• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 struct mptcp_skb_cb {
40 	u64 map_seq;
41 	u64 end_seq;
42 	u32 offset;
43 	u8  has_rxtstamp:1;
44 };
45 
46 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
47 
48 enum {
49 	MPTCP_CMSG_TS = BIT(0),
50 	MPTCP_CMSG_INQ = BIT(1),
51 };
52 
53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
54 
55 static void __mptcp_destroy_sock(struct sock *sk);
56 static void mptcp_check_send_data_fin(struct sock *sk);
57 
58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
59 static struct net_device mptcp_napi_dev;
60 
61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
62  * completed yet or has failed, return the subflow socket.
63  * Otherwise return NULL.
64  */
__mptcp_nmpc_socket(const struct mptcp_sock * msk)65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
66 {
67 	if (!msk->subflow || READ_ONCE(msk->can_ack))
68 		return NULL;
69 
70 	return msk->subflow;
71 }
72 
73 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
75 {
76 	return READ_ONCE(msk->wnd_end);
77 }
78 
mptcp_is_tcpsk(struct sock * sk)79 static bool mptcp_is_tcpsk(struct sock *sk)
80 {
81 	struct socket *sock = sk->sk_socket;
82 
83 	if (unlikely(sk->sk_prot == &tcp_prot)) {
84 		/* we are being invoked after mptcp_accept() has
85 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
86 		 * not an mptcp one.
87 		 *
88 		 * Hand the socket over to tcp so all further socket ops
89 		 * bypass mptcp.
90 		 */
91 		sock->ops = &inet_stream_ops;
92 		return true;
93 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
94 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
95 		sock->ops = &inet6_stream_ops;
96 		return true;
97 #endif
98 	}
99 
100 	return false;
101 }
102 
__mptcp_socket_create(struct mptcp_sock * msk)103 static int __mptcp_socket_create(struct mptcp_sock *msk)
104 {
105 	struct mptcp_subflow_context *subflow;
106 	struct sock *sk = (struct sock *)msk;
107 	struct socket *ssock;
108 	int err;
109 
110 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
111 	if (err)
112 		return err;
113 
114 	WRITE_ONCE(msk->first, ssock->sk);
115 	WRITE_ONCE(msk->subflow, ssock);
116 	subflow = mptcp_subflow_ctx(ssock->sk);
117 	list_add(&subflow->node, &msk->conn_list);
118 	sock_hold(ssock->sk);
119 	subflow->request_mptcp = 1;
120 
121 	/* This is the first subflow, always with id 0 */
122 	subflow->local_id_valid = 1;
123 	mptcp_sock_graft(msk->first, sk->sk_socket);
124 
125 	return 0;
126 }
127 
mptcp_drop(struct sock * sk,struct sk_buff * skb)128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
129 {
130 	sk_drops_add(sk, skb);
131 	__kfree_skb(skb);
132 }
133 
mptcp_rmem_fwd_alloc_add(struct sock * sk,int size)134 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
135 {
136 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
137 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
138 }
139 
mptcp_rmem_charge(struct sock * sk,int size)140 static void mptcp_rmem_charge(struct sock *sk, int size)
141 {
142 	mptcp_rmem_fwd_alloc_add(sk, -size);
143 }
144 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)145 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 			       struct sk_buff *from)
147 {
148 	bool fragstolen;
149 	int delta;
150 
151 	if (MPTCP_SKB_CB(from)->offset ||
152 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
153 		return false;
154 
155 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
156 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
157 		 to->len, MPTCP_SKB_CB(from)->end_seq);
158 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
159 
160 	/* note the fwd memory can reach a negative value after accounting
161 	 * for the delta, but the later skb free will restore a non
162 	 * negative one
163 	 */
164 	atomic_add(delta, &sk->sk_rmem_alloc);
165 	mptcp_rmem_charge(sk, delta);
166 	kfree_skb_partial(from, fragstolen);
167 
168 	return true;
169 }
170 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)171 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
172 				   struct sk_buff *from)
173 {
174 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
175 		return false;
176 
177 	return mptcp_try_coalesce((struct sock *)msk, to, from);
178 }
179 
__mptcp_rmem_reclaim(struct sock * sk,int amount)180 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
181 {
182 	amount >>= PAGE_SHIFT;
183 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
184 	__sk_mem_reduce_allocated(sk, amount);
185 }
186 
mptcp_rmem_uncharge(struct sock * sk,int size)187 static void mptcp_rmem_uncharge(struct sock *sk, int size)
188 {
189 	struct mptcp_sock *msk = mptcp_sk(sk);
190 	int reclaimable;
191 
192 	mptcp_rmem_fwd_alloc_add(sk, size);
193 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
194 
195 	/* see sk_mem_uncharge() for the rationale behind the following schema */
196 	if (unlikely(reclaimable >= PAGE_SIZE))
197 		__mptcp_rmem_reclaim(sk, reclaimable);
198 }
199 
mptcp_rfree(struct sk_buff * skb)200 static void mptcp_rfree(struct sk_buff *skb)
201 {
202 	unsigned int len = skb->truesize;
203 	struct sock *sk = skb->sk;
204 
205 	atomic_sub(len, &sk->sk_rmem_alloc);
206 	mptcp_rmem_uncharge(sk, len);
207 }
208 
mptcp_set_owner_r(struct sk_buff * skb,struct sock * sk)209 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
210 {
211 	skb_orphan(skb);
212 	skb->sk = sk;
213 	skb->destructor = mptcp_rfree;
214 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
215 	mptcp_rmem_charge(sk, skb->truesize);
216 }
217 
218 /* "inspired" by tcp_data_queue_ofo(), main differences:
219  * - use mptcp seqs
220  * - don't cope with sacks
221  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)222 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
223 {
224 	struct sock *sk = (struct sock *)msk;
225 	struct rb_node **p, *parent;
226 	u64 seq, end_seq, max_seq;
227 	struct sk_buff *skb1;
228 
229 	seq = MPTCP_SKB_CB(skb)->map_seq;
230 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
231 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
232 
233 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
234 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
235 	if (after64(end_seq, max_seq)) {
236 		/* out of window */
237 		mptcp_drop(sk, skb);
238 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
239 			 (unsigned long long)end_seq - (unsigned long)max_seq,
240 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
241 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
242 		return;
243 	}
244 
245 	p = &msk->out_of_order_queue.rb_node;
246 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
247 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
248 		rb_link_node(&skb->rbnode, NULL, p);
249 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
250 		msk->ooo_last_skb = skb;
251 		goto end;
252 	}
253 
254 	/* with 2 subflows, adding at end of ooo queue is quite likely
255 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
256 	 */
257 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
258 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
259 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
260 		return;
261 	}
262 
263 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
264 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
265 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
266 		parent = &msk->ooo_last_skb->rbnode;
267 		p = &parent->rb_right;
268 		goto insert;
269 	}
270 
271 	/* Find place to insert this segment. Handle overlaps on the way. */
272 	parent = NULL;
273 	while (*p) {
274 		parent = *p;
275 		skb1 = rb_to_skb(parent);
276 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
277 			p = &parent->rb_left;
278 			continue;
279 		}
280 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
281 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
282 				/* All the bits are present. Drop. */
283 				mptcp_drop(sk, skb);
284 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
285 				return;
286 			}
287 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
288 				/* partial overlap:
289 				 *     |     skb      |
290 				 *  |     skb1    |
291 				 * continue traversing
292 				 */
293 			} else {
294 				/* skb's seq == skb1's seq and skb covers skb1.
295 				 * Replace skb1 with skb.
296 				 */
297 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
298 						&msk->out_of_order_queue);
299 				mptcp_drop(sk, skb1);
300 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
301 				goto merge_right;
302 			}
303 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
304 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
305 			return;
306 		}
307 		p = &parent->rb_right;
308 	}
309 
310 insert:
311 	/* Insert segment into RB tree. */
312 	rb_link_node(&skb->rbnode, parent, p);
313 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
314 
315 merge_right:
316 	/* Remove other segments covered by skb. */
317 	while ((skb1 = skb_rb_next(skb)) != NULL) {
318 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
319 			break;
320 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
321 		mptcp_drop(sk, skb1);
322 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
323 	}
324 	/* If there is no skb after us, we are the last_skb ! */
325 	if (!skb1)
326 		msk->ooo_last_skb = skb;
327 
328 end:
329 	skb_condense(skb);
330 	mptcp_set_owner_r(skb, sk);
331 }
332 
mptcp_rmem_schedule(struct sock * sk,struct sock * ssk,int size)333 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
334 {
335 	struct mptcp_sock *msk = mptcp_sk(sk);
336 	int amt, amount;
337 
338 	if (size <= msk->rmem_fwd_alloc)
339 		return true;
340 
341 	size -= msk->rmem_fwd_alloc;
342 	amt = sk_mem_pages(size);
343 	amount = amt << PAGE_SHIFT;
344 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
345 		return false;
346 
347 	mptcp_rmem_fwd_alloc_add(sk, amount);
348 	return true;
349 }
350 
__mptcp_move_skb(struct mptcp_sock * msk,struct sock * ssk,struct sk_buff * skb,unsigned int offset,size_t copy_len)351 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
352 			     struct sk_buff *skb, unsigned int offset,
353 			     size_t copy_len)
354 {
355 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
356 	struct sock *sk = (struct sock *)msk;
357 	struct sk_buff *tail;
358 	bool has_rxtstamp;
359 
360 	__skb_unlink(skb, &ssk->sk_receive_queue);
361 
362 	skb_ext_reset(skb);
363 	skb_orphan(skb);
364 
365 	/* try to fetch required memory from subflow */
366 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
367 		goto drop;
368 
369 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
370 
371 	/* the skb map_seq accounts for the skb offset:
372 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
373 	 * value
374 	 */
375 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
376 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
377 	MPTCP_SKB_CB(skb)->offset = offset;
378 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
379 
380 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
381 		/* in sequence */
382 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
383 		tail = skb_peek_tail(&sk->sk_receive_queue);
384 		if (tail && mptcp_try_coalesce(sk, tail, skb))
385 			return true;
386 
387 		mptcp_set_owner_r(skb, sk);
388 		__skb_queue_tail(&sk->sk_receive_queue, skb);
389 		return true;
390 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
391 		mptcp_data_queue_ofo(msk, skb);
392 		return false;
393 	}
394 
395 	/* old data, keep it simple and drop the whole pkt, sender
396 	 * will retransmit as needed, if needed.
397 	 */
398 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
399 drop:
400 	mptcp_drop(sk, skb);
401 	return false;
402 }
403 
mptcp_stop_rtx_timer(struct sock * sk)404 static void mptcp_stop_rtx_timer(struct sock *sk)
405 {
406 	struct inet_connection_sock *icsk = inet_csk(sk);
407 
408 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
409 	mptcp_sk(sk)->timer_ival = 0;
410 }
411 
mptcp_close_wake_up(struct sock * sk)412 static void mptcp_close_wake_up(struct sock *sk)
413 {
414 	if (sock_flag(sk, SOCK_DEAD))
415 		return;
416 
417 	sk->sk_state_change(sk);
418 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
419 	    sk->sk_state == TCP_CLOSE)
420 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
421 	else
422 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
423 }
424 
mptcp_pending_data_fin_ack(struct sock * sk)425 static bool mptcp_pending_data_fin_ack(struct sock *sk)
426 {
427 	struct mptcp_sock *msk = mptcp_sk(sk);
428 
429 	return ((1 << sk->sk_state) &
430 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
431 	       msk->write_seq == READ_ONCE(msk->snd_una);
432 }
433 
mptcp_check_data_fin_ack(struct sock * sk)434 static void mptcp_check_data_fin_ack(struct sock *sk)
435 {
436 	struct mptcp_sock *msk = mptcp_sk(sk);
437 
438 	/* Look for an acknowledged DATA_FIN */
439 	if (mptcp_pending_data_fin_ack(sk)) {
440 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
441 
442 		switch (sk->sk_state) {
443 		case TCP_FIN_WAIT1:
444 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
445 			break;
446 		case TCP_CLOSING:
447 		case TCP_LAST_ACK:
448 			inet_sk_state_store(sk, TCP_CLOSE);
449 			break;
450 		}
451 
452 		mptcp_close_wake_up(sk);
453 	}
454 }
455 
mptcp_pending_data_fin(struct sock * sk,u64 * seq)456 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
457 {
458 	struct mptcp_sock *msk = mptcp_sk(sk);
459 
460 	if (READ_ONCE(msk->rcv_data_fin) &&
461 	    ((1 << sk->sk_state) &
462 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
463 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
464 
465 		if (msk->ack_seq == rcv_data_fin_seq) {
466 			if (seq)
467 				*seq = rcv_data_fin_seq;
468 
469 			return true;
470 		}
471 	}
472 
473 	return false;
474 }
475 
mptcp_set_datafin_timeout(const struct sock * sk)476 static void mptcp_set_datafin_timeout(const struct sock *sk)
477 {
478 	struct inet_connection_sock *icsk = inet_csk(sk);
479 	u32 retransmits;
480 
481 	retransmits = min_t(u32, icsk->icsk_retransmits,
482 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
483 
484 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
485 }
486 
__mptcp_set_timeout(struct sock * sk,long tout)487 static void __mptcp_set_timeout(struct sock *sk, long tout)
488 {
489 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
490 }
491 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)492 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
493 {
494 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
495 
496 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
497 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
498 }
499 
mptcp_set_timeout(struct sock * sk)500 static void mptcp_set_timeout(struct sock *sk)
501 {
502 	struct mptcp_subflow_context *subflow;
503 	long tout = 0;
504 
505 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
506 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
507 	__mptcp_set_timeout(sk, tout);
508 }
509 
tcp_can_send_ack(const struct sock * ssk)510 static inline bool tcp_can_send_ack(const struct sock *ssk)
511 {
512 	return !((1 << inet_sk_state_load(ssk)) &
513 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
514 }
515 
__mptcp_subflow_send_ack(struct sock * ssk)516 void __mptcp_subflow_send_ack(struct sock *ssk)
517 {
518 	if (tcp_can_send_ack(ssk))
519 		tcp_send_ack(ssk);
520 }
521 
mptcp_subflow_send_ack(struct sock * ssk)522 static void mptcp_subflow_send_ack(struct sock *ssk)
523 {
524 	bool slow;
525 
526 	slow = lock_sock_fast(ssk);
527 	__mptcp_subflow_send_ack(ssk);
528 	unlock_sock_fast(ssk, slow);
529 }
530 
mptcp_send_ack(struct mptcp_sock * msk)531 static void mptcp_send_ack(struct mptcp_sock *msk)
532 {
533 	struct mptcp_subflow_context *subflow;
534 
535 	mptcp_for_each_subflow(msk, subflow)
536 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
537 }
538 
mptcp_subflow_cleanup_rbuf(struct sock * ssk)539 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
540 {
541 	bool slow;
542 
543 	slow = lock_sock_fast(ssk);
544 	if (tcp_can_send_ack(ssk))
545 		tcp_cleanup_rbuf(ssk, 1);
546 	unlock_sock_fast(ssk, slow);
547 }
548 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)549 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
550 {
551 	const struct inet_connection_sock *icsk = inet_csk(ssk);
552 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
553 	const struct tcp_sock *tp = tcp_sk(ssk);
554 
555 	return (ack_pending & ICSK_ACK_SCHED) &&
556 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
557 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
558 		 (rx_empty && ack_pending &
559 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
560 }
561 
mptcp_cleanup_rbuf(struct mptcp_sock * msk)562 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
563 {
564 	int old_space = READ_ONCE(msk->old_wspace);
565 	struct mptcp_subflow_context *subflow;
566 	struct sock *sk = (struct sock *)msk;
567 	int space =  __mptcp_space(sk);
568 	bool cleanup, rx_empty;
569 
570 	cleanup = (space > 0) && (space >= (old_space << 1));
571 	rx_empty = !__mptcp_rmem(sk);
572 
573 	mptcp_for_each_subflow(msk, subflow) {
574 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
575 
576 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
577 			mptcp_subflow_cleanup_rbuf(ssk);
578 	}
579 }
580 
mptcp_check_data_fin(struct sock * sk)581 static bool mptcp_check_data_fin(struct sock *sk)
582 {
583 	struct mptcp_sock *msk = mptcp_sk(sk);
584 	u64 rcv_data_fin_seq;
585 	bool ret = false;
586 
587 	/* Need to ack a DATA_FIN received from a peer while this side
588 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
589 	 * msk->rcv_data_fin was set when parsing the incoming options
590 	 * at the subflow level and the msk lock was not held, so this
591 	 * is the first opportunity to act on the DATA_FIN and change
592 	 * the msk state.
