1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74 }
75
76 /**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113 * @irq: interrupt number to wait for
114 *
115 * This function waits for any pending IRQ handlers for this interrupt
116 * to complete before returning. If you use this function while
117 * holding a resource the IRQ handler may need you will deadlock.
118 *
119 * Can only be called from preemptible code as it might sleep when
120 * an interrupt thread is associated to @irq.
121 *
122 * It optionally makes sure (when the irq chip supports that method)
123 * that the interrupt is not pending in any CPU and waiting for
124 * service.
125 */
synchronize_irq(unsigned int irq)126 void synchronize_irq(unsigned int irq)
127 {
128 struct irq_desc *desc = irq_to_desc(irq);
129
130 if (desc) {
131 __synchronize_hardirq(desc, true);
132 /*
133 * We made sure that no hardirq handler is
134 * running. Now verify that no threaded handlers are
135 * active.
136 */
137 wait_event(desc->wait_for_threads,
138 !atomic_read(&desc->threads_active));
139 }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
__irq_can_set_affinity(struct irq_desc * desc)146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 return false;
151 return true;
152 }
153
154 /**
155 * irq_can_set_affinity - Check if the affinity of a given irq can be set
156 * @irq: Interrupt to check
157 *
158 */
irq_can_set_affinity(unsigned int irq)159 int irq_can_set_affinity(unsigned int irq)
160 {
161 return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166 * @irq: Interrupt to check
167 *
168 * Like irq_can_set_affinity() above, but additionally checks for the
169 * AFFINITY_MANAGED flag.
170 */
irq_can_set_affinity_usr(unsigned int irq)171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 struct irq_desc *desc = irq_to_desc(irq);
174
175 return __irq_can_set_affinity(desc) &&
176 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180 * irq_set_thread_affinity - Notify irq threads to adjust affinity
181 * @desc: irq descriptor which has affinity changed
182 *
183 * We just set IRQTF_AFFINITY and delegate the affinity setting
184 * to the interrupt thread itself. We can not call
185 * set_cpus_allowed_ptr() here as we hold desc->lock and this
186 * code can be called from hard interrupt context.
187 */
irq_set_thread_affinity(struct irq_desc * desc)188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 struct irqaction *action;
191
192 for_each_action_of_desc(desc, action)
193 if (action->thread)
194 set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203 if (!cpumask_empty(m))
204 return;
205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 chip->name, data->irq);
207 }
208 #else
irq_validate_effective_affinity(struct irq_data * data)209 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
210 #endif
211
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)212 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
213 bool force)
214 {
215 struct irq_desc *desc = irq_data_to_desc(data);
216 struct irq_chip *chip = irq_data_get_irq_chip(data);
217 const struct cpumask *prog_mask;
218 int ret;
219
220 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
221 static struct cpumask tmp_mask;
222
223 if (!chip || !chip->irq_set_affinity)
224 return -EINVAL;
225
226 raw_spin_lock(&tmp_mask_lock);
227 /*
228 * If this is a managed interrupt and housekeeping is enabled on
229 * it check whether the requested affinity mask intersects with
230 * a housekeeping CPU. If so, then remove the isolated CPUs from
231 * the mask and just keep the housekeeping CPU(s). This prevents
232 * the affinity setter from routing the interrupt to an isolated
233 * CPU to avoid that I/O submitted from a housekeeping CPU causes
234 * interrupts on an isolated one.
235 *
236 * If the masks do not intersect or include online CPU(s) then
237 * keep the requested mask. The isolated target CPUs are only
238 * receiving interrupts when the I/O operation was submitted
239 * directly from them.
240 *
241 * If all housekeeping CPUs in the affinity mask are offline, the
242 * interrupt will be migrated by the CPU hotplug code once a
243 * housekeeping CPU which belongs to the affinity mask comes
244 * online.
245 */
246 if (irqd_affinity_is_managed(data) &&
247 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
248 const struct cpumask *hk_mask;
249
250 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
251
252 cpumask_and(&tmp_mask, mask, hk_mask);
253 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
254 prog_mask = mask;
255 else
256 prog_mask = &tmp_mask;
257 } else {
258 prog_mask = mask;
259 }
260
261 /*
262 * Make sure we only provide online CPUs to the irqchip,
263 * unless we are being asked to force the affinity (in which
264 * case we do as we are told).
265 */
266 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
267 if (!force && !cpumask_empty(&tmp_mask))
268 ret = chip->irq_set_affinity(data, &tmp_mask, force);
269 else if (force)
270 ret = chip->irq_set_affinity(data, mask, force);
271 else
272 ret = -EINVAL;
273
274 raw_spin_unlock(&tmp_mask_lock);
275
276 switch (ret) {
277 case IRQ_SET_MASK_OK:
278 case IRQ_SET_MASK_OK_DONE:
279 cpumask_copy(desc->irq_common_data.affinity, mask);
280 fallthrough;
281 case IRQ_SET_MASK_OK_NOCOPY:
282 irq_validate_effective_affinity(data);
283 irq_set_thread_affinity(desc);
284 ret = 0;
285 }
286
287 return ret;
288 }
289 EXPORT_SYMBOL_GPL(irq_do_set_affinity);
290
291 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)292 static inline int irq_set_affinity_pending(struct irq_data *data,
293 const struct cpumask *dest)
294 {
295 struct irq_desc *desc = irq_data_to_desc(data);
296
297 irqd_set_move_pending(data);
298 irq_copy_pending(desc, dest);
299 return 0;
300 }
301 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)302 static inline int irq_set_affinity_pending(struct irq_data *data,
303 const struct cpumask *dest)
304 {
305 return -EBUSY;
306 }
307 #endif
308
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)309 static int irq_try_set_affinity(struct irq_data *data,
310 const struct cpumask *dest, bool force)
311 {
312 int ret = irq_do_set_affinity(data, dest, force);
313
314 /*
315 * In case that the underlying vector management is busy and the
316 * architecture supports the generic pending mechanism then utilize
317 * this to avoid returning an error to user space.
318 */
319 if (ret == -EBUSY && !force)
320 ret = irq_set_affinity_pending(data, dest);
321 return ret;
322 }
323
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)324 static bool irq_set_affinity_deactivated(struct irq_data *data,
325 const struct cpumask *mask, bool force)
326 {
327 struct irq_desc *desc = irq_data_to_desc(data);
328
329 /*
330 * Handle irq chips which can handle affinity only in activated
331 * state correctly
332 *
333 * If the interrupt is not yet activated, just store the affinity
334 * mask and do not call the chip driver at all. On activation the
335 * driver has to make sure anyway that the interrupt is in a
336 * usable state so startup works.
337 */
338 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
339 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
340 return false;
341
342 cpumask_copy(desc->irq_common_data.affinity, mask);
343 irq_data_update_effective_affinity(data, mask);
344 irqd_set(data, IRQD_AFFINITY_SET);
345 return true;
346 }
347
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)348 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
349 bool force)
350 {
351 struct irq_chip *chip = irq_data_get_irq_chip(data);
352 struct irq_desc *desc = irq_data_to_desc(data);
353 int ret = 0;
354
355 if (!chip || !chip->irq_set_affinity)
356 return -EINVAL;
357
358 if (irq_set_affinity_deactivated(data, mask, force))
359 return 0;
360
361 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
362 ret = irq_try_set_affinity(data, mask, force);
363 } else {
364 irqd_set_move_pending(data);
365 irq_copy_pending(desc, mask);
366 }
367
368 if (desc->affinity_notify) {
369 kref_get(&desc->affinity_notify->kref);
370 if (!schedule_work(&desc->affinity_notify->work)) {
371 /* Work was already scheduled, drop our extra ref */
372 kref_put(&desc->affinity_notify->kref,
373 desc->affinity_notify->release);
374 }
375 }
376 irqd_set(data, IRQD_AFFINITY_SET);
377
378 return ret;
379 }
380
381 /**
382 * irq_update_affinity_desc - Update affinity management for an interrupt
383 * @irq: The interrupt number to update
384 * @affinity: Pointer to the affinity descriptor
385 *
386 * This interface can be used to configure the affinity management of
387 * interrupts which have been allocated already.
388 *
389 * There are certain limitations on when it may be used - attempts to use it
390 * for when the kernel is configured for generic IRQ reservation mode (in
391 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
392 * managed/non-managed interrupt accounting. In addition, attempts to use it on
393 * an interrupt which is already started or which has already been configured
394 * as managed will also fail, as these mean invalid init state or double init.
395 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)396 int irq_update_affinity_desc(unsigned int irq,
397 struct irq_affinity_desc *affinity)
398 {
399 struct irq_desc *desc;
400 unsigned long flags;
401 bool activated;
402 int ret = 0;
403
404 /*
405 * Supporting this with the reservation scheme used by x86 needs
406 * some more thought. Fail it for now.
407 */
408 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
409 return -EOPNOTSUPP;
410
411 desc = irq_get_desc_buslock(irq, &flags, 0);
412 if (!desc)
413 return -EINVAL;
414
415 /* Requires the interrupt to be shut down */
416 if (irqd_is_started(&desc->irq_data)) {
417 ret = -EBUSY;
418 goto out_unlock;
419 }
420
421 /* Interrupts which are already managed cannot be modified */
422 if (irqd_affinity_is_managed(&desc->irq_data)) {
423 ret = -EBUSY;
424 goto out_unlock;
425 }
426
427 /*
428 * Deactivate the interrupt. That's required to undo
429 * anything an earlier activation has established.
430 */
431 activated = irqd_is_activated(&desc->irq_data);
432 if (activated)
433 irq_domain_deactivate_irq(&desc->irq_data);
434
435 if (affinity->is_managed) {
436 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
437 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
438 }
439
440 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
441
442 /* Restore the activation state */
443 if (activated)
444 irq_domain_activate_irq(&desc->irq_data, false);
445
446 out_unlock:
447 irq_put_desc_busunlock(desc, flags);
448 return ret;
449 }
450
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)451 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
452 bool force)
453 {
454 struct irq_desc *desc = irq_to_desc(irq);
455 unsigned long flags;
456 int ret;
457
458 if (!desc)
459 return -EINVAL;
460
461 raw_spin_lock_irqsave(&desc->lock, flags);
462 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
463 raw_spin_unlock_irqrestore(&desc->lock, flags);
464 return ret;
465 }
466
467 /**
468 * irq_set_affinity - Set the irq affinity of a given irq
469 * @irq: Interrupt to set affinity
470 * @cpumask: cpumask
471 *
472 * Fails if cpumask does not contain an online CPU
473 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)474 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
475 {
476 return __irq_set_affinity(irq, cpumask, false);
477 }
478 EXPORT_SYMBOL_GPL(irq_set_affinity);
479
480 /**
481 * irq_force_affinity - Force the irq affinity of a given irq
482 * @irq: Interrupt to set affinity
483 * @cpumask: cpumask
484 *
485 * Same as irq_set_affinity, but without checking the mask against
486 * online cpus.
