• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*------------------------------------------------------------------------
3  . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
4  .
5  . Copyright (C) 1996 by Erik Stahlman
6  . Copyright (C) 2001 Standard Microsystems Corporation
7  .	Developed by Simple Network Magic Corporation
8  . Copyright (C) 2003 Monta Vista Software, Inc.
9  .	Unified SMC91x driver by Nicolas Pitre
10  .
11  .
12  . Information contained in this file was obtained from the LAN91C111
13  . manual from SMC.  To get a copy, if you really want one, you can find
14  . information under www.smsc.com.
15  .
16  . Authors
17  .	Erik Stahlman		<erik@vt.edu>
18  .	Daris A Nevil		<dnevil@snmc.com>
19  .	Nicolas Pitre 		<nico@fluxnic.net>
20  .
21  ---------------------------------------------------------------------------*/
22 #ifndef _SMC91X_H_
23 #define _SMC91X_H_
24 
25 #include <linux/dmaengine.h>
26 #include <linux/smc91x.h>
27 
28 /*
29  * Any 16-bit access is performed with two 8-bit accesses if the hardware
30  * can't do it directly. Most registers are 16-bit so those are mandatory.
31  */
32 #define SMC_outw_b(x, a, r)						\
33 	do {								\
34 		unsigned int __val16 = (x);				\
35 		unsigned int __reg = (r);				\
36 		SMC_outb(__val16, a, __reg);				\
37 		SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT));	\
38 	} while (0)
39 
40 #define SMC_inw_b(a, r)							\
41 	({								\
42 		unsigned int __val16;					\
43 		unsigned int __reg = r;					\
44 		__val16  = SMC_inb(a, __reg);				\
45 		__val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
46 		__val16;						\
47 	})
48 
49 /*
50  * Define your architecture specific bus configuration parameters here.
51  */
52 
53 #if defined(CONFIG_ARM)
54 
55 #include <asm/mach-types.h>
56 
57 /* Now the bus width is specified in the platform data
58  * pretend here to support all I/O access types
59  */
60 #define SMC_CAN_USE_8BIT	1
61 #define SMC_CAN_USE_16BIT	1
62 #define SMC_CAN_USE_32BIT	1
63 #define SMC_NOWAIT		1
64 
65 #define SMC_IO_SHIFT		(lp->io_shift)
66 
67 #define SMC_inb(a, r)		readb((a) + (r))
68 #define SMC_inw(a, r)							\
69 	({								\
70 		unsigned int __smc_r = r;				\
71 		SMC_16BIT(lp) ? readw((a) + __smc_r) :			\
72 		SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) :			\
73 		({ BUG(); 0; });					\
74 	})
75 
76 #define SMC_inl(a, r)		readl((a) + (r))
77 #define SMC_outb(v, a, r)	writeb(v, (a) + (r))
78 #define SMC_outw(lp, v, a, r)						\
79 	do {								\
80 		unsigned int __v = v, __smc_r = r;			\
81 		if (SMC_16BIT(lp))					\
82 			__SMC_outw(lp, __v, a, __smc_r);		\
83 		else if (SMC_8BIT(lp))					\
84 			SMC_outw_b(__v, a, __smc_r);			\
85 		else							\
86 			BUG();						\
87 	} while (0)
88 
89 #define SMC_outl(v, a, r)	writel(v, (a) + (r))
90 #define SMC_insb(a, r, p, l)	readsb((a) + (r), p, l)
91 #define SMC_outsb(a, r, p, l)	writesb((a) + (r), p, l)
92 #define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
93 #define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
94 #define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
95 #define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
96 #define SMC_IRQ_FLAGS		(-1)	/* from resource */
97 
98 /* We actually can't write halfwords properly if not word aligned */
_SMC_outw_align4(u16 val,void __iomem * ioaddr,int reg,bool use_align4_workaround)99 static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
100 				    bool use_align4_workaround)
101 {
102 	if (use_align4_workaround) {
103 		unsigned int v = val << 16;
104 		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
105 		writel(v, ioaddr + (reg & ~2));
106 	} else {
107 		writew(val, ioaddr + reg);
108 	}
109 }
110 
111 #define __SMC_outw(lp, v, a, r)						\
112 	_SMC_outw_align4((v), (a), (r),					\
113 			 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) &&	\