593 	 *
594 	 * If we are caught up to the sequence number of the incoming
595 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
596 	 * not caught up, do nothing and let the recv code send DATA_ACK
597 	 * when catching up.
598 	 */
599 
600 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
601 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
602 		WRITE_ONCE(msk->rcv_data_fin, 0);
603 
604 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
605 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
606 
607 		switch (sk->sk_state) {
608 		case TCP_ESTABLISHED:
609 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
610 			break;
611 		case TCP_FIN_WAIT1:
612 			inet_sk_state_store(sk, TCP_CLOSING);
613 			break;
614 		case TCP_FIN_WAIT2:
615 			inet_sk_state_store(sk, TCP_CLOSE);
616 			break;
617 		default:
618 			/* Other states not expected */
619 			WARN_ON_ONCE(1);
620 			break;
621 		}
622 
623 		ret = true;
624 		if (!__mptcp_check_fallback(msk))
625 			mptcp_send_ack(msk);
626 		mptcp_close_wake_up(sk);
627 	}
628 	return ret;
629 }
630 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,unsigned int * bytes)631 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
632 					   struct sock *ssk,
633 					   unsigned int *bytes)
634 {
635 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
636 	struct sock *sk = (struct sock *)msk;
637 	unsigned int moved = 0;
638 	bool more_data_avail;
639 	struct tcp_sock *tp;
640 	bool done = false;
641 	int sk_rbuf;
642 
643 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
644 
645 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
646 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
647 
648 		if (unlikely(ssk_rbuf > sk_rbuf)) {
649 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
650 			sk_rbuf = ssk_rbuf;
651 		}
652 	}
653 
654 	pr_debug("msk=%p ssk=%p", msk, ssk);
655 	tp = tcp_sk(ssk);
656 	do {
657 		u32 map_remaining, offset;
658 		u32 seq = tp->copied_seq;
659 		struct sk_buff *skb;
660 		bool fin;
661 
662 		/* try to move as much data as available */
663 		map_remaining = subflow->map_data_len -
664 				mptcp_subflow_get_map_offset(subflow);
665 
666 		skb = skb_peek(&ssk->sk_receive_queue);
667 		if (!skb) {
668 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
669 			 * a different CPU can have already processed the pending
670 			 * data, stop here or we can enter an infinite loop
671 			 */
672 			if (!moved)
673 				done = true;
674 			break;
675 		}
676 
677 		if (__mptcp_check_fallback(msk)) {
678 			/* Under fallback skbs have no MPTCP extension and TCP could
679 			 * collapse them between the dummy map creation and the
680 			 * current dequeue. Be sure to adjust the map size.
681 			 */
682 			map_remaining = skb->len;
683 			subflow->map_data_len = skb->len;
684 		}
685 
686 		offset = seq - TCP_SKB_CB(skb)->seq;
687 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
688 		if (fin) {
689 			done = true;
690 			seq++;
691 		}
692 
693 		if (offset < skb->len) {
694 			size_t len = skb->len - offset;
695 
696 			if (tp->urg_data)
697 				done = true;
698 
699 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
700 				moved += len;
701 			seq += len;
702 
703 			if (WARN_ON_ONCE(map_remaining < len))
704 				break;
705 		} else {
706 			WARN_ON_ONCE(!fin);
707 			sk_eat_skb(ssk, skb);
708 			done = true;
709 		}
710 
711 		WRITE_ONCE(tp->copied_seq, seq);
712 		more_data_avail = mptcp_subflow_data_available(ssk);
713 
714 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
715 			done = true;
716 			break;
717 		}
718 	} while (more_data_avail);
719 
720 	*bytes += moved;
721 	return done;
722 }
723 
__mptcp_ofo_queue(struct mptcp_sock * msk)724 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
725 {
726 	struct sock *sk = (struct sock *)msk;
727 	struct sk_buff *skb, *tail;
728 	bool moved = false;
729 	struct rb_node *p;
730 	u64 end_seq;
731 
732 	p = rb_first(&msk->out_of_order_queue);
733 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
734 	while (p) {
735 		skb = rb_to_skb(p);
736 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
737 			break;
738 
739 		p = rb_next(p);
740 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
741 
742 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
743 				      msk->ack_seq))) {
744 			mptcp_drop(sk, skb);
745 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
746 			continue;
747 		}
748 
749 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
750 		tail = skb_peek_tail(&sk->sk_receive_queue);
751 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
752 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
753 
754 			/* skip overlapping data, if any */
755 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
756 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
757 				 delta);
758 			MPTCP_SKB_CB(skb)->offset += delta;
759 			MPTCP_SKB_CB(skb)->map_seq += delta;
760 			__skb_queue_tail(&sk->sk_receive_queue, skb);
761 		}
762 		msk->ack_seq = end_seq;
763 		moved = true;
764 	}
765 	return moved;
766 }
767 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)768 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
769 {
770 	int err = sock_error(ssk);
771 	int ssk_state;
772 
773 	if (!err)
774 		return false;
775 
776 	/* only propagate errors on fallen-back sockets or
777 	 * on MPC connect
778 	 */
779 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
780 		return false;
781 
782 	/* We need to propagate only transition to CLOSE state.
783 	 * Orphaned socket will see such state change via
784 	 * subflow_sched_work_if_closed() and that path will properly
785 	 * destroy the msk as needed.
786 	 */
787 	ssk_state = inet_sk_state_load(ssk);
788 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
789 		inet_sk_state_store(sk, ssk_state);
790 	WRITE_ONCE(sk->sk_err, -err);
791 
792 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
793 	smp_wmb();
794 	sk_error_report(sk);
795 	return true;
796 }
797 
__mptcp_error_report(struct sock * sk)798 void __mptcp_error_report(struct sock *sk)
799 {
800 	struct mptcp_subflow_context *subflow;
801 	struct mptcp_sock *msk = mptcp_sk(sk);
802 
803 	mptcp_for_each_subflow(msk, subflow)
804 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
805 			break;
806 }
807 
808 /* In most cases we will be able to lock the mptcp socket.  If its already
809  * owned, we need to defer to the work queue to avoid ABBA deadlock.
810  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)811 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
812 {
813 	struct sock *sk = (struct sock *)msk;
814 	unsigned int moved = 0;
815 
816 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
817 	__mptcp_ofo_queue(msk);
818 	if (unlikely(ssk->sk_err)) {
819 		if (!sock_owned_by_user(sk))
820 			__mptcp_error_report(sk);
821 		else
822 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
823 	}
824 
825 	/* If the moves have caught up with the DATA_FIN sequence number
826 	 * it's time to ack the DATA_FIN and change socket state, but
827 	 * this is not a good place to change state. Let the workqueue
828 	 * do it.
829 	 */
830 	if (mptcp_pending_data_fin(sk, NULL))
831 		mptcp_schedule_work(sk);
832 	return moved > 0;
833 }
834 
mptcp_data_ready(struct sock * sk,struct sock * ssk)835 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
836 {
837 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
838 	struct mptcp_sock *msk = mptcp_sk(sk);
839 	int sk_rbuf, ssk_rbuf;
840 
841 	/* The peer can send data while we are shutting down this
842 	 * subflow at msk destruction time, but we must avoid enqueuing
843 	 * more data to the msk receive queue
844 	 */
845 	if (unlikely(subflow->disposable))
846 		return;
847 
848 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
849 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
850 	if (unlikely(ssk_rbuf > sk_rbuf))
851 		sk_rbuf = ssk_rbuf;
852 
853 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
854 	if (__mptcp_rmem(sk) > sk_rbuf) {
855 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
856 		return;
857 	}
858 
859 	/* Wake-up the reader only for in-sequence data */
860 	mptcp_data_lock(sk);
861 	if (move_skbs_to_msk(msk, ssk))
862 		sk->sk_data_ready(sk);
863 
864 	mptcp_data_unlock(sk);
865 }
866 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)867 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
868 {
869 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
870 	WRITE_ONCE(msk->allow_infinite_fallback, false);
871 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
872 }
873 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)874 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
875 {
876 	struct sock *sk = (struct sock *)msk;
877 
878 	if (sk->sk_state != TCP_ESTABLISHED)
879 		return false;
880 
881 	/* attach to msk socket only after we are sure we will deal with it
882 	 * at close time
883 	 */
884 	if (sk->sk_socket && !ssk->sk_socket)
885 		mptcp_sock_graft(ssk, sk->sk_socket);
886 
887 	mptcp_sockopt_sync_locked(msk, ssk);
888 	mptcp_subflow_joined(msk, ssk);
889 	mptcp_stop_tout_timer(sk);
890 	return true;
891 }
892 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)893 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
894 {
895 	struct mptcp_subflow_context *tmp, *subflow;
896 	struct mptcp_sock *msk = mptcp_sk(sk);
897 
898 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
899 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
900 		bool slow = lock_sock_fast(ssk);
901 
902 		list_move_tail(&subflow->node, &msk->conn_list);
903 		if (!__mptcp_finish_join(msk, ssk))
904 			mptcp_subflow_reset(ssk);
905 		unlock_sock_fast(ssk, slow);
906 	}
907 }
908 
mptcp_rtx_timer_pending(struct sock * sk)909 static bool mptcp_rtx_timer_pending(struct sock *sk)
910 {
911 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
912 }
913 
mptcp_reset_rtx_timer(struct sock * sk)914 static void mptcp_reset_rtx_timer(struct sock *sk)
915 {
916 	struct inet_connection_sock *icsk = inet_csk(sk);
917 	unsigned long tout;
918 
919 	/* prevent rescheduling on close */
920 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
921 		return;
922 
923 	tout = mptcp_sk(sk)->timer_ival;
924 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
925 }
926 
mptcp_schedule_work(struct sock * sk)927 bool mptcp_schedule_work(struct sock *sk)
928 {
929 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
930 	    schedule_work(&mptcp_sk(sk)->work)) {
931 		/* each subflow already holds a reference to the sk, and the
932 		 * workqueue is invoked by a subflow, so sk can't go away here.
933 		 */
934 		sock_hold(sk);
935 		return true;
936 	}
937 	return false;
938 }
939 
mptcp_subflow_eof(struct sock * sk)940 void mptcp_subflow_eof(struct sock *sk)
941 {
942 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
943 		mptcp_schedule_work(sk);
944 }
945 
mptcp_check_for_eof(struct mptcp_sock * msk)946 static void mptcp_check_for_eof(struct mptcp_sock *msk)
947 {
948 	struct mptcp_subflow_context *subflow;
949 	struct sock *sk = (struct sock *)msk;
950 	int receivers = 0;
951 
952 	mptcp_for_each_subflow(msk, subflow)
953 		receivers += !subflow->rx_eof;
954 	if (receivers)
955 		return;
956 
957 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
958 		/* hopefully temporary hack: propagate shutdown status
959 		 * to msk, when all subflows agree on it
960 		 */
961 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
962 
963 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
964 		sk->sk_data_ready(sk);
965 	}
966 
967 	switch (sk->sk_state) {
968 	case TCP_ESTABLISHED:
969 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
970 		break;
971 	case TCP_FIN_WAIT1:
972 		inet_sk_state_store(sk, TCP_CLOSING);
973 		break;
974 	case TCP_FIN_WAIT2:
975 		inet_sk_state_store(sk, TCP_CLOSE);
976 		break;
977 	default:
978 		return;
979 	}
980 	mptcp_close_wake_up(sk);
981 }
982 
mptcp_subflow_recv_lookup(const struct mptcp_sock * msk)983 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
984 {
985 	struct mptcp_subflow_context *subflow;
986 	struct sock *sk = (struct sock *)msk;
987 
988 	sock_owned_by_me(sk);
989 
990 	mptcp_for_each_subflow(msk, subflow) {
991 		if (READ_ONCE(subflow->data_avail))
992 			return mptcp_subflow_tcp_sock(subflow);
993 	}
994 
995 	return NULL;
996 }
997 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)998 static bool mptcp_skb_can_collapse_to(u64 write_seq,
999 				      const struct sk_buff *skb,
1000 				      const struct mptcp_ext *mpext)
1001 {
1002 	if (!tcp_skb_can_collapse_to(skb))
1003 		return false;
1004 
1005 	/* can collapse only if MPTCP level sequence is in order and this
1006 	 * mapping has not been xmitted yet
1007 	 */
1008 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
1009 	       !mpext->frozen;
1010 }
1011 
1012 /* we can append data to the given data frag if:
1013  * - there is space available in the backing page_frag
1014  * - the data frag tail matches the current page_frag free offset
1015  * - the data frag end sequence number matches the current write seq
1016  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)1017 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
1018 				       const struct page_frag *pfrag,
1019 				       const struct mptcp_data_frag *df)
1020 {
1021 	return df && pfrag->page == df->page &&
1022 		pfrag->size - pfrag->offset > 0 &&
1023 		pfrag->offset == (df->offset + df->data_len) &&
1024 		df->data_seq + df->data_len == msk->write_seq;
1025 }
1026 
dfrag_uncharge(struct sock * sk,int len)1027 static void dfrag_uncharge(struct sock *sk, int len)
1028 {
1029 	sk_mem_uncharge(sk, len);
1030 	sk_wmem_queued_add(sk, -len);
1031 }
1032 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1033 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1034 {
1035 	int len = dfrag->data_len + dfrag->overhead;
1036 
1037 	list_del(&dfrag->list);
1038 	dfrag_uncharge(sk, len);
1039 	put_page(dfrag->page);
1040 }
1041 
__mptcp_clean_una(struct sock * sk)1042 static void __mptcp_clean_una(struct sock *sk)
1043 {
1044 	struct mptcp_sock *msk = mptcp_sk(sk);
1045 	struct mptcp_data_frag *dtmp, *dfrag;
1046 	u64 snd_una;
1047 
1048 	/* on fallback we just need to ignore snd_una, as this is really
1049 	 * plain TCP
1050 	 */
1051 	if (__mptcp_check_fallback(msk))
1052 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1053 
1054 	snd_una = msk->snd_una;
1055 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1056 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1057 			break;
1058 
1059 		if (unlikely(dfrag == msk->first_pending)) {
1060 			/* in recovery mode can see ack after the current snd head */
1061 			if (WARN_ON_ONCE(!msk->recovery))
1062 				break;
1063 
1064 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1065 		}
1066 
1067 		dfrag_clear(sk, dfrag);
1068 	}
1069 
1070 	dfrag = mptcp_rtx_head(sk);
1071 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1072 		u64 delta = snd_una - dfrag->data_seq;
1073 
1074 		/* prevent wrap around in recovery mode */
1075 		if (unlikely(delta > dfrag->already_sent)) {
1076 			if (WARN_ON_ONCE(!msk->recovery))
1077 				goto out;
1078 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1079 				goto out;
1080 			dfrag->already_sent += delta - dfrag->already_sent;
1081 		}
1082 
1083 		dfrag->data_seq += delta;
1084 		dfrag->offset += delta;
1085 		dfrag->data_len -= delta;
1086 		dfrag->already_sent -= delta;
1087 
1088 		dfrag_uncharge(sk, delta);
1089 	}
1090 
1091 	/* all retransmitted data acked, recovery completed */