487 *
488 * Solely for low level cpu hotplug code, where we need to make per
489 * cpu interrupts affine before the cpu becomes online.
490 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)491 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
492 {
493 return __irq_set_affinity(irq, cpumask, true);
494 }
495 EXPORT_SYMBOL_GPL(irq_force_affinity);
496
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)497 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
498 bool setaffinity)
499 {
500 unsigned long flags;
501 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
502
503 if (!desc)
504 return -EINVAL;
505 desc->affinity_hint = m;
506 irq_put_desc_unlock(desc, flags);
507 if (m && setaffinity)
508 __irq_set_affinity(irq, m, false);
509 return 0;
510 }
511 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
512
irq_affinity_notify(struct work_struct * work)513 static void irq_affinity_notify(struct work_struct *work)
514 {
515 struct irq_affinity_notify *notify =
516 container_of(work, struct irq_affinity_notify, work);
517 struct irq_desc *desc = irq_to_desc(notify->irq);
518 cpumask_var_t cpumask;
519 unsigned long flags;
520
521 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
522 goto out;
523
524 raw_spin_lock_irqsave(&desc->lock, flags);
525 if (irq_move_pending(&desc->irq_data))
526 irq_get_pending(cpumask, desc);
527 else
528 cpumask_copy(cpumask, desc->irq_common_data.affinity);
529 raw_spin_unlock_irqrestore(&desc->lock, flags);
530
531 notify->notify(notify, cpumask);
532
533 free_cpumask_var(cpumask);
534 out:
535 kref_put(¬ify->kref, notify->release);
536 }
537
538 /**
539 * irq_set_affinity_notifier - control notification of IRQ affinity changes
540 * @irq: Interrupt for which to enable/disable notification
541 * @notify: Context for notification, or %NULL to disable
542 * notification. Function pointers must be initialised;
543 * the other fields will be initialised by this function.
544 *
545 * Must be called in process context. Notification may only be enabled
546 * after the IRQ is allocated and must be disabled before the IRQ is
547 * freed using free_irq().
548 */
549 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)550 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
551 {
552 struct irq_desc *desc = irq_to_desc(irq);
553 struct irq_affinity_notify *old_notify;
554 unsigned long flags;
555
556 /* The release function is promised process context */
557 might_sleep();
558
559 if (!desc || desc->istate & IRQS_NMI)
560 return -EINVAL;
561
562 /* Complete initialisation of *notify */
563 if (notify) {
564 notify->irq = irq;
565 kref_init(¬ify->kref);
566 INIT_WORK(¬ify->work, irq_affinity_notify);
567 }
568
569 raw_spin_lock_irqsave(&desc->lock, flags);
570 old_notify = desc->affinity_notify;
571 desc->affinity_notify = notify;
572 raw_spin_unlock_irqrestore(&desc->lock, flags);
573
574 if (old_notify) {
575 if (cancel_work_sync(&old_notify->work)) {
576 /* Pending work had a ref, put that one too */
577 kref_put(&old_notify->kref, old_notify->release);
578 }
579 kref_put(&old_notify->kref, old_notify->release);
580 }
581
582 return 0;
583 }
584 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
585
586 #ifndef CONFIG_AUTO_IRQ_AFFINITY
587 /*
588 * Generic version of the affinity autoselector.
589 */
irq_setup_affinity(struct irq_desc * desc)590 int irq_setup_affinity(struct irq_desc *desc)
591 {
592 struct cpumask *set = irq_default_affinity;
593 int ret, node = irq_desc_get_node(desc);
594 static DEFINE_RAW_SPINLOCK(mask_lock);
595 static struct cpumask mask;
596
597 /* Excludes PER_CPU and NO_BALANCE interrupts */
598 if (!__irq_can_set_affinity(desc))
599 return 0;
600
601 raw_spin_lock(&mask_lock);
602 /*
603 * Preserve the managed affinity setting and a userspace affinity
604 * setup, but make sure that one of the targets is online.
605 */
606 if (irqd_affinity_is_managed(&desc->irq_data) ||
607 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
608 if (cpumask_intersects(desc->irq_common_data.affinity,
609 cpu_online_mask))
610 set = desc->irq_common_data.affinity;
611 else
612 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
613 }
614
615 cpumask_and(&mask, cpu_online_mask, set);
616 if (cpumask_empty(&mask))
617 cpumask_copy(&mask, cpu_online_mask);
618
619 if (node != NUMA_NO_NODE) {
620 const struct cpumask *nodemask = cpumask_of_node(node);
621
622 /* make sure at least one of the cpus in nodemask is online */
623 if (cpumask_intersects(&mask, nodemask))
624 cpumask_and(&mask, &mask, nodemask);
625 }
626 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
627 raw_spin_unlock(&mask_lock);
628 return ret;
629 }
630 #else
631 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)632 int irq_setup_affinity(struct irq_desc *desc)
633 {
634 return irq_select_affinity(irq_desc_get_irq(desc));
635 }
636 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
637 #endif /* CONFIG_SMP */
638
639
640 /**
641 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
642 * @irq: interrupt number to set affinity
643 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
644 * specific data for percpu_devid interrupts
645 *
646 * This function uses the vCPU specific data to set the vCPU
647 * affinity for an irq. The vCPU specific data is passed from
648 * outside, such as KVM. One example code path is as below:
649 * KVM -> IOMMU -> irq_set_vcpu_affinity().
650 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)651 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
652 {
653 unsigned long flags;
654 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
655 struct irq_data *data;
656 struct irq_chip *chip;
657 int ret = -ENOSYS;
658
659 if (!desc)
660 return -EINVAL;
661
662 data = irq_desc_get_irq_data(desc);
663 do {
664 chip = irq_data_get_irq_chip(data);
665 if (chip && chip->irq_set_vcpu_affinity)
666 break;
667 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
668 data = data->parent_data;
669 #else
670 data = NULL;
671 #endif
672 } while (data);
673
674 if (data)
675 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
676 irq_put_desc_unlock(desc, flags);
677
678 return ret;
679 }
680 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
681
__disable_irq(struct irq_desc * desc)682 void __disable_irq(struct irq_desc *desc)
683 {
684 if (!desc->depth++)
685 irq_disable(desc);
686 }
687
__disable_irq_nosync(unsigned int irq)688 static int __disable_irq_nosync(unsigned int irq)
689 {
690 unsigned long flags;
691 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
692
693 if (!desc)
694 return -EINVAL;
695 __disable_irq(desc);
696 irq_put_desc_busunlock(desc, flags);
697 return 0;
698 }
699
700 /**
701 * disable_irq_nosync - disable an irq without waiting
702 * @irq: Interrupt to disable
703 *
704 * Disable the selected interrupt line. Disables and Enables are
705 * nested.
706 * Unlike disable_irq(), this function does not ensure existing
707 * instances of the IRQ handler have completed before returning.
708 *
709 * This function may be called from IRQ context.
710 */
disable_irq_nosync(unsigned int irq)711 void disable_irq_nosync(unsigned int irq)
712 {
713 __disable_irq_nosync(irq);
714 }
715 EXPORT_SYMBOL(disable_irq_nosync);
716
717 /**
718 * disable_irq - disable an irq and wait for completion
719 * @irq: Interrupt to disable
720 *
721 * Disable the selected interrupt line. Enables and Disables are
722 * nested.
723 * This function waits for any pending IRQ handlers for this interrupt
724 * to complete before returning. If you use this function while
725 * holding a resource the IRQ handler may need you will deadlock.
726 *
727 * This function may be called - with care - from IRQ context.
728 */
disable_irq(unsigned int irq)729 void disable_irq(unsigned int irq)
730 {
731 if (!__disable_irq_nosync(irq))
732 synchronize_irq(irq);
733 }
734 EXPORT_SYMBOL(disable_irq);
735
736 /**
737 * disable_hardirq - disables an irq and waits for hardirq completion
738 * @irq: Interrupt to disable
739 *
740 * Disable the selected interrupt line. Enables and Disables are
741 * nested.
742 * This function waits for any pending hard IRQ handlers for this
743 * interrupt to complete before returning. If you use this function while
744 * holding a resource the hard IRQ handler may need you will deadlock.
745 *
746 * When used to optimistically disable an interrupt from atomic context
747 * the return value must be checked.
748 *
749 * Returns: false if a threaded handler is active.
750 *
751 * This function may be called - with care - from IRQ context.
752 */
disable_hardirq(unsigned int irq)753 bool disable_hardirq(unsigned int irq)
754 {
755 if (!__disable_irq_nosync(irq))
756 return synchronize_hardirq(irq);
757
758 return false;
759 }
760 EXPORT_SYMBOL_GPL(disable_hardirq);
761
762 /**
763 * disable_nmi_nosync - disable an nmi without waiting
764 * @irq: Interrupt to disable
765 *
766 * Disable the selected interrupt line. Disables and enables are
767 * nested.
768 * The interrupt to disable must have been requested through request_nmi.
769 * Unlike disable_nmi(), this function does not ensure existing
770 * instances of the IRQ handler have completed before returning.
771 */
disable_nmi_nosync(unsigned int irq)772 void disable_nmi_nosync(unsigned int irq)
773 {
774 disable_irq_nosync(irq);
775 }
776
__enable_irq(struct irq_desc * desc)777 void __enable_irq(struct irq_desc *desc)
778 {
779 switch (desc->depth) {
780 case 0:
781 err_out:
782 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
783 irq_desc_get_irq(desc));
784 break;
785 case 1: {
786 if (desc->istate & IRQS_SUSPENDED)
787 goto err_out;
788 /* Prevent probing on this irq: */
789 irq_settings_set_noprobe(desc);
790 /*
791 * Call irq_startup() not irq_enable() here because the
792 * interrupt might be marked NOAUTOEN. So irq_startup()
793 * needs to be invoked when it gets enabled the first
794 * time. If it was already started up, then irq_startup()
795 * will invoke irq_enable() under the hood.
796 */
797 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
798 break;
799 }
800 default:
801 desc->depth--;
802 }
803 }
804
805 /**
806 * enable_irq - enable handling of an irq
807 * @irq: Interrupt to enable
808 *
809 * Undoes the effect of one call to disable_irq(). If this
810 * matches the last disable, processing of interrupts on this
811 * IRQ line is re-enabled.
812 *
813 * This function may be called from IRQ context only when
814 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
815 */
enable_irq(unsigned int irq)816 void enable_irq(unsigned int irq)
817 {
818 unsigned long flags;
819 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
820
821 if (!desc)
822 return;
823 if (WARN(!desc->irq_data.chip,
824 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
825 goto out;
826
827 __enable_irq(desc);
828 out:
829 irq_put_desc_busunlock(desc, flags);
830 }
831 EXPORT_SYMBOL(enable_irq);
832
833 /**
834 * enable_nmi - enable handling of an nmi
835 * @irq: Interrupt to enable
836 *
837 * The interrupt to enable must have been requested through request_nmi.
