 	 */
1328 	unsigned long nbp_th_nr_cand;
1329 #endif
1330 	/* Fields commonly accessed by the page reclaim scanner */
1331 
1332 	/*
1333 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1334 	 *
1335 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1336 	 */
1337 	struct lruvec		__lruvec;
1338 
1339 	unsigned long		flags;
1340 
1341 #ifdef CONFIG_LRU_GEN
1342 	/* kswap mm walk data */
1343 	struct lru_gen_mm_walk	mm_walk;
1344 	/* lru_gen_folio list */
1345 	struct lru_gen_memcg memcg_lru;
1346 #endif
1347 
1348 	CACHELINE_PADDING(_pad2_);
1349 
1350 	/* Per-node vmstats */
1351 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1352 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1353 #ifdef CONFIG_NUMA
1354 	struct memory_tier __rcu *memtier;
1355 #endif
1356 } pg_data_t;
1357 
1358 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1359 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1360 
1361 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1362 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1363 
pgdat_end_pfn(pg_data_t * pgdat)1364 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1365 {
1366 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1367 }
1368 
1369 #include <linux/memory_hotplug.h>
1370 
1371 void build_all_zonelists(pg_data_t *pgdat);
1372 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1373 		   enum zone_type highest_zoneidx);
1374 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1375 			 int highest_zoneidx, unsigned int alloc_flags,
1376 			 long free_pages);
1377 bool zone_watermark_ok(struct zone *z, unsigned int order,
1378 		unsigned long mark, int highest_zoneidx,
1379 		unsigned int alloc_flags);
1380 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1381 		unsigned long mark, int highest_zoneidx);
1382 /*
1383  * Memory initialization context, use to differentiate memory added by
1384  * the platform statically or via memory hotplug interface.
1385  */
1386 enum meminit_context {
1387 	MEMINIT_EARLY,
1388 	MEMINIT_HOTPLUG,
1389 };
1390 
1391 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1392 				     unsigned long size);
1393 
1394 extern void lruvec_init(struct lruvec *lruvec);
1395 
lruvec_pgdat(struct lruvec * lruvec)1396 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1397 {
1398 #ifdef CONFIG_MEMCG
1399 	return lruvec->pgdat;
1400 #else
1401 	return container_of(lruvec, struct pglist_data, __lruvec);
1402 #endif
1403 }
1404 
1405 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1406 int local_memory_node(int node_id);
1407 #else
local_memory_node(int node_id)1408 static inline int local_memory_node(int node_id) { return node_id; };
1409 #endif
1410 
1411 /*
1412  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1413  */
1414 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1415 
1416 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1417 static inline bool zone_is_zone_device(struct zone *zone)
1418 {
1419 	return zone_idx(zone) == ZONE_DEVICE;
1420 }
1421 #else
zone_is_zone_device(struct zone * zone)1422 static inline bool zone_is_zone_device(struct zone *zone)
1423 {
1424 	return false;
1425 }
1426 #endif
1427 
1428 /*
1429  * Returns true if a zone has pages managed by the buddy allocator.
1430  * All the reclaim decisions have to use this function rather than
1431  * populated_zone(). If the whole zone is reserved then we can easily
1432  * end up with populated_zone() && !managed_zone().