1092 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1093 		msk->recovery = false;
1094 
1095 out:
1096 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1097 	    snd_una == READ_ONCE(msk->write_seq)) {
1098 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1099 			mptcp_stop_rtx_timer(sk);
1100 	} else {
1101 		mptcp_reset_rtx_timer(sk);
1102 	}
1103 }
1104 
__mptcp_clean_una_wakeup(struct sock * sk)1105 static void __mptcp_clean_una_wakeup(struct sock *sk)
1106 {
1107 	lockdep_assert_held_once(&sk->sk_lock.slock);
1108 
1109 	__mptcp_clean_una(sk);
1110 	mptcp_write_space(sk);
1111 }
1112 
mptcp_clean_una_wakeup(struct sock * sk)1113 static void mptcp_clean_una_wakeup(struct sock *sk)
1114 {
1115 	mptcp_data_lock(sk);
1116 	__mptcp_clean_una_wakeup(sk);
1117 	mptcp_data_unlock(sk);
1118 }
1119 
mptcp_enter_memory_pressure(struct sock * sk)1120 static void mptcp_enter_memory_pressure(struct sock *sk)
1121 {
1122 	struct mptcp_subflow_context *subflow;
1123 	struct mptcp_sock *msk = mptcp_sk(sk);
1124 	bool first = true;
1125 
1126 	sk_stream_moderate_sndbuf(sk);
1127 	mptcp_for_each_subflow(msk, subflow) {
1128 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1129 
1130 		if (first)
1131 			tcp_enter_memory_pressure(ssk);
1132 		sk_stream_moderate_sndbuf(ssk);
1133 		first = false;
1134 	}
1135 }
1136 
1137 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1138  * data
1139  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1140 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1141 {
1142 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1143 					pfrag, sk->sk_allocation)))
1144 		return true;
1145 
1146 	mptcp_enter_memory_pressure(sk);
1147 	return false;
1148 }
1149 
1150 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1151 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1152 		      int orig_offset)
1153 {
1154 	int offset = ALIGN(orig_offset, sizeof(long));
1155 	struct mptcp_data_frag *dfrag;
1156 
1157 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1158 	dfrag->data_len = 0;
1159 	dfrag->data_seq = msk->write_seq;
1160 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1161 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1162 	dfrag->already_sent = 0;
1163 	dfrag->page = pfrag->page;
1164 
1165 	return dfrag;
1166 }
1167 
1168 struct mptcp_sendmsg_info {
1169 	int mss_now;
1170 	int size_goal;
1171 	u16 limit;
1172 	u16 sent;
1173 	unsigned int flags;
1174 	bool data_lock_held;
1175 };
1176 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1177 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1178 				    u64 data_seq, int avail_size)
1179 {
1180 	u64 window_end = mptcp_wnd_end(msk);
1181 	u64 mptcp_snd_wnd;
1182 
1183 	if (__mptcp_check_fallback(msk))
1184 		return avail_size;
1185 
1186 	mptcp_snd_wnd = window_end - data_seq;
1187 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1188 
1189 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1190 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1191 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1192 	}
1193 
1194 	return avail_size;
1195 }
1196 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1197 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1198 {
1199 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1200 
1201 	if (!mpext)
1202 		return false;
1203 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1204 	return true;
1205 }
1206 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1207 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1208 {
1209 	struct sk_buff *skb;
1210 
1211 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1212 	if (likely(skb)) {
1213 		if (likely(__mptcp_add_ext(skb, gfp))) {
1214 			skb_reserve(skb, MAX_TCP_HEADER);
1215 			skb->ip_summed = CHECKSUM_PARTIAL;
1216 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1217 			return skb;
1218 		}
1219 		__kfree_skb(skb);
1220 	} else {
1221 		mptcp_enter_memory_pressure(sk);
1222 	}
1223 	return NULL;
1224 }
1225 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1226 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1227 {
1228 	struct sk_buff *skb;
1229 
1230 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1231 	if (!skb)
1232 		return NULL;
1233 
1234 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1235 		tcp_skb_entail(ssk, skb);
1236 		return skb;
1237 	}
1238 	tcp_skb_tsorted_anchor_cleanup(skb);
1239 	kfree_skb(skb);
1240 	return NULL;
1241 }
1242 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1243 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1244 {
1245 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1246 
1247 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1248 }
1249 
1250 /* note: this always recompute the csum on the whole skb, even
1251  * if we just appended a single frag. More status info needed
1252  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1253 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1254 {
1255 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1256 	__wsum csum = ~csum_unfold(mpext->csum);
1257 	int offset = skb->len - added;
1258 
1259 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1260 }
1261 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1262 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1263 				      struct sock *ssk,
1264 				      struct mptcp_ext *mpext)
1265 {
1266 	if (!mpext)
1267 		return;
1268 
1269 	mpext->infinite_map = 1;
1270 	mpext->data_len = 0;
1271 
1272 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1273 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1274 	pr_fallback(msk);
1275 	mptcp_do_fallback(ssk);
1276 }
1277 
1278 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1279 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1280 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1281 			      struct mptcp_data_frag *dfrag,
1282 			      struct mptcp_sendmsg_info *info)
1283 {
1284 	u64 data_seq = dfrag->data_seq + info->sent;
1285 	int offset = dfrag->offset + info->sent;
1286 	struct mptcp_sock *msk = mptcp_sk(sk);
1287 	bool zero_window_probe = false;
1288 	struct mptcp_ext *mpext = NULL;
1289 	bool can_coalesce = false;
1290 	bool reuse_skb = true;
1291 	struct sk_buff *skb;
1292 	size_t copy;
1293 	int i;
1294 
1295 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1296 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1297 
1298 	if (WARN_ON_ONCE(info->sent > info->limit ||
1299 			 info->limit > dfrag->data_len))
1300 		return 0;
1301 
1302 	if (unlikely(!__tcp_can_send(ssk)))
1303 		return -EAGAIN;
1304 
1305 	/* compute send limit */
1306 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1307 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1308 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1309 	copy = info->size_goal;
1310 
1311 	skb = tcp_write_queue_tail(ssk);
1312 	if (skb && copy > skb->len) {
1313 		/* Limit the write to the size available in the
1314 		 * current skb, if any, so that we create at most a new skb.
1315 		 * Explicitly tells TCP internals to avoid collapsing on later
1316 		 * queue management operation, to avoid breaking the ext <->
1317 		 * SSN association set here
1318 		 */
1319 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1320 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1321 			TCP_SKB_CB(skb)->eor = 1;
1322 			goto alloc_skb;
1323 		}
1324 
1325 		i = skb_shinfo(skb)->nr_frags;
1326 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1327 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1328 			tcp_mark_push(tcp_sk(ssk), skb);
1329 			goto alloc_skb;
1330 		}
1331 
1332 		copy -= skb->len;
1333 	} else {
1334 alloc_skb:
1335 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1336 		if (!skb)
1337 			return -ENOMEM;
1338 
1339 		i = skb_shinfo(skb)->nr_frags;
1340 		reuse_skb = false;
1341 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1342 	}
1343 
1344 	/* Zero window and all data acked? Probe. */
1345 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1346 	if (copy == 0) {
1347 		u64 snd_una = READ_ONCE(msk->snd_una);
1348 
1349 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1350 			tcp_remove_empty_skb(ssk);
1351 			return 0;
1352 		}
1353 
1354 		zero_window_probe = true;
1355 		data_seq = snd_una - 1;
1356 		copy = 1;
1357 	}
1358 
1359 	copy = min_t(size_t, copy, info->limit - info->sent);
1360 	if (!sk_wmem_schedule(ssk, copy)) {
1361 		tcp_remove_empty_skb(ssk);
1362 		return -ENOMEM;
1363 	}
1364 
1365 	if (can_coalesce) {
1366 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1367 	} else {
1368 		get_page(dfrag->page);
1369 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1370 	}
1371 
1372 	skb->len += copy;
1373 	skb->data_len += copy;
1374 	skb->truesize += copy;
1375 	sk_wmem_queued_add(ssk, copy);
1376 	sk_mem_charge(ssk, copy);
1377 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1378 	TCP_SKB_CB(skb)->end_seq += copy;
1379 	tcp_skb_pcount_set(skb, 0);
1380 
1381 	/* on skb reuse we just need to update the DSS len */
1382 	if (reuse_skb) {
1383 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1384 		mpext->data_len += copy;
1385 		goto out;
1386 	}
1387 
1388 	memset(mpext, 0, sizeof(*mpext));
1389 	mpext->data_seq = data_seq;
1390 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1391 	mpext->data_len = copy;
1392 	mpext->use_map = 1;
1393 	mpext->dsn64 = 1;
1394 
1395 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1396 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1397 		 mpext->dsn64);
1398 
1399 	if (zero_window_probe) {
1400 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1401 		mpext->frozen = 1;
1402 		if (READ_ONCE(msk->csum_enabled))
1403 			mptcp_update_data_checksum(skb, copy);
1404 		tcp_push_pending_frames(ssk);
1405 		return 0;
1406 	}
1407 out:
1408 	if (READ_ONCE(msk->csum_enabled))
1409 		mptcp_update_data_checksum(skb, copy);
1410 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1411 		mptcp_update_infinite_map(msk, ssk, mpext);
1412 	trace_mptcp_sendmsg_frag(mpext);
1413 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1414 	return copy;
1415 }
1416 
1417 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1418 					 sizeof(struct tcphdr) - \
1419 					 MAX_TCP_OPTION_SPACE - \
1420 					 sizeof(struct ipv6hdr) - \
1421 					 sizeof(struct frag_hdr))
1422 
1423 struct subflow_send_info {
1424 	struct sock *ssk;
1425 	u64 linger_time;
1426 };
1427 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1428 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1429 {
1430 	if (!subflow->stale)
1431 		return;
1432 
1433 	subflow->stale = 0;
1434 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1435 }
1436 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1437 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1438 {
1439 	if (unlikely(subflow->stale)) {
1440 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1441 
1442 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1443 			return false;
1444 
1445 		mptcp_subflow_set_active(subflow);
1446 	}
1447 	return __mptcp_subflow_active(subflow);
1448 }
1449 
1450 #define SSK_MODE_ACTIVE	0
1451 #define SSK_MODE_BACKUP	1
1452 #define SSK_MODE_MAX	2
1453 
1454 /* implement the mptcp packet scheduler;
1455  * returns the subflow that will transmit the next DSS
1456  * additionally updates the rtx timeout
1457  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1458 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1459 {
1460 	struct subflow_send_info send_info[SSK_MODE_MAX];
1461 	struct mptcp_subflow_context *subflow;
1462 	struct sock *sk = (struct sock *)msk;
1463 	u32 pace, burst, wmem;
1464 	int i, nr_active = 0;
1465 	struct sock *ssk;
1466 	u64 linger_time;
1467 	long tout = 0;
1468 
1469 	sock_owned_by_me(sk);
1470 
1471 	if (__mptcp_check_fallback(msk)) {
1472 		if (!msk->first)
1473 			return NULL;
1474 		return __tcp_can_send(msk->first) &&
1475 		       sk_stream_memory_free(msk->first) ? msk->first : NULL;
1476 	}
1477 
1478 	/* re-use last subflow, if the burst allow that */
1479 	if (msk->last_snd && msk->snd_burst > 0 &&
1480 	    sk_stream_memory_free(msk->last_snd) &&
1481 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1482 		mptcp_set_timeout(sk);
1483 		return msk->last_snd;
1484 	}
1485 
1486 	/* pick the subflow with the lower wmem/wspace ratio */
1487 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1488 		send_info[i].ssk = NULL;
1489 		send_info[i].linger_time = -1;
1490 	}
1491 
1492 	mptcp_for_each_subflow(msk, subflow) {
1493 		trace_mptcp_subflow_get_send(subflow);
1494 		ssk =  mptcp_subflow_tcp_sock(subflow);
1495 		if (!mptcp_subflow_active(subflow))
1496 			continue;
1497 
1498 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1499 		nr_active += !subflow->backup;
1500 		pace = subflow->avg_pacing_rate;
1501 		if (unlikely(!pace)) {
1502 			/* init pacing rate from socket */
1503 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1504 			pace = subflow->avg_pacing_rate;
1505 			if (!pace)
1506 				continue;
1507 		}
1508 
1509 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1510 		if (linger_time < send_info[subflow->backup].linger_time) {
1511 			send_info[subflow->backup].ssk = ssk;
1512 			send_info[subflow->backup].linger_time = linger_time;
1513 		}
1514 	}
1515 	__mptcp_set_timeout(sk, tout);
1516 
1517 	/* pick the best backup if no other subflow is active */
1518 	if (!nr_active)
1519 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1520 
1521 	/* According to the blest algorithm, to avoid HoL blocking for the
1522 	 * faster flow, we need to:
1523 	 * - estimate the faster flow linger time
1524 	 * - use the above to estimate the amount of byte transferred
1525 	 *   by the faster flow
1526 	 * - check that the amount of queued data is greter than the above,
1527 	 *   otherwise do not use the picked, slower, subflow
1528 	 * We select the subflow with the shorter estimated time to flush
1529 	 * the queued mem, which basically ensure the above. We just need
1530 	 * to check that subflow has a non empty cwin.
1531 	 */
1532 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1533 	if (!ssk || !sk_stream_memory_free(ssk))
1534 		return NULL;
1535 
1536 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1537 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1538 	if (!burst) {
1539 		msk->last_snd = NULL;
1540 		return ssk;
1541 	}
1542 
1543 	subflow = mptcp_subflow_ctx(ssk);
1544 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1545 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1546 					   burst + wmem);
1547 	msk->last_snd = ssk;
1548 	msk->snd_burst = burst;
1549 	return ssk;
1550 }
1551 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1552 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1553 {
1554 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1555 	release_sock(ssk);
1556 }
1557 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1558 static void mptcp_update_post_push(struct mptcp_sock *msk,
1559 				   struct mptcp_data_frag *dfrag,
1560 				   u32 sent)
1561 {
1562 	u64 snd_nxt_new = dfrag->data_seq;
1563 
1564 	dfrag->already_sent += sent;
1565 
1566 	msk->snd_burst -= sent;
1567 
1568 	snd_nxt_new += dfrag->already_sent;
1569 
1570 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1571 	 * is recovering after a failover. In that event, this re-sends
1572 	 * old segments.
1573 	 *
1574 	 * Thus compute snd_nxt_new candidate based on
1575 	 * the dfrag->data_seq that was sent and the data
1576 	 * that has been handed to the subflow for transmission
1577 	 * and skip update in case it was old dfrag.
