1 /*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX "thin"
26
27 /*
28 * Tunable constants
29 */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40 /*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48 * Device id is restricted to 24 bits.
49 */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * Key building.
114 */
115 enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118 };
119
build_key(struct dm_thin_device * td,enum lock_space ls,dm_block_t b,dm_block_t e,struct dm_cell_key * key)120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127 }
128
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131 {
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137 {
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149 };
150
throttle_init(struct throttle * t)151 static void throttle_init(struct throttle *t)
152 {
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155 }
156
throttle_work_start(struct throttle * t)157 static void throttle_work_start(struct throttle *t)
158 {
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
throttle_work_update(struct throttle * t)162 static void throttle_work_update(struct throttle *t)
163 {
164 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168 }
169
throttle_work_complete(struct throttle * t)170 static void throttle_work_complete(struct throttle *t)
171 {
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176 }
177
throttle_lock(struct throttle * t)178 static void throttle_lock(struct throttle *t)
179 {
180 down_read(&t->lock);
181 }
182
throttle_unlock(struct throttle * t)183 static void throttle_unlock(struct throttle *t)
184 {
185 up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195 struct dm_thin_new_mapping;
196
197 /*
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
199 */
200 enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203
204 /*
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 */
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
209
210 PM_FAIL, /* all I/O fails */
211 };
212
213 struct pool_features {
214 enum pool_mode mode;
215
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
232
233 struct mapped_device *pool_md;
234 struct block_device *data_dev;
235 struct block_device *md_dev;
236 struct dm_pool_metadata *pmd;
237
238 dm_block_t low_water_blocks;
239 uint32_t sectors_per_block;
240 int sectors_per_block_shift;
241
242 struct pool_features pf;
243 bool low_water_triggered:1; /* A dm event has been sent */
244 bool suspended:1;
245 bool out_of_data_space:1;
246
247 struct dm_bio_prison *prison;
248 struct dm_kcopyd_client *copier;
249
250 struct work_struct worker;
251 struct workqueue_struct *wq;
252 struct throttle throttle;
253 struct delayed_work waker;
254 struct delayed_work no_space_timeout;
255
256 unsigned long last_commit_jiffies;
257 unsigned int ref_count;
258
259 spinlock_t lock;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_flush_completions;
262 struct list_head prepared_mappings;
263 struct list_head prepared_discards;
264 struct list_head prepared_discards_pt2;
265 struct list_head active_thins;
266
267 struct dm_deferred_set *shared_read_ds;
268 struct dm_deferred_set *all_io_ds;
269
270 struct dm_thin_new_mapping *next_mapping;
271
272 process_bio_fn process_bio;
273 process_bio_fn process_discard;
274
275 process_cell_fn process_cell;
276 process_cell_fn process_discard_cell;
277
278 process_mapping_fn process_prepared_mapping;
279 process_mapping_fn process_prepared_discard;
280 process_mapping_fn process_prepared_discard_pt2;
281
282 struct dm_bio_prison_cell **cell_sort_array;
283
284 mempool_t mapping_pool;
285 };
286
287 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
288
get_pool_mode(struct pool * pool)289 static enum pool_mode get_pool_mode(struct pool *pool)
290 {
291 return pool->pf.mode;
292 }
293
notify_of_pool_mode_change(struct pool * pool)294 static void notify_of_pool_mode_change(struct pool *pool)
295 {
296 const char *descs[] = {
297 "write",
298 "out-of-data-space",
299 "read-only",
300 "read-only",
301 "fail"
302 };
303 const char *extra_desc = NULL;
304 enum pool_mode mode = get_pool_mode(pool);
305
306 if (mode == PM_OUT_OF_DATA_SPACE) {
307 if (!pool->pf.error_if_no_space)
308 extra_desc = " (queue IO)";
309 else
310 extra_desc = " (error IO)";
311 }
312
313 dm_table_event(pool->ti->table);
314 DMINFO("%s: switching pool to %s%s mode",
315 dm_device_name(pool->pool_md),
316 descs[(int)mode], extra_desc ? : "");
317 }
318
319 /*
320 * Target context for a pool.
321 */
322 struct pool_c {
323 struct dm_target *ti;
324 struct pool *pool;
325 struct dm_dev *data_dev;
326 struct dm_dev *metadata_dev;
327
328 dm_block_t low_water_blocks;
329 struct pool_features requested_pf; /* Features requested during table load */
330 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
331 };
332
333 /*
334 * Target context for a thin.
335 */
336 struct thin_c {
337 struct list_head list;
338 struct dm_dev *pool_dev;
339 struct dm_dev *origin_dev;
340 sector_t origin_size;
341 dm_thin_id dev_id;
342
343 struct pool *pool;
344 struct dm_thin_device *td;
345 struct mapped_device *thin_md;
346
347 bool requeue_mode:1;
348 spinlock_t lock;
349 struct list_head deferred_cells;
350 struct bio_list deferred_bio_list;
351 struct bio_list retry_on_resume_list;
352 struct rb_root sort_bio_list; /* sorted list of deferred bios */
353
354 /*
355 * Ensures the thin is not destroyed until the worker has finished
356 * iterating the active_thins list.
357 */
358 refcount_t refcount;
359 struct completion can_destroy;
360 };
361
362 /*----------------------------------------------------------------*/
363
block_size_is_power_of_two(struct pool * pool)364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366 return pool->sectors_per_block_shift >= 0;
367 }
368
block_to_sectors(struct pool * pool,dm_block_t b)369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371 return block_size_is_power_of_two(pool) ?
372 (b << pool->sectors_per_block_shift) :
373 (b * pool->sectors_per_block);
374 }
375
376 /*----------------------------------------------------------------*/
377
378 struct discard_op {
379 struct thin_c *tc;
380 struct blk_plug plug;
381 struct bio *parent_bio;
382 struct bio *bio;
383 };
384
begin_discard(struct discard_op * op,struct thin_c * tc,struct bio * parent)385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387 BUG_ON(!parent);
388
389 op->tc = tc;
390 blk_start_plug(&op->plug);
391 op->parent_bio = parent;
392 op->bio = NULL;
393 }
394
issue_discard(struct discard_op * op,dm_block_t data_b,dm_block_t data_e)395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397 struct thin_c *tc = op->tc;
398 sector_t s = block_to_sectors(tc->pool, data_b);
399 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400
401 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
402 }
403
end_discard(struct discard_op * op,int r)404 static void end_discard(struct discard_op *op, int r)
405 {
406 if (op->bio) {
407 /*
408 * Even if one of the calls to issue_discard failed, we
409 * need to wait for the chain to complete.
410 */
411 bio_chain(op->bio, op->parent_bio);
412 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
413 submit_bio(op->bio);
414 }
415
416 blk_finish_plug(&op->plug);
417
418 /*
419 * Even if r is set, there could be sub discards in flight that we
420 * need to wait for.
421 */
422 if (r && !op->parent_bio->bi_status)
423 op->parent_bio->bi_status = errno_to_blk_status(r);
424 bio_endio(op->parent_bio);
425 }
426
427 /*----------------------------------------------------------------*/
428
429 /*
430 * wake_worker() is used when new work is queued and when pool_resume is
431 * ready to continue deferred IO processing.
432 */
wake_worker(struct pool * pool)433 static void wake_worker(struct pool *pool)
434 {
435 queue_work(pool->wq, &pool->worker);
436 }
437
438 /*----------------------------------------------------------------*/
439
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)440 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
441 struct dm_bio_prison_cell **cell_result)
442 {
443 int r;
444 struct dm_bio_prison_cell *cell_prealloc;
445
446 /*
447 * Allocate a cell from the prison's mempool.
448 * This might block but it can't fail.
449 */
450 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
451
452 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
453 if (r)
454 /*
455 * We reused an old cell; we can get rid of
456 * the new one.
457 */
458 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
459
460 return r;
461 }
462
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)463 static void cell_release(struct pool *pool,
464 struct dm_bio_prison_cell *cell,
465 struct bio_list *bios)
466 {
467 dm_cell_release(pool->prison, cell, bios);
468 dm_bio_prison_free_cell(pool->prison, cell);
469 }
470
cell_visit_release(struct pool * pool,void (* fn)(void *,struct dm_bio_prison_cell *),void * context,struct dm_bio_prison_cell * cell)471 static void cell_visit_release(struct pool *pool,
472 void (*fn)(void *, struct dm_bio_prison_cell *),
473 void *context,
474 struct dm_bio_prison_cell *cell)
475 {
476 dm_cell_visit_release(pool->prison, fn, context, cell);
477 dm_bio_prison_free_cell(pool->prison, cell);
478 }
479
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)480 static void cell_release_no_holder(struct pool *pool,
481 struct dm_bio_prison_cell *cell,
482 struct bio_list *bios)
483 {
484 dm_cell_release_no_holder(pool->prison, cell, bios);
485 dm_bio_prison_free_cell(pool->prison, cell);
486 }
487
cell_error_with_code(struct pool * pool,struct dm_bio_prison_cell * cell,blk_status_t error_code)488 static void cell_error_with_code(struct pool *pool,
489 struct dm_bio_prison_cell *cell, blk_status_t error_code)
490 {
491 dm_cell_error(pool->prison, cell, error_code);
492 dm_bio_prison_free_cell(pool->prison, cell);
493 }
494
get_pool_io_error_code(struct pool * pool)495 static blk_status_t get_pool_io_error_code(struct pool *pool)
496 {
497 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
498 }
499
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)500 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
501 {
502 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
503 }
504
cell_success(struct pool * pool,struct dm_bio_prison_cell * cell)505 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
506 {
507 cell_error_with_code(pool, cell, 0);
508 }
509
cell_requeue(struct pool * pool,struct dm_bio_prison_cell * cell)510 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
511 {
512 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
513 }
514
515 /*----------------------------------------------------------------*/
516
517 /*
518 * A global list of pools that uses a struct mapped_device as a key.
519 */
520 static struct dm_thin_pool_table {
521 struct mutex mutex;
522 struct list_head pools;
523 } dm_thin_pool_table;
524
pool_table_init(void)525 static void pool_table_init(void)
526 {
527 mutex_init(&dm_thin_pool_table.mutex);
528 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
529 }
530
pool_table_exit(void)531 static void pool_table_exit(void)
532 {
533 mutex_destroy(&dm_thin_pool_table.mutex);
534 }
535
__pool_table_insert(struct pool * pool)536 static void __pool_table_insert(struct pool *pool)
537 {
538 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
539 list_add(&pool->list, &dm_thin_pool_table.pools);
540 }
541
__pool_table_remove(struct pool * pool)542 static void __pool_table_remove(struct pool *pool)
543 {
544 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
545 list_del(&pool->list);
546 }
547
__pool_table_lookup(struct mapped_device * md)548 static struct pool *__pool_table_lookup(struct mapped_device *md)
549 {
550 struct pool *pool = NULL, *tmp;
551
552 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
553
554 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
555 if (tmp->pool_md == md) {
556 pool = tmp;
557 break;
558 }
559 }
560
561 return pool;
562 }
563
__pool_table_lookup_metadata_dev(struct block_device * md_dev)564 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
565 {
566 struct pool *pool = NULL, *tmp;
567
568 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
569
570 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
571 if (tmp->md_dev == md_dev) {
572 pool = tmp;
573 break;
574 }
575 }
576
577 return pool;
578 }
579
580 /*----------------------------------------------------------------*/
581
582 struct dm_thin_endio_hook {
583 struct thin_c *tc;
584 struct dm_deferred_entry *shared_read_entry;
585 struct dm_deferred_entry *all_io_entry;
586 struct dm_thin_new_mapping *overwrite_mapping;
587 struct rb_node rb_node;
588 struct dm_bio_prison_cell *cell;
589 };
590
__merge_bio_list(struct bio_list * bios,struct bio_list * master)591 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
592 {
593 bio_list_merge(bios, master);
594 bio_list_init(master);
595 }
596
error_bio_list(struct bio_list * bios,blk_status_t error)597 static void error_bio_list(struct bio_list *bios, blk_status_t error)
598 {
599 struct bio *bio;
600
601 while ((bio = bio_list_pop(bios))) {
602 bio->bi_status = error;
603 bio_endio(bio);
604 }
605 }
606
error_thin_bio_list(struct thin_c * tc,struct bio_list * master,blk_status_t error)607 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
608 blk_status_t error)
609 {
610 struct bio_list bios;
611
612 bio_list_init(&bios);
613
614 spin_lock_irq(&tc->lock);
615 __merge_bio_list(&bios, master);
616 spin_unlock_irq(&tc->lock);
617
618 error_bio_list(&bios, error);
619 }
620
requeue_deferred_cells(struct thin_c * tc)621 static void requeue_deferred_cells(struct thin_c *tc)
622 {
623 struct pool *pool = tc->pool;
624 struct list_head cells;
625 struct dm_bio_prison_cell *cell, *tmp;
626
627 INIT_LIST_HEAD(&cells);
628
629 spin_lock_irq(&tc->lock);
630 list_splice_init(&tc->deferred_cells, &cells);
631 spin_unlock_irq(&tc->lock);
632
633 list_for_each_entry_safe(cell, tmp, &cells, user_list)
634 cell_requeue(pool, cell);
635 }
636
requeue_io(struct thin_c * tc)637 static void requeue_io(struct thin_c *tc)
638 {
639 struct bio_list bios;
640
641 bio_list_init(&bios);
642
643 spin_lock_irq(&tc->lock);
644 __merge_bio_list(&bios, &tc->deferred_bio_list);
645 __merge_bio_list(&bios, &tc->retry_on_resume_list);
646 spin_unlock_irq(&tc->lock);
647
648 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
649 requeue_deferred_cells(tc);
650 }
651
error_retry_list_with_code(struct pool * pool,blk_status_t error)652 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
653 {
654 struct thin_c *tc;
655
656 rcu_read_lock();
657 list_for_each_entry_rcu(tc, &pool->active_thins, list)
658 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
659 rcu_read_unlock();
660 }
661
error_retry_list(struct pool * pool)662 static void error_retry_list(struct pool *pool)
663 {
664 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
665 }
666
667 /*
668 * This section of code contains the logic for processing a thin device's IO.
669 * Much of the code depends on pool object resources (lists, workqueues, etc)
670 * but most is exclusively called from the thin target rather than the thin-pool
671 * target.
672 */
673
get_bio_block(struct thin_c * tc,struct bio * bio)674 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
675 {
676 struct pool *pool = tc->pool;
677 sector_t block_nr = bio->bi_iter.bi_sector;
678
679 if (block_size_is_power_of_two(pool))
680 block_nr >>= pool->sectors_per_block_shift;
681 else
682 (void) sector_div(block_nr, pool->sectors_per_block);
683
684 return block_nr;
685 }
686
687 /*
688 * Returns the _complete_ blocks that this bio covers.
689 */
get_bio_block_range(struct thin_c * tc,struct bio * bio,dm_block_t * begin,dm_block_t * end)690 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
691 dm_block_t *begin, dm_block_t *end)
692 {
693 struct pool *pool = tc->pool;
694 sector_t b = bio->bi_iter.bi_sector;
695 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
696
697 b += pool->sectors_per_block - 1ull; /* so we round up */
698
699 if (block_size_is_power_of_two(pool)) {
700 b >>= pool->sectors_per_block_shift;
701 e >>= pool->sectors_per_block_shift;
702 } else {
703 (void) sector_div(b, pool->sectors_per_block);
704 (void) sector_div(e, pool->sectors_per_block);
705 }
706
707 if (e < b)
708 /* Can happen if the bio is within a single block. */
709 e = b;
710
711 *begin = b;
712 *end = e;
713 }
714
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)715 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
716 {
717 struct pool *pool = tc->pool;
718 sector_t bi_sector = bio->bi_iter.bi_sector;
719
720 bio_set_dev(bio, tc->pool_dev->bdev);
721 if (block_size_is_power_of_two(pool))
722 bio->bi_iter.bi_sector =
723 (block << pool->sectors_per_block_shift) |
724 (bi_sector & (pool->sectors_per_block - 1));
725 else
726 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
727 sector_div(bi_sector, pool->sectors_per_block);
728 }
729
remap_to_origin(struct thin_c * tc,struct bio * bio)730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
731 {
732 bio_set_dev(bio, tc->origin_dev->bdev);
733 }
734
bio_triggers_commit(struct thin_c * tc,struct bio * bio)735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
736 {
737 return op_is_flush(bio->bi_opf) &&
738 dm_thin_changed_this_transaction(tc->td);
739 }
740
inc_all_io_entry(struct pool * pool,struct bio * bio)741 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
742 {
743 struct dm_thin_endio_hook *h;
744
745 if (bio_op(bio) == REQ_OP_DISCARD)
746 return;
747
748 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
749 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
750 }
751
issue(struct thin_c * tc,struct bio * bio)752 static void issue(struct thin_c *tc, struct bio *bio)
753 {
754 struct pool *pool = tc->pool;
755
756 if (!bio_triggers_commit(tc, bio)) {
757 dm_submit_bio_remap(bio, NULL);
758 return;
759 }
760
761 /*
762 * Complete bio with an error if earlier I/O caused changes to
763 * the metadata that can't be committed e.g, due to I/O errors
764 * on the metadata device.