1433  */
managed_zone(struct zone * zone)1434 static inline bool managed_zone(struct zone *zone)
1435 {
1436 	return zone_managed_pages(zone);
1437 }
1438 
1439 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1440 static inline bool populated_zone(struct zone *zone)
1441 {
1442 	return zone->present_pages;
1443 }
1444 
1445 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1446 static inline int zone_to_nid(struct zone *zone)
1447 {
1448 	return zone->node;
1449 }
1450 
zone_set_nid(struct zone * zone,int nid)1451 static inline void zone_set_nid(struct zone *zone, int nid)
1452 {
1453 	zone->node = nid;
1454 }
1455 #else
zone_to_nid(struct zone * zone)1456 static inline int zone_to_nid(struct zone *zone)
1457 {
1458 	return 0;
1459 }
1460 
zone_set_nid(struct zone * zone,int nid)1461 static inline void zone_set_nid(struct zone *zone, int nid) {}
1462 #endif
1463 
1464 extern int movable_zone;
1465 
is_highmem_idx(enum zone_type idx)1466 static inline int is_highmem_idx(enum zone_type idx)
1467 {
1468 #ifdef CONFIG_HIGHMEM
1469 	return (idx == ZONE_HIGHMEM ||
1470 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1471 #else
1472 	return 0;
1473 #endif
1474 }
1475 
1476 /**
1477  * is_highmem - helper function to quickly check if a struct zone is a
1478  *              highmem zone or not.  This is an attempt to keep references
1479  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1480  * @zone: pointer to struct zone variable
1481  * Return: 1 for a highmem zone, 0 otherwise
1482  */
is_highmem(struct zone * zone)1483 static inline int is_highmem(struct zone *zone)
1484 {
1485 	return is_highmem_idx(zone_idx(zone));
1486 }
1487 
1488 #ifdef CONFIG_ZONE_DMA
1489 bool has_managed_dma(void);
1490 #else
has_managed_dma(void)1491 static inline bool has_managed_dma(void)
1492 {
1493 	return false;
1494 }
1495 #endif
1496 
1497 /* These two functions are used to setup the per zone pages min values */
1498 struct ctl_table;
1499 
1500 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1501 		loff_t *);
1502 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1503 		size_t *, loff_t *);
1504 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1505 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1506 		size_t *, loff_t *);
1507 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1508 		void *, size_t *, loff_t *);
1509 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1510 		void *, size_t *, loff_t *);
1511 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1512 		void *, size_t *, loff_t *);
1513 int numa_zonelist_order_handler(struct ctl_table *, int,
1514 		void *, size_t *, loff_t *);
1515 extern int percpu_pagelist_high_fraction;
1516 extern char numa_zonelist_order[];
1517 #define NUMA_ZONELIST_ORDER_LEN	16
1518 
1519 #ifndef CONFIG_NUMA
1520 
1521 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1522 static inline struct pglist_data *NODE_DATA(int nid)
1523 {
1524 	return &contig_page_data;
1525 }
1526 
1527 #else /* CONFIG_NUMA */
1528 
1529 #include <asm/mmzone.h>
1530 
1531 #endif /* !CONFIG_NUMA */
1532 
1533 extern struct pglist_data *first_online_pgdat(void);
1534 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1535 extern struct zone *next_zone(struct zone *zone);
1536 extern int isolate_anon_lru_page(struct page *page);
1537 
1538 /**
1539  * for_each_online_pgdat - helper macro to iterate over all online nodes
1540  * @pgdat: pointer to a pg_data_t variable
1541  */
1542 #define for_each_online_pgdat(pgdat)			\
1543 	for (pgdat = first_online_pgdat();		\
1544 	     pgdat;					\
1545 	     pgdat = next_online_pgdat(pgdat))
1546 /**
1547  * for_each_zone - helper macro to iterate over all memory zones
1548  * @zone: pointer to struct zone variable
1549  *
1550  * The user only needs to declare the zone variable, for_each_zone
1551  * fills it in.
1552  */
1553 #define for_each_zone(zone)			        \
1554 	for (zone = (first_online_pgdat())->node_zones; \
1555 	     zone;					\
1556 	     zone = next_zone(zone))
1557 
1558 #define for_each_populated_zone(zone)		        \
1559 	for (zone = (first_online_pgdat())->node_zones; \
1560 	     zone;					\
1561 	     zone = next_zone(zone))			\
1562 		if (!populated_zone(zone))		\
1563 			; /* do nothing */		\
1564 		else
1565 
zonelist_zone(struct zoneref * zoneref)1566 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1567 {
1568 	return zoneref->zone;
1569 }
1570 
zonelist_zone_idx(struct zoneref * zoneref)1571 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1572 {
1573 	return zoneref->zone_idx;
1574 }
1575 
zonelist_node_idx(struct zoneref * zoneref)1576 static inline int zonelist_node_idx(struct zoneref *zoneref)
1577 {
1578 	return zone_to_nid(zoneref->zone);
1579 }
1580 
1581 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1582 					enum zone_type highest_zoneidx,
1583 					nodemask_t *nodes);
1584 
1585 /**
1586  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1587  * @z: The cursor used as a starting point for the search
1588  * @highest_zoneidx: The zone index of the highest zone to return
1589  * @nodes: An optional nodemask to filter the zonelist with
1590  *
1591  * This function returns the next zone at or below a given zone index that is
1592  * within the allowed nodemask using a cursor as the starting point for the
1593  * search. The zoneref returned is a cursor that represents the current zone
1594  * being examined. It should be advanced by one before calling
1595  * next_zones_zonelist again.