838 * Undoes the effect of one call to disable_nmi(). If this
839 * matches the last disable, processing of interrupts on this
840 * IRQ line is re-enabled.
841 */
enable_nmi(unsigned int irq)842 void enable_nmi(unsigned int irq)
843 {
844 enable_irq(irq);
845 }
846
set_irq_wake_real(unsigned int irq,unsigned int on)847 static int set_irq_wake_real(unsigned int irq, unsigned int on)
848 {
849 struct irq_desc *desc = irq_to_desc(irq);
850 int ret = -ENXIO;
851
852 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
853 return 0;
854
855 if (desc->irq_data.chip->irq_set_wake)
856 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
857
858 return ret;
859 }
860
861 /**
862 * irq_set_irq_wake - control irq power management wakeup
863 * @irq: interrupt to control
864 * @on: enable/disable power management wakeup
865 *
866 * Enable/disable power management wakeup mode, which is
867 * disabled by default. Enables and disables must match,
868 * just as they match for non-wakeup mode support.
869 *
870 * Wakeup mode lets this IRQ wake the system from sleep
871 * states like "suspend to RAM".
872 *
873 * Note: irq enable/disable state is completely orthogonal
874 * to the enable/disable state of irq wake. An irq can be
875 * disabled with disable_irq() and still wake the system as
876 * long as the irq has wake enabled. If this does not hold,
877 * then the underlying irq chip and the related driver need
878 * to be investigated.
879 */
irq_set_irq_wake(unsigned int irq,unsigned int on)880 int irq_set_irq_wake(unsigned int irq, unsigned int on)
881 {
882 unsigned long flags;
883 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
884 int ret = 0;
885
886 if (!desc)
887 return -EINVAL;
888
889 /* Don't use NMIs as wake up interrupts please */
890 if (desc->istate & IRQS_NMI) {
891 ret = -EINVAL;
892 goto out_unlock;
893 }
894
895 /* wakeup-capable irqs can be shared between drivers that
896 * don't need to have the same sleep mode behaviors.
897 */
898 if (on) {
899 if (desc->wake_depth++ == 0) {
900 ret = set_irq_wake_real(irq, on);
901 if (ret)
902 desc->wake_depth = 0;
903 else
904 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
905 }
906 } else {
907 if (desc->wake_depth == 0) {
908 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
909 } else if (--desc->wake_depth == 0) {
910 ret = set_irq_wake_real(irq, on);
911 if (ret)
912 desc->wake_depth = 1;
913 else
914 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
915 }
916 }
917
918 out_unlock:
919 irq_put_desc_busunlock(desc, flags);
920 return ret;
921 }
922 EXPORT_SYMBOL(irq_set_irq_wake);
923
924 /*
925 * Internal function that tells the architecture code whether a
926 * particular irq has been exclusively allocated or is available
927 * for driver use.
928 */
can_request_irq(unsigned int irq,unsigned long irqflags)929 int can_request_irq(unsigned int irq, unsigned long irqflags)
930 {
931 unsigned long flags;
932 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
933 int canrequest = 0;
934
935 if (!desc)
936 return 0;
937
938 if (irq_settings_can_request(desc)) {
939 if (!desc->action ||
940 irqflags & desc->action->flags & IRQF_SHARED)
941 canrequest = 1;
942 }
943 irq_put_desc_unlock(desc, flags);
944 return canrequest;
945 }
946
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)947 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
948 {
949 struct irq_chip *chip = desc->irq_data.chip;
950 int ret, unmask = 0;
951
952 if (!chip || !chip->irq_set_type) {
953 /*
954 * IRQF_TRIGGER_* but the PIC does not support multiple
955 * flow-types?
956 */
957 pr_debug("No set_type function for IRQ %d (%s)\n",
958 irq_desc_get_irq(desc),
959 chip ? (chip->name ? : "unknown") : "unknown");
960 return 0;
961 }
962
963 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
964 if (!irqd_irq_masked(&desc->irq_data))
965 mask_irq(desc);
966 if (!irqd_irq_disabled(&desc->irq_data))
967 unmask = 1;
968 }
969
970 /* Mask all flags except trigger mode */
971 flags &= IRQ_TYPE_SENSE_MASK;
972 ret = chip->irq_set_type(&desc->irq_data, flags);
973
974 switch (ret) {
975 case IRQ_SET_MASK_OK:
976 case IRQ_SET_MASK_OK_DONE:
977 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
978 irqd_set(&desc->irq_data, flags);
979 fallthrough;
980
981 case IRQ_SET_MASK_OK_NOCOPY:
982 flags = irqd_get_trigger_type(&desc->irq_data);
983 irq_settings_set_trigger_mask(desc, flags);
984 irqd_clear(&desc->irq_data, IRQD_LEVEL);
985 irq_settings_clr_level(desc);
986 if (flags & IRQ_TYPE_LEVEL_MASK) {
987 irq_settings_set_level(desc);
988 irqd_set(&desc->irq_data, IRQD_LEVEL);
989 }
990
991 ret = 0;
992 break;
993 default:
994 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
995 flags, irq_desc_get_irq(desc), chip->irq_set_type);
996 }
997 if (unmask)
998 unmask_irq(desc);
999 return ret;
1000 }
1001
1002 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1003 int irq_set_parent(int irq, int parent_irq)
1004 {
1005 unsigned long flags;
1006 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1007
1008 if (!desc)
1009 return -EINVAL;
1010
1011 desc->parent_irq = parent_irq;
1012
1013 irq_put_desc_unlock(desc, flags);
1014 return 0;
1015 }
1016 EXPORT_SYMBOL_GPL(irq_set_parent);
1017 #endif
1018
1019 /*
1020 * Default primary interrupt handler for threaded interrupts. Is
1021 * assigned as primary handler when request_threaded_irq is called
1022 * with handler == NULL. Useful for oneshot interrupts.
1023 */
irq_default_primary_handler(int irq,void * dev_id)1024 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1025 {
1026 return IRQ_WAKE_THREAD;
1027 }
1028
1029 /*
1030 * Primary handler for nested threaded interrupts. Should never be
1031 * called.
1032 */
irq_nested_primary_handler(int irq,void * dev_id)1033 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1034 {
1035 WARN(1, "Primary handler called for nested irq %d\n", irq);
1036 return IRQ_NONE;
1037 }
1038
irq_forced_secondary_handler(int irq,void * dev_id)1039 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1040 {
1041 WARN(1, "Secondary action handler called for irq %d\n", irq);
1042 return IRQ_NONE;
1043 }
1044
irq_wait_for_interrupt(struct irqaction * action)1045 static int irq_wait_for_interrupt(struct irqaction *action)
1046 {
1047 for (;;) {
1048 set_current_state(TASK_INTERRUPTIBLE);
1049
1050 if (kthread_should_stop()) {
1051 /* may need to run one last time */
1052 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1053 &action->thread_flags)) {
1054 __set_current_state(TASK_RUNNING);
1055 return 0;
1056 }
1057 __set_current_state(TASK_RUNNING);
1058 return -1;
1059 }
1060
1061 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1062 &action->thread_flags)) {
1063 __set_current_state(TASK_RUNNING);
1064 return 0;
1065 }
1066 schedule();
1067 }
1068 }
1069
1070 /*
1071 * Oneshot interrupts keep the irq line masked until the threaded
1072 * handler finished. unmask if the interrupt has not been disabled and
1073 * is marked MASKED.
1074 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1075 static void irq_finalize_oneshot(struct irq_desc *desc,
1076 struct irqaction *action)
1077 {
1078 if (!(desc->istate & IRQS_ONESHOT) ||
1079 action->handler == irq_forced_secondary_handler)
1080 return;
1081 again:
1082 chip_bus_lock(desc);
1083 raw_spin_lock_irq(&desc->lock);
1084
1085 /*
1086 * Implausible though it may be we need to protect us against
1087 * the following scenario:
1088 *
1089 * The thread is faster done than the hard interrupt handler
1090 * on the other CPU. If we unmask the irq line then the
1091 * interrupt can come in again and masks the line, leaves due
1092 * to IRQS_INPROGRESS and the irq line is masked forever.
1093 *
1094 * This also serializes the state of shared oneshot handlers
1095 * versus "desc->threads_oneshot |= action->thread_mask;" in
1096 * irq_wake_thread(). See the comment there which explains the
1097 * serialization.
1098 */
1099 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1100 raw_spin_unlock_irq(&desc->lock);
1101 chip_bus_sync_unlock(desc);
1102 cpu_relax();
1103 goto again;
1104 }
1105
1106 /*
1107 * Now check again, whether the thread should run. Otherwise
1108 * we would clear the threads_oneshot bit of this thread which
1109 * was just set.
1110 */
1111 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1112 goto out_unlock;
1113
1114 desc->threads_oneshot &= ~action->thread_mask;
1115
1116 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1117 irqd_irq_masked(&desc->irq_data))
1118 unmask_threaded_irq(desc);
1119
1120 out_unlock:
1121 raw_spin_unlock_irq(&desc->lock);
1122 chip_bus_sync_unlock(desc);
1123 }
1124
1125 #ifdef CONFIG_SMP
1126 /*
1127 * Check whether we need to change the affinity of the interrupt thread.
1128 */
1129 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1130 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1131 {
1132 cpumask_var_t mask;
1133 bool valid = true;
1134
1135 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1136 return;
1137
1138 /*
1139 * In case we are out of memory we set IRQTF_AFFINITY again and
1140 * try again next time
1141 */
1142 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1143 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1144 return;
1145 }
1146
1147 raw_spin_lock_irq(&desc->lock);
1148 /*
1149 * This code is triggered unconditionally. Check the affinity
1150 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1151 */
1152 if (cpumask_available(desc->irq_common_data.affinity)) {
1153 const struct cpumask *m;
1154
1155 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1156 cpumask_copy(mask, m);
1157 } else {
1158 valid = false;
1159 }
1160 raw_spin_unlock_irq(&desc->lock);
1161
1162 if (valid)
1163 set_cpus_allowed_ptr(current, mask);
1164 free_cpumask_var(mask);
1165 }
1166 #else
1167 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1168 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1169 #endif
1170
1171 /*
1172 * Interrupts which are not explicitly requested as threaded
1173 * interrupts rely on the implicit bh/preempt disable of the hard irq
1174 * context. So we need to disable bh here to avoid deadlocks and other
1175 * side effects.
1176 */
1177 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1178 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1179 {
1180 irqreturn_t ret;
1181
1182 local_bh_disable();
1183 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1184 local_irq_disable();
1185 ret = action->thread_fn(action->irq, action->dev_id);
1186 if (ret == IRQ_HANDLED)
1187 atomic_inc(&desc->threads_handled);
1188
1189 irq_finalize_oneshot(desc, action);
1190 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1191 local_irq_enable();
1192 local_bh_enable();
1193 return ret;
1194 }
1195
1196 /*
1197 * Interrupts explicitly requested as threaded interrupts want to be
1198 * preemptible - many of them need to sleep and wait for slow busses to
1199 * complete.
