1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 #include <trace/hooks/net.h>
154
155 #include "dev.h"
156 #include "net-sysfs.h"
157
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 while (++net->dev_base_seq == 0)
206 ;
207 }
208
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
rps_lock_irqsave(struct softnet_data * sd,unsigned long * flags)221 static inline void rps_lock_irqsave(struct softnet_data *sd,
222 unsigned long *flags)
223 {
224 if (IS_ENABLED(CONFIG_RPS))
225 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
226 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
227 local_irq_save(*flags);
228 }
229
rps_lock_irq_disable(struct softnet_data * sd)230 static inline void rps_lock_irq_disable(struct softnet_data *sd)
231 {
232 if (IS_ENABLED(CONFIG_RPS))
233 spin_lock_irq(&sd->input_pkt_queue.lock);
234 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
235 local_irq_disable();
236 }
237
rps_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)238 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
239 unsigned long *flags)
240 {
241 if (IS_ENABLED(CONFIG_RPS))
242 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
243 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
244 local_irq_restore(*flags);
245 }
246
rps_unlock_irq_enable(struct softnet_data * sd)247 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
248 {
249 if (IS_ENABLED(CONFIG_RPS))
250 spin_unlock_irq(&sd->input_pkt_queue.lock);
251 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
252 local_irq_enable();
253 }
254
netdev_name_node_alloc(struct net_device * dev,const char * name)255 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
256 const char *name)
257 {
258 struct netdev_name_node *name_node;
259
260 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
261 if (!name_node)
262 return NULL;
263 INIT_HLIST_NODE(&name_node->hlist);
264 name_node->dev = dev;
265 name_node->name = name;
266 return name_node;
267 }
268
269 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)270 netdev_name_node_head_alloc(struct net_device *dev)
271 {
272 struct netdev_name_node *name_node;
273
274 name_node = netdev_name_node_alloc(dev, dev->name);
275 if (!name_node)
276 return NULL;
277 INIT_LIST_HEAD(&name_node->list);
278 return name_node;
279 }
280
netdev_name_node_free(struct netdev_name_node * name_node)281 static void netdev_name_node_free(struct netdev_name_node *name_node)
282 {
283 kfree(name_node);
284 }
285
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)286 static void netdev_name_node_add(struct net *net,
287 struct netdev_name_node *name_node)
288 {
289 hlist_add_head_rcu(&name_node->hlist,
290 dev_name_hash(net, name_node->name));
291 }
292
netdev_name_node_del(struct netdev_name_node * name_node)293 static void netdev_name_node_del(struct netdev_name_node *name_node)
294 {
295 hlist_del_rcu(&name_node->hlist);
296 }
297
netdev_name_node_lookup(struct net * net,const char * name)298 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
299 const char *name)
300 {
301 struct hlist_head *head = dev_name_hash(net, name);
302 struct netdev_name_node *name_node;
303
304 hlist_for_each_entry(name_node, head, hlist)
305 if (!strcmp(name_node->name, name))
306 return name_node;
307 return NULL;
308 }
309
netdev_name_node_lookup_rcu(struct net * net,const char * name)310 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
311 const char *name)
312 {
313 struct hlist_head *head = dev_name_hash(net, name);
314 struct netdev_name_node *name_node;
315
316 hlist_for_each_entry_rcu(name_node, head, hlist)
317 if (!strcmp(name_node->name, name))
318 return name_node;
319 return NULL;
320 }
321
netdev_name_in_use(struct net * net,const char * name)322 bool netdev_name_in_use(struct net *net, const char *name)
323 {
324 return netdev_name_node_lookup(net, name);
325 }
326 EXPORT_SYMBOL(netdev_name_in_use);
327
netdev_name_node_alt_create(struct net_device * dev,const char * name)328 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
329 {
330 struct netdev_name_node *name_node;
331 struct net *net = dev_net(dev);
332
333 name_node = netdev_name_node_lookup(net, name);
334 if (name_node)
335 return -EEXIST;
336 name_node = netdev_name_node_alloc(dev, name);
337 if (!name_node)
338 return -ENOMEM;
339 netdev_name_node_add(net, name_node);
340 /* The node that holds dev->name acts as a head of per-device list. */
341 list_add_tail(&name_node->list, &dev->name_node->list);
342
343 return 0;
344 }
345
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)346 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
347 {
348 list_del(&name_node->list);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351 }
352
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 netdev_name_node_del(name_node);
368 synchronize_rcu();
369 __netdev_name_node_alt_destroy(name_node);
370
371 return 0;
372 }
373
netdev_name_node_alt_flush(struct net_device * dev)374 static void netdev_name_node_alt_flush(struct net_device *dev)
375 {
376 struct netdev_name_node *name_node, *tmp;
377
378 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
379 __netdev_name_node_alt_destroy(name_node);
380 }
381
382 /* Device list insertion */
list_netdevice(struct net_device * dev)383 static void list_netdevice(struct net_device *dev)
384 {
385 struct netdev_name_node *name_node;
386 struct net *net = dev_net(dev);
387
388 ASSERT_RTNL();
389
390 write_lock(&dev_base_lock);
391 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
392 netdev_name_node_add(net, dev->name_node);
393 hlist_add_head_rcu(&dev->index_hlist,
394 dev_index_hash(net, dev->ifindex));
395 write_unlock(&dev_base_lock);
396
397 netdev_for_each_altname(dev, name_node)
398 netdev_name_node_add(net, name_node);
399
400 dev_base_seq_inc(net);
401 }
402
403 /* Device list removal
404 * caller must respect a RCU grace period before freeing/reusing dev
405 */
unlist_netdevice(struct net_device * dev,bool lock)406 static void unlist_netdevice(struct net_device *dev, bool lock)
407 {
408 struct netdev_name_node *name_node;
409
410 ASSERT_RTNL();
411
412 netdev_for_each_altname(dev, name_node)
413 netdev_name_node_del(name_node);
414
415 /* Unlink dev from the device chain */
416 if (lock)
417 write_lock(&dev_base_lock);
418 list_del_rcu(&dev->dev_list);
419 netdev_name_node_del(dev->name_node);
420 hlist_del_rcu(&dev->index_hlist);
421 if (lock)
422 write_unlock(&dev_base_lock);
423
424 dev_base_seq_inc(dev_net(dev));
425 }
426
427 /*
428 * Our notifier list
429 */
430
431 static RAW_NOTIFIER_HEAD(netdev_chain);
432
433 /*
434 * Device drivers call our routines to queue packets here. We empty the
435 * queue in the local softnet handler.
436 */
437
438 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
439 EXPORT_PER_CPU_SYMBOL(softnet_data);
440
441 #ifdef CONFIG_LOCKDEP
442 /*
443 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
444 * according to dev->type
445 */
446 static const unsigned short netdev_lock_type[] = {
447 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
448 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
449 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
450 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
451 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
452 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
453 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
454 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
455 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
456 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
457 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
458 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
459 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
460 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
461 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
462
463 static const char *const netdev_lock_name[] = {
464 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
465 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
466 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
467 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
468 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
469 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
470 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
471 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
472 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
473 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
474 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
475 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
476 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
477 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
478 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
479
480 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
481 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
482
netdev_lock_pos(unsigned short dev_type)483 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
484 {
485 int i;
486
487 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
488 if (netdev_lock_type[i] == dev_type)
489 return i;
490 /* the last key is used by default */
491 return ARRAY_SIZE(netdev_lock_type) - 1;
492 }
493
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)494 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
495 unsigned short dev_type)
496 {
497 int i;
498
499 i = netdev_lock_pos(dev_type);
500 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
501 netdev_lock_name[i]);
502 }
503
netdev_set_addr_lockdep_class(struct net_device * dev)504 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
505 {
506 int i;
507
508 i = netdev_lock_pos(dev->type);
509 lockdep_set_class_and_name(&dev->addr_list_lock,
510 &netdev_addr_lock_key[i],
511 netdev_lock_name[i]);
512 }
513 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)514 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
515 unsigned short dev_type)
516 {
517 }
518
netdev_set_addr_lockdep_class(struct net_device * dev)519 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
520 {
521 }
522 #endif
523
524 /*******************************************************************************
525 *
526 * Protocol management and registration routines
527 *
528 *******************************************************************************/
529
530
531 /*
532 * Add a protocol ID to the list. Now that the input handler is
533 * smarter we can dispense with all the messy stuff that used to be
534 * here.
535 *
536 * BEWARE!!! Protocol handlers, mangling input packets,
537 * MUST BE last in hash buckets and checking protocol handlers
538 * MUST start from promiscuous ptype_all chain in net_bh.
539 * It is true now, do not change it.
540 * Explanation follows: if protocol handler, mangling packet, will
541 * be the first on list, it is not able to sense, that packet
542 * is cloned and should be copied-on-write, so that it will
543 * change it and subsequent readers will get broken packet.
544 * --ANK (980803)
545 */
546
ptype_head(const struct packet_type * pt)547 static inline struct list_head *ptype_head(const struct packet_type *pt)
548 {
549 struct list_head vendor_pt = { .next = NULL, };
550
551 trace_android_vh_ptype_head(pt, &vendor_pt);
552 if (vendor_pt.next)
553 return vendor_pt.next;
554
555 if (pt->type == htons(ETH_P_ALL))
556 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
557 else
558 return pt->dev ? &pt->dev->ptype_specific :
559 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
560 }
561
562 /**
563 * dev_add_pack - add packet handler
564 * @pt: packet type declaration
565 *
566 * Add a protocol handler to the networking stack. The passed &packet_type
567 * is linked into kernel lists and may not be freed until it has been
568 * removed from the kernel lists.
569 *
570 * This call does not sleep therefore it can not
571 * guarantee all CPU's that are in middle of receiving packets
572 * will see the new packet type (until the next received packet).
573 */
574
dev_add_pack(struct packet_type * pt)575 void dev_add_pack(struct packet_type *pt)
576 {
577 struct list_head *head = ptype_head(pt);
578
579 spin_lock(&ptype_lock);
580 list_add_rcu(&pt->list, head);
581 spin_unlock(&ptype_lock);
582 }
583 EXPORT_SYMBOL(dev_add_pack);
584
585 /**
586 * __dev_remove_pack - remove packet handler
587 * @pt: packet type declaration
588 *
589 * Remove a protocol handler that was previously added to the kernel
590 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
591 * from the kernel lists and can be freed or reused once this function
592 * returns.
593 *
594 * The packet type might still be in use by receivers
595 * and must not be freed until after all the CPU's have gone
596 * through a quiescent state.
597 */
__dev_remove_pack(struct packet_type * pt)598 void __dev_remove_pack(struct packet_type *pt)
599 {
600 struct list_head *head = ptype_head(pt);
601 struct packet_type *pt1;
602
603 spin_lock(&ptype_lock);
604
605 list_for_each_entry(pt1, head, list) {
606 if (pt == pt1) {
607 list_del_rcu(&pt->list);
608 goto out;
609 }
610 }
611
612 pr_warn("dev_remove_pack: %p not found\n", pt);
613 out:
614 spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(__dev_remove_pack);
617
618 /**
619 * dev_remove_pack - remove packet handler
620 * @pt: packet type declaration
621 *
622 * Remove a protocol handler that was previously added to the kernel
623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
624 * from the kernel lists and can be freed or reused once this function
625 * returns.
626 *
627 * This call sleeps to guarantee that no CPU is looking at the packet
628 * type after return.
629 */
dev_remove_pack(struct packet_type * pt)630 void dev_remove_pack(struct packet_type *pt)
631 {
632 __dev_remove_pack(pt);
633
634 synchronize_net();
635 }
636 EXPORT_SYMBOL(dev_remove_pack);
637
638
639 /*******************************************************************************
640 *
641 * Device Interface Subroutines
642 *
643 *******************************************************************************/
644
645 /**
646 * dev_get_iflink - get 'iflink' value of a interface
647 * @dev: targeted interface
648 *
649 * Indicates the ifindex the interface is linked to.
650 * Physical interfaces have the same 'ifindex' and 'iflink' values.
651 */
652
dev_get_iflink(const struct net_device * dev)653 int dev_get_iflink(const struct net_device *dev)
654 {
655 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
656 return dev->netdev_ops->ndo_get_iflink(dev);
657
658 return dev->ifindex;
659 }
660 EXPORT_SYMBOL(dev_get_iflink);
661
662 /**
663 * dev_fill_metadata_dst - Retrieve tunnel egress information.
664 * @dev: targeted interface
665 * @skb: The packet.
666 *
667 * For better visibility of tunnel traffic OVS needs to retrieve
668 * egress tunnel information for a packet. Following API allows
669 * user to get this info.
670 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)671 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
672 {
673 struct ip_tunnel_info *info;
674
675 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
676 return -EINVAL;
677
678 info = skb_tunnel_info_unclone(skb);
679 if (!info)
680 return -ENOMEM;
681 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
682 return -EINVAL;
683
684 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
685 }
686 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
687
dev_fwd_path(struct net_device_path_stack * stack)688 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
689 {
690 int k = stack->num_paths++;
691
692 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
693 return NULL;
694
695 return &stack->path[k];
696 }
697
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)698 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
699 struct net_device_path_stack *stack)
700 {
701 const struct net_device *last_dev;
702 struct net_device_path_ctx ctx = {
703 .dev = dev,
704 };
705 struct net_device_path *path;
706 int ret = 0;
707
708 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
709 stack->num_paths = 0;
710 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
711 last_dev = ctx.dev;
712 path = dev_fwd_path(stack);
713 if (!path)
714 return -1;
715
716 memset(path, 0, sizeof(struct net_device_path));
717 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
718 if (ret < 0)
719 return -1;
720
721 if (WARN_ON_ONCE(last_dev == ctx.dev))
722 return -1;
723 }
724
725 if (!ctx.dev)
726 return ret;
727
728 path = dev_fwd_path(stack);
729 if (!path)
730 return -1;
731 path->type = DEV_PATH_ETHERNET;
732 path->dev = ctx.dev;
733
734 return ret;
735 }
736 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
737
738 /**
739 * __dev_get_by_name - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name. Must be called under RTNL semaphore
744 * or @dev_base_lock. If the name is found a pointer to the device
745 * is returned. If the name is not found then %NULL is returned. The
746 * reference counters are not incremented so the caller must be
747 * careful with locks.
748 */
749
__dev_get_by_name(struct net * net,const char * name)750 struct net_device *__dev_get_by_name(struct net *net, const char *name)
751 {
752 struct netdev_name_node *node_name;
753
754 node_name = netdev_name_node_lookup(net, name);
755 return node_name ? node_name->dev : NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_name);
758
759 /**
760 * dev_get_by_name_rcu - find a device by its name
761 * @net: the applicable net namespace
762 * @name: name to find
763 *
764 * Find an interface by name.
765 * If the name is found a pointer to the device is returned.
766 * If the name is not found then %NULL is returned.
767 * The reference counters are not incremented so the caller must be
768 * careful with locks. The caller must hold RCU lock.
769 */
770
dev_get_by_name_rcu(struct net * net,const char * name)771 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
772 {
773 struct netdev_name_node *node_name;
774
775 node_name = netdev_name_node_lookup_rcu(net, name);
776 return node_name ? node_name->dev : NULL;
777 }
778 EXPORT_SYMBOL(dev_get_by_name_rcu);
779
780 /**
781 * dev_get_by_name - find a device by its name
782 * @net: the applicable net namespace
783 * @name: name to find
784 *
785 * Find an interface by name. This can be called from any
786 * context and does its own locking. The returned handle has
787 * the usage count incremented and the caller must use dev_put() to
788 * release it when it is no longer needed. %NULL is returned if no
789 * matching device is found.
790 */
791
dev_get_by_name(struct net * net,const char * name)792 struct net_device *dev_get_by_name(struct net *net, const char *name)
793 {
794 struct net_device *dev;
795
796 rcu_read_lock();
797 dev = dev_get_by_name_rcu(net, name);
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_name);
803
804 /**
805 * __dev_get_by_index - find a device by its ifindex
806 * @net: the applicable net namespace
807 * @ifindex: index of device
808 *
809 * Search for an interface by index. Returns %NULL if the device
810 * is not found or a pointer to the device. The device has not
811 * had its reference counter increased so the caller must be careful
812 * about locking. The caller must hold either the RTNL semaphore
813 * or @dev_base_lock.
814 */
815
__dev_get_by_index(struct net * net,int ifindex)816 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
817 {
818 struct net_device *dev;
819 struct hlist_head *head = dev_index_hash(net, ifindex);
820
821 hlist_for_each_entry(dev, head, index_hlist)
822 if (dev->ifindex == ifindex)
823 return dev;
824
825 return NULL;
826 }
827 EXPORT_SYMBOL(__dev_get_by_index);
828
829 /**
830 * dev_get_by_index_rcu - find a device by its ifindex
831 * @net: the applicable net namespace
832 * @ifindex: index of device
833 *
834 * Search for an interface by index. Returns %NULL if the device
835 * is not found or a pointer to the device. The device has not
836 * had its reference counter increased so the caller must be careful
837 * about locking. The caller must hold RCU lock.
838 */
839
dev_get_by_index_rcu(struct net * net,int ifindex)840 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
841 {
842 struct net_device *dev;
843 struct hlist_head *head = dev_index_hash(net, ifindex);
844
845 hlist_for_each_entry_rcu(dev, head, index_hlist)
846 if (dev->ifindex == ifindex)
847 return dev;
848
849 return NULL;
850 }
851 EXPORT_SYMBOL(dev_get_by_index_rcu);
852
853
854 /**
855 * dev_get_by_index - find a device by its ifindex
856 * @net: the applicable net namespace
857 * @ifindex: index of device
858 *
859 * Search for an interface by index. Returns NULL if the device
860 * is not found or a pointer to the device. The device returned has
861 * had a reference added and the pointer is safe until the user calls
862 * dev_put to indicate they have finished with it.
863 */
864
dev_get_by_index(struct net * net,int ifindex)865 struct net_device *dev_get_by_index(struct net *net, int ifindex)
866 {
867 struct net_device *dev;
868
869 rcu_read_lock();
870 dev = dev_get_by_index_rcu(net, ifindex);
871 dev_hold(dev);
872 rcu_read_unlock();
873 return dev;
874 }
875 EXPORT_SYMBOL(dev_get_by_index);
876
877 /**
878 * dev_get_by_napi_id - find a device by napi_id
879 * @napi_id: ID of the NAPI struct
880 *
881 * Search for an interface by NAPI ID. Returns %NULL if the device
882 * is not found or a pointer to the device. The device has not had
883 * its reference counter increased so the caller must be careful
884 * about locking. The caller must hold RCU lock.
885 */
886
dev_get_by_napi_id(unsigned int napi_id)887 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
888 {
889 struct napi_struct *napi;
890
891 WARN_ON_ONCE(!rcu_read_lock_held());
892
893 if (napi_id < MIN_NAPI_ID)
894 return NULL;
895
896 napi = napi_by_id(napi_id);
897
898 return napi ? napi->dev : NULL;
899 }
900 EXPORT_SYMBOL(dev_get_by_napi_id);
901
902 /**
903 * netdev_get_name - get a netdevice name, knowing its ifindex.
904 * @net: network namespace
905 * @name: a pointer to the buffer where the name will be stored.
906 * @ifindex: the ifindex of the interface to get the name from.
907 */
netdev_get_name(struct net * net,char * name,int ifindex)908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 struct net_device *dev;
911 int ret;
912
913 down_read(&devnet_rename_sem);
914 rcu_read_lock();
915
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 ret = -ENODEV;
919 goto out;
920 }
921
922 strcpy(name, dev->name);
923
924 ret = 0;
925 out:
926 rcu_read_unlock();
927 up_read(&devnet_rename_sem);
928 return ret;
929 }
930
931 /**
932 * dev_getbyhwaddr_rcu - find a device by its hardware address
933 * @net: the applicable net namespace
934 * @type: media type of device
935 * @ha: hardware address
936 *
937 * Search for an interface by MAC address. Returns NULL if the device
938 * is not found or a pointer to the device.
939 * The caller must hold RCU or RTNL.
940 * The returned device has not had its ref count increased
941 * and the caller must therefore be careful about locking
942 *
943 */
944
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946 const char *ha)
947 {
948 struct net_device *dev;
949
950 for_each_netdev_rcu(net, dev)
951 if (dev->type == type &&
952 !memcmp(dev->dev_addr, ha, dev->addr_len))
953 return dev;
954
955 return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958
dev_getfirstbyhwtype(struct net * net,unsigned short type)959 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961 struct net_device *dev, *ret = NULL;
962
963 rcu_read_lock();
964 for_each_netdev_rcu(net, dev)
965 if (dev->type == type) {
966 dev_hold(dev);
967 ret = dev;
968 break;
969 }
970 rcu_read_unlock();
971 return ret;
972 }
973 EXPORT_SYMBOL(dev_getfirstbyhwtype);
974
975 /**
976 * __dev_get_by_flags - find any device with given flags
977 * @net: the applicable net namespace
978 * @if_flags: IFF_* values
979 * @mask: bitmask of bits in if_flags to check
980 *
981 * Search for any interface with the given flags. Returns NULL if a device
982 * is not found or a pointer to the device. Must be called inside
983 * rtnl_lock(), and result refcount is unchanged.
984 */
985
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)986 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
987 unsigned short mask)
988 {
989 struct net_device *dev, *ret;
990
991 ASSERT_RTNL();
992
993 ret = NULL;
994 for_each_netdev(net, dev) {
995 if (((dev->flags ^ if_flags) & mask) == 0) {
996 ret = dev;
997 break;
998 }
999 }
1000 return ret;
1001 }
1002 EXPORT_SYMBOL(__dev_get_by_flags);
1003
1004 /**
1005 * dev_valid_name - check if name is okay for network device
1006 * @name: name string
1007 *
1008 * Network device names need to be valid file names to
1009 * allow sysfs to work. We also disallow any kind of
1010 * whitespace.
1011 */
dev_valid_name(const char * name)1012 bool dev_valid_name(const char *name)
1013 {
1014 if (*name == '\0')
1015 return false;
1016 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1017 return false;
1018 if (!strcmp(name, ".") || !strcmp(name, ".."))
1019 return false;
1020
1021 while (*name) {
1022 if (*name == '/' || *name == ':' || isspace(*name))
1023 return false;
1024 name++;
1025 }
1026 return true;
1027 }
1028 EXPORT_SYMBOL(dev_valid_name);
1029
1030 /**
1031 * __dev_alloc_name - allocate a name for a device
1032 * @net: network namespace to allocate the device name in
1033 * @name: name format string
1034 * @buf: scratch buffer and result name string
1035 *
1036 * Passed a format string - eg "lt%d" it will try and find a suitable
1037 * id. It scans list of devices to build up a free map, then chooses
1038 * the first empty slot. The caller must hold the dev_base or rtnl lock
1039 * while allocating the name and adding the device in order to avoid
1040 * duplicates.
1041 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1042 * Returns the number of the unit assigned or a negative errno code.
1043 */
1044
__dev_alloc_name(struct net * net,const char * name,char * buf)1045 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1046 {
1047 int i = 0;
1048 const char *p;
1049 const int max_netdevices = 8*PAGE_SIZE;
1050 unsigned long *inuse;
1051 struct net_device *d;
1052
1053 if (!dev_valid_name(name))
1054 return -EINVAL;
1055
1056 p = strchr(name, '%');
1057 if (p) {
1058 /*
1059 * Verify the string as this thing may have come from
1060 * the user. There must be either one "%d" and no other "%"
1061 * characters.
1062 */
1063 if (p[1] != 'd' || strchr(p + 2, '%'))
1064 return -EINVAL;
1065
1066 /* Use one page as a bit array of possible slots */
1067 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1068 if (!inuse)
1069 return -ENOMEM;
1070
1071 for_each_netdev(net, d) {
1072 struct netdev_name_node *name_node;
1073
1074 netdev_for_each_altname(d, name_node) {
1075 if (!sscanf(name_node->name, name, &i))
1076 continue;
1077 if (i < 0 || i >= max_netdevices)
1078 continue;
1079
1080 /* avoid cases where sscanf is not exact inverse of printf */
1081 snprintf(buf, IFNAMSIZ, name, i);
1082 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1083 __set_bit(i, inuse);
1084 }
1085 if (!sscanf(d->name, name, &i))
1086 continue;
1087 if (i < 0 || i >= max_netdevices)
1088 continue;
1089
1090 /* avoid cases where sscanf is not exact inverse of printf */
1091 snprintf(buf, IFNAMSIZ, name, i);
1092 if (!strncmp(buf, d->name, IFNAMSIZ))
1093 __set_bit(i, inuse);
1094 }
1095
1096 i = find_first_zero_bit(inuse, max_netdevices);
1097 free_page((unsigned long) inuse);
1098 }
1099
1100 snprintf(buf, IFNAMSIZ, name, i);
1101 if (!netdev_name_in_use(net, buf))
1102 return i;
1103
1104 /* It is possible to run out of possible slots
1105 * when the name is long and there isn't enough space left
1106 * for the digits, or if all bits are used.
1107 */
1108 return -ENFILE;
1109 }
1110
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1111 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1112 const char *want_name, char *out_name)
1113 {
1114 int ret;
1115
1116 if (!dev_valid_name(want_name))
1117 return -EINVAL;
1118
1119 if (strchr(want_name, '%')) {
1120 ret = __dev_alloc_name(net, want_name, out_name);
1121 return ret < 0 ? ret : 0;
1122 } else if (netdev_name_in_use(net, want_name)) {
1123 return -EEXIST;
1124 } else if (out_name != want_name) {
1125 strscpy(out_name, want_name, IFNAMSIZ);
1126 }
1127
1128 return 0;
1129 }
1130
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1131 static int dev_alloc_name_ns(struct net *net,
1132 struct net_device *dev,
1133 const char *name)
1134 {
1135 char buf[IFNAMSIZ];
1136 int ret;
1137
1138 BUG_ON(!net);
1139 ret = __dev_alloc_name(net, name, buf);
1140 if (ret >= 0)
1141 strscpy(dev->name, buf, IFNAMSIZ);
1142 return ret;
1143 }
1144
1145 /**
1146 * dev_alloc_name - allocate a name for a device
1147 * @dev: device
1148 * @name: name format string
1149 *
1150 * Passed a format string - eg "lt%d" it will try and find a suitable
1151 * id. It scans list of devices to build up a free map, then chooses
1152 * the first empty slot. The caller must hold the dev_base or rtnl lock
1153 * while allocating the name and adding the device in order to avoid
1154 * duplicates.
1155 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1156 * Returns the number of the unit assigned or a negative errno code.
1157 */
1158
dev_alloc_name(struct net_device * dev,const char * name)1159 int dev_alloc_name(struct net_device *dev, const char *name)
1160 {
1161 return dev_alloc_name_ns(dev_net(dev), dev, name);
1162 }
1163 EXPORT_SYMBOL(dev_alloc_name);
1164
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1165 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1166 const char *name)
1167 {
1168 char buf[IFNAMSIZ];
1169 int ret;
1170
1171 ret = dev_prep_valid_name(net, dev, name, buf);
1172 if (ret >= 0)
1173 strscpy(dev->name, buf, IFNAMSIZ);
1174 return ret;
1175 }
1176
1177 /**
1178 * dev_change_name - change name of a device
1179 * @dev: device
1180 * @newname: name (or format string) must be at least IFNAMSIZ
1181 *
1182 * Change name of a device, can pass format strings "eth%d".
1183 * for wildcarding.
1184 */
dev_change_name(struct net_device * dev,const char * newname)1185 int dev_change_name(struct net_device *dev, const char *newname)
1186 {
1187 unsigned char old_assign_type;
1188 char oldname[IFNAMSIZ];
1189 int err = 0;
1190 int ret;
1191 struct net *net;
1192
1193 ASSERT_RTNL();
1194 BUG_ON(!dev_net(dev));
1195
1196 net = dev_net(dev);
1197
1198 /* Some auto-enslaved devices e.g. failover slaves are
1199 * special, as userspace might rename the device after
1200 * the interface had been brought up and running since
1201 * the point kernel initiated auto-enslavement. Allow
1202 * live name change even when these slave devices are
1203 * up and running.
1204 *
1205 * Typically, users of these auto-enslaving devices
1206 * don't actually care about slave name change, as
1207 * they are supposed to operate on master interface
1208 * directly.