1596  *
1597  * Return: the next zone at or below highest_zoneidx within the allowed
1598  * nodemask using a cursor within a zonelist as a starting point
1599  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1600 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1601 					enum zone_type highest_zoneidx,
1602 					nodemask_t *nodes)
1603 {
1604 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1605 		return z;
1606 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1607 }
1608 
1609 /**
1610  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1611  * @zonelist: The zonelist to search for a suitable zone
1612  * @highest_zoneidx: The zone index of the highest zone to return
1613  * @nodes: An optional nodemask to filter the zonelist with
1614  *
1615  * This function returns the first zone at or below a given zone index that is
1616  * within the allowed nodemask. The zoneref returned is a cursor that can be
1617  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1618  * one before calling.
1619  *
1620  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1621  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1622  * update due to cpuset modification.
1623  *
1624  * Return: Zoneref pointer for the first suitable zone found
1625  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1626 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1627 					enum zone_type highest_zoneidx,
1628 					nodemask_t *nodes)
1629 {
1630 	return next_zones_zonelist(zonelist->_zonerefs,
1631 							highest_zoneidx, nodes);
1632 }
1633 
1634 /**
1635  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1636  * @zone: The current zone in the iterator
1637  * @z: The current pointer within zonelist->_zonerefs being iterated
1638  * @zlist: The zonelist being iterated
1639  * @highidx: The zone index of the highest zone to return
1640  * @nodemask: Nodemask allowed by the allocator
1641  *
1642  * This iterator iterates though all zones at or below a given zone index and
1643  * within a given nodemask
1644  */
1645 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1646 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1647 		zone;							\
1648 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1649 			zone = zonelist_zone(z))
1650 
1651 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1652 	for (zone = z->zone;	\
1653 		zone;							\
1654 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1655 			zone = zonelist_zone(z))
1656 
1657 
1658 /**
1659  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1660  * @zone: The current zone in the iterator
1661  * @z: The current pointer within zonelist->zones being iterated
1662  * @zlist: The zonelist being iterated
1663  * @highidx: The zone index of the highest zone to return
1664  *
1665  * This iterator iterates though all zones at or below a given zone index.
1666  */
1667 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1668 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1669 
1670 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1671 static inline bool movable_only_nodes(nodemask_t *nodes)
1672 {
1673 	struct zonelist *zonelist;
1674 	struct zoneref *z;
1675 	int nid;
1676 
1677 	if (nodes_empty(*nodes))
1678 		return false;
1679 
1680 	/*
1681 	 * We can chose arbitrary node from the nodemask to get a
1682 	 * zonelist as they are interlinked. We just need to find
1683 	 * at least one zone that can satisfy kernel allocations.
1684 	 */
1685 	nid = first_node(*nodes);
1686 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1687 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1688 	return (!z->zone) ? true : false;
1689 }
1690 
1691 
1692 #ifdef CONFIG_SPARSEMEM
1693 #include <asm/sparsemem.h>
1694 #endif
1695 
1696 #ifdef CONFIG_FLATMEM
1697 #define pfn_to_nid(pfn)		(0)
1698 #endif
1699 
1700 #ifdef CONFIG_SPARSEMEM
1701 
1702 /*
1703  * PA_SECTION_SHIFT		physical address to/from section number
1704  * PFN_SECTION_SHIFT		pfn to/from section number
1705  */
1706 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1707 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1708 
1709 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1710 
1711 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1712 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1713 
1714 #define SECTION_BLOCKFLAGS_BITS \
1715 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1716 
1717 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1718 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1719 #endif
1720 
pfn_to_section_nr(unsigned long pfn)1721 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1722 {
1723 	return pfn >> PFN_SECTION_SHIFT;
1724 }
section_nr_to_pfn(unsigned long sec)1725 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1726 {
1727 	return sec << PFN_SECTION_SHIFT;
1728 }
1729 
1730 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1731 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1732 
1733 #define SUBSECTION_SHIFT 21
1734 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1735 
1736 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1737 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1738 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1739 
1740 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1741 #error Subsection size exceeds section size
1742 #else
1743 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1744 #endif
1745 
1746 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1747 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1748 
1749 struct mem_section_usage {
1750 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1751 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1752 #endif
1753 	/* See declaration of similar field in struct zone */
1754 	unsigned long pageblock_flags[0];
1755 };
1756 
1757 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1758 
1759 struct page;
1760 struct page_ext;
1761 struct mem_section {
1762 	/*
1763 	 * This is, logically, a pointer to an array of struct
1764 	 * pages.  However, it is stored with some other magic.