114 			 (lp)->cfg.pxa_u16_align4)
115 
116 
117 #elif	defined(CONFIG_SH_SH4202_MICRODEV)
118 
119 #define SMC_CAN_USE_8BIT	0
120 #define SMC_CAN_USE_16BIT	1
121 #define SMC_CAN_USE_32BIT	0
122 
123 #define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
124 #define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
125 #define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
126 #define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
127 #define SMC_outw(lp, v, a, r)	outw(v, (a) + (r) - 0xa0000000)
128 #define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
129 #define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
130 #define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
131 #define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
132 #define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
133 
134 #define SMC_IRQ_FLAGS		(0)
135 
136 #elif defined(CONFIG_ATARI)
137 
138 #define SMC_CAN_USE_8BIT        1
139 #define SMC_CAN_USE_16BIT       1
140 #define SMC_CAN_USE_32BIT       1
141 #define SMC_NOWAIT              1
142 
143 #define SMC_inb(a, r)           readb((a) + (r))
144 #define SMC_inw(a, r)           readw((a) + (r))
145 #define SMC_inl(a, r)           readl((a) + (r))
146 #define SMC_outb(v, a, r)       writeb(v, (a) + (r))
147 #define SMC_outw(lp, v, a, r)   writew(v, (a) + (r))
148 #define SMC_outl(v, a, r)       writel(v, (a) + (r))
149 #define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
150 #define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
151 #define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
152 #define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
153 
154 #define RPC_LSA_DEFAULT         RPC_LED_100_10
155 #define RPC_LSB_DEFAULT         RPC_LED_TX_RX
156 
157 #elif defined(CONFIG_COLDFIRE)
158 
159 #define SMC_CAN_USE_8BIT	0
160 #define SMC_CAN_USE_16BIT	1
161 #define SMC_CAN_USE_32BIT	0
162 #define SMC_NOWAIT		1
163 
mcf_insw(void * a,unsigned char * p,int l)164 static inline void mcf_insw(void *a, unsigned char *p, int l)
165 {
166 	u16 *wp = (u16 *) p;
167 	while (l-- > 0)
168 		*wp++ = readw(a);
169 }
170 
mcf_outsw(void * a,unsigned char * p,int l)171 static inline void mcf_outsw(void *a, unsigned char *p, int l)
172 {
173 	u16 *wp = (u16 *) p;
174 	while (l-- > 0)
175 		writew(*wp++, a);
176 }
177 
178 #define SMC_inw(a, r)		_swapw(readw((a) + (r)))
179 #define SMC_outw(lp, v, a, r)	writew(_swapw(v), (a) + (r))
180 #define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
181 #define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
182 
183 #define SMC_IRQ_FLAGS		0
184 
185 #else
186 
187 /*
188  * Default configuration
189  */
190 
191 #define SMC_CAN_USE_8BIT	1
192 #define SMC_CAN_USE_16BIT	1
193 #define SMC_CAN_USE_32BIT	1
194 #define SMC_NOWAIT		1
195 
196 #define SMC_IO_SHIFT		(lp->io_shift)
197 
198 #define SMC_inb(a, r)		ioread8((a) + (r))
199 #define SMC_inw(a, r)		ioread16((a) + (r))
200 #define SMC_inl(a, r)		ioread32((a) + (r))
201 #define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
202 #define SMC_outw(lp, v, a, r)	iowrite16(v, (a) + (r))
203 #define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
204 #define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
205 #define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
206 #define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
207 #define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
208 
209 #define RPC_LSA_DEFAULT		RPC_LED_100_10
210 #define RPC_LSB_DEFAULT		RPC_LED_TX_RX
211 
212 #endif
213 
214 
215 /* store this information for the driver.. */
216 struct smc_local {
217 	/*
218 	 * If I have to wait until memory is available to send a
219 	 * packet, I will store the skbuff here, until I get the
220 	 * desired memory.  Then, I'll send it out and free it.