765 */
766 if (dm_thin_aborted_changes(tc->td)) {
767 bio_io_error(bio);
768 return;
769 }
770
771 /*
772 * Batch together any bios that trigger commits and then issue a
773 * single commit for them in process_deferred_bios().
774 */
775 spin_lock_irq(&pool->lock);
776 bio_list_add(&pool->deferred_flush_bios, bio);
777 spin_unlock_irq(&pool->lock);
778 }
779
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)780 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
781 {
782 remap_to_origin(tc, bio);
783 issue(tc, bio);
784 }
785
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)786 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
787 dm_block_t block)
788 {
789 remap(tc, bio, block);
790 issue(tc, bio);
791 }
792
793 /*----------------------------------------------------------------*/
794
795 /*
796 * Bio endio functions.
797 */
798 struct dm_thin_new_mapping {
799 struct list_head list;
800
801 bool pass_discard:1;
802 bool maybe_shared:1;
803
804 /*
805 * Track quiescing, copying and zeroing preparation actions. When this
806 * counter hits zero the block is prepared and can be inserted into the
807 * btree.
808 */
809 atomic_t prepare_actions;
810
811 blk_status_t status;
812 struct thin_c *tc;
813 dm_block_t virt_begin, virt_end;
814 dm_block_t data_block;
815 struct dm_bio_prison_cell *cell;
816
817 /*
818 * If the bio covers the whole area of a block then we can avoid
819 * zeroing or copying. Instead this bio is hooked. The bio will
820 * still be in the cell, so care has to be taken to avoid issuing
821 * the bio twice.
822 */
823 struct bio *bio;
824 bio_end_io_t *saved_bi_end_io;
825 };
826
__complete_mapping_preparation(struct dm_thin_new_mapping * m)827 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
828 {
829 struct pool *pool = m->tc->pool;
830
831 if (atomic_dec_and_test(&m->prepare_actions)) {
832 list_add_tail(&m->list, &pool->prepared_mappings);
833 wake_worker(pool);
834 }
835 }
836
complete_mapping_preparation(struct dm_thin_new_mapping * m)837 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
838 {
839 unsigned long flags;
840 struct pool *pool = m->tc->pool;
841
842 spin_lock_irqsave(&pool->lock, flags);
843 __complete_mapping_preparation(m);
844 spin_unlock_irqrestore(&pool->lock, flags);
845 }
846
copy_complete(int read_err,unsigned long write_err,void * context)847 static void copy_complete(int read_err, unsigned long write_err, void *context)
848 {
849 struct dm_thin_new_mapping *m = context;
850
851 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
852 complete_mapping_preparation(m);
853 }
854
overwrite_endio(struct bio * bio)855 static void overwrite_endio(struct bio *bio)
856 {
857 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
858 struct dm_thin_new_mapping *m = h->overwrite_mapping;
859
860 bio->bi_end_io = m->saved_bi_end_io;
861
862 m->status = bio->bi_status;
863 complete_mapping_preparation(m);
864 }
865
866 /*----------------------------------------------------------------*/
867
868 /*
869 * Workqueue.
870 */
871
872 /*
873 * Prepared mapping jobs.
874 */
875
876 /*
877 * This sends the bios in the cell, except the original holder, back
878 * to the deferred_bios list.
879 */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)880 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
881 {
882 struct pool *pool = tc->pool;
883 unsigned long flags;
884 int has_work;
885
886 spin_lock_irqsave(&tc->lock, flags);
887 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
888 has_work = !bio_list_empty(&tc->deferred_bio_list);
889 spin_unlock_irqrestore(&tc->lock, flags);
890
891 if (has_work)
892 wake_worker(pool);
893 }
894
895 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
896
897 struct remap_info {
898 struct thin_c *tc;
899 struct bio_list defer_bios;
900 struct bio_list issue_bios;
901 };
902
__inc_remap_and_issue_cell(void * context,struct dm_bio_prison_cell * cell)903 static void __inc_remap_and_issue_cell(void *context,
904 struct dm_bio_prison_cell *cell)
905 {
906 struct remap_info *info = context;
907 struct bio *bio;
908
909 while ((bio = bio_list_pop(&cell->bios))) {
910 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
911 bio_list_add(&info->defer_bios, bio);
912 else {
913 inc_all_io_entry(info->tc->pool, bio);
914
915 /*
916 * We can't issue the bios with the bio prison lock
917 * held, so we add them to a list to issue on
918 * return from this function.
919 */
920 bio_list_add(&info->issue_bios, bio);
921 }
922 }
923 }
924
inc_remap_and_issue_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)925 static void inc_remap_and_issue_cell(struct thin_c *tc,
926 struct dm_bio_prison_cell *cell,
927 dm_block_t block)
928 {
929 struct bio *bio;
930 struct remap_info info;
931
932 info.tc = tc;
933 bio_list_init(&info.defer_bios);
934 bio_list_init(&info.issue_bios);
935
936 /*
937 * We have to be careful to inc any bios we're about to issue
938 * before the cell is released, and avoid a race with new bios
939 * being added to the cell.
940 */
941 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
942 &info, cell);
943
944 while ((bio = bio_list_pop(&info.defer_bios)))
945 thin_defer_bio(tc, bio);
946
947 while ((bio = bio_list_pop(&info.issue_bios)))
948 remap_and_issue(info.tc, bio, block);
949 }
950
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)951 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
952 {
953 cell_error(m->tc->pool, m->cell);
954 list_del(&m->list);
955 mempool_free(m, &m->tc->pool->mapping_pool);
956 }
957
complete_overwrite_bio(struct thin_c * tc,struct bio * bio)958 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
959 {
960 struct pool *pool = tc->pool;
961
962 /*
963 * If the bio has the REQ_FUA flag set we must commit the metadata
964 * before signaling its completion.
965 */
966 if (!bio_triggers_commit(tc, bio)) {
967 bio_endio(bio);
968 return;
969 }
970
971 /*
972 * Complete bio with an error if earlier I/O caused changes to the
973 * metadata that can't be committed, e.g, due to I/O errors on the
974 * metadata device.
975 */
976 if (dm_thin_aborted_changes(tc->td)) {
977 bio_io_error(bio);
978 return;
979 }
980
981 /*
982 * Batch together any bios that trigger commits and then issue a
983 * single commit for them in process_deferred_bios().
984 */
985 spin_lock_irq(&pool->lock);
986 bio_list_add(&pool->deferred_flush_completions, bio);
987 spin_unlock_irq(&pool->lock);
988 }
989
process_prepared_mapping(struct dm_thin_new_mapping * m)990 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
991 {
992 struct thin_c *tc = m->tc;
993 struct pool *pool = tc->pool;
994 struct bio *bio = m->bio;
995 int r;
996
997 if (m->status) {
998 cell_error(pool, m->cell);
999 goto out;
1000 }
1001
1002 /*
1003 * Commit the prepared block into the mapping btree.
1004 * Any I/O for this block arriving after this point will get
1005 * remapped to it directly.
1006 */
1007 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1008 if (r) {
1009 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1010 cell_error(pool, m->cell);
1011 goto out;
1012 }
1013
1014 /*
1015 * Release any bios held while the block was being provisioned.
1016 * If we are processing a write bio that completely covers the block,
1017 * we already processed it so can ignore it now when processing
1018 * the bios in the cell.
1019 */
1020 if (bio) {
1021 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1022 complete_overwrite_bio(tc, bio);
1023 } else {
1024 inc_all_io_entry(tc->pool, m->cell->holder);
1025 remap_and_issue(tc, m->cell->holder, m->data_block);
1026 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1027 }
1028
1029 out:
1030 list_del(&m->list);
1031 mempool_free(m, &pool->mapping_pool);
1032 }
1033
1034 /*----------------------------------------------------------------*/
1035
free_discard_mapping(struct dm_thin_new_mapping * m)1036 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1037 {
1038 struct thin_c *tc = m->tc;
1039 if (m->cell)
1040 cell_defer_no_holder(tc, m->cell);
1041 mempool_free(m, &tc->pool->mapping_pool);
1042 }
1043
process_prepared_discard_fail(struct dm_thin_new_mapping * m)1044 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1045 {
1046 bio_io_error(m->bio);
1047 free_discard_mapping(m);
1048 }
1049
process_prepared_discard_success(struct dm_thin_new_mapping * m)1050 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1051 {
1052 bio_endio(m->bio);
1053 free_discard_mapping(m);
1054 }
1055
process_prepared_discard_no_passdown(struct dm_thin_new_mapping * m)1056 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1057 {
1058 int r;
1059 struct thin_c *tc = m->tc;
1060
1061 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1062 if (r) {
1063 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1064 bio_io_error(m->bio);
1065 } else
1066 bio_endio(m->bio);
1067
1068 cell_defer_no_holder(tc, m->cell);
1069 mempool_free(m, &tc->pool->mapping_pool);
1070 }
1071
1072 /*----------------------------------------------------------------*/
1073
passdown_double_checking_shared_status(struct dm_thin_new_mapping * m,struct bio * discard_parent)1074 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1075 struct bio *discard_parent)
1076 {
1077 /*
1078 * We've already unmapped this range of blocks, but before we
1079 * passdown we have to check that these blocks are now unused.
1080 */
1081 int r = 0;
1082 bool shared = true;
1083 struct thin_c *tc = m->tc;
1084 struct pool *pool = tc->pool;
1085 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1086 struct discard_op op;
1087
1088 begin_discard(&op, tc, discard_parent);
1089 while (b != end) {
1090 /* find start of unmapped run */
1091 for (; b < end; b++) {
1092 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1093 if (r)
1094 goto out;
1095
1096 if (!shared)
1097 break;
1098 }
1099
1100 if (b == end)
1101 break;
1102
1103 /* find end of run */
1104 for (e = b + 1; e != end; e++) {
1105 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1106 if (r)
1107 goto out;
1108
1109 if (shared)
1110 break;
1111 }
1112
1113 r = issue_discard(&op, b, e);
1114 if (r)
1115 goto out;
1116
1117 b = e;
1118 }
1119 out:
1120 end_discard(&op, r);
1121 }
1122
queue_passdown_pt2(struct dm_thin_new_mapping * m)1123 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1124 {
1125 unsigned long flags;
1126 struct pool *pool = m->tc->pool;
1127
1128 spin_lock_irqsave(&pool->lock, flags);
1129 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1130 spin_unlock_irqrestore(&pool->lock, flags);
1131 wake_worker(pool);
1132 }
1133
passdown_endio(struct bio * bio)1134 static void passdown_endio(struct bio *bio)
1135 {
1136 /*
1137 * It doesn't matter if the passdown discard failed, we still want
1138 * to unmap (we ignore err).
1139 */
1140 queue_passdown_pt2(bio->bi_private);
1141 bio_put(bio);
1142 }
1143
process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping * m)1144 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1145 {
1146 int r;
1147 struct thin_c *tc = m->tc;
1148 struct pool *pool = tc->pool;
1149 struct bio *discard_parent;
1150 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1151
1152 /*
1153 * Only this thread allocates blocks, so we can be sure that the
1154 * newly unmapped blocks will not be allocated before the end of
1155 * the function.
1156 */
1157 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1158 if (r) {
1159 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1160 bio_io_error(m->bio);
1161 cell_defer_no_holder(tc, m->cell);
1162 mempool_free(m, &pool->mapping_pool);
1163 return;
1164 }
1165
1166 /*
1167 * Increment the unmapped blocks. This prevents a race between the
1168 * passdown io and reallocation of freed blocks.
1169 */
1170 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1171 if (r) {
1172 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1173 bio_io_error(m->bio);
1174 cell_defer_no_holder(tc, m->cell);
1175 mempool_free(m, &pool->mapping_pool);
1176 return;
1177 }
1178
1179 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1180 discard_parent->bi_end_io = passdown_endio;
1181 discard_parent->bi_private = m;
1182 if (m->maybe_shared)
1183 passdown_double_checking_shared_status(m, discard_parent);
1184 else {
1185 struct discard_op op;
1186
1187 begin_discard(&op, tc, discard_parent);
1188 r = issue_discard(&op, m->data_block, data_end);
1189 end_discard(&op, r);
1190 }
1191 }
1192
process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping * m)1193 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1194 {
1195 int r;
1196 struct thin_c *tc = m->tc;
1197 struct pool *pool = tc->pool;
1198
1199 /*
1200 * The passdown has completed, so now we can decrement all those
1201 * unmapped blocks.
1202 */
1203 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1204 m->data_block + (m->virt_end - m->virt_begin));
1205 if (r) {
1206 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1207 bio_io_error(m->bio);
1208 } else
1209 bio_endio(m->bio);
1210
1211 cell_defer_no_holder(tc, m->cell);
1212 mempool_free(m, &pool->mapping_pool);
1213 }
1214
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)1215 static void process_prepared(struct pool *pool, struct list_head *head,
1216 process_mapping_fn *fn)
1217 {
1218 struct list_head maps;
1219 struct dm_thin_new_mapping *m, *tmp;
1220
1221 INIT_LIST_HEAD(&maps);
1222 spin_lock_irq(&pool->lock);
1223 list_splice_init(head, &maps);
1224 spin_unlock_irq(&pool->lock);
1225
1226 list_for_each_entry_safe(m, tmp, &maps, list)
1227 (*fn)(m);
1228 }
1229
1230 /*
1231 * Deferred bio jobs.
1232 */
io_overlaps_block(struct pool * pool,struct bio * bio)1233 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1234 {
1235 return bio->bi_iter.bi_size ==
1236 (pool->sectors_per_block << SECTOR_SHIFT);
1237 }
1238
io_overwrites_block(struct pool * pool,struct bio * bio)1239 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1240 {
1241 return (bio_data_dir(bio) == WRITE) &&
1242 io_overlaps_block(pool, bio);
1243 }
1244
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)1245 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1246 bio_end_io_t *fn)
1247 {
1248 *save = bio->bi_end_io;
1249 bio->bi_end_io = fn;
1250 }
1251
ensure_next_mapping(struct pool * pool)1252 static int ensure_next_mapping(struct pool *pool)
1253 {
1254 if (pool->next_mapping)
1255 return 0;
1256
1257 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1258
1259 return pool->next_mapping ? 0 : -ENOMEM;
1260 }
1261
get_next_mapping(struct pool * pool)1262 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1263 {
1264 struct dm_thin_new_mapping *m = pool->next_mapping;
1265
1266 BUG_ON(!pool->next_mapping);
1267
1268 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1269 INIT_LIST_HEAD(&m->list);
1270 m->bio = NULL;
1271
1272 pool->next_mapping = NULL;
1273
1274 return m;
1275 }
1276
ll_zero(struct thin_c * tc,struct dm_thin_new_mapping * m,sector_t begin,sector_t end)1277 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1278 sector_t begin, sector_t end)
1279 {
1280 struct dm_io_region to;
1281
1282 to.bdev = tc->pool_dev->bdev;
1283 to.sector = begin;
1284 to.count = end - begin;
1285
1286 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1287 }
1288
remap_and_issue_overwrite(struct thin_c * tc,struct bio * bio,dm_block_t data_begin,struct dm_thin_new_mapping * m)1289 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1290 dm_block_t data_begin,
1291 struct dm_thin_new_mapping *m)
1292 {
1293 struct pool *pool = tc->pool;
1294 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1295
1296 h->overwrite_mapping = m;
1297 m->bio = bio;
1298 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1299 inc_all_io_entry(pool, bio);
1300 remap_and_issue(tc, bio, data_begin);
1301 }
1302
1303 /*
1304 * A partial copy also needs to zero the uncopied region.