1578 	 */
1579 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1580 		msk->snd_nxt = snd_nxt_new;
1581 }
1582 
mptcp_check_and_set_pending(struct sock * sk)1583 void mptcp_check_and_set_pending(struct sock *sk)
1584 {
1585 	if (mptcp_send_head(sk)) {
1586 		mptcp_data_lock(sk);
1587 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1588 		mptcp_data_unlock(sk);
1589 	}
1590 }
1591 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1592 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1593 {
1594 	struct sock *prev_ssk = NULL, *ssk = NULL;
1595 	struct mptcp_sock *msk = mptcp_sk(sk);
1596 	struct mptcp_sendmsg_info info = {
1597 				.flags = flags,
1598 	};
1599 	bool do_check_data_fin = false;
1600 	struct mptcp_data_frag *dfrag;
1601 	int len;
1602 
1603 	while ((dfrag = mptcp_send_head(sk))) {
1604 		info.sent = dfrag->already_sent;
1605 		info.limit = dfrag->data_len;
1606 		len = dfrag->data_len - dfrag->already_sent;
1607 		while (len > 0) {
1608 			int ret = 0;
1609 
1610 			prev_ssk = ssk;
1611 			ssk = mptcp_subflow_get_send(msk);
1612 
1613 			/* First check. If the ssk has changed since
1614 			 * the last round, release prev_ssk
1615 			 */
1616 			if (ssk != prev_ssk && prev_ssk)
1617 				mptcp_push_release(prev_ssk, &info);
1618 			if (!ssk)
1619 				goto out;
1620 
1621 			/* Need to lock the new subflow only if different
1622 			 * from the previous one, otherwise we are still
1623 			 * helding the relevant lock
1624 			 */
1625 			if (ssk != prev_ssk)
1626 				lock_sock(ssk);
1627 
1628 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1629 			if (ret <= 0) {
1630 				if (ret == -EAGAIN)
1631 					continue;
1632 				mptcp_push_release(ssk, &info);
1633 				goto out;
1634 			}
1635 
1636 			do_check_data_fin = true;
1637 			info.sent += ret;
1638 			len -= ret;
1639 
1640 			mptcp_update_post_push(msk, dfrag, ret);
1641 		}
1642 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1643 	}
1644 
1645 	/* at this point we held the socket lock for the last subflow we used */
1646 	if (ssk)
1647 		mptcp_push_release(ssk, &info);
1648 
1649 out:
1650 	/* ensure the rtx timer is running */
1651 	if (!mptcp_rtx_timer_pending(sk))
1652 		mptcp_reset_rtx_timer(sk);
1653 	if (do_check_data_fin)
1654 		mptcp_check_send_data_fin(sk);
1655 }
1656 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk)1657 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1658 {
1659 	struct mptcp_sock *msk = mptcp_sk(sk);
1660 	struct mptcp_sendmsg_info info = {
1661 		.data_lock_held = true,
1662 	};
1663 	struct mptcp_data_frag *dfrag;
1664 	struct sock *xmit_ssk;
1665 	int len, copied = 0;
1666 	bool first = true;
1667 
1668 	info.flags = 0;
1669 	while ((dfrag = mptcp_send_head(sk))) {
1670 		info.sent = dfrag->already_sent;
1671 		info.limit = dfrag->data_len;
1672 		len = dfrag->data_len - dfrag->already_sent;
1673 		while (len > 0) {
1674 			int ret = 0;
1675 
1676 			/* the caller already invoked the packet scheduler,
1677 			 * check for a different subflow usage only after
1678 			 * spooling the first chunk of data
1679 			 */
1680 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1681 			if (!xmit_ssk)
1682 				goto out;
1683 			if (xmit_ssk != ssk) {
1684 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1685 						       MPTCP_DELEGATE_SEND);
1686 				goto out;
1687 			}
1688 
1689 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1690 			if (ret <= 0)
1691 				goto out;
1692 
1693 			info.sent += ret;
1694 			copied += ret;
1695 			len -= ret;
1696 			first = false;
1697 
1698 			mptcp_update_post_push(msk, dfrag, ret);
1699 		}
1700 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1701 	}
1702 
1703 out:
1704 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1705 	 * not going to flush it via release_sock()
1706 	 */
1707 	if (copied) {
1708 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1709 			 info.size_goal);
1710 		if (!mptcp_rtx_timer_pending(sk))
1711 			mptcp_reset_rtx_timer(sk);
1712 
1713 		if (msk->snd_data_fin_enable &&
1714 		    msk->snd_nxt + 1 == msk->write_seq)
1715 			mptcp_schedule_work(sk);
1716 	}
1717 }
1718 
mptcp_set_nospace(struct sock * sk)1719 static void mptcp_set_nospace(struct sock *sk)
1720 {
1721 	/* enable autotune */
1722 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1723 
1724 	/* will be cleared on avail space */
1725 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1726 }
1727 
1728 static int mptcp_disconnect(struct sock *sk, int flags);
1729 
mptcp_sendmsg_fastopen(struct sock * sk,struct sock * ssk,struct msghdr * msg,size_t len,int * copied_syn)1730 static int mptcp_sendmsg_fastopen(struct sock *sk, struct sock *ssk, struct msghdr *msg,
1731 				  size_t len, int *copied_syn)
1732 {
1733 	unsigned int saved_flags = msg->msg_flags;
1734 	struct mptcp_sock *msk = mptcp_sk(sk);
1735 	int ret;
1736 
1737 	lock_sock(ssk);
1738 	msg->msg_flags |= MSG_DONTWAIT;
1739 	msk->fastopening = 1;
1740 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1741 	msk->fastopening = 0;
1742 	msg->msg_flags = saved_flags;
1743 	release_sock(ssk);
1744 
1745 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1746 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1747 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1748 					    msg->msg_namelen, msg->msg_flags, 1);
1749 
1750 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1751 		 * case of any error, except timeout or signal
1752 		 */
1753 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1754 			*copied_syn = 0;
1755 	} else if (ret && ret != -EINPROGRESS) {
1756 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1757 		 * __inet_stream_connect() can fail, due to looking check,
1758 		 * see mptcp_disconnect().
1759 		 * Attempt it again outside the problematic scope.
1760 		 */
1761 		if (!mptcp_disconnect(sk, 0))
1762 			sk->sk_socket->state = SS_UNCONNECTED;
1763 	}
1764 
1765 	return ret;
1766 }
1767 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1768 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1769 {
1770 	struct mptcp_sock *msk = mptcp_sk(sk);
1771 	struct page_frag *pfrag;
1772 	struct socket *ssock;
1773 	size_t copied = 0;
1774 	int ret = 0;
1775 	long timeo;
1776 
1777 	/* we don't support FASTOPEN yet */
1778 	if (msg->msg_flags & MSG_FASTOPEN)
1779 		return -EOPNOTSUPP;
1780 
1781 	/* silently ignore everything else */
1782 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1783 
1784 	lock_sock(sk);
1785 
1786 	ssock = __mptcp_nmpc_socket(msk);
1787 	if (unlikely(ssock && inet_sk(ssock->sk)->defer_connect)) {
1788 		int copied_syn = 0;
1789 
1790 		ret = mptcp_sendmsg_fastopen(sk, ssock->sk, msg, len, &copied_syn);
1791 		copied += copied_syn;
1792 		if (ret == -EINPROGRESS && copied_syn > 0)
1793 			goto out;
1794 		else if (ret)
1795 			goto do_error;
1796 	}
1797 
1798 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1799 
1800 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1801 		ret = sk_stream_wait_connect(sk, &timeo);
1802 		if (ret)
1803 			goto do_error;
1804 	}
1805 
1806 	ret = -EPIPE;
1807 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1808 		goto do_error;
1809 
1810 	pfrag = sk_page_frag(sk);
1811 
1812 	while (msg_data_left(msg)) {
1813 		int total_ts, frag_truesize = 0;
1814 		struct mptcp_data_frag *dfrag;
1815 		bool dfrag_collapsed;
1816 		size_t psize, offset;
1817 
1818 		/* reuse tail pfrag, if possible, or carve a new one from the
1819 		 * page allocator
1820 		 */
1821 		dfrag = mptcp_pending_tail(sk);
1822 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1823 		if (!dfrag_collapsed) {
1824 			if (!sk_stream_memory_free(sk))
1825 				goto wait_for_memory;
1826 
1827 			if (!mptcp_page_frag_refill(sk, pfrag))
1828 				goto wait_for_memory;
1829 
1830 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1831 			frag_truesize = dfrag->overhead;
1832 		}
1833 
1834 		/* we do not bound vs wspace, to allow a single packet.
1835 		 * memory accounting will prevent execessive memory usage
1836 		 * anyway
1837 		 */
1838 		offset = dfrag->offset + dfrag->data_len;
1839 		psize = pfrag->size - offset;
1840 		psize = min_t(size_t, psize, msg_data_left(msg));
1841 		total_ts = psize + frag_truesize;
1842 
1843 		if (!sk_wmem_schedule(sk, total_ts))
1844 			goto wait_for_memory;
1845 
1846 		if (copy_page_from_iter(dfrag->page, offset, psize,
1847 					&msg->msg_iter) != psize) {
1848 			ret = -EFAULT;
1849 			goto do_error;
1850 		}
1851 
1852 		/* data successfully copied into the write queue */
1853 		sk_forward_alloc_add(sk, -total_ts);
1854 		copied += psize;
1855 		dfrag->data_len += psize;
1856 		frag_truesize += psize;
1857 		pfrag->offset += frag_truesize;
1858 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1859 
1860 		/* charge data on mptcp pending queue to the msk socket
1861 		 * Note: we charge such data both to sk and ssk
1862 		 */
1863 		sk_wmem_queued_add(sk, frag_truesize);
1864 		if (!dfrag_collapsed) {
1865 			get_page(dfrag->page);
1866 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1867 			if (!msk->first_pending)
1868 				WRITE_ONCE(msk->first_pending, dfrag);
1869 		}
1870 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1871 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1872 			 !dfrag_collapsed);
1873 
1874 		continue;
1875 
1876 wait_for_memory:
1877 		mptcp_set_nospace(sk);
1878 		__mptcp_push_pending(sk, msg->msg_flags);
1879 		ret = sk_stream_wait_memory(sk, &timeo);
1880 		if (ret)
1881 			goto do_error;
1882 	}
1883 
1884 	if (copied)
1885 		__mptcp_push_pending(sk, msg->msg_flags);
1886 
1887 out:
1888 	release_sock(sk);
1889 	return copied;
1890 
1891 do_error:
1892 	if (copied)
1893 		goto out;
1894 
1895 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1896 	goto out;
1897 }
1898 
__mptcp_recvmsg_mskq(struct mptcp_sock * msk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)1899 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1900 				struct msghdr *msg,
1901 				size_t len, int flags,
1902 				struct scm_timestamping_internal *tss,
1903 				int *cmsg_flags)
1904 {
1905 	struct sk_buff *skb, *tmp;
1906 	int copied = 0;
1907 
1908 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1909 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1910 		u32 data_len = skb->len - offset;
1911 		u32 count = min_t(size_t, len - copied, data_len);
1912 		int err;
1913 
1914 		if (!(flags & MSG_TRUNC)) {
1915 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1916 			if (unlikely(err < 0)) {
1917 				if (!copied)
1918 					return err;
1919 				break;
1920 			}
1921 		}
1922 
1923 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1924 			tcp_update_recv_tstamps(skb, tss);
1925 			*cmsg_flags |= MPTCP_CMSG_TS;
1926 		}
1927 
1928 		copied += count;
1929 
1930 		if (count < data_len) {
1931 			if (!(flags & MSG_PEEK)) {
1932 				MPTCP_SKB_CB(skb)->offset += count;
1933 				MPTCP_SKB_CB(skb)->map_seq += count;
1934 			}
1935 			break;
1936 		}
1937 
1938 		if (!(flags & MSG_PEEK)) {
1939 			/* we will bulk release the skb memory later */
1940 			skb->destructor = NULL;
1941 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1942 			__skb_unlink(skb, &msk->receive_queue);
1943 			__kfree_skb(skb);
1944 		}
1945 
1946 		if (copied >= len)
1947 			break;
1948 	}
1949 
1950 	return copied;
1951 }
1952 
1953 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1954  *
1955  * Only difference: Use highest rtt estimate of the subflows in use.
1956  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)1957 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1958 {
1959 	struct mptcp_subflow_context *subflow;
1960 	struct sock *sk = (struct sock *)msk;
1961 	u32 time, advmss = 1;
1962 	u64 rtt_us, mstamp;
1963 
1964 	sock_owned_by_me(sk);
1965 
1966 	if (copied <= 0)
1967 		return;
1968 
1969 	msk->rcvq_space.copied += copied;
1970 
1971 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1972 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1973 
1974 	rtt_us = msk->rcvq_space.rtt_us;
1975 	if (rtt_us && time < (rtt_us >> 3))
1976 		return;
1977 
1978 	rtt_us = 0;
1979 	mptcp_for_each_subflow(msk, subflow) {
1980 		const struct tcp_sock *tp;
1981 		u64 sf_rtt_us;
1982 		u32 sf_advmss;
1983 
1984 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1985 
1986 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1987 		sf_advmss = READ_ONCE(tp->advmss);
1988 
1989 		rtt_us = max(sf_rtt_us, rtt_us);
1990 		advmss = max(sf_advmss, advmss);
1991 	}
1992 
1993 	msk->rcvq_space.rtt_us = rtt_us;
1994 	if (time < (rtt_us >> 3) || rtt_us == 0)
1995 		return;
1996 
1997 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1998 		goto new_measure;
1999 
2000 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2001 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2002 		int rcvmem, rcvbuf;
2003 		u64 rcvwin, grow;
2004 
2005 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2006 
2007 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2008 
2009 		do_div(grow, msk->rcvq_space.space);
2010 		rcvwin += (grow << 1);
2011 
2012 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
2013 		while (tcp_win_from_space(sk, rcvmem) < advmss)
2014 			rcvmem += 128;
2015 
2016 		do_div(rcvwin, advmss);
2017 		rcvbuf = min_t(u64, rcvwin * rcvmem,
2018 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2019 
2020 		if (rcvbuf > sk->sk_rcvbuf) {
2021 			u32 window_clamp;
2022 
2023 			window_clamp = tcp_win_from_space(sk, rcvbuf);
2024 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2025 
2026 			/* Make subflows follow along.  If we do not do this, we
2027 			 * get drops at subflow level if skbs can't be moved to
2028 			 * the mptcp rx queue fast enough (announced rcv_win can
2029 			 * exceed ssk->sk_rcvbuf).
2030 			 */
2031 			mptcp_for_each_subflow(msk, subflow) {
2032 				struct sock *ssk;
2033 				bool slow;
2034 
2035 				ssk = mptcp_subflow_tcp_sock(subflow);
2036 				slow = lock_sock_fast(ssk);
2037 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2038 				tcp_sk(ssk)->window_clamp = window_clamp;
2039 				tcp_cleanup_rbuf(ssk, 1);
2040 				unlock_sock_fast(ssk, slow);
2041 			}
2042 		}
2043 	}
2044 
2045 	msk->rcvq_space.space = msk->rcvq_space.copied;
2046 new_measure:
2047 	msk->rcvq_space.copied = 0;
2048 	msk->rcvq_space.time = mstamp;
2049 }
2050 
__mptcp_update_rmem(struct sock * sk)2051 static void __mptcp_update_rmem(struct sock *sk)
2052 {
2053 	struct mptcp_sock *msk = mptcp_sk(sk);
2054 
2055 	if (!msk->rmem_released)
2056 		return;
2057 
2058 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2059 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2060 	WRITE_ONCE(msk->rmem_released, 0);
2061 }
2062 
__mptcp_splice_receive_queue(struct sock * sk)2063 static void __mptcp_splice_receive_queue(struct sock *sk)
2064 {
2065 	struct mptcp_sock *msk = mptcp_sk(sk);
2066 
2067 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2068 }
2069 
__mptcp_move_skbs(struct mptcp_sock * msk)2070 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2071 {
2072 	struct sock *sk = (struct sock *)msk;
2073 	unsigned int moved = 0;
2074 	bool ret, done;
2075 
2076 	do {
2077 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2078 		bool slowpath;
2079 
2080 		/* we can have data pending in the subflows only if the msk
2081 		 * receive buffer was full at subflow_data_ready() time,
2082 		 * that is an unlikely slow path.