221 	 */
222 	struct sk_buff *pending_tx_skb;
223 	struct tasklet_struct tx_task;
224 
225 	struct gpio_desc *power_gpio;
226 	struct gpio_desc *reset_gpio;
227 
228 	/* version/revision of the SMC91x chip */
229 	int	version;
230 
231 	/* Contains the current active transmission mode */
232 	int	tcr_cur_mode;
233 
234 	/* Contains the current active receive mode */
235 	int	rcr_cur_mode;
236 
237 	/* Contains the current active receive/phy mode */
238 	int	rpc_cur_mode;
239 	int	ctl_rfduplx;
240 	int	ctl_rspeed;
241 
242 	u32	msg_enable;
243 	u32	phy_type;
244 	struct mii_if_info mii;
245 
246 	/* work queue */
247 	struct work_struct phy_configure;
248 	struct net_device *dev;
249 	int	work_pending;
250 
251 	spinlock_t lock;
252 
253 #ifdef CONFIG_ARCH_PXA
254 	/* DMA needs the physical address of the chip */
255 	u_long physaddr;
256 	struct device *device;
257 #endif
258 	struct dma_chan *dma_chan;
259 	void __iomem *base;
260 	void __iomem *datacs;
261 
262 	/* the low address lines on some platforms aren't connected... */
263 	int	io_shift;
264 	/* on some platforms a u16 write must be 4-bytes aligned */
265 	bool	half_word_align4;
266 
267 	struct smc91x_platdata cfg;
268 };
269 
270 #define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
271 #define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
272 #define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
273 
274 #ifdef CONFIG_ARCH_PXA
275 /*
276  * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
277  * always happening in irq context so no need to worry about races.  TX is
278  * different and probably not worth it for that reason, and not as critical
279  * as RX which can overrun memory and lose packets.
280  */
281 #include <linux/dma-mapping.h>
282 
283 #ifdef SMC_insl
284 #undef SMC_insl
285 #define SMC_insl(a, r, p, l) \
286 	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
287 static inline void
smc_pxa_dma_inpump(struct smc_local * lp,u_char * buf,int len)288 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
289 {
290 	dma_addr_t dmabuf;
291 	struct dma_async_tx_descriptor *tx;
292 	dma_cookie_t cookie;
293 	enum dma_status status;
294 	struct dma_tx_state state;
295 
296 	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
297 	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
298 					 DMA_DEV_TO_MEM, 0);
299 	if (tx) {
300 		cookie = dmaengine_submit(tx);
301 		dma_async_issue_pending(lp->dma_chan);
302 		do {
303 			status = dmaengine_tx_status(lp->dma_chan, cookie,
304 						     &state);
305 			cpu_relax();
306 		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
307 			 state.residue);
308 		dmaengine_terminate_all(lp->dma_chan);
309 	}
310 	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
311 }
312 
313 static inline void
smc_pxa_dma_insl(void __iomem * ioaddr,struct smc_local * lp,int reg,int dma,u_char * buf,int len)314 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
315 		 u_char *buf, int len)
316 {
317 	struct dma_slave_config	config;
318 	int ret;
319 
320 	/* fallback if no DMA available */
321 	if (!lp->dma_chan) {
322 		readsl(ioaddr + reg, buf, len);
323 		return;
324 	}
325 
326 	/* 64 bit alignment is required for memory to memory DMA */
327 	if ((long)buf & 4) {
328 		*((u32 *)buf) = SMC_inl(ioaddr, reg);
329 		buf += 4;
330 		len--;
331 	}
332 
333 	memset(&config, 0, sizeof(config));
334 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
335 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
336 	config.src_addr = lp->physaddr + reg;
337 	config.dst_addr = lp->physaddr + reg;
338 	config.src_maxburst = 32;
339 	config.dst_maxburst = 32;
340 	ret = dmaengine_slave_config(lp->dma_chan, &config);
341 	if (ret) {
342 		dev_err(lp->device, "dma channel configuration failed: %d\n",
343 			ret);
344 		return;
345 	}
346 
347 	len *= 4;
348 	smc_pxa_dma_inpump(lp, buf, len);
349 }
350 #endif
351 
352 #ifdef SMC_insw
353 #undef SMC_insw
354 #define SMC_insw(a, r, p, l) \
355 	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
356 static inline void
smc_pxa_dma_insw(void __iomem * ioaddr,struct smc_local * lp,int reg,int dma,u_char * buf,int len)357 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
358 		 u_char *buf, int len)
359 {
360 	struct dma_slave_config	config;
361 	int ret;
362 
363 	/* fallback if no DMA available */
364 	if (!lp->dma_chan) {
365 		readsw(ioaddr + reg, buf, len);
366 		return;
367 	}
368 
369 	/* 64 bit alignment is required for memory to memory DMA */
370 	while ((long)buf & 6) {
371 		*((u16 *)buf) = SMC_inw(ioaddr, reg);
372 		buf += 2;
373 		len--;
374 	}
375 
376 	memset(&config, 0, sizeof(config));
377 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
378 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
379 	config.src_addr = lp->physaddr + reg;
380 	config.dst_addr = lp->physaddr + reg;
381 	config.src_maxburst = 32;
382 	config.dst_maxburst = 32;
383 	ret = dmaengine_slave_config(lp->dma_chan, &config);
384 	if (ret) {
385 		dev_err(lp->device, "dma channel configuration failed: %d\n",
386 			ret);
387 		return;
388 	}
389 
390 	len *= 2;
391 	smc_pxa_dma_inpump(lp, buf, len);
392 }
393 #endif
394 
395 #endif  /* CONFIG_ARCH_PXA */
396 
397 
398 /*
399  * Everything a particular hardware setup needs should have been defined
400  * at this point.  Add stubs for the undefined cases, mainly to avoid
401  * compilation warnings since they'll be optimized away, or to prevent buggy
402  * use of them.