1305 */
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio,sector_t len)1306 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1307 struct dm_dev *origin, dm_block_t data_origin,
1308 dm_block_t data_dest,
1309 struct dm_bio_prison_cell *cell, struct bio *bio,
1310 sector_t len)
1311 {
1312 struct pool *pool = tc->pool;
1313 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1314
1315 m->tc = tc;
1316 m->virt_begin = virt_block;
1317 m->virt_end = virt_block + 1u;
1318 m->data_block = data_dest;
1319 m->cell = cell;
1320
1321 /*
1322 * quiesce action + copy action + an extra reference held for the
1323 * duration of this function (we may need to inc later for a
1324 * partial zero).
1325 */
1326 atomic_set(&m->prepare_actions, 3);
1327
1328 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1329 complete_mapping_preparation(m); /* already quiesced */
1330
1331 /*
1332 * IO to pool_dev remaps to the pool target's data_dev.
1333 *
1334 * If the whole block of data is being overwritten, we can issue the
1335 * bio immediately. Otherwise we use kcopyd to clone the data first.
1336 */
1337 if (io_overwrites_block(pool, bio))
1338 remap_and_issue_overwrite(tc, bio, data_dest, m);
1339 else {
1340 struct dm_io_region from, to;
1341
1342 from.bdev = origin->bdev;
1343 from.sector = data_origin * pool->sectors_per_block;
1344 from.count = len;
1345
1346 to.bdev = tc->pool_dev->bdev;
1347 to.sector = data_dest * pool->sectors_per_block;
1348 to.count = len;
1349
1350 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1351 0, copy_complete, m);
1352
1353 /*
1354 * Do we need to zero a tail region?
1355 */
1356 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1357 atomic_inc(&m->prepare_actions);
1358 ll_zero(tc, m,
1359 data_dest * pool->sectors_per_block + len,
1360 (data_dest + 1) * pool->sectors_per_block);
1361 }
1362 }
1363
1364 complete_mapping_preparation(m); /* drop our ref */
1365 }
1366
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1367 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1368 dm_block_t data_origin, dm_block_t data_dest,
1369 struct dm_bio_prison_cell *cell, struct bio *bio)
1370 {
1371 schedule_copy(tc, virt_block, tc->pool_dev,
1372 data_origin, data_dest, cell, bio,
1373 tc->pool->sectors_per_block);
1374 }
1375
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)1376 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1377 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1378 struct bio *bio)
1379 {
1380 struct pool *pool = tc->pool;
1381 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1382
1383 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1384 m->tc = tc;
1385 m->virt_begin = virt_block;
1386 m->virt_end = virt_block + 1u;
1387 m->data_block = data_block;
1388 m->cell = cell;
1389
1390 /*
1391 * If the whole block of data is being overwritten or we are not
1392 * zeroing pre-existing data, we can issue the bio immediately.
1393 * Otherwise we use kcopyd to zero the data first.
1394 */
1395 if (pool->pf.zero_new_blocks) {
1396 if (io_overwrites_block(pool, bio))
1397 remap_and_issue_overwrite(tc, bio, data_block, m);
1398 else
1399 ll_zero(tc, m, data_block * pool->sectors_per_block,
1400 (data_block + 1) * pool->sectors_per_block);
1401 } else
1402 process_prepared_mapping(m);
1403 }
1404
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)1405 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1406 dm_block_t data_dest,
1407 struct dm_bio_prison_cell *cell, struct bio *bio)
1408 {
1409 struct pool *pool = tc->pool;
1410 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1411 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1412
1413 if (virt_block_end <= tc->origin_size)
1414 schedule_copy(tc, virt_block, tc->origin_dev,
1415 virt_block, data_dest, cell, bio,
1416 pool->sectors_per_block);
1417
1418 else if (virt_block_begin < tc->origin_size)
1419 schedule_copy(tc, virt_block, tc->origin_dev,
1420 virt_block, data_dest, cell, bio,
1421 tc->origin_size - virt_block_begin);
1422
1423 else
1424 schedule_zero(tc, virt_block, data_dest, cell, bio);
1425 }
1426
1427 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1428
1429 static void requeue_bios(struct pool *pool);
1430
is_read_only_pool_mode(enum pool_mode mode)1431 static bool is_read_only_pool_mode(enum pool_mode mode)
1432 {
1433 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1434 }
1435
is_read_only(struct pool * pool)1436 static bool is_read_only(struct pool *pool)
1437 {
1438 return is_read_only_pool_mode(get_pool_mode(pool));
1439 }
1440
check_for_metadata_space(struct pool * pool)1441 static void check_for_metadata_space(struct pool *pool)
1442 {
1443 int r;
1444 const char *ooms_reason = NULL;
1445 dm_block_t nr_free;
1446
1447 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1448 if (r)
1449 ooms_reason = "Could not get free metadata blocks";
1450 else if (!nr_free)
1451 ooms_reason = "No free metadata blocks";
1452
1453 if (ooms_reason && !is_read_only(pool)) {
1454 DMERR("%s", ooms_reason);
1455 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1456 }
1457 }
1458
check_for_data_space(struct pool * pool)1459 static void check_for_data_space(struct pool *pool)
1460 {
1461 int r;
1462 dm_block_t nr_free;
1463
1464 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1465 return;
1466
1467 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1468 if (r)
1469 return;
1470
1471 if (nr_free) {
1472 set_pool_mode(pool, PM_WRITE);
1473 requeue_bios(pool);
1474 }
1475 }
1476
1477 /*
1478 * A non-zero return indicates read_only or fail_io mode.
1479 * Many callers don't care about the return value.
1480 */
commit(struct pool * pool)1481 static int commit(struct pool *pool)
1482 {
1483 int r;
1484
1485 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1486 return -EINVAL;
1487
1488 r = dm_pool_commit_metadata(pool->pmd);
1489 if (r)
1490 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1491 else {
1492 check_for_metadata_space(pool);
1493 check_for_data_space(pool);
1494 }
1495
1496 return r;
1497 }
1498
check_low_water_mark(struct pool * pool,dm_block_t free_blocks)1499 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1500 {
1501 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1502 DMWARN("%s: reached low water mark for data device: sending event.",
1503 dm_device_name(pool->pool_md));
1504 spin_lock_irq(&pool->lock);
1505 pool->low_water_triggered = true;
1506 spin_unlock_irq(&pool->lock);
1507 dm_table_event(pool->ti->table);
1508 }
1509 }
1510
alloc_data_block(struct thin_c * tc,dm_block_t * result)1511 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1512 {
1513 int r;
1514 dm_block_t free_blocks;
1515 struct pool *pool = tc->pool;
1516
1517 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1518 return -EINVAL;
1519
1520 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1521 if (r) {
1522 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1523 return r;
1524 }
1525
1526 check_low_water_mark(pool, free_blocks);
1527
1528 if (!free_blocks) {
1529 /*
1530 * Try to commit to see if that will free up some
1531 * more space.
1532 */
1533 r = commit(pool);
1534 if (r)
1535 return r;
1536
1537 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1538 if (r) {
1539 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1540 return r;
1541 }
1542
1543 if (!free_blocks) {
1544 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1545 return -ENOSPC;
1546 }
1547 }
1548
1549 r = dm_pool_alloc_data_block(pool->pmd, result);
1550 if (r) {
1551 if (r == -ENOSPC)
1552 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1553 else
1554 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1555 return r;
1556 }
1557
1558 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1559 if (r) {
1560 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1561 return r;
1562 }
1563
1564 if (!free_blocks) {
1565 /* Let's commit before we use up the metadata reserve. */
1566 r = commit(pool);
1567 if (r)
1568 return r;
1569 }
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * If we have run out of space, queue bios until the device is
1576 * resumed, presumably after having been reloaded with more space.
1577 */
retry_on_resume(struct bio * bio)1578 static void retry_on_resume(struct bio *bio)
1579 {
1580 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1581 struct thin_c *tc = h->tc;
1582
1583 spin_lock_irq(&tc->lock);
1584 bio_list_add(&tc->retry_on_resume_list, bio);
1585 spin_unlock_irq(&tc->lock);
1586 }
1587
should_error_unserviceable_bio(struct pool * pool)1588 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1589 {
1590 enum pool_mode m = get_pool_mode(pool);
1591
1592 switch (m) {
1593 case PM_WRITE:
1594 /* Shouldn't get here */
1595 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1596 return BLK_STS_IOERR;
1597
1598 case PM_OUT_OF_DATA_SPACE:
1599 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1600
1601 case PM_OUT_OF_METADATA_SPACE:
1602 case PM_READ_ONLY:
1603 case PM_FAIL:
1604 return BLK_STS_IOERR;
1605 default:
1606 /* Shouldn't get here */
1607 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1608 return BLK_STS_IOERR;
1609 }
1610 }
1611
handle_unserviceable_bio(struct pool * pool,struct bio * bio)1612 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1613 {
1614 blk_status_t error = should_error_unserviceable_bio(pool);
1615
1616 if (error) {
1617 bio->bi_status = error;
1618 bio_endio(bio);
1619 } else
1620 retry_on_resume(bio);
1621 }
1622
retry_bios_on_resume(struct pool * pool,struct dm_bio_prison_cell * cell)1623 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1624 {
1625 struct bio *bio;
1626 struct bio_list bios;
1627 blk_status_t error;
1628
1629 error = should_error_unserviceable_bio(pool);
1630 if (error) {
1631 cell_error_with_code(pool, cell, error);
1632 return;
1633 }
1634
1635 bio_list_init(&bios);
1636 cell_release(pool, cell, &bios);
1637
1638 while ((bio = bio_list_pop(&bios)))
1639 retry_on_resume(bio);
1640 }
1641
process_discard_cell_no_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1642 static void process_discard_cell_no_passdown(struct thin_c *tc,
1643 struct dm_bio_prison_cell *virt_cell)
1644 {
1645 struct pool *pool = tc->pool;
1646 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1647
1648 /*
1649 * We don't need to lock the data blocks, since there's no
1650 * passdown. We only lock data blocks for allocation and breaking sharing.
1651 */
1652 m->tc = tc;
1653 m->virt_begin = virt_cell->key.block_begin;
1654 m->virt_end = virt_cell->key.block_end;
1655 m->cell = virt_cell;
1656 m->bio = virt_cell->holder;
1657
1658 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1659 pool->process_prepared_discard(m);
1660 }
1661
break_up_discard_bio(struct thin_c * tc,dm_block_t begin,dm_block_t end,struct bio * bio)1662 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1663 struct bio *bio)
1664 {
1665 struct pool *pool = tc->pool;
1666
1667 int r;
1668 bool maybe_shared;
1669 struct dm_cell_key data_key;
1670 struct dm_bio_prison_cell *data_cell;
1671 struct dm_thin_new_mapping *m;
1672 dm_block_t virt_begin, virt_end, data_begin;
1673
1674 while (begin != end) {
1675 r = ensure_next_mapping(pool);
1676 if (r)
1677 /* we did our best */
1678 return;
1679
1680 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1681 &data_begin, &maybe_shared);
1682 if (r)
1683 /*
1684 * Silently fail, letting any mappings we've
1685 * created complete.
1686 */
1687 break;
1688
1689 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1690 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1691 /* contention, we'll give up with this range */
1692 begin = virt_end;
1693 continue;
1694 }
1695
1696 /*
1697 * IO may still be going to the destination block. We must
1698 * quiesce before we can do the removal.
1699 */
1700 m = get_next_mapping(pool);
1701 m->tc = tc;
1702 m->maybe_shared = maybe_shared;
1703 m->virt_begin = virt_begin;
1704 m->virt_end = virt_end;
1705 m->data_block = data_begin;
1706 m->cell = data_cell;
1707 m->bio = bio;
1708
1709 /*
1710 * The parent bio must not complete before sub discard bios are
1711 * chained to it (see end_discard's bio_chain)!
1712 *
1713 * This per-mapping bi_remaining increment is paired with
1714 * the implicit decrement that occurs via bio_endio() in
1715 * end_discard().
1716 */
1717 bio_inc_remaining(bio);
1718 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1719 pool->process_prepared_discard(m);
1720
1721 begin = virt_end;
1722 }
1723 }
1724
process_discard_cell_passdown(struct thin_c * tc,struct dm_bio_prison_cell * virt_cell)1725 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1726 {
1727 struct bio *bio = virt_cell->holder;
1728 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1729
1730 /*
1731 * The virt_cell will only get freed once the origin bio completes.
1732 * This means it will remain locked while all the individual
1733 * passdown bios are in flight.
1734 */
1735 h->cell = virt_cell;
1736 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1737
1738 /*
1739 * We complete the bio now, knowing that the bi_remaining field
1740 * will prevent completion until the sub range discards have
1741 * completed.
1742 */
1743 bio_endio(bio);
1744 }
1745
process_discard_bio(struct thin_c * tc,struct bio * bio)1746 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1747 {
1748 dm_block_t begin, end;
1749 struct dm_cell_key virt_key;
1750 struct dm_bio_prison_cell *virt_cell;
1751
1752 get_bio_block_range(tc, bio, &begin, &end);
1753 if (begin == end) {
1754 /*
1755 * The discard covers less than a block.
1756 */
1757 bio_endio(bio);
1758 return;
1759 }
1760
1761 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1762 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1763 /*
1764 * Potential starvation issue: We're relying on the
1765 * fs/application being well behaved, and not trying to
1766 * send IO to a region at the same time as discarding it.
1767 * If they do this persistently then it's possible this
1768 * cell will never be granted.
1769 */
1770 return;
1771
1772 tc->pool->process_discard_cell(tc, virt_cell);
1773 }
1774
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1775 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1776 struct dm_cell_key *key,
1777 struct dm_thin_lookup_result *lookup_result,
1778 struct dm_bio_prison_cell *cell)
1779 {
1780 int r;
1781 dm_block_t data_block;
1782 struct pool *pool = tc->pool;
1783
1784 r = alloc_data_block(tc, &data_block);
1785 switch (r) {
1786 case 0:
1787 schedule_internal_copy(tc, block, lookup_result->block,
1788 data_block, cell, bio);
1789 break;
1790
1791 case -ENOSPC:
1792 retry_bios_on_resume(pool, cell);
1793 break;
1794
1795 default:
1796 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1797 __func__, r);
1798 cell_error(pool, cell);
1799 break;
1800 }
1801 }
1802
__remap_and_issue_shared_cell(void * context,struct dm_bio_prison_cell * cell)1803 static void __remap_and_issue_shared_cell(void *context,
1804 struct dm_bio_prison_cell *cell)
1805 {
1806 struct remap_info *info = context;
1807 struct bio *bio;
1808
1809 while ((bio = bio_list_pop(&cell->bios))) {
1810 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1811 bio_op(bio) == REQ_OP_DISCARD)
1812 bio_list_add(&info->defer_bios, bio);
1813 else {
1814 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1815
1816 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1817 inc_all_io_entry(info->tc->pool, bio);
1818 bio_list_add(&info->issue_bios, bio);
1819 }
1820 }
1821 }
1822
remap_and_issue_shared_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell,dm_block_t block)1823 static void remap_and_issue_shared_cell(struct thin_c *tc,
1824 struct dm_bio_prison_cell *cell,
1825 dm_block_t block)
1826 {
1827 struct bio *bio;
1828 struct remap_info info;
1829
1830 info.tc = tc;
1831 bio_list_init(&info.defer_bios);
1832 bio_list_init(&info.issue_bios);
1833
1834 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1835 &info, cell);
1836
1837 while ((bio = bio_list_pop(&info.defer_bios)))
1838 thin_defer_bio(tc, bio);
1839
1840 while ((bio = bio_list_pop(&info.issue_bios)))
1841 remap_and_issue(tc, bio, block);
1842 }
1843
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * virt_cell)1844 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1845 dm_block_t block,
1846 struct dm_thin_lookup_result *lookup_result,
1847 struct dm_bio_prison_cell *virt_cell)
1848 {
1849 struct dm_bio_prison_cell *data_cell;
1850 struct pool *pool = tc->pool;
1851 struct dm_cell_key key;
1852
1853 /*
1854 * If cell is already occupied, then sharing is already in the process
1855 * of being broken so we have nothing further to do here.
1856 */
1857 build_data_key(tc->td, lookup_result->block, &key);
1858 if (bio_detain(pool, &key, bio, &data_cell)) {
1859 cell_defer_no_holder(tc, virt_cell);
1860 return;
1861 }
1862
1863 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1864 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1865 cell_defer_no_holder(tc, virt_cell);
1866 } else {
1867 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1868
1869 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1870 inc_all_io_entry(pool, bio);
1871 remap_and_issue(tc, bio, lookup_result->block);
1872
1873 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1874 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1875 }
1876 }
1877
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1878 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1879 struct dm_bio_prison_cell *cell)
1880 {
1881 int r;
1882 dm_block_t data_block;
1883 struct pool *pool = tc->pool;
1884
1885 /*
1886 * Remap empty bios (flushes) immediately, without provisioning.