2083 		 */
2084 		if (likely(!ssk))
2085 			break;
2086 
2087 		slowpath = lock_sock_fast(ssk);
2088 		mptcp_data_lock(sk);
2089 		__mptcp_update_rmem(sk);
2090 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2091 		mptcp_data_unlock(sk);
2092 
2093 		if (unlikely(ssk->sk_err))
2094 			__mptcp_error_report(sk);
2095 		unlock_sock_fast(ssk, slowpath);
2096 	} while (!done);
2097 
2098 	/* acquire the data lock only if some input data is pending */
2099 	ret = moved > 0;
2100 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2101 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2102 		mptcp_data_lock(sk);
2103 		__mptcp_update_rmem(sk);
2104 		ret |= __mptcp_ofo_queue(msk);
2105 		__mptcp_splice_receive_queue(sk);
2106 		mptcp_data_unlock(sk);
2107 	}
2108 	if (ret)
2109 		mptcp_check_data_fin((struct sock *)msk);
2110 	return !skb_queue_empty(&msk->receive_queue);
2111 }
2112 
mptcp_inq_hint(const struct sock * sk)2113 static unsigned int mptcp_inq_hint(const struct sock *sk)
2114 {
2115 	const struct mptcp_sock *msk = mptcp_sk(sk);
2116 	const struct sk_buff *skb;
2117 
2118 	skb = skb_peek(&msk->receive_queue);
2119 	if (skb) {
2120 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2121 
2122 		if (hint_val >= INT_MAX)
2123 			return INT_MAX;
2124 
2125 		return (unsigned int)hint_val;
2126 	}
2127 
2128 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2129 		return 1;
2130 
2131 	return 0;
2132 }
2133 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2134 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2135 			 int flags, int *addr_len)
2136 {
2137 	struct mptcp_sock *msk = mptcp_sk(sk);
2138 	struct scm_timestamping_internal tss;
2139 	int copied = 0, cmsg_flags = 0;
2140 	int target;
2141 	long timeo;
2142 
2143 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2144 	if (unlikely(flags & MSG_ERRQUEUE))
2145 		return inet_recv_error(sk, msg, len, addr_len);
2146 
2147 	lock_sock(sk);
2148 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2149 		copied = -ENOTCONN;
2150 		goto out_err;
2151 	}
2152 
2153 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2154 
2155 	len = min_t(size_t, len, INT_MAX);
2156 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2157 
2158 	if (unlikely(msk->recvmsg_inq))
2159 		cmsg_flags = MPTCP_CMSG_INQ;
2160 
2161 	while (copied < len) {
2162 		int bytes_read;
2163 
2164 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2165 		if (unlikely(bytes_read < 0)) {
2166 			if (!copied)
2167 				copied = bytes_read;
2168 			goto out_err;
2169 		}
2170 
2171 		copied += bytes_read;
2172 
2173 		/* be sure to advertise window change */
2174 		mptcp_cleanup_rbuf(msk);
2175 
2176 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2177 			continue;
2178 
2179 		/* only the master socket status is relevant here. The exit
2180 		 * conditions mirror closely tcp_recvmsg()
2181 		 */
2182 		if (copied >= target)
2183 			break;
2184 
2185 		if (copied) {
2186 			if (sk->sk_err ||
2187 			    sk->sk_state == TCP_CLOSE ||
2188 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2189 			    !timeo ||
2190 			    signal_pending(current))
2191 				break;
2192 		} else {
2193 			if (sk->sk_err) {
2194 				copied = sock_error(sk);
2195 				break;
2196 			}
2197 
2198 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2199 				mptcp_check_for_eof(msk);
2200 
2201 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2202 				/* race breaker: the shutdown could be after the
2203 				 * previous receive queue check
2204 				 */
2205 				if (__mptcp_move_skbs(msk))
2206 					continue;
2207 				break;
2208 			}
2209 
2210 			if (sk->sk_state == TCP_CLOSE) {
2211 				copied = -ENOTCONN;
2212 				break;
2213 			}
2214 
2215 			if (!timeo) {
2216 				copied = -EAGAIN;
2217 				break;
2218 			}
2219 
2220 			if (signal_pending(current)) {
2221 				copied = sock_intr_errno(timeo);
2222 				break;
2223 			}
2224 		}
2225 
2226 		pr_debug("block timeout %ld", timeo);
2227 		sk_wait_data(sk, &timeo, NULL);
2228 	}
2229 
2230 out_err:
2231 	if (cmsg_flags && copied >= 0) {
2232 		if (cmsg_flags & MPTCP_CMSG_TS)
2233 			tcp_recv_timestamp(msg, sk, &tss);
2234 
2235 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2236 			unsigned int inq = mptcp_inq_hint(sk);
2237 
2238 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2239 		}
2240 	}
2241 
2242 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2243 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2244 		 skb_queue_empty(&msk->receive_queue), copied);
2245 	if (!(flags & MSG_PEEK))
2246 		mptcp_rcv_space_adjust(msk, copied);
2247 
2248 	release_sock(sk);
2249 	return copied;
2250 }
2251 
mptcp_retransmit_timer(struct timer_list * t)2252 static void mptcp_retransmit_timer(struct timer_list *t)
2253 {
2254 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2255 						       icsk_retransmit_timer);
2256 	struct sock *sk = &icsk->icsk_inet.sk;
2257 	struct mptcp_sock *msk = mptcp_sk(sk);
2258 
2259 	bh_lock_sock(sk);
2260 	if (!sock_owned_by_user(sk)) {
2261 		/* we need a process context to retransmit */
2262 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2263 			mptcp_schedule_work(sk);
2264 	} else {
2265 		/* delegate our work to tcp_release_cb() */
2266 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2267 	}
2268 	bh_unlock_sock(sk);
2269 	sock_put(sk);
2270 }
2271 
mptcp_tout_timer(struct timer_list * t)2272 static void mptcp_tout_timer(struct timer_list *t)
2273 {
2274 	struct sock *sk = from_timer(sk, t, sk_timer);
2275 
2276 	mptcp_schedule_work(sk);
2277 	sock_put(sk);
2278 }
2279 
2280 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2281  * level.
2282  *
2283  * A backup subflow is returned only if that is the only kind available.
2284  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2285 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2286 {
2287 	struct sock *backup = NULL, *pick = NULL;
2288 	struct mptcp_subflow_context *subflow;
2289 	int min_stale_count = INT_MAX;
2290 
2291 	sock_owned_by_me((const struct sock *)msk);
2292 
2293 	if (__mptcp_check_fallback(msk))
2294 		return NULL;
2295 
2296 	mptcp_for_each_subflow(msk, subflow) {
2297 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2298 
2299 		if (!__mptcp_subflow_active(subflow))
2300 			continue;
2301 
2302 		/* still data outstanding at TCP level? skip this */
2303 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2304 			mptcp_pm_subflow_chk_stale(msk, ssk);
2305 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2306 			continue;
2307 		}
2308 
2309 		if (subflow->backup) {
2310 			if (!backup)
2311 				backup = ssk;
2312 			continue;
2313 		}
2314 
2315 		if (!pick)
2316 			pick = ssk;
2317 	}
2318 
2319 	if (pick)
2320 		return pick;
2321 
2322 	/* use backup only if there are no progresses anywhere */
2323 	return min_stale_count > 1 ? backup : NULL;
2324 }
2325 
mptcp_dispose_initial_subflow(struct mptcp_sock * msk)2326 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2327 {
2328 	if (msk->subflow) {
2329 		iput(SOCK_INODE(msk->subflow));
2330 		WRITE_ONCE(msk->subflow, NULL);
2331 	}
2332 }
2333 
__mptcp_retransmit_pending_data(struct sock * sk)2334 bool __mptcp_retransmit_pending_data(struct sock *sk)
2335 {
2336 	struct mptcp_data_frag *cur, *rtx_head;
2337 	struct mptcp_sock *msk = mptcp_sk(sk);
2338 
2339 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2340 		return false;
2341 
2342 	/* the closing socket has some data untransmitted and/or unacked:
2343 	 * some data in the mptcp rtx queue has not really xmitted yet.
2344 	 * keep it simple and re-inject the whole mptcp level rtx queue
2345 	 */
2346 	mptcp_data_lock(sk);
2347 	__mptcp_clean_una_wakeup(sk);
2348 	rtx_head = mptcp_rtx_head(sk);
2349 	if (!rtx_head) {
2350 		mptcp_data_unlock(sk);
2351 		return false;
2352 	}
2353 
2354 	msk->recovery_snd_nxt = msk->snd_nxt;
2355 	msk->recovery = true;
2356 	mptcp_data_unlock(sk);
2357 
2358 	msk->first_pending = rtx_head;
2359 	msk->snd_burst = 0;
2360 
2361 	/* be sure to clear the "sent status" on all re-injected fragments */
2362 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2363 		if (!cur->already_sent)
2364 			break;
2365 		cur->already_sent = 0;
2366 	}
2367 
2368 	return true;
2369 }
2370 
2371 /* flags for __mptcp_close_ssk() */
2372 #define MPTCP_CF_PUSH		BIT(1)
2373 #define MPTCP_CF_FASTCLOSE	BIT(2)
2374 
2375 /* be sure to send a reset only if the caller asked for it, also
2376  * clean completely the subflow status when the subflow reaches
2377  * TCP_CLOSE state
2378  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2379 static void __mptcp_subflow_disconnect(struct sock *ssk,
2380 				       struct mptcp_subflow_context *subflow,
2381 				       unsigned int flags)
2382 {
2383 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2384 	    (flags & MPTCP_CF_FASTCLOSE)) {
2385 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2386 		 * disconnect should never fail
2387 		 */
2388 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2389 		mptcp_subflow_ctx_reset(subflow);
2390 	} else {
2391 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2392 	}
2393 }
2394 
2395 /* subflow sockets can be either outgoing (connect) or incoming
2396  * (accept).
2397  *
2398  * Outgoing subflows use in-kernel sockets.
2399  * Incoming subflows do not have their own 'struct socket' allocated,
2400  * so we need to use tcp_close() after detaching them from the mptcp
2401  * parent socket.
2402  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2403 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2404 			      struct mptcp_subflow_context *subflow,
2405 			      unsigned int flags)
2406 {
2407 	struct mptcp_sock *msk = mptcp_sk(sk);
2408 	bool dispose_it, need_push = false;
2409 
2410 	/* If the first subflow moved to a close state before accept, e.g. due
2411 	 * to an incoming reset or listener shutdown, the subflow socket is
2412 	 * already deleted by inet_child_forget() and the mptcp socket can't
2413 	 * survive too.
2414 	 */
2415 	if (msk->in_accept_queue && msk->first == ssk &&
2416 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2417 		/* ensure later check in mptcp_worker() will dispose the msk */
2418 		mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2419 		sock_set_flag(sk, SOCK_DEAD);
2420 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2421 		mptcp_subflow_drop_ctx(ssk);
2422 		goto out_release;
2423 	}
2424 
2425 	dispose_it = msk->free_first || ssk != msk->first;
2426 	if (dispose_it)
2427 		list_del(&subflow->node);
2428 
2429 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2430 
2431 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2432 		/* be sure to force the tcp_close path
2433 		 * to generate the egress reset
2434 		 */
2435 		ssk->sk_lingertime = 0;
2436 		sock_set_flag(ssk, SOCK_LINGER);
2437 		subflow->send_fastclose = 1;
2438 	}
2439 
2440 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2441 	if (!dispose_it) {
2442 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2443 		release_sock(ssk);
2444 
2445 		goto out;
2446 	}
2447 
2448 	subflow->disposable = 1;
2449 
2450 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2451 	 * the ssk has been already destroyed, we just need to release the
2452 	 * reference owned by msk;
2453 	 */
2454 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2455 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2456 		kfree_rcu(subflow, rcu);
2457 	} else {
2458 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2459 		__tcp_close(ssk, 0);
2460 
2461 		/* close acquired an extra ref */
2462 		__sock_put(ssk);
2463 	}
2464 
2465 out_release:
2466 	__mptcp_subflow_error_report(sk, ssk);
2467 	release_sock(ssk);
2468 
2469 	sock_put(ssk);
2470 
2471 	if (ssk == msk->first)
2472 		WRITE_ONCE(msk->first, NULL);
2473 
2474 out:
2475 	if (ssk == msk->last_snd)
2476 		msk->last_snd = NULL;
2477 
2478 	if (need_push)
2479 		__mptcp_push_pending(sk, 0);
2480 
2481 	/* Catch every 'all subflows closed' scenario, including peers silently
2482 	 * closing them, e.g. due to timeout.
2483 	 * For established sockets, allow an additional timeout before closing,
2484 	 * as the protocol can still create more subflows.