403  */
404 
405 #if ! SMC_CAN_USE_32BIT
406 #define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
407 #define SMC_outl(x, ioaddr, reg)	BUG()
408 #define SMC_insl(a, r, p, l)		BUG()
409 #define SMC_outsl(a, r, p, l)		BUG()
410 #endif
411 
412 #if !defined(SMC_insl) || !defined(SMC_outsl)
413 #define SMC_insl(a, r, p, l)		BUG()
414 #define SMC_outsl(a, r, p, l)		BUG()
415 #endif
416 
417 #if ! SMC_CAN_USE_16BIT
418 
419 #define SMC_outw(lp, x, ioaddr, reg)	SMC_outw_b(x, ioaddr, reg)
420 #define SMC_inw(ioaddr, reg)		SMC_inw_b(ioaddr, reg)
421 #define SMC_insw(a, r, p, l)		BUG()
422 #define SMC_outsw(a, r, p, l)		BUG()
423 
424 #endif
425 
426 #if !defined(SMC_insw) || !defined(SMC_outsw)
427 #define SMC_insw(a, r, p, l)		BUG()
428 #define SMC_outsw(a, r, p, l)		BUG()
429 #endif
430 
431 #if ! SMC_CAN_USE_8BIT
432 #undef SMC_inb
433 #define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
434 #undef SMC_outb
435 #define SMC_outb(x, ioaddr, reg)	BUG()
436 #define SMC_insb(a, r, p, l)		BUG()
437 #define SMC_outsb(a, r, p, l)		BUG()
438 #endif
439 
440 #if !defined(SMC_insb) || !defined(SMC_outsb)
441 #define SMC_insb(a, r, p, l)		BUG()
442 #define SMC_outsb(a, r, p, l)		BUG()
443 #endif
444 
445 #ifndef SMC_CAN_USE_DATACS
446 #define SMC_CAN_USE_DATACS	0
447 #endif
448 
449 #ifndef SMC_IO_SHIFT
450 #define SMC_IO_SHIFT	0
451 #endif
452 
453 #ifndef	SMC_IRQ_FLAGS
454 #define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
455 #endif
456 
457 #ifndef SMC_INTERRUPT_PREAMBLE
458 #define SMC_INTERRUPT_PREAMBLE
459 #endif
460 
461 
462 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
463 #define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
464 #define SMC_DATA_EXTENT (4)
465 
466 /*
467  . Bank Select Register:
468  .
469  .		yyyy yyyy 0000 00xx
470  .		xx 		= bank number
471  .		yyyy yyyy	= 0x33, for identification purposes.
472 */
473 #define BANK_SELECT		(14 << SMC_IO_SHIFT)
474 
475 
476 // Transmit Control Register
477 /* BANK 0  */
478 #define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
479 #define TCR_ENABLE	0x0001	// When 1 we can transmit
480 #define TCR_LOOP	0x0002	// Controls output pin LBK
481 #define TCR_FORCOL	0x0004	// When 1 will force a collision
482 #define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
483 #define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
484 #define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
485 #define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
486 #define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
487 #define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
488 #define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
489 
490 #define TCR_CLEAR	0	/* do NOTHING */
491 /* the default settings for the TCR register : */
492 #define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
493 
494 
495 // EPH Status Register
496 /* BANK 0  */
497 #define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
498 #define ES_TX_SUC	0x0001	// Last TX was successful
499 #define ES_SNGL_COL	0x0002	// Single collision detected for last tx
500 #define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
501 #define ES_LTX_MULT	0x0008	// Last tx was a multicast
502 #define ES_16COL	0x0010	// 16 Collisions Reached
503 #define ES_SQET		0x0020	// Signal Quality Error Test
504 #define ES_LTXBRD	0x0040	// Last tx was a broadcast
505 #define ES_TXDEFR	0x0080	// Transmit Deferred
506 #define ES_LATCOL	0x0200	// Late collision detected on last tx
507 #define ES_LOSTCARR	0x0400	// Lost Carrier Sense
508 #define ES_EXC_DEF	0x0800	// Excessive Deferral
509 #define ES_CTR_ROL	0x1000	// Counter Roll Over indication
510 #define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
511 #define ES_TXUNRN	0x8000	// Tx Underrun
512 
513 
514 // Receive Control Register
515 /* BANK 0  */
516 #define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
517 #define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
518 #define RCR_PRMS	0x0002	// Enable promiscuous mode
519 #define RCR_ALMUL	0x0004	// When set accepts all multicast frames
520 #define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
521 #define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
522 #define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
523 #define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
524 #define RCR_SOFTRST	0x8000 	// resets the chip
525 
526 /* the normal settings for the RCR register : */
527 #define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
528 #define RCR_CLEAR	0x0	// set it to a base state
529 
530 
531 // Counter Register
532 /* BANK 0  */
533 #define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
534 
535 
536 // Memory Information Register
537 /* BANK 0  */
538 #define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
539 
540 
541 // Receive/Phy Control Register
542 /* BANK 0  */
543 #define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
544 #define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
545 #define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
546 #define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