1200 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1201 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1202 struct irqaction *action)
1203 {
1204 irqreturn_t ret;
1205
1206 ret = action->thread_fn(action->irq, action->dev_id);
1207 if (ret == IRQ_HANDLED)
1208 atomic_inc(&desc->threads_handled);
1209
1210 irq_finalize_oneshot(desc, action);
1211 return ret;
1212 }
1213
wake_threads_waitq(struct irq_desc * desc)1214 static void wake_threads_waitq(struct irq_desc *desc)
1215 {
1216 if (atomic_dec_and_test(&desc->threads_active))
1217 wake_up(&desc->wait_for_threads);
1218 }
1219
irq_thread_dtor(struct callback_head * unused)1220 static void irq_thread_dtor(struct callback_head *unused)
1221 {
1222 struct task_struct *tsk = current;
1223 struct irq_desc *desc;
1224 struct irqaction *action;
1225
1226 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1227 return;
1228
1229 action = kthread_data(tsk);
1230
1231 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1232 tsk->comm, tsk->pid, action->irq);
1233
1234
1235 desc = irq_to_desc(action->irq);
1236 /*
1237 * If IRQTF_RUNTHREAD is set, we need to decrement
1238 * desc->threads_active and wake possible waiters.
1239 */
1240 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1241 wake_threads_waitq(desc);
1242
1243 /* Prevent a stale desc->threads_oneshot */
1244 irq_finalize_oneshot(desc, action);
1245 }
1246
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1247 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1248 {
1249 struct irqaction *secondary = action->secondary;
1250
1251 if (WARN_ON_ONCE(!secondary))
1252 return;
1253
1254 raw_spin_lock_irq(&desc->lock);
1255 __irq_wake_thread(desc, secondary);
1256 raw_spin_unlock_irq(&desc->lock);
1257 }
1258
1259 /*
1260 * Internal function to notify that a interrupt thread is ready.
1261 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1262 static void irq_thread_set_ready(struct irq_desc *desc,
1263 struct irqaction *action)
1264 {
1265 set_bit(IRQTF_READY, &action->thread_flags);
1266 wake_up(&desc->wait_for_threads);
1267 }
1268
1269 /*
1270 * Internal function to wake up a interrupt thread and wait until it is
1271 * ready.
1272 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1273 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1274 struct irqaction *action)
1275 {
1276 if (!action || !action->thread)
1277 return;
1278
1279 wake_up_process(action->thread);
1280 wait_event(desc->wait_for_threads,
1281 test_bit(IRQTF_READY, &action->thread_flags));
1282 }
1283
1284 /*
1285 * Interrupt handler thread
1286 */
irq_thread(void * data)1287 static int irq_thread(void *data)
1288 {
1289 struct callback_head on_exit_work;
1290 struct irqaction *action = data;
1291 struct irq_desc *desc = irq_to_desc(action->irq);
1292 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1293 struct irqaction *action);
1294
1295 irq_thread_set_ready(desc, action);
1296
1297 sched_set_fifo(current);
1298
1299 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1300 &action->thread_flags))
1301 handler_fn = irq_forced_thread_fn;
1302 else
1303 handler_fn = irq_thread_fn;
1304
1305 init_task_work(&on_exit_work, irq_thread_dtor);
1306 task_work_add(current, &on_exit_work, TWA_NONE);
1307
1308 irq_thread_check_affinity(desc, action);
1309
1310 while (!irq_wait_for_interrupt(action)) {
1311 irqreturn_t action_ret;
1312
1313 irq_thread_check_affinity(desc, action);
1314
1315 action_ret = handler_fn(desc, action);
1316 if (action_ret == IRQ_WAKE_THREAD)
1317 irq_wake_secondary(desc, action);
1318
1319 wake_threads_waitq(desc);
1320 }
1321
1322 /*
1323 * This is the regular exit path. __free_irq() is stopping the
1324 * thread via kthread_stop() after calling
1325 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1326 * oneshot mask bit can be set.
1327 */
1328 task_work_cancel(current, irq_thread_dtor);
1329 return 0;
1330 }
1331
1332 /**
1333 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1334 * @irq: Interrupt line
1335 * @dev_id: Device identity for which the thread should be woken
1336 *
1337 */
irq_wake_thread(unsigned int irq,void * dev_id)1338 void irq_wake_thread(unsigned int irq, void *dev_id)
1339 {
1340 struct irq_desc *desc = irq_to_desc(irq);
1341 struct irqaction *action;
1342 unsigned long flags;
1343
1344 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1345 return;
1346
1347 raw_spin_lock_irqsave(&desc->lock, flags);
1348 for_each_action_of_desc(desc, action) {
1349 if (action->dev_id == dev_id) {
1350 if (action->thread)
1351 __irq_wake_thread(desc, action);
1352 break;
1353 }
1354 }
1355 raw_spin_unlock_irqrestore(&desc->lock, flags);
1356 }
1357 EXPORT_SYMBOL_GPL(irq_wake_thread);
1358
irq_setup_forced_threading(struct irqaction * new)1359 static int irq_setup_forced_threading(struct irqaction *new)
1360 {
1361 if (!force_irqthreads())
1362 return 0;
1363 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1364 return 0;
1365
1366 /*
1367 * No further action required for interrupts which are requested as
1368 * threaded interrupts already
1369 */
1370 if (new->handler == irq_default_primary_handler)
1371 return 0;
1372
1373 new->flags |= IRQF_ONESHOT;
1374
1375 /*
1376 * Handle the case where we have a real primary handler and a
1377 * thread handler. We force thread them as well by creating a
1378 * secondary action.
1379 */
1380 if (new->handler && new->thread_fn) {
1381 /* Allocate the secondary action */
1382 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1383 if (!new->secondary)
1384 return -ENOMEM;
1385 new->secondary->handler = irq_forced_secondary_handler;
1386 new->secondary->thread_fn = new->thread_fn;
1387 new->secondary->dev_id = new->dev_id;
1388 new->secondary->irq = new->irq;
1389 new->secondary->name = new->name;
1390 }
1391 /* Deal with the primary handler */
1392 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1393 new->thread_fn = new->handler;
1394 new->handler = irq_default_primary_handler;
1395 return 0;
1396 }
1397
irq_request_resources(struct irq_desc * desc)1398 static int irq_request_resources(struct irq_desc *desc)
1399 {
1400 struct irq_data *d = &desc->irq_data;
1401 struct irq_chip *c = d->chip;
1402
1403 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1404 }
1405
irq_release_resources(struct irq_desc * desc)1406 static void irq_release_resources(struct irq_desc *desc)
1407 {
1408 struct irq_data *d = &desc->irq_data;
1409 struct irq_chip *c = d->chip;
1410
1411 if (c->irq_release_resources)
1412 c->irq_release_resources(d);
1413 }
1414
irq_supports_nmi(struct irq_desc * desc)1415 static bool irq_supports_nmi(struct irq_desc *desc)
1416 {
1417 struct irq_data *d = irq_desc_get_irq_data(desc);
1418
1419 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1420 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1421 if (d->parent_data)
1422 return false;
1423 #endif
1424 /* Don't support NMIs for chips behind a slow bus */
1425 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1426 return false;
1427
1428 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1429 }
1430
irq_nmi_setup(struct irq_desc * desc)1431 static int irq_nmi_setup(struct irq_desc *desc)
1432 {
1433 struct irq_data *d = irq_desc_get_irq_data(desc);
1434 struct irq_chip *c = d->chip;
1435
1436 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1437 }
1438
irq_nmi_teardown(struct irq_desc * desc)1439 static void irq_nmi_teardown(struct irq_desc *desc)
1440 {
1441 struct irq_data *d = irq_desc_get_irq_data(desc);
1442 struct irq_chip *c = d->chip;
1443
1444 if (c->irq_nmi_teardown)
1445 c->irq_nmi_teardown(d);
1446 }
1447
1448 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1449 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1450 {
1451 struct task_struct *t;
1452
1453 if (!secondary) {
1454 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1455 new->name);
1456 } else {
1457 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1458 new->name);
1459 }
1460
1461 if (IS_ERR(t))
1462 return PTR_ERR(t);
1463
1464 /*
1465 * We keep the reference to the task struct even if
1466 * the thread dies to avoid that the interrupt code
1467 * references an already freed task_struct.
1468 */
1469 new->thread = get_task_struct(t);
1470 /*
1471 * Tell the thread to set its affinity. This is
1472 * important for shared interrupt handlers as we do
1473 * not invoke setup_affinity() for the secondary
1474 * handlers as everything is already set up. Even for
1475 * interrupts marked with IRQF_NO_BALANCE this is
1476 * correct as we want the thread to move to the cpu(s)
1477 * on which the requesting code placed the interrupt.
1478 */
1479 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1480 return 0;
1481 }
1482
1483 /*
1484 * Internal function to register an irqaction - typically used to
1485 * allocate special interrupts that are part of the architecture.
1486 *
1487 * Locking rules:
1488 *
1489 * desc->request_mutex Provides serialization against a concurrent free_irq()
1490 * chip_bus_lock Provides serialization for slow bus operations
1491 * desc->lock Provides serialization against hard interrupts
1492 *
1493 * chip_bus_lock and desc->lock are sufficient for all other management and
1494 * interrupt related functions. desc->request_mutex solely serializes
1495 * request/free_irq().
1496 */
1497 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1498 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1499 {
1500 struct irqaction *old, **old_ptr;
1501 unsigned long flags, thread_mask = 0;
1502 int ret, nested, shared = 0;
1503
1504 if (!desc)
1505 return -EINVAL;
1506
1507 if (desc->irq_data.chip == &no_irq_chip)
1508 return -ENOSYS;
1509 if (!try_module_get(desc->owner))
1510 return -ENODEV;
1511
1512 new->irq = irq;
1513
1514 /*
1515 * If the trigger type is not specified by the caller,
1516 * then use the default for this interrupt.
1517 */
1518 if (!(new->flags & IRQF_TRIGGER_MASK))
1519 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1520
1521 /*
1522 * Check whether the interrupt nests into another interrupt
1523 * thread.
1524 */
1525 nested = irq_settings_is_nested_thread(desc);
1526 if (nested) {
1527 if (!new->thread_fn) {
1528 ret = -EINVAL;
1529 goto out_mput;
1530 }
1531 /*
1532 * Replace the primary handler which was provided from
1533 * the driver for non nested interrupt handling by the
1534 * dummy function which warns when called.
1535 */
1536 new->handler = irq_nested_primary_handler;
1537 } else {
1538 if (irq_settings_can_thread(desc)) {
1539 ret = irq_setup_forced_threading(new);
1540 if (ret)
1541 goto out_mput;
1542 }
1543 }
1544
1545 /*
1546 * Create a handler thread when a thread function is supplied
1547 * and the interrupt does not nest into another interrupt
1548 * thread.