1209 */
1210 if (dev->flags & IFF_UP &&
1211 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1212 return -EBUSY;
1213
1214 down_write(&devnet_rename_sem);
1215
1216 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1217 up_write(&devnet_rename_sem);
1218 return 0;
1219 }
1220
1221 memcpy(oldname, dev->name, IFNAMSIZ);
1222
1223 err = dev_get_valid_name(net, dev, newname);
1224 if (err < 0) {
1225 up_write(&devnet_rename_sem);
1226 return err;
1227 }
1228
1229 if (oldname[0] && !strchr(oldname, '%'))
1230 netdev_info(dev, "renamed from %s\n", oldname);
1231
1232 old_assign_type = dev->name_assign_type;
1233 dev->name_assign_type = NET_NAME_RENAMED;
1234
1235 rollback:
1236 ret = device_rename(&dev->dev, dev->name);
1237 if (ret) {
1238 memcpy(dev->name, oldname, IFNAMSIZ);
1239 dev->name_assign_type = old_assign_type;
1240 up_write(&devnet_rename_sem);
1241 return ret;
1242 }
1243
1244 up_write(&devnet_rename_sem);
1245
1246 netdev_adjacent_rename_links(dev, oldname);
1247
1248 write_lock(&dev_base_lock);
1249 netdev_name_node_del(dev->name_node);
1250 write_unlock(&dev_base_lock);
1251
1252 synchronize_rcu();
1253
1254 write_lock(&dev_base_lock);
1255 netdev_name_node_add(net, dev->name_node);
1256 write_unlock(&dev_base_lock);
1257
1258 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1259 ret = notifier_to_errno(ret);
1260
1261 if (ret) {
1262 /* err >= 0 after dev_alloc_name() or stores the first errno */
1263 if (err >= 0) {
1264 err = ret;
1265 down_write(&devnet_rename_sem);
1266 memcpy(dev->name, oldname, IFNAMSIZ);
1267 memcpy(oldname, newname, IFNAMSIZ);
1268 dev->name_assign_type = old_assign_type;
1269 old_assign_type = NET_NAME_RENAMED;
1270 goto rollback;
1271 } else {
1272 netdev_err(dev, "name change rollback failed: %d\n",
1273 ret);
1274 }
1275 }
1276
1277 return err;
1278 }
1279
1280 /**
1281 * dev_set_alias - change ifalias of a device
1282 * @dev: device
1283 * @alias: name up to IFALIASZ
1284 * @len: limit of bytes to copy from info
1285 *
1286 * Set ifalias for a device,
1287 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1288 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1289 {
1290 struct dev_ifalias *new_alias = NULL;
1291
1292 if (len >= IFALIASZ)
1293 return -EINVAL;
1294
1295 if (len) {
1296 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1297 if (!new_alias)
1298 return -ENOMEM;
1299
1300 memcpy(new_alias->ifalias, alias, len);
1301 new_alias->ifalias[len] = 0;
1302 }
1303
1304 mutex_lock(&ifalias_mutex);
1305 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1306 mutex_is_locked(&ifalias_mutex));
1307 mutex_unlock(&ifalias_mutex);
1308
1309 if (new_alias)
1310 kfree_rcu(new_alias, rcuhead);
1311
1312 return len;
1313 }
1314 EXPORT_SYMBOL(dev_set_alias);
1315
1316 /**
1317 * dev_get_alias - get ifalias of a device
1318 * @dev: device
1319 * @name: buffer to store name of ifalias
1320 * @len: size of buffer
1321 *
1322 * get ifalias for a device. Caller must make sure dev cannot go
1323 * away, e.g. rcu read lock or own a reference count to device.
1324 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1325 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1326 {
1327 const struct dev_ifalias *alias;
1328 int ret = 0;
1329
1330 rcu_read_lock();
1331 alias = rcu_dereference(dev->ifalias);
1332 if (alias)
1333 ret = snprintf(name, len, "%s", alias->ifalias);
1334 rcu_read_unlock();
1335
1336 return ret;
1337 }
1338
1339 /**
1340 * netdev_features_change - device changes features
1341 * @dev: device to cause notification
1342 *
1343 * Called to indicate a device has changed features.
1344 */
netdev_features_change(struct net_device * dev)1345 void netdev_features_change(struct net_device *dev)
1346 {
1347 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1348 }
1349 EXPORT_SYMBOL(netdev_features_change);
1350
1351 /**
1352 * netdev_state_change - device changes state
1353 * @dev: device to cause notification
1354 *
1355 * Called to indicate a device has changed state. This function calls
1356 * the notifier chains for netdev_chain and sends a NEWLINK message
1357 * to the routing socket.
1358 */
netdev_state_change(struct net_device * dev)1359 void netdev_state_change(struct net_device *dev)
1360 {
1361 if (dev->flags & IFF_UP) {
1362 struct netdev_notifier_change_info change_info = {
1363 .info.dev = dev,
1364 };
1365
1366 call_netdevice_notifiers_info(NETDEV_CHANGE,
1367 &change_info.info);
1368 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1369 }
1370 }
1371 EXPORT_SYMBOL(netdev_state_change);
1372
1373 /**
1374 * __netdev_notify_peers - notify network peers about existence of @dev,
1375 * to be called when rtnl lock is already held.
1376 * @dev: network device
1377 *
1378 * Generate traffic such that interested network peers are aware of
1379 * @dev, such as by generating a gratuitous ARP. This may be used when
1380 * a device wants to inform the rest of the network about some sort of
1381 * reconfiguration such as a failover event or virtual machine
1382 * migration.
1383 */
__netdev_notify_peers(struct net_device * dev)1384 void __netdev_notify_peers(struct net_device *dev)
1385 {
1386 ASSERT_RTNL();
1387 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1388 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1389 }
1390 EXPORT_SYMBOL(__netdev_notify_peers);
1391
1392 /**
1393 * netdev_notify_peers - notify network peers about existence of @dev
1394 * @dev: network device
1395 *
1396 * Generate traffic such that interested network peers are aware of
1397 * @dev, such as by generating a gratuitous ARP. This may be used when
1398 * a device wants to inform the rest of the network about some sort of
1399 * reconfiguration such as a failover event or virtual machine
1400 * migration.
1401 */
netdev_notify_peers(struct net_device * dev)1402 void netdev_notify_peers(struct net_device *dev)
1403 {
1404 rtnl_lock();
1405 __netdev_notify_peers(dev);
1406 rtnl_unlock();
1407 }
1408 EXPORT_SYMBOL(netdev_notify_peers);
1409
1410 static int napi_threaded_poll(void *data);
1411
napi_kthread_create(struct napi_struct * n)1412 static int napi_kthread_create(struct napi_struct *n)
1413 {
1414 int err = 0;
1415
1416 /* Create and wake up the kthread once to put it in
1417 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1418 * warning and work with loadavg.
1419 */
1420 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1421 n->dev->name, n->napi_id);
1422 if (IS_ERR(n->thread)) {
1423 err = PTR_ERR(n->thread);
1424 pr_err("kthread_run failed with err %d\n", err);
1425 n->thread = NULL;
1426 }
1427
1428 return err;
1429 }
1430
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1431 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1432 {
1433 const struct net_device_ops *ops = dev->netdev_ops;
1434 int ret;
1435
1436 ASSERT_RTNL();
1437 dev_addr_check(dev);
1438
1439 if (!netif_device_present(dev)) {
1440 /* may be detached because parent is runtime-suspended */
1441 if (dev->dev.parent)
1442 pm_runtime_resume(dev->dev.parent);
1443 if (!netif_device_present(dev))
1444 return -ENODEV;
1445 }
1446
1447 /* Block netpoll from trying to do any rx path servicing.
1448 * If we don't do this there is a chance ndo_poll_controller
1449 * or ndo_poll may be running while we open the device
1450 */
1451 netpoll_poll_disable(dev);
1452
1453 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1454 ret = notifier_to_errno(ret);
1455 if (ret)
1456 return ret;
1457
1458 set_bit(__LINK_STATE_START, &dev->state);
1459
1460 if (ops->ndo_validate_addr)
1461 ret = ops->ndo_validate_addr(dev);
1462
1463 if (!ret && ops->ndo_open)
1464 ret = ops->ndo_open(dev);
1465
1466 netpoll_poll_enable(dev);
1467
1468 if (ret)
1469 clear_bit(__LINK_STATE_START, &dev->state);
1470 else {
1471 dev->flags |= IFF_UP;
1472 dev_set_rx_mode(dev);
1473 dev_activate(dev);
1474 add_device_randomness(dev->dev_addr, dev->addr_len);
1475 }
1476
1477 return ret;
1478 }
1479
1480 /**
1481 * dev_open - prepare an interface for use.
1482 * @dev: device to open
1483 * @extack: netlink extended ack
1484 *
1485 * Takes a device from down to up state. The device's private open
1486 * function is invoked and then the multicast lists are loaded. Finally
1487 * the device is moved into the up state and a %NETDEV_UP message is
1488 * sent to the netdev notifier chain.
1489 *
1490 * Calling this function on an active interface is a nop. On a failure
1491 * a negative errno code is returned.
1492 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1493 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1494 {
1495 int ret;
1496
1497 if (dev->flags & IFF_UP)
1498 return 0;
1499
1500 ret = __dev_open(dev, extack);
1501 if (ret < 0)
1502 return ret;
1503
1504 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505 call_netdevice_notifiers(NETDEV_UP, dev);
1506
1507 return ret;
1508 }
1509 EXPORT_SYMBOL(dev_open);
1510
__dev_close_many(struct list_head * head)1511 static void __dev_close_many(struct list_head *head)
1512 {
1513 struct net_device *dev;
1514
1515 ASSERT_RTNL();
1516 might_sleep();
1517
1518 list_for_each_entry(dev, head, close_list) {
1519 /* Temporarily disable netpoll until the interface is down */
1520 netpoll_poll_disable(dev);
1521
1522 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1523
1524 clear_bit(__LINK_STATE_START, &dev->state);
1525
1526 /* Synchronize to scheduled poll. We cannot touch poll list, it
1527 * can be even on different cpu. So just clear netif_running().
1528 *
1529 * dev->stop() will invoke napi_disable() on all of it's
1530 * napi_struct instances on this device.
1531 */
1532 smp_mb__after_atomic(); /* Commit netif_running(). */
1533 }
1534
1535 dev_deactivate_many(head);
1536
1537 list_for_each_entry(dev, head, close_list) {
1538 const struct net_device_ops *ops = dev->netdev_ops;
1539
1540 /*
1541 * Call the device specific close. This cannot fail.
1542 * Only if device is UP
1543 *
1544 * We allow it to be called even after a DETACH hot-plug
1545 * event.
1546 */
1547 if (ops->ndo_stop)
1548 ops->ndo_stop(dev);
1549
1550 dev->flags &= ~IFF_UP;
1551 netpoll_poll_enable(dev);
1552 }
1553 }
1554
__dev_close(struct net_device * dev)1555 static void __dev_close(struct net_device *dev)
1556 {
1557 LIST_HEAD(single);
1558
1559 list_add(&dev->close_list, &single);
1560 __dev_close_many(&single);
1561 list_del(&single);
1562 }
1563
dev_close_many(struct list_head * head,bool unlink)1564 void dev_close_many(struct list_head *head, bool unlink)
1565 {
1566 struct net_device *dev, *tmp;
1567
1568 /* Remove the devices that don't need to be closed */
1569 list_for_each_entry_safe(dev, tmp, head, close_list)
1570 if (!(dev->flags & IFF_UP))
1571 list_del_init(&dev->close_list);
1572
1573 __dev_close_many(head);
1574
1575 list_for_each_entry_safe(dev, tmp, head, close_list) {
1576 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1577 call_netdevice_notifiers(NETDEV_DOWN, dev);
1578 if (unlink)
1579 list_del_init(&dev->close_list);
1580 }
1581 }
1582 EXPORT_SYMBOL(dev_close_many);
1583
1584 /**
1585 * dev_close - shutdown an interface.
1586 * @dev: device to shutdown
1587 *
1588 * This function moves an active device into down state. A
1589 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1590 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1591 * chain.
1592 */
dev_close(struct net_device * dev)1593 void dev_close(struct net_device *dev)
1594 {
1595 if (dev->flags & IFF_UP) {
1596 LIST_HEAD(single);
1597
1598 list_add(&dev->close_list, &single);
1599 dev_close_many(&single, true);
1600 list_del(&single);
1601 }
1602 }
1603 EXPORT_SYMBOL(dev_close);
1604
1605
1606 /**
1607 * dev_disable_lro - disable Large Receive Offload on a device
1608 * @dev: device
1609 *
1610 * Disable Large Receive Offload (LRO) on a net device. Must be
1611 * called under RTNL. This is needed if received packets may be
1612 * forwarded to another interface.
1613 */
dev_disable_lro(struct net_device * dev)1614 void dev_disable_lro(struct net_device *dev)
1615 {
1616 struct net_device *lower_dev;
1617 struct list_head *iter;
1618
1619 dev->wanted_features &= ~NETIF_F_LRO;
1620 netdev_update_features(dev);
1621
1622 if (unlikely(dev->features & NETIF_F_LRO))
1623 netdev_WARN(dev, "failed to disable LRO!\n");
1624
1625 netdev_for_each_lower_dev(dev, lower_dev, iter)
1626 dev_disable_lro(lower_dev);
1627 }
1628 EXPORT_SYMBOL(dev_disable_lro);
1629
1630 /**
1631 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1632 * @dev: device
1633 *
1634 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1635 * called under RTNL. This is needed if Generic XDP is installed on
1636 * the device.
1637 */
dev_disable_gro_hw(struct net_device * dev)1638 static void dev_disable_gro_hw(struct net_device *dev)
1639 {
1640 dev->wanted_features &= ~NETIF_F_GRO_HW;
1641 netdev_update_features(dev);
1642
1643 if (unlikely(dev->features & NETIF_F_GRO_HW))
1644 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1645 }
1646
netdev_cmd_to_name(enum netdev_cmd cmd)1647 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1648 {
1649 #define N(val) \
1650 case NETDEV_##val: \
1651 return "NETDEV_" __stringify(val);
1652 switch (cmd) {
1653 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1654 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1655 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1656 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1657 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1658 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1659 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1660 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1661 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1662 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1663 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1664 }
1665 #undef N
1666 return "UNKNOWN_NETDEV_EVENT";
1667 }
1668 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1669
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1670 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1671 struct net_device *dev)
1672 {
1673 struct netdev_notifier_info info = {
1674 .dev = dev,
1675 };
1676
1677 return nb->notifier_call(nb, val, &info);
1678 }
1679
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1680 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1681 struct net_device *dev)
1682 {
1683 int err;
1684
1685 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1686 err = notifier_to_errno(err);
1687 if (err)
1688 return err;
1689
1690 if (!(dev->flags & IFF_UP))
1691 return 0;
1692
1693 call_netdevice_notifier(nb, NETDEV_UP, dev);
1694 return 0;
1695 }
1696
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1697 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1698 struct net_device *dev)
1699 {
1700 if (dev->flags & IFF_UP) {
1701 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1702 dev);
1703 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1704 }
1705 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1706 }
1707
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1708 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1709 struct net *net)
1710 {
1711 struct net_device *dev;
1712 int err;
1713
1714 for_each_netdev(net, dev) {
1715 err = call_netdevice_register_notifiers(nb, dev);
1716 if (err)
1717 goto rollback;
1718 }
1719 return 0;
1720
1721 rollback:
1722 for_each_netdev_continue_reverse(net, dev)
1723 call_netdevice_unregister_notifiers(nb, dev);
1724 return err;
1725 }
1726
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1727 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1728 struct net *net)
1729 {
1730 struct net_device *dev;
1731
1732 for_each_netdev(net, dev)
1733 call_netdevice_unregister_notifiers(nb, dev);
1734 }
1735
1736 static int dev_boot_phase = 1;
1737
1738 /**
1739 * register_netdevice_notifier - register a network notifier block
1740 * @nb: notifier
1741 *
1742 * Register a notifier to be called when network device events occur.
1743 * The notifier passed is linked into the kernel structures and must
1744 * not be reused until it has been unregistered. A negative errno code
1745 * is returned on a failure.
1746 *
1747 * When registered all registration and up events are replayed
1748 * to the new notifier to allow device to have a race free
1749 * view of the network device list.
1750 */
1751
register_netdevice_notifier(struct notifier_block * nb)1752 int register_netdevice_notifier(struct notifier_block *nb)
1753 {
1754 struct net *net;
1755 int err;
1756
1757 /* Close race with setup_net() and cleanup_net() */
1758 down_write(&pernet_ops_rwsem);
1759 rtnl_lock();
1760 err = raw_notifier_chain_register(&netdev_chain, nb);
1761 if (err)
1762 goto unlock;
1763 if (dev_boot_phase)
1764 goto unlock;
1765 for_each_net(net) {
1766 err = call_netdevice_register_net_notifiers(nb, net);
1767 if (err)
1768 goto rollback;
1769 }
1770
1771 unlock:
1772 rtnl_unlock();
1773 up_write(&pernet_ops_rwsem);
1774 return err;
1775
1776 rollback:
1777 for_each_net_continue_reverse(net)
1778 call_netdevice_unregister_net_notifiers(nb, net);
1779
1780 raw_notifier_chain_unregister(&netdev_chain, nb);
1781 goto unlock;
1782 }
1783 EXPORT_SYMBOL(register_netdevice_notifier);
1784
1785 /**
1786 * unregister_netdevice_notifier - unregister a network notifier block
1787 * @nb: notifier
1788 *
1789 * Unregister a notifier previously registered by
1790 * register_netdevice_notifier(). The notifier is unlinked into the
1791 * kernel structures and may then be reused. A negative errno code
1792 * is returned on a failure.
1793 *
1794 * After unregistering unregister and down device events are synthesized
1795 * for all devices on the device list to the removed notifier to remove
1796 * the need for special case cleanup code.
1797 */
1798
unregister_netdevice_notifier(struct notifier_block * nb)1799 int unregister_netdevice_notifier(struct notifier_block *nb)
1800 {
1801 struct net *net;
1802 int err;
1803
1804 /* Close race with setup_net() and cleanup_net() */
1805 down_write(&pernet_ops_rwsem);
1806 rtnl_lock();
1807 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1808 if (err)
1809 goto unlock;
1810
1811 for_each_net(net)
1812 call_netdevice_unregister_net_notifiers(nb, net);
1813
1814 unlock:
1815 rtnl_unlock();
1816 up_write(&pernet_ops_rwsem);
1817 return err;
1818 }
1819 EXPORT_SYMBOL(unregister_netdevice_notifier);
1820
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1821 static int __register_netdevice_notifier_net(struct net *net,
1822 struct notifier_block *nb,
1823 bool ignore_call_fail)
1824 {
1825 int err;
1826
1827 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1828 if (err)
1829 return err;
1830 if (dev_boot_phase)
1831 return 0;
1832
1833 err = call_netdevice_register_net_notifiers(nb, net);
1834 if (err && !ignore_call_fail)
1835 goto chain_unregister;
1836
1837 return 0;
1838
1839 chain_unregister:
1840 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1841 return err;
1842 }
1843
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1844 static int __unregister_netdevice_notifier_net(struct net *net,
1845 struct notifier_block *nb)
1846 {
1847 int err;
1848
1849 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1850 if (err)
1851 return err;
1852
1853 call_netdevice_unregister_net_notifiers(nb, net);
1854 return 0;
1855 }
1856
1857 /**
1858 * register_netdevice_notifier_net - register a per-netns network notifier block
1859 * @net: network namespace
1860 * @nb: notifier
1861 *
1862 * Register a notifier to be called when network device events occur.
1863 * The notifier passed is linked into the kernel structures and must
1864 * not be reused until it has been unregistered. A negative errno code
1865 * is returned on a failure.
1866 *
1867 * When registered all registration and up events are replayed
1868 * to the new notifier to allow device to have a race free
1869 * view of the network device list.
1870 */
1871
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1872 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1873 {
1874 int err;
1875
1876 rtnl_lock();
1877 err = __register_netdevice_notifier_net(net, nb, false);
1878 rtnl_unlock();
1879 return err;
1880 }
1881 EXPORT_SYMBOL(register_netdevice_notifier_net);
1882
1883 /**
1884 * unregister_netdevice_notifier_net - unregister a per-netns
1885 * network notifier block
1886 * @net: network namespace
1887 * @nb: notifier
1888 *
1889 * Unregister a notifier previously registered by
1890 * register_netdevice_notifier(). The notifier is unlinked into the
1891 * kernel structures and may then be reused. A negative errno code
1892 * is returned on a failure.
1893 *
1894 * After unregistering unregister and down device events are synthesized
1895 * for all devices on the device list to the removed notifier to remove
1896 * the need for special case cleanup code.
1897 */
1898
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1899 int unregister_netdevice_notifier_net(struct net *net,
1900 struct notifier_block *nb)
1901 {
1902 int err;
1903
1904 rtnl_lock();
1905 err = __unregister_netdevice_notifier_net(net, nb);
1906 rtnl_unlock();
1907 return err;
1908 }
1909 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1910
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1911 int register_netdevice_notifier_dev_net(struct net_device *dev,
1912 struct notifier_block *nb,
1913 struct netdev_net_notifier *nn)
1914 {
1915 int err;
1916
1917 rtnl_lock();
1918 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1919 if (!err) {
1920 nn->nb = nb;
1921 list_add(&nn->list, &dev->net_notifier_list);
1922 }
1923 rtnl_unlock();
1924 return err;
1925 }
1926 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1927
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1928 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1929 struct notifier_block *nb,
1930 struct netdev_net_notifier *nn)
1931 {
1932 int err;
1933
1934 rtnl_lock();
1935 list_del(&nn->list);
1936 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1937 rtnl_unlock();
1938 return err;
1939 }
1940 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1941
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1942 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1943 struct net *net)
1944 {
1945 struct netdev_net_notifier *nn;
1946
1947 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1948 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1949 __register_netdevice_notifier_net(net, nn->nb, true);
1950 }
1951 }
1952
1953 /**
1954 * call_netdevice_notifiers_info - call all network notifier blocks
1955 * @val: value passed unmodified to notifier function
1956 * @info: notifier information data
1957 *
1958 * Call all network notifier blocks. Parameters and return value
1959 * are as for raw_notifier_call_chain().
1960 */
1961
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1962 static int call_netdevice_notifiers_info(unsigned long val,
1963 struct netdev_notifier_info *info)
1964 {
1965 struct net *net = dev_net(info->dev);
1966 int ret;
1967
1968 ASSERT_RTNL();
1969
1970 /* Run per-netns notifier block chain first, then run the global one.
1971 * Hopefully, one day, the global one is going to be removed after
1972 * all notifier block registrators get converted to be per-netns.
1973 */
1974 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1975 if (ret & NOTIFY_STOP_MASK)
1976 return ret;
1977 return raw_notifier_call_chain(&netdev_chain, val, info);
1978 }
1979
1980 /**
1981 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1982 * for and rollback on error
1983 * @val_up: value passed unmodified to notifier function
1984 * @val_down: value passed unmodified to the notifier function when
1985 * recovering from an error on @val_up
1986 * @info: notifier information data
1987 *
1988 * Call all per-netns network notifier blocks, but not notifier blocks on
1989 * the global notifier chain. Parameters and return value are as for
1990 * raw_notifier_call_chain_robust().
1991 */
1992
1993 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)1994 call_netdevice_notifiers_info_robust(unsigned long val_up,
1995 unsigned long val_down,
1996 struct netdev_notifier_info *info)
1997 {
1998 struct net *net = dev_net(info->dev);
1999
2000 ASSERT_RTNL();
2001
2002 return raw_notifier_call_chain_robust(&net->netdev_chain,
2003 val_up, val_down, info);
2004 }
2005
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2006 static int call_netdevice_notifiers_extack(unsigned long val,
2007 struct net_device *dev,
2008 struct netlink_ext_ack *extack)
2009 {
2010 struct netdev_notifier_info info = {
2011 .dev = dev,
2012 .extack = extack,
2013 };
2014
2015 return call_netdevice_notifiers_info(val, &info);
2016 }
2017
2018 /**
2019 * call_netdevice_notifiers - call all network notifier blocks
2020 * @val: value passed unmodified to notifier function
2021 * @dev: net_device pointer passed unmodified to notifier function
2022 *
2023 * Call all network notifier blocks. Parameters and return value
2024 * are as for raw_notifier_call_chain().
2025 */
2026
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2027 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2028 {
2029 return call_netdevice_notifiers_extack(val, dev, NULL);
2030 }
2031 EXPORT_SYMBOL(call_netdevice_notifiers);
2032
2033 /**
2034 * call_netdevice_notifiers_mtu - call all network notifier blocks
2035 * @val: value passed unmodified to notifier function
2036 * @dev: net_device pointer passed unmodified to notifier function
2037 * @arg: additional u32 argument passed to the notifier function
2038 *
2039 * Call all network notifier blocks. Parameters and return value
2040 * are as for raw_notifier_call_chain().
2041 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2042 static int call_netdevice_notifiers_mtu(unsigned long val,
2043 struct net_device *dev, u32 arg)
2044 {
2045 struct netdev_notifier_info_ext info = {
2046 .info.dev = dev,
2047 .ext.mtu = arg,
2048 };
2049
2050 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2051
2052 return call_netdevice_notifiers_info(val, &info.info);
2053 }
2054
2055 #ifdef CONFIG_NET_INGRESS
2056 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2057
net_inc_ingress_queue(void)2058 void net_inc_ingress_queue(void)
2059 {
2060 static_branch_inc(&ingress_needed_key);
2061 }
2062 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2063
net_dec_ingress_queue(void)2064 void net_dec_ingress_queue(void)
2065 {
2066 static_branch_dec(&ingress_needed_key);
2067 }
2068 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2069 #endif
2070
2071 #ifdef CONFIG_NET_EGRESS
2072 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2073
net_inc_egress_queue(void)2074 void net_inc_egress_queue(void)
2075 {
2076 static_branch_inc(&egress_needed_key);
2077 }
2078 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2079
net_dec_egress_queue(void)2080 void net_dec_egress_queue(void)
2081 {
2082 static_branch_dec(&egress_needed_key);
2083 }
2084 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2085 #endif
2086
2087 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2088 EXPORT_SYMBOL(netstamp_needed_key);
2089 #ifdef CONFIG_JUMP_LABEL
2090 static atomic_t netstamp_needed_deferred;
2091 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2092 static void netstamp_clear(struct work_struct *work)
2093 {
2094 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2095 int wanted;
2096
2097 wanted = atomic_add_return(deferred, &netstamp_wanted);
2098 if (wanted > 0)
2099 static_branch_enable(&netstamp_needed_key);
2100 else
2101 static_branch_disable(&netstamp_needed_key);
2102 }
2103 static DECLARE_WORK(netstamp_work, netstamp_clear);
2104 #endif
2105
net_enable_timestamp(void)2106 void net_enable_timestamp(void)
2107 {
2108 #ifdef CONFIG_JUMP_LABEL
2109 int wanted;
2110
2111 while (1) {
2112 wanted = atomic_read(&netstamp_wanted);
2113 if (wanted <= 0)
2114 break;
2115 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2116 return;
2117 }
2118 atomic_inc(&netstamp_needed_deferred);
2119 schedule_work(&netstamp_work);
2120 #else
2121 static_branch_inc(&netstamp_needed_key);
2122 #endif
2123 }
2124 EXPORT_SYMBOL(net_enable_timestamp);
2125
net_disable_timestamp(void)2126 void net_disable_timestamp(void)
2127 {
2128 #ifdef CONFIG_JUMP_LABEL
2129 int wanted;
2130
2131 while (1) {
2132 wanted = atomic_read(&netstamp_wanted);
2133 if (wanted <= 1)
2134 break;
2135 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2136 return;
2137 }
2138 atomic_dec(&netstamp_needed_deferred);
2139 schedule_work(&netstamp_work);
2140 #else
2141 static_branch_dec(&netstamp_needed_key);
2142 #endif
2143 }
2144 EXPORT_SYMBOL(net_disable_timestamp);
2145
net_timestamp_set(struct sk_buff * skb)2146 static inline void net_timestamp_set(struct sk_buff *skb)
2147 {
2148 skb->tstamp = 0;
2149 skb->mono_delivery_time = 0;
2150 if (static_branch_unlikely(&netstamp_needed_key))
2151 skb->tstamp = ktime_get_real();
2152 }
2153
2154 #define net_timestamp_check(COND, SKB) \
2155 if (static_branch_unlikely(&netstamp_needed_key)) { \
2156 if ((COND) && !(SKB)->tstamp) \
2157 (SKB)->tstamp = ktime_get_real(); \
2158 } \
2159
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2160 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2161 {
2162 return __is_skb_forwardable(dev, skb, true);
2163 }
2164 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2165
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2166 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2167 bool check_mtu)
2168 {
2169 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2170
2171 if (likely(!ret)) {
2172 skb->protocol = eth_type_trans(skb, dev);
2173 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2174 }
2175
2176 return ret;
2177 }
2178
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2179 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2180 {
2181 return __dev_forward_skb2(dev, skb, true);
2182 }
2183 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2184
2185 /**
2186 * dev_forward_skb - loopback an skb to another netif
2187 *
2188 * @dev: destination network device
2189 * @skb: buffer to forward
2190 *
2191 * return values:
2192 * NET_RX_SUCCESS (no congestion)
2193 * NET_RX_DROP (packet was dropped, but freed)
2194 *
2195 * dev_forward_skb can be used for injecting an skb from the
2196 * start_xmit function of one device into the receive queue
2197 * of another device.
2198 *
2199 * The receiving device may be in another namespace, so
2200 * we have to clear all information in the skb that could
2201 * impact namespace isolation.
2202 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2203 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2204 {
2205 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2206 }
2207 EXPORT_SYMBOL_GPL(dev_forward_skb);
2208
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2209 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2210 {
2211 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2212 }
2213
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2214 static inline int deliver_skb(struct sk_buff *skb,
2215 struct packet_type *pt_prev,
2216 struct net_device *orig_dev)
2217 {
2218 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2219 return -ENOMEM;
2220 refcount_inc(&skb->users);
2221 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2222 }
2223
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2224 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2225 struct packet_type **pt,
2226 struct net_device *orig_dev,
2227 __be16 type,
2228 struct list_head *ptype_list)
2229 {
2230 struct packet_type *ptype, *pt_prev = *pt;
2231
2232 list_for_each_entry_rcu(ptype, ptype_list, list) {
2233 if (ptype->type != type)
2234 continue;
2235 if (pt_prev)
2236 deliver_skb(skb, pt_prev, orig_dev);
2237 pt_prev = ptype;
2238 }
2239 *pt = pt_prev;
2240 }
2241
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2242 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2243 {
2244 if (!ptype->af_packet_priv || !skb->sk)
2245 return false;
2246
2247 if (ptype->id_match)
2248 return ptype->id_match(ptype, skb->sk);
2249 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2250 return true;
2251
2252 return false;
2253 }
2254
2255 /**
2256 * dev_nit_active - return true if any network interface taps are in use
2257 *
2258 * @dev: network device to check for the presence of taps
2259 */
dev_nit_active(struct net_device * dev)2260 bool dev_nit_active(struct net_device *dev)
2261 {
2262 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2263 }
2264 EXPORT_SYMBOL_GPL(dev_nit_active);
2265
2266 /*
2267 * Support routine. Sends outgoing frames to any network
2268 * taps currently in use.