547 #define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
548 #define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
549 
550 #ifndef RPC_LSA_DEFAULT
551 #define RPC_LSA_DEFAULT	RPC_LED_100
552 #endif
553 #ifndef RPC_LSB_DEFAULT
554 #define RPC_LSB_DEFAULT RPC_LED_FD
555 #endif
556 
557 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
558 
559 
560 /* Bank 0 0x0C is reserved */
561 
562 // Bank Select Register
563 /* All Banks */
564 #define BSR_REG		0x000E
565 
566 
567 // Configuration Reg
568 /* BANK 1 */
569 #define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
570 #define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
571 #define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
572 #define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
573 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
574 
575 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
576 #define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
577 
578 
579 // Base Address Register
580 /* BANK 1 */
581 #define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
582 
583 
584 // Individual Address Registers
585 /* BANK 1 */
586 #define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
587 #define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
588 #define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
589 
590 
591 // General Purpose Register
592 /* BANK 1 */
593 #define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
594 
595 
596 // Control Register
597 /* BANK 1 */
598 #define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
599 #define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
600 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
601 #define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
602 #define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
603 #define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
604 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
605 #define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
606 #define CTL_STORE	0x0001 // When set stores registers into EEPROM
607 
608 
609 // MMU Command Register
610 /* BANK 2 */
611 #define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
612 #define MC_BUSY		1	// When 1 the last release has not completed
613 #define MC_NOP		(0<<5)	// No Op
614 #define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
615 #define MC_RESET	(2<<5)	// Reset MMU to initial state
616 #define MC_REMOVE	(3<<5) 	// Remove the current rx packet
617 #define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
618 #define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
619 #define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
620 #define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
621 
622 
623 // Packet Number Register
624 /* BANK 2 */
625 #define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
626 
627 
628 // Allocation Result Register
629 /* BANK 2 */
630 #define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
631 #define AR_FAILED	0x80	// Alocation Failed
632 
633 
634 // TX FIFO Ports Register
635 /* BANK 2 */
636 #define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
637 #define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
638 
639 // RX FIFO Ports Register
640 /* BANK 2 */
641 #define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
642 #define RXFIFO_REMPTY	0x80	// RX FIFO Empty
643 
644 #define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
645 
646 // Pointer Register
647 /* BANK 2 */
648 #define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
649 #define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
650 #define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
651 #define PTR_READ	0x2000 // When 1 the operation is a read
652 
653 
654 // Data Register
655 /* BANK 2 */
656 #define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
657 
658 
659 // Interrupt Status/Acknowledge Register
660 /* BANK 2 */
661 #define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
662 
663 
664 // Interrupt Mask Register
665 /* BANK 2 */
666 #define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
667 #define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
668 #define IM_ERCV_INT	0x40 // Early Receive Interrupt
669 #define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
670 #define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
671 #define IM_ALLOC_INT	0x08 // Set when allocation request is completed
672 #define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
673 #define IM_TX_INT	0x02 // Transmit Interrupt
674 #define IM_RCV_INT	0x01 // Receive Interrupt
675 
676 
677 // Multicast Table Registers
678 /* BANK 3 */
679 #define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
680 #define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
681 #define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
682 #define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
683 
684 
685 // Management Interface Register (MII)
686 /* BANK 3 */
687 #define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