1549 */
1550 if (new->thread_fn && !nested) {
1551 ret = setup_irq_thread(new, irq, false);
1552 if (ret)
1553 goto out_mput;
1554 if (new->secondary) {
1555 ret = setup_irq_thread(new->secondary, irq, true);
1556 if (ret)
1557 goto out_thread;
1558 }
1559 }
1560
1561 /*
1562 * Drivers are often written to work w/o knowledge about the
1563 * underlying irq chip implementation, so a request for a
1564 * threaded irq without a primary hard irq context handler
1565 * requires the ONESHOT flag to be set. Some irq chips like
1566 * MSI based interrupts are per se one shot safe. Check the
1567 * chip flags, so we can avoid the unmask dance at the end of
1568 * the threaded handler for those.
1569 */
1570 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1571 new->flags &= ~IRQF_ONESHOT;
1572
1573 /*
1574 * Protects against a concurrent __free_irq() call which might wait
1575 * for synchronize_hardirq() to complete without holding the optional
1576 * chip bus lock and desc->lock. Also protects against handing out
1577 * a recycled oneshot thread_mask bit while it's still in use by
1578 * its previous owner.
1579 */
1580 mutex_lock(&desc->request_mutex);
1581
1582 /*
1583 * Acquire bus lock as the irq_request_resources() callback below
1584 * might rely on the serialization or the magic power management
1585 * functions which are abusing the irq_bus_lock() callback,
1586 */
1587 chip_bus_lock(desc);
1588
1589 /* First installed action requests resources. */
1590 if (!desc->action) {
1591 ret = irq_request_resources(desc);
1592 if (ret) {
1593 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1594 new->name, irq, desc->irq_data.chip->name);
1595 goto out_bus_unlock;
1596 }
1597 }
1598
1599 /*
1600 * The following block of code has to be executed atomically
1601 * protected against a concurrent interrupt and any of the other
1602 * management calls which are not serialized via
1603 * desc->request_mutex or the optional bus lock.
1604 */
1605 raw_spin_lock_irqsave(&desc->lock, flags);
1606 old_ptr = &desc->action;
1607 old = *old_ptr;
1608 if (old) {
1609 /*
1610 * Can't share interrupts unless both agree to and are
1611 * the same type (level, edge, polarity). So both flag
1612 * fields must have IRQF_SHARED set and the bits which
1613 * set the trigger type must match. Also all must
1614 * agree on ONESHOT.
1615 * Interrupt lines used for NMIs cannot be shared.
1616 */
1617 unsigned int oldtype;
1618
1619 if (desc->istate & IRQS_NMI) {
1620 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1621 new->name, irq, desc->irq_data.chip->name);
1622 ret = -EINVAL;
1623 goto out_unlock;
1624 }
1625
1626 /*
1627 * If nobody did set the configuration before, inherit
1628 * the one provided by the requester.
1629 */
1630 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1631 oldtype = irqd_get_trigger_type(&desc->irq_data);
1632 } else {
1633 oldtype = new->flags & IRQF_TRIGGER_MASK;
1634 irqd_set_trigger_type(&desc->irq_data, oldtype);
1635 }
1636
1637 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1638 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1639 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1640 goto mismatch;
1641
1642 /* All handlers must agree on per-cpuness */
1643 if ((old->flags & IRQF_PERCPU) !=
1644 (new->flags & IRQF_PERCPU))
1645 goto mismatch;
1646
1647 /* add new interrupt at end of irq queue */
1648 do {
1649 /*
1650 * Or all existing action->thread_mask bits,
1651 * so we can find the next zero bit for this
1652 * new action.
1653 */
1654 thread_mask |= old->thread_mask;
1655 old_ptr = &old->next;
1656 old = *old_ptr;
1657 } while (old);
1658 shared = 1;
1659 }
1660
1661 /*
1662 * Setup the thread mask for this irqaction for ONESHOT. For
1663 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1664 * conditional in irq_wake_thread().
1665 */
1666 if (new->flags & IRQF_ONESHOT) {
1667 /*
1668 * Unlikely to have 32 resp 64 irqs sharing one line,
1669 * but who knows.
1670 */
1671 if (thread_mask == ~0UL) {
1672 ret = -EBUSY;
1673 goto out_unlock;
1674 }
1675 /*
1676 * The thread_mask for the action is or'ed to
1677 * desc->thread_active to indicate that the
1678 * IRQF_ONESHOT thread handler has been woken, but not
1679 * yet finished. The bit is cleared when a thread
1680 * completes. When all threads of a shared interrupt
1681 * line have completed desc->threads_active becomes
1682 * zero and the interrupt line is unmasked. See
1683 * handle.c:irq_wake_thread() for further information.
1684 *
1685 * If no thread is woken by primary (hard irq context)
1686 * interrupt handlers, then desc->threads_active is
1687 * also checked for zero to unmask the irq line in the
1688 * affected hard irq flow handlers
1689 * (handle_[fasteoi|level]_irq).
1690 *
1691 * The new action gets the first zero bit of
1692 * thread_mask assigned. See the loop above which or's
1693 * all existing action->thread_mask bits.
1694 */
1695 new->thread_mask = 1UL << ffz(thread_mask);
1696
1697 } else if (new->handler == irq_default_primary_handler &&
1698 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1699 /*
1700 * The interrupt was requested with handler = NULL, so
1701 * we use the default primary handler for it. But it
1702 * does not have the oneshot flag set. In combination
1703 * with level interrupts this is deadly, because the
1704 * default primary handler just wakes the thread, then
1705 * the irq lines is reenabled, but the device still
1706 * has the level irq asserted. Rinse and repeat....
1707 *
1708 * While this works for edge type interrupts, we play
1709 * it safe and reject unconditionally because we can't
1710 * say for sure which type this interrupt really
1711 * has. The type flags are unreliable as the
1712 * underlying chip implementation can override them.
1713 */
1714 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1715 new->name, irq);
1716 ret = -EINVAL;
1717 goto out_unlock;
1718 }
1719
1720 if (!shared) {
1721 /* Setup the type (level, edge polarity) if configured: */
1722 if (new->flags & IRQF_TRIGGER_MASK) {
1723 ret = __irq_set_trigger(desc,
1724 new->flags & IRQF_TRIGGER_MASK);
1725
1726 if (ret)
1727 goto out_unlock;
1728 }
1729
1730 /*
1731 * Activate the interrupt. That activation must happen
1732 * independently of IRQ_NOAUTOEN. request_irq() can fail
1733 * and the callers are supposed to handle
1734 * that. enable_irq() of an interrupt requested with
1735 * IRQ_NOAUTOEN is not supposed to fail. The activation
1736 * keeps it in shutdown mode, it merily associates
1737 * resources if necessary and if that's not possible it
1738 * fails. Interrupts which are in managed shutdown mode
1739 * will simply ignore that activation request.
1740 */
1741 ret = irq_activate(desc);
1742 if (ret)
1743 goto out_unlock;
1744
1745 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1746 IRQS_ONESHOT | IRQS_WAITING);
1747 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1748
1749 if (new->flags & IRQF_PERCPU) {
1750 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1751 irq_settings_set_per_cpu(desc);
1752 if (new->flags & IRQF_NO_DEBUG)
1753 irq_settings_set_no_debug(desc);
1754 }
1755
1756 if (noirqdebug)
1757 irq_settings_set_no_debug(desc);
1758
1759 if (new->flags & IRQF_ONESHOT)
1760 desc->istate |= IRQS_ONESHOT;
1761
1762 /* Exclude IRQ from balancing if requested */
1763 if (new->flags & IRQF_NOBALANCING) {
1764 irq_settings_set_no_balancing(desc);
1765 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1766 }
1767
1768 if (!(new->flags & IRQF_NO_AUTOEN) &&
1769 irq_settings_can_autoenable(desc)) {
1770 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1771 } else {
1772 /*
1773 * Shared interrupts do not go well with disabling
1774 * auto enable. The sharing interrupt might request
1775 * it while it's still disabled and then wait for
1776 * interrupts forever.
1777 */
1778 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1779 /* Undo nested disables: */
1780 desc->depth = 1;
1781 }
1782
1783 } else if (new->flags & IRQF_TRIGGER_MASK) {
1784 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1785 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1786
1787 if (nmsk != omsk)
1788 /* hope the handler works with current trigger mode */
1789 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1790 irq, omsk, nmsk);
1791 }
1792
1793 *old_ptr = new;
1794
1795 irq_pm_install_action(desc, new);
1796
1797 /* Reset broken irq detection when installing new handler */
1798 desc->irq_count = 0;
1799 desc->irqs_unhandled = 0;
1800
1801 /*
1802 * Check whether we disabled the irq via the spurious handler
1803 * before. Reenable it and give it another chance.
1804 */
1805 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1806 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1807 __enable_irq(desc);
1808 }
1809
1810 raw_spin_unlock_irqrestore(&desc->lock, flags);
1811 chip_bus_sync_unlock(desc);
1812 mutex_unlock(&desc->request_mutex);
1813
1814 irq_setup_timings(desc, new);
1815
1816 wake_up_and_wait_for_irq_thread_ready(desc, new);
1817 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1818
1819 register_irq_proc(irq, desc);
1820 new->dir = NULL;
1821 register_handler_proc(irq, new);
1822 return 0;
1823
1824 mismatch:
1825 if (!(new->flags & IRQF_PROBE_SHARED)) {
1826 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1827 irq, new->flags, new->name, old->flags, old->name);
1828 #ifdef CONFIG_DEBUG_SHIRQ
1829 dump_stack();
1830 #endif
1831 }
1832 ret = -EBUSY;
1833
1834 out_unlock:
1835 raw_spin_unlock_irqrestore(&desc->lock, flags);
1836
1837 if (!desc->action)
1838 irq_release_resources(desc);
1839 out_bus_unlock:
1840 chip_bus_sync_unlock(desc);
1841 mutex_unlock(&desc->request_mutex);
1842
1843 out_thread:
1844 if (new->thread) {
1845 struct task_struct *t = new->thread;
1846
1847 new->thread = NULL;
1848 kthread_stop(t);
1849 put_task_struct(t);
1850 }
1851 if (new->secondary && new->secondary->thread) {
1852 struct task_struct *t = new->secondary->thread;
1853
1854 new->secondary->thread = NULL;
1855 kthread_stop(t);
1856 put_task_struct(t);
1857 }
1858 out_mput:
1859 module_put(desc->owner);
1860 return ret;
1861 }
1862
1863 /*
1864 * Internal function to unregister an irqaction - used to free
1865 * regular and special interrupts that are part of the architecture.