1765 	 * (see sparse.c::sparse_init_one_section())
1766 	 *
1767 	 * Additionally during early boot we encode node id of
1768 	 * the location of the section here to guide allocation.
1769 	 * (see sparse.c::memory_present())
1770 	 *
1771 	 * Making it a UL at least makes someone do a cast
1772 	 * before using it wrong.
1773 	 */
1774 	unsigned long section_mem_map;
1775 
1776 	struct mem_section_usage *usage;
1777 #ifdef CONFIG_PAGE_EXTENSION
1778 	/*
1779 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1780 	 * section. (see page_ext.h about this.)
1781 	 */
1782 	struct page_ext *page_ext;
1783 	unsigned long pad;
1784 #endif
1785 	/*
1786 	 * WARNING: mem_section must be a power-of-2 in size for the
1787 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1788 	 */
1789 };
1790 
1791 #ifdef CONFIG_SPARSEMEM_EXTREME
1792 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1793 #else
1794 #define SECTIONS_PER_ROOT	1
1795 #endif
1796 
1797 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1798 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1799 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1800 
1801 #ifdef CONFIG_SPARSEMEM_EXTREME
1802 extern struct mem_section **mem_section;
1803 #else
1804 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1805 #endif
1806 
section_to_usemap(struct mem_section * ms)1807 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1808 {
1809 	return ms->usage->pageblock_flags;
1810 }
1811 
__nr_to_section(unsigned long nr)1812 static inline struct mem_section *__nr_to_section(unsigned long nr)
1813 {
1814 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1815 
1816 	if (unlikely(root >= NR_SECTION_ROOTS))
1817 		return NULL;
1818 
1819 #ifdef CONFIG_SPARSEMEM_EXTREME
1820 	if (!mem_section || !mem_section[root])
1821 		return NULL;
1822 #endif
1823 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1824 }
1825 extern size_t mem_section_usage_size(void);
1826 
1827 /*
1828  * We use the lower bits of the mem_map pointer to store
1829  * a little bit of information.  The pointer is calculated
1830  * as mem_map - section_nr_to_pfn(pnum).  The result is
1831  * aligned to the minimum alignment of the two values:
1832  *   1. All mem_map arrays are page-aligned.
1833  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1834  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1835  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1836  *      worst combination is powerpc with 256k pages,
1837  *      which results in PFN_SECTION_SHIFT equal 6.
1838  * To sum it up, at least 6 bits are available on all architectures.
1839  * However, we can exceed 6 bits on some other architectures except
1840  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1841  * with the worst case of 64K pages on arm64) if we make sure the
1842  * exceeded bit is not applicable to powerpc.
1843  */
1844 enum {
1845 	SECTION_MARKED_PRESENT_BIT,
1846 	SECTION_HAS_MEM_MAP_BIT,
1847 	SECTION_IS_ONLINE_BIT,
1848 	SECTION_IS_EARLY_BIT,
1849 #ifdef CONFIG_ZONE_DEVICE
1850 	SECTION_TAINT_ZONE_DEVICE_BIT,
1851 #endif
1852 	SECTION_MAP_LAST_BIT,
1853 };
1854 
1855 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1856 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1857 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1858 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1859 #ifdef CONFIG_ZONE_DEVICE
1860 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1861 #endif
1862 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1863 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1864 
__section_mem_map_addr(struct mem_section * section)1865 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1866 {
1867 	unsigned long map = section->section_mem_map;
1868 	map &= SECTION_MAP_MASK;
1869 	return (struct page *)map;
1870 }
1871 
present_section(struct mem_section * section)1872 static inline int present_section(struct mem_section *section)
1873 {
1874 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1875 }
1876 
present_section_nr(unsigned long nr)1877 static inline int present_section_nr(unsigned long nr)
1878 {
1879 	return present_section(__nr_to_section(nr));
1880 }
1881 
valid_section(struct mem_section * section)1882 static inline int valid_section(struct mem_section *section)
1883 {
1884 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1885 }
1886 
early_section(struct mem_section * section)1887 static inline int early_section(struct mem_section *section)
1888 {
1889 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1890 }
1891 
valid_section_nr(unsigned long nr)1892 static inline int valid_section_nr(unsigned long nr)