688 #define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
689 #define MII_MDOE	0x0008 // MII Output Enable
690 #define MII_MCLK	0x0004 // MII Clock, pin MDCLK
691 #define MII_MDI		0x0002 // MII Input, pin MDI
692 #define MII_MDO		0x0001 // MII Output, pin MDO
693 
694 
695 // Revision Register
696 /* BANK 3 */
697 /* ( hi: chip id   low: rev # ) */
698 #define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
699 
700 
701 // Early RCV Register
702 /* BANK 3 */
703 /* this is NOT on SMC9192 */
704 #define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
705 #define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
706 #define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
707 
708 
709 // External Register
710 /* BANK 7 */
711 #define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
712 
713 
714 #define CHIP_9192	3
715 #define CHIP_9194	4
716 #define CHIP_9195	5
717 #define CHIP_9196	6
718 #define CHIP_91100	7
719 #define CHIP_91100FD	8
720 #define CHIP_91111FD	9
721 
722 static const char * chip_ids[ 16 ] =  {
723 	NULL, NULL, NULL,
724 	/* 3 */ "SMC91C90/91C92",
725 	/* 4 */ "SMC91C94",
726 	/* 5 */ "SMC91C95",
727 	/* 6 */ "SMC91C96",
728 	/* 7 */ "SMC91C100",
729 	/* 8 */ "SMC91C100FD",
730 	/* 9 */ "SMC91C11xFD",
731 	NULL, NULL, NULL,
732 	NULL, NULL, NULL};
733 
734 
735 /*
736  . Receive status bits
737 */
738 #define RS_ALGNERR	0x8000
739 #define RS_BRODCAST	0x4000
740 #define RS_BADCRC	0x2000
741 #define RS_ODDFRAME	0x1000
742 #define RS_TOOLONG	0x0800
743 #define RS_TOOSHORT	0x0400
744 #define RS_MULTICAST	0x0001
745 #define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
746 
747 
748 /*
749  * PHY IDs
750  *  LAN83C183 == LAN91C111 Internal PHY
751  */
752 #define PHY_LAN83C183	0x0016f840
753 #define PHY_LAN83C180	0x02821c50
754 
755 /*
756  * PHY Register Addresses (LAN91C111 Internal PHY)
757  *
758  * Generic PHY registers can be found in <linux/mii.h>
759  *
760  * These phy registers are specific to our on-board phy.
761  */
762 
763 // PHY Configuration Register 1
764 #define PHY_CFG1_REG		0x10
765 #define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
766 #define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
767 #define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
768 #define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
769 #define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
770 #define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
771 #define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
772 #define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
773 #define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
774 #define PHY_CFG1_TLVL_MASK	0x003C
775 #define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
776 
777 
778 // PHY Configuration Register 2
779 #define PHY_CFG2_REG		0x11
780 #define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
781 #define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
782 #define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
783 #define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
784 
785 // PHY Status Output (and Interrupt status) Register
786 #define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
787 #define PHY_INT_INT		0x8000	// 1=bits have changed since last read
788 #define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
789 #define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
790 #define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
791 #define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
792 #define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
793 #define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
794 #define PHY_INT_JAB		0x0100	// 1=Jabber detected
795 #define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
796 #define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
797 
798 // PHY Interrupt/Status Mask Register
799 #define PHY_MASK_REG		0x13	// Interrupt Mask
800 // Uses the same bit definitions as PHY_INT_REG
801 
802 
803 /*
804  * SMC91C96 ethernet config and status registers.
805  * These are in the "attribute" space.
806  */
807 #define ECOR			0x8000
808 #define ECOR_RESET		0x80
809 #define ECOR_LEVEL_IRQ		0x40
810 #define ECOR_WR_ATTRIB		0x04
811 #define ECOR_ENABLE		0x01
812 
813 #define ECSR			0x8002
814 #define ECSR_IOIS8		0x20
815 #define ECSR_PWRDWN		0x04
816 #define ECSR_INT		0x02
817 
818 #define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
819 
820 
821 /*
822  * Macros to abstract register access according to the data bus
823  * capabilities.  Please use those and not the in/out primitives.
824  * Note: the following macros do *not* select the bank -- this must
825  * be done separately as needed in the main code.  The SMC_REG() macro
826  * only uses the bank argument for debugging purposes (when enabled).
827  *
828  * Note: despite inline functions being safer, everything leading to this
829  * should preferably be macros to let BUG() display the line number in
830  * the core source code since we're interested in the top call site
831  * not in any inline function location.