1887 */
1888 if (!bio->bi_iter.bi_size) {
1889 inc_all_io_entry(pool, bio);
1890 cell_defer_no_holder(tc, cell);
1891
1892 remap_and_issue(tc, bio, 0);
1893 return;
1894 }
1895
1896 /*
1897 * Fill read bios with zeroes and complete them immediately.
1898 */
1899 if (bio_data_dir(bio) == READ) {
1900 zero_fill_bio(bio);
1901 cell_defer_no_holder(tc, cell);
1902 bio_endio(bio);
1903 return;
1904 }
1905
1906 r = alloc_data_block(tc, &data_block);
1907 switch (r) {
1908 case 0:
1909 if (tc->origin_dev)
1910 schedule_external_copy(tc, block, data_block, cell, bio);
1911 else
1912 schedule_zero(tc, block, data_block, cell, bio);
1913 break;
1914
1915 case -ENOSPC:
1916 retry_bios_on_resume(pool, cell);
1917 break;
1918
1919 default:
1920 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1921 __func__, r);
1922 cell_error(pool, cell);
1923 break;
1924 }
1925 }
1926
process_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)1927 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1928 {
1929 int r;
1930 struct pool *pool = tc->pool;
1931 struct bio *bio = cell->holder;
1932 dm_block_t block = get_bio_block(tc, bio);
1933 struct dm_thin_lookup_result lookup_result;
1934
1935 if (tc->requeue_mode) {
1936 cell_requeue(pool, cell);
1937 return;
1938 }
1939
1940 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1941 switch (r) {
1942 case 0:
1943 if (lookup_result.shared)
1944 process_shared_bio(tc, bio, block, &lookup_result, cell);
1945 else {
1946 inc_all_io_entry(pool, bio);
1947 remap_and_issue(tc, bio, lookup_result.block);
1948 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1949 }
1950 break;
1951
1952 case -ENODATA:
1953 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1954 inc_all_io_entry(pool, bio);
1955 cell_defer_no_holder(tc, cell);
1956
1957 if (bio_end_sector(bio) <= tc->origin_size)
1958 remap_to_origin_and_issue(tc, bio);
1959
1960 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1961 zero_fill_bio(bio);
1962 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1963 remap_to_origin_and_issue(tc, bio);
1964
1965 } else {
1966 zero_fill_bio(bio);
1967 bio_endio(bio);
1968 }
1969 } else
1970 provision_block(tc, bio, block, cell);
1971 break;
1972
1973 default:
1974 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1975 __func__, r);
1976 cell_defer_no_holder(tc, cell);
1977 bio_io_error(bio);
1978 break;
1979 }
1980 }
1981
process_bio(struct thin_c * tc,struct bio * bio)1982 static void process_bio(struct thin_c *tc, struct bio *bio)
1983 {
1984 struct pool *pool = tc->pool;
1985 dm_block_t block = get_bio_block(tc, bio);
1986 struct dm_bio_prison_cell *cell;
1987 struct dm_cell_key key;
1988
1989 /*
1990 * If cell is already occupied, then the block is already
1991 * being provisioned so we have nothing further to do here.
1992 */
1993 build_virtual_key(tc->td, block, &key);
1994 if (bio_detain(pool, &key, bio, &cell))
1995 return;
1996
1997 process_cell(tc, cell);
1998 }
1999
__process_bio_read_only(struct thin_c * tc,struct bio * bio,struct dm_bio_prison_cell * cell)2000 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2001 struct dm_bio_prison_cell *cell)
2002 {
2003 int r;
2004 int rw = bio_data_dir(bio);
2005 dm_block_t block = get_bio_block(tc, bio);
2006 struct dm_thin_lookup_result lookup_result;
2007
2008 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2009 switch (r) {
2010 case 0:
2011 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2012 handle_unserviceable_bio(tc->pool, bio);
2013 if (cell)
2014 cell_defer_no_holder(tc, cell);
2015 } else {
2016 inc_all_io_entry(tc->pool, bio);
2017 remap_and_issue(tc, bio, lookup_result.block);
2018 if (cell)
2019 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2020 }
2021 break;
2022
2023 case -ENODATA:
2024 if (cell)
2025 cell_defer_no_holder(tc, cell);
2026 if (rw != READ) {
2027 handle_unserviceable_bio(tc->pool, bio);
2028 break;
2029 }
2030
2031 if (tc->origin_dev) {
2032 inc_all_io_entry(tc->pool, bio);
2033 remap_to_origin_and_issue(tc, bio);
2034 break;
2035 }
2036
2037 zero_fill_bio(bio);
2038 bio_endio(bio);
2039 break;
2040
2041 default:
2042 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2043 __func__, r);
2044 if (cell)
2045 cell_defer_no_holder(tc, cell);
2046 bio_io_error(bio);
2047 break;
2048 }
2049 }
2050
process_bio_read_only(struct thin_c * tc,struct bio * bio)2051 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2052 {
2053 __process_bio_read_only(tc, bio, NULL);
2054 }
2055
process_cell_read_only(struct thin_c * tc,struct dm_bio_prison_cell * cell)2056 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2057 {
2058 __process_bio_read_only(tc, cell->holder, cell);
2059 }
2060
process_bio_success(struct thin_c * tc,struct bio * bio)2061 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2062 {
2063 bio_endio(bio);
2064 }
2065
process_bio_fail(struct thin_c * tc,struct bio * bio)2066 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2067 {
2068 bio_io_error(bio);
2069 }
2070
process_cell_success(struct thin_c * tc,struct dm_bio_prison_cell * cell)2071 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2072 {
2073 cell_success(tc->pool, cell);
2074 }
2075
process_cell_fail(struct thin_c * tc,struct dm_bio_prison_cell * cell)2076 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2077 {
2078 cell_error(tc->pool, cell);
2079 }
2080
2081 /*
2082 * FIXME: should we also commit due to size of transaction, measured in
2083 * metadata blocks?
2084 */
need_commit_due_to_time(struct pool * pool)2085 static int need_commit_due_to_time(struct pool *pool)
2086 {
2087 return !time_in_range(jiffies, pool->last_commit_jiffies,
2088 pool->last_commit_jiffies + COMMIT_PERIOD);
2089 }
2090
2091 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2092 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2093
__thin_bio_rb_add(struct thin_c * tc,struct bio * bio)2094 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2095 {
2096 struct rb_node **rbp, *parent;
2097 struct dm_thin_endio_hook *pbd;
2098 sector_t bi_sector = bio->bi_iter.bi_sector;
2099
2100 rbp = &tc->sort_bio_list.rb_node;
2101 parent = NULL;
2102 while (*rbp) {
2103 parent = *rbp;
2104 pbd = thin_pbd(parent);
2105
2106 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2107 rbp = &(*rbp)->rb_left;
2108 else
2109 rbp = &(*rbp)->rb_right;
2110 }
2111
2112 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2113 rb_link_node(&pbd->rb_node, parent, rbp);
2114 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2115 }
2116
__extract_sorted_bios(struct thin_c * tc)2117 static void __extract_sorted_bios(struct thin_c *tc)
2118 {
2119 struct rb_node *node;
2120 struct dm_thin_endio_hook *pbd;
2121 struct bio *bio;
2122
2123 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2124 pbd = thin_pbd(node);
2125 bio = thin_bio(pbd);
2126
2127 bio_list_add(&tc->deferred_bio_list, bio);
2128 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2129 }
2130
2131 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2132 }
2133
__sort_thin_deferred_bios(struct thin_c * tc)2134 static void __sort_thin_deferred_bios(struct thin_c *tc)
2135 {
2136 struct bio *bio;
2137 struct bio_list bios;
2138
2139 bio_list_init(&bios);
2140 bio_list_merge(&bios, &tc->deferred_bio_list);
2141 bio_list_init(&tc->deferred_bio_list);
2142
2143 /* Sort deferred_bio_list using rb-tree */
2144 while ((bio = bio_list_pop(&bios)))
2145 __thin_bio_rb_add(tc, bio);
2146
2147 /*
2148 * Transfer the sorted bios in sort_bio_list back to
2149 * deferred_bio_list to allow lockless submission of
2150 * all bios.
2151 */
2152 __extract_sorted_bios(tc);
2153 }
2154
process_thin_deferred_bios(struct thin_c * tc)2155 static void process_thin_deferred_bios(struct thin_c *tc)
2156 {
2157 struct pool *pool = tc->pool;
2158 struct bio *bio;
2159 struct bio_list bios;
2160 struct blk_plug plug;
2161 unsigned int count = 0;
2162
2163 if (tc->requeue_mode) {
2164 error_thin_bio_list(tc, &tc->deferred_bio_list,
2165 BLK_STS_DM_REQUEUE);
2166 return;
2167 }
2168
2169 bio_list_init(&bios);
2170
2171 spin_lock_irq(&tc->lock);
2172
2173 if (bio_list_empty(&tc->deferred_bio_list)) {
2174 spin_unlock_irq(&tc->lock);
2175 return;
2176 }
2177
2178 __sort_thin_deferred_bios(tc);
2179
2180 bio_list_merge(&bios, &tc->deferred_bio_list);
2181 bio_list_init(&tc->deferred_bio_list);
2182
2183 spin_unlock_irq(&tc->lock);
2184
2185 blk_start_plug(&plug);
2186 while ((bio = bio_list_pop(&bios))) {
2187 /*
2188 * If we've got no free new_mapping structs, and processing
2189 * this bio might require one, we pause until there are some
2190 * prepared mappings to process.
2191 */
2192 if (ensure_next_mapping(pool)) {
2193 spin_lock_irq(&tc->lock);
2194 bio_list_add(&tc->deferred_bio_list, bio);
2195 bio_list_merge(&tc->deferred_bio_list, &bios);
2196 spin_unlock_irq(&tc->lock);
2197 break;
2198 }
2199
2200 if (bio_op(bio) == REQ_OP_DISCARD)
2201 pool->process_discard(tc, bio);
2202 else
2203 pool->process_bio(tc, bio);
2204
2205 if ((count++ & 127) == 0) {
2206 throttle_work_update(&pool->throttle);
2207 dm_pool_issue_prefetches(pool->pmd);
2208 }
2209 cond_resched();
2210 }
2211 blk_finish_plug(&plug);
2212 }
2213
cmp_cells(const void * lhs,const void * rhs)2214 static int cmp_cells(const void *lhs, const void *rhs)
2215 {
2216 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2217 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2218
2219 BUG_ON(!lhs_cell->holder);
2220 BUG_ON(!rhs_cell->holder);
2221
2222 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2223 return -1;
2224
2225 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2226 return 1;
2227
2228 return 0;
2229 }
2230
sort_cells(struct pool * pool,struct list_head * cells)2231 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2232 {
2233 unsigned int count = 0;
2234 struct dm_bio_prison_cell *cell, *tmp;
2235
2236 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2237 if (count >= CELL_SORT_ARRAY_SIZE)
2238 break;
2239
2240 pool->cell_sort_array[count++] = cell;
2241 list_del(&cell->user_list);
2242 }
2243
2244 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2245
2246 return count;
2247 }
2248
process_thin_deferred_cells(struct thin_c * tc)2249 static void process_thin_deferred_cells(struct thin_c *tc)
2250 {
2251 struct pool *pool = tc->pool;
2252 struct list_head cells;
2253 struct dm_bio_prison_cell *cell;
2254 unsigned int i, j, count;
2255
2256 INIT_LIST_HEAD(&cells);
2257
2258 spin_lock_irq(&tc->lock);
2259 list_splice_init(&tc->deferred_cells, &cells);
2260 spin_unlock_irq(&tc->lock);
2261
2262 if (list_empty(&cells))
2263 return;
2264
2265 do {
2266 count = sort_cells(tc->pool, &cells);
2267
2268 for (i = 0; i < count; i++) {
2269 cell = pool->cell_sort_array[i];
2270 BUG_ON(!cell->holder);
2271
2272 /*
2273 * If we've got no free new_mapping structs, and processing
2274 * this bio might require one, we pause until there are some
2275 * prepared mappings to process.
2276 */
2277 if (ensure_next_mapping(pool)) {
2278 for (j = i; j < count; j++)
2279 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2280
2281 spin_lock_irq(&tc->lock);
2282 list_splice(&cells, &tc->deferred_cells);
2283 spin_unlock_irq(&tc->lock);
2284 return;
2285 }
2286
2287 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2288 pool->process_discard_cell(tc, cell);
2289 else
2290 pool->process_cell(tc, cell);
2291 }
2292 cond_resched();
2293 } while (!list_empty(&cells));
2294 }
2295
2296 static void thin_get(struct thin_c *tc);
2297 static void thin_put(struct thin_c *tc);
2298
2299 /*
2300 * We can't hold rcu_read_lock() around code that can block. So we
2301 * find a thin with the rcu lock held; bump a refcount; then drop
2302 * the lock.
2303 */
get_first_thin(struct pool * pool)2304 static struct thin_c *get_first_thin(struct pool *pool)
2305 {
2306 struct thin_c *tc = NULL;
2307
2308 rcu_read_lock();
2309 if (!list_empty(&pool->active_thins)) {
2310 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2311 thin_get(tc);
2312 }
2313 rcu_read_unlock();
2314
2315 return tc;
2316 }
2317
get_next_thin(struct pool * pool,struct thin_c * tc)2318 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2319 {
2320 struct thin_c *old_tc = tc;
2321
2322 rcu_read_lock();
2323 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2324 thin_get(tc);
2325 thin_put(old_tc);
2326 rcu_read_unlock();
2327 return tc;
2328 }
2329 thin_put(old_tc);
2330 rcu_read_unlock();
2331
2332 return NULL;
2333 }
2334
process_deferred_bios(struct pool * pool)2335 static void process_deferred_bios(struct pool *pool)
2336 {
2337 struct bio *bio;
2338 struct bio_list bios, bio_completions;
2339 struct thin_c *tc;
2340
2341 tc = get_first_thin(pool);
2342 while (tc) {
2343 process_thin_deferred_cells(tc);
2344 process_thin_deferred_bios(tc);
2345 tc = get_next_thin(pool, tc);
2346 }
2347
2348 /*
2349 * If there are any deferred flush bios, we must commit the metadata
2350 * before issuing them or signaling their completion.
2351 */
2352 bio_list_init(&bios);
2353 bio_list_init(&bio_completions);
2354
2355 spin_lock_irq(&pool->lock);
2356 bio_list_merge(&bios, &pool->deferred_flush_bios);
2357 bio_list_init(&pool->deferred_flush_bios);
2358
2359 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2360 bio_list_init(&pool->deferred_flush_completions);
2361 spin_unlock_irq(&pool->lock);
2362
2363 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2364 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2365 return;
2366
2367 if (commit(pool)) {
2368 bio_list_merge(&bios, &bio_completions);
2369
2370 while ((bio = bio_list_pop(&bios)))
2371 bio_io_error(bio);
2372 return;
2373 }
2374 pool->last_commit_jiffies = jiffies;
2375
2376 while ((bio = bio_list_pop(&bio_completions)))
2377 bio_endio(bio);
2378
2379 while ((bio = bio_list_pop(&bios))) {
2380 /*
2381 * The data device was flushed as part of metadata commit,
2382 * so complete redundant flushes immediately.
2383 */
2384 if (bio->bi_opf & REQ_PREFLUSH)
2385 bio_endio(bio);
2386 else
2387 dm_submit_bio_remap(bio, NULL);
2388 }
2389 }
2390
do_worker(struct work_struct * ws)2391 static void do_worker(struct work_struct *ws)
2392 {
2393 struct pool *pool = container_of(ws, struct pool, worker);
2394
2395 throttle_work_start(&pool->throttle);
2396 dm_pool_issue_prefetches(pool->pmd);
2397 throttle_work_update(&pool->throttle);
2398 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2399 throttle_work_update(&pool->throttle);
2400 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2401 throttle_work_update(&pool->throttle);
2402 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2403 throttle_work_update(&pool->throttle);
2404 process_deferred_bios(pool);
2405 throttle_work_complete(&pool->throttle);
2406 }
2407
2408 /*
2409 * We want to commit periodically so that not too much
2410 * unwritten data builds up.