1866 */
__free_irq(struct irq_desc * desc,void * dev_id)1867 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1868 {
1869 unsigned irq = desc->irq_data.irq;
1870 struct irqaction *action, **action_ptr;
1871 unsigned long flags;
1872
1873 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1874
1875 mutex_lock(&desc->request_mutex);
1876 chip_bus_lock(desc);
1877 raw_spin_lock_irqsave(&desc->lock, flags);
1878
1879 /*
1880 * There can be multiple actions per IRQ descriptor, find the right
1881 * one based on the dev_id:
1882 */
1883 action_ptr = &desc->action;
1884 for (;;) {
1885 action = *action_ptr;
1886
1887 if (!action) {
1888 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1889 raw_spin_unlock_irqrestore(&desc->lock, flags);
1890 chip_bus_sync_unlock(desc);
1891 mutex_unlock(&desc->request_mutex);
1892 return NULL;
1893 }
1894
1895 if (action->dev_id == dev_id)
1896 break;
1897 action_ptr = &action->next;
1898 }
1899
1900 /* Found it - now remove it from the list of entries: */
1901 *action_ptr = action->next;
1902
1903 irq_pm_remove_action(desc, action);
1904
1905 /* If this was the last handler, shut down the IRQ line: */
1906 if (!desc->action) {
1907 irq_settings_clr_disable_unlazy(desc);
1908 /* Only shutdown. Deactivate after synchronize_hardirq() */
1909 irq_shutdown(desc);
1910 }
1911
1912 #ifdef CONFIG_SMP
1913 /* make sure affinity_hint is cleaned up */
1914 if (WARN_ON_ONCE(desc->affinity_hint))
1915 desc->affinity_hint = NULL;
1916 #endif
1917
1918 raw_spin_unlock_irqrestore(&desc->lock, flags);
1919 /*
1920 * Drop bus_lock here so the changes which were done in the chip
1921 * callbacks above are synced out to the irq chips which hang
1922 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1923 *
1924 * Aside of that the bus_lock can also be taken from the threaded
1925 * handler in irq_finalize_oneshot() which results in a deadlock
1926 * because kthread_stop() would wait forever for the thread to
1927 * complete, which is blocked on the bus lock.
1928 *
1929 * The still held desc->request_mutex() protects against a
1930 * concurrent request_irq() of this irq so the release of resources
1931 * and timing data is properly serialized.
1932 */
1933 chip_bus_sync_unlock(desc);
1934
1935 unregister_handler_proc(irq, action);
1936
1937 /*
1938 * Make sure it's not being used on another CPU and if the chip
1939 * supports it also make sure that there is no (not yet serviced)
1940 * interrupt in flight at the hardware level.
1941 */
1942 __synchronize_hardirq(desc, true);
1943
1944 #ifdef CONFIG_DEBUG_SHIRQ
1945 /*
1946 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1947 * event to happen even now it's being freed, so let's make sure that
1948 * is so by doing an extra call to the handler ....
1949 *
1950 * ( We do this after actually deregistering it, to make sure that a
1951 * 'real' IRQ doesn't run in parallel with our fake. )
1952 */
1953 if (action->flags & IRQF_SHARED) {
1954 local_irq_save(flags);
1955 action->handler(irq, dev_id);
1956 local_irq_restore(flags);
1957 }
1958 #endif
1959
1960 /*
1961 * The action has already been removed above, but the thread writes
1962 * its oneshot mask bit when it completes. Though request_mutex is
1963 * held across this which prevents __setup_irq() from handing out
1964 * the same bit to a newly requested action.
1965 */
1966 if (action->thread) {
1967 kthread_stop(action->thread);
1968 put_task_struct(action->thread);
1969 if (action->secondary && action->secondary->thread) {
1970 kthread_stop(action->secondary->thread);
1971 put_task_struct(action->secondary->thread);
1972 }
1973 }
1974
1975 /* Last action releases resources */
1976 if (!desc->action) {
1977 /*
1978 * Reacquire bus lock as irq_release_resources() might
1979 * require it to deallocate resources over the slow bus.
1980 */
1981 chip_bus_lock(desc);
1982 /*
1983 * There is no interrupt on the fly anymore. Deactivate it
1984 * completely.
1985 */
1986 raw_spin_lock_irqsave(&desc->lock, flags);
1987 irq_domain_deactivate_irq(&desc->irq_data);
1988 raw_spin_unlock_irqrestore(&desc->lock, flags);
1989
1990 irq_release_resources(desc);
1991 chip_bus_sync_unlock(desc);
1992 irq_remove_timings(desc);
1993 }
1994
1995 mutex_unlock(&desc->request_mutex);
1996
1997 irq_chip_pm_put(&desc->irq_data);
1998 module_put(desc->owner);
1999 kfree(action->secondary);
2000 return action;
2001 }
2002
2003 /**
2004 * free_irq - free an interrupt allocated with request_irq
2005 * @irq: Interrupt line to free
2006 * @dev_id: Device identity to free
2007 *
2008 * Remove an interrupt handler. The handler is removed and if the
2009 * interrupt line is no longer in use by any driver it is disabled.
2010 * On a shared IRQ the caller must ensure the interrupt is disabled
2011 * on the card it drives before calling this function. The function
2012 * does not return until any executing interrupts for this IRQ
2013 * have completed.
2014 *
2015 * This function must not be called from interrupt context.
2016 *
2017 * Returns the devname argument passed to request_irq.
2018 */
free_irq(unsigned int irq,void * dev_id)2019 const void *free_irq(unsigned int irq, void *dev_id)
2020 {
2021 struct irq_desc *desc = irq_to_desc(irq);
2022 struct irqaction *action;
2023 const char *devname;
2024
2025 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2026 return NULL;
2027
2028 #ifdef CONFIG_SMP
2029 if (WARN_ON(desc->affinity_notify))
2030 desc->affinity_notify = NULL;
2031 #endif
2032
2033 action = __free_irq(desc, dev_id);
2034
2035 if (!action)
2036 return NULL;
2037
2038 devname = action->name;
2039 kfree(action);
2040 return devname;
2041 }
2042 EXPORT_SYMBOL(free_irq);
2043
2044 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2045 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2046 {
2047 const char *devname = NULL;
2048
2049 desc->istate &= ~IRQS_NMI;
2050
2051 if (!WARN_ON(desc->action == NULL)) {
2052 irq_pm_remove_action(desc, desc->action);
2053 devname = desc->action->name;
2054 unregister_handler_proc(irq, desc->action);
2055
2056 kfree(desc->action);
2057 desc->action = NULL;
2058 }
2059
2060 irq_settings_clr_disable_unlazy(desc);
2061 irq_shutdown_and_deactivate(desc);
2062
2063 irq_release_resources(desc);
2064
2065 irq_chip_pm_put(&desc->irq_data);
2066 module_put(desc->owner);
2067
2068 return devname;
2069 }
2070
free_nmi(unsigned int irq,void * dev_id)2071 const void *free_nmi(unsigned int irq, void *dev_id)
2072 {
2073 struct irq_desc *desc = irq_to_desc(irq);
2074 unsigned long flags;
2075 const void *devname;
2076
2077 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2078 return NULL;
2079
2080 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2081 return NULL;
2082
2083 /* NMI still enabled */
2084 if (WARN_ON(desc->depth == 0))
2085 disable_nmi_nosync(irq);
2086
2087 raw_spin_lock_irqsave(&desc->lock, flags);
2088
2089 irq_nmi_teardown(desc);
2090 devname = __cleanup_nmi(irq, desc);
2091
2092 raw_spin_unlock_irqrestore(&desc->lock, flags);
2093
2094 return devname;
2095 }
2096
2097 /**
2098 * request_threaded_irq - allocate an interrupt line
2099 * @irq: Interrupt line to allocate
2100 * @handler: Function to be called when the IRQ occurs.
2101 * Primary handler for threaded interrupts.
2102 * If handler is NULL and thread_fn != NULL
2103 * the default primary handler is installed.
2104 * @thread_fn: Function called from the irq handler thread
2105 * If NULL, no irq thread is created
2106 * @irqflags: Interrupt type flags
2107 * @devname: An ascii name for the claiming device
2108 * @dev_id: A cookie passed back to the handler function
2109 *
2110 * This call allocates interrupt resources and enables the
2111 * interrupt line and IRQ handling. From the point this
2112 * call is made your handler function may be invoked. Since
2113 * your handler function must clear any interrupt the board
2114 * raises, you must take care both to initialise your hardware
2115 * and to set up the interrupt handler in the right order.
2116 *
2117 * If you want to set up a threaded irq handler for your device
2118 * then you need to supply @handler and @thread_fn. @handler is
2119 * still called in hard interrupt context and has to check
2120 * whether the interrupt originates from the device. If yes it
2121 * needs to disable the interrupt on the device and return
2122 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2123 * @thread_fn. This split handler design is necessary to support
2124 * shared interrupts.
2125 *
2126 * Dev_id must be globally unique. Normally the address of the
2127 * device data structure is used as the cookie. Since the handler
2128 * receives this value it makes sense to use it.
2129 *
2130 * If your interrupt is shared you must pass a non NULL dev_id
2131 * as this is required when freeing the interrupt.
2132 *
2133 * Flags:
2134 *
2135 * IRQF_SHARED Interrupt is shared
2136 * IRQF_TRIGGER_* Specify active edge(s) or level
2137 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2138 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2139 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2140 irq_handler_t thread_fn, unsigned long irqflags,
2141 const char *devname, void *dev_id)
2142 {
2143 struct irqaction *action;
2144 struct irq_desc *desc;
2145 int retval;
2146
2147 if (irq == IRQ_NOTCONNECTED)
2148 return -ENOTCONN;
2149
2150 /*
2151 * Sanity-check: shared interrupts must pass in a real dev-ID,
2152 * otherwise we'll have trouble later trying to figure out
2153 * which interrupt is which (messes up the interrupt freeing
2154 * logic etc).
2155 *
2156 * Also shared interrupts do not go well with disabling auto enable.
2157 * The sharing interrupt might request it while it's still disabled
2158 * and then wait for interrupts forever.
2159 *
2160 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2161 * it cannot be set along with IRQF_NO_SUSPEND.
2162 */
2163 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2164 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2165 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2166 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2167 return -EINVAL;
2168
2169 desc = irq_to_desc(irq);
2170 if (!desc)
2171 return -EINVAL;
2172
2173 if (!irq_settings_can_request(desc) ||
2174 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2175 return -EINVAL;
2176
2177 if (!handler) {
2178 if (!thread_fn)
2179 return -EINVAL;
2180 handler = irq_default_primary_handler;
2181 }
2182
2183 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2184 if (!action)
2185 return -ENOMEM;
2186
2187 action->handler = handler;
2188 action->thread_fn = thread_fn;
2189 action->flags = irqflags;
2190 action->name = devname;
2191 action->dev_id = dev_id;
2192
2193 retval = irq_chip_pm_get(&desc->irq_data);
2194 if (retval < 0) {
2195 kfree(action);
2196 return retval;
2197 }
2198
2199 retval = __setup_irq(irq, desc, action);
2200
2201 if (retval) {
2202 irq_chip_pm_put(&desc->irq_data);
2203 kfree(action->secondary);
2204 kfree(action);
2205 }
2206
2207 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2208 if (!retval && (irqflags & IRQF_SHARED)) {
2209 /*
2210 * It's a shared IRQ -- the driver ought to be prepared for it
2211 * to happen immediately, so let's make sure....