832  */
833 
834 #if SMC_DEBUG > 0
835 #define SMC_REG(lp, reg, bank)					\
836 	({								\
837 		int __b = SMC_CURRENT_BANK(lp);			\
838 		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
839 			pr_err("%s: bank reg screwed (0x%04x)\n",	\
840 			       CARDNAME, __b);				\
841 			BUG();						\
842 		}							\
843 		reg<<SMC_IO_SHIFT;					\
844 	})
845 #else
846 #define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
847 #endif
848 
849 /*
850  * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
851  * aligned to a 32 bit boundary.  I tell you that does exist!
852  * Fortunately the affected register accesses can be easily worked around
853  * since we can write zeroes to the preceding 16 bits without adverse
854  * effects and use a 32-bit access.
855  *
856  * Enforce it on any 32-bit capable setup for now.
857  */
858 #define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
859 
860 #define SMC_GET_PN(lp)						\
861 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
862 				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
863 
864 #define SMC_SET_PN(lp, x)						\
865 	do {								\
866 		if (SMC_MUST_ALIGN_WRITE(lp))				\
867 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
868 		else if (SMC_8BIT(lp))				\
869 			SMC_outb(x, ioaddr, PN_REG(lp));		\
870 		else							\
871 			SMC_outw(lp, x, ioaddr, PN_REG(lp));		\
872 	} while (0)
873 
874 #define SMC_GET_AR(lp)						\
875 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
876 				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
877 
878 #define SMC_GET_TXFIFO(lp)						\
879 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
880 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
881 
882 #define SMC_GET_RXFIFO(lp)						\
883 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
884 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
885 
886 #define SMC_GET_INT(lp)						\
887 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
888 				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
889 
890 #define SMC_ACK_INT(lp, x)						\
891 	do {								\
892 		if (SMC_8BIT(lp))					\
893 			SMC_outb(x, ioaddr, INT_REG(lp));		\
894 		else {							\
895 			unsigned long __flags;				\
896 			int __mask;					\
897 			local_irq_save(__flags);			\
898 			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
899 			SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
900 			local_irq_restore(__flags);			\
901 		}							\
902 	} while (0)
903 
904 #define SMC_GET_INT_MASK(lp)						\
905 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
906 				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
907 
908 #define SMC_SET_INT_MASK(lp, x)					\
909 	do {								\
910 		if (SMC_8BIT(lp))					\
911 			SMC_outb(x, ioaddr, IM_REG(lp));		\
912 		else							\
913 			SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp));	\
914 	} while (0)
915 
916 #define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
917 
918 #define SMC_SELECT_BANK(lp, x)					\
919 	do {								\
920 		if (SMC_MUST_ALIGN_WRITE(lp))				\
921 			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
922 		else							\
923 			SMC_outw(lp, x, ioaddr, BANK_SELECT);		\
924 	} while (0)
925 
926 #define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
927 
928 #define SMC_SET_BASE(lp, x)	SMC_outw(lp, x, ioaddr, BASE_REG(lp))
929 
930 #define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
931 
932 #define SMC_SET_CONFIG(lp, x)	SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
933 
934 #define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
935 
936 #define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
937 
938 #define SMC_SET_CTL(lp, x)	SMC_outw(lp, x, ioaddr, CTL_REG(lp))
939 
940 #define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
941 
942 #define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
943 
944 #define SMC_SET_GP(lp, x)						\
945 	do {								\
946 		if (SMC_MUST_ALIGN_WRITE(lp))				\
947 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
948 		else							\
949 			SMC_outw(lp, x, ioaddr, GP_REG(lp));		\
950 	} while (0)
951 
952 #define SMC_SET_MII(lp, x)	SMC_outw(lp, x, ioaddr, MII_REG(lp))
953 
954 #define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
955 
956 #define SMC_SET_MIR(lp, x)	SMC_outw(lp, x, ioaddr, MIR_REG(lp))
957 
958 #define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
959 
960 #define SMC_SET_MMU_CMD(lp, x)	SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
961 
962 #define SMC_GET_FIFO(lp)	SMC_inw(ioaddr, FIFO_REG(lp))
963 
964 #define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
965 
966 #define SMC_SET_PTR(lp, x)						\
967 	do {								\
968 		if (SMC_MUST_ALIGN_WRITE(lp))				\
969 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
970 		else							\
971 			SMC_outw(lp, x, ioaddr, PTR_REG(lp));		\
972 	} while (0)
973 
974 #define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