2411 */
do_waker(struct work_struct * ws)2412 static void do_waker(struct work_struct *ws)
2413 {
2414 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2415 wake_worker(pool);
2416 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2417 }
2418
2419 /*
2420 * We're holding onto IO to allow userland time to react. After the
2421 * timeout either the pool will have been resized (and thus back in
2422 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2423 */
do_no_space_timeout(struct work_struct * ws)2424 static void do_no_space_timeout(struct work_struct *ws)
2425 {
2426 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2427 no_space_timeout);
2428
2429 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2430 pool->pf.error_if_no_space = true;
2431 notify_of_pool_mode_change(pool);
2432 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2433 }
2434 }
2435
2436 /*----------------------------------------------------------------*/
2437
2438 struct pool_work {
2439 struct work_struct worker;
2440 struct completion complete;
2441 };
2442
to_pool_work(struct work_struct * ws)2443 static struct pool_work *to_pool_work(struct work_struct *ws)
2444 {
2445 return container_of(ws, struct pool_work, worker);
2446 }
2447
pool_work_complete(struct pool_work * pw)2448 static void pool_work_complete(struct pool_work *pw)
2449 {
2450 complete(&pw->complete);
2451 }
2452
pool_work_wait(struct pool_work * pw,struct pool * pool,void (* fn)(struct work_struct *))2453 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2454 void (*fn)(struct work_struct *))
2455 {
2456 INIT_WORK_ONSTACK(&pw->worker, fn);
2457 init_completion(&pw->complete);
2458 queue_work(pool->wq, &pw->worker);
2459 wait_for_completion(&pw->complete);
2460 }
2461
2462 /*----------------------------------------------------------------*/
2463
2464 struct noflush_work {
2465 struct pool_work pw;
2466 struct thin_c *tc;
2467 };
2468
to_noflush(struct work_struct * ws)2469 static struct noflush_work *to_noflush(struct work_struct *ws)
2470 {
2471 return container_of(to_pool_work(ws), struct noflush_work, pw);
2472 }
2473
do_noflush_start(struct work_struct * ws)2474 static void do_noflush_start(struct work_struct *ws)
2475 {
2476 struct noflush_work *w = to_noflush(ws);
2477 w->tc->requeue_mode = true;
2478 requeue_io(w->tc);
2479 pool_work_complete(&w->pw);
2480 }
2481
do_noflush_stop(struct work_struct * ws)2482 static void do_noflush_stop(struct work_struct *ws)
2483 {
2484 struct noflush_work *w = to_noflush(ws);
2485 w->tc->requeue_mode = false;
2486 pool_work_complete(&w->pw);
2487 }
2488
noflush_work(struct thin_c * tc,void (* fn)(struct work_struct *))2489 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2490 {
2491 struct noflush_work w;
2492
2493 w.tc = tc;
2494 pool_work_wait(&w.pw, tc->pool, fn);
2495 }
2496
2497 /*----------------------------------------------------------------*/
2498
passdown_enabled(struct pool_c * pt)2499 static bool passdown_enabled(struct pool_c *pt)
2500 {
2501 return pt->adjusted_pf.discard_passdown;
2502 }
2503
set_discard_callbacks(struct pool * pool)2504 static void set_discard_callbacks(struct pool *pool)
2505 {
2506 struct pool_c *pt = pool->ti->private;
2507
2508 if (passdown_enabled(pt)) {
2509 pool->process_discard_cell = process_discard_cell_passdown;
2510 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2511 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2512 } else {
2513 pool->process_discard_cell = process_discard_cell_no_passdown;
2514 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2515 }
2516 }
2517
set_pool_mode(struct pool * pool,enum pool_mode new_mode)2518 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2519 {
2520 struct pool_c *pt = pool->ti->private;
2521 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2522 enum pool_mode old_mode = get_pool_mode(pool);
2523 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2524
2525 /*
2526 * Never allow the pool to transition to PM_WRITE mode if user
2527 * intervention is required to verify metadata and data consistency.
2528 */
2529 if (new_mode == PM_WRITE && needs_check) {
2530 DMERR("%s: unable to switch pool to write mode until repaired.",
2531 dm_device_name(pool->pool_md));
2532 if (old_mode != new_mode)
2533 new_mode = old_mode;
2534 else
2535 new_mode = PM_READ_ONLY;
2536 }
2537 /*
2538 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2539 * not going to recover without a thin_repair. So we never let the
2540 * pool move out of the old mode.
2541 */
2542 if (old_mode == PM_FAIL)
2543 new_mode = old_mode;
2544
2545 switch (new_mode) {
2546 case PM_FAIL:
2547 dm_pool_metadata_read_only(pool->pmd);
2548 pool->process_bio = process_bio_fail;
2549 pool->process_discard = process_bio_fail;
2550 pool->process_cell = process_cell_fail;
2551 pool->process_discard_cell = process_cell_fail;
2552 pool->process_prepared_mapping = process_prepared_mapping_fail;
2553 pool->process_prepared_discard = process_prepared_discard_fail;
2554
2555 error_retry_list(pool);
2556 break;
2557
2558 case PM_OUT_OF_METADATA_SPACE:
2559 case PM_READ_ONLY:
2560 dm_pool_metadata_read_only(pool->pmd);
2561 pool->process_bio = process_bio_read_only;
2562 pool->process_discard = process_bio_success;
2563 pool->process_cell = process_cell_read_only;
2564 pool->process_discard_cell = process_cell_success;
2565 pool->process_prepared_mapping = process_prepared_mapping_fail;
2566 pool->process_prepared_discard = process_prepared_discard_success;
2567
2568 error_retry_list(pool);
2569 break;
2570
2571 case PM_OUT_OF_DATA_SPACE:
2572 /*
2573 * Ideally we'd never hit this state; the low water mark
2574 * would trigger userland to extend the pool before we
2575 * completely run out of data space. However, many small
2576 * IOs to unprovisioned space can consume data space at an
2577 * alarming rate. Adjust your low water mark if you're
2578 * frequently seeing this mode.
2579 */
2580 pool->out_of_data_space = true;
2581 pool->process_bio = process_bio_read_only;
2582 pool->process_discard = process_discard_bio;
2583 pool->process_cell = process_cell_read_only;
2584 pool->process_prepared_mapping = process_prepared_mapping;
2585 set_discard_callbacks(pool);
2586
2587 if (!pool->pf.error_if_no_space && no_space_timeout)
2588 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2589 break;
2590
2591 case PM_WRITE:
2592 if (old_mode == PM_OUT_OF_DATA_SPACE)
2593 cancel_delayed_work_sync(&pool->no_space_timeout);
2594 pool->out_of_data_space = false;
2595 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2596 dm_pool_metadata_read_write(pool->pmd);
2597 pool->process_bio = process_bio;
2598 pool->process_discard = process_discard_bio;
2599 pool->process_cell = process_cell;
2600 pool->process_prepared_mapping = process_prepared_mapping;
2601 set_discard_callbacks(pool);
2602 break;
2603 }
2604
2605 pool->pf.mode = new_mode;
2606 /*
2607 * The pool mode may have changed, sync it so bind_control_target()
2608 * doesn't cause an unexpected mode transition on resume.
2609 */
2610 pt->adjusted_pf.mode = new_mode;
2611
2612 if (old_mode != new_mode)
2613 notify_of_pool_mode_change(pool);
2614 }
2615
abort_transaction(struct pool * pool)2616 static void abort_transaction(struct pool *pool)
2617 {
2618 const char *dev_name = dm_device_name(pool->pool_md);
2619
2620 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2621 if (dm_pool_abort_metadata(pool->pmd)) {
2622 DMERR("%s: failed to abort metadata transaction", dev_name);
2623 set_pool_mode(pool, PM_FAIL);
2624 }
2625
2626 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2627 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2628 set_pool_mode(pool, PM_FAIL);
2629 }
2630 }
2631
metadata_operation_failed(struct pool * pool,const char * op,int r)2632 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2633 {
2634 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2635 dm_device_name(pool->pool_md), op, r);
2636
2637 abort_transaction(pool);
2638 set_pool_mode(pool, PM_READ_ONLY);
2639 }
2640
2641 /*----------------------------------------------------------------*/
2642
2643 /*
2644 * Mapping functions.
2645 */
2646
2647 /*
2648 * Called only while mapping a thin bio to hand it over to the workqueue.
2649 */
thin_defer_bio(struct thin_c * tc,struct bio * bio)2650 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2651 {
2652 struct pool *pool = tc->pool;
2653
2654 spin_lock_irq(&tc->lock);
2655 bio_list_add(&tc->deferred_bio_list, bio);
2656 spin_unlock_irq(&tc->lock);
2657
2658 wake_worker(pool);
2659 }
2660
thin_defer_bio_with_throttle(struct thin_c * tc,struct bio * bio)2661 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2662 {
2663 struct pool *pool = tc->pool;
2664
2665 throttle_lock(&pool->throttle);
2666 thin_defer_bio(tc, bio);
2667 throttle_unlock(&pool->throttle);
2668 }
2669
thin_defer_cell(struct thin_c * tc,struct dm_bio_prison_cell * cell)2670 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2671 {
2672 struct pool *pool = tc->pool;
2673
2674 throttle_lock(&pool->throttle);
2675 spin_lock_irq(&tc->lock);
2676 list_add_tail(&cell->user_list, &tc->deferred_cells);
2677 spin_unlock_irq(&tc->lock);
2678 throttle_unlock(&pool->throttle);
2679
2680 wake_worker(pool);
2681 }
2682
thin_hook_bio(struct thin_c * tc,struct bio * bio)2683 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2684 {
2685 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2686
2687 h->tc = tc;
2688 h->shared_read_entry = NULL;
2689 h->all_io_entry = NULL;
2690 h->overwrite_mapping = NULL;
2691 h->cell = NULL;
2692 }
2693
2694 /*
2695 * Non-blocking function called from the thin target's map function.
2696 */
thin_bio_map(struct dm_target * ti,struct bio * bio)2697 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2698 {
2699 int r;
2700 struct thin_c *tc = ti->private;
2701 dm_block_t block = get_bio_block(tc, bio);
2702 struct dm_thin_device *td = tc->td;
2703 struct dm_thin_lookup_result result;
2704 struct dm_bio_prison_cell *virt_cell, *data_cell;
2705 struct dm_cell_key key;
2706
2707 thin_hook_bio(tc, bio);
2708
2709 if (tc->requeue_mode) {
2710 bio->bi_status = BLK_STS_DM_REQUEUE;
2711 bio_endio(bio);
2712 return DM_MAPIO_SUBMITTED;
2713 }
2714
2715 if (get_pool_mode(tc->pool) == PM_FAIL) {
2716 bio_io_error(bio);
2717 return DM_MAPIO_SUBMITTED;
2718 }
2719
2720 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2721 thin_defer_bio_with_throttle(tc, bio);
2722 return DM_MAPIO_SUBMITTED;
2723 }
2724
2725 /*
2726 * We must hold the virtual cell before doing the lookup, otherwise
2727 * there's a race with discard.
2728 */
2729 build_virtual_key(tc->td, block, &key);
2730 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2731 return DM_MAPIO_SUBMITTED;
2732
2733 r = dm_thin_find_block(td, block, 0, &result);
2734
2735 /*
2736 * Note that we defer readahead too.
2737 */
2738 switch (r) {
2739 case 0:
2740 if (unlikely(result.shared)) {
2741 /*
2742 * We have a race condition here between the
2743 * result.shared value returned by the lookup and
2744 * snapshot creation, which may cause new
2745 * sharing.
2746 *
2747 * To avoid this always quiesce the origin before
2748 * taking the snap. You want to do this anyway to
2749 * ensure a consistent application view
2750 * (i.e. lockfs).
2751 *
2752 * More distant ancestors are irrelevant. The
2753 * shared flag will be set in their case.
2754 */
2755 thin_defer_cell(tc, virt_cell);
2756 return DM_MAPIO_SUBMITTED;
2757 }
2758
2759 build_data_key(tc->td, result.block, &key);
2760 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2761 cell_defer_no_holder(tc, virt_cell);
2762 return DM_MAPIO_SUBMITTED;
2763 }
2764
2765 inc_all_io_entry(tc->pool, bio);
2766 cell_defer_no_holder(tc, data_cell);
2767 cell_defer_no_holder(tc, virt_cell);
2768
2769 remap(tc, bio, result.block);
2770 return DM_MAPIO_REMAPPED;
2771
2772 case -ENODATA:
2773 case -EWOULDBLOCK:
2774 thin_defer_cell(tc, virt_cell);
2775 return DM_MAPIO_SUBMITTED;
2776
2777 default:
2778 /*
2779 * Must always call bio_io_error on failure.
2780 * dm_thin_find_block can fail with -EINVAL if the
2781 * pool is switched to fail-io mode.
2782 */
2783 bio_io_error(bio);
2784 cell_defer_no_holder(tc, virt_cell);
2785 return DM_MAPIO_SUBMITTED;
2786 }
2787 }
2788
requeue_bios(struct pool * pool)2789 static void requeue_bios(struct pool *pool)
2790 {
2791 struct thin_c *tc;
2792
2793 rcu_read_lock();
2794 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2795 spin_lock_irq(&tc->lock);
2796 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2797 bio_list_init(&tc->retry_on_resume_list);
2798 spin_unlock_irq(&tc->lock);
2799 }
2800 rcu_read_unlock();
2801 }
2802
2803 /*----------------------------------------------------------------
2804 * Binding of control targets to a pool object
2805 *--------------------------------------------------------------*/
is_factor(sector_t block_size,uint32_t n)2806 static bool is_factor(sector_t block_size, uint32_t n)
2807 {
2808 return !sector_div(block_size, n);
2809 }
2810
2811 /*
2812 * If discard_passdown was enabled verify that the data device
2813 * supports discards. Disable discard_passdown if not.
2814 */
disable_passdown_if_not_supported(struct pool_c * pt)2815 static void disable_passdown_if_not_supported(struct pool_c *pt)
2816 {
2817 struct pool *pool = pt->pool;
2818 struct block_device *data_bdev = pt->data_dev->bdev;
2819 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2820 const char *reason = NULL;
2821
2822 if (!pt->adjusted_pf.discard_passdown)
2823 return;
2824
2825 if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2826 reason = "discard unsupported";
2827
2828 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2829 reason = "max discard sectors smaller than a block";
2830
2831 if (reason) {
2832 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2833 pt->adjusted_pf.discard_passdown = false;
2834 }
2835 }
2836
bind_control_target(struct pool * pool,struct dm_target * ti)2837 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2838 {
2839 struct pool_c *pt = ti->private;
2840
2841 /*
2842 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2843 */
2844 enum pool_mode old_mode = get_pool_mode(pool);
2845 enum pool_mode new_mode = pt->adjusted_pf.mode;
2846
2847 /*
2848 * Don't change the pool's mode until set_pool_mode() below.
2849 * Otherwise the pool's process_* function pointers may
2850 * not match the desired pool mode.