2269 */
2270
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2271 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2272 {
2273 struct packet_type *ptype;
2274 struct sk_buff *skb2 = NULL;
2275 struct packet_type *pt_prev = NULL;
2276 struct list_head *ptype_list = &ptype_all;
2277
2278 rcu_read_lock();
2279 again:
2280 list_for_each_entry_rcu(ptype, ptype_list, list) {
2281 if (ptype->ignore_outgoing)
2282 continue;
2283
2284 /* Never send packets back to the socket
2285 * they originated from - MvS (miquels@drinkel.ow.org)
2286 */
2287 if (skb_loop_sk(ptype, skb))
2288 continue;
2289
2290 if (pt_prev) {
2291 deliver_skb(skb2, pt_prev, skb->dev);
2292 pt_prev = ptype;
2293 continue;
2294 }
2295
2296 /* need to clone skb, done only once */
2297 skb2 = skb_clone(skb, GFP_ATOMIC);
2298 if (!skb2)
2299 goto out_unlock;
2300
2301 net_timestamp_set(skb2);
2302
2303 /* skb->nh should be correctly
2304 * set by sender, so that the second statement is
2305 * just protection against buggy protocols.
2306 */
2307 skb_reset_mac_header(skb2);
2308
2309 if (skb_network_header(skb2) < skb2->data ||
2310 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2311 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2312 ntohs(skb2->protocol),
2313 dev->name);
2314 skb_reset_network_header(skb2);
2315 }
2316
2317 skb2->transport_header = skb2->network_header;
2318 skb2->pkt_type = PACKET_OUTGOING;
2319 pt_prev = ptype;
2320 }
2321
2322 if (ptype_list == &ptype_all) {
2323 ptype_list = &dev->ptype_all;
2324 goto again;
2325 }
2326 out_unlock:
2327 if (pt_prev) {
2328 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2329 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2330 else
2331 kfree_skb(skb2);
2332 }
2333 rcu_read_unlock();
2334 }
2335 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2336
2337 /**
2338 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2339 * @dev: Network device
2340 * @txq: number of queues available
2341 *
2342 * If real_num_tx_queues is changed the tc mappings may no longer be
2343 * valid. To resolve this verify the tc mapping remains valid and if
2344 * not NULL the mapping. With no priorities mapping to this
2345 * offset/count pair it will no longer be used. In the worst case TC0
2346 * is invalid nothing can be done so disable priority mappings. If is
2347 * expected that drivers will fix this mapping if they can before
2348 * calling netif_set_real_num_tx_queues.
2349 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2350 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2351 {
2352 int i;
2353 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2354
2355 /* If TC0 is invalidated disable TC mapping */
2356 if (tc->offset + tc->count > txq) {
2357 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2358 dev->num_tc = 0;
2359 return;
2360 }
2361
2362 /* Invalidated prio to tc mappings set to TC0 */
2363 for (i = 1; i < TC_BITMASK + 1; i++) {
2364 int q = netdev_get_prio_tc_map(dev, i);
2365
2366 tc = &dev->tc_to_txq[q];
2367 if (tc->offset + tc->count > txq) {
2368 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2369 i, q);
2370 netdev_set_prio_tc_map(dev, i, 0);
2371 }
2372 }
2373 }
2374
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2375 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2376 {
2377 if (dev->num_tc) {
2378 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2379 int i;
2380
2381 /* walk through the TCs and see if it falls into any of them */
2382 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2383 if ((txq - tc->offset) < tc->count)
2384 return i;
2385 }
2386
2387 /* didn't find it, just return -1 to indicate no match */
2388 return -1;
2389 }
2390
2391 return 0;
2392 }
2393 EXPORT_SYMBOL(netdev_txq_to_tc);
2394
2395 #ifdef CONFIG_XPS
2396 static struct static_key xps_needed __read_mostly;
2397 static struct static_key xps_rxqs_needed __read_mostly;
2398 static DEFINE_MUTEX(xps_map_mutex);
2399 #define xmap_dereference(P) \
2400 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2401
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2402 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2403 struct xps_dev_maps *old_maps, int tci, u16 index)
2404 {
2405 struct xps_map *map = NULL;
2406 int pos;
2407
2408 if (dev_maps)
2409 map = xmap_dereference(dev_maps->attr_map[tci]);
2410 if (!map)
2411 return false;
2412
2413 for (pos = map->len; pos--;) {
2414 if (map->queues[pos] != index)
2415 continue;
2416
2417 if (map->len > 1) {
2418 map->queues[pos] = map->queues[--map->len];
2419 break;
2420 }
2421
2422 if (old_maps)
2423 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2424 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2425 kfree_rcu(map, rcu);
2426 return false;
2427 }
2428
2429 return true;
2430 }
2431
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2432 static bool remove_xps_queue_cpu(struct net_device *dev,
2433 struct xps_dev_maps *dev_maps,
2434 int cpu, u16 offset, u16 count)
2435 {
2436 int num_tc = dev_maps->num_tc;
2437 bool active = false;
2438 int tci;
2439
2440 for (tci = cpu * num_tc; num_tc--; tci++) {
2441 int i, j;
2442
2443 for (i = count, j = offset; i--; j++) {
2444 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2445 break;
2446 }
2447
2448 active |= i < 0;
2449 }
2450
2451 return active;
2452 }
2453
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2454 static void reset_xps_maps(struct net_device *dev,
2455 struct xps_dev_maps *dev_maps,
2456 enum xps_map_type type)
2457 {
2458 static_key_slow_dec_cpuslocked(&xps_needed);
2459 if (type == XPS_RXQS)
2460 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2461
2462 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2463
2464 kfree_rcu(dev_maps, rcu);
2465 }
2466
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2467 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2468 u16 offset, u16 count)
2469 {
2470 struct xps_dev_maps *dev_maps;
2471 bool active = false;
2472 int i, j;
2473
2474 dev_maps = xmap_dereference(dev->xps_maps[type]);
2475 if (!dev_maps)
2476 return;
2477
2478 for (j = 0; j < dev_maps->nr_ids; j++)
2479 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2480 if (!active)
2481 reset_xps_maps(dev, dev_maps, type);
2482
2483 if (type == XPS_CPUS) {
2484 for (i = offset + (count - 1); count--; i--)
2485 netdev_queue_numa_node_write(
2486 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2487 }
2488 }
2489
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2490 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2491 u16 count)
2492 {
2493 if (!static_key_false(&xps_needed))
2494 return;
2495
2496 cpus_read_lock();
2497 mutex_lock(&xps_map_mutex);
2498
2499 if (static_key_false(&xps_rxqs_needed))
2500 clean_xps_maps(dev, XPS_RXQS, offset, count);
2501
2502 clean_xps_maps(dev, XPS_CPUS, offset, count);
2503
2504 mutex_unlock(&xps_map_mutex);
2505 cpus_read_unlock();
2506 }
2507
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2508 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2509 {
2510 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2511 }
2512
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2513 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2514 u16 index, bool is_rxqs_map)
2515 {
2516 struct xps_map *new_map;
2517 int alloc_len = XPS_MIN_MAP_ALLOC;
2518 int i, pos;
2519
2520 for (pos = 0; map && pos < map->len; pos++) {
2521 if (map->queues[pos] != index)
2522 continue;
2523 return map;
2524 }
2525
2526 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2527 if (map) {
2528 if (pos < map->alloc_len)
2529 return map;
2530
2531 alloc_len = map->alloc_len * 2;
2532 }
2533
2534 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2535 * map
2536 */
2537 if (is_rxqs_map)
2538 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2539 else
2540 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2541 cpu_to_node(attr_index));
2542 if (!new_map)
2543 return NULL;
2544
2545 for (i = 0; i < pos; i++)
2546 new_map->queues[i] = map->queues[i];
2547 new_map->alloc_len = alloc_len;
2548 new_map->len = pos;
2549
2550 return new_map;
2551 }
2552
2553 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2554 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2555 struct xps_dev_maps *new_dev_maps, int index,
2556 int tc, bool skip_tc)
2557 {
2558 int i, tci = index * dev_maps->num_tc;
2559 struct xps_map *map;
2560
2561 /* copy maps belonging to foreign traffic classes */
2562 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2563 if (i == tc && skip_tc)
2564 continue;
2565
2566 /* fill in the new device map from the old device map */
2567 map = xmap_dereference(dev_maps->attr_map[tci]);
2568 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2569 }
2570 }
2571
2572 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2573 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2574 u16 index, enum xps_map_type type)
2575 {
2576 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2577 const unsigned long *online_mask = NULL;
2578 bool active = false, copy = false;
2579 int i, j, tci, numa_node_id = -2;
2580 int maps_sz, num_tc = 1, tc = 0;
2581 struct xps_map *map, *new_map;
2582 unsigned int nr_ids;
2583
2584 WARN_ON_ONCE(index >= dev->num_tx_queues);
2585
2586 if (dev->num_tc) {
2587 /* Do not allow XPS on subordinate device directly */
2588 num_tc = dev->num_tc;
2589 if (num_tc < 0)
2590 return -EINVAL;
2591
2592 /* If queue belongs to subordinate dev use its map */
2593 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2594
2595 tc = netdev_txq_to_tc(dev, index);
2596 if (tc < 0)
2597 return -EINVAL;
2598 }
2599
2600 mutex_lock(&xps_map_mutex);
2601
2602 dev_maps = xmap_dereference(dev->xps_maps[type]);
2603 if (type == XPS_RXQS) {
2604 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2605 nr_ids = dev->num_rx_queues;
2606 } else {
2607 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2608 if (num_possible_cpus() > 1)
2609 online_mask = cpumask_bits(cpu_online_mask);
2610 nr_ids = nr_cpu_ids;
2611 }
2612
2613 if (maps_sz < L1_CACHE_BYTES)
2614 maps_sz = L1_CACHE_BYTES;
2615
2616 /* The old dev_maps could be larger or smaller than the one we're
2617 * setting up now, as dev->num_tc or nr_ids could have been updated in
2618 * between. We could try to be smart, but let's be safe instead and only
2619 * copy foreign traffic classes if the two map sizes match.
2620 */
2621 if (dev_maps &&
2622 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2623 copy = true;
2624
2625 /* allocate memory for queue storage */
2626 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2627 j < nr_ids;) {
2628 if (!new_dev_maps) {
2629 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2630 if (!new_dev_maps) {
2631 mutex_unlock(&xps_map_mutex);
2632 return -ENOMEM;
2633 }
2634
2635 new_dev_maps->nr_ids = nr_ids;
2636 new_dev_maps->num_tc = num_tc;
2637 }
2638
2639 tci = j * num_tc + tc;
2640 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2641
2642 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2643 if (!map)
2644 goto error;
2645
2646 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2647 }
2648
2649 if (!new_dev_maps)
2650 goto out_no_new_maps;
2651
2652 if (!dev_maps) {
2653 /* Increment static keys at most once per type */
2654 static_key_slow_inc_cpuslocked(&xps_needed);
2655 if (type == XPS_RXQS)
2656 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2657 }
2658
2659 for (j = 0; j < nr_ids; j++) {
2660 bool skip_tc = false;
2661
2662 tci = j * num_tc + tc;
2663 if (netif_attr_test_mask(j, mask, nr_ids) &&
2664 netif_attr_test_online(j, online_mask, nr_ids)) {
2665 /* add tx-queue to CPU/rx-queue maps */
2666 int pos = 0;
2667
2668 skip_tc = true;
2669
2670 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 while ((pos < map->len) && (map->queues[pos] != index))
2672 pos++;
2673
2674 if (pos == map->len)
2675 map->queues[map->len++] = index;
2676 #ifdef CONFIG_NUMA
2677 if (type == XPS_CPUS) {
2678 if (numa_node_id == -2)
2679 numa_node_id = cpu_to_node(j);
2680 else if (numa_node_id != cpu_to_node(j))
2681 numa_node_id = -1;
2682 }
2683 #endif
2684 }
2685
2686 if (copy)
2687 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2688 skip_tc);
2689 }
2690
2691 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2692
2693 /* Cleanup old maps */
2694 if (!dev_maps)
2695 goto out_no_old_maps;
2696
2697 for (j = 0; j < dev_maps->nr_ids; j++) {
2698 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2699 map = xmap_dereference(dev_maps->attr_map[tci]);
2700 if (!map)
2701 continue;
2702
2703 if (copy) {
2704 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2705 if (map == new_map)
2706 continue;
2707 }
2708
2709 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2710 kfree_rcu(map, rcu);
2711 }
2712 }
2713
2714 old_dev_maps = dev_maps;
2715
2716 out_no_old_maps:
2717 dev_maps = new_dev_maps;
2718 active = true;
2719
2720 out_no_new_maps:
2721 if (type == XPS_CPUS)
2722 /* update Tx queue numa node */
2723 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2724 (numa_node_id >= 0) ?
2725 numa_node_id : NUMA_NO_NODE);
2726
2727 if (!dev_maps)
2728 goto out_no_maps;
2729
2730 /* removes tx-queue from unused CPUs/rx-queues */
2731 for (j = 0; j < dev_maps->nr_ids; j++) {
2732 tci = j * dev_maps->num_tc;
2733
2734 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2735 if (i == tc &&
2736 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2737 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2738 continue;
2739
2740 active |= remove_xps_queue(dev_maps,
2741 copy ? old_dev_maps : NULL,
2742 tci, index);
2743 }
2744 }
2745
2746 if (old_dev_maps)
2747 kfree_rcu(old_dev_maps, rcu);
2748
2749 /* free map if not active */
2750 if (!active)
2751 reset_xps_maps(dev, dev_maps, type);
2752
2753 out_no_maps:
2754 mutex_unlock(&xps_map_mutex);
2755
2756 return 0;
2757 error:
2758 /* remove any maps that we added */
2759 for (j = 0; j < nr_ids; j++) {
2760 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2761 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2762 map = copy ?
2763 xmap_dereference(dev_maps->attr_map[tci]) :
2764 NULL;
2765 if (new_map && new_map != map)
2766 kfree(new_map);
2767 }
2768 }
2769
2770 mutex_unlock(&xps_map_mutex);
2771
2772 kfree(new_dev_maps);
2773 return -ENOMEM;
2774 }
2775 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2776
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2777 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2778 u16 index)
2779 {
2780 int ret;
2781
2782 cpus_read_lock();
2783 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2784 cpus_read_unlock();
2785
2786 return ret;
2787 }
2788 EXPORT_SYMBOL(netif_set_xps_queue);
2789
2790 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2791 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2792 {
2793 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2794
2795 /* Unbind any subordinate channels */
2796 while (txq-- != &dev->_tx[0]) {
2797 if (txq->sb_dev)
2798 netdev_unbind_sb_channel(dev, txq->sb_dev);
2799 }
2800 }
2801
netdev_reset_tc(struct net_device * dev)2802 void netdev_reset_tc(struct net_device *dev)
2803 {
2804 #ifdef CONFIG_XPS
2805 netif_reset_xps_queues_gt(dev, 0);
2806 #endif
2807 netdev_unbind_all_sb_channels(dev);
2808
2809 /* Reset TC configuration of device */
2810 dev->num_tc = 0;
2811 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2812 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2813 }
2814 EXPORT_SYMBOL(netdev_reset_tc);
2815
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2816 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2817 {
2818 if (tc >= dev->num_tc)
2819 return -EINVAL;
2820
2821 #ifdef CONFIG_XPS
2822 netif_reset_xps_queues(dev, offset, count);
2823 #endif
2824 dev->tc_to_txq[tc].count = count;
2825 dev->tc_to_txq[tc].offset = offset;
2826 return 0;
2827 }
2828 EXPORT_SYMBOL(netdev_set_tc_queue);
2829
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2830 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2831 {
2832 if (num_tc > TC_MAX_QUEUE)
2833 return -EINVAL;
2834
2835 #ifdef CONFIG_XPS
2836 netif_reset_xps_queues_gt(dev, 0);
2837 #endif
2838 netdev_unbind_all_sb_channels(dev);
2839
2840 dev->num_tc = num_tc;
2841 return 0;
2842 }
2843 EXPORT_SYMBOL(netdev_set_num_tc);
2844
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2845 void netdev_unbind_sb_channel(struct net_device *dev,
2846 struct net_device *sb_dev)
2847 {
2848 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2849
2850 #ifdef CONFIG_XPS
2851 netif_reset_xps_queues_gt(sb_dev, 0);
2852 #endif
2853 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2854 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2855
2856 while (txq-- != &dev->_tx[0]) {
2857 if (txq->sb_dev == sb_dev)
2858 txq->sb_dev = NULL;
2859 }
2860 }
2861 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2862
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2863 int netdev_bind_sb_channel_queue(struct net_device *dev,
2864 struct net_device *sb_dev,
2865 u8 tc, u16 count, u16 offset)
2866 {
2867 /* Make certain the sb_dev and dev are already configured */
2868 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2869 return -EINVAL;
2870
2871 /* We cannot hand out queues we don't have */
2872 if ((offset + count) > dev->real_num_tx_queues)
2873 return -EINVAL;
2874
2875 /* Record the mapping */
2876 sb_dev->tc_to_txq[tc].count = count;
2877 sb_dev->tc_to_txq[tc].offset = offset;
2878
2879 /* Provide a way for Tx queue to find the tc_to_txq map or
2880 * XPS map for itself.
2881 */
2882 while (count--)
2883 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2884
2885 return 0;
2886 }
2887 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2888
netdev_set_sb_channel(struct net_device * dev,u16 channel)2889 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2890 {
2891 /* Do not use a multiqueue device to represent a subordinate channel */
2892 if (netif_is_multiqueue(dev))
2893 return -ENODEV;
2894
2895 /* We allow channels 1 - 32767 to be used for subordinate channels.
2896 * Channel 0 is meant to be "native" mode and used only to represent
2897 * the main root device. We allow writing 0 to reset the device back
2898 * to normal mode after being used as a subordinate channel.
2899 */
2900 if (channel > S16_MAX)
2901 return -EINVAL;
2902
2903 dev->num_tc = -channel;
2904
2905 return 0;
2906 }
2907 EXPORT_SYMBOL(netdev_set_sb_channel);
2908
2909 /*
2910 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2911 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2912 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2913 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2914 {
2915 bool disabling;
2916 int rc;
2917
2918 disabling = txq < dev->real_num_tx_queues;
2919
2920 if (txq < 1 || txq > dev->num_tx_queues)
2921 return -EINVAL;
2922
2923 if (dev->reg_state == NETREG_REGISTERED ||
2924 dev->reg_state == NETREG_UNREGISTERING) {
2925 ASSERT_RTNL();
2926
2927 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2928 txq);
2929 if (rc)
2930 return rc;
2931
2932 if (dev->num_tc)
2933 netif_setup_tc(dev, txq);
2934
2935 dev_qdisc_change_real_num_tx(dev, txq);
2936
2937 dev->real_num_tx_queues = txq;
2938
2939 if (disabling) {
2940 synchronize_net();
2941 qdisc_reset_all_tx_gt(dev, txq);
2942 #ifdef CONFIG_XPS
2943 netif_reset_xps_queues_gt(dev, txq);
2944 #endif
2945 }
2946 } else {
2947 dev->real_num_tx_queues = txq;
2948 }
2949
2950 return 0;
2951 }
2952 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2953
2954 #ifdef CONFIG_SYSFS
2955 /**
2956 * netif_set_real_num_rx_queues - set actual number of RX queues used
2957 * @dev: Network device
2958 * @rxq: Actual number of RX queues
2959 *
2960 * This must be called either with the rtnl_lock held or before
2961 * registration of the net device. Returns 0 on success, or a
2962 * negative error code. If called before registration, it always
2963 * succeeds.
2964 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2965 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2966 {
2967 int rc;
2968
2969 if (rxq < 1 || rxq > dev->num_rx_queues)
2970 return -EINVAL;
2971
2972 if (dev->reg_state == NETREG_REGISTERED) {
2973 ASSERT_RTNL();
2974
2975 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2976 rxq);
2977 if (rc)
2978 return rc;
2979 }
2980
2981 dev->real_num_rx_queues = rxq;
2982 return 0;
2983 }
2984 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2985 #endif
2986
2987 /**
2988 * netif_set_real_num_queues - set actual number of RX and TX queues used
2989 * @dev: Network device
2990 * @txq: Actual number of TX queues
2991 * @rxq: Actual number of RX queues
2992 *
2993 * Set the real number of both TX and RX queues.
2994 * Does nothing if the number of queues is already correct.
2995 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)2996 int netif_set_real_num_queues(struct net_device *dev,
2997 unsigned int txq, unsigned int rxq)
2998 {
2999 unsigned int old_rxq = dev->real_num_rx_queues;
3000 int err;
3001
3002 if (txq < 1 || txq > dev->num_tx_queues ||
3003 rxq < 1 || rxq > dev->num_rx_queues)
3004 return -EINVAL;
3005
3006 /* Start from increases, so the error path only does decreases -
3007 * decreases can't fail.
3008 */
3009 if (rxq > dev->real_num_rx_queues) {
3010 err = netif_set_real_num_rx_queues(dev, rxq);
3011 if (err)
3012 return err;
3013 }
3014 if (txq > dev->real_num_tx_queues) {
3015 err = netif_set_real_num_tx_queues(dev, txq);
3016 if (err)
3017 goto undo_rx;
3018 }
3019 if (rxq < dev->real_num_rx_queues)
3020 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3021 if (txq < dev->real_num_tx_queues)
3022 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3023
3024 return 0;
3025 undo_rx:
3026 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3027 return err;
3028 }
3029 EXPORT_SYMBOL(netif_set_real_num_queues);
3030
3031 /**
3032 * netif_set_tso_max_size() - set the max size of TSO frames supported
3033 * @dev: netdev to update
3034 * @size: max skb->len of a TSO frame
3035 *
3036 * Set the limit on the size of TSO super-frames the device can handle.
3037 * Unless explicitly set the stack will assume the value of
3038 * %GSO_LEGACY_MAX_SIZE.
3039 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3040 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3041 {
3042 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3043 if (size < READ_ONCE(dev->gso_max_size))
3044 netif_set_gso_max_size(dev, size);
3045 }
3046 EXPORT_SYMBOL(netif_set_tso_max_size);
3047
3048 /**
3049 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3050 * @dev: netdev to update
3051 * @segs: max number of TCP segments
3052 *
3053 * Set the limit on the number of TCP segments the device can generate from
3054 * a single TSO super-frame.
3055 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3056 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3057 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3058 {
3059 dev->tso_max_segs = segs;
3060 if (segs < READ_ONCE(dev->gso_max_segs))
3061 netif_set_gso_max_segs(dev, segs);
3062 }
3063 EXPORT_SYMBOL(netif_set_tso_max_segs);
3064
3065 /**
3066 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3067 * @to: netdev to update
3068 * @from: netdev from which to copy the limits
3069 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3070 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3071 {
3072 netif_set_tso_max_size(to, from->tso_max_size);
3073 netif_set_tso_max_segs(to, from->tso_max_segs);
3074 }
3075 EXPORT_SYMBOL(netif_inherit_tso_max);
3076
3077 /**
3078 * netif_get_num_default_rss_queues - default number of RSS queues
3079 *
3080 * Default value is the number of physical cores if there are only 1 or 2, or
3081 * divided by 2 if there are more.
3082 */
netif_get_num_default_rss_queues(void)3083 int netif_get_num_default_rss_queues(void)
3084 {
3085 cpumask_var_t cpus;
3086 int cpu, count = 0;
3087
3088 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3089 return 1;
3090
3091 cpumask_copy(cpus, cpu_online_mask);
3092 for_each_cpu(cpu, cpus) {
3093 ++count;
3094 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3095 }
3096 free_cpumask_var(cpus);
3097
3098 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3099 }
3100 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3101
__netif_reschedule(struct Qdisc * q)3102 static void __netif_reschedule(struct Qdisc *q)
3103 {
3104 struct softnet_data *sd;
3105 unsigned long flags;
3106
3107 local_irq_save(flags);
3108 sd = this_cpu_ptr(&softnet_data);
3109 q->next_sched = NULL;
3110 *sd->output_queue_tailp = q;
3111 sd->output_queue_tailp = &q->next_sched;
3112 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3113 local_irq_restore(flags);
3114 }
3115
__netif_schedule(struct Qdisc * q)3116 void __netif_schedule(struct Qdisc *q)
3117 {
3118 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3119 __netif_reschedule(q);
3120 }
3121 EXPORT_SYMBOL(__netif_schedule);
3122
3123 struct dev_kfree_skb_cb {
3124 enum skb_free_reason reason;
3125 };
3126
get_kfree_skb_cb(const struct sk_buff * skb)3127 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3128 {
3129 return (struct dev_kfree_skb_cb *)skb->cb;
3130 }
3131
netif_schedule_queue(struct netdev_queue * txq)3132 void netif_schedule_queue(struct netdev_queue *txq)
3133 {
3134 rcu_read_lock();
3135 if (!netif_xmit_stopped(txq)) {
3136 struct Qdisc *q = rcu_dereference(txq->qdisc);
3137
3138 __netif_schedule(q);
3139 }
3140 rcu_read_unlock();
3141 }
3142 EXPORT_SYMBOL(netif_schedule_queue);
3143
netif_tx_wake_queue(struct netdev_queue * dev_queue)3144 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3145 {
3146 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3147 struct Qdisc *q;
3148
3149 rcu_read_lock();
3150 q = rcu_dereference(dev_queue->qdisc);
3151 __netif_schedule(q);
3152 rcu_read_unlock();
3153 }
3154 }
3155 EXPORT_SYMBOL(netif_tx_wake_queue);
3156
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3157 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3158 {
3159 unsigned long flags;
3160
3161 if (unlikely(!skb))
3162 return;
3163
3164 if (likely(refcount_read(&skb->users) == 1)) {
3165 smp_rmb();
3166 refcount_set(&skb->users, 0);
3167 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3168 return;
3169 }
3170 get_kfree_skb_cb(skb)->reason = reason;
3171 local_irq_save(flags);
3172 skb->next = __this_cpu_read(softnet_data.completion_queue);
3173 __this_cpu_write(softnet_data.completion_queue, skb);
3174 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3175 local_irq_restore(flags);
3176 }
3177 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3178
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3179 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3180 {
3181 if (in_hardirq() || irqs_disabled())
3182 __dev_kfree_skb_irq(skb, reason);
3183 else if (unlikely(reason == SKB_REASON_DROPPED))
3184 kfree_skb(skb);
3185 else
3186 consume_skb(skb);
3187 }
3188 EXPORT_SYMBOL(__dev_kfree_skb_any);
3189
3190
3191 /**
3192 * netif_device_detach - mark device as removed
3193 * @dev: network device
3194 *
3195 * Mark device as removed from system and therefore no longer available.
3196 */
netif_device_detach(struct net_device * dev)3197 void netif_device_detach(struct net_device *dev)
3198 {
3199 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3200 netif_running(dev)) {
3201 netif_tx_stop_all_queues(dev);
3202 }
3203 }
3204 EXPORT_SYMBOL(netif_device_detach);
3205
3206 /**
3207 * netif_device_attach - mark device as attached
3208 * @dev: network device
3209 *
3210 * Mark device as attached from system and restart if needed.
3211 */
netif_device_attach(struct net_device * dev)3212 void netif_device_attach(struct net_device *dev)
3213 {
3214 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3215 netif_running(dev)) {
3216 netif_tx_wake_all_queues(dev);
3217 __netdev_watchdog_up(dev);
3218 }
3219 }
3220 EXPORT_SYMBOL(netif_device_attach);
3221
3222 /*
3223 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3224 * to be used as a distribution range.
3225 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3226 static u16 skb_tx_hash(const struct net_device *dev,
3227 const struct net_device *sb_dev,
3228 struct sk_buff *skb)
3229 {
3230 u32 hash;
3231 u16 qoffset = 0;
3232 u16 qcount = dev->real_num_tx_queues;
3233
3234 if (dev->num_tc) {
3235 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3236
3237 qoffset = sb_dev->tc_to_txq[tc].offset;
3238 qcount = sb_dev->tc_to_txq[tc].count;
3239 if (unlikely(!qcount)) {
3240 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3241 sb_dev->name, qoffset, tc);
3242 qoffset = 0;
3243 qcount = dev->real_num_tx_queues;
3244 }
3245 }
3246
3247 if (skb_rx_queue_recorded(skb)) {
3248 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3249 hash = skb_get_rx_queue(skb);
3250 if (hash >= qoffset)
3251 hash -= qoffset;
3252 while (unlikely(hash >= qcount))
3253 hash -= qcount;
3254 return hash + qoffset;
3255 }
3256
3257 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3258 }
3259
skb_warn_bad_offload(const struct sk_buff * skb)3260 static void skb_warn_bad_offload(const struct sk_buff *skb)
3261 {
3262 static const netdev_features_t null_features;
3263 struct net_device *dev = skb->dev;
3264 const char *name = "";
3265
3266 if (!net_ratelimit())
3267 return;
3268
3269 if (dev) {
3270 if (dev->dev.parent)
3271 name = dev_driver_string(dev->dev.parent);
3272 else
3273 name = netdev_name(dev);
3274 }
3275 skb_dump(KERN_WARNING, skb, false);
3276 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3277 name, dev ? &dev->features : &null_features,
3278 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3279 }
3280
3281 /*
3282 * Invalidate hardware checksum when packet is to be mangled, and
3283 * complete checksum manually on outgoing path.