2485 	 */
2486 	if (list_is_singular(&msk->conn_list) && msk->first &&
2487 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2488 		if (sk->sk_state != TCP_ESTABLISHED ||
2489 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2490 			inet_sk_state_store(sk, TCP_CLOSE);
2491 			mptcp_close_wake_up(sk);
2492 		} else {
2493 			mptcp_start_tout_timer(sk);
2494 		}
2495 	}
2496 }
2497 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2498 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2499 		     struct mptcp_subflow_context *subflow)
2500 {
2501 	if (sk->sk_state == TCP_ESTABLISHED)
2502 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2503 
2504 	/* subflow aborted before reaching the fully_established status
2505 	 * attempt the creation of the next subflow
2506 	 */
2507 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2508 
2509 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2510 }
2511 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2512 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2513 {
2514 	return 0;
2515 }
2516 
__mptcp_close_subflow(struct sock * sk)2517 static void __mptcp_close_subflow(struct sock *sk)
2518 {
2519 	struct mptcp_subflow_context *subflow, *tmp;
2520 	struct mptcp_sock *msk = mptcp_sk(sk);
2521 
2522 	might_sleep();
2523 
2524 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2525 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2526 
2527 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2528 			continue;
2529 
2530 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2531 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2532 			continue;
2533 
2534 		mptcp_close_ssk(sk, ssk, subflow);
2535 	}
2536 
2537 }
2538 
mptcp_close_tout_expired(const struct sock * sk)2539 static bool mptcp_close_tout_expired(const struct sock *sk)
2540 {
2541 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2542 	    sk->sk_state == TCP_CLOSE)
2543 		return false;
2544 
2545 	return time_after32(tcp_jiffies32,
2546 		  inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2547 }
2548 
mptcp_check_fastclose(struct mptcp_sock * msk)2549 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2550 {
2551 	struct mptcp_subflow_context *subflow, *tmp;
2552 	struct sock *sk = &msk->sk.icsk_inet.sk;
2553 
2554 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2555 		return;
2556 
2557 	mptcp_token_destroy(msk);
2558 
2559 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2560 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2561 		bool slow;
2562 
2563 		slow = lock_sock_fast(tcp_sk);
2564 		if (tcp_sk->sk_state != TCP_CLOSE) {
2565 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2566 			tcp_set_state(tcp_sk, TCP_CLOSE);
2567 		}
2568 		unlock_sock_fast(tcp_sk, slow);
2569 	}
2570 
2571 	/* Mirror the tcp_reset() error propagation */
2572 	switch (sk->sk_state) {
2573 	case TCP_SYN_SENT:
2574 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2575 		break;
2576 	case TCP_CLOSE_WAIT:
2577 		WRITE_ONCE(sk->sk_err, EPIPE);
2578 		break;
2579 	case TCP_CLOSE:
2580 		return;
2581 	default:
2582 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2583 	}
2584 
2585 	inet_sk_state_store(sk, TCP_CLOSE);
2586 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2587 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2588 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2589 
2590 	/* the calling mptcp_worker will properly destroy the socket */
2591 	if (sock_flag(sk, SOCK_DEAD))
2592 		return;
2593 
2594 	sk->sk_state_change(sk);
2595 	sk_error_report(sk);
2596 }
2597 
__mptcp_retrans(struct sock * sk)2598 static void __mptcp_retrans(struct sock *sk)
2599 {
2600 	struct mptcp_sock *msk = mptcp_sk(sk);
2601 	struct mptcp_sendmsg_info info = {};
2602 	struct mptcp_data_frag *dfrag;
2603 	size_t copied = 0;
2604 	struct sock *ssk;
2605 	int ret;
2606 
2607 	mptcp_clean_una_wakeup(sk);
2608 
2609 	/* first check ssk: need to kick "stale" logic */
2610 	ssk = mptcp_subflow_get_retrans(msk);
2611 	dfrag = mptcp_rtx_head(sk);
2612 	if (!dfrag) {
2613 		if (mptcp_data_fin_enabled(msk)) {
2614 			struct inet_connection_sock *icsk = inet_csk(sk);
2615 
2616 			icsk->icsk_retransmits++;
2617 			mptcp_set_datafin_timeout(sk);
2618 			mptcp_send_ack(msk);
2619 
2620 			goto reset_timer;
2621 		}
2622 
2623 		if (!mptcp_send_head(sk))
2624 			return;
2625 
2626 		goto reset_timer;
2627 	}
2628 
2629 	if (!ssk)
2630 		goto reset_timer;
2631 
2632 	lock_sock(ssk);
2633 
2634 	/* limit retransmission to the bytes already sent on some subflows */
2635 	info.sent = 0;
2636 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2637 	while (info.sent < info.limit) {
2638 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2639 		if (ret <= 0)
2640 			break;
2641 
2642 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2643 		copied += ret;
2644 		info.sent += ret;
2645 	}
2646 	if (copied) {
2647 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2648 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2649 			 info.size_goal);
2650 		WRITE_ONCE(msk->allow_infinite_fallback, false);
2651 	}
2652 
2653 	release_sock(ssk);
2654 
2655 reset_timer:
2656 	mptcp_check_and_set_pending(sk);
2657 
2658 	if (!mptcp_rtx_timer_pending(sk))
2659 		mptcp_reset_rtx_timer(sk);
2660 }
2661 
2662 /* schedule the timeout timer for the relevant event: either close timeout
2663  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2664  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2665 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2666 {
2667 	struct sock *sk = (struct sock *)msk;
2668 	unsigned long timeout, close_timeout;
2669 
2670 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2671 		return;
2672 
2673 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2674 			TCP_TIMEWAIT_LEN;
2675 
2676 	/* the close timeout takes precedence on the fail one, and here at least one of
2677 	 * them is active
2678 	 */
2679 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2680 
2681 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2682 }
2683 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2684 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2685 {
2686 	struct sock *ssk = msk->first;
2687 	bool slow;
2688 
2689 	if (!ssk)
2690 		return;
2691 
2692 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2693 
2694 	slow = lock_sock_fast(ssk);
2695 	mptcp_subflow_reset(ssk);
2696 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2697 	unlock_sock_fast(ssk, slow);
2698 }
2699 
mptcp_do_fastclose(struct sock * sk)2700 static void mptcp_do_fastclose(struct sock *sk)
2701 {
2702 	struct mptcp_subflow_context *subflow, *tmp;
2703 	struct mptcp_sock *msk = mptcp_sk(sk);
2704 
2705 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2706 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2707 				  subflow, MPTCP_CF_FASTCLOSE);
2708 }
2709 
mptcp_worker(struct work_struct * work)2710 static void mptcp_worker(struct work_struct *work)
2711 {
2712 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2713 	struct sock *sk = &msk->sk.icsk_inet.sk;
2714 	unsigned long fail_tout;
2715 	int state;
2716 
2717 	lock_sock(sk);
2718 	state = sk->sk_state;
2719 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2720 		goto unlock;
2721 
2722 	mptcp_check_fastclose(msk);
2723 
2724 	mptcp_pm_nl_work(msk);
2725 
2726 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2727 		mptcp_check_for_eof(msk);
2728 
2729 	mptcp_check_send_data_fin(sk);
2730 	mptcp_check_data_fin_ack(sk);
2731 	mptcp_check_data_fin(sk);
2732 
2733 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2734 		__mptcp_close_subflow(sk);
2735 
2736 	if (mptcp_close_tout_expired(sk)) {
2737 		inet_sk_state_store(sk, TCP_CLOSE);
2738 		mptcp_do_fastclose(sk);
2739 		mptcp_close_wake_up(sk);
2740 	}
2741 
2742 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2743 		__mptcp_destroy_sock(sk);
2744 		goto unlock;
2745 	}
2746 
2747 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2748 		__mptcp_retrans(sk);
2749 
2750 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2751 	if (fail_tout && time_after(jiffies, fail_tout))
2752 		mptcp_mp_fail_no_response(msk);
2753 
2754 unlock:
2755 	release_sock(sk);
2756 	sock_put(sk);
2757 }
2758 
__mptcp_init_sock(struct sock * sk)2759 static int __mptcp_init_sock(struct sock *sk)
2760 {
2761 	struct mptcp_sock *msk = mptcp_sk(sk);
2762 
2763 	INIT_LIST_HEAD(&msk->conn_list);
2764 	INIT_LIST_HEAD(&msk->join_list);
2765 	INIT_LIST_HEAD(&msk->rtx_queue);
2766 	INIT_WORK(&msk->work, mptcp_worker);
2767 	__skb_queue_head_init(&msk->receive_queue);
2768 	msk->out_of_order_queue = RB_ROOT;
2769 	msk->first_pending = NULL;
2770 	msk->rmem_fwd_alloc = 0;
2771 	WRITE_ONCE(msk->rmem_released, 0);
2772 	msk->timer_ival = TCP_RTO_MIN;
2773 
2774 	WRITE_ONCE(msk->first, NULL);
2775 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2776 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2777 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2778 	msk->recovery = false;
2779 
2780 	mptcp_pm_data_init(msk);
2781 
2782 	/* re-use the csk retrans timer for MPTCP-level retrans */
2783 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2784 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2785 
2786 	return 0;
2787 }
2788 
mptcp_ca_reset(struct sock * sk)2789 static void mptcp_ca_reset(struct sock *sk)
2790 {
2791 	struct inet_connection_sock *icsk = inet_csk(sk);
2792 
2793 	tcp_assign_congestion_control(sk);
2794 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2795 
2796 	/* no need to keep a reference to the ops, the name will suffice */
2797 	tcp_cleanup_congestion_control(sk);
2798 	icsk->icsk_ca_ops = NULL;
2799 }
2800 
mptcp_init_sock(struct sock * sk)2801 static int mptcp_init_sock(struct sock *sk)
2802 {
2803 	struct net *net = sock_net(sk);
2804 	int ret;
2805 
2806 	ret = __mptcp_init_sock(sk);
2807 	if (ret)
2808 		return ret;
2809 
2810 	if (!mptcp_is_enabled(net))
2811 		return -ENOPROTOOPT;
2812 
2813 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2814 		return -ENOMEM;
2815 
2816 	ret = __mptcp_socket_create(mptcp_sk(sk));
2817 	if (ret)
2818 		return ret;
2819 
2820 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2821 	 * propagate the correct value
2822 	 */
2823 	mptcp_ca_reset(sk);
2824 
2825 	sk_sockets_allocated_inc(sk);
2826 	sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
2827 	sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
2828 
2829 	return 0;
2830 }
2831 
__mptcp_clear_xmit(struct sock * sk)2832 static void __mptcp_clear_xmit(struct sock *sk)
2833 {
2834 	struct mptcp_sock *msk = mptcp_sk(sk);
2835 	struct mptcp_data_frag *dtmp, *dfrag;
2836 
2837 	WRITE_ONCE(msk->first_pending, NULL);
2838 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2839 		dfrag_clear(sk, dfrag);
2840 }
2841 
mptcp_cancel_work(struct sock * sk)2842 void mptcp_cancel_work(struct sock *sk)
2843 {
2844 	struct mptcp_sock *msk = mptcp_sk(sk);
2845 
2846 	if (cancel_work_sync(&msk->work))
2847 		__sock_put(sk);
2848 }
2849 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2850 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2851 {
2852 	lock_sock(ssk);
2853 
2854 	switch (ssk->sk_state) {
2855 	case TCP_LISTEN:
2856 		if (!(how & RCV_SHUTDOWN))
2857 			break;
2858 		fallthrough;
2859 	case TCP_SYN_SENT:
2860 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2861 		break;
2862 	default:
2863 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2864 			pr_debug("Fallback");
2865 			ssk->sk_shutdown |= how;
2866 			tcp_shutdown(ssk, how);
2867 
2868 			/* simulate the data_fin ack reception to let the state
2869 			 * machine move forward
2870 			 */
2871 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2872 			mptcp_schedule_work(sk);
2873 		} else {
2874 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2875 			tcp_send_ack(ssk);
2876 			if (!mptcp_rtx_timer_pending(sk))
2877 				mptcp_reset_rtx_timer(sk);
2878 		}
2879 		break;
2880 	}
2881 
2882 	release_sock(ssk);
2883 }
2884 
2885 static const unsigned char new_state[16] = {
2886 	/* current state:     new state:      action:	*/
2887 	[0 /* (Invalid) */] = TCP_CLOSE,
2888 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2889 	[TCP_SYN_SENT]      = TCP_CLOSE,
2890 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2891 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2892 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2893 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2894 	[TCP_CLOSE]         = TCP_CLOSE,
2895 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2896 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2897 	[TCP_LISTEN]        = TCP_CLOSE,
2898 	[TCP_CLOSING]       = TCP_CLOSING,
2899 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2900 };
2901 
mptcp_close_state(struct sock * sk)2902 static int mptcp_close_state(struct sock *sk)
2903 {
2904 	int next = (int)new_state[sk->sk_state];
2905 	int ns = next & TCP_STATE_MASK;
2906 
2907 	inet_sk_state_store(sk, ns);
2908 
2909 	return next & TCP_ACTION_FIN;
2910 }
2911 
mptcp_check_send_data_fin(struct sock * sk)2912 static void mptcp_check_send_data_fin(struct sock *sk)
2913 {
2914 	struct mptcp_subflow_context *subflow;
2915 	struct mptcp_sock *msk = mptcp_sk(sk);
2916 
2917 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2918 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2919 		 msk->snd_nxt, msk->write_seq);
2920 
2921 	/* we still need to enqueue subflows or not really shutting down,
2922 	 * skip this
2923 	 */
2924 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2925 	    mptcp_send_head(sk))
2926 		return;
2927 
2928 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2929 
2930 	mptcp_for_each_subflow(msk, subflow) {
2931 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2932 
2933 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2934 	}
2935 }
2936 
__mptcp_wr_shutdown(struct sock * sk)2937 static void __mptcp_wr_shutdown(struct sock *sk)
2938 {
2939 	struct mptcp_sock *msk = mptcp_sk(sk);
2940 
2941 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2942 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2943 		 !!mptcp_send_head(sk));
2944 
2945 	/* will be ignored by fallback sockets */
2946 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2947 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2948 
2949 	mptcp_check_send_data_fin(sk);
2950 }
2951 
__mptcp_destroy_sock(struct sock * sk)2952 static void __mptcp_destroy_sock(struct sock *sk)
2953 {
2954 	struct mptcp_sock *msk = mptcp_sk(sk);
2955 
2956 	pr_debug("msk=%p", msk);
2957 
2958 	might_sleep();
2959 
2960 	mptcp_stop_rtx_timer(sk);
2961 	sk_stop_timer(sk, &sk->sk_timer);
2962 	msk->pm.status = 0;
2963 
2964 	sk->sk_prot->destroy(sk);
2965 
2966 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2967 	WARN_ON_ONCE(msk->rmem_released);
2968 	sk_stream_kill_queues(sk);
2969 	xfrm_sk_free_policy(sk);
2970 
2971 	sk_refcnt_debug_release(sk);
2972 	sock_put(sk);
2973 }
2974 
__mptcp_unaccepted_force_close(struct sock * sk)2975 void __mptcp_unaccepted_force_close(struct sock *sk)
2976 {
2977 	sock_set_flag(sk, SOCK_DEAD);
2978 	inet_sk_state_store(sk, TCP_CLOSE);
2979 	mptcp_do_fastclose(sk);
2980 	__mptcp_destroy_sock(sk);
2981 }
2982 
mptcp_check_readable(struct mptcp_sock * msk)2983 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2984 {
2985 	/* Concurrent splices from sk_receive_queue into receive_queue will
2986 	 * always show at least one non-empty queue when checked in this order.
2987 	 */
2988 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
2989 	    skb_queue_empty_lockless(&msk->receive_queue))
2990 		return 0;
2991 
2992 	return EPOLLIN | EPOLLRDNORM;
2993 }
2994 
mptcp_check_listen_stop(struct sock * sk)2995 static void mptcp_check_listen_stop(struct sock *sk)
2996 {
2997 	struct sock *ssk;
2998 
2999 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3000 		return;
3001 
3002 	ssk = mptcp_sk(sk)->first;
3003 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3004 		return;
3005 
3006 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3007 	tcp_set_state(ssk, TCP_CLOSE);
3008 	mptcp_subflow_queue_clean(sk, ssk);
3009 	inet_csk_listen_stop(ssk);
3010 	release_sock(ssk);
3011 }
3012 
__mptcp_close(struct sock * sk,long timeout)3013 bool __mptcp_close(struct sock *sk, long timeout)
3014 {
3015 	struct mptcp_subflow_context *subflow;
3016 	struct mptcp_sock *msk = mptcp_sk(sk);
3017 	bool do_cancel_work = false;
3018 	int subflows_alive = 0;
3019 
3020 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3021 
3022 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3023 		mptcp_check_listen_stop(sk);
3024 		inet_sk_state_store(sk, TCP_CLOSE);
3025 		goto cleanup;
3026 	}
3027 
3028 	if (mptcp_check_readable(msk)) {
3029 		/* the msk has read data, do the MPTCP equivalent of TCP reset */
3030 		inet_sk_state_store(sk, TCP_CLOSE);
3031 		mptcp_do_fastclose(sk);
3032 	} else if (mptcp_close_state(sk)) {
3033 		__mptcp_wr_shutdown(sk);
3034 	}
3035 
3036 	sk_stream_wait_close(sk, timeout);
3037 
3038 cleanup:
3039 	/* orphan all the subflows */
3040 	mptcp_for_each_subflow(msk, subflow) {
3041 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3042 		bool slow = lock_sock_fast_nested(ssk);
3043 
3044 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3045 
3046 		/* since the close timeout takes precedence on the fail one,
3047 		 * cancel the latter
3048 		 */
3049 		if (ssk == msk->first)
3050 			subflow->fail_tout = 0;
3051 
3052 		/* detach from the parent socket, but allow data_ready to
3053 		 * push incoming data into the mptcp stack, to properly ack it
3054 		 */
3055 		ssk->sk_socket = NULL;
3056 		ssk->sk_wq = NULL;
3057 		unlock_sock_fast(ssk, slow);
3058 	}
3059 	sock_orphan(sk);
3060 
3061 	/* all the subflows are closed, only timeout can change the msk
3062 	 * state, let's not keep resources busy for no reasons
3063 	 */
3064 	if (subflows_alive == 0)
3065 		inet_sk_state_store(sk, TCP_CLOSE);
3066 
3067 	sock_hold(sk);
3068 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3069 	if (mptcp_sk(sk)->token)
3070 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3071 
3072 	if (sk->sk_state == TCP_CLOSE) {
3073 		__mptcp_destroy_sock(sk);
3074 		do_cancel_work = true;
3075 	} else {
3076 		mptcp_start_tout_timer(sk);
3077 	}
3078 
3079 	return do_cancel_work;
3080 }
3081 
mptcp_close(struct sock * sk,long timeout)3082 static void mptcp_close(struct sock *sk, long timeout)
3083 {
3084 	bool do_cancel_work;
3085 
3086 	lock_sock(sk);
3087 
3088 	do_cancel_work = __mptcp_close(sk, timeout);
3089 	release_sock(sk);
3090 	if (do_cancel_work)
3091 		mptcp_cancel_work(sk);
3092 
3093 	sock_put(sk);
3094 }
3095 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3096 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3097 {
3098 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3099 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3100 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3101 
3102 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3103 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3104 
3105 	if (msk6 && ssk6) {
3106 		msk6->saddr = ssk6->saddr;
3107 		msk6->flow_label = ssk6->flow_label;
3108 	}
3109 #endif
3110 
3111 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3112 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3113 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3114 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3115 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3116 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3117 }
3118 
mptcp_disconnect(struct sock * sk,int flags)3119 static int mptcp_disconnect(struct sock *sk, int flags)
3120 {
3121 	struct mptcp_sock *msk = mptcp_sk(sk);
3122 
3123 	/* Deny disconnect if other threads are blocked in sk_wait_event()
3124 	 * or inet_wait_for_connect().
3125 	 */
3126 	if (sk->sk_wait_pending)
3127 		return -EBUSY;
3128 
3129 	/* We are on the fastopen error path. We can't call straight into the
3130 	 * subflows cleanup code due to lock nesting (we are already under
3131 	 * msk->firstsocket lock).