975 
976 #define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
977 
978 #define SMC_SET_RCR(lp, x)		SMC_outw(lp, x, ioaddr, RCR_REG(lp))
979 
980 #define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
981 
982 #define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
983 
984 #define SMC_SET_RPC(lp, x)						\
985 	do {								\
986 		if (SMC_MUST_ALIGN_WRITE(lp))				\
987 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
988 		else							\
989 			SMC_outw(lp, x, ioaddr, RPC_REG(lp));		\
990 	} while (0)
991 
992 #define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
993 
994 #define SMC_SET_TCR(lp, x)	SMC_outw(lp, x, ioaddr, TCR_REG(lp))
995 
996 #ifndef SMC_GET_MAC_ADDR
997 #define SMC_GET_MAC_ADDR(lp, addr)					\
998 	do {								\
999 		unsigned int __v;					\
1000 		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1001 		addr[0] = __v; addr[1] = __v >> 8;			\
1002 		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1003 		addr[2] = __v; addr[3] = __v >> 8;			\
1004 		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1005 		addr[4] = __v; addr[5] = __v >> 8;			\
1006 	} while (0)
1007 #endif
1008 
1009 #define SMC_SET_MAC_ADDR(lp, addr)					\
1010 	do {								\
1011 		SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1012 		SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1013 		SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1014 	} while (0)
1015 
1016 #define SMC_SET_MCAST(lp, x)						\
1017 	do {								\
1018 		const unsigned char *mt = (x);				\
1019 		SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1020 		SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1021 		SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1022 		SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1023 	} while (0)
1024 
1025 #define SMC_PUT_PKT_HDR(lp, status, length)				\
1026 	do {								\
1027 		if (SMC_32BIT(lp))					\
1028 			SMC_outl((status) | (length)<<16, ioaddr,	\
1029 				 DATA_REG(lp));			\
1030 		else {							\
1031 			SMC_outw(lp, status, ioaddr, DATA_REG(lp));	\
1032 			SMC_outw(lp, length, ioaddr, DATA_REG(lp));	\
1033 		}							\
1034 	} while (0)
1035 
1036 #define SMC_GET_PKT_HDR(lp, status, length)				\
1037 	do {								\
1038 		if (SMC_32BIT(lp)) {				\
1039 			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1040 			(status) = __val & 0xffff;			\
1041 			(length) = __val >> 16;				\
1042 		} else {						\
1043 			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1044 			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1045 		}							\
1046 	} while (0)
1047 
1048 #define SMC_PUSH_DATA(lp, p, l)					\
1049 	do {								\
1050 		if (SMC_32BIT(lp)) {				\
1051 			void *__ptr = (p);				\
1052 			int __len = (l);				\
1053 			void __iomem *__ioaddr = ioaddr;		\
1054 			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1055 				__len -= 2;				\
1056 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1057 				__ptr += 2;				\
1058 			}						\
1059 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1060 				__ioaddr = lp->datacs;			\
1061 			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1062 			if (__len & 2) {				\
1063 				__ptr += (__len & ~3);			\
1064 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1065 			}						\
1066 		} else if (SMC_16BIT(lp))				\
1067 			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1068 		else if (SMC_8BIT(lp))				\
1069 			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1070 	} while (0)
1071 
1072 #define SMC_PULL_DATA(lp, p, l)					\
1073 	do {								\
1074 		if (SMC_32BIT(lp)) {				\
1075 			void *__ptr = (p);				\
1076 			int __len = (l);				\
1077 			void __iomem *__ioaddr = ioaddr;		\
1078 			if ((unsigned long)__ptr & 2) {			\
1079 				/*					\
1080 				 * We want 32bit alignment here.	\
1081 				 * Since some buses perform a full	\
1082 				 * 32bit fetch even for 16bit data	\
1083 				 * we can't use SMC_inw() here.		\
1084 				 * Back both source (on-chip) and	\
1085 				 * destination pointers of 2 bytes.	\
1086 				 * This is possible since the call to	\
1087 				 * SMC_GET_PKT_HDR() already advanced	\
1088 				 * the source pointer of 4 bytes, and	\
1089 				 * the skb_reserve(skb, 2) advanced	\
1090 				 * the destination pointer of 2 bytes.	\
1091 				 */					\
1092 				__ptr -= 2;				\
1093 				__len += 2;				\
1094 				SMC_SET_PTR(lp,			\
1095 					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1096 			}						\
1097 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1098 				__ioaddr = lp->datacs;			\
1099 			__len += 2;					\
1100 			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1101 		} else if (SMC_16BIT(lp))				\
1102 			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1103 		else if (SMC_8BIT(lp))				\
1104 			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1105 	} while (0)
1106 
1107 #endif  /* _SMC91X_H_ */
1108