3284 */
skb_checksum_help(struct sk_buff * skb)3285 int skb_checksum_help(struct sk_buff *skb)
3286 {
3287 __wsum csum;
3288 int ret = 0, offset;
3289
3290 if (skb->ip_summed == CHECKSUM_COMPLETE)
3291 goto out_set_summed;
3292
3293 if (unlikely(skb_is_gso(skb))) {
3294 skb_warn_bad_offload(skb);
3295 return -EINVAL;
3296 }
3297
3298 /* Before computing a checksum, we should make sure no frag could
3299 * be modified by an external entity : checksum could be wrong.
3300 */
3301 if (skb_has_shared_frag(skb)) {
3302 ret = __skb_linearize(skb);
3303 if (ret)
3304 goto out;
3305 }
3306
3307 offset = skb_checksum_start_offset(skb);
3308 ret = -EINVAL;
3309 if (unlikely(offset >= skb_headlen(skb))) {
3310 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3311 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3312 offset, skb_headlen(skb));
3313 goto out;
3314 }
3315 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3316
3317 offset += skb->csum_offset;
3318 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3319 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3320 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3321 offset + sizeof(__sum16), skb_headlen(skb));
3322 goto out;
3323 }
3324 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3325 if (ret)
3326 goto out;
3327
3328 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3329 out_set_summed:
3330 skb->ip_summed = CHECKSUM_NONE;
3331 out:
3332 return ret;
3333 }
3334 EXPORT_SYMBOL(skb_checksum_help);
3335
skb_crc32c_csum_help(struct sk_buff * skb)3336 int skb_crc32c_csum_help(struct sk_buff *skb)
3337 {
3338 __le32 crc32c_csum;
3339 int ret = 0, offset, start;
3340
3341 if (skb->ip_summed != CHECKSUM_PARTIAL)
3342 goto out;
3343
3344 if (unlikely(skb_is_gso(skb)))
3345 goto out;
3346
3347 /* Before computing a checksum, we should make sure no frag could
3348 * be modified by an external entity : checksum could be wrong.
3349 */
3350 if (unlikely(skb_has_shared_frag(skb))) {
3351 ret = __skb_linearize(skb);
3352 if (ret)
3353 goto out;
3354 }
3355 start = skb_checksum_start_offset(skb);
3356 offset = start + offsetof(struct sctphdr, checksum);
3357 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3358 ret = -EINVAL;
3359 goto out;
3360 }
3361
3362 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3363 if (ret)
3364 goto out;
3365
3366 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3367 skb->len - start, ~(__u32)0,
3368 crc32c_csum_stub));
3369 *(__le32 *)(skb->data + offset) = crc32c_csum;
3370 skb->ip_summed = CHECKSUM_NONE;
3371 skb->csum_not_inet = 0;
3372 out:
3373 return ret;
3374 }
3375
skb_network_protocol(struct sk_buff * skb,int * depth)3376 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3377 {
3378 __be16 type = skb->protocol;
3379
3380 /* Tunnel gso handlers can set protocol to ethernet. */
3381 if (type == htons(ETH_P_TEB)) {
3382 struct ethhdr *eth;
3383
3384 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3385 return 0;
3386
3387 eth = (struct ethhdr *)skb->data;
3388 type = eth->h_proto;
3389 }
3390
3391 return vlan_get_protocol_and_depth(skb, type, depth);
3392 }
3393
3394 /* openvswitch calls this on rx path, so we need a different check.
3395 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3396 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3397 {
3398 if (tx_path)
3399 return skb->ip_summed != CHECKSUM_PARTIAL &&
3400 skb->ip_summed != CHECKSUM_UNNECESSARY;
3401
3402 return skb->ip_summed == CHECKSUM_NONE;
3403 }
3404
3405 /**
3406 * __skb_gso_segment - Perform segmentation on skb.
3407 * @skb: buffer to segment
3408 * @features: features for the output path (see dev->features)
3409 * @tx_path: whether it is called in TX path
3410 *
3411 * This function segments the given skb and returns a list of segments.
3412 *
3413 * It may return NULL if the skb requires no segmentation. This is
3414 * only possible when GSO is used for verifying header integrity.
3415 *
3416 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3417 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3418 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3419 netdev_features_t features, bool tx_path)
3420 {
3421 struct sk_buff *segs;
3422
3423 if (unlikely(skb_needs_check(skb, tx_path))) {
3424 int err;
3425
3426 /* We're going to init ->check field in TCP or UDP header */
3427 err = skb_cow_head(skb, 0);
3428 if (err < 0)
3429 return ERR_PTR(err);
3430 }
3431
3432 /* Only report GSO partial support if it will enable us to
3433 * support segmentation on this frame without needing additional
3434 * work.
3435 */
3436 if (features & NETIF_F_GSO_PARTIAL) {
3437 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3438 struct net_device *dev = skb->dev;
3439
3440 partial_features |= dev->features & dev->gso_partial_features;
3441 if (!skb_gso_ok(skb, features | partial_features))
3442 features &= ~NETIF_F_GSO_PARTIAL;
3443 }
3444
3445 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3446 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3447
3448 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3449 SKB_GSO_CB(skb)->encap_level = 0;
3450
3451 skb_reset_mac_header(skb);
3452 skb_reset_mac_len(skb);
3453
3454 segs = skb_mac_gso_segment(skb, features);
3455
3456 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3457 skb_warn_bad_offload(skb);
3458
3459 return segs;
3460 }
3461 EXPORT_SYMBOL(__skb_gso_segment);
3462
3463 /* Take action when hardware reception checksum errors are detected. */
3464 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3465 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3466 {
3467 netdev_err(dev, "hw csum failure\n");
3468 skb_dump(KERN_ERR, skb, true);
3469 dump_stack();
3470 }
3471
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3472 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3473 {
3474 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3475 }
3476 EXPORT_SYMBOL(netdev_rx_csum_fault);
3477 #endif
3478
3479 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3480 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3481 {
3482 #ifdef CONFIG_HIGHMEM
3483 int i;
3484
3485 if (!(dev->features & NETIF_F_HIGHDMA)) {
3486 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3487 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3488
3489 if (PageHighMem(skb_frag_page(frag)))
3490 return 1;
3491 }
3492 }
3493 #endif
3494 return 0;
3495 }
3496
3497 /* If MPLS offload request, verify we are testing hardware MPLS features
3498 * instead of standard features for the netdev.
3499 */
3500 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3501 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3502 netdev_features_t features,
3503 __be16 type)
3504 {
3505 if (eth_p_mpls(type))
3506 features &= skb->dev->mpls_features;
3507
3508 return features;
3509 }
3510 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3511 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3512 netdev_features_t features,
3513 __be16 type)
3514 {
3515 return features;
3516 }
3517 #endif
3518
harmonize_features(struct sk_buff * skb,netdev_features_t features)3519 static netdev_features_t harmonize_features(struct sk_buff *skb,
3520 netdev_features_t features)
3521 {
3522 __be16 type;
3523
3524 type = skb_network_protocol(skb, NULL);
3525 features = net_mpls_features(skb, features, type);
3526
3527 if (skb->ip_summed != CHECKSUM_NONE &&
3528 !can_checksum_protocol(features, type)) {
3529 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3530 }
3531 if (illegal_highdma(skb->dev, skb))
3532 features &= ~NETIF_F_SG;
3533
3534 return features;
3535 }
3536
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3537 netdev_features_t passthru_features_check(struct sk_buff *skb,
3538 struct net_device *dev,
3539 netdev_features_t features)
3540 {
3541 return features;
3542 }
3543 EXPORT_SYMBOL(passthru_features_check);
3544
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3545 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3546 struct net_device *dev,
3547 netdev_features_t features)
3548 {
3549 return vlan_features_check(skb, features);
3550 }
3551
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3552 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3553 struct net_device *dev,
3554 netdev_features_t features)
3555 {
3556 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3557
3558 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3559 return features & ~NETIF_F_GSO_MASK;
3560
3561 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3562 return features & ~NETIF_F_GSO_MASK;
3563
3564 if (!skb_shinfo(skb)->gso_type) {
3565 skb_warn_bad_offload(skb);
3566 return features & ~NETIF_F_GSO_MASK;
3567 }
3568
3569 /* Support for GSO partial features requires software
3570 * intervention before we can actually process the packets
3571 * so we need to strip support for any partial features now
3572 * and we can pull them back in after we have partially
3573 * segmented the frame.
3574 */
3575 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3576 features &= ~dev->gso_partial_features;
3577
3578 /* Make sure to clear the IPv4 ID mangling feature if the
3579 * IPv4 header has the potential to be fragmented.
3580 */
3581 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3582 struct iphdr *iph = skb->encapsulation ?
3583 inner_ip_hdr(skb) : ip_hdr(skb);
3584
3585 if (!(iph->frag_off & htons(IP_DF)))
3586 features &= ~NETIF_F_TSO_MANGLEID;
3587 }
3588
3589 return features;
3590 }
3591
netif_skb_features(struct sk_buff * skb)3592 netdev_features_t netif_skb_features(struct sk_buff *skb)
3593 {
3594 struct net_device *dev = skb->dev;
3595 netdev_features_t features = dev->features;
3596
3597 if (skb_is_gso(skb))
3598 features = gso_features_check(skb, dev, features);
3599
3600 /* If encapsulation offload request, verify we are testing
3601 * hardware encapsulation features instead of standard
3602 * features for the netdev
3603 */
3604 if (skb->encapsulation)
3605 features &= dev->hw_enc_features;
3606
3607 if (skb_vlan_tagged(skb))
3608 features = netdev_intersect_features(features,
3609 dev->vlan_features |
3610 NETIF_F_HW_VLAN_CTAG_TX |
3611 NETIF_F_HW_VLAN_STAG_TX);
3612
3613 if (dev->netdev_ops->ndo_features_check)
3614 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3615 features);
3616 else
3617 features &= dflt_features_check(skb, dev, features);
3618
3619 return harmonize_features(skb, features);
3620 }
3621 EXPORT_SYMBOL(netif_skb_features);
3622
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3623 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3624 struct netdev_queue *txq, bool more)
3625 {
3626 unsigned int len;
3627 int rc;
3628
3629 if (dev_nit_active(dev))
3630 dev_queue_xmit_nit(skb, dev);
3631
3632 len = skb->len;
3633 trace_net_dev_start_xmit(skb, dev);
3634 rc = netdev_start_xmit(skb, dev, txq, more);
3635 trace_net_dev_xmit(skb, rc, dev, len);
3636
3637 return rc;
3638 }
3639
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3640 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3641 struct netdev_queue *txq, int *ret)
3642 {
3643 struct sk_buff *skb = first;
3644 int rc = NETDEV_TX_OK;
3645
3646 while (skb) {
3647 struct sk_buff *next = skb->next;
3648
3649 skb_mark_not_on_list(skb);
3650 rc = xmit_one(skb, dev, txq, next != NULL);
3651 if (unlikely(!dev_xmit_complete(rc))) {
3652 skb->next = next;
3653 goto out;
3654 }
3655
3656 skb = next;
3657 if (netif_tx_queue_stopped(txq) && skb) {
3658 rc = NETDEV_TX_BUSY;
3659 break;
3660 }
3661 }
3662
3663 out:
3664 *ret = rc;
3665 return skb;
3666 }
3667
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3668 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3669 netdev_features_t features)
3670 {
3671 if (skb_vlan_tag_present(skb) &&
3672 !vlan_hw_offload_capable(features, skb->vlan_proto))
3673 skb = __vlan_hwaccel_push_inside(skb);
3674 return skb;
3675 }
3676
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3677 int skb_csum_hwoffload_help(struct sk_buff *skb,
3678 const netdev_features_t features)
3679 {
3680 if (unlikely(skb_csum_is_sctp(skb)))
3681 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3682 skb_crc32c_csum_help(skb);
3683
3684 if (features & NETIF_F_HW_CSUM)
3685 return 0;
3686
3687 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3688 switch (skb->csum_offset) {
3689 case offsetof(struct tcphdr, check):
3690 case offsetof(struct udphdr, check):
3691 return 0;
3692 }
3693 }
3694
3695 return skb_checksum_help(skb);
3696 }
3697 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3698
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3699 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3700 {
3701 netdev_features_t features;
3702
3703 features = netif_skb_features(skb);
3704 skb = validate_xmit_vlan(skb, features);
3705 if (unlikely(!skb))
3706 goto out_null;
3707
3708 skb = sk_validate_xmit_skb(skb, dev);
3709 if (unlikely(!skb))
3710 goto out_null;
3711
3712 if (netif_needs_gso(skb, features)) {
3713 struct sk_buff *segs;
3714
3715 segs = skb_gso_segment(skb, features);
3716 if (IS_ERR(segs)) {
3717 goto out_kfree_skb;
3718 } else if (segs) {
3719 consume_skb(skb);
3720 skb = segs;
3721 }
3722 } else {
3723 if (skb_needs_linearize(skb, features) &&
3724 __skb_linearize(skb))
3725 goto out_kfree_skb;
3726
3727 /* If packet is not checksummed and device does not
3728 * support checksumming for this protocol, complete
3729 * checksumming here.
3730 */
3731 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3732 if (skb->encapsulation)
3733 skb_set_inner_transport_header(skb,
3734 skb_checksum_start_offset(skb));
3735 else
3736 skb_set_transport_header(skb,
3737 skb_checksum_start_offset(skb));
3738 if (skb_csum_hwoffload_help(skb, features))
3739 goto out_kfree_skb;
3740 }
3741 }
3742
3743 skb = validate_xmit_xfrm(skb, features, again);
3744
3745 return skb;
3746
3747 out_kfree_skb:
3748 kfree_skb(skb);
3749 out_null:
3750 dev_core_stats_tx_dropped_inc(dev);
3751 return NULL;
3752 }
3753
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3754 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3755 {
3756 struct sk_buff *next, *head = NULL, *tail;
3757
3758 for (; skb != NULL; skb = next) {
3759 next = skb->next;
3760 skb_mark_not_on_list(skb);
3761
3762 /* in case skb wont be segmented, point to itself */
3763 skb->prev = skb;
3764
3765 skb = validate_xmit_skb(skb, dev, again);
3766 if (!skb)
3767 continue;
3768
3769 if (!head)
3770 head = skb;
3771 else
3772 tail->next = skb;
3773 /* If skb was segmented, skb->prev points to
3774 * the last segment. If not, it still contains skb.
3775 */
3776 tail = skb->prev;
3777 }
3778 return head;
3779 }
3780 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3781
qdisc_pkt_len_init(struct sk_buff * skb)3782 static void qdisc_pkt_len_init(struct sk_buff *skb)
3783 {
3784 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3785
3786 qdisc_skb_cb(skb)->pkt_len = skb->len;
3787
3788 /* To get more precise estimation of bytes sent on wire,
3789 * we add to pkt_len the headers size of all segments
3790 */
3791 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3792 unsigned int hdr_len;
3793 u16 gso_segs = shinfo->gso_segs;
3794
3795 /* mac layer + network layer */
3796 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3797
3798 /* + transport layer */
3799 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3800 const struct tcphdr *th;
3801 struct tcphdr _tcphdr;
3802
3803 th = skb_header_pointer(skb, skb_transport_offset(skb),
3804 sizeof(_tcphdr), &_tcphdr);
3805 if (likely(th))
3806 hdr_len += __tcp_hdrlen(th);
3807 } else {
3808 struct udphdr _udphdr;
3809
3810 if (skb_header_pointer(skb, skb_transport_offset(skb),
3811 sizeof(_udphdr), &_udphdr))
3812 hdr_len += sizeof(struct udphdr);
3813 }
3814
3815 if (shinfo->gso_type & SKB_GSO_DODGY)
3816 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3817 shinfo->gso_size);
3818
3819 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3820 }
3821 }
3822
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3823 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3824 struct sk_buff **to_free,
3825 struct netdev_queue *txq)
3826 {
3827 int rc;
3828
3829 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3830 if (rc == NET_XMIT_SUCCESS)
3831 trace_qdisc_enqueue(q, txq, skb);
3832 return rc;
3833 }
3834
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3836 struct net_device *dev,
3837 struct netdev_queue *txq)
3838 {
3839 spinlock_t *root_lock = qdisc_lock(q);
3840 struct sk_buff *to_free = NULL;
3841 bool contended;
3842 int rc;
3843
3844 qdisc_calculate_pkt_len(skb, q);
3845
3846 if (q->flags & TCQ_F_NOLOCK) {
3847 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3848 qdisc_run_begin(q)) {
3849 /* Retest nolock_qdisc_is_empty() within the protection
3850 * of q->seqlock to protect from racing with requeuing.
3851 */
3852 if (unlikely(!nolock_qdisc_is_empty(q))) {
3853 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3854 __qdisc_run(q);
3855 qdisc_run_end(q);
3856
3857 goto no_lock_out;
3858 }
3859
3860 qdisc_bstats_cpu_update(q, skb);
3861 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3862 !nolock_qdisc_is_empty(q))
3863 __qdisc_run(q);
3864
3865 qdisc_run_end(q);
3866 return NET_XMIT_SUCCESS;
3867 }
3868
3869 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870 qdisc_run(q);
3871
3872 no_lock_out:
3873 if (unlikely(to_free))
3874 kfree_skb_list_reason(to_free,
3875 SKB_DROP_REASON_QDISC_DROP);
3876 return rc;
3877 }
3878
3879 /*
3880 * Heuristic to force contended enqueues to serialize on a
3881 * separate lock before trying to get qdisc main lock.
3882 * This permits qdisc->running owner to get the lock more
3883 * often and dequeue packets faster.
3884 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3885 * and then other tasks will only enqueue packets. The packets will be
3886 * sent after the qdisc owner is scheduled again. To prevent this
3887 * scenario the task always serialize on the lock.
3888 */
3889 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3890 if (unlikely(contended))
3891 spin_lock(&q->busylock);
3892
3893 spin_lock(root_lock);
3894 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3895 __qdisc_drop(skb, &to_free);
3896 rc = NET_XMIT_DROP;
3897 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3898 qdisc_run_begin(q)) {
3899 /*
3900 * This is a work-conserving queue; there are no old skbs
3901 * waiting to be sent out; and the qdisc is not running -
3902 * xmit the skb directly.
3903 */
3904
3905 qdisc_bstats_update(q, skb);
3906
3907 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3908 if (unlikely(contended)) {
3909 spin_unlock(&q->busylock);
3910 contended = false;
3911 }
3912 __qdisc_run(q);
3913 }
3914
3915 qdisc_run_end(q);
3916 rc = NET_XMIT_SUCCESS;
3917 } else {
3918 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3919 if (qdisc_run_begin(q)) {
3920 if (unlikely(contended)) {
3921 spin_unlock(&q->busylock);
3922 contended = false;
3923 }
3924 __qdisc_run(q);
3925 qdisc_run_end(q);
3926 }
3927 }
3928 spin_unlock(root_lock);
3929 if (unlikely(to_free))
3930 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3931 if (unlikely(contended))
3932 spin_unlock(&q->busylock);
3933 return rc;
3934 }
3935
3936 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3937 static void skb_update_prio(struct sk_buff *skb)
3938 {
3939 const struct netprio_map *map;
3940 const struct sock *sk;
3941 unsigned int prioidx;
3942
3943 if (skb->priority)
3944 return;
3945 map = rcu_dereference_bh(skb->dev->priomap);
3946 if (!map)
3947 return;
3948 sk = skb_to_full_sk(skb);
3949 if (!sk)
3950 return;
3951
3952 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3953
3954 if (prioidx < map->priomap_len)
3955 skb->priority = map->priomap[prioidx];
3956 }
3957 #else
3958 #define skb_update_prio(skb)
3959 #endif
3960
3961 /**
3962 * dev_loopback_xmit - loop back @skb
3963 * @net: network namespace this loopback is happening in
3964 * @sk: sk needed to be a netfilter okfn
3965 * @skb: buffer to transmit
3966 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3967 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3968 {
3969 skb_reset_mac_header(skb);
3970 __skb_pull(skb, skb_network_offset(skb));
3971 skb->pkt_type = PACKET_LOOPBACK;
3972 if (skb->ip_summed == CHECKSUM_NONE)
3973 skb->ip_summed = CHECKSUM_UNNECESSARY;
3974 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3975 skb_dst_force(skb);
3976 netif_rx(skb);
3977 return 0;
3978 }
3979 EXPORT_SYMBOL(dev_loopback_xmit);
3980
3981 #ifdef CONFIG_NET_EGRESS
3982 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3983 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3984 {
3985 #ifdef CONFIG_NET_CLS_ACT
3986 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3987 struct tcf_result cl_res;
3988
3989 if (!miniq)
3990 return skb;
3991
3992 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3993 tc_skb_cb(skb)->mru = 0;
3994 tc_skb_cb(skb)->post_ct = false;
3995 mini_qdisc_bstats_cpu_update(miniq, skb);
3996
3997 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3998 case TC_ACT_OK:
3999 case TC_ACT_RECLASSIFY:
4000 skb->tc_index = TC_H_MIN(cl_res.classid);
4001 break;
4002 case TC_ACT_SHOT:
4003 mini_qdisc_qstats_cpu_drop(miniq);
4004 *ret = NET_XMIT_DROP;
4005 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4006 return NULL;
4007 case TC_ACT_STOLEN:
4008 case TC_ACT_QUEUED:
4009 case TC_ACT_TRAP:
4010 *ret = NET_XMIT_SUCCESS;
4011 consume_skb(skb);
4012 return NULL;
4013 case TC_ACT_REDIRECT:
4014 /* No need to push/pop skb's mac_header here on egress! */
4015 skb_do_redirect(skb);
4016 *ret = NET_XMIT_SUCCESS;
4017 return NULL;
4018 default:
4019 break;
4020 }
4021 #endif /* CONFIG_NET_CLS_ACT */
4022
4023 return skb;
4024 }
4025
4026 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4027 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4028 {
4029 int qm = skb_get_queue_mapping(skb);
4030
4031 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4032 }
4033
netdev_xmit_txqueue_skipped(void)4034 static bool netdev_xmit_txqueue_skipped(void)
4035 {
4036 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4037 }
4038
netdev_xmit_skip_txqueue(bool skip)4039 void netdev_xmit_skip_txqueue(bool skip)
4040 {
4041 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4042 }
4043 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4044 #endif /* CONFIG_NET_EGRESS */
4045
4046 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4047 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4048 struct xps_dev_maps *dev_maps, unsigned int tci)
4049 {
4050 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4051 struct xps_map *map;
4052 int queue_index = -1;
4053
4054 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4055 return queue_index;
4056
4057 tci *= dev_maps->num_tc;
4058 tci += tc;
4059
4060 map = rcu_dereference(dev_maps->attr_map[tci]);
4061 if (map) {
4062 if (map->len == 1)
4063 queue_index = map->queues[0];
4064 else
4065 queue_index = map->queues[reciprocal_scale(
4066 skb_get_hash(skb), map->len)];
4067 if (unlikely(queue_index >= dev->real_num_tx_queues))
4068 queue_index = -1;
4069 }
4070 return queue_index;
4071 }
4072 #endif
4073
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4074 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4075 struct sk_buff *skb)
4076 {
4077 #ifdef CONFIG_XPS
4078 struct xps_dev_maps *dev_maps;
4079 struct sock *sk = skb->sk;
4080 int queue_index = -1;
4081
4082 if (!static_key_false(&xps_needed))
4083 return -1;
4084
4085 rcu_read_lock();
4086 if (!static_key_false(&xps_rxqs_needed))
4087 goto get_cpus_map;
4088
4089 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4090 if (dev_maps) {
4091 int tci = sk_rx_queue_get(sk);
4092
4093 if (tci >= 0)
4094 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4095 tci);
4096 }
4097
4098 get_cpus_map:
4099 if (queue_index < 0) {
4100 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4101 if (dev_maps) {
4102 unsigned int tci = skb->sender_cpu - 1;
4103
4104 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4105 tci);
4106 }
4107 }
4108 rcu_read_unlock();
4109
4110 return queue_index;
4111 #else
4112 return -1;
4113 #endif
4114 }
4115
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4116 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4117 struct net_device *sb_dev)
4118 {
4119 return 0;
4120 }
4121 EXPORT_SYMBOL(dev_pick_tx_zero);
4122
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4123 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4124 struct net_device *sb_dev)
4125 {
4126 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4127 }
4128 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4129
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4130 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4131 struct net_device *sb_dev)
4132 {
4133 struct sock *sk = skb->sk;
4134 int queue_index = sk_tx_queue_get(sk);
4135
4136 sb_dev = sb_dev ? : dev;
4137
4138 if (queue_index < 0 || skb->ooo_okay ||
4139 queue_index >= dev->real_num_tx_queues) {
4140 int new_index = get_xps_queue(dev, sb_dev, skb);
4141
4142 if (new_index < 0)
4143 new_index = skb_tx_hash(dev, sb_dev, skb);
4144
4145 if (queue_index != new_index && sk &&
4146 sk_fullsock(sk) &&
4147 rcu_access_pointer(sk->sk_dst_cache))
4148 sk_tx_queue_set(sk, new_index);
4149
4150 queue_index = new_index;
4151 }
4152
4153 return queue_index;
4154 }
4155 EXPORT_SYMBOL(netdev_pick_tx);
4156
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4157 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4158 struct sk_buff *skb,
4159 struct net_device *sb_dev)
4160 {
4161 int queue_index = 0;
4162
4163 #ifdef CONFIG_XPS
4164 u32 sender_cpu = skb->sender_cpu - 1;
4165
4166 if (sender_cpu >= (u32)NR_CPUS)
4167 skb->sender_cpu = raw_smp_processor_id() + 1;
4168 #endif
4169
4170 if (dev->real_num_tx_queues != 1) {
4171 const struct net_device_ops *ops = dev->netdev_ops;
4172
4173 if (ops->ndo_select_queue)
4174 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4175 else
4176 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4177
4178 queue_index = netdev_cap_txqueue(dev, queue_index);
4179 }
4180
4181 skb_set_queue_mapping(skb, queue_index);
4182 return netdev_get_tx_queue(dev, queue_index);
4183 }
4184
4185 /**
4186 * __dev_queue_xmit() - transmit a buffer
4187 * @skb: buffer to transmit
4188 * @sb_dev: suboordinate device used for L2 forwarding offload
4189 *
4190 * Queue a buffer for transmission to a network device. The caller must
4191 * have set the device and priority and built the buffer before calling
4192 * this function. The function can be called from an interrupt.
4193 *
4194 * When calling this method, interrupts MUST be enabled. This is because
4195 * the BH enable code must have IRQs enabled so that it will not deadlock.
4196 *
4197 * Regardless of the return value, the skb is consumed, so it is currently
4198 * difficult to retry a send to this method. (You can bump the ref count
4199 * before sending to hold a reference for retry if you are careful.)
4200 *
4201 * Return:
4202 * * 0 - buffer successfully transmitted
4203 * * positive qdisc return code - NET_XMIT_DROP etc.
4204 * * negative errno - other errors
4205 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4206 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4207 {
4208 struct net_device *dev = skb->dev;
4209 struct netdev_queue *txq = NULL;
4210 struct Qdisc *q;
4211 int rc = -ENOMEM;
4212 bool again = false;
4213
4214 skb_reset_mac_header(skb);
4215 skb_assert_len(skb);
4216
4217 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4218 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4219
4220 /* Disable soft irqs for various locks below. Also
4221 * stops preemption for RCU.
4222 */
4223 rcu_read_lock_bh();
4224
4225 skb_update_prio(skb);
4226
4227 qdisc_pkt_len_init(skb);
4228 #ifdef CONFIG_NET_CLS_ACT
4229 skb->tc_at_ingress = 0;
4230 #endif
4231 #ifdef CONFIG_NET_EGRESS
4232 if (static_branch_unlikely(&egress_needed_key)) {
4233 if (nf_hook_egress_active()) {
4234 skb = nf_hook_egress(skb, &rc, dev);
4235 if (!skb)
4236 goto out;
4237 }
4238
4239 netdev_xmit_skip_txqueue(false);
4240
4241 nf_skip_egress(skb, true);
4242 skb = sch_handle_egress(skb, &rc, dev);
4243 if (!skb)
4244 goto out;
4245 nf_skip_egress(skb, false);
4246
4247 if (netdev_xmit_txqueue_skipped())
4248 txq = netdev_tx_queue_mapping(dev, skb);
4249 }
4250 #endif
4251 /* If device/qdisc don't need skb->dst, release it right now while
4252 * its hot in this cpu cache.
4253 */
4254 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4255 skb_dst_drop(skb);
4256 else
4257 skb_dst_force(skb);
4258
4259 if (!txq)
4260 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4261
4262 q = rcu_dereference_bh(txq->qdisc);
4263
4264 trace_net_dev_queue(skb);
4265 if (q->enqueue) {
4266 rc = __dev_xmit_skb(skb, q, dev, txq);
4267 goto out;
4268 }
4269
4270 /* The device has no queue. Common case for software devices:
4271 * loopback, all the sorts of tunnels...
4272
4273 * Really, it is unlikely that netif_tx_lock protection is necessary
4274 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4275 * counters.)
4276 * However, it is possible, that they rely on protection
4277 * made by us here.
4278
4279 * Check this and shot the lock. It is not prone from deadlocks.
4280 *Either shot noqueue qdisc, it is even simpler 8)
4281 */
4282 if (dev->flags & IFF_UP) {
4283 int cpu = smp_processor_id(); /* ok because BHs are off */
4284
4285 /* Other cpus might concurrently change txq->xmit_lock_owner
4286 * to -1 or to their cpu id, but not to our id.