2212 * We disable the irq to make sure that a 'real' IRQ doesn't
2213 * run in parallel with our fake.
2214 */
2215 unsigned long flags;
2216
2217 disable_irq(irq);
2218 local_irq_save(flags);
2219
2220 handler(irq, dev_id);
2221
2222 local_irq_restore(flags);
2223 enable_irq(irq);
2224 }
2225 #endif
2226 return retval;
2227 }
2228 EXPORT_SYMBOL(request_threaded_irq);
2229
2230 /**
2231 * request_any_context_irq - allocate an interrupt line
2232 * @irq: Interrupt line to allocate
2233 * @handler: Function to be called when the IRQ occurs.
2234 * Threaded handler for threaded interrupts.
2235 * @flags: Interrupt type flags
2236 * @name: An ascii name for the claiming device
2237 * @dev_id: A cookie passed back to the handler function
2238 *
2239 * This call allocates interrupt resources and enables the
2240 * interrupt line and IRQ handling. It selects either a
2241 * hardirq or threaded handling method depending on the
2242 * context.
2243 *
2244 * On failure, it returns a negative value. On success,
2245 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2246 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2247 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2248 unsigned long flags, const char *name, void *dev_id)
2249 {
2250 struct irq_desc *desc;
2251 int ret;
2252
2253 if (irq == IRQ_NOTCONNECTED)
2254 return -ENOTCONN;
2255
2256 desc = irq_to_desc(irq);
2257 if (!desc)
2258 return -EINVAL;
2259
2260 if (irq_settings_is_nested_thread(desc)) {
2261 ret = request_threaded_irq(irq, NULL, handler,
2262 flags, name, dev_id);
2263 return !ret ? IRQC_IS_NESTED : ret;
2264 }
2265
2266 ret = request_irq(irq, handler, flags, name, dev_id);
2267 return !ret ? IRQC_IS_HARDIRQ : ret;
2268 }
2269 EXPORT_SYMBOL_GPL(request_any_context_irq);
2270
2271 /**
2272 * request_nmi - allocate an interrupt line for NMI delivery
2273 * @irq: Interrupt line to allocate
2274 * @handler: Function to be called when the IRQ occurs.
2275 * Threaded handler for threaded interrupts.
2276 * @irqflags: Interrupt type flags
2277 * @name: An ascii name for the claiming device
2278 * @dev_id: A cookie passed back to the handler function
2279 *
2280 * This call allocates interrupt resources and enables the
2281 * interrupt line and IRQ handling. It sets up the IRQ line
2282 * to be handled as an NMI.
2283 *
2284 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2285 * cannot be threaded.
2286 *
2287 * Interrupt lines requested for NMI delivering must produce per cpu
2288 * interrupts and have auto enabling setting disabled.
2289 *
2290 * Dev_id must be globally unique. Normally the address of the
2291 * device data structure is used as the cookie. Since the handler
2292 * receives this value it makes sense to use it.
2293 *
2294 * If the interrupt line cannot be used to deliver NMIs, function
2295 * will fail and return a negative value.
2296 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2297 int request_nmi(unsigned int irq, irq_handler_t handler,
2298 unsigned long irqflags, const char *name, void *dev_id)
2299 {
2300 struct irqaction *action;
2301 struct irq_desc *desc;
2302 unsigned long flags;
2303 int retval;
2304
2305 if (irq == IRQ_NOTCONNECTED)
2306 return -ENOTCONN;
2307
2308 /* NMI cannot be shared, used for Polling */
2309 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2310 return -EINVAL;
2311
2312 if (!(irqflags & IRQF_PERCPU))
2313 return -EINVAL;
2314
2315 if (!handler)
2316 return -EINVAL;
2317
2318 desc = irq_to_desc(irq);
2319
2320 if (!desc || (irq_settings_can_autoenable(desc) &&
2321 !(irqflags & IRQF_NO_AUTOEN)) ||
2322 !irq_settings_can_request(desc) ||
2323 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2324 !irq_supports_nmi(desc))
2325 return -EINVAL;
2326
2327 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2328 if (!action)
2329 return -ENOMEM;
2330
2331 action->handler = handler;
2332 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2333 action->name = name;
2334 action->dev_id = dev_id;
2335
2336 retval = irq_chip_pm_get(&desc->irq_data);
2337 if (retval < 0)
2338 goto err_out;
2339
2340 retval = __setup_irq(irq, desc, action);
2341 if (retval)
2342 goto err_irq_setup;
2343
2344 raw_spin_lock_irqsave(&desc->lock, flags);
2345
2346 /* Setup NMI state */
2347 desc->istate |= IRQS_NMI;
2348 retval = irq_nmi_setup(desc);
2349 if (retval) {
2350 __cleanup_nmi(irq, desc);
2351 raw_spin_unlock_irqrestore(&desc->lock, flags);
2352 return -EINVAL;
2353 }
2354
2355 raw_spin_unlock_irqrestore(&desc->lock, flags);
2356
2357 return 0;
2358
2359 err_irq_setup:
2360 irq_chip_pm_put(&desc->irq_data);
2361 err_out:
2362 kfree(action);
2363
2364 return retval;
2365 }
2366
enable_percpu_irq(unsigned int irq,unsigned int type)2367 void enable_percpu_irq(unsigned int irq, unsigned int type)
2368 {
2369 unsigned int cpu = smp_processor_id();
2370 unsigned long flags;
2371 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2372
2373 if (!desc)
2374 return;
2375
2376 /*
2377 * If the trigger type is not specified by the caller, then
2378 * use the default for this interrupt.
2379 */
2380 type &= IRQ_TYPE_SENSE_MASK;
2381 if (type == IRQ_TYPE_NONE)
2382 type = irqd_get_trigger_type(&desc->irq_data);
2383
2384 if (type != IRQ_TYPE_NONE) {
2385 int ret;
2386
2387 ret = __irq_set_trigger(desc, type);
2388
2389 if (ret) {
2390 WARN(1, "failed to set type for IRQ%d\n", irq);
2391 goto out;
2392 }
2393 }
2394
2395 irq_percpu_enable(desc, cpu);
2396 out:
2397 irq_put_desc_unlock(desc, flags);
2398 }
2399 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2400
enable_percpu_nmi(unsigned int irq,unsigned int type)2401 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2402 {
2403 enable_percpu_irq(irq, type);
2404 }
2405
2406 /**
2407 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2408 * @irq: Linux irq number to check for
2409 *
2410 * Must be called from a non migratable context. Returns the enable
2411 * state of a per cpu interrupt on the current cpu.
2412 */
irq_percpu_is_enabled(unsigned int irq)2413 bool irq_percpu_is_enabled(unsigned int irq)
2414 {
2415 unsigned int cpu = smp_processor_id();
2416 struct irq_desc *desc;
2417 unsigned long flags;
2418 bool is_enabled;
2419
2420 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2421 if (!desc)
2422 return false;
2423
2424 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2425 irq_put_desc_unlock(desc, flags);
2426
2427 return is_enabled;
2428 }
2429 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2430
disable_percpu_irq(unsigned int irq)2431 void disable_percpu_irq(unsigned int irq)
2432 {
2433 unsigned int cpu = smp_processor_id();
2434 unsigned long flags;
2435 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2436
2437 if (!desc)
2438 return;
2439
2440 irq_percpu_disable(desc, cpu);
2441 irq_put_desc_unlock(desc, flags);
2442 }
2443 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2444
disable_percpu_nmi(unsigned int irq)2445 void disable_percpu_nmi(unsigned int irq)
2446 {
2447 disable_percpu_irq(irq);
2448 }
2449
2450 /*
2451 * Internal function to unregister a percpu irqaction.
2452 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2453 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2454 {
2455 struct irq_desc *desc = irq_to_desc(irq);
2456 struct irqaction *action;
2457 unsigned long flags;
2458
2459 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2460
2461 if (!desc)
2462 return NULL;
2463
2464 raw_spin_lock_irqsave(&desc->lock, flags);
2465
2466 action = desc->action;
2467 if (!action || action->percpu_dev_id != dev_id) {
2468 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2469 goto bad;
2470 }
2471
2472 if (!cpumask_empty(desc->percpu_enabled)) {
2473 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2474 irq, cpumask_first(desc->percpu_enabled));
2475 goto bad;
2476 }
2477
2478 /* Found it - now remove it from the list of entries: */
2479 desc->action = NULL;
2480
2481 desc->istate &= ~IRQS_NMI;
2482
2483 raw_spin_unlock_irqrestore(&desc->lock, flags);
2484
2485 unregister_handler_proc(irq, action);
2486
2487 irq_chip_pm_put(&desc->irq_data);
2488 module_put(desc->owner);
2489 return action;
2490
2491 bad:
2492 raw_spin_unlock_irqrestore(&desc->lock, flags);
2493 return NULL;
2494 }
2495
2496 /**
2497 * remove_percpu_irq - free a per-cpu interrupt
2498 * @irq: Interrupt line to free
2499 * @act: irqaction for the interrupt
2500 *
2501 * Used to remove interrupts statically setup by the early boot process.
2502 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2503 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2504 {
2505 struct irq_desc *desc = irq_to_desc(irq);
2506
2507 if (desc && irq_settings_is_per_cpu_devid(desc))
2508 __free_percpu_irq(irq, act->percpu_dev_id);
2509 }
2510
2511 /**
2512 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2513 * @irq: Interrupt line to free
2514 * @dev_id: Device identity to free
2515 *
2516 * Remove a percpu interrupt handler. The handler is removed, but
2517 * the interrupt line is not disabled. This must be done on each
2518 * CPU before calling this function. The function does not return
2519 * until any executing interrupts for this IRQ have completed.
2520 *
2521 * This function must not be called from interrupt context.
2522 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2523 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2524 {
2525 struct irq_desc *desc = irq_to_desc(irq);
2526
2527 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2528 return;
2529
2530 chip_bus_lock(desc);
2531 kfree(__free_percpu_irq(irq, dev_id));
2532 chip_bus_sync_unlock(desc);
2533 }
2534 EXPORT_SYMBOL_GPL(free_percpu_irq);
2535
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2536 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2537 {
2538 struct irq_desc *desc = irq_to_desc(irq);
2539
2540 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2541 return;
2542
2543 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2544 return;
2545
2546 kfree(__free_percpu_irq(irq, dev_id));
2547 }
2548
2549 /**
2550 * setup_percpu_irq - setup a per-cpu interrupt
2551 * @irq: Interrupt line to setup
2552 * @act: irqaction for the interrupt
2553 *
2554 * Used to statically setup per-cpu interrupts in the early boot process.