3132 	 */
3133 	if (msk->fastopening)
3134 		return -EBUSY;
3135 
3136 	mptcp_check_listen_stop(sk);
3137 	inet_sk_state_store(sk, TCP_CLOSE);
3138 
3139 	mptcp_stop_rtx_timer(sk);
3140 	mptcp_stop_tout_timer(sk);
3141 
3142 	if (mptcp_sk(sk)->token)
3143 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
3144 
3145 	/* msk->subflow is still intact, the following will not free the first
3146 	 * subflow
3147 	 */
3148 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3149 	msk->last_snd = NULL;
3150 	WRITE_ONCE(msk->flags, 0);
3151 	msk->cb_flags = 0;
3152 	msk->recovery = false;
3153 	msk->can_ack = false;
3154 	msk->fully_established = false;
3155 	msk->rcv_data_fin = false;
3156 	msk->snd_data_fin_enable = false;
3157 	msk->rcv_fastclose = false;
3158 	msk->use_64bit_ack = false;
3159 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3160 	mptcp_pm_data_reset(msk);
3161 	mptcp_ca_reset(sk);
3162 
3163 	WRITE_ONCE(sk->sk_shutdown, 0);
3164 	sk_error_report(sk);
3165 	return 0;
3166 }
3167 
3168 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3169 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3170 {
3171 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3172 
3173 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3174 }
3175 #endif
3176 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3177 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3178 				 const struct mptcp_options_received *mp_opt,
3179 				 struct sock *ssk,
3180 				 struct request_sock *req)
3181 {
3182 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3183 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3184 	struct mptcp_sock *msk;
3185 	u64 ack_seq;
3186 
3187 	if (!nsk)
3188 		return NULL;
3189 
3190 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3191 	if (nsk->sk_family == AF_INET6)
3192 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3193 #endif
3194 
3195 	nsk->sk_wait_pending = 0;
3196 	__mptcp_init_sock(nsk);
3197 
3198 	msk = mptcp_sk(nsk);
3199 	msk->local_key = subflow_req->local_key;
3200 	msk->token = subflow_req->token;
3201 	WRITE_ONCE(msk->subflow, NULL);
3202 	msk->in_accept_queue = 1;
3203 	WRITE_ONCE(msk->fully_established, false);
3204 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3205 		WRITE_ONCE(msk->csum_enabled, true);
3206 
3207 	msk->write_seq = subflow_req->idsn + 1;
3208 	msk->snd_nxt = msk->write_seq;
3209 	msk->snd_una = msk->write_seq;
3210 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3211 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3212 
3213 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
3214 		msk->can_ack = true;
3215 		msk->remote_key = mp_opt->sndr_key;
3216 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
3217 		ack_seq++;
3218 		WRITE_ONCE(msk->ack_seq, ack_seq);
3219 		atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3220 	}
3221 
3222 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3223 	security_inet_csk_clone(nsk, req);
3224 
3225 	/* this can't race with mptcp_close(), as the msk is
3226 	 * not yet exposted to user-space
3227 	 */
3228 	inet_sk_state_store(nsk, TCP_ESTABLISHED);
3229 
3230 	/* The msk maintain a ref to each subflow in the connections list */
3231 	WRITE_ONCE(msk->first, ssk);
3232 	list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
3233 	sock_hold(ssk);
3234 
3235 	/* new mpc subflow takes ownership of the newly
3236 	 * created mptcp socket
3237 	 */
3238 	mptcp_token_accept(subflow_req, msk);
3239 
3240 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3241 	 * uses the correct data
3242 	 */
3243 	mptcp_copy_inaddrs(nsk, ssk);
3244 	mptcp_propagate_sndbuf(nsk, ssk);
3245 
3246 	mptcp_rcv_space_init(msk, ssk);
3247 	bh_unlock_sock(nsk);
3248 
3249 	/* note: the newly allocated socket refcount is 2 now */
3250 	return nsk;
3251 }
3252 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3253 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3254 {
3255 	const struct tcp_sock *tp = tcp_sk(ssk);
3256 
3257 	msk->rcvq_space.copied = 0;
3258 	msk->rcvq_space.rtt_us = 0;
3259 
3260 	msk->rcvq_space.time = tp->tcp_mstamp;
3261 
3262 	/* initial rcv_space offering made to peer */
3263 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3264 				      TCP_INIT_CWND * tp->advmss);
3265 	if (msk->rcvq_space.space == 0)
3266 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3267 
3268 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3269 }
3270 
mptcp_accept(struct sock * sk,int flags,int * err,bool kern)3271 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3272 				 bool kern)
3273 {
3274 	struct mptcp_sock *msk = mptcp_sk(sk);
3275 	struct socket *listener;
3276 	struct sock *newsk;
3277 
3278 	listener = READ_ONCE(msk->subflow);
3279 	if (WARN_ON_ONCE(!listener)) {
3280 		*err = -EINVAL;
3281 		return NULL;
3282 	}
3283 
3284 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3285 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
3286 	if (!newsk)
3287 		return NULL;
3288 
3289 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3290 	if (sk_is_mptcp(newsk)) {
3291 		struct mptcp_subflow_context *subflow;
3292 		struct sock *new_mptcp_sock;
3293 
3294 		subflow = mptcp_subflow_ctx(newsk);
3295 		new_mptcp_sock = subflow->conn;
3296 
3297 		/* is_mptcp should be false if subflow->conn is missing, see
3298 		 * subflow_syn_recv_sock()
3299 		 */
3300 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3301 			tcp_sk(newsk)->is_mptcp = 0;
3302 			goto out;
3303 		}
3304 
3305 		newsk = new_mptcp_sock;
3306 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3307 	} else {
3308 		MPTCP_INC_STATS(sock_net(sk),
3309 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3310 	}
3311 
3312 out:
3313 	newsk->sk_kern_sock = kern;
3314 	return newsk;
3315 }
3316 
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3317 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3318 {
3319 	struct mptcp_subflow_context *subflow, *tmp;
3320 	struct sock *sk = (struct sock *)msk;
3321 
3322 	__mptcp_clear_xmit(sk);
3323 
3324 	/* join list will be eventually flushed (with rst) at sock lock release time */
3325 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3326 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3327 
3328 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3329 	mptcp_data_lock(sk);
3330 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3331 	__skb_queue_purge(&sk->sk_receive_queue);
3332 	skb_rbtree_purge(&msk->out_of_order_queue);
3333 	mptcp_data_unlock(sk);
3334 
3335 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3336 	 * inet_sock_destruct() will dispose it
3337 	 */
3338 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3339 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3340 	mptcp_token_destroy(msk);
3341 	mptcp_pm_free_anno_list(msk);
3342 	mptcp_free_local_addr_list(msk);
3343 }
3344 
mptcp_destroy(struct sock * sk)3345 static void mptcp_destroy(struct sock *sk)
3346 {
3347 	struct mptcp_sock *msk = mptcp_sk(sk);
3348 
3349 	mptcp_dispose_initial_subflow(msk);
3350 
3351 	/* allow the following to close even the initial subflow */
3352 	msk->free_first = 1;
3353 	mptcp_destroy_common(msk, 0);
3354 	sk_sockets_allocated_dec(sk);
3355 }
3356 
__mptcp_data_acked(struct sock * sk)3357 void __mptcp_data_acked(struct sock *sk)
3358 {
3359 	if (!sock_owned_by_user(sk))
3360 		__mptcp_clean_una(sk);
3361 	else
3362 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3363 
3364 	if (mptcp_pending_data_fin_ack(sk))
3365 		mptcp_schedule_work(sk);
3366 }
3367 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3368 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3369 {
3370 	if (!mptcp_send_head(sk))
3371 		return;
3372 
3373 	if (!sock_owned_by_user(sk)) {
3374 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3375 
3376 		if (xmit_ssk == ssk)
3377 			__mptcp_subflow_push_pending(sk, ssk);
3378 		else if (xmit_ssk)
3379 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
3380 	} else {
3381 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3382 	}
3383 }
3384 
3385 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3386 				      BIT(MPTCP_RETRANSMIT) | \
3387 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3388 
3389 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3390 static void mptcp_release_cb(struct sock *sk)
3391 	__must_hold(&sk->sk_lock.slock)
3392 {
3393 	struct mptcp_sock *msk = mptcp_sk(sk);
3394 
3395 	for (;;) {
3396 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3397 		struct list_head join_list;
3398 
3399 		if (!flags)
3400 			break;
3401 
3402 		INIT_LIST_HEAD(&join_list);
3403 		list_splice_init(&msk->join_list, &join_list);
3404 
3405 		/* the following actions acquire the subflow socket lock
3406 		 *
3407 		 * 1) can't be invoked in atomic scope
3408 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3409 		 *    datapath acquires the msk socket spinlock while helding
3410 		 *    the subflow socket lock
3411 		 */
3412 		msk->cb_flags &= ~flags;
3413 		spin_unlock_bh(&sk->sk_lock.slock);
3414 
3415 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3416 			__mptcp_flush_join_list(sk, &join_list);
3417 		if (flags & BIT(MPTCP_PUSH_PENDING))
3418 			__mptcp_push_pending(sk, 0);
3419 		if (flags & BIT(MPTCP_RETRANSMIT))
3420 			__mptcp_retrans(sk);
3421 
3422 		cond_resched();
3423 		spin_lock_bh(&sk->sk_lock.slock);
3424 	}
3425 
3426 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3427 		__mptcp_clean_una_wakeup(sk);
3428 	if (unlikely(msk->cb_flags)) {
3429 		/* be sure to set the current sk state before tacking actions
3430 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3431 		 */
3432 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3433 			__mptcp_set_connected(sk);
3434 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3435 			__mptcp_error_report(sk);
3436 		if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3437 			msk->last_snd = NULL;
3438 	}
3439 
3440 	__mptcp_update_rmem(sk);
3441 }
3442 
3443 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3444  * TCP can't schedule delack timer before the subflow is fully established.
3445  * MPTCP uses the delack timer to do 3rd ack retransmissions
3446  */
schedule_3rdack_retransmission(struct sock * ssk)3447 static void schedule_3rdack_retransmission(struct sock *ssk)
3448 {
3449 	struct inet_connection_sock *icsk = inet_csk(ssk);
3450 	struct tcp_sock *tp = tcp_sk(ssk);
3451 	unsigned long timeout;
3452 
3453 	if (mptcp_subflow_ctx(ssk)->fully_established)
3454 		return;
3455 
3456 	/* reschedule with a timeout above RTT, as we must look only for drop */
3457 	if (tp->srtt_us)
3458 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3459 	else
3460 		timeout = TCP_TIMEOUT_INIT;
3461 	timeout += jiffies;
3462 
3463 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3464 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3465 	icsk->icsk_ack.timeout = timeout;
3466 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3467 }
3468 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3469 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3470 {
3471 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3472 	struct sock *sk = subflow->conn;
3473 
3474 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3475 		mptcp_data_lock(sk);
3476 		if (!sock_owned_by_user(sk))
3477 			__mptcp_subflow_push_pending(sk, ssk);
3478 		else
3479 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3480 		mptcp_data_unlock(sk);
3481 	}
3482 	if (status & BIT(MPTCP_DELEGATE_ACK))
3483 		schedule_3rdack_retransmission(ssk);
3484 }
3485 
mptcp_hash(struct sock * sk)3486 static int mptcp_hash(struct sock *sk)
3487 {
3488 	/* should never be called,
3489 	 * we hash the TCP subflows not the master socket
3490 	 */
3491 	WARN_ON_ONCE(1);
3492 	return 0;
3493 }
3494 
mptcp_unhash(struct sock * sk)3495 static void mptcp_unhash(struct sock *sk)
3496 {
3497 	/* called from sk_common_release(), but nothing to do here */
3498 }
3499 
mptcp_get_port(struct sock * sk,unsigned short snum)3500 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3501 {
3502 	struct mptcp_sock *msk = mptcp_sk(sk);
3503 	struct socket *ssock;
3504 
3505 	ssock = msk->subflow;
3506 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3507 	if (WARN_ON_ONCE(!ssock))
3508 		return -EINVAL;
3509 
3510 	return inet_csk_get_port(ssock->sk, snum);
3511 }
3512 
mptcp_finish_connect(struct sock * ssk)3513 void mptcp_finish_connect(struct sock *ssk)
3514 {
3515 	struct mptcp_subflow_context *subflow;
3516 	struct mptcp_sock *msk;
3517 	struct sock *sk;
3518 	u64 ack_seq;
3519 
3520 	subflow = mptcp_subflow_ctx(ssk);
3521 	sk = subflow->conn;
3522 	msk = mptcp_sk(sk);
3523 
3524 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3525 
3526 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3527 	ack_seq++;
3528 	subflow->map_seq = ack_seq;
3529 	subflow->map_subflow_seq = 1;
3530 
3531 	/* the socket is not connected yet, no msk/subflow ops can access/race
3532 	 * accessing the field below
3533 	 */
3534 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3535 	WRITE_ONCE(msk->local_key, subflow->local_key);
3536 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3537 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3538 	WRITE_ONCE(msk->ack_seq, ack_seq);
3539 	WRITE_ONCE(msk->can_ack, 1);
3540 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3541 	atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3542 
3543 	mptcp_pm_new_connection(msk, ssk, 0);
3544 
3545 	mptcp_rcv_space_init(msk, ssk);
3546 }
3547 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3548 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3549 {
3550 	write_lock_bh(&sk->sk_callback_lock);
3551 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3552 	sk_set_socket(sk, parent);
3553 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3554 	write_unlock_bh(&sk->sk_callback_lock);
3555 }
3556 
mptcp_finish_join(struct sock * ssk)3557 bool mptcp_finish_join(struct sock *ssk)
3558 {
3559 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3560 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3561 	struct sock *parent = (void *)msk;
3562 	bool ret = true;
3563 
3564 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3565 
3566 	/* mptcp socket already closing? */
3567 	if (!mptcp_is_fully_established(parent)) {
3568 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3569 		return false;
3570 	}
3571 
3572 	/* active subflow, already present inside the conn_list */
3573 	if (!list_empty(&subflow->node)) {
3574 		mptcp_subflow_joined(msk, ssk);
3575 		return true;
3576 	}
3577 
3578 	if (!mptcp_pm_allow_new_subflow(msk))
3579 		goto err_prohibited;
3580 
3581 	/* If we can't acquire msk socket lock here, let the release callback
3582 	 * handle it
3583 	 */
3584 	mptcp_data_lock(parent);
3585 	if (!sock_owned_by_user(parent)) {
3586 		ret = __mptcp_finish_join(msk, ssk);
3587 		if (ret) {
3588 			sock_hold(ssk);
3589 			list_add_tail(&subflow->node, &msk->conn_list);
3590 		}
3591 	} else {
3592 		sock_hold(ssk);
3593 		list_add_tail(&subflow->node, &msk->join_list);
3594 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3595 	}
3596 	mptcp_data_unlock(parent);
3597 
3598 	if (!ret) {
3599 err_prohibited:
3600 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3601 		return false;
3602 	}
3603 
3604 	return true;
3605 }
3606 
mptcp_shutdown(struct sock * sk,int how)3607 static void mptcp_shutdown(struct sock *sk, int how)
3608 {
3609 	pr_debug("sk=%p, how=%d", sk, how);
3610 
3611 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3612 		__mptcp_wr_shutdown(sk);
3613 }
3614 
mptcp_forward_alloc_get(const struct sock * sk)3615 static int mptcp_forward_alloc_get(const struct sock *sk)
3616 {
3617 	return READ_ONCE(sk->sk_forward_alloc) +
3618 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3619 }
3620 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3621 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3622 {
3623 	const struct sock *sk = (void *)msk;
3624 	u64 delta;
3625 
3626 	if (sk->sk_state == TCP_LISTEN)
3627 		return -EINVAL;
3628 
3629 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3630 		return 0;
3631 
3632 	delta = msk->write_seq - v;
3633 	if (__mptcp_check_fallback(msk) && msk->first) {
3634 		struct tcp_sock *tp = tcp_sk(msk->first);
3635 
3636 		/* the first subflow is disconnected after close - see
3637 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3638 		 * so ignore that status, too.