4287 */
4288 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4289 if (dev_xmit_recursion())
4290 goto recursion_alert;
4291
4292 skb = validate_xmit_skb(skb, dev, &again);
4293 if (!skb)
4294 goto out;
4295
4296 HARD_TX_LOCK(dev, txq, cpu);
4297
4298 if (!netif_xmit_stopped(txq)) {
4299 dev_xmit_recursion_inc();
4300 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4301 dev_xmit_recursion_dec();
4302 if (dev_xmit_complete(rc)) {
4303 HARD_TX_UNLOCK(dev, txq);
4304 goto out;
4305 }
4306 }
4307 HARD_TX_UNLOCK(dev, txq);
4308 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4309 dev->name);
4310 } else {
4311 /* Recursion is detected! It is possible,
4312 * unfortunately
4313 */
4314 recursion_alert:
4315 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4316 dev->name);
4317 }
4318 }
4319
4320 rc = -ENETDOWN;
4321 rcu_read_unlock_bh();
4322
4323 dev_core_stats_tx_dropped_inc(dev);
4324 kfree_skb_list(skb);
4325 return rc;
4326 out:
4327 rcu_read_unlock_bh();
4328 return rc;
4329 }
4330 EXPORT_SYMBOL(__dev_queue_xmit);
4331
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4332 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4333 {
4334 struct net_device *dev = skb->dev;
4335 struct sk_buff *orig_skb = skb;
4336 struct netdev_queue *txq;
4337 int ret = NETDEV_TX_BUSY;
4338 bool again = false;
4339
4340 if (unlikely(!netif_running(dev) ||
4341 !netif_carrier_ok(dev)))
4342 goto drop;
4343
4344 skb = validate_xmit_skb_list(skb, dev, &again);
4345 if (skb != orig_skb)
4346 goto drop;
4347
4348 skb_set_queue_mapping(skb, queue_id);
4349 txq = skb_get_tx_queue(dev, skb);
4350
4351 local_bh_disable();
4352
4353 dev_xmit_recursion_inc();
4354 HARD_TX_LOCK(dev, txq, smp_processor_id());
4355 if (!netif_xmit_frozen_or_drv_stopped(txq))
4356 ret = netdev_start_xmit(skb, dev, txq, false);
4357 HARD_TX_UNLOCK(dev, txq);
4358 dev_xmit_recursion_dec();
4359
4360 local_bh_enable();
4361 return ret;
4362 drop:
4363 dev_core_stats_tx_dropped_inc(dev);
4364 kfree_skb_list(skb);
4365 return NET_XMIT_DROP;
4366 }
4367 EXPORT_SYMBOL(__dev_direct_xmit);
4368
4369 /*************************************************************************
4370 * Receiver routines
4371 *************************************************************************/
4372
4373 int netdev_max_backlog __read_mostly = 1000;
4374 EXPORT_SYMBOL(netdev_max_backlog);
4375
4376 int netdev_tstamp_prequeue __read_mostly = 1;
4377 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4378 int netdev_budget __read_mostly = 300;
4379 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4380 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4381 int weight_p __read_mostly = 64; /* old backlog weight */
4382 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4383 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4384 int dev_rx_weight __read_mostly = 64;
4385 int dev_tx_weight __read_mostly = 64;
4386
4387 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4388 static inline void ____napi_schedule(struct softnet_data *sd,
4389 struct napi_struct *napi)
4390 {
4391 struct task_struct *thread;
4392
4393 lockdep_assert_irqs_disabled();
4394
4395 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4396 /* Paired with smp_mb__before_atomic() in
4397 * napi_enable()/dev_set_threaded().
4398 * Use READ_ONCE() to guarantee a complete
4399 * read on napi->thread. Only call
4400 * wake_up_process() when it's not NULL.
4401 */
4402 thread = READ_ONCE(napi->thread);
4403 if (thread) {
4404 /* Avoid doing set_bit() if the thread is in
4405 * INTERRUPTIBLE state, cause napi_thread_wait()
4406 * makes sure to proceed with napi polling
4407 * if the thread is explicitly woken from here.
4408 */
4409 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4410 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4411 wake_up_process(thread);
4412 return;
4413 }
4414 }
4415
4416 list_add_tail(&napi->poll_list, &sd->poll_list);
4417 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4418 }
4419
4420 #ifdef CONFIG_RPS
4421
4422 /* One global table that all flow-based protocols share. */
4423 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4424 EXPORT_SYMBOL(rps_sock_flow_table);
4425 u32 rps_cpu_mask __read_mostly;
4426 EXPORT_SYMBOL(rps_cpu_mask);
4427
4428 struct static_key_false rps_needed __read_mostly;
4429 EXPORT_SYMBOL(rps_needed);
4430 struct static_key_false rfs_needed __read_mostly;
4431 EXPORT_SYMBOL(rfs_needed);
4432
4433 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4434 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4435 struct rps_dev_flow *rflow, u16 next_cpu)
4436 {
4437 if (next_cpu < nr_cpu_ids) {
4438 #ifdef CONFIG_RFS_ACCEL
4439 struct netdev_rx_queue *rxqueue;
4440 struct rps_dev_flow_table *flow_table;
4441 struct rps_dev_flow *old_rflow;
4442 u32 flow_id;
4443 u16 rxq_index;
4444 int rc;
4445
4446 /* Should we steer this flow to a different hardware queue? */
4447 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4448 !(dev->features & NETIF_F_NTUPLE))
4449 goto out;
4450 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4451 if (rxq_index == skb_get_rx_queue(skb))
4452 goto out;
4453
4454 rxqueue = dev->_rx + rxq_index;
4455 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4456 if (!flow_table)
4457 goto out;
4458 flow_id = skb_get_hash(skb) & flow_table->mask;
4459 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4460 rxq_index, flow_id);
4461 if (rc < 0)
4462 goto out;
4463 old_rflow = rflow;
4464 rflow = &flow_table->flows[flow_id];
4465 rflow->filter = rc;
4466 if (old_rflow->filter == rflow->filter)
4467 old_rflow->filter = RPS_NO_FILTER;
4468 out:
4469 #endif
4470 rflow->last_qtail =
4471 per_cpu(softnet_data, next_cpu).input_queue_head;
4472 }
4473
4474 rflow->cpu = next_cpu;
4475 return rflow;
4476 }
4477
4478 /*
4479 * get_rps_cpu is called from netif_receive_skb and returns the target
4480 * CPU from the RPS map of the receiving queue for a given skb.
4481 * rcu_read_lock must be held on entry.
4482 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4483 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4484 struct rps_dev_flow **rflowp)
4485 {
4486 const struct rps_sock_flow_table *sock_flow_table;
4487 struct netdev_rx_queue *rxqueue = dev->_rx;
4488 struct rps_dev_flow_table *flow_table;
4489 struct rps_map *map;
4490 int cpu = -1;
4491 u32 tcpu;
4492 u32 hash;
4493
4494 if (skb_rx_queue_recorded(skb)) {
4495 u16 index = skb_get_rx_queue(skb);
4496
4497 if (unlikely(index >= dev->real_num_rx_queues)) {
4498 WARN_ONCE(dev->real_num_rx_queues > 1,
4499 "%s received packet on queue %u, but number "
4500 "of RX queues is %u\n",
4501 dev->name, index, dev->real_num_rx_queues);
4502 goto done;
4503 }
4504 rxqueue += index;
4505 }
4506
4507 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4508
4509 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4510 map = rcu_dereference(rxqueue->rps_map);
4511 if (!flow_table && !map)
4512 goto done;
4513
4514 skb_reset_network_header(skb);
4515 hash = skb_get_hash(skb);
4516 if (!hash)
4517 goto done;
4518
4519 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4520 if (flow_table && sock_flow_table) {
4521 struct rps_dev_flow *rflow;
4522 u32 next_cpu;
4523 u32 ident;
4524
4525 /* First check into global flow table if there is a match.
4526 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4527 */
4528 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4529 if ((ident ^ hash) & ~rps_cpu_mask)
4530 goto try_rps;
4531
4532 next_cpu = ident & rps_cpu_mask;
4533
4534 /* OK, now we know there is a match,
4535 * we can look at the local (per receive queue) flow table
4536 */
4537 rflow = &flow_table->flows[hash & flow_table->mask];
4538 tcpu = rflow->cpu;
4539
4540 /*
4541 * If the desired CPU (where last recvmsg was done) is
4542 * different from current CPU (one in the rx-queue flow
4543 * table entry), switch if one of the following holds:
4544 * - Current CPU is unset (>= nr_cpu_ids).
4545 * - Current CPU is offline.
4546 * - The current CPU's queue tail has advanced beyond the
4547 * last packet that was enqueued using this table entry.
4548 * This guarantees that all previous packets for the flow
4549 * have been dequeued, thus preserving in order delivery.
4550 */
4551 if (unlikely(tcpu != next_cpu) &&
4552 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4553 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4554 rflow->last_qtail)) >= 0)) {
4555 tcpu = next_cpu;
4556 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4557 }
4558
4559 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4560 *rflowp = rflow;
4561 cpu = tcpu;
4562 goto done;
4563 }
4564 }
4565
4566 try_rps:
4567
4568 if (map) {
4569 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4570 if (cpu_online(tcpu)) {
4571 cpu = tcpu;
4572 goto done;
4573 }
4574 }
4575
4576 done:
4577 return cpu;
4578 }
4579
4580 #ifdef CONFIG_RFS_ACCEL
4581
4582 /**
4583 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4584 * @dev: Device on which the filter was set
4585 * @rxq_index: RX queue index
4586 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4587 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4588 *
4589 * Drivers that implement ndo_rx_flow_steer() should periodically call
4590 * this function for each installed filter and remove the filters for
4591 * which it returns %true.
4592 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4593 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4594 u32 flow_id, u16 filter_id)
4595 {
4596 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4597 struct rps_dev_flow_table *flow_table;
4598 struct rps_dev_flow *rflow;
4599 bool expire = true;
4600 unsigned int cpu;
4601
4602 rcu_read_lock();
4603 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4604 if (flow_table && flow_id <= flow_table->mask) {
4605 rflow = &flow_table->flows[flow_id];
4606 cpu = READ_ONCE(rflow->cpu);
4607 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4608 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4609 rflow->last_qtail) <
4610 (int)(10 * flow_table->mask)))
4611 expire = false;
4612 }
4613 rcu_read_unlock();
4614 return expire;
4615 }
4616 EXPORT_SYMBOL(rps_may_expire_flow);
4617
4618 #endif /* CONFIG_RFS_ACCEL */
4619
4620 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4621 static void rps_trigger_softirq(void *data)
4622 {
4623 struct softnet_data *sd = data;
4624
4625 ____napi_schedule(sd, &sd->backlog);
4626 sd->received_rps++;
4627 }
4628
4629 #endif /* CONFIG_RPS */
4630
4631 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4632 static void trigger_rx_softirq(void *data)
4633 {
4634 struct softnet_data *sd = data;
4635
4636 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4637 smp_store_release(&sd->defer_ipi_scheduled, 0);
4638 }
4639
4640 /*
4641 * Check if this softnet_data structure is another cpu one
4642 * If yes, queue it to our IPI list and return 1
4643 * If no, return 0
4644 */
napi_schedule_rps(struct softnet_data * sd)4645 static int napi_schedule_rps(struct softnet_data *sd)
4646 {
4647 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4648
4649 #ifdef CONFIG_RPS
4650 if (sd != mysd) {
4651 sd->rps_ipi_next = mysd->rps_ipi_list;
4652 mysd->rps_ipi_list = sd;
4653
4654 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4655 return 1;
4656 }
4657 #endif /* CONFIG_RPS */
4658 __napi_schedule_irqoff(&mysd->backlog);
4659 return 0;
4660 }
4661
4662 #ifdef CONFIG_NET_FLOW_LIMIT
4663 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4664 #endif
4665
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4666 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4667 {
4668 #ifdef CONFIG_NET_FLOW_LIMIT
4669 struct sd_flow_limit *fl;
4670 struct softnet_data *sd;
4671 unsigned int old_flow, new_flow;
4672
4673 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4674 return false;
4675
4676 sd = this_cpu_ptr(&softnet_data);
4677
4678 rcu_read_lock();
4679 fl = rcu_dereference(sd->flow_limit);
4680 if (fl) {
4681 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4682 old_flow = fl->history[fl->history_head];
4683 fl->history[fl->history_head] = new_flow;
4684
4685 fl->history_head++;
4686 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4687
4688 if (likely(fl->buckets[old_flow]))
4689 fl->buckets[old_flow]--;
4690
4691 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4692 fl->count++;
4693 rcu_read_unlock();
4694 return true;
4695 }
4696 }
4697 rcu_read_unlock();
4698 #endif
4699 return false;
4700 }
4701
4702 /*
4703 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4704 * queue (may be a remote CPU queue).
4705 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4706 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4707 unsigned int *qtail)
4708 {
4709 enum skb_drop_reason reason;
4710 struct softnet_data *sd;
4711 unsigned long flags;
4712 unsigned int qlen;
4713
4714 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4715 sd = &per_cpu(softnet_data, cpu);
4716
4717 rps_lock_irqsave(sd, &flags);
4718 if (!netif_running(skb->dev))
4719 goto drop;
4720 qlen = skb_queue_len(&sd->input_pkt_queue);
4721 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4722 if (qlen) {
4723 enqueue:
4724 __skb_queue_tail(&sd->input_pkt_queue, skb);
4725 input_queue_tail_incr_save(sd, qtail);
4726 rps_unlock_irq_restore(sd, &flags);
4727 return NET_RX_SUCCESS;
4728 }
4729
4730 /* Schedule NAPI for backlog device
4731 * We can use non atomic operation since we own the queue lock
4732 */
4733 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4734 napi_schedule_rps(sd);
4735 goto enqueue;
4736 }
4737 reason = SKB_DROP_REASON_CPU_BACKLOG;
4738
4739 drop:
4740 sd->dropped++;
4741 rps_unlock_irq_restore(sd, &flags);
4742
4743 dev_core_stats_rx_dropped_inc(skb->dev);
4744 kfree_skb_reason(skb, reason);
4745 return NET_RX_DROP;
4746 }
4747
netif_get_rxqueue(struct sk_buff * skb)4748 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4749 {
4750 struct net_device *dev = skb->dev;
4751 struct netdev_rx_queue *rxqueue;
4752
4753 rxqueue = dev->_rx;
4754
4755 if (skb_rx_queue_recorded(skb)) {
4756 u16 index = skb_get_rx_queue(skb);
4757
4758 if (unlikely(index >= dev->real_num_rx_queues)) {
4759 WARN_ONCE(dev->real_num_rx_queues > 1,
4760 "%s received packet on queue %u, but number "
4761 "of RX queues is %u\n",
4762 dev->name, index, dev->real_num_rx_queues);
4763
4764 return rxqueue; /* Return first rxqueue */
4765 }
4766 rxqueue += index;
4767 }
4768 return rxqueue;
4769 }
4770
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4771 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4772 struct bpf_prog *xdp_prog)
4773 {
4774 void *orig_data, *orig_data_end, *hard_start;
4775 struct netdev_rx_queue *rxqueue;
4776 bool orig_bcast, orig_host;
4777 u32 mac_len, frame_sz;
4778 __be16 orig_eth_type;
4779 struct ethhdr *eth;
4780 u32 metalen, act;
4781 int off;
4782
4783 /* The XDP program wants to see the packet starting at the MAC
4784 * header.
4785 */
4786 mac_len = skb->data - skb_mac_header(skb);
4787 hard_start = skb->data - skb_headroom(skb);
4788
4789 /* SKB "head" area always have tailroom for skb_shared_info */
4790 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4791 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4792
4793 rxqueue = netif_get_rxqueue(skb);
4794 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4795 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4796 skb_headlen(skb) + mac_len, true);
4797
4798 orig_data_end = xdp->data_end;
4799 orig_data = xdp->data;
4800 eth = (struct ethhdr *)xdp->data;
4801 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4802 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4803 orig_eth_type = eth->h_proto;
4804
4805 act = bpf_prog_run_xdp(xdp_prog, xdp);
4806
4807 /* check if bpf_xdp_adjust_head was used */
4808 off = xdp->data - orig_data;
4809 if (off) {
4810 if (off > 0)
4811 __skb_pull(skb, off);
4812 else if (off < 0)
4813 __skb_push(skb, -off);
4814
4815 skb->mac_header += off;
4816 skb_reset_network_header(skb);
4817 }
4818
4819 /* check if bpf_xdp_adjust_tail was used */
4820 off = xdp->data_end - orig_data_end;
4821 if (off != 0) {
4822 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4823 skb->len += off; /* positive on grow, negative on shrink */
4824 }
4825
4826 /* check if XDP changed eth hdr such SKB needs update */
4827 eth = (struct ethhdr *)xdp->data;
4828 if ((orig_eth_type != eth->h_proto) ||
4829 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4830 skb->dev->dev_addr)) ||
4831 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4832 __skb_push(skb, ETH_HLEN);
4833 skb->pkt_type = PACKET_HOST;
4834 skb->protocol = eth_type_trans(skb, skb->dev);
4835 }
4836
4837 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4838 * before calling us again on redirect path. We do not call do_redirect
4839 * as we leave that up to the caller.
4840 *
4841 * Caller is responsible for managing lifetime of skb (i.e. calling
4842 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4843 */
4844 switch (act) {
4845 case XDP_REDIRECT:
4846 case XDP_TX:
4847 __skb_push(skb, mac_len);
4848 break;
4849 case XDP_PASS:
4850 metalen = xdp->data - xdp->data_meta;
4851 if (metalen)
4852 skb_metadata_set(skb, metalen);
4853 break;
4854 }
4855
4856 return act;
4857 }
4858
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4859 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4860 struct xdp_buff *xdp,
4861 struct bpf_prog *xdp_prog)
4862 {
4863 u32 act = XDP_DROP;
4864
4865 /* Reinjected packets coming from act_mirred or similar should
4866 * not get XDP generic processing.
4867 */
4868 if (skb_is_redirected(skb))
4869 return XDP_PASS;
4870
4871 /* XDP packets must be linear and must have sufficient headroom
4872 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4873 * native XDP provides, thus we need to do it here as well.
4874 */
4875 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4876 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4877 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4878 int troom = skb->tail + skb->data_len - skb->end;
4879
4880 /* In case we have to go down the path and also linearize,
4881 * then lets do the pskb_expand_head() work just once here.
4882 */
4883 if (pskb_expand_head(skb,
4884 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4885 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4886 goto do_drop;
4887 if (skb_linearize(skb))
4888 goto do_drop;
4889 }
4890
4891 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4892 switch (act) {
4893 case XDP_REDIRECT:
4894 case XDP_TX:
4895 case XDP_PASS:
4896 break;
4897 default:
4898 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4899 fallthrough;
4900 case XDP_ABORTED:
4901 trace_xdp_exception(skb->dev, xdp_prog, act);
4902 fallthrough;
4903 case XDP_DROP:
4904 do_drop:
4905 kfree_skb(skb);
4906 break;
4907 }
4908
4909 return act;
4910 }
4911
4912 /* When doing generic XDP we have to bypass the qdisc layer and the
4913 * network taps in order to match in-driver-XDP behavior. This also means
4914 * that XDP packets are able to starve other packets going through a qdisc,
4915 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4916 * queues, so they do not have this starvation issue.
4917 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4918 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4919 {
4920 struct net_device *dev = skb->dev;
4921 struct netdev_queue *txq;
4922 bool free_skb = true;
4923 int cpu, rc;
4924
4925 txq = netdev_core_pick_tx(dev, skb, NULL);
4926 cpu = smp_processor_id();
4927 HARD_TX_LOCK(dev, txq, cpu);
4928 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4929 rc = netdev_start_xmit(skb, dev, txq, 0);
4930 if (dev_xmit_complete(rc))
4931 free_skb = false;
4932 }
4933 HARD_TX_UNLOCK(dev, txq);
4934 if (free_skb) {
4935 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4936 dev_core_stats_tx_dropped_inc(dev);
4937 kfree_skb(skb);
4938 }
4939 }
4940
4941 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4942
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4943 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4944 {
4945 if (xdp_prog) {
4946 struct xdp_buff xdp;
4947 u32 act;
4948 int err;
4949
4950 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4951 if (act != XDP_PASS) {
4952 switch (act) {
4953 case XDP_REDIRECT:
4954 err = xdp_do_generic_redirect(skb->dev, skb,
4955 &xdp, xdp_prog);
4956 if (err)
4957 goto out_redir;
4958 break;
4959 case XDP_TX:
4960 generic_xdp_tx(skb, xdp_prog);
4961 break;
4962 }
4963 return XDP_DROP;
4964 }
4965 }
4966 return XDP_PASS;
4967 out_redir:
4968 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4969 return XDP_DROP;
4970 }
4971 EXPORT_SYMBOL_GPL(do_xdp_generic);
4972
netif_rx_internal(struct sk_buff * skb)4973 static int netif_rx_internal(struct sk_buff *skb)
4974 {
4975 int ret;
4976
4977 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4978
4979 trace_netif_rx(skb);
4980
4981 #ifdef CONFIG_RPS
4982 if (static_branch_unlikely(&rps_needed)) {
4983 struct rps_dev_flow voidflow, *rflow = &voidflow;
4984 int cpu;
4985
4986 rcu_read_lock();
4987
4988 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4989 if (cpu < 0)
4990 cpu = smp_processor_id();
4991
4992 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4993
4994 rcu_read_unlock();
4995 } else
4996 #endif
4997 {
4998 unsigned int qtail;
4999
5000 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5001 }
5002 return ret;
5003 }
5004
5005 /**
5006 * __netif_rx - Slightly optimized version of netif_rx
5007 * @skb: buffer to post
5008 *
5009 * This behaves as netif_rx except that it does not disable bottom halves.
5010 * As a result this function may only be invoked from the interrupt context
5011 * (either hard or soft interrupt).
5012 */
__netif_rx(struct sk_buff * skb)5013 int __netif_rx(struct sk_buff *skb)
5014 {
5015 int ret;
5016
5017 lockdep_assert_once(hardirq_count() | softirq_count());
5018
5019 trace_netif_rx_entry(skb);
5020 ret = netif_rx_internal(skb);
5021 trace_netif_rx_exit(ret);
5022 return ret;
5023 }
5024 EXPORT_SYMBOL(__netif_rx);
5025
5026 /**
5027 * netif_rx - post buffer to the network code
5028 * @skb: buffer to post
5029 *
5030 * This function receives a packet from a device driver and queues it for
5031 * the upper (protocol) levels to process via the backlog NAPI device. It
5032 * always succeeds. The buffer may be dropped during processing for
5033 * congestion control or by the protocol layers.
5034 * The network buffer is passed via the backlog NAPI device. Modern NIC
5035 * driver should use NAPI and GRO.
5036 * This function can used from interrupt and from process context. The
5037 * caller from process context must not disable interrupts before invoking
5038 * this function.
5039 *
5040 * return values:
5041 * NET_RX_SUCCESS (no congestion)
5042 * NET_RX_DROP (packet was dropped)
5043 *
5044 */
netif_rx(struct sk_buff * skb)5045 int netif_rx(struct sk_buff *skb)
5046 {
5047 bool need_bh_off = !(hardirq_count() | softirq_count());
5048 int ret;
5049
5050 if (need_bh_off)
5051 local_bh_disable();
5052 trace_netif_rx_entry(skb);
5053 ret = netif_rx_internal(skb);
5054 trace_netif_rx_exit(ret);
5055 if (need_bh_off)
5056 local_bh_enable();
5057 return ret;
5058 }
5059 EXPORT_SYMBOL(netif_rx);
5060
net_tx_action(struct softirq_action * h)5061 static __latent_entropy void net_tx_action(struct softirq_action *h)
5062 {
5063 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5064
5065 if (sd->completion_queue) {
5066 struct sk_buff *clist;
5067
5068 local_irq_disable();
5069 clist = sd->completion_queue;
5070 sd->completion_queue = NULL;
5071 local_irq_enable();
5072
5073 while (clist) {
5074 struct sk_buff *skb = clist;
5075
5076 clist = clist->next;
5077
5078 WARN_ON(refcount_read(&skb->users));
5079 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5080 trace_consume_skb(skb);
5081 else
5082 trace_kfree_skb(skb, net_tx_action,
5083 SKB_DROP_REASON_NOT_SPECIFIED);
5084
5085 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5086 __kfree_skb(skb);
5087 else
5088 __kfree_skb_defer(skb);
5089 }
5090 }
5091
5092 if (sd->output_queue) {
5093 struct Qdisc *head;
5094
5095 local_irq_disable();
5096 head = sd->output_queue;
5097 sd->output_queue = NULL;
5098 sd->output_queue_tailp = &sd->output_queue;
5099 local_irq_enable();
5100
5101 rcu_read_lock();
5102
5103 while (head) {
5104 struct Qdisc *q = head;
5105 spinlock_t *root_lock = NULL;
5106
5107 head = head->next_sched;
5108
5109 /* We need to make sure head->next_sched is read
5110 * before clearing __QDISC_STATE_SCHED
5111 */
5112 smp_mb__before_atomic();
5113
5114 if (!(q->flags & TCQ_F_NOLOCK)) {
5115 root_lock = qdisc_lock(q);
5116 spin_lock(root_lock);
5117 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5118 &q->state))) {
5119 /* There is a synchronize_net() between
5120 * STATE_DEACTIVATED flag being set and
5121 * qdisc_reset()/some_qdisc_is_busy() in
5122 * dev_deactivate(), so we can safely bail out
5123 * early here to avoid data race between
5124 * qdisc_deactivate() and some_qdisc_is_busy()
5125 * for lockless qdisc.
5126 */
5127 clear_bit(__QDISC_STATE_SCHED, &q->state);
5128 continue;
5129 }
5130
5131 clear_bit(__QDISC_STATE_SCHED, &q->state);
5132 qdisc_run(q);
5133 if (root_lock)
5134 spin_unlock(root_lock);
5135 }
5136
5137 rcu_read_unlock();
5138 }
5139
5140 xfrm_dev_backlog(sd);
5141 }
5142
5143 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5144 /* This hook is defined here for ATM LANE */
5145 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5146 unsigned char *addr) __read_mostly;
5147 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5148 #endif
5149
5150 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)5151 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5152 struct net_device *orig_dev, bool *another)
5153 {
5154 #ifdef CONFIG_NET_CLS_ACT
5155 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5156 struct tcf_result cl_res;
5157
5158 /* If there's at least one ingress present somewhere (so
5159 * we get here via enabled static key), remaining devices
5160 * that are not configured with an ingress qdisc will bail
5161 * out here.
5162 */
5163 if (!miniq)
5164 return skb;
5165
5166 if (*pt_prev) {
5167 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5168 *pt_prev = NULL;
5169 }
5170
5171 qdisc_skb_cb(skb)->pkt_len = skb->len;
5172 tc_skb_cb(skb)->mru = 0;
5173 tc_skb_cb(skb)->post_ct = false;
5174 skb->tc_at_ingress = 1;
5175 mini_qdisc_bstats_cpu_update(miniq, skb);
5176
5177 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5178 case TC_ACT_OK:
5179 case TC_ACT_RECLASSIFY:
5180 skb->tc_index = TC_H_MIN(cl_res.classid);
5181 break;
5182 case TC_ACT_SHOT:
5183 mini_qdisc_qstats_cpu_drop(miniq);
5184 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5185 *ret = NET_RX_DROP;
5186 return NULL;
5187 case TC_ACT_STOLEN:
5188 case TC_ACT_QUEUED:
5189 case TC_ACT_TRAP:
5190 consume_skb(skb);
5191 *ret = NET_RX_SUCCESS;
5192 return NULL;
5193 case TC_ACT_REDIRECT:
5194 /* skb_mac_header check was done by cls/act_bpf, so
5195 * we can safely push the L2 header back before
5196 * redirecting to another netdev
5197 */
5198 __skb_push(skb, skb->mac_len);
5199 if (skb_do_redirect(skb) == -EAGAIN) {
5200 __skb_pull(skb, skb->mac_len);
5201 *another = true;
5202 break;
5203 }
5204 *ret = NET_RX_SUCCESS;
5205 return NULL;
5206 case TC_ACT_CONSUMED:
5207 *ret = NET_RX_SUCCESS;
5208 return NULL;
5209 default:
5210 break;
5211 }
5212 #endif /* CONFIG_NET_CLS_ACT */
5213 return skb;
5214 }
5215
5216 /**
5217 * netdev_is_rx_handler_busy - check if receive handler is registered
5218 * @dev: device to check
5219 *
5220 * Check if a receive handler is already registered for a given device.
5221 * Return true if there one.
5222 *
5223 * The caller must hold the rtnl_mutex.
5224 */
netdev_is_rx_handler_busy(struct net_device * dev)5225 bool netdev_is_rx_handler_busy(struct net_device *dev)
5226 {
5227 ASSERT_RTNL();
5228 return dev && rtnl_dereference(dev->rx_handler);
5229 }
5230 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5231
5232 /**
5233 * netdev_rx_handler_register - register receive handler
5234 * @dev: device to register a handler for
5235 * @rx_handler: receive handler to register
5236 * @rx_handler_data: data pointer that is used by rx handler
5237 *
5238 * Register a receive handler for a device. This handler will then be
5239 * called from __netif_receive_skb. A negative errno code is returned
5240 * on a failure.
5241 *
5242 * The caller must hold the rtnl_mutex.
5243 *
5244 * For a general description of rx_handler, see enum rx_handler_result.
5245 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5246 int netdev_rx_handler_register(struct net_device *dev,
5247 rx_handler_func_t *rx_handler,
5248 void *rx_handler_data)
5249 {
5250 if (netdev_is_rx_handler_busy(dev))
5251 return -EBUSY;
5252
5253 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5254 return -EINVAL;
5255
5256 /* Note: rx_handler_data must be set before rx_handler */
5257 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5258 rcu_assign_pointer(dev->rx_handler, rx_handler);
5259
5260 return 0;
5261 }
5262 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5263
5264 /**
5265 * netdev_rx_handler_unregister - unregister receive handler
5266 * @dev: device to unregister a handler from
5267 *
5268 * Unregister a receive handler from a device.