2851 */
2852 pt->adjusted_pf.mode = old_mode;
2853
2854 pool->ti = ti;
2855 pool->pf = pt->adjusted_pf;
2856 pool->low_water_blocks = pt->low_water_blocks;
2857
2858 set_pool_mode(pool, new_mode);
2859
2860 return 0;
2861 }
2862
unbind_control_target(struct pool * pool,struct dm_target * ti)2863 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2864 {
2865 if (pool->ti == ti)
2866 pool->ti = NULL;
2867 }
2868
2869 /*----------------------------------------------------------------
2870 * Pool creation
2871 *--------------------------------------------------------------*/
2872 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)2873 static void pool_features_init(struct pool_features *pf)
2874 {
2875 pf->mode = PM_WRITE;
2876 pf->zero_new_blocks = true;
2877 pf->discard_enabled = true;
2878 pf->discard_passdown = true;
2879 pf->error_if_no_space = false;
2880 }
2881
__pool_destroy(struct pool * pool)2882 static void __pool_destroy(struct pool *pool)
2883 {
2884 __pool_table_remove(pool);
2885
2886 vfree(pool->cell_sort_array);
2887 if (dm_pool_metadata_close(pool->pmd) < 0)
2888 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2889
2890 dm_bio_prison_destroy(pool->prison);
2891 dm_kcopyd_client_destroy(pool->copier);
2892
2893 cancel_delayed_work_sync(&pool->waker);
2894 cancel_delayed_work_sync(&pool->no_space_timeout);
2895 if (pool->wq)
2896 destroy_workqueue(pool->wq);
2897
2898 if (pool->next_mapping)
2899 mempool_free(pool->next_mapping, &pool->mapping_pool);
2900 mempool_exit(&pool->mapping_pool);
2901 dm_deferred_set_destroy(pool->shared_read_ds);
2902 dm_deferred_set_destroy(pool->all_io_ds);
2903 kfree(pool);
2904 }
2905
2906 static struct kmem_cache *_new_mapping_cache;
2907
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error)2908 static struct pool *pool_create(struct mapped_device *pool_md,
2909 struct block_device *metadata_dev,
2910 struct block_device *data_dev,
2911 unsigned long block_size,
2912 int read_only, char **error)
2913 {
2914 int r;
2915 void *err_p;
2916 struct pool *pool;
2917 struct dm_pool_metadata *pmd;
2918 bool format_device = read_only ? false : true;
2919
2920 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2921 if (IS_ERR(pmd)) {
2922 *error = "Error creating metadata object";
2923 return (struct pool *)pmd;
2924 }
2925
2926 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2927 if (!pool) {
2928 *error = "Error allocating memory for pool";
2929 err_p = ERR_PTR(-ENOMEM);
2930 goto bad_pool;
2931 }
2932
2933 pool->pmd = pmd;
2934 pool->sectors_per_block = block_size;
2935 if (block_size & (block_size - 1))
2936 pool->sectors_per_block_shift = -1;
2937 else
2938 pool->sectors_per_block_shift = __ffs(block_size);
2939 pool->low_water_blocks = 0;
2940 pool_features_init(&pool->pf);
2941 pool->prison = dm_bio_prison_create();
2942 if (!pool->prison) {
2943 *error = "Error creating pool's bio prison";
2944 err_p = ERR_PTR(-ENOMEM);
2945 goto bad_prison;
2946 }
2947
2948 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2949 if (IS_ERR(pool->copier)) {
2950 r = PTR_ERR(pool->copier);
2951 *error = "Error creating pool's kcopyd client";
2952 err_p = ERR_PTR(r);
2953 goto bad_kcopyd_client;
2954 }
2955
2956 /*
2957 * Create singlethreaded workqueue that will service all devices
2958 * that use this metadata.
2959 */
2960 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2961 if (!pool->wq) {
2962 *error = "Error creating pool's workqueue";
2963 err_p = ERR_PTR(-ENOMEM);
2964 goto bad_wq;
2965 }
2966
2967 throttle_init(&pool->throttle);
2968 INIT_WORK(&pool->worker, do_worker);
2969 INIT_DELAYED_WORK(&pool->waker, do_waker);
2970 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2971 spin_lock_init(&pool->lock);
2972 bio_list_init(&pool->deferred_flush_bios);
2973 bio_list_init(&pool->deferred_flush_completions);
2974 INIT_LIST_HEAD(&pool->prepared_mappings);
2975 INIT_LIST_HEAD(&pool->prepared_discards);
2976 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2977 INIT_LIST_HEAD(&pool->active_thins);
2978 pool->low_water_triggered = false;
2979 pool->suspended = true;
2980 pool->out_of_data_space = false;
2981
2982 pool->shared_read_ds = dm_deferred_set_create();
2983 if (!pool->shared_read_ds) {
2984 *error = "Error creating pool's shared read deferred set";
2985 err_p = ERR_PTR(-ENOMEM);
2986 goto bad_shared_read_ds;
2987 }
2988
2989 pool->all_io_ds = dm_deferred_set_create();
2990 if (!pool->all_io_ds) {
2991 *error = "Error creating pool's all io deferred set";
2992 err_p = ERR_PTR(-ENOMEM);
2993 goto bad_all_io_ds;
2994 }
2995
2996 pool->next_mapping = NULL;
2997 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2998 _new_mapping_cache);
2999 if (r) {
3000 *error = "Error creating pool's mapping mempool";
3001 err_p = ERR_PTR(r);
3002 goto bad_mapping_pool;
3003 }
3004
3005 pool->cell_sort_array =
3006 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3007 sizeof(*pool->cell_sort_array)));
3008 if (!pool->cell_sort_array) {
3009 *error = "Error allocating cell sort array";
3010 err_p = ERR_PTR(-ENOMEM);
3011 goto bad_sort_array;
3012 }
3013
3014 pool->ref_count = 1;
3015 pool->last_commit_jiffies = jiffies;
3016 pool->pool_md = pool_md;
3017 pool->md_dev = metadata_dev;
3018 pool->data_dev = data_dev;
3019 __pool_table_insert(pool);
3020
3021 return pool;
3022
3023 bad_sort_array:
3024 mempool_exit(&pool->mapping_pool);
3025 bad_mapping_pool:
3026 dm_deferred_set_destroy(pool->all_io_ds);
3027 bad_all_io_ds:
3028 dm_deferred_set_destroy(pool->shared_read_ds);
3029 bad_shared_read_ds:
3030 destroy_workqueue(pool->wq);
3031 bad_wq:
3032 dm_kcopyd_client_destroy(pool->copier);
3033 bad_kcopyd_client:
3034 dm_bio_prison_destroy(pool->prison);
3035 bad_prison:
3036 kfree(pool);
3037 bad_pool:
3038 if (dm_pool_metadata_close(pmd))
3039 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3040
3041 return err_p;
3042 }
3043
__pool_inc(struct pool * pool)3044 static void __pool_inc(struct pool *pool)
3045 {
3046 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3047 pool->ref_count++;
3048 }
3049
__pool_dec(struct pool * pool)3050 static void __pool_dec(struct pool *pool)
3051 {
3052 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3053 BUG_ON(!pool->ref_count);
3054 if (!--pool->ref_count)
3055 __pool_destroy(pool);
3056 }
3057
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,struct block_device * data_dev,unsigned long block_size,int read_only,char ** error,int * created)3058 static struct pool *__pool_find(struct mapped_device *pool_md,
3059 struct block_device *metadata_dev,
3060 struct block_device *data_dev,
3061 unsigned long block_size, int read_only,
3062 char **error, int *created)
3063 {
3064 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3065
3066 if (pool) {
3067 if (pool->pool_md != pool_md) {
3068 *error = "metadata device already in use by a pool";
3069 return ERR_PTR(-EBUSY);
3070 }
3071 if (pool->data_dev != data_dev) {
3072 *error = "data device already in use by a pool";
3073 return ERR_PTR(-EBUSY);
3074 }
3075 __pool_inc(pool);
3076
3077 } else {
3078 pool = __pool_table_lookup(pool_md);
3079 if (pool) {
3080 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3081 *error = "different pool cannot replace a pool";
3082 return ERR_PTR(-EINVAL);
3083 }
3084 __pool_inc(pool);
3085
3086 } else {
3087 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3088 *created = 1;
3089 }
3090 }
3091
3092 return pool;
3093 }
3094
3095 /*----------------------------------------------------------------
3096 * Pool target methods
3097 *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)3098 static void pool_dtr(struct dm_target *ti)
3099 {
3100 struct pool_c *pt = ti->private;
3101
3102 mutex_lock(&dm_thin_pool_table.mutex);
3103
3104 unbind_control_target(pt->pool, ti);
3105 __pool_dec(pt->pool);
3106 dm_put_device(ti, pt->metadata_dev);
3107 dm_put_device(ti, pt->data_dev);
3108 kfree(pt);
3109
3110 mutex_unlock(&dm_thin_pool_table.mutex);
3111 }
3112
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)3113 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3114 struct dm_target *ti)
3115 {
3116 int r;
3117 unsigned int argc;
3118 const char *arg_name;
3119
3120 static const struct dm_arg _args[] = {
3121 {0, 4, "Invalid number of pool feature arguments"},
3122 };
3123
3124 /*
3125 * No feature arguments supplied.
3126 */
3127 if (!as->argc)
3128 return 0;
3129
3130 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3131 if (r)
3132 return -EINVAL;
3133
3134 while (argc && !r) {
3135 arg_name = dm_shift_arg(as);
3136 argc--;
3137
3138 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3139 pf->zero_new_blocks = false;
3140
3141 else if (!strcasecmp(arg_name, "ignore_discard"))
3142 pf->discard_enabled = false;
3143
3144 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3145 pf->discard_passdown = false;
3146
3147 else if (!strcasecmp(arg_name, "read_only"))
3148 pf->mode = PM_READ_ONLY;
3149
3150 else if (!strcasecmp(arg_name, "error_if_no_space"))
3151 pf->error_if_no_space = true;
3152
3153 else {
3154 ti->error = "Unrecognised pool feature requested";
3155 r = -EINVAL;
3156 break;
3157 }
3158 }
3159
3160 return r;
3161 }
3162
metadata_low_callback(void * context)3163 static void metadata_low_callback(void *context)
3164 {
3165 struct pool *pool = context;
3166
3167 DMWARN("%s: reached low water mark for metadata device: sending event.",
3168 dm_device_name(pool->pool_md));
3169
3170 dm_table_event(pool->ti->table);
3171 }
3172
3173 /*
3174 * We need to flush the data device **before** committing the metadata.
3175 *
3176 * This ensures that the data blocks of any newly inserted mappings are
3177 * properly written to non-volatile storage and won't be lost in case of a
3178 * crash.
3179 *
3180 * Failure to do so can result in data corruption in the case of internal or
3181 * external snapshots and in the case of newly provisioned blocks, when block
3182 * zeroing is enabled.
3183 */
metadata_pre_commit_callback(void * context)3184 static int metadata_pre_commit_callback(void *context)
3185 {
3186 struct pool *pool = context;
3187
3188 return blkdev_issue_flush(pool->data_dev);
3189 }
3190
get_dev_size(struct block_device * bdev)3191 static sector_t get_dev_size(struct block_device *bdev)
3192 {
3193 return bdev_nr_sectors(bdev);
3194 }
3195
warn_if_metadata_device_too_big(struct block_device * bdev)3196 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3197 {
3198 sector_t metadata_dev_size = get_dev_size(bdev);
3199
3200 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3201 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3202 bdev, THIN_METADATA_MAX_SECTORS);
3203 }
3204
get_metadata_dev_size(struct block_device * bdev)3205 static sector_t get_metadata_dev_size(struct block_device *bdev)
3206 {
3207 sector_t metadata_dev_size = get_dev_size(bdev);
3208
3209 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3210 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3211
3212 return metadata_dev_size;
3213 }
3214
get_metadata_dev_size_in_blocks(struct block_device * bdev)3215 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3216 {
3217 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3218
3219 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3220
3221 return metadata_dev_size;
3222 }
3223
3224 /*
3225 * When a metadata threshold is crossed a dm event is triggered, and
3226 * userland should respond by growing the metadata device. We could let
3227 * userland set the threshold, like we do with the data threshold, but I'm
3228 * not sure they know enough to do this well.
3229 */
calc_metadata_threshold(struct pool_c * pt)3230 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3231 {
3232 /*
3233 * 4M is ample for all ops with the possible exception of thin
3234 * device deletion which is harmless if it fails (just retry the
3235 * delete after you've grown the device).
3236 */
3237 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3238 return min((dm_block_t)1024ULL /* 4M */, quarter);
3239 }
3240
3241 /*
3242 * thin-pool <metadata dev> <data dev>
3243 * <data block size (sectors)>
3244 * <low water mark (blocks)>
3245 * [<#feature args> [<arg>]*]
3246 *
3247 * Optional feature arguments are:
3248 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3249 * ignore_discard: disable discard
3250 * no_discard_passdown: don't pass discards down to the data device
3251 * read_only: Don't allow any changes to be made to the pool metadata.
3252 * error_if_no_space: error IOs, instead of queueing, if no space.
3253 */
pool_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3254 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3255 {
3256 int r, pool_created = 0;
3257 struct pool_c *pt;
3258 struct pool *pool;
3259 struct pool_features pf;
3260 struct dm_arg_set as;
3261 struct dm_dev *data_dev;
3262 unsigned long block_size;
3263 dm_block_t low_water_blocks;
3264 struct dm_dev *metadata_dev;
3265 fmode_t metadata_mode;
3266
3267 /*
3268 * FIXME Remove validation from scope of lock.
3269 */
3270 mutex_lock(&dm_thin_pool_table.mutex);
3271
3272 if (argc < 4) {
3273 ti->error = "Invalid argument count";
3274 r = -EINVAL;
3275 goto out_unlock;
3276 }
3277
3278 as.argc = argc;
3279 as.argv = argv;
3280
3281 /* make sure metadata and data are different devices */
3282 if (!strcmp(argv[0], argv[1])) {
3283 ti->error = "Error setting metadata or data device";
3284 r = -EINVAL;
3285 goto out_unlock;
3286 }
3287
3288 /*
3289 * Set default pool features.
3290 */
3291 pool_features_init(&pf);
3292
3293 dm_consume_args(&as, 4);
3294 r = parse_pool_features(&as, &pf, ti);
3295 if (r)
3296 goto out_unlock;
3297
3298 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3299 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3300 if (r) {
3301 ti->error = "Error opening metadata block device";
3302 goto out_unlock;
3303 }
3304 warn_if_metadata_device_too_big(metadata_dev->bdev);
3305
3306 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3307 if (r) {
3308 ti->error = "Error getting data device";
3309 goto out_metadata;
3310 }
3311
3312 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3313 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3314 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3315 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3316 ti->error = "Invalid block size";
3317 r = -EINVAL;
3318 goto out;
3319 }
3320
3321 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3322 ti->error = "Invalid low water mark";
3323 r = -EINVAL;
3324 goto out;
3325 }
3326
3327 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3328 if (!pt) {
3329 r = -ENOMEM;
3330 goto out;
3331 }
3332
3333 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3334 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3335 if (IS_ERR(pool)) {
3336 r = PTR_ERR(pool);
3337 goto out_free_pt;
3338 }
3339
3340 /*
3341 * 'pool_created' reflects whether this is the first table load.
3342 * Top level discard support is not allowed to be changed after
3343 * initial load. This would require a pool reload to trigger thin
3344 * device changes.
3345 */
3346 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3347 ti->error = "Discard support cannot be disabled once enabled";
3348 r = -EINVAL;
3349 goto out_flags_changed;
3350 }
3351
3352 pt->pool = pool;
3353 pt->ti = ti;
3354 pt->metadata_dev = metadata_dev;
3355 pt->data_dev = data_dev;
3356 pt->low_water_blocks = low_water_blocks;
3357 pt->adjusted_pf = pt->requested_pf = pf;
3358 ti->num_flush_bios = 1;
3359 ti->limit_swap_bios = true;
3360
3361 /*
3362 * Only need to enable discards if the pool should pass
3363 * them down to the data device. The thin device's discard
3364 * processing will cause mappings to be removed from the btree.
3365 */
3366 if (pf.discard_enabled && pf.discard_passdown) {
3367 ti->num_discard_bios = 1;
3368
3369 /*
3370 * Setting 'discards_supported' circumvents the normal
3371 * stacking of discard limits (this keeps the pool and
3372 * thin devices' discard limits consistent).
3373 */
3374 ti->discards_supported = true;
3375 }
3376 ti->private = pt;
3377
3378 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3379 calc_metadata_threshold(pt),
3380 metadata_low_callback,
3381 pool);
3382 if (r) {
3383 ti->error = "Error registering metadata threshold";
3384 goto out_flags_changed;
3385 }
3386
3387 dm_pool_register_pre_commit_callback(pool->pmd,
3388 metadata_pre_commit_callback, pool);
3389
3390 mutex_unlock(&dm_thin_pool_table.mutex);
3391
3392 return 0;
3393
3394 out_flags_changed:
3395 __pool_dec(pool);
3396 out_free_pt:
3397 kfree(pt);
3398 out:
3399 dm_put_device(ti, data_dev);
3400 out_metadata:
3401 dm_put_device(ti, metadata_dev);
3402 out_unlock:
3403 mutex_unlock(&dm_thin_pool_table.mutex);
3404
3405 return r;
3406 }
3407
pool_map(struct dm_target * ti,struct bio * bio)3408 static int pool_map(struct dm_target *ti, struct bio *bio)
3409 {
3410 int r;
3411 struct pool_c *pt = ti->private;
3412 struct pool *pool = pt->pool;
3413
3414 /*
3415 * As this is a singleton target, ti->begin is always zero.