3639 		 */
3640 		if (!((1 << msk->first->sk_state) &
3641 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3642 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3643 	}
3644 	if (delta > INT_MAX)
3645 		delta = INT_MAX;
3646 
3647 	return (int)delta;
3648 }
3649 
mptcp_ioctl(struct sock * sk,int cmd,unsigned long arg)3650 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3651 {
3652 	struct mptcp_sock *msk = mptcp_sk(sk);
3653 	bool slow;
3654 	int answ;
3655 
3656 	switch (cmd) {
3657 	case SIOCINQ:
3658 		if (sk->sk_state == TCP_LISTEN)
3659 			return -EINVAL;
3660 
3661 		lock_sock(sk);
3662 		__mptcp_move_skbs(msk);
3663 		answ = mptcp_inq_hint(sk);
3664 		release_sock(sk);
3665 		break;
3666 	case SIOCOUTQ:
3667 		slow = lock_sock_fast(sk);
3668 		answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3669 		unlock_sock_fast(sk, slow);
3670 		break;
3671 	case SIOCOUTQNSD:
3672 		slow = lock_sock_fast(sk);
3673 		answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3674 		unlock_sock_fast(sk, slow);
3675 		break;
3676 	default:
3677 		return -ENOIOCTLCMD;
3678 	}
3679 
3680 	return put_user(answ, (int __user *)arg);
3681 }
3682 
mptcp_subflow_early_fallback(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)3683 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3684 					 struct mptcp_subflow_context *subflow)
3685 {
3686 	subflow->request_mptcp = 0;
3687 	__mptcp_do_fallback(msk);
3688 }
3689 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3690 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3691 {
3692 	struct mptcp_subflow_context *subflow;
3693 	struct mptcp_sock *msk = mptcp_sk(sk);
3694 	struct socket *ssock;
3695 	int err = -EINVAL;
3696 
3697 	ssock = __mptcp_nmpc_socket(msk);
3698 	if (!ssock)
3699 		return -EINVAL;
3700 
3701 	mptcp_token_destroy(msk);
3702 	inet_sk_state_store(sk, TCP_SYN_SENT);
3703 	subflow = mptcp_subflow_ctx(ssock->sk);
3704 #ifdef CONFIG_TCP_MD5SIG
3705 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3706 	 * TCP option space.
3707 	 */
3708 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3709 		mptcp_subflow_early_fallback(msk, subflow);
3710 #endif
3711 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3712 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3713 		mptcp_subflow_early_fallback(msk, subflow);
3714 	}
3715 	if (likely(!__mptcp_check_fallback(msk)))
3716 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3717 
3718 	/* if reaching here via the fastopen/sendmsg path, the caller already
3719 	 * acquired the subflow socket lock, too.
3720 	 */
3721 	if (msk->fastopening)
3722 		err = __inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK, 1);
3723 	else
3724 		err = inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK);
3725 	inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect;
3726 
3727 	/* on successful connect, the msk state will be moved to established by
3728 	 * subflow_finish_connect()
3729 	 */
3730 	if (unlikely(err && err != -EINPROGRESS)) {
3731 		inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3732 		return err;
3733 	}
3734 
3735 	mptcp_copy_inaddrs(sk, ssock->sk);
3736 
3737 	/* silence EINPROGRESS and let the caller inet_stream_connect
3738 	 * handle the connection in progress
3739 	 */
3740 	return 0;
3741 }
3742 
3743 static struct proto mptcp_prot = {
3744 	.name		= "MPTCP",
3745 	.owner		= THIS_MODULE,
3746 	.init		= mptcp_init_sock,
3747 	.connect	= mptcp_connect,
3748 	.disconnect	= mptcp_disconnect,
3749 	.close		= mptcp_close,
3750 	.accept		= mptcp_accept,
3751 	.setsockopt	= mptcp_setsockopt,
3752 	.getsockopt	= mptcp_getsockopt,
3753 	.shutdown	= mptcp_shutdown,
3754 	.destroy	= mptcp_destroy,
3755 	.sendmsg	= mptcp_sendmsg,
3756 	.ioctl		= mptcp_ioctl,
3757 	.recvmsg	= mptcp_recvmsg,
3758 	.release_cb	= mptcp_release_cb,
3759 	.hash		= mptcp_hash,
3760 	.unhash		= mptcp_unhash,
3761 	.get_port	= mptcp_get_port,
3762 	.forward_alloc_get	= mptcp_forward_alloc_get,
3763 	.sockets_allocated	= &mptcp_sockets_allocated,
3764 
3765 	.memory_allocated	= &tcp_memory_allocated,
3766 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3767 
3768 	.memory_pressure	= &tcp_memory_pressure,
3769 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3770 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3771 	.sysctl_mem	= sysctl_tcp_mem,
3772 	.obj_size	= sizeof(struct mptcp_sock),
3773 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3774 	.no_autobind	= true,
3775 };
3776 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3777 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3778 {
3779 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3780 	struct socket *ssock;
3781 	int err;
3782 
3783 	lock_sock(sock->sk);
3784 	ssock = __mptcp_nmpc_socket(msk);
3785 	if (!ssock) {
3786 		err = -EINVAL;
3787 		goto unlock;
3788 	}
3789 
3790 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3791 	if (!err)
3792 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3793 
3794 unlock:
3795 	release_sock(sock->sk);
3796 	return err;
3797 }
3798 
mptcp_listen(struct socket * sock,int backlog)3799 static int mptcp_listen(struct socket *sock, int backlog)
3800 {
3801 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3802 	struct sock *sk = sock->sk;
3803 	struct socket *ssock;
3804 	int err;
3805 
3806 	pr_debug("msk=%p", msk);
3807 
3808 	lock_sock(sk);
3809 
3810 	err = -EINVAL;
3811 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3812 		goto unlock;
3813 
3814 	ssock = __mptcp_nmpc_socket(msk);
3815 	if (!ssock) {
3816 		err = -EINVAL;
3817 		goto unlock;
3818 	}
3819 
3820 	mptcp_token_destroy(msk);
3821 	inet_sk_state_store(sk, TCP_LISTEN);
3822 	sock_set_flag(sk, SOCK_RCU_FREE);
3823 
3824 	err = ssock->ops->listen(ssock, backlog);
3825 	inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3826 	if (!err)
3827 		mptcp_copy_inaddrs(sk, ssock->sk);
3828 
3829 unlock:
3830 	release_sock(sk);
3831 	return err;
3832 }
3833 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)3834 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3835 			       int flags, bool kern)
3836 {
3837 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3838 	struct socket *ssock;
3839 	int err;
3840 
3841 	pr_debug("msk=%p", msk);
3842 
3843 	/* Buggy applications can call accept on socket states other then LISTEN
3844 	 * but no need to allocate the first subflow just to error out.
3845 	 */
3846 	ssock = READ_ONCE(msk->subflow);
3847 	if (!ssock)
3848 		return -EINVAL;
3849 
3850 	err = ssock->ops->accept(sock, newsock, flags, kern);
3851 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3852 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3853 		struct mptcp_subflow_context *subflow;
3854 		struct sock *newsk = newsock->sk;
3855 
3856 		msk->in_accept_queue = 0;
3857 
3858 		lock_sock(newsk);
3859 
3860 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3861 		 * This is needed so NOSPACE flag can be set from tcp stack.
3862 		 */
3863 		mptcp_for_each_subflow(msk, subflow) {
3864 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3865 
3866 			if (!ssk->sk_socket)
3867 				mptcp_sock_graft(ssk, newsock);
3868 		}
3869 
3870 		/* Do late cleanup for the first subflow as necessary. Also
3871 		 * deal with bad peers not doing a complete shutdown.
3872 		 */
3873 		if (msk->first &&
3874 		    unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3875 			__mptcp_close_ssk(newsk, msk->first,
3876 					  mptcp_subflow_ctx(msk->first), 0);
3877 			if (unlikely(list_empty(&msk->conn_list)))
3878 				inet_sk_state_store(newsk, TCP_CLOSE);
3879 		}
3880 
3881 		release_sock(newsk);
3882 	}
3883 
3884 	return err;
3885 }
3886 
mptcp_check_writeable(struct mptcp_sock * msk)3887 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3888 {
3889 	struct sock *sk = (struct sock *)msk;
3890 
3891 	if (sk_stream_is_writeable(sk))
3892 		return EPOLLOUT | EPOLLWRNORM;
3893 
3894 	mptcp_set_nospace(sk);
3895 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3896 	if (sk_stream_is_writeable(sk))
3897 		return EPOLLOUT | EPOLLWRNORM;
3898 
3899 	return 0;
3900 }
3901 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)3902 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3903 			   struct poll_table_struct *wait)
3904 {
3905 	struct sock *sk = sock->sk;
3906 	struct mptcp_sock *msk;
3907 	__poll_t mask = 0;
3908 	u8 shutdown;
3909 	int state;
3910 
3911 	msk = mptcp_sk(sk);
3912 	sock_poll_wait(file, sock, wait);
3913 
3914 	state = inet_sk_state_load(sk);
3915 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3916 	if (state == TCP_LISTEN) {
3917 		struct socket *ssock = READ_ONCE(msk->subflow);
3918 
3919 		if (WARN_ON_ONCE(!ssock || !ssock->sk))
3920 			return 0;
3921 
3922 		return inet_csk_listen_poll(ssock->sk);
3923 	}
3924 
3925 	shutdown = READ_ONCE(sk->sk_shutdown);
3926 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3927 		mask |= EPOLLHUP;
3928 	if (shutdown & RCV_SHUTDOWN)
3929 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3930 
3931 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3932 		mask |= mptcp_check_readable(msk);
3933 		if (shutdown & SEND_SHUTDOWN)
3934 			mask |= EPOLLOUT | EPOLLWRNORM;
3935 		else
3936 			mask |= mptcp_check_writeable(msk);
3937 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
3938 		/* cf tcp_poll() note about TFO */
3939 		mask |= EPOLLOUT | EPOLLWRNORM;
3940 	}
3941 
3942 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3943 	smp_rmb();
3944 	if (READ_ONCE(sk->sk_err))
3945 		mask |= EPOLLERR;
3946 
3947 	return mask;
3948 }
3949 
3950 static const struct proto_ops mptcp_stream_ops = {
3951 	.family		   = PF_INET,
3952 	.owner		   = THIS_MODULE,
3953 	.release	   = inet_release,
3954 	.bind		   = mptcp_bind,
3955 	.connect	   = inet_stream_connect,
3956 	.socketpair	   = sock_no_socketpair,
3957 	.accept		   = mptcp_stream_accept,
3958 	.getname	   = inet_getname,
3959 	.poll		   = mptcp_poll,
3960 	.ioctl		   = inet_ioctl,
3961 	.gettstamp	   = sock_gettstamp,
3962 	.listen		   = mptcp_listen,
3963 	.shutdown	   = inet_shutdown,
3964 	.setsockopt	   = sock_common_setsockopt,
3965 	.getsockopt	   = sock_common_getsockopt,
3966 	.sendmsg	   = inet_sendmsg,
3967 	.recvmsg	   = inet_recvmsg,
3968 	.mmap		   = sock_no_mmap,
3969 	.sendpage	   = inet_sendpage,
3970 };
3971 
3972 static struct inet_protosw mptcp_protosw = {
3973 	.type		= SOCK_STREAM,
3974 	.protocol	= IPPROTO_MPTCP,
3975 	.prot		= &mptcp_prot,
3976 	.ops		= &mptcp_stream_ops,
3977 	.flags		= INET_PROTOSW_ICSK,
3978 };
3979 
mptcp_napi_poll(struct napi_struct * napi,int budget)3980 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3981 {
3982 	struct mptcp_delegated_action *delegated;
3983 	struct mptcp_subflow_context *subflow;
3984 	int work_done = 0;
3985 
3986 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3987 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3988 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3989 
3990 		bh_lock_sock_nested(ssk);
3991 		if (!sock_owned_by_user(ssk)) {
3992 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
3993 		} else {
3994 			/* tcp_release_cb_override already processed
3995 			 * the action or will do at next release_sock().
3996 			 * In both case must dequeue the subflow here - on the same
3997 			 * CPU that scheduled it.
3998 			 */
3999 			smp_wmb();
4000 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4001 		}
4002 		bh_unlock_sock(ssk);
4003 		sock_put(ssk);
4004 
4005 		if (++work_done == budget)
4006 			return budget;
4007 	}
4008 
4009 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4010 	 * will not try accessing the NULL napi->dev ptr
4011 	 */
4012 	napi_complete_done(napi, 0);
4013 	return work_done;
4014 }
4015 
mptcp_proto_init(void)4016 void __init mptcp_proto_init(void)
4017 {
4018 	struct mptcp_delegated_action *delegated;
4019 	int cpu;
4020 
4021 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4022 
4023 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4024 		panic("Failed to allocate MPTCP pcpu counter\n");
4025 
4026 	init_dummy_netdev(&mptcp_napi_dev);
4027 	for_each_possible_cpu(cpu) {
4028 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4029 		INIT_LIST_HEAD(&delegated->head);
4030 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4031 				  mptcp_napi_poll);
4032 		napi_enable(&delegated->napi);
4033 	}
4034 
4035 	mptcp_subflow_init();
4036 	mptcp_pm_init();
4037 	mptcp_token_init();
4038 
4039 	if (proto_register(&mptcp_prot, 1) != 0)
4040 		panic("Failed to register MPTCP proto.\n");
4041 
4042 	inet_register_protosw(&mptcp_protosw);
4043 
4044 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4045 }
4046 
4047 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4048 static const struct proto_ops mptcp_v6_stream_ops = {
4049 	.family		   = PF_INET6,
4050 	.owner		   = THIS_MODULE,
4051 	.release	   = inet6_release,
4052 	.bind		   = mptcp_bind,
4053 	.connect	   = inet_stream_connect,
4054 	.socketpair	   = sock_no_socketpair,
4055 	.accept		   = mptcp_stream_accept,
4056 	.getname	   = inet6_getname,
4057 	.poll		   = mptcp_poll,
4058 	.ioctl		   = inet6_ioctl,
4059 	.gettstamp	   = sock_gettstamp,
4060 	.listen		   = mptcp_listen,
4061 	.shutdown	   = inet_shutdown,
4062 	.setsockopt	   = sock_common_setsockopt,
4063 	.getsockopt	   = sock_common_getsockopt,
4064 	.sendmsg	   = inet6_sendmsg,
4065 	.recvmsg	   = inet6_recvmsg,
4066 	.mmap		   = sock_no_mmap,
4067 	.sendpage	   = inet_sendpage,
4068 #ifdef CONFIG_COMPAT
4069 	.compat_ioctl	   = inet6_compat_ioctl,
4070 #endif
4071 };
4072 
4073 static struct proto mptcp_v6_prot;
4074 
4075 static struct inet_protosw mptcp_v6_protosw = {
4076 	.type		= SOCK_STREAM,
4077 	.protocol	= IPPROTO_MPTCP,
4078 	.prot		= &mptcp_v6_prot,
4079 	.ops		= &mptcp_v6_stream_ops,
4080 	.flags		= INET_PROTOSW_ICSK,
4081 };
4082 
mptcp_proto_v6_init(void)4083 int __init mptcp_proto_v6_init(void)
4084 {
4085 	int err;
4086 
4087 	mptcp_v6_prot = mptcp_prot;
4088 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4089 	mptcp_v6_prot.slab = NULL;
4090 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4091 
4092 	err = proto_register(&mptcp_v6_prot, 1);
4093 	if (err)
4094 		return err;
4095 
4096 	err = inet6_register_protosw(&mptcp_v6_protosw);
4097 	if (err)
4098 		proto_unregister(&mptcp_v6_prot);
4099 
4100 	return err;
4101 }
4102 #endif
4103