5269 *
5270 * The caller must hold the rtnl_mutex.
5271 */
netdev_rx_handler_unregister(struct net_device * dev)5272 void netdev_rx_handler_unregister(struct net_device *dev)
5273 {
5274
5275 ASSERT_RTNL();
5276 RCU_INIT_POINTER(dev->rx_handler, NULL);
5277 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5278 * section has a guarantee to see a non NULL rx_handler_data
5279 * as well.
5280 */
5281 synchronize_net();
5282 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5283 }
5284 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5285
5286 /*
5287 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5288 * the special handling of PFMEMALLOC skbs.
5289 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5290 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5291 {
5292 switch (skb->protocol) {
5293 case htons(ETH_P_ARP):
5294 case htons(ETH_P_IP):
5295 case htons(ETH_P_IPV6):
5296 case htons(ETH_P_8021Q):
5297 case htons(ETH_P_8021AD):
5298 return true;
5299 default:
5300 return false;
5301 }
5302 }
5303
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5304 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5305 int *ret, struct net_device *orig_dev)
5306 {
5307 if (nf_hook_ingress_active(skb)) {
5308 int ingress_retval;
5309
5310 if (*pt_prev) {
5311 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5312 *pt_prev = NULL;
5313 }
5314
5315 rcu_read_lock();
5316 ingress_retval = nf_hook_ingress(skb);
5317 rcu_read_unlock();
5318 return ingress_retval;
5319 }
5320 return 0;
5321 }
5322
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5323 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5324 struct packet_type **ppt_prev)
5325 {
5326 struct packet_type *ptype, *pt_prev;
5327 rx_handler_func_t *rx_handler;
5328 struct sk_buff *skb = *pskb;
5329 struct net_device *orig_dev;
5330 bool deliver_exact = false;
5331 int ret = NET_RX_DROP;
5332 __be16 type;
5333
5334 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5335
5336 trace_netif_receive_skb(skb);
5337
5338 orig_dev = skb->dev;
5339
5340 skb_reset_network_header(skb);
5341 if (!skb_transport_header_was_set(skb))
5342 skb_reset_transport_header(skb);
5343 skb_reset_mac_len(skb);
5344
5345 pt_prev = NULL;
5346
5347 another_round:
5348 skb->skb_iif = skb->dev->ifindex;
5349
5350 __this_cpu_inc(softnet_data.processed);
5351
5352 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5353 int ret2;
5354
5355 migrate_disable();
5356 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5357 migrate_enable();
5358
5359 if (ret2 != XDP_PASS) {
5360 ret = NET_RX_DROP;
5361 goto out;
5362 }
5363 }
5364
5365 if (eth_type_vlan(skb->protocol)) {
5366 skb = skb_vlan_untag(skb);
5367 if (unlikely(!skb))
5368 goto out;
5369 }
5370
5371 if (skb_skip_tc_classify(skb))
5372 goto skip_classify;
5373
5374 if (pfmemalloc)
5375 goto skip_taps;
5376
5377 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5378 if (pt_prev)
5379 ret = deliver_skb(skb, pt_prev, orig_dev);
5380 pt_prev = ptype;
5381 }
5382
5383 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5384 if (pt_prev)
5385 ret = deliver_skb(skb, pt_prev, orig_dev);
5386 pt_prev = ptype;
5387 }
5388
5389 skip_taps:
5390 #ifdef CONFIG_NET_INGRESS
5391 if (static_branch_unlikely(&ingress_needed_key)) {
5392 bool another = false;
5393
5394 nf_skip_egress(skb, true);
5395 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5396 &another);
5397 if (another)
5398 goto another_round;
5399 if (!skb)
5400 goto out;
5401
5402 nf_skip_egress(skb, false);
5403 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5404 goto out;
5405 }
5406 #endif
5407 skb_reset_redirect(skb);
5408 skip_classify:
5409 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5410 goto drop;
5411
5412 if (skb_vlan_tag_present(skb)) {
5413 if (pt_prev) {
5414 ret = deliver_skb(skb, pt_prev, orig_dev);
5415 pt_prev = NULL;
5416 }
5417 if (vlan_do_receive(&skb))
5418 goto another_round;
5419 else if (unlikely(!skb))
5420 goto out;
5421 }
5422
5423 rx_handler = rcu_dereference(skb->dev->rx_handler);
5424 if (rx_handler) {
5425 if (pt_prev) {
5426 ret = deliver_skb(skb, pt_prev, orig_dev);
5427 pt_prev = NULL;
5428 }
5429 switch (rx_handler(&skb)) {
5430 case RX_HANDLER_CONSUMED:
5431 ret = NET_RX_SUCCESS;
5432 goto out;
5433 case RX_HANDLER_ANOTHER:
5434 goto another_round;
5435 case RX_HANDLER_EXACT:
5436 deliver_exact = true;
5437 break;
5438 case RX_HANDLER_PASS:
5439 break;
5440 default:
5441 BUG();
5442 }
5443 }
5444
5445 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5446 check_vlan_id:
5447 if (skb_vlan_tag_get_id(skb)) {
5448 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5449 * find vlan device.
5450 */
5451 skb->pkt_type = PACKET_OTHERHOST;
5452 } else if (eth_type_vlan(skb->protocol)) {
5453 /* Outer header is 802.1P with vlan 0, inner header is
5454 * 802.1Q or 802.1AD and vlan_do_receive() above could
5455 * not find vlan dev for vlan id 0.
5456 */
5457 __vlan_hwaccel_clear_tag(skb);
5458 skb = skb_vlan_untag(skb);
5459 if (unlikely(!skb))
5460 goto out;
5461 if (vlan_do_receive(&skb))
5462 /* After stripping off 802.1P header with vlan 0
5463 * vlan dev is found for inner header.
5464 */
5465 goto another_round;
5466 else if (unlikely(!skb))
5467 goto out;
5468 else
5469 /* We have stripped outer 802.1P vlan 0 header.
5470 * But could not find vlan dev.
5471 * check again for vlan id to set OTHERHOST.
5472 */
5473 goto check_vlan_id;
5474 }
5475 /* Note: we might in the future use prio bits
5476 * and set skb->priority like in vlan_do_receive()
5477 * For the time being, just ignore Priority Code Point
5478 */
5479 __vlan_hwaccel_clear_tag(skb);
5480 }
5481
5482 type = skb->protocol;
5483
5484 /* deliver only exact match when indicated */
5485 if (likely(!deliver_exact)) {
5486 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5487 &ptype_base[ntohs(type) &
5488 PTYPE_HASH_MASK]);
5489 }
5490
5491 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5492 &orig_dev->ptype_specific);
5493
5494 if (unlikely(skb->dev != orig_dev)) {
5495 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5496 &skb->dev->ptype_specific);
5497 }
5498
5499 if (pt_prev) {
5500 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5501 goto drop;
5502 *ppt_prev = pt_prev;
5503 } else {
5504 drop:
5505 if (!deliver_exact)
5506 dev_core_stats_rx_dropped_inc(skb->dev);
5507 else
5508 dev_core_stats_rx_nohandler_inc(skb->dev);
5509 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5510 /* Jamal, now you will not able to escape explaining
5511 * me how you were going to use this. :-)
5512 */
5513 ret = NET_RX_DROP;
5514 }
5515
5516 out:
5517 /* The invariant here is that if *ppt_prev is not NULL
5518 * then skb should also be non-NULL.
5519 *
5520 * Apparently *ppt_prev assignment above holds this invariant due to
5521 * skb dereferencing near it.
5522 */
5523 *pskb = skb;
5524 return ret;
5525 }
5526
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5527 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5528 {
5529 struct net_device *orig_dev = skb->dev;
5530 struct packet_type *pt_prev = NULL;
5531 int ret;
5532
5533 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5534 if (pt_prev)
5535 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5536 skb->dev, pt_prev, orig_dev);
5537 return ret;
5538 }
5539
5540 /**
5541 * netif_receive_skb_core - special purpose version of netif_receive_skb
5542 * @skb: buffer to process
5543 *
5544 * More direct receive version of netif_receive_skb(). It should
5545 * only be used by callers that have a need to skip RPS and Generic XDP.
5546 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5547 *
5548 * This function may only be called from softirq context and interrupts
5549 * should be enabled.
5550 *
5551 * Return values (usually ignored):
5552 * NET_RX_SUCCESS: no congestion
5553 * NET_RX_DROP: packet was dropped
5554 */
netif_receive_skb_core(struct sk_buff * skb)5555 int netif_receive_skb_core(struct sk_buff *skb)
5556 {
5557 int ret;
5558
5559 rcu_read_lock();
5560 ret = __netif_receive_skb_one_core(skb, false);
5561 rcu_read_unlock();
5562
5563 return ret;
5564 }
5565 EXPORT_SYMBOL(netif_receive_skb_core);
5566
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5567 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5568 struct packet_type *pt_prev,
5569 struct net_device *orig_dev)
5570 {
5571 struct sk_buff *skb, *next;
5572
5573 if (!pt_prev)
5574 return;
5575 if (list_empty(head))
5576 return;
5577 if (pt_prev->list_func != NULL)
5578 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5579 ip_list_rcv, head, pt_prev, orig_dev);
5580 else
5581 list_for_each_entry_safe(skb, next, head, list) {
5582 skb_list_del_init(skb);
5583 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5584 }
5585 }
5586
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5587 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5588 {
5589 /* Fast-path assumptions:
5590 * - There is no RX handler.
5591 * - Only one packet_type matches.
5592 * If either of these fails, we will end up doing some per-packet
5593 * processing in-line, then handling the 'last ptype' for the whole
5594 * sublist. This can't cause out-of-order delivery to any single ptype,
5595 * because the 'last ptype' must be constant across the sublist, and all
5596 * other ptypes are handled per-packet.
5597 */
5598 /* Current (common) ptype of sublist */
5599 struct packet_type *pt_curr = NULL;
5600 /* Current (common) orig_dev of sublist */
5601 struct net_device *od_curr = NULL;
5602 struct list_head sublist;
5603 struct sk_buff *skb, *next;
5604
5605 INIT_LIST_HEAD(&sublist);
5606 list_for_each_entry_safe(skb, next, head, list) {
5607 struct net_device *orig_dev = skb->dev;
5608 struct packet_type *pt_prev = NULL;
5609
5610 skb_list_del_init(skb);
5611 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5612 if (!pt_prev)
5613 continue;
5614 if (pt_curr != pt_prev || od_curr != orig_dev) {
5615 /* dispatch old sublist */
5616 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5617 /* start new sublist */
5618 INIT_LIST_HEAD(&sublist);
5619 pt_curr = pt_prev;
5620 od_curr = orig_dev;
5621 }
5622 list_add_tail(&skb->list, &sublist);
5623 }
5624
5625 /* dispatch final sublist */
5626 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5627 }
5628
__netif_receive_skb(struct sk_buff * skb)5629 static int __netif_receive_skb(struct sk_buff *skb)
5630 {
5631 int ret;
5632
5633 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5634 unsigned int noreclaim_flag;
5635
5636 /*
5637 * PFMEMALLOC skbs are special, they should
5638 * - be delivered to SOCK_MEMALLOC sockets only
5639 * - stay away from userspace
5640 * - have bounded memory usage
5641 *
5642 * Use PF_MEMALLOC as this saves us from propagating the allocation
5643 * context down to all allocation sites.
5644 */
5645 noreclaim_flag = memalloc_noreclaim_save();
5646 ret = __netif_receive_skb_one_core(skb, true);
5647 memalloc_noreclaim_restore(noreclaim_flag);
5648 } else
5649 ret = __netif_receive_skb_one_core(skb, false);
5650
5651 return ret;
5652 }
5653
__netif_receive_skb_list(struct list_head * head)5654 static void __netif_receive_skb_list(struct list_head *head)
5655 {
5656 unsigned long noreclaim_flag = 0;
5657 struct sk_buff *skb, *next;
5658 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5659
5660 list_for_each_entry_safe(skb, next, head, list) {
5661 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5662 struct list_head sublist;
5663
5664 /* Handle the previous sublist */
5665 list_cut_before(&sublist, head, &skb->list);
5666 if (!list_empty(&sublist))
5667 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5668 pfmemalloc = !pfmemalloc;
5669 /* See comments in __netif_receive_skb */
5670 if (pfmemalloc)
5671 noreclaim_flag = memalloc_noreclaim_save();
5672 else
5673 memalloc_noreclaim_restore(noreclaim_flag);
5674 }
5675 }
5676 /* Handle the remaining sublist */
5677 if (!list_empty(head))
5678 __netif_receive_skb_list_core(head, pfmemalloc);
5679 /* Restore pflags */
5680 if (pfmemalloc)
5681 memalloc_noreclaim_restore(noreclaim_flag);
5682 }
5683
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5684 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5685 {
5686 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5687 struct bpf_prog *new = xdp->prog;
5688 int ret = 0;
5689
5690 switch (xdp->command) {
5691 case XDP_SETUP_PROG:
5692 rcu_assign_pointer(dev->xdp_prog, new);
5693 if (old)
5694 bpf_prog_put(old);
5695
5696 if (old && !new) {
5697 static_branch_dec(&generic_xdp_needed_key);
5698 } else if (new && !old) {
5699 static_branch_inc(&generic_xdp_needed_key);
5700 dev_disable_lro(dev);
5701 dev_disable_gro_hw(dev);
5702 }
5703 break;
5704
5705 default:
5706 ret = -EINVAL;
5707 break;
5708 }
5709
5710 return ret;
5711 }
5712
netif_receive_skb_internal(struct sk_buff * skb)5713 static int netif_receive_skb_internal(struct sk_buff *skb)
5714 {
5715 int ret;
5716
5717 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5718
5719 if (skb_defer_rx_timestamp(skb))
5720 return NET_RX_SUCCESS;
5721
5722 rcu_read_lock();
5723 #ifdef CONFIG_RPS
5724 if (static_branch_unlikely(&rps_needed)) {
5725 struct rps_dev_flow voidflow, *rflow = &voidflow;
5726 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5727
5728 if (cpu >= 0) {
5729 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5730 rcu_read_unlock();
5731 return ret;
5732 }
5733 }
5734 #endif
5735 ret = __netif_receive_skb(skb);
5736 rcu_read_unlock();
5737 return ret;
5738 }
5739
netif_receive_skb_list_internal(struct list_head * head)5740 void netif_receive_skb_list_internal(struct list_head *head)
5741 {
5742 struct sk_buff *skb, *next;
5743 struct list_head sublist;
5744
5745 INIT_LIST_HEAD(&sublist);
5746 list_for_each_entry_safe(skb, next, head, list) {
5747 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5748 skb_list_del_init(skb);
5749 if (!skb_defer_rx_timestamp(skb))
5750 list_add_tail(&skb->list, &sublist);
5751 }
5752 list_splice_init(&sublist, head);
5753
5754 rcu_read_lock();
5755 #ifdef CONFIG_RPS
5756 if (static_branch_unlikely(&rps_needed)) {
5757 list_for_each_entry_safe(skb, next, head, list) {
5758 struct rps_dev_flow voidflow, *rflow = &voidflow;
5759 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5760
5761 if (cpu >= 0) {
5762 /* Will be handled, remove from list */
5763 skb_list_del_init(skb);
5764 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5765 }
5766 }
5767 }
5768 #endif
5769 __netif_receive_skb_list(head);
5770 rcu_read_unlock();
5771 }
5772
5773 /**
5774 * netif_receive_skb - process receive buffer from network
5775 * @skb: buffer to process
5776 *
5777 * netif_receive_skb() is the main receive data processing function.
5778 * It always succeeds. The buffer may be dropped during processing
5779 * for congestion control or by the protocol layers.
5780 *
5781 * This function may only be called from softirq context and interrupts
5782 * should be enabled.
5783 *
5784 * Return values (usually ignored):
5785 * NET_RX_SUCCESS: no congestion
5786 * NET_RX_DROP: packet was dropped
5787 */
netif_receive_skb(struct sk_buff * skb)5788 int netif_receive_skb(struct sk_buff *skb)
5789 {
5790 int ret;
5791
5792 trace_netif_receive_skb_entry(skb);
5793
5794 ret = netif_receive_skb_internal(skb);
5795 trace_netif_receive_skb_exit(ret);
5796
5797 return ret;
5798 }
5799 EXPORT_SYMBOL(netif_receive_skb);
5800
5801 /**
5802 * netif_receive_skb_list - process many receive buffers from network
5803 * @head: list of skbs to process.
5804 *
5805 * Since return value of netif_receive_skb() is normally ignored, and
5806 * wouldn't be meaningful for a list, this function returns void.
5807 *
5808 * This function may only be called from softirq context and interrupts
5809 * should be enabled.
5810 */
netif_receive_skb_list(struct list_head * head)5811 void netif_receive_skb_list(struct list_head *head)
5812 {
5813 struct sk_buff *skb;
5814
5815 if (list_empty(head))
5816 return;
5817 if (trace_netif_receive_skb_list_entry_enabled()) {
5818 list_for_each_entry(skb, head, list)
5819 trace_netif_receive_skb_list_entry(skb);
5820 }
5821 netif_receive_skb_list_internal(head);
5822 trace_netif_receive_skb_list_exit(0);
5823 }
5824 EXPORT_SYMBOL(netif_receive_skb_list);
5825
5826 static DEFINE_PER_CPU(struct work_struct, flush_works);
5827
5828 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5829 static void flush_backlog(struct work_struct *work)
5830 {
5831 struct sk_buff *skb, *tmp;
5832 struct softnet_data *sd;
5833
5834 local_bh_disable();
5835 sd = this_cpu_ptr(&softnet_data);
5836
5837 rps_lock_irq_disable(sd);
5838 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5839 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5840 __skb_unlink(skb, &sd->input_pkt_queue);
5841 dev_kfree_skb_irq(skb);
5842 input_queue_head_incr(sd);
5843 }
5844 }
5845 rps_unlock_irq_enable(sd);
5846
5847 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5848 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5849 __skb_unlink(skb, &sd->process_queue);
5850 kfree_skb(skb);
5851 input_queue_head_incr(sd);
5852 }
5853 }
5854 local_bh_enable();
5855 }
5856
flush_required(int cpu)5857 static bool flush_required(int cpu)
5858 {
5859 #if IS_ENABLED(CONFIG_RPS)
5860 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5861 bool do_flush;
5862
5863 rps_lock_irq_disable(sd);
5864
5865 /* as insertion into process_queue happens with the rps lock held,
5866 * process_queue access may race only with dequeue
5867 */
5868 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5869 !skb_queue_empty_lockless(&sd->process_queue);
5870 rps_unlock_irq_enable(sd);
5871
5872 return do_flush;
5873 #endif
5874 /* without RPS we can't safely check input_pkt_queue: during a
5875 * concurrent remote skb_queue_splice() we can detect as empty both
5876 * input_pkt_queue and process_queue even if the latter could end-up
5877 * containing a lot of packets.
5878 */
5879 return true;
5880 }
5881
flush_all_backlogs(void)5882 static void flush_all_backlogs(void)
5883 {
5884 static cpumask_t flush_cpus;
5885 unsigned int cpu;
5886
5887 /* since we are under rtnl lock protection we can use static data
5888 * for the cpumask and avoid allocating on stack the possibly
5889 * large mask
5890 */
5891 ASSERT_RTNL();
5892
5893 cpus_read_lock();
5894
5895 cpumask_clear(&flush_cpus);
5896 for_each_online_cpu(cpu) {
5897 if (flush_required(cpu)) {
5898 queue_work_on(cpu, system_highpri_wq,
5899 per_cpu_ptr(&flush_works, cpu));
5900 cpumask_set_cpu(cpu, &flush_cpus);
5901 }
5902 }
5903
5904 /* we can have in flight packet[s] on the cpus we are not flushing,
5905 * synchronize_net() in unregister_netdevice_many() will take care of
5906 * them
5907 */
5908 for_each_cpu(cpu, &flush_cpus)
5909 flush_work(per_cpu_ptr(&flush_works, cpu));
5910
5911 cpus_read_unlock();
5912 }
5913
net_rps_send_ipi(struct softnet_data * remsd)5914 static void net_rps_send_ipi(struct softnet_data *remsd)
5915 {
5916 #ifdef CONFIG_RPS
5917 while (remsd) {
5918 struct softnet_data *next = remsd->rps_ipi_next;
5919
5920 if (cpu_online(remsd->cpu))
5921 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5922 remsd = next;
5923 }
5924 #endif
5925 }
5926
5927 /*
5928 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5929 * Note: called with local irq disabled, but exits with local irq enabled.
5930 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5931 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5932 {
5933 #ifdef CONFIG_RPS
5934 struct softnet_data *remsd = sd->rps_ipi_list;
5935
5936 if (remsd) {
5937 sd->rps_ipi_list = NULL;
5938
5939 local_irq_enable();
5940
5941 /* Send pending IPI's to kick RPS processing on remote cpus. */
5942 net_rps_send_ipi(remsd);
5943 } else
5944 #endif
5945 local_irq_enable();
5946 }
5947
sd_has_rps_ipi_waiting(struct softnet_data * sd)5948 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5949 {
5950 #ifdef CONFIG_RPS
5951 return sd->rps_ipi_list != NULL;
5952 #else
5953 return false;
5954 #endif
5955 }
5956
process_backlog(struct napi_struct * napi,int quota)5957 static int process_backlog(struct napi_struct *napi, int quota)
5958 {
5959 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5960 bool again = true;
5961 int work = 0;
5962
5963 /* Check if we have pending ipi, its better to send them now,
5964 * not waiting net_rx_action() end.
5965 */
5966 if (sd_has_rps_ipi_waiting(sd)) {
5967 local_irq_disable();
5968 net_rps_action_and_irq_enable(sd);
5969 }
5970
5971 napi->weight = READ_ONCE(dev_rx_weight);
5972 while (again) {
5973 struct sk_buff *skb;
5974
5975 while ((skb = __skb_dequeue(&sd->process_queue))) {
5976 rcu_read_lock();
5977 __netif_receive_skb(skb);
5978 rcu_read_unlock();
5979 input_queue_head_incr(sd);
5980 if (++work >= quota)
5981 return work;
5982
5983 }
5984
5985 rps_lock_irq_disable(sd);
5986 if (skb_queue_empty(&sd->input_pkt_queue)) {
5987 /*
5988 * Inline a custom version of __napi_complete().
5989 * only current cpu owns and manipulates this napi,
5990 * and NAPI_STATE_SCHED is the only possible flag set
5991 * on backlog.
5992 * We can use a plain write instead of clear_bit(),
5993 * and we dont need an smp_mb() memory barrier.
5994 */
5995 napi->state = 0;
5996 again = false;
5997 } else {
5998 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5999 &sd->process_queue);
6000 }
6001 rps_unlock_irq_enable(sd);
6002 }
6003
6004 return work;
6005 }
6006
6007 /**
6008 * __napi_schedule - schedule for receive
6009 * @n: entry to schedule
6010 *
6011 * The entry's receive function will be scheduled to run.
6012 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6013 */
__napi_schedule(struct napi_struct * n)6014 void __napi_schedule(struct napi_struct *n)
6015 {
6016 unsigned long flags;
6017
6018 local_irq_save(flags);
6019 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6020 local_irq_restore(flags);
6021 }
6022 EXPORT_SYMBOL(__napi_schedule);
6023
6024 /**
6025 * napi_schedule_prep - check if napi can be scheduled
6026 * @n: napi context
6027 *
6028 * Test if NAPI routine is already running, and if not mark
6029 * it as running. This is used as a condition variable to
6030 * insure only one NAPI poll instance runs. We also make
6031 * sure there is no pending NAPI disable.
6032 */
napi_schedule_prep(struct napi_struct * n)6033 bool napi_schedule_prep(struct napi_struct *n)
6034 {
6035 unsigned long val, new;
6036
6037 do {
6038 val = READ_ONCE(n->state);
6039 if (unlikely(val & NAPIF_STATE_DISABLE))
6040 return false;
6041 new = val | NAPIF_STATE_SCHED;
6042
6043 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6044 * This was suggested by Alexander Duyck, as compiler
6045 * emits better code than :
6046 * if (val & NAPIF_STATE_SCHED)
6047 * new |= NAPIF_STATE_MISSED;
6048 */
6049 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6050 NAPIF_STATE_MISSED;
6051 } while (cmpxchg(&n->state, val, new) != val);
6052
6053 return !(val & NAPIF_STATE_SCHED);
6054 }
6055 EXPORT_SYMBOL(napi_schedule_prep);
6056
6057 /**
6058 * __napi_schedule_irqoff - schedule for receive
6059 * @n: entry to schedule
6060 *
6061 * Variant of __napi_schedule() assuming hard irqs are masked.
6062 *
6063 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6064 * because the interrupt disabled assumption might not be true
6065 * due to force-threaded interrupts and spinlock substitution.
6066 */
__napi_schedule_irqoff(struct napi_struct * n)6067 void __napi_schedule_irqoff(struct napi_struct *n)
6068 {
6069 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6070 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6071 else
6072 __napi_schedule(n);
6073 }
6074 EXPORT_SYMBOL(__napi_schedule_irqoff);
6075
napi_complete_done(struct napi_struct * n,int work_done)6076 bool napi_complete_done(struct napi_struct *n, int work_done)
6077 {
6078 unsigned long flags, val, new, timeout = 0;
6079 bool ret = true;
6080
6081 /*
6082 * 1) Don't let napi dequeue from the cpu poll list
6083 * just in case its running on a different cpu.
6084 * 2) If we are busy polling, do nothing here, we have
6085 * the guarantee we will be called later.
6086 */
6087 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6088 NAPIF_STATE_IN_BUSY_POLL)))
6089 return false;
6090
6091 if (work_done) {
6092 if (n->gro_bitmask)
6093 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6094 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6095 }
6096 if (n->defer_hard_irqs_count > 0) {
6097 n->defer_hard_irqs_count--;
6098 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6099 if (timeout)
6100 ret = false;
6101 }
6102 if (n->gro_bitmask) {
6103 /* When the NAPI instance uses a timeout and keeps postponing
6104 * it, we need to bound somehow the time packets are kept in
6105 * the GRO layer
6106 */
6107 napi_gro_flush(n, !!timeout);
6108 }
6109
6110 gro_normal_list(n);
6111
6112 if (unlikely(!list_empty(&n->poll_list))) {
6113 /* If n->poll_list is not empty, we need to mask irqs */
6114 local_irq_save(flags);
6115 list_del_init(&n->poll_list);
6116 local_irq_restore(flags);
6117 }
6118
6119 do {
6120 val = READ_ONCE(n->state);
6121
6122 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6123
6124 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6125 NAPIF_STATE_SCHED_THREADED |
6126 NAPIF_STATE_PREFER_BUSY_POLL);
6127
6128 /* If STATE_MISSED was set, leave STATE_SCHED set,
6129 * because we will call napi->poll() one more time.
6130 * This C code was suggested by Alexander Duyck to help gcc.
6131 */
6132 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6133 NAPIF_STATE_SCHED;
6134 } while (cmpxchg(&n->state, val, new) != val);
6135
6136 if (unlikely(val & NAPIF_STATE_MISSED)) {
6137 __napi_schedule(n);
6138 return false;
6139 }
6140
6141 if (timeout)
6142 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6143 HRTIMER_MODE_REL_PINNED);
6144 return ret;
6145 }
6146 EXPORT_SYMBOL(napi_complete_done);
6147
6148 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6149 static struct napi_struct *napi_by_id(unsigned int napi_id)
6150 {
6151 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6152 struct napi_struct *napi;
6153
6154 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6155 if (napi->napi_id == napi_id)
6156 return napi;
6157
6158 return NULL;
6159 }
6160
6161 #if defined(CONFIG_NET_RX_BUSY_POLL)
6162
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6163 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6164 {
6165 if (!skip_schedule) {
6166 gro_normal_list(napi);
6167 __napi_schedule(napi);
6168 return;
6169 }
6170
6171 if (napi->gro_bitmask) {
6172 /* flush too old packets
6173 * If HZ < 1000, flush all packets.
6174 */
6175 napi_gro_flush(napi, HZ >= 1000);
6176 }
6177
6178 gro_normal_list(napi);
6179 clear_bit(NAPI_STATE_SCHED, &napi->state);
6180 }
6181
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6182 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6183 u16 budget)
6184 {
6185 bool skip_schedule = false;
6186 unsigned long timeout;
6187 int rc;
6188
6189 /* Busy polling means there is a high chance device driver hard irq
6190 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6191 * set in napi_schedule_prep().
6192 * Since we are about to call napi->poll() once more, we can safely
6193 * clear NAPI_STATE_MISSED.
6194 *
6195 * Note: x86 could use a single "lock and ..." instruction
6196 * to perform these two clear_bit()
6197 */
6198 clear_bit(NAPI_STATE_MISSED, &napi->state);
6199 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6200
6201 local_bh_disable();
6202
6203 if (prefer_busy_poll) {
6204 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6205 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6206 if (napi->defer_hard_irqs_count && timeout) {
6207 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6208 skip_schedule = true;
6209 }
6210 }
6211
6212 /* All we really want here is to re-enable device interrupts.
6213 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6214 */
6215 rc = napi->poll(napi, budget);
6216 /* We can't gro_normal_list() here, because napi->poll() might have
6217 * rearmed the napi (napi_complete_done()) in which case it could
6218 * already be running on another CPU.