3416 */
3417 spin_lock_irq(&pool->lock);
3418 bio_set_dev(bio, pt->data_dev->bdev);
3419 r = DM_MAPIO_REMAPPED;
3420 spin_unlock_irq(&pool->lock);
3421
3422 return r;
3423 }
3424
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)3425 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3426 {
3427 int r;
3428 struct pool_c *pt = ti->private;
3429 struct pool *pool = pt->pool;
3430 sector_t data_size = ti->len;
3431 dm_block_t sb_data_size;
3432
3433 *need_commit = false;
3434
3435 (void) sector_div(data_size, pool->sectors_per_block);
3436
3437 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3438 if (r) {
3439 DMERR("%s: failed to retrieve data device size",
3440 dm_device_name(pool->pool_md));
3441 return r;
3442 }
3443
3444 if (data_size < sb_data_size) {
3445 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3446 dm_device_name(pool->pool_md),
3447 (unsigned long long)data_size, sb_data_size);
3448 return -EINVAL;
3449
3450 } else if (data_size > sb_data_size) {
3451 if (dm_pool_metadata_needs_check(pool->pmd)) {
3452 DMERR("%s: unable to grow the data device until repaired.",
3453 dm_device_name(pool->pool_md));
3454 return 0;
3455 }
3456
3457 if (sb_data_size)
3458 DMINFO("%s: growing the data device from %llu to %llu blocks",
3459 dm_device_name(pool->pool_md),
3460 sb_data_size, (unsigned long long)data_size);
3461 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3462 if (r) {
3463 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3464 return r;
3465 }
3466
3467 *need_commit = true;
3468 }
3469
3470 return 0;
3471 }
3472
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)3473 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3474 {
3475 int r;
3476 struct pool_c *pt = ti->private;
3477 struct pool *pool = pt->pool;
3478 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3479
3480 *need_commit = false;
3481
3482 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3483
3484 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3485 if (r) {
3486 DMERR("%s: failed to retrieve metadata device size",
3487 dm_device_name(pool->pool_md));
3488 return r;
3489 }
3490
3491 if (metadata_dev_size < sb_metadata_dev_size) {
3492 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3493 dm_device_name(pool->pool_md),
3494 metadata_dev_size, sb_metadata_dev_size);
3495 return -EINVAL;
3496
3497 } else if (metadata_dev_size > sb_metadata_dev_size) {
3498 if (dm_pool_metadata_needs_check(pool->pmd)) {
3499 DMERR("%s: unable to grow the metadata device until repaired.",
3500 dm_device_name(pool->pool_md));
3501 return 0;
3502 }
3503
3504 warn_if_metadata_device_too_big(pool->md_dev);
3505 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3506 dm_device_name(pool->pool_md),
3507 sb_metadata_dev_size, metadata_dev_size);
3508
3509 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3510 set_pool_mode(pool, PM_WRITE);
3511
3512 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3513 if (r) {
3514 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3515 return r;
3516 }
3517
3518 *need_commit = true;
3519 }
3520
3521 return 0;
3522 }
3523
3524 /*
3525 * Retrieves the number of blocks of the data device from
3526 * the superblock and compares it to the actual device size,
3527 * thus resizing the data device in case it has grown.
3528 *
3529 * This both copes with opening preallocated data devices in the ctr
3530 * being followed by a resume
3531 * -and-
3532 * calling the resume method individually after userspace has
3533 * grown the data device in reaction to a table event.
3534 */
pool_preresume(struct dm_target * ti)3535 static int pool_preresume(struct dm_target *ti)
3536 {
3537 int r;
3538 bool need_commit1, need_commit2;
3539 struct pool_c *pt = ti->private;
3540 struct pool *pool = pt->pool;
3541
3542 /*
3543 * Take control of the pool object.
3544 */
3545 r = bind_control_target(pool, ti);
3546 if (r)
3547 goto out;
3548
3549 r = maybe_resize_data_dev(ti, &need_commit1);
3550 if (r)
3551 goto out;
3552
3553 r = maybe_resize_metadata_dev(ti, &need_commit2);
3554 if (r)
3555 goto out;
3556
3557 if (need_commit1 || need_commit2)
3558 (void) commit(pool);
3559 out:
3560 /*
3561 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3562 * bio is in deferred list. Therefore need to return 0
3563 * to allow pool_resume() to flush IO.
3564 */
3565 if (r && get_pool_mode(pool) == PM_FAIL)
3566 r = 0;
3567
3568 return r;
3569 }
3570
pool_suspend_active_thins(struct pool * pool)3571 static void pool_suspend_active_thins(struct pool *pool)
3572 {
3573 struct thin_c *tc;
3574
3575 /* Suspend all active thin devices */
3576 tc = get_first_thin(pool);
3577 while (tc) {
3578 dm_internal_suspend_noflush(tc->thin_md);
3579 tc = get_next_thin(pool, tc);
3580 }
3581 }
3582
pool_resume_active_thins(struct pool * pool)3583 static void pool_resume_active_thins(struct pool *pool)
3584 {
3585 struct thin_c *tc;
3586
3587 /* Resume all active thin devices */
3588 tc = get_first_thin(pool);
3589 while (tc) {
3590 dm_internal_resume(tc->thin_md);
3591 tc = get_next_thin(pool, tc);
3592 }
3593 }
3594
pool_resume(struct dm_target * ti)3595 static void pool_resume(struct dm_target *ti)
3596 {
3597 struct pool_c *pt = ti->private;
3598 struct pool *pool = pt->pool;
3599
3600 /*
3601 * Must requeue active_thins' bios and then resume
3602 * active_thins _before_ clearing 'suspend' flag.
3603 */
3604 requeue_bios(pool);
3605 pool_resume_active_thins(pool);
3606
3607 spin_lock_irq(&pool->lock);
3608 pool->low_water_triggered = false;
3609 pool->suspended = false;
3610 spin_unlock_irq(&pool->lock);
3611
3612 do_waker(&pool->waker.work);
3613 }
3614
pool_presuspend(struct dm_target * ti)3615 static void pool_presuspend(struct dm_target *ti)
3616 {
3617 struct pool_c *pt = ti->private;
3618 struct pool *pool = pt->pool;
3619
3620 spin_lock_irq(&pool->lock);
3621 pool->suspended = true;
3622 spin_unlock_irq(&pool->lock);
3623
3624 pool_suspend_active_thins(pool);
3625 }
3626
pool_presuspend_undo(struct dm_target * ti)3627 static void pool_presuspend_undo(struct dm_target *ti)
3628 {
3629 struct pool_c *pt = ti->private;
3630 struct pool *pool = pt->pool;
3631
3632 pool_resume_active_thins(pool);
3633
3634 spin_lock_irq(&pool->lock);
3635 pool->suspended = false;
3636 spin_unlock_irq(&pool->lock);
3637 }
3638
pool_postsuspend(struct dm_target * ti)3639 static void pool_postsuspend(struct dm_target *ti)
3640 {
3641 struct pool_c *pt = ti->private;
3642 struct pool *pool = pt->pool;
3643
3644 cancel_delayed_work_sync(&pool->waker);
3645 cancel_delayed_work_sync(&pool->no_space_timeout);
3646 flush_workqueue(pool->wq);
3647 (void) commit(pool);
3648 }
3649
check_arg_count(unsigned int argc,unsigned int args_required)3650 static int check_arg_count(unsigned int argc, unsigned int args_required)
3651 {
3652 if (argc != args_required) {
3653 DMWARN("Message received with %u arguments instead of %u.",
3654 argc, args_required);
3655 return -EINVAL;
3656 }
3657
3658 return 0;
3659 }
3660
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)3661 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3662 {
3663 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3664 *dev_id <= MAX_DEV_ID)
3665 return 0;
3666
3667 if (warning)
3668 DMWARN("Message received with invalid device id: %s", arg);
3669
3670 return -EINVAL;
3671 }
3672
process_create_thin_mesg(unsigned int argc,char ** argv,struct pool * pool)3673 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3674 {
3675 dm_thin_id dev_id;
3676 int r;
3677
3678 r = check_arg_count(argc, 2);
3679 if (r)
3680 return r;
3681
3682 r = read_dev_id(argv[1], &dev_id, 1);
3683 if (r)
3684 return r;
3685
3686 r = dm_pool_create_thin(pool->pmd, dev_id);
3687 if (r) {
3688 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3689 argv[1]);
3690 return r;
3691 }
3692
3693 return 0;
3694 }
3695
process_create_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3696 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3697 {
3698 dm_thin_id dev_id;
3699 dm_thin_id origin_dev_id;
3700 int r;
3701
3702 r = check_arg_count(argc, 3);
3703 if (r)
3704 return r;
3705
3706 r = read_dev_id(argv[1], &dev_id, 1);
3707 if (r)
3708 return r;
3709
3710 r = read_dev_id(argv[2], &origin_dev_id, 1);
3711 if (r)
3712 return r;
3713
3714 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3715 if (r) {
3716 DMWARN("Creation of new snapshot %s of device %s failed.",
3717 argv[1], argv[2]);
3718 return r;
3719 }
3720
3721 return 0;
3722 }
3723
process_delete_mesg(unsigned int argc,char ** argv,struct pool * pool)3724 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3725 {
3726 dm_thin_id dev_id;
3727 int r;
3728
3729 r = check_arg_count(argc, 2);
3730 if (r)
3731 return r;
3732
3733 r = read_dev_id(argv[1], &dev_id, 1);
3734 if (r)
3735 return r;
3736
3737 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3738 if (r)
3739 DMWARN("Deletion of thin device %s failed.", argv[1]);
3740
3741 return r;
3742 }
3743
process_set_transaction_id_mesg(unsigned int argc,char ** argv,struct pool * pool)3744 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3745 {
3746 dm_thin_id old_id, new_id;
3747 int r;
3748
3749 r = check_arg_count(argc, 3);
3750 if (r)
3751 return r;
3752
3753 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3754 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3755 return -EINVAL;
3756 }
3757
3758 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3759 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3760 return -EINVAL;
3761 }
3762
3763 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3764 if (r) {
3765 DMWARN("Failed to change transaction id from %s to %s.",
3766 argv[1], argv[2]);
3767 return r;
3768 }
3769
3770 return 0;
3771 }
3772
process_reserve_metadata_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3773 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3774 {
3775 int r;
3776
3777 r = check_arg_count(argc, 1);
3778 if (r)
3779 return r;
3780
3781 (void) commit(pool);
3782
3783 r = dm_pool_reserve_metadata_snap(pool->pmd);
3784 if (r)
3785 DMWARN("reserve_metadata_snap message failed.");
3786
3787 return r;
3788 }
3789
process_release_metadata_snap_mesg(unsigned int argc,char ** argv,struct pool * pool)3790 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3791 {
3792 int r;
3793
3794 r = check_arg_count(argc, 1);
3795 if (r)
3796 return r;
3797
3798 r = dm_pool_release_metadata_snap(pool->pmd);
3799 if (r)
3800 DMWARN("release_metadata_snap message failed.");
3801
3802 return r;
3803 }
3804
3805 /*
3806 * Messages supported:
3807 * create_thin <dev_id>
3808 * create_snap <dev_id> <origin_id>
3809 * delete <dev_id>
3810 * set_transaction_id <current_trans_id> <new_trans_id>
3811 * reserve_metadata_snap
3812 * release_metadata_snap
3813 */
pool_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3814 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3815 char *result, unsigned int maxlen)
3816 {
3817 int r = -EINVAL;
3818 struct pool_c *pt = ti->private;
3819 struct pool *pool = pt->pool;
3820
3821 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3822 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3823 dm_device_name(pool->pool_md));
3824 return -EOPNOTSUPP;
3825 }
3826
3827 if (!strcasecmp(argv[0], "create_thin"))
3828 r = process_create_thin_mesg(argc, argv, pool);
3829
3830 else if (!strcasecmp(argv[0], "create_snap"))
3831 r = process_create_snap_mesg(argc, argv, pool);
3832
3833 else if (!strcasecmp(argv[0], "delete"))
3834 r = process_delete_mesg(argc, argv, pool);
3835
3836 else if (!strcasecmp(argv[0], "set_transaction_id"))
3837 r = process_set_transaction_id_mesg(argc, argv, pool);
3838
3839 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3840 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3841
3842 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3843 r = process_release_metadata_snap_mesg(argc, argv, pool);
3844
3845 else
3846 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3847
3848 if (!r)
3849 (void) commit(pool);
3850
3851 return r;
3852 }
3853
emit_flags(struct pool_features * pf,char * result,unsigned int sz,unsigned int maxlen)3854 static void emit_flags(struct pool_features *pf, char *result,
3855 unsigned int sz, unsigned int maxlen)
3856 {
3857 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3858 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3859 pf->error_if_no_space;
3860 DMEMIT("%u ", count);
3861
3862 if (!pf->zero_new_blocks)
3863 DMEMIT("skip_block_zeroing ");
3864
3865 if (!pf->discard_enabled)
3866 DMEMIT("ignore_discard ");
3867
3868 if (!pf->discard_passdown)
3869 DMEMIT("no_discard_passdown ");
3870
3871 if (pf->mode == PM_READ_ONLY)
3872 DMEMIT("read_only ");
3873
3874 if (pf->error_if_no_space)
3875 DMEMIT("error_if_no_space ");
3876 }
3877
3878 /*
3879 * Status line is:
3880 * <transaction id> <used metadata sectors>/<total metadata sectors>
3881 * <used data sectors>/<total data sectors> <held metadata root>
3882 * <pool mode> <discard config> <no space config> <needs_check>
3883 */
pool_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3884 static void pool_status(struct dm_target *ti, status_type_t type,
3885 unsigned int status_flags, char *result, unsigned int maxlen)
3886 {
3887 int r;
3888 unsigned int sz = 0;
3889 uint64_t transaction_id;
3890 dm_block_t nr_free_blocks_data;
3891 dm_block_t nr_free_blocks_metadata;
3892 dm_block_t nr_blocks_data;
3893 dm_block_t nr_blocks_metadata;
3894 dm_block_t held_root;
3895 enum pool_mode mode;
3896 char buf[BDEVNAME_SIZE];
3897 char buf2[BDEVNAME_SIZE];
3898 struct pool_c *pt = ti->private;
3899 struct pool *pool = pt->pool;
3900
3901 switch (type) {
3902 case STATUSTYPE_INFO:
3903 if (get_pool_mode(pool) == PM_FAIL) {
3904 DMEMIT("Fail");
3905 break;
3906 }
3907
3908 /* Commit to ensure statistics aren't out-of-date */
3909 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3910 (void) commit(pool);
3911
3912 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3913 if (r) {
3914 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3915 dm_device_name(pool->pool_md), r);
3916 goto err;
3917 }
3918
3919 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3920 if (r) {
3921 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3922 dm_device_name(pool->pool_md), r);
3923 goto err;
3924 }
3925
3926 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3927 if (r) {
3928 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3929 dm_device_name(pool->pool_md), r);
3930 goto err;
3931 }
3932
3933 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3934 if (r) {
3935 DMERR("%s: dm_pool_get_free_block_count returned %d",
3936 dm_device_name(pool->pool_md), r);
3937 goto err;
3938 }
3939
3940 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3941 if (r) {
3942 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3943 dm_device_name(pool->pool_md), r);
3944 goto err;
3945 }
3946
3947 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3948 if (r) {
3949 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3950 dm_device_name(pool->pool_md), r);
3951 goto err;
3952 }
3953
3954 DMEMIT("%llu %llu/%llu %llu/%llu ",
3955 (unsigned long long)transaction_id,
3956 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3957 (unsigned long long)nr_blocks_metadata,
3958 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3959 (unsigned long long)nr_blocks_data);
3960
3961 if (held_root)
3962 DMEMIT("%llu ", held_root);
3963 else
3964 DMEMIT("- ");
3965
3966 mode = get_pool_mode(pool);
3967 if (mode == PM_OUT_OF_DATA_SPACE)
3968 DMEMIT("out_of_data_space ");
3969 else if (is_read_only_pool_mode(mode))
3970 DMEMIT("ro ");
3971 else
3972 DMEMIT("rw ");
3973
3974 if (!pool->pf.discard_enabled)
3975 DMEMIT("ignore_discard ");
3976 else if (pool->pf.discard_passdown)
3977 DMEMIT("discard_passdown ");
3978 else
3979 DMEMIT("no_discard_passdown ");
3980
3981 if (pool->pf.error_if_no_space)
3982 DMEMIT("error_if_no_space ");
3983 else
3984 DMEMIT("queue_if_no_space ");
3985
3986 if (dm_pool_metadata_needs_check(pool->pmd))
3987 DMEMIT("needs_check ");
3988 else
3989 DMEMIT("- ");
3990
3991 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3992
3993 break;
3994
3995 case STATUSTYPE_TABLE:
3996 DMEMIT("%s %s %lu %llu ",
3997 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3998 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3999 (unsigned long)pool->sectors_per_block,
4000 (unsigned long long)pt->low_water_blocks);
4001 emit_flags(&pt->requested_pf, result, sz, maxlen);
4002 break;
4003
4004 case STATUSTYPE_IMA:
4005 *result = '\0';
4006 break;
4007 }
4008 return;
4009
4010 err:
4011 DMEMIT("Error");
4012 }
4013
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4014 static int pool_iterate_devices(struct dm_target *ti,
4015 iterate_devices_callout_fn fn, void *data)
4016 {
4017 struct pool_c *pt = ti->private;
4018
4019 return fn(ti, pt->data_dev, 0, ti->len, data);
4020 }
4021
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)4022 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4023 {
4024 struct pool_c *pt = ti->private;
4025 struct pool *pool = pt->pool;
4026 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4027
4028 /*
4029 * If max_sectors is smaller than pool->sectors_per_block adjust it
4030 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4031 * This is especially beneficial when the pool's data device is a RAID
4032 * device that has a full stripe width that matches pool->sectors_per_block
4033 * -- because even though partial RAID stripe-sized IOs will be issued to a
4034 * single RAID stripe; when aggregated they will end on a full RAID stripe
4035 * boundary.. which avoids additional partial RAID stripe writes cascading
4036 */
4037 if (limits->max_sectors < pool->sectors_per_block) {
4038 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4039 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4040 limits->max_sectors--;
4041 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4042 }
4043 }
4044
4045 /*
4046 * If the system-determined stacked limits are compatible with the
4047 * pool's blocksize (io_opt is a factor) do not override them.