2555 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2556 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2557 {
2558 struct irq_desc *desc = irq_to_desc(irq);
2559 int retval;
2560
2561 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2562 return -EINVAL;
2563
2564 retval = irq_chip_pm_get(&desc->irq_data);
2565 if (retval < 0)
2566 return retval;
2567
2568 retval = __setup_irq(irq, desc, act);
2569
2570 if (retval)
2571 irq_chip_pm_put(&desc->irq_data);
2572
2573 return retval;
2574 }
2575
2576 /**
2577 * __request_percpu_irq - allocate a percpu interrupt line
2578 * @irq: Interrupt line to allocate
2579 * @handler: Function to be called when the IRQ occurs.
2580 * @flags: Interrupt type flags (IRQF_TIMER only)
2581 * @devname: An ascii name for the claiming device
2582 * @dev_id: A percpu cookie passed back to the handler function
2583 *
2584 * This call allocates interrupt resources and enables the
2585 * interrupt on the local CPU. If the interrupt is supposed to be
2586 * enabled on other CPUs, it has to be done on each CPU using
2587 * enable_percpu_irq().
2588 *
2589 * Dev_id must be globally unique. It is a per-cpu variable, and
2590 * the handler gets called with the interrupted CPU's instance of
2591 * that variable.
2592 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2593 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2594 unsigned long flags, const char *devname,
2595 void __percpu *dev_id)
2596 {
2597 struct irqaction *action;
2598 struct irq_desc *desc;
2599 int retval;
2600
2601 if (!dev_id)
2602 return -EINVAL;
2603
2604 desc = irq_to_desc(irq);
2605 if (!desc || !irq_settings_can_request(desc) ||
2606 !irq_settings_is_per_cpu_devid(desc))
2607 return -EINVAL;
2608
2609 if (flags && flags != IRQF_TIMER)
2610 return -EINVAL;
2611
2612 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2613 if (!action)
2614 return -ENOMEM;
2615
2616 action->handler = handler;
2617 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2618 action->name = devname;
2619 action->percpu_dev_id = dev_id;
2620
2621 retval = irq_chip_pm_get(&desc->irq_data);
2622 if (retval < 0) {
2623 kfree(action);
2624 return retval;
2625 }
2626
2627 retval = __setup_irq(irq, desc, action);
2628
2629 if (retval) {
2630 irq_chip_pm_put(&desc->irq_data);
2631 kfree(action);
2632 }
2633
2634 return retval;
2635 }
2636 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2637
2638 /**
2639 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2640 * @irq: Interrupt line to allocate
2641 * @handler: Function to be called when the IRQ occurs.
2642 * @name: An ascii name for the claiming device
2643 * @dev_id: A percpu cookie passed back to the handler function
2644 *
2645 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2646 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2647 * being enabled on the same CPU by using enable_percpu_nmi().
2648 *
2649 * Dev_id must be globally unique. It is a per-cpu variable, and
2650 * the handler gets called with the interrupted CPU's instance of
2651 * that variable.
2652 *
2653 * Interrupt lines requested for NMI delivering should have auto enabling
2654 * setting disabled.
2655 *
2656 * If the interrupt line cannot be used to deliver NMIs, function
2657 * will fail returning a negative value.
2658 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2659 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2660 const char *name, void __percpu *dev_id)
2661 {
2662 struct irqaction *action;
2663 struct irq_desc *desc;
2664 unsigned long flags;
2665 int retval;
2666
2667 if (!handler)
2668 return -EINVAL;
2669
2670 desc = irq_to_desc(irq);
2671
2672 if (!desc || !irq_settings_can_request(desc) ||
2673 !irq_settings_is_per_cpu_devid(desc) ||
2674 irq_settings_can_autoenable(desc) ||
2675 !irq_supports_nmi(desc))
2676 return -EINVAL;
2677
2678 /* The line cannot already be NMI */
2679 if (desc->istate & IRQS_NMI)
2680 return -EINVAL;
2681
2682 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2683 if (!action)
2684 return -ENOMEM;
2685
2686 action->handler = handler;
2687 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2688 | IRQF_NOBALANCING;
2689 action->name = name;
2690 action->percpu_dev_id = dev_id;
2691
2692 retval = irq_chip_pm_get(&desc->irq_data);
2693 if (retval < 0)
2694 goto err_out;
2695
2696 retval = __setup_irq(irq, desc, action);
2697 if (retval)
2698 goto err_irq_setup;
2699
2700 raw_spin_lock_irqsave(&desc->lock, flags);
2701 desc->istate |= IRQS_NMI;
2702 raw_spin_unlock_irqrestore(&desc->lock, flags);
2703
2704 return 0;
2705
2706 err_irq_setup:
2707 irq_chip_pm_put(&desc->irq_data);
2708 err_out:
2709 kfree(action);
2710
2711 return retval;
2712 }
2713
2714 /**
2715 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2716 * @irq: Interrupt line to prepare for NMI delivery
2717 *
2718 * This call prepares an interrupt line to deliver NMI on the current CPU,
2719 * before that interrupt line gets enabled with enable_percpu_nmi().
2720 *
2721 * As a CPU local operation, this should be called from non-preemptible
2722 * context.
2723 *
2724 * If the interrupt line cannot be used to deliver NMIs, function
2725 * will fail returning a negative value.
2726 */
prepare_percpu_nmi(unsigned int irq)2727 int prepare_percpu_nmi(unsigned int irq)
2728 {
2729 unsigned long flags;
2730 struct irq_desc *desc;
2731 int ret = 0;
2732
2733 WARN_ON(preemptible());
2734
2735 desc = irq_get_desc_lock(irq, &flags,
2736 IRQ_GET_DESC_CHECK_PERCPU);
2737 if (!desc)
2738 return -EINVAL;
2739
2740 if (WARN(!(desc->istate & IRQS_NMI),
2741 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2742 irq)) {
2743 ret = -EINVAL;
2744 goto out;
2745 }
2746
2747 ret = irq_nmi_setup(desc);
2748 if (ret) {
2749 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2750 goto out;
2751 }
2752
2753 out:
2754 irq_put_desc_unlock(desc, flags);
2755 return ret;
2756 }
2757
2758 /**
2759 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2760 * @irq: Interrupt line from which CPU local NMI configuration should be
2761 * removed
2762 *
2763 * This call undoes the setup done by prepare_percpu_nmi().
2764 *
2765 * IRQ line should not be enabled for the current CPU.
2766 *
2767 * As a CPU local operation, this should be called from non-preemptible
2768 * context.
2769 */
teardown_percpu_nmi(unsigned int irq)2770 void teardown_percpu_nmi(unsigned int irq)
2771 {
2772 unsigned long flags;
2773 struct irq_desc *desc;
2774
2775 WARN_ON(preemptible());
2776
2777 desc = irq_get_desc_lock(irq, &flags,
2778 IRQ_GET_DESC_CHECK_PERCPU);
2779 if (!desc)
2780 return;
2781
2782 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2783 goto out;
2784
2785 irq_nmi_teardown(desc);
2786 out:
2787 irq_put_desc_unlock(desc, flags);
2788 }
2789
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2790 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2791 bool *state)
2792 {
2793 struct irq_chip *chip;
2794 int err = -EINVAL;
2795
2796 do {
2797 chip = irq_data_get_irq_chip(data);
2798 if (WARN_ON_ONCE(!chip))
2799 return -ENODEV;
2800 if (chip->irq_get_irqchip_state)
2801 break;
2802 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2803 data = data->parent_data;
2804 #else
2805 data = NULL;
2806 #endif
2807 } while (data);
2808
2809 if (data)
2810 err = chip->irq_get_irqchip_state(data, which, state);
2811 return err;
2812 }
2813
2814 /**
2815 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2816 * @irq: Interrupt line that is forwarded to a VM
2817 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2818 * @state: a pointer to a boolean where the state is to be stored
2819 *
2820 * This call snapshots the internal irqchip state of an
2821 * interrupt, returning into @state the bit corresponding to
2822 * stage @which
2823 *
2824 * This function should be called with preemption disabled if the
2825 * interrupt controller has per-cpu registers.
2826 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2827 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2828 bool *state)
2829 {
2830 struct irq_desc *desc;
2831 struct irq_data *data;
2832 unsigned long flags;
2833 int err = -EINVAL;
2834
2835 desc = irq_get_desc_buslock(irq, &flags, 0);
2836 if (!desc)
2837 return err;
2838
2839 data = irq_desc_get_irq_data(desc);
2840
2841 err = __irq_get_irqchip_state(data, which, state);
2842
2843 irq_put_desc_busunlock(desc, flags);
2844 return err;
2845 }
2846 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2847
2848 /**
2849 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2850 * @irq: Interrupt line that is forwarded to a VM
2851 * @which: State to be restored (one of IRQCHIP_STATE_*)
2852 * @val: Value corresponding to @which
2853 *
2854 * This call sets the internal irqchip state of an interrupt,
2855 * depending on the value of @which.
2856 *
2857 * This function should be called with migration disabled if the
2858 * interrupt controller has per-cpu registers.
2859 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2860 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2861 bool val)
2862 {
2863 struct irq_desc *desc;
2864 struct irq_data *data;
2865 struct irq_chip *chip;
2866 unsigned long flags;
2867 int err = -EINVAL;
2868
2869 desc = irq_get_desc_buslock(irq, &flags, 0);
2870 if (!desc)
2871 return err;
2872
2873 data = irq_desc_get_irq_data(desc);
2874
2875 do {
2876 chip = irq_data_get_irq_chip(data);
2877 if (WARN_ON_ONCE(!chip)) {
2878 err = -ENODEV;
2879 goto out_unlock;
2880 }
2881 if (chip->irq_set_irqchip_state)
2882 break;
2883 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2884 data = data->parent_data;
2885 #else
2886 data = NULL;
2887 #endif
2888 } while (data);
2889
2890 if (data)
2891 err = chip->irq_set_irqchip_state(data, which, val);
2892
2893 out_unlock:
2894 irq_put_desc_busunlock(desc, flags);
2895 return err;
2896 }
2897 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2898
2899 /**
2900 * irq_has_action - Check whether an interrupt is requested
2901 * @irq: The linux irq number
2902 *
2903 * Returns: A snapshot of the current state
2904 */
irq_has_action(unsigned int irq)2905 bool irq_has_action(unsigned int irq)
2906 {
2907 bool res;
2908
2909 rcu_read_lock();
2910 res = irq_desc_has_action(irq_to_desc(irq));
2911 rcu_read_unlock();
2912 return res;
2913 }
2914 EXPORT_SYMBOL_GPL(irq_has_action);
2915
2916 /**
2917 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2918 * @irq: The linux irq number
2919 * @bitmask: The bitmask to evaluate
2920 *
2921 * Returns: True if one of the bits in @bitmask is set
2922 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2923 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2924 {
2925 struct irq_desc *desc;
2926 bool res = false;
2927
2928 rcu_read_lock();
2929 desc = irq_to_desc(irq);
2930 if (desc)
2931 res = !!(desc->status_use_accessors & bitmask);
2932 rcu_read_unlock();
2933 return res;
2934 }
2935 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2936