1893 {
1894 	return valid_section(__nr_to_section(nr));
1895 }
1896 
online_section(struct mem_section * section)1897 static inline int online_section(struct mem_section *section)
1898 {
1899 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1900 }
1901 
1902 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1903 static inline int online_device_section(struct mem_section *section)
1904 {
1905 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1906 
1907 	return section && ((section->section_mem_map & flags) == flags);
1908 }
1909 #else
online_device_section(struct mem_section * section)1910 static inline int online_device_section(struct mem_section *section)
1911 {
1912 	return 0;
1913 }
1914 #endif
1915 
online_section_nr(unsigned long nr)1916 static inline int online_section_nr(unsigned long nr)
1917 {
1918 	return online_section(__nr_to_section(nr));
1919 }
1920 
1921 #ifdef CONFIG_MEMORY_HOTPLUG
1922 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1923 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1924 #endif
1925 
__pfn_to_section(unsigned long pfn)1926 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1927 {
1928 	return __nr_to_section(pfn_to_section_nr(pfn));
1929 }
1930 
1931 extern unsigned long __highest_present_section_nr;
1932 
subsection_map_index(unsigned long pfn)1933 static inline int subsection_map_index(unsigned long pfn)
1934 {
1935 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1936 }
1937 
1938 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1939 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1940 {
1941 	int idx = subsection_map_index(pfn);
1942 
1943 	return test_bit(idx, ms->usage->subsection_map);
1944 }
1945 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1946 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1947 {
1948 	return 1;
1949 }
1950 #endif
1951 
1952 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1953 /**
1954  * pfn_valid - check if there is a valid memory map entry for a PFN
1955  * @pfn: the page frame number to check
1956  *
1957  * Check if there is a valid memory map entry aka struct page for the @pfn.
1958  * Note, that availability of the memory map entry does not imply that
1959  * there is actual usable memory at that @pfn. The struct page may
1960  * represent a hole or an unusable page frame.
1961  *
1962  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1963  */
pfn_valid(unsigned long pfn)1964 static inline int pfn_valid(unsigned long pfn)
1965 {
1966 	struct mem_section *ms;
1967 
1968 	/*
1969 	 * Ensure the upper PAGE_SHIFT bits are clear in the
1970 	 * pfn. Else it might lead to false positives when
1971 	 * some of the upper bits are set, but the lower bits
1972 	 * match a valid pfn.
1973 	 */
1974 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1975 		return 0;
1976 
1977 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1978 		return 0;
1979 	ms = __pfn_to_section(pfn);
1980 	if (!valid_section(ms))
1981 		return 0;
1982 	/*
1983 	 * Traditionally early sections always returned pfn_valid() for
1984 	 * the entire section-sized span.
1985 	 */
1986 	return early_section(ms) || pfn_section_valid(ms, pfn);
1987 }
1988 #endif
1989 
pfn_in_present_section(unsigned long pfn)1990 static inline int pfn_in_present_section(unsigned long pfn)
1991 {
1992 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1993 		return 0;
1994 	return present_section(__pfn_to_section(pfn));
1995 }
1996 
next_present_section_nr(unsigned long section_nr)1997 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1998 {
1999 	while (++section_nr <= __highest_present_section_nr) {
2000 		if (present_section_nr(section_nr))
2001 			return section_nr;
2002 	}
2003 
2004 	return -1;
2005 }
2006 
2007 /*
2008  * These are _only_ used during initialisation, therefore they
2009  * can use __initdata ...  They could have names to indicate
2010  * this restriction.
2011  */
2012 #ifdef CONFIG_NUMA
2013 #define pfn_to_nid(pfn)							\
2014 ({									\
2015 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2016 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2017 })
2018 #else
2019 #define pfn_to_nid(pfn)		(0)
2020 #endif
2021 
2022 void sparse_init(void);
2023 #else
2024 #define sparse_init()	do {} while (0)
2025 #define sparse_index_init(_sec, _nid)  do {} while (0)
2026 #define pfn_in_present_section pfn_valid
2027 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2028 #endif /* CONFIG_SPARSEMEM */
2029 
2030 #endif /* !__GENERATING_BOUNDS.H */
2031 #endif /* !__ASSEMBLY__ */
2032 #endif /* _LINUX_MMZONE_H */
2033