4048 */
4049 if (io_opt_sectors < pool->sectors_per_block ||
4050 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4051 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4052 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4053 else
4054 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4055 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4056 }
4057
4058 /*
4059 * pt->adjusted_pf is a staging area for the actual features to use.
4060 * They get transferred to the live pool in bind_control_target()
4061 * called from pool_preresume().
4062 */
4063 if (!pt->adjusted_pf.discard_enabled) {
4064 /*
4065 * Must explicitly disallow stacking discard limits otherwise the
4066 * block layer will stack them if pool's data device has support.
4067 */
4068 limits->discard_granularity = 0;
4069 return;
4070 }
4071
4072 disable_passdown_if_not_supported(pt);
4073
4074 /*
4075 * The pool uses the same discard limits as the underlying data
4076 * device. DM core has already set this up.
4077 */
4078 }
4079
4080 static struct target_type pool_target = {
4081 .name = "thin-pool",
4082 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4083 DM_TARGET_IMMUTABLE,
4084 .version = {1, 22, 0},
4085 .module = THIS_MODULE,
4086 .ctr = pool_ctr,
4087 .dtr = pool_dtr,
4088 .map = pool_map,
4089 .presuspend = pool_presuspend,
4090 .presuspend_undo = pool_presuspend_undo,
4091 .postsuspend = pool_postsuspend,
4092 .preresume = pool_preresume,
4093 .resume = pool_resume,
4094 .message = pool_message,
4095 .status = pool_status,
4096 .iterate_devices = pool_iterate_devices,
4097 .io_hints = pool_io_hints,
4098 };
4099
4100 /*----------------------------------------------------------------
4101 * Thin target methods
4102 *--------------------------------------------------------------*/
thin_get(struct thin_c * tc)4103 static void thin_get(struct thin_c *tc)
4104 {
4105 refcount_inc(&tc->refcount);
4106 }
4107
thin_put(struct thin_c * tc)4108 static void thin_put(struct thin_c *tc)
4109 {
4110 if (refcount_dec_and_test(&tc->refcount))
4111 complete(&tc->can_destroy);
4112 }
4113
thin_dtr(struct dm_target * ti)4114 static void thin_dtr(struct dm_target *ti)
4115 {
4116 struct thin_c *tc = ti->private;
4117
4118 spin_lock_irq(&tc->pool->lock);
4119 list_del_rcu(&tc->list);
4120 spin_unlock_irq(&tc->pool->lock);
4121 synchronize_rcu();
4122
4123 thin_put(tc);
4124 wait_for_completion(&tc->can_destroy);
4125
4126 mutex_lock(&dm_thin_pool_table.mutex);
4127
4128 __pool_dec(tc->pool);
4129 dm_pool_close_thin_device(tc->td);
4130 dm_put_device(ti, tc->pool_dev);
4131 if (tc->origin_dev)
4132 dm_put_device(ti, tc->origin_dev);
4133 kfree(tc);
4134
4135 mutex_unlock(&dm_thin_pool_table.mutex);
4136 }
4137
4138 /*
4139 * Thin target parameters:
4140 *
4141 * <pool_dev> <dev_id> [origin_dev]
4142 *
4143 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4144 * dev_id: the internal device identifier
4145 * origin_dev: a device external to the pool that should act as the origin
4146 *
4147 * If the pool device has discards disabled, they get disabled for the thin
4148 * device as well.
4149 */
thin_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4150 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4151 {
4152 int r;
4153 struct thin_c *tc;
4154 struct dm_dev *pool_dev, *origin_dev;
4155 struct mapped_device *pool_md;
4156
4157 mutex_lock(&dm_thin_pool_table.mutex);
4158
4159 if (argc != 2 && argc != 3) {
4160 ti->error = "Invalid argument count";
4161 r = -EINVAL;
4162 goto out_unlock;
4163 }
4164
4165 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4166 if (!tc) {
4167 ti->error = "Out of memory";
4168 r = -ENOMEM;
4169 goto out_unlock;
4170 }
4171 tc->thin_md = dm_table_get_md(ti->table);
4172 spin_lock_init(&tc->lock);
4173 INIT_LIST_HEAD(&tc->deferred_cells);
4174 bio_list_init(&tc->deferred_bio_list);
4175 bio_list_init(&tc->retry_on_resume_list);
4176 tc->sort_bio_list = RB_ROOT;
4177
4178 if (argc == 3) {
4179 if (!strcmp(argv[0], argv[2])) {
4180 ti->error = "Error setting origin device";
4181 r = -EINVAL;
4182 goto bad_origin_dev;
4183 }
4184
4185 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4186 if (r) {
4187 ti->error = "Error opening origin device";
4188 goto bad_origin_dev;
4189 }
4190 tc->origin_dev = origin_dev;
4191 }
4192
4193 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4194 if (r) {
4195 ti->error = "Error opening pool device";
4196 goto bad_pool_dev;
4197 }
4198 tc->pool_dev = pool_dev;
4199
4200 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4201 ti->error = "Invalid device id";
4202 r = -EINVAL;
4203 goto bad_common;
4204 }
4205
4206 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4207 if (!pool_md) {
4208 ti->error = "Couldn't get pool mapped device";
4209 r = -EINVAL;
4210 goto bad_common;
4211 }
4212
4213 tc->pool = __pool_table_lookup(pool_md);
4214 if (!tc->pool) {
4215 ti->error = "Couldn't find pool object";
4216 r = -EINVAL;
4217 goto bad_pool_lookup;
4218 }
4219 __pool_inc(tc->pool);
4220
4221 if (get_pool_mode(tc->pool) == PM_FAIL) {
4222 ti->error = "Couldn't open thin device, Pool is in fail mode";
4223 r = -EINVAL;
4224 goto bad_pool;
4225 }
4226
4227 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4228 if (r) {
4229 ti->error = "Couldn't open thin internal device";
4230 goto bad_pool;
4231 }
4232
4233 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4234 if (r)
4235 goto bad;
4236
4237 ti->num_flush_bios = 1;
4238 ti->limit_swap_bios = true;
4239 ti->flush_supported = true;
4240 ti->accounts_remapped_io = true;
4241 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4242
4243 /* In case the pool supports discards, pass them on. */
4244 if (tc->pool->pf.discard_enabled) {
4245 ti->discards_supported = true;
4246 ti->num_discard_bios = 1;
4247 }
4248
4249 mutex_unlock(&dm_thin_pool_table.mutex);
4250
4251 spin_lock_irq(&tc->pool->lock);
4252 if (tc->pool->suspended) {
4253 spin_unlock_irq(&tc->pool->lock);
4254 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4255 ti->error = "Unable to activate thin device while pool is suspended";
4256 r = -EINVAL;
4257 goto bad;
4258 }
4259 refcount_set(&tc->refcount, 1);
4260 init_completion(&tc->can_destroy);
4261 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4262 spin_unlock_irq(&tc->pool->lock);
4263 /*
4264 * This synchronize_rcu() call is needed here otherwise we risk a
4265 * wake_worker() call finding no bios to process (because the newly
4266 * added tc isn't yet visible). So this reduces latency since we
4267 * aren't then dependent on the periodic commit to wake_worker().
4268 */
4269 synchronize_rcu();
4270
4271 dm_put(pool_md);
4272
4273 return 0;
4274
4275 bad:
4276 dm_pool_close_thin_device(tc->td);
4277 bad_pool:
4278 __pool_dec(tc->pool);
4279 bad_pool_lookup:
4280 dm_put(pool_md);
4281 bad_common:
4282 dm_put_device(ti, tc->pool_dev);
4283 bad_pool_dev:
4284 if (tc->origin_dev)
4285 dm_put_device(ti, tc->origin_dev);
4286 bad_origin_dev:
4287 kfree(tc);
4288 out_unlock:
4289 mutex_unlock(&dm_thin_pool_table.mutex);
4290
4291 return r;
4292 }
4293
thin_map(struct dm_target * ti,struct bio * bio)4294 static int thin_map(struct dm_target *ti, struct bio *bio)
4295 {
4296 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4297
4298 return thin_bio_map(ti, bio);
4299 }
4300
thin_endio(struct dm_target * ti,struct bio * bio,blk_status_t * err)4301 static int thin_endio(struct dm_target *ti, struct bio *bio,
4302 blk_status_t *err)
4303 {
4304 unsigned long flags;
4305 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4306 struct list_head work;
4307 struct dm_thin_new_mapping *m, *tmp;
4308 struct pool *pool = h->tc->pool;
4309
4310 if (h->shared_read_entry) {
4311 INIT_LIST_HEAD(&work);
4312 dm_deferred_entry_dec(h->shared_read_entry, &work);
4313
4314 spin_lock_irqsave(&pool->lock, flags);
4315 list_for_each_entry_safe(m, tmp, &work, list) {
4316 list_del(&m->list);
4317 __complete_mapping_preparation(m);
4318 }
4319 spin_unlock_irqrestore(&pool->lock, flags);
4320 }
4321
4322 if (h->all_io_entry) {
4323 INIT_LIST_HEAD(&work);
4324 dm_deferred_entry_dec(h->all_io_entry, &work);
4325 if (!list_empty(&work)) {
4326 spin_lock_irqsave(&pool->lock, flags);
4327 list_for_each_entry_safe(m, tmp, &work, list)
4328 list_add_tail(&m->list, &pool->prepared_discards);
4329 spin_unlock_irqrestore(&pool->lock, flags);
4330 wake_worker(pool);
4331 }
4332 }
4333
4334 if (h->cell)
4335 cell_defer_no_holder(h->tc, h->cell);
4336
4337 return DM_ENDIO_DONE;
4338 }
4339
thin_presuspend(struct dm_target * ti)4340 static void thin_presuspend(struct dm_target *ti)
4341 {
4342 struct thin_c *tc = ti->private;
4343
4344 if (dm_noflush_suspending(ti))
4345 noflush_work(tc, do_noflush_start);
4346 }
4347
thin_postsuspend(struct dm_target * ti)4348 static void thin_postsuspend(struct dm_target *ti)
4349 {
4350 struct thin_c *tc = ti->private;
4351
4352 /*
4353 * The dm_noflush_suspending flag has been cleared by now, so
4354 * unfortunately we must always run this.
4355 */
4356 noflush_work(tc, do_noflush_stop);
4357 }
4358
thin_preresume(struct dm_target * ti)4359 static int thin_preresume(struct dm_target *ti)
4360 {
4361 struct thin_c *tc = ti->private;
4362
4363 if (tc->origin_dev)
4364 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4365
4366 return 0;
4367 }
4368
4369 /*
4370 * <nr mapped sectors> <highest mapped sector>
4371 */
thin_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)4372 static void thin_status(struct dm_target *ti, status_type_t type,
4373 unsigned int status_flags, char *result, unsigned int maxlen)
4374 {
4375 int r;
4376 ssize_t sz = 0;
4377 dm_block_t mapped, highest;
4378 char buf[BDEVNAME_SIZE];
4379 struct thin_c *tc = ti->private;
4380
4381 if (get_pool_mode(tc->pool) == PM_FAIL) {
4382 DMEMIT("Fail");
4383 return;
4384 }
4385
4386 if (!tc->td)
4387 DMEMIT("-");
4388 else {
4389 switch (type) {
4390 case STATUSTYPE_INFO:
4391 r = dm_thin_get_mapped_count(tc->td, &mapped);
4392 if (r) {
4393 DMERR("dm_thin_get_mapped_count returned %d", r);
4394 goto err;
4395 }
4396
4397 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4398 if (r < 0) {
4399 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4400 goto err;
4401 }
4402
4403 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4404 if (r)
4405 DMEMIT("%llu", ((highest + 1) *
4406 tc->pool->sectors_per_block) - 1);
4407 else
4408 DMEMIT("-");
4409 break;
4410
4411 case STATUSTYPE_TABLE:
4412 DMEMIT("%s %lu",
4413 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4414 (unsigned long) tc->dev_id);
4415 if (tc->origin_dev)
4416 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4417 break;
4418
4419 case STATUSTYPE_IMA:
4420 *result = '\0';
4421 break;
4422 }
4423 }
4424
4425 return;
4426
4427 err:
4428 DMEMIT("Error");
4429 }
4430
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)4431 static int thin_iterate_devices(struct dm_target *ti,
4432 iterate_devices_callout_fn fn, void *data)
4433 {
4434 sector_t blocks;
4435 struct thin_c *tc = ti->private;
4436 struct pool *pool = tc->pool;
4437
4438 /*
4439 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4440 * we follow a more convoluted path through to the pool's target.
4441 */
4442 if (!pool->ti)
4443 return 0; /* nothing is bound */
4444
4445 blocks = pool->ti->len;
4446 (void) sector_div(blocks, pool->sectors_per_block);
4447 if (blocks)
4448 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4449
4450 return 0;
4451 }
4452
thin_io_hints(struct dm_target * ti,struct queue_limits * limits)4453 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4454 {
4455 struct thin_c *tc = ti->private;
4456 struct pool *pool = tc->pool;
4457
4458 if (!pool->pf.discard_enabled)
4459 return;
4460
4461 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4462 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4463 }
4464
4465 static struct target_type thin_target = {
4466 .name = "thin",
4467 .version = {1, 22, 0},
4468 .module = THIS_MODULE,
4469 .ctr = thin_ctr,
4470 .dtr = thin_dtr,
4471 .map = thin_map,
4472 .end_io = thin_endio,
4473 .preresume = thin_preresume,
4474 .presuspend = thin_presuspend,
4475 .postsuspend = thin_postsuspend,
4476 .status = thin_status,
4477 .iterate_devices = thin_iterate_devices,
4478 .io_hints = thin_io_hints,
4479 };
4480
4481 /*----------------------------------------------------------------*/
4482
dm_thin_init(void)4483 static int __init dm_thin_init(void)
4484 {
4485 int r = -ENOMEM;
4486
4487 pool_table_init();
4488
4489 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4490 if (!_new_mapping_cache)
4491 return r;
4492
4493 r = dm_register_target(&thin_target);
4494 if (r)
4495 goto bad_new_mapping_cache;
4496
4497 r = dm_register_target(&pool_target);
4498 if (r)
4499 goto bad_thin_target;
4500
4501 return 0;
4502
4503 bad_thin_target:
4504 dm_unregister_target(&thin_target);
4505 bad_new_mapping_cache:
4506 kmem_cache_destroy(_new_mapping_cache);
4507
4508 return r;
4509 }
4510
dm_thin_exit(void)4511 static void dm_thin_exit(void)
4512 {
4513 dm_unregister_target(&thin_target);
4514 dm_unregister_target(&pool_target);
4515
4516 kmem_cache_destroy(_new_mapping_cache);
4517
4518 pool_table_exit();
4519 }
4520
4521 module_init(dm_thin_init);
4522 module_exit(dm_thin_exit);
4523
4524 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4525 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4526
4527 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4528 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4529 MODULE_LICENSE("GPL");
4530