6219 */
6220 trace_napi_poll(napi, rc, budget);
6221 netpoll_poll_unlock(have_poll_lock);
6222 if (rc == budget)
6223 __busy_poll_stop(napi, skip_schedule);
6224 local_bh_enable();
6225 }
6226
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6227 void napi_busy_loop(unsigned int napi_id,
6228 bool (*loop_end)(void *, unsigned long),
6229 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6230 {
6231 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6232 int (*napi_poll)(struct napi_struct *napi, int budget);
6233 void *have_poll_lock = NULL;
6234 struct napi_struct *napi;
6235
6236 restart:
6237 napi_poll = NULL;
6238
6239 rcu_read_lock();
6240
6241 napi = napi_by_id(napi_id);
6242 if (!napi)
6243 goto out;
6244
6245 preempt_disable();
6246 for (;;) {
6247 int work = 0;
6248
6249 local_bh_disable();
6250 if (!napi_poll) {
6251 unsigned long val = READ_ONCE(napi->state);
6252
6253 /* If multiple threads are competing for this napi,
6254 * we avoid dirtying napi->state as much as we can.
6255 */
6256 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6257 NAPIF_STATE_IN_BUSY_POLL)) {
6258 if (prefer_busy_poll)
6259 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6260 goto count;
6261 }
6262 if (cmpxchg(&napi->state, val,
6263 val | NAPIF_STATE_IN_BUSY_POLL |
6264 NAPIF_STATE_SCHED) != val) {
6265 if (prefer_busy_poll)
6266 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6267 goto count;
6268 }
6269 have_poll_lock = netpoll_poll_lock(napi);
6270 napi_poll = napi->poll;
6271 }
6272 work = napi_poll(napi, budget);
6273 trace_napi_poll(napi, work, budget);
6274 gro_normal_list(napi);
6275 count:
6276 if (work > 0)
6277 __NET_ADD_STATS(dev_net(napi->dev),
6278 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6279 local_bh_enable();
6280
6281 if (!loop_end || loop_end(loop_end_arg, start_time))
6282 break;
6283
6284 if (unlikely(need_resched())) {
6285 if (napi_poll)
6286 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6287 preempt_enable();
6288 rcu_read_unlock();
6289 cond_resched();
6290 if (loop_end(loop_end_arg, start_time))
6291 return;
6292 goto restart;
6293 }
6294 cpu_relax();
6295 }
6296 if (napi_poll)
6297 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6298 preempt_enable();
6299 out:
6300 rcu_read_unlock();
6301 }
6302 EXPORT_SYMBOL(napi_busy_loop);
6303
6304 #endif /* CONFIG_NET_RX_BUSY_POLL */
6305
napi_hash_add(struct napi_struct * napi)6306 static void napi_hash_add(struct napi_struct *napi)
6307 {
6308 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6309 return;
6310
6311 spin_lock(&napi_hash_lock);
6312
6313 /* 0..NR_CPUS range is reserved for sender_cpu use */
6314 do {
6315 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6316 napi_gen_id = MIN_NAPI_ID;
6317 } while (napi_by_id(napi_gen_id));
6318 napi->napi_id = napi_gen_id;
6319
6320 hlist_add_head_rcu(&napi->napi_hash_node,
6321 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6322
6323 spin_unlock(&napi_hash_lock);
6324 }
6325
6326 /* Warning : caller is responsible to make sure rcu grace period
6327 * is respected before freeing memory containing @napi
6328 */
napi_hash_del(struct napi_struct * napi)6329 static void napi_hash_del(struct napi_struct *napi)
6330 {
6331 spin_lock(&napi_hash_lock);
6332
6333 hlist_del_init_rcu(&napi->napi_hash_node);
6334
6335 spin_unlock(&napi_hash_lock);
6336 }
6337
napi_watchdog(struct hrtimer * timer)6338 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6339 {
6340 struct napi_struct *napi;
6341
6342 napi = container_of(timer, struct napi_struct, timer);
6343
6344 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6345 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6346 */
6347 if (!napi_disable_pending(napi) &&
6348 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6349 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6350 __napi_schedule_irqoff(napi);
6351 }
6352
6353 return HRTIMER_NORESTART;
6354 }
6355
init_gro_hash(struct napi_struct * napi)6356 static void init_gro_hash(struct napi_struct *napi)
6357 {
6358 int i;
6359
6360 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6361 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6362 napi->gro_hash[i].count = 0;
6363 }
6364 napi->gro_bitmask = 0;
6365 }
6366
dev_set_threaded(struct net_device * dev,bool threaded)6367 int dev_set_threaded(struct net_device *dev, bool threaded)
6368 {
6369 struct napi_struct *napi;
6370 int err = 0;
6371
6372 if (dev->threaded == threaded)
6373 return 0;
6374
6375 if (threaded) {
6376 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6377 if (!napi->thread) {
6378 err = napi_kthread_create(napi);
6379 if (err) {
6380 threaded = false;
6381 break;
6382 }
6383 }
6384 }
6385 }
6386
6387 dev->threaded = threaded;
6388
6389 /* Make sure kthread is created before THREADED bit
6390 * is set.
6391 */
6392 smp_mb__before_atomic();
6393
6394 /* Setting/unsetting threaded mode on a napi might not immediately
6395 * take effect, if the current napi instance is actively being
6396 * polled. In this case, the switch between threaded mode and
6397 * softirq mode will happen in the next round of napi_schedule().
6398 * This should not cause hiccups/stalls to the live traffic.
6399 */
6400 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6401 if (threaded)
6402 set_bit(NAPI_STATE_THREADED, &napi->state);
6403 else
6404 clear_bit(NAPI_STATE_THREADED, &napi->state);
6405 }
6406
6407 return err;
6408 }
6409 EXPORT_SYMBOL(dev_set_threaded);
6410
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6411 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6412 int (*poll)(struct napi_struct *, int), int weight)
6413 {
6414 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6415 return;
6416
6417 INIT_LIST_HEAD(&napi->poll_list);
6418 INIT_HLIST_NODE(&napi->napi_hash_node);
6419 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6420 napi->timer.function = napi_watchdog;
6421 init_gro_hash(napi);
6422 napi->skb = NULL;
6423 INIT_LIST_HEAD(&napi->rx_list);
6424 napi->rx_count = 0;
6425 napi->poll = poll;
6426 if (weight > NAPI_POLL_WEIGHT)
6427 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6428 weight);
6429 napi->weight = weight;
6430 napi->dev = dev;
6431 #ifdef CONFIG_NETPOLL
6432 napi->poll_owner = -1;
6433 #endif
6434 set_bit(NAPI_STATE_SCHED, &napi->state);
6435 set_bit(NAPI_STATE_NPSVC, &napi->state);
6436 list_add_rcu(&napi->dev_list, &dev->napi_list);
6437 napi_hash_add(napi);
6438 napi_get_frags_check(napi);
6439 /* Create kthread for this napi if dev->threaded is set.
6440 * Clear dev->threaded if kthread creation failed so that
6441 * threaded mode will not be enabled in napi_enable().
6442 */
6443 if (dev->threaded && napi_kthread_create(napi))
6444 dev->threaded = 0;
6445 }
6446 EXPORT_SYMBOL(netif_napi_add_weight);
6447
napi_disable(struct napi_struct * n)6448 void napi_disable(struct napi_struct *n)
6449 {
6450 unsigned long val, new;
6451
6452 might_sleep();
6453 set_bit(NAPI_STATE_DISABLE, &n->state);
6454
6455 for ( ; ; ) {
6456 val = READ_ONCE(n->state);
6457 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6458 usleep_range(20, 200);
6459 continue;
6460 }
6461
6462 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6463 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6464
6465 if (cmpxchg(&n->state, val, new) == val)
6466 break;
6467 }
6468
6469 hrtimer_cancel(&n->timer);
6470
6471 clear_bit(NAPI_STATE_DISABLE, &n->state);
6472 }
6473 EXPORT_SYMBOL(napi_disable);
6474
6475 /**
6476 * napi_enable - enable NAPI scheduling
6477 * @n: NAPI context
6478 *
6479 * Resume NAPI from being scheduled on this context.
6480 * Must be paired with napi_disable.
6481 */
napi_enable(struct napi_struct * n)6482 void napi_enable(struct napi_struct *n)
6483 {
6484 unsigned long val, new;
6485
6486 do {
6487 val = READ_ONCE(n->state);
6488 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6489
6490 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6491 if (n->dev->threaded && n->thread)
6492 new |= NAPIF_STATE_THREADED;
6493 } while (cmpxchg(&n->state, val, new) != val);
6494 }
6495 EXPORT_SYMBOL(napi_enable);
6496
flush_gro_hash(struct napi_struct * napi)6497 static void flush_gro_hash(struct napi_struct *napi)
6498 {
6499 int i;
6500
6501 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6502 struct sk_buff *skb, *n;
6503
6504 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6505 kfree_skb(skb);
6506 napi->gro_hash[i].count = 0;
6507 }
6508 }
6509
6510 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6511 void __netif_napi_del(struct napi_struct *napi)
6512 {
6513 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6514 return;
6515
6516 napi_hash_del(napi);
6517 list_del_rcu(&napi->dev_list);
6518 napi_free_frags(napi);
6519
6520 flush_gro_hash(napi);
6521 napi->gro_bitmask = 0;
6522
6523 if (napi->thread) {
6524 kthread_stop(napi->thread);
6525 napi->thread = NULL;
6526 }
6527 }
6528 EXPORT_SYMBOL(__netif_napi_del);
6529
__napi_poll(struct napi_struct * n,bool * repoll)6530 static int __napi_poll(struct napi_struct *n, bool *repoll)
6531 {
6532 int work, weight;
6533
6534 weight = n->weight;
6535
6536 /* This NAPI_STATE_SCHED test is for avoiding a race
6537 * with netpoll's poll_napi(). Only the entity which
6538 * obtains the lock and sees NAPI_STATE_SCHED set will
6539 * actually make the ->poll() call. Therefore we avoid
6540 * accidentally calling ->poll() when NAPI is not scheduled.
6541 */
6542 work = 0;
6543 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6544 work = n->poll(n, weight);
6545 trace_napi_poll(n, work, weight);
6546 }
6547
6548 if (unlikely(work > weight))
6549 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6550 n->poll, work, weight);
6551
6552 if (likely(work < weight))
6553 return work;
6554
6555 /* Drivers must not modify the NAPI state if they
6556 * consume the entire weight. In such cases this code
6557 * still "owns" the NAPI instance and therefore can
6558 * move the instance around on the list at-will.
6559 */
6560 if (unlikely(napi_disable_pending(n))) {
6561 napi_complete(n);
6562 return work;
6563 }
6564
6565 /* The NAPI context has more processing work, but busy-polling
6566 * is preferred. Exit early.
6567 */
6568 if (napi_prefer_busy_poll(n)) {
6569 if (napi_complete_done(n, work)) {
6570 /* If timeout is not set, we need to make sure
6571 * that the NAPI is re-scheduled.
6572 */
6573 napi_schedule(n);
6574 }
6575 return work;
6576 }
6577
6578 if (n->gro_bitmask) {
6579 /* flush too old packets
6580 * If HZ < 1000, flush all packets.
6581 */
6582 napi_gro_flush(n, HZ >= 1000);
6583 }
6584
6585 gro_normal_list(n);
6586
6587 /* Some drivers may have called napi_schedule
6588 * prior to exhausting their budget.
6589 */
6590 if (unlikely(!list_empty(&n->poll_list))) {
6591 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6592 n->dev ? n->dev->name : "backlog");
6593 return work;
6594 }
6595
6596 *repoll = true;
6597
6598 return work;
6599 }
6600
napi_poll(struct napi_struct * n,struct list_head * repoll)6601 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6602 {
6603 bool do_repoll = false;
6604 void *have;
6605 int work;
6606
6607 list_del_init(&n->poll_list);
6608
6609 have = netpoll_poll_lock(n);
6610
6611 work = __napi_poll(n, &do_repoll);
6612
6613 if (do_repoll)
6614 list_add_tail(&n->poll_list, repoll);
6615
6616 netpoll_poll_unlock(have);
6617
6618 return work;
6619 }
6620
napi_thread_wait(struct napi_struct * napi)6621 static int napi_thread_wait(struct napi_struct *napi)
6622 {
6623 bool woken = false;
6624
6625 set_current_state(TASK_INTERRUPTIBLE);
6626
6627 while (!kthread_should_stop()) {
6628 /* Testing SCHED_THREADED bit here to make sure the current
6629 * kthread owns this napi and could poll on this napi.
6630 * Testing SCHED bit is not enough because SCHED bit might be
6631 * set by some other busy poll thread or by napi_disable().
6632 */
6633 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6634 WARN_ON(!list_empty(&napi->poll_list));
6635 __set_current_state(TASK_RUNNING);
6636 return 0;
6637 }
6638
6639 schedule();
6640 /* woken being true indicates this thread owns this napi. */
6641 woken = true;
6642 set_current_state(TASK_INTERRUPTIBLE);
6643 }
6644 __set_current_state(TASK_RUNNING);
6645
6646 return -1;
6647 }
6648
napi_threaded_poll(void * data)6649 static int napi_threaded_poll(void *data)
6650 {
6651 struct napi_struct *napi = data;
6652 void *have;
6653
6654 while (!napi_thread_wait(napi)) {
6655 for (;;) {
6656 bool repoll = false;
6657
6658 local_bh_disable();
6659
6660 have = netpoll_poll_lock(napi);
6661 __napi_poll(napi, &repoll);
6662 netpoll_poll_unlock(have);
6663
6664 local_bh_enable();
6665
6666 if (!repoll)
6667 break;
6668
6669 cond_resched();
6670 }
6671 }
6672 return 0;
6673 }
6674
skb_defer_free_flush(struct softnet_data * sd)6675 static void skb_defer_free_flush(struct softnet_data *sd)
6676 {
6677 struct sk_buff *skb, *next;
6678 unsigned long flags;
6679
6680 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6681 if (!READ_ONCE(sd->defer_list))
6682 return;
6683
6684 spin_lock_irqsave(&sd->defer_lock, flags);
6685 skb = sd->defer_list;
6686 sd->defer_list = NULL;
6687 sd->defer_count = 0;
6688 spin_unlock_irqrestore(&sd->defer_lock, flags);
6689
6690 while (skb != NULL) {
6691 next = skb->next;
6692 napi_consume_skb(skb, 1);
6693 skb = next;
6694 }
6695 }
6696
net_rx_action(struct softirq_action * h)6697 static __latent_entropy void net_rx_action(struct softirq_action *h)
6698 {
6699 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6700 unsigned long time_limit = jiffies +
6701 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6702 int budget = READ_ONCE(netdev_budget);
6703 LIST_HEAD(list);
6704 LIST_HEAD(repoll);
6705
6706 local_irq_disable();
6707 list_splice_init(&sd->poll_list, &list);
6708 local_irq_enable();
6709
6710 for (;;) {
6711 struct napi_struct *n;
6712
6713 skb_defer_free_flush(sd);
6714
6715 if (list_empty(&list)) {
6716 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6717 goto end;
6718 break;
6719 }
6720
6721 n = list_first_entry(&list, struct napi_struct, poll_list);
6722 budget -= napi_poll(n, &repoll);
6723
6724 /* If softirq window is exhausted then punt.
6725 * Allow this to run for 2 jiffies since which will allow
6726 * an average latency of 1.5/HZ.
6727 */
6728 if (unlikely(budget <= 0 ||
6729 time_after_eq(jiffies, time_limit))) {
6730 sd->time_squeeze++;
6731 break;
6732 }
6733 }
6734
6735 local_irq_disable();
6736
6737 list_splice_tail_init(&sd->poll_list, &list);
6738 list_splice_tail(&repoll, &list);
6739 list_splice(&list, &sd->poll_list);
6740 if (!list_empty(&sd->poll_list))
6741 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6742
6743 net_rps_action_and_irq_enable(sd);
6744 end:;
6745 }
6746
6747 struct netdev_adjacent {
6748 struct net_device *dev;
6749 netdevice_tracker dev_tracker;
6750
6751 /* upper master flag, there can only be one master device per list */
6752 bool master;
6753
6754 /* lookup ignore flag */
6755 bool ignore;
6756
6757 /* counter for the number of times this device was added to us */
6758 u16 ref_nr;
6759
6760 /* private field for the users */
6761 void *private;
6762
6763 struct list_head list;
6764 struct rcu_head rcu;
6765 };
6766
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6767 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6768 struct list_head *adj_list)
6769 {
6770 struct netdev_adjacent *adj;
6771
6772 list_for_each_entry(adj, adj_list, list) {
6773 if (adj->dev == adj_dev)
6774 return adj;
6775 }
6776 return NULL;
6777 }
6778
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6779 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6780 struct netdev_nested_priv *priv)
6781 {
6782 struct net_device *dev = (struct net_device *)priv->data;
6783
6784 return upper_dev == dev;
6785 }
6786
6787 /**
6788 * netdev_has_upper_dev - Check if device is linked to an upper device
6789 * @dev: device
6790 * @upper_dev: upper device to check
6791 *
6792 * Find out if a device is linked to specified upper device and return true
6793 * in case it is. Note that this checks only immediate upper device,
6794 * not through a complete stack of devices. The caller must hold the RTNL lock.
6795 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6796 bool netdev_has_upper_dev(struct net_device *dev,
6797 struct net_device *upper_dev)
6798 {
6799 struct netdev_nested_priv priv = {
6800 .data = (void *)upper_dev,
6801 };
6802
6803 ASSERT_RTNL();
6804
6805 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6806 &priv);
6807 }
6808 EXPORT_SYMBOL(netdev_has_upper_dev);
6809
6810 /**
6811 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6812 * @dev: device
6813 * @upper_dev: upper device to check
6814 *
6815 * Find out if a device is linked to specified upper device and return true
6816 * in case it is. Note that this checks the entire upper device chain.
6817 * The caller must hold rcu lock.
6818 */
6819
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6820 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6821 struct net_device *upper_dev)
6822 {
6823 struct netdev_nested_priv priv = {
6824 .data = (void *)upper_dev,
6825 };
6826
6827 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6828 &priv);
6829 }
6830 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6831
6832 /**
6833 * netdev_has_any_upper_dev - Check if device is linked to some device
6834 * @dev: device
6835 *
6836 * Find out if a device is linked to an upper device and return true in case
6837 * it is. The caller must hold the RTNL lock.
6838 */
netdev_has_any_upper_dev(struct net_device * dev)6839 bool netdev_has_any_upper_dev(struct net_device *dev)
6840 {
6841 ASSERT_RTNL();
6842
6843 return !list_empty(&dev->adj_list.upper);
6844 }
6845 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6846
6847 /**
6848 * netdev_master_upper_dev_get - Get master upper device
6849 * @dev: device
6850 *
6851 * Find a master upper device and return pointer to it or NULL in case
6852 * it's not there. The caller must hold the RTNL lock.
6853 */
netdev_master_upper_dev_get(struct net_device * dev)6854 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6855 {
6856 struct netdev_adjacent *upper;
6857
6858 ASSERT_RTNL();
6859
6860 if (list_empty(&dev->adj_list.upper))
6861 return NULL;
6862
6863 upper = list_first_entry(&dev->adj_list.upper,
6864 struct netdev_adjacent, list);
6865 if (likely(upper->master))
6866 return upper->dev;
6867 return NULL;
6868 }
6869 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6870
__netdev_master_upper_dev_get(struct net_device * dev)6871 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6872 {
6873 struct netdev_adjacent *upper;
6874
6875 ASSERT_RTNL();
6876
6877 if (list_empty(&dev->adj_list.upper))
6878 return NULL;
6879
6880 upper = list_first_entry(&dev->adj_list.upper,
6881 struct netdev_adjacent, list);
6882 if (likely(upper->master) && !upper->ignore)
6883 return upper->dev;
6884 return NULL;
6885 }
6886
6887 /**
6888 * netdev_has_any_lower_dev - Check if device is linked to some device
6889 * @dev: device
6890 *
6891 * Find out if a device is linked to a lower device and return true in case
6892 * it is. The caller must hold the RTNL lock.
6893 */
netdev_has_any_lower_dev(struct net_device * dev)6894 static bool netdev_has_any_lower_dev(struct net_device *dev)
6895 {
6896 ASSERT_RTNL();
6897
6898 return !list_empty(&dev->adj_list.lower);
6899 }
6900
netdev_adjacent_get_private(struct list_head * adj_list)6901 void *netdev_adjacent_get_private(struct list_head *adj_list)
6902 {
6903 struct netdev_adjacent *adj;
6904
6905 adj = list_entry(adj_list, struct netdev_adjacent, list);
6906
6907 return adj->private;
6908 }
6909 EXPORT_SYMBOL(netdev_adjacent_get_private);
6910
6911 /**
6912 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6913 * @dev: device
6914 * @iter: list_head ** of the current position
6915 *
6916 * Gets the next device from the dev's upper list, starting from iter
6917 * position. The caller must hold RCU read lock.
6918 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6919 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6920 struct list_head **iter)
6921 {
6922 struct netdev_adjacent *upper;
6923
6924 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6925
6926 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6927
6928 if (&upper->list == &dev->adj_list.upper)
6929 return NULL;
6930
6931 *iter = &upper->list;
6932
6933 return upper->dev;
6934 }
6935 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6936
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)6937 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6938 struct list_head **iter,
6939 bool *ignore)
6940 {
6941 struct netdev_adjacent *upper;
6942
6943 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6944
6945 if (&upper->list == &dev->adj_list.upper)
6946 return NULL;
6947
6948 *iter = &upper->list;
6949 *ignore = upper->ignore;
6950
6951 return upper->dev;
6952 }
6953
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)6954 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6955 struct list_head **iter)
6956 {
6957 struct netdev_adjacent *upper;
6958
6959 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6960
6961 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6962
6963 if (&upper->list == &dev->adj_list.upper)
6964 return NULL;
6965
6966 *iter = &upper->list;
6967
6968 return upper->dev;
6969 }
6970
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)6971 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6972 int (*fn)(struct net_device *dev,
6973 struct netdev_nested_priv *priv),
6974 struct netdev_nested_priv *priv)
6975 {
6976 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6977 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6978 int ret, cur = 0;
6979 bool ignore;
6980
6981 now = dev;
6982 iter = &dev->adj_list.upper;
6983
6984 while (1) {
6985 if (now != dev) {
6986 ret = fn(now, priv);
6987 if (ret)
6988 return ret;
6989 }
6990
6991 next = NULL;
6992 while (1) {
6993 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6994 if (!udev)
6995 break;
6996 if (ignore)
6997 continue;
6998
6999 next = udev;
7000 niter = &udev->adj_list.upper;
7001 dev_stack[cur] = now;
7002 iter_stack[cur++] = iter;
7003 break;
7004 }
7005
7006 if (!next) {
7007 if (!cur)
7008 return 0;
7009 next = dev_stack[--cur];
7010 niter = iter_stack[cur];
7011 }
7012
7013 now = next;
7014 iter = niter;
7015 }
7016
7017 return 0;
7018 }
7019
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7020 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7021 int (*fn)(struct net_device *dev,
7022 struct netdev_nested_priv *priv),
7023 struct netdev_nested_priv *priv)
7024 {
7025 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7026 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7027 int ret, cur = 0;
7028
7029 now = dev;
7030 iter = &dev->adj_list.upper;
7031
7032 while (1) {
7033 if (now != dev) {
7034 ret = fn(now, priv);
7035 if (ret)
7036 return ret;
7037 }
7038
7039 next = NULL;
7040 while (1) {
7041 udev = netdev_next_upper_dev_rcu(now, &iter);
7042 if (!udev)
7043 break;
7044
7045 next = udev;
7046 niter = &udev->adj_list.upper;
7047 dev_stack[cur] = now;
7048 iter_stack[cur++] = iter;
7049 break;
7050 }
7051
7052 if (!next) {
7053 if (!cur)
7054 return 0;
7055 next = dev_stack[--cur];
7056 niter = iter_stack[cur];
7057 }
7058
7059 now = next;
7060 iter = niter;
7061 }
7062
7063 return 0;
7064 }
7065 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7066
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7067 static bool __netdev_has_upper_dev(struct net_device *dev,
7068 struct net_device *upper_dev)
7069 {
7070 struct netdev_nested_priv priv = {
7071 .flags = 0,
7072 .data = (void *)upper_dev,
7073 };
7074
7075 ASSERT_RTNL();
7076
7077 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7078 &priv);
7079 }
7080
7081 /**
7082 * netdev_lower_get_next_private - Get the next ->private from the
7083 * lower neighbour list
7084 * @dev: device
7085 * @iter: list_head ** of the current position
7086 *
7087 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7088 * list, starting from iter position. The caller must hold either hold the
7089 * RTNL lock or its own locking that guarantees that the neighbour lower
7090 * list will remain unchanged.
7091 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7092 void *netdev_lower_get_next_private(struct net_device *dev,
7093 struct list_head **iter)
7094 {
7095 struct netdev_adjacent *lower;
7096
7097 lower = list_entry(*iter, struct netdev_adjacent, list);
7098
7099 if (&lower->list == &dev->adj_list.lower)
7100 return NULL;
7101
7102 *iter = lower->list.next;
7103
7104 return lower->private;
7105 }
7106 EXPORT_SYMBOL(netdev_lower_get_next_private);
7107
7108 /**
7109 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7110 * lower neighbour list, RCU
7111 * variant
7112 * @dev: device
7113 * @iter: list_head ** of the current position
7114 *
7115 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7116 * list, starting from iter position. The caller must hold RCU read lock.
7117 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7118 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7119 struct list_head **iter)
7120 {
7121 struct netdev_adjacent *lower;
7122
7123 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7124
7125 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7126
7127 if (&lower->list == &dev->adj_list.lower)
7128 return NULL;
7129
7130 *iter = &lower->list;
7131
7132 return lower->private;
7133 }
7134 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7135
7136 /**
7137 * netdev_lower_get_next - Get the next device from the lower neighbour
7138 * list
7139 * @dev: device
7140 * @iter: list_head ** of the current position
7141 *
7142 * Gets the next netdev_adjacent from the dev's lower neighbour
7143 * list, starting from iter position. The caller must hold RTNL lock or
7144 * its own locking that guarantees that the neighbour lower
7145 * list will remain unchanged.
7146 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7147 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7148 {
7149 struct netdev_adjacent *lower;
7150
7151 lower = list_entry(*iter, struct netdev_adjacent, list);
7152
7153 if (&lower->list == &dev->adj_list.lower)
7154 return NULL;
7155
7156 *iter = lower->list.next;
7157
7158 return lower->dev;
7159 }
7160 EXPORT_SYMBOL(netdev_lower_get_next);
7161
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7162 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7163 struct list_head **iter)
7164 {
7165 struct netdev_adjacent *lower;
7166
7167 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7168
7169 if (&lower->list == &dev->adj_list.lower)
7170 return NULL;
7171
7172 *iter = &lower->list;
7173
7174 return lower->dev;
7175 }
7176
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7177 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7178 struct list_head **iter,
7179 bool *ignore)
7180 {
7181 struct netdev_adjacent *lower;
7182
7183 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7184
7185 if (&lower->list == &dev->adj_list.lower)
7186 return NULL;
7187
7188 *iter = &lower->list;
7189 *ignore = lower->ignore;
7190
7191 return lower->dev;
7192 }
7193
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7194 int netdev_walk_all_lower_dev(struct net_device *dev,
7195 int (*fn)(struct net_device *dev,
7196 struct netdev_nested_priv *priv),
7197 struct netdev_nested_priv *priv)
7198 {
7199 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7200 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7201 int ret, cur = 0;
7202
7203 now = dev;
7204 iter = &dev->adj_list.lower;
7205
7206 while (1) {
7207 if (now != dev) {
7208 ret = fn(now, priv);
7209 if (ret)
7210 return ret;
7211 }
7212
7213 next = NULL;
7214 while (1) {
7215 ldev = netdev_next_lower_dev(now, &iter);
7216 if (!ldev)
7217 break;
7218
7219 next = ldev;
7220 niter = &ldev->adj_list.lower;
7221 dev_stack[cur] = now;
7222 iter_stack[cur++] = iter;
7223 break;
7224 }
7225
7226 if (!next) {
7227 if (!cur)
7228 return 0;
7229 next = dev_stack[--cur];
7230 niter = iter_stack[cur];
7231 }
7232
7233 now = next;
7234 iter = niter;
7235 }
7236
7237 return 0;
7238 }
7239 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7240
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7241 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7242 int (*fn)(struct net_device *dev,
7243 struct netdev_nested_priv *priv),
7244 struct netdev_nested_priv *priv)
7245 {
7246 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7247 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7248 int ret, cur = 0;
7249 bool ignore;
7250
7251 now = dev;
7252 iter = &dev->adj_list.lower;
7253
7254 while (1) {
7255 if (now != dev) {
7256 ret = fn(now, priv);
7257 if (ret)
7258 return ret;
7259 }
7260
7261 next = NULL;
7262 while (1) {
7263 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7264 if (!ldev)
7265 break;
7266 if (ignore)
7267 continue;
7268
7269 next = ldev;
7270 niter = &ldev->adj_list.lower;
7271 dev_stack[cur] = now;
7272 iter_stack[cur++] = iter;
7273 break;
7274 }
7275
7276 if (!next) {
7277 if (!cur)
7278 return 0;
7279 next = dev_stack[--cur];
7280 niter = iter_stack[cur];
7281 }
7282
7283 now = next;
7284 iter = niter;
7285 }
7286
7287 return 0;
7288 }
7289
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7290 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7291 struct list_head **iter)
7292 {
7293 struct netdev_adjacent *lower;
7294
7295 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7296 if (&lower->list == &dev->adj_list.lower)
7297 return NULL;
7298
7299 *iter = &lower->list;
7300
7301 return lower->dev;
7302 }
7303 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7304
__netdev_upper_depth(struct net_device * dev)7305 static u8 __netdev_upper_depth(struct net_device *dev)
7306 {
7307 struct net_device *udev;
7308 struct list_head *iter;
7309 u8 max_depth = 0;
7310 bool ignore;
7311
7312 for (iter = &dev->adj_list.upper,
7313 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7314 udev;
7315 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7316 if (ignore)
7317 continue;
7318 if (max_depth < udev->upper_level)
7319 max_depth = udev->upper_level;
7320 }
7321
7322 return max_depth;
7323 }
7324
__netdev_lower_depth(struct net_device * dev)7325 static u8 __netdev_lower_depth(struct net_device *dev)
7326 {
7327 struct net_device *ldev;
7328 struct list_head *iter;
7329 u8 max_depth = 0;
7330 bool ignore;
7331
7332 for (iter = &dev->adj_list.lower,
7333 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7334 ldev;
7335 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7336 if (ignore)
7337 continue;
7338 if (max_depth < ldev->lower_level)
7339 max_depth = ldev->lower_level;
7340 }
7341
7342 return max_depth;
7343 }
7344
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7345 static int __netdev_update_upper_level(struct net_device *dev,
7346 struct netdev_nested_priv *__unused)
7347 {
7348 dev->upper_level = __netdev_upper_depth(dev) + 1;
7349 return 0;
7350 }
7351
7352 #ifdef CONFIG_LOCKDEP
7353 static LIST_HEAD(net_unlink_list);
7354
net_unlink_todo(struct net_device * dev)7355 static void net_unlink_todo(struct net_device *dev)
7356 {
7357 if (list_empty(&dev->unlink_list))
7358 list_add_tail(&dev->unlink_list, &net_unlink_list);
7359 }
7360 #endif
7361
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7362 static int __netdev_update_lower_level(struct net_device *dev,
7363 struct netdev_nested_priv *priv)
7364 {
7365 dev->lower_level = __netdev_lower_depth(dev) + 1;
7366
7367 #ifdef CONFIG_LOCKDEP
7368 if (!priv)
7369 return 0;
7370
7371 if (priv->flags & NESTED_SYNC_IMM)
7372 dev->nested_level = dev->lower_level - 1;
7373 if (priv->flags & NESTED_SYNC_TODO)
7374 net_unlink_todo(dev);
7375 #endif
7376 return 0;
7377 }
7378
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7379 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7380 int (*fn)(struct net_device *dev,
7381 struct netdev_nested_priv *priv),
7382 struct netdev_nested_priv *priv)
7383 {
7384 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7385 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7386 int ret, cur = 0;
7387
7388 now = dev;
7389 iter = &dev->adj_list.lower;
7390
7391 while (1) {
7392 if (now != dev) {
7393 ret = fn(now, priv);
7394 if (ret)
7395 return ret;
7396 }
7397
7398 next = NULL;
7399 while (1) {
7400 ldev = netdev_next_lower_dev_rcu(now, &iter);
7401 if (!ldev)
7402 break;
7403
7404 next = ldev;
7405 niter = &ldev->adj_list.lower;
7406 dev_stack[cur] = now;
7407 iter_stack[cur++] = iter;
7408 break;
7409 }
7410
7411 if (!next) {
7412 if (!cur)
7413 return 0;
7414 next = dev_stack[--cur];
7415 niter = iter_stack[cur];
7416 }
7417
7418 now = next;
7419 iter = niter;
7420 }
7421
7422 return 0;
7423 }
7424 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7425
7426 /**
7427 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7428 * lower neighbour list, RCU
7429 * variant
7430 * @dev: device
7431 *
7432 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7433 * list. The caller must hold RCU read lock.
7434 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7435 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7436 {
7437 struct netdev_adjacent *lower;
7438
7439 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7440 struct netdev_adjacent, list);
7441 if (lower)
7442 return lower->private;
7443 return NULL;
7444 }
7445 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7446
7447 /**
7448 * netdev_master_upper_dev_get_rcu - Get master upper device
7449 * @dev: device
7450 *
7451 * Find a master upper device and return pointer to it or NULL in case
7452 * it's not there. The caller must hold the RCU read lock.
7453 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7454 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7455 {
7456 struct netdev_adjacent *upper;
7457
7458 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7459 struct netdev_adjacent, list);
7460 if (upper && likely(upper->master))
7461 return upper->dev;
7462 return NULL;
7463 }
7464 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7465
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7466 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7467 struct net_device *adj_dev,
7468 struct list_head *dev_list)
7469 {
7470 char linkname[IFNAMSIZ+7];
7471
7472 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7473 "upper_%s" : "lower_%s", adj_dev->name);
7474 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7475 linkname);
7476 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7477 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7478 char *name,
7479 struct list_head *dev_list)
7480 {
7481 char linkname[IFNAMSIZ+7];
7482
7483 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7484 "upper_%s" : "lower_%s", name);
7485 sysfs_remove_link(&(dev->dev.kobj), linkname);
7486 }
7487
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7488 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7489 struct net_device *adj_dev,
7490 struct list_head *dev_list)
7491 {
7492 return (dev_list == &dev->adj_list.upper ||
7493 dev_list == &dev->adj_list.lower) &&
7494 net_eq(dev_net(dev), dev_net(adj_dev));
7495 }
7496
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7497 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7498 struct net_device *adj_dev,
7499 struct list_head *dev_list,
7500 void *private, bool master)
7501 {
7502 struct netdev_adjacent *adj;
7503 int ret;
7504
7505 adj = __netdev_find_adj(adj_dev, dev_list);
7506
7507 if (adj) {
7508 adj->ref_nr += 1;
7509 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7510 dev->name, adj_dev->name, adj->ref_nr);
7511
7512 return 0;
7513 }
7514
7515 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7516 if (!adj)
7517 return -ENOMEM;
7518
7519 adj->dev = adj_dev;
7520 adj->master = master;
7521 adj->ref_nr = 1;
7522 adj->private = private;
7523 adj->ignore = false;
7524 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7525
7526 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7527 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7528
7529 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7530 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7531 if (ret)
7532 goto free_adj;
7533 }
7534
7535 /* Ensure that master link is always the first item in list. */
7536 if (master) {
7537 ret = sysfs_create_link(&(dev->dev.kobj),
7538 &(adj_dev->dev.kobj), "master");
7539 if (ret)
7540 goto remove_symlinks;
7541
7542 list_add_rcu(&adj->list, dev_list);
7543 } else {
7544 list_add_tail_rcu(&adj->list, dev_list);
7545 }
7546
7547 return 0;
7548
7549 remove_symlinks:
7550 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7551 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7552 free_adj:
7553 netdev_put(adj_dev, &adj->dev_tracker);
7554 kfree(adj);
7555
7556 return ret;
7557 }
7558
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7559 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7560 struct net_device *adj_dev,
7561 u16 ref_nr,
7562 struct list_head *dev_list)
7563 {
7564 struct netdev_adjacent *adj;
7565
7566 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7567 dev->name, adj_dev->name, ref_nr);
7568
7569 adj = __netdev_find_adj(adj_dev, dev_list);
7570
7571 if (!adj) {
7572 pr_err("Adjacency does not exist for device %s from %s\n",
7573 dev->name, adj_dev->name);
7574 WARN_ON(1);
7575 return;
7576 }
7577
7578 if (adj->ref_nr > ref_nr) {
7579 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7580 dev->name, adj_dev->name, ref_nr,
7581 adj->ref_nr - ref_nr);
7582 adj->ref_nr -= ref_nr;
7583 return;
7584 }
7585
7586 if (adj->master)
7587 sysfs_remove_link(&(dev->dev.kobj), "master");
7588
7589 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7590 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7591
7592 list_del_rcu(&adj->list);
7593 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7594 adj_dev->name, dev->name, adj_dev->name);
7595 netdev_put(adj_dev, &adj->dev_tracker);
7596 kfree_rcu(adj, rcu);
7597 }
7598
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7599 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7600 struct net_device *upper_dev,
7601 struct list_head *up_list,
7602 struct list_head *down_list,
7603 void *private, bool master)
7604 {
7605 int ret;
7606
7607 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7608 private, master);
7609 if (ret)
7610 return ret;
7611
7612 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7613 private, false);
7614 if (ret) {
7615 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7616 return ret;
7617 }
7618
7619 return 0;
7620 }
7621
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7622 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7623 struct net_device *upper_dev,
7624 u16 ref_nr,
7625 struct list_head *up_list,
7626 struct list_head *down_list)
7627 {
7628 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7629 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7630 }
7631
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7632 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7633 struct net_device *upper_dev,
7634 void *private, bool master)
7635 {
7636 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7637 &dev->adj_list.upper,
7638 &upper_dev->adj_list.lower,
7639 private, master);
7640 }
7641
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7642 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7643 struct net_device *upper_dev)
7644 {
7645 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7646 &dev->adj_list.upper,
7647 &upper_dev->adj_list.lower);
7648 }
7649
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7650 static int __netdev_upper_dev_link(struct net_device *dev,
7651 struct net_device *upper_dev, bool master,
7652 void *upper_priv, void *upper_info,
7653 struct netdev_nested_priv *priv,
7654 struct netlink_ext_ack *extack)
7655 {
7656 struct netdev_notifier_changeupper_info changeupper_info = {
7657 .info = {
7658 .dev = dev,
7659 .extack = extack,
7660 },
7661 .upper_dev = upper_dev,
7662 .master = master,
7663 .linking = true,
7664 .upper_info = upper_info,
7665 };
7666 struct net_device *master_dev;
7667 int ret = 0;
7668
7669 ASSERT_RTNL();
7670
7671 if (dev == upper_dev)
7672 return -EBUSY;
7673
7674 /* To prevent loops, check if dev is not upper device to upper_dev. */
7675 if (__netdev_has_upper_dev(upper_dev, dev))
7676 return -EBUSY;
7677
7678 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7679 return -EMLINK;
7680
7681 if (!master) {
7682 if (__netdev_has_upper_dev(dev, upper_dev))
7683 return -EEXIST;
7684 } else {
7685 master_dev = __netdev_master_upper_dev_get(dev);
7686 if (master_dev)
7687 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7688 }
7689
7690 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7691 &changeupper_info.info);
7692 ret = notifier_to_errno(ret);
7693 if (ret)
7694 return ret;
7695
7696 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7697 master);
7698 if (ret)
7699 return ret;
7700
7701 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7702 &changeupper_info.info);
7703 ret = notifier_to_errno(ret);
7704 if (ret)
7705 goto rollback;
7706
7707 __netdev_update_upper_level(dev, NULL);
7708 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7709
7710 __netdev_update_lower_level(upper_dev, priv);
7711 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7712 priv);
7713
7714 return 0;
7715
7716 rollback:
7717 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7718
7719 return ret;
7720 }
7721
7722 /**
7723 * netdev_upper_dev_link - Add a link to the upper device
7724 * @dev: device
7725 * @upper_dev: new upper device
7726 * @extack: netlink extended ack
7727 *
7728 * Adds a link to device which is upper to this one. The caller must hold
7729 * the RTNL lock. On a failure a negative errno code is returned.
7730 * On success the reference counts are adjusted and the function
7731 * returns zero.
7732 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7733 int netdev_upper_dev_link(struct net_device *dev,
7734 struct net_device *upper_dev,
7735 struct netlink_ext_ack *extack)
7736 {
7737 struct netdev_nested_priv priv = {
7738 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7739 .data = NULL,
7740 };
7741
7742 return __netdev_upper_dev_link(dev, upper_dev, false,
7743 NULL, NULL, &priv, extack);
7744 }
7745 EXPORT_SYMBOL(netdev_upper_dev_link);
7746
7747 /**
7748 * netdev_master_upper_dev_link - Add a master link to the upper device
7749 * @dev: device
7750 * @upper_dev: new upper device
7751 * @upper_priv: upper device private
7752 * @upper_info: upper info to be passed down via notifier
7753 * @extack: netlink extended ack
7754 *
7755 * Adds a link to device which is upper to this one. In this case, only
7756 * one master upper device can be linked, although other non-master devices
7757 * might be linked as well. The caller must hold the RTNL lock.
7758 * On a failure a negative errno code is returned. On success the reference
7759 * counts are adjusted and the function returns zero.
7760 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7761 int netdev_master_upper_dev_link(struct net_device *dev,
7762 struct net_device *upper_dev,
7763 void *upper_priv, void *upper_info,
7764 struct netlink_ext_ack *extack)
7765 {
7766 struct netdev_nested_priv priv = {
7767 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7768 .data = NULL,
7769 };
7770
7771 return __netdev_upper_dev_link(dev, upper_dev, true,
7772 upper_priv, upper_info, &priv, extack);
7773 }
7774 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7775
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7776 static void __netdev_upper_dev_unlink(struct net_device *dev,
7777 struct net_device *upper_dev,
7778 struct netdev_nested_priv *priv)
7779 {
7780 struct netdev_notifier_changeupper_info changeupper_info = {
7781 .info = {
7782 .dev = dev,
7783 },
7784 .upper_dev = upper_dev,
7785 .linking = false,
7786 };
7787
7788 ASSERT_RTNL();
7789
7790 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7791
7792 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7793 &changeupper_info.info);
7794
7795 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7796
7797 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7798 &changeupper_info.info);
7799
7800 __netdev_update_upper_level(dev, NULL);
7801 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7802
7803 __netdev_update_lower_level(upper_dev, priv);
7804 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7805 priv);
7806 }
7807
7808 /**
7809 * netdev_upper_dev_unlink - Removes a link to upper device
7810 * @dev: device
7811 * @upper_dev: new upper device
7812 *
7813 * Removes a link to device which is upper to this one. The caller must hold
7814 * the RTNL lock.
7815 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7816 void netdev_upper_dev_unlink(struct net_device *dev,
7817 struct net_device *upper_dev)
7818 {
7819 struct netdev_nested_priv priv = {
7820 .flags = NESTED_SYNC_TODO,
7821 .data = NULL,
7822 };
7823
7824 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7825 }
7826 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7827
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7828 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7829 struct net_device *lower_dev,
7830 bool val)
7831 {
7832 struct netdev_adjacent *adj;
7833
7834 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7835 if (adj)
7836 adj->ignore = val;
7837
7838 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7839 if (adj)
7840 adj->ignore = val;
7841 }
7842
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7843 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7844 struct net_device *lower_dev)
7845 {
7846 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7847 }
7848
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7849 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7850 struct net_device *lower_dev)
7851 {
7852 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7853 }
7854
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7855 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7856 struct net_device *new_dev,
7857 struct net_device *dev,
7858 struct netlink_ext_ack *extack)
7859 {
7860 struct netdev_nested_priv priv = {
7861 .flags = 0,
7862 .data = NULL,
7863 };
7864 int err;
7865
7866 if (!new_dev)
7867 return 0;
7868
7869 if (old_dev && new_dev != old_dev)
7870 netdev_adjacent_dev_disable(dev, old_dev);
7871 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7872 extack);
7873 if (err) {
7874 if (old_dev && new_dev != old_dev)
7875 netdev_adjacent_dev_enable(dev, old_dev);
7876 return err;
7877 }
7878
7879 return 0;
7880 }
7881 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7882
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7883 void netdev_adjacent_change_commit(struct net_device *old_dev,
7884 struct net_device *new_dev,
7885 struct net_device *dev)
7886 {
7887 struct netdev_nested_priv priv = {
7888 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7889 .data = NULL,
7890 };
7891
7892 if (!new_dev || !old_dev)
7893 return;
7894
7895 if (new_dev == old_dev)
7896 return;
7897
7898 netdev_adjacent_dev_enable(dev, old_dev);
7899 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7900 }
7901 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7902
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7903 void netdev_adjacent_change_abort(struct net_device *old_dev,
7904 struct net_device *new_dev,
7905 struct net_device *dev)
7906 {
7907 struct netdev_nested_priv priv = {
7908 .flags = 0,
7909 .data = NULL,
7910 };
7911
7912 if (!new_dev)
7913 return;
7914
7915 if (old_dev && new_dev != old_dev)
7916 netdev_adjacent_dev_enable(dev, old_dev);
7917
7918 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7919 }
7920 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7921
7922 /**
7923 * netdev_bonding_info_change - Dispatch event about slave change
7924 * @dev: device
7925 * @bonding_info: info to dispatch
7926 *
7927 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7928 * The caller must hold the RTNL lock.
7929 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7930 void netdev_bonding_info_change(struct net_device *dev,
7931 struct netdev_bonding_info *bonding_info)
7932 {
7933 struct netdev_notifier_bonding_info info = {
7934 .info.dev = dev,
7935 };
7936
7937 memcpy(&info.bonding_info, bonding_info,
7938 sizeof(struct netdev_bonding_info));
7939 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7940 &info.info);
7941 }
7942 EXPORT_SYMBOL(netdev_bonding_info_change);
7943
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)7944 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7945 struct netlink_ext_ack *extack)
7946 {
7947 struct netdev_notifier_offload_xstats_info info = {
7948 .info.dev = dev,
7949 .info.extack = extack,
7950 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7951 };
7952 int err;
7953 int rc;
7954
7955 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7956 GFP_KERNEL);
7957 if (!dev->offload_xstats_l3)
7958 return -ENOMEM;
7959
7960 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7961 NETDEV_OFFLOAD_XSTATS_DISABLE,
7962 &info.info);
7963 err = notifier_to_errno(rc);
7964 if (err)
7965 goto free_stats;
7966
7967 return 0;
7968
7969 free_stats:
7970 kfree(dev->offload_xstats_l3);
7971 dev->offload_xstats_l3 = NULL;
7972 return err;
7973 }
7974
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)7975 int netdev_offload_xstats_enable(struct net_device *dev,
7976 enum netdev_offload_xstats_type type,
7977 struct netlink_ext_ack *extack)
7978 {
7979 ASSERT_RTNL();
7980
7981 if (netdev_offload_xstats_enabled(dev, type))
7982 return -EALREADY;
7983
7984 switch (type) {
7985 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7986 return netdev_offload_xstats_enable_l3(dev, extack);
7987 }
7988
7989 WARN_ON(1);
7990 return -EINVAL;
7991 }
7992 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7993
netdev_offload_xstats_disable_l3(struct net_device * dev)7994 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7995 {
7996 struct netdev_notifier_offload_xstats_info info = {
7997 .info.dev = dev,
7998 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7999 };
8000
8001 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8002 &info.info);
8003 kfree(dev->offload_xstats_l3);
8004 dev->offload_xstats_l3 = NULL;
8005 }
8006
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8007 int netdev_offload_xstats_disable(struct net_device *dev,
8008 enum netdev_offload_xstats_type type)
8009 {
8010 ASSERT_RTNL();
8011
8012 if (!netdev_offload_xstats_enabled(dev, type))
8013 return -EALREADY;
8014
8015 switch (type) {
8016 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8017 netdev_offload_xstats_disable_l3(dev);
8018 return 0;
8019 }
8020
8021 WARN_ON(1);
8022 return -EINVAL;
8023 }
8024 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8025
netdev_offload_xstats_disable_all(struct net_device * dev)8026 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8027 {
8028 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8029 }
8030
8031 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8032 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8033 enum netdev_offload_xstats_type type)
8034 {
8035 switch (type) {
8036 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8037 return dev->offload_xstats_l3;
8038 }
8039
8040 WARN_ON(1);
8041 return NULL;
8042 }
8043
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8044 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8045 enum netdev_offload_xstats_type type)
8046 {
8047 ASSERT_RTNL();
8048
8049 return netdev_offload_xstats_get_ptr(dev, type);
8050 }
8051 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8052
8053 struct netdev_notifier_offload_xstats_ru {
8054 bool used;
8055 };
8056
8057 struct netdev_notifier_offload_xstats_rd {
8058 struct rtnl_hw_stats64 stats;
8059 bool used;
8060 };
8061
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8062 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8063 const struct rtnl_hw_stats64 *src)
8064 {
8065 dest->rx_packets += src->rx_packets;
8066 dest->tx_packets += src->tx_packets;
8067 dest->rx_bytes += src->rx_bytes;
8068 dest->tx_bytes += src->tx_bytes;
8069 dest->rx_errors += src->rx_errors;
8070 dest->tx_errors += src->tx_errors;
8071 dest->rx_dropped += src->rx_dropped;
8072 dest->tx_dropped += src->tx_dropped;
8073 dest->multicast += src->multicast;
8074 }
8075
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8076 static int netdev_offload_xstats_get_used(struct net_device *dev,
8077 enum netdev_offload_xstats_type type,
8078 bool *p_used,
8079 struct netlink_ext_ack *extack)
8080 {
8081 struct netdev_notifier_offload_xstats_ru report_used = {};
8082 struct netdev_notifier_offload_xstats_info info = {
8083 .info.dev = dev,
8084 .info.extack = extack,
8085 .type = type,
8086 .report_used = &report_used,
8087 };
8088 int rc;
8089
8090 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8091 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8092 &info.info);
8093 *p_used = report_used.used;
8094 return notifier_to_errno(rc);
8095 }
8096
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8097 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8098 enum netdev_offload_xstats_type type,
8099 struct rtnl_hw_stats64 *p_stats,
8100 bool *p_used,
8101 struct netlink_ext_ack *extack)
8102 {
8103 struct netdev_notifier_offload_xstats_rd report_delta = {};
8104 struct netdev_notifier_offload_xstats_info info = {
8105 .info.dev = dev,
8106 .info.extack = extack,
8107 .type = type,
8108 .report_delta = &report_delta,
8109 };
8110 struct rtnl_hw_stats64 *stats;
8111 int rc;
8112
8113 stats = netdev_offload_xstats_get_ptr(dev, type);
8114 if (WARN_ON(!stats))
8115 return -EINVAL;
8116
8117 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8118 &info.info);
8119
8120 /* Cache whatever we got, even if there was an error, otherwise the
8121 * successful stats retrievals would get lost.
8122 */
8123 netdev_hw_stats64_add(stats, &report_delta.stats);
8124
8125 if (p_stats)
8126 *p_stats = *stats;
8127 *p_used = report_delta.used;
8128
8129 return notifier_to_errno(rc);
8130 }
8131
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8132 int netdev_offload_xstats_get(struct net_device *dev,
8133 enum netdev_offload_xstats_type type,
8134 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8135 struct netlink_ext_ack *extack)
8136 {
8137 ASSERT_RTNL();
8138
8139 if (p_stats)
8140 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8141 p_used, extack);
8142 else
8143 return netdev_offload_xstats_get_used(dev, type, p_used,
8144 extack);
8145 }
8146 EXPORT_SYMBOL(netdev_offload_xstats_get);
8147
8148 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8149 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8150 const struct rtnl_hw_stats64 *stats)
8151 {
8152 report_delta->used = true;
8153 netdev_hw_stats64_add(&report_delta->stats, stats);
8154 }
8155 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8156
8157 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8158 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8159 {
8160 report_used->used = true;
8161 }
8162 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8163
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8164 void netdev_offload_xstats_push_delta(struct net_device *dev,
8165 enum netdev_offload_xstats_type type,
8166 const struct rtnl_hw_stats64 *p_stats)
8167 {
8168 struct rtnl_hw_stats64 *stats;
8169
8170 ASSERT_RTNL();
8171
8172 stats = netdev_offload_xstats_get_ptr(dev, type);
8173 if (WARN_ON(!stats))
8174 return;
8175
8176 netdev_hw_stats64_add(stats, p_stats);
8177 }
8178 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8179
8180 /**
8181 * netdev_get_xmit_slave - Get the xmit slave of master device
8182 * @dev: device
8183 * @skb: The packet
8184 * @all_slaves: assume all the slaves are active
8185 *
8186 * The reference counters are not incremented so the caller must be
8187 * careful with locks. The caller must hold RCU lock.
8188 * %NULL is returned if no slave is found.
8189 */
8190
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8191 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8192 struct sk_buff *skb,
8193 bool all_slaves)
8194 {
8195 const struct net_device_ops *ops = dev->netdev_ops;
8196
8197 if (!ops->ndo_get_xmit_slave)
8198 return NULL;
8199 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8200 }
8201 EXPORT_SYMBOL(netdev_get_xmit_slave);
8202
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8203 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8204 struct sock *sk)
8205 {
8206 const struct net_device_ops *ops = dev->netdev_ops;
8207
8208 if (!ops->ndo_sk_get_lower_dev)
8209 return NULL;
8210 return ops->ndo_sk_get_lower_dev(dev, sk);
8211 }
8212
8213 /**
8214 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8215 * @dev: device
8216 * @sk: the socket
8217 *
8218 * %NULL is returned if no lower device is found.
8219 */
8220
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8221 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8222 struct sock *sk)
8223 {
8224 struct net_device *lower;
8225
8226 lower = netdev_sk_get_lower_dev(dev, sk);
8227 while (lower) {
8228 dev = lower;
8229 lower = netdev_sk_get_lower_dev(dev, sk);
8230 }
8231
8232 return dev;
8233 }
8234 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8235
netdev_adjacent_add_links(struct net_device * dev)8236 static void netdev_adjacent_add_links(struct net_device *dev)
8237 {
8238 struct netdev_adjacent *iter;
8239
8240 struct net *net = dev_net(dev);
8241
8242 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8243 if (!net_eq(net, dev_net(iter->dev)))
8244 continue;
8245 netdev_adjacent_sysfs_add(iter->dev, dev,
8246 &iter->dev->adj_list.lower);
8247 netdev_adjacent_sysfs_add(dev, iter->dev,
8248 &dev->adj_list.upper);
8249 }
8250
8251 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8252 if (!net_eq(net, dev_net(iter->dev)))
8253 continue;
8254 netdev_adjacent_sysfs_add(iter->dev, dev,
8255 &iter->dev->adj_list.upper);
8256 netdev_adjacent_sysfs_add(dev, iter->dev,
8257 &dev->adj_list.lower);
8258 }
8259 }
8260
netdev_adjacent_del_links(struct net_device * dev)8261 static void netdev_adjacent_del_links(struct net_device *dev)
8262 {
8263 struct netdev_adjacent *iter;
8264
8265 struct net *net = dev_net(dev);
8266
8267 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8268 if (!net_eq(net, dev_net(iter->dev)))
8269 continue;
8270 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8271 &iter->dev->adj_list.lower);
8272 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8273 &dev->adj_list.upper);
8274 }
8275
8276 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8277 if (!net_eq(net, dev_net(iter->dev)))
8278 continue;
8279 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8280 &iter->dev->adj_list.upper);
8281 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8282 &dev->adj_list.lower);
8283 }
8284 }
8285
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8286 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8287 {
8288 struct netdev_adjacent *iter;
8289
8290 struct net *net = dev_net(dev);
8291
8292 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8293 if (!net_eq(net, dev_net(iter->dev)))
8294 continue;
8295 netdev_adjacent_sysfs_del(iter->dev, oldname,
8296 &iter->dev->adj_list.lower);
8297 netdev_adjacent_sysfs_add(iter->dev, dev,
8298 &iter->dev->adj_list.lower);
8299 }
8300
8301 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8302 if (!net_eq(net, dev_net(iter->dev)))
8303 continue;
8304 netdev_adjacent_sysfs_del(iter->dev, oldname,
8305 &iter->dev->adj_list.upper);
8306 netdev_adjacent_sysfs_add(iter->dev, dev,
8307 &iter->dev->adj_list.upper);
8308 }
8309 }
8310
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8311 void *netdev_lower_dev_get_private(struct net_device *dev,
8312 struct net_device *lower_dev)
8313 {
8314 struct netdev_adjacent *lower;
8315
8316 if (!lower_dev)
8317 return NULL;
8318 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8319 if (!lower)
8320 return NULL;
8321
8322 return lower->private;
8323 }
8324 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8325
8326
8327 /**
8328 * netdev_lower_state_changed - Dispatch event about lower device state change
8329 * @lower_dev: device
8330 * @lower_state_info: state to dispatch
8331 *
8332 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8333 * The caller must hold the RTNL lock.
8334 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8335 void netdev_lower_state_changed(struct net_device *lower_dev,
8336 void *lower_state_info)
8337 {
8338 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8339 .info.dev = lower_dev,
8340 };
8341
8342 ASSERT_RTNL();
8343 changelowerstate_info.lower_state_info = lower_state_info;
8344 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8345 &changelowerstate_info.info);
8346 }
8347 EXPORT_SYMBOL(netdev_lower_state_changed);
8348
dev_change_rx_flags(struct net_device * dev,int flags)8349 static void dev_change_rx_flags(struct net_device *dev, int flags)
8350 {
8351 const struct net_device_ops *ops = dev->netdev_ops;
8352
8353 if (ops->ndo_change_rx_flags)
8354 ops->ndo_change_rx_flags(dev, flags);
8355 }
8356
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8357 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8358 {
8359 unsigned int old_flags = dev->flags;
8360 kuid_t uid;
8361 kgid_t gid;
8362
8363 ASSERT_RTNL();
8364
8365 dev->flags |= IFF_PROMISC;
8366 dev->promiscuity += inc;
8367 if (dev->promiscuity == 0) {
8368 /*
8369 * Avoid overflow.
8370 * If inc causes overflow, untouch promisc and return error.
8371 */
8372 if (inc < 0)
8373 dev->flags &= ~IFF_PROMISC;
8374 else {
8375 dev->promiscuity -= inc;
8376 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8377 return -EOVERFLOW;
8378 }
8379 }
8380 if (dev->flags != old_flags) {
8381 pr_info("device %s %s promiscuous mode\n",
8382 dev->name,
8383 dev->flags & IFF_PROMISC ? "entered" : "left");
8384 if (audit_enabled) {
8385 current_uid_gid(&uid, &gid);
8386 audit_log(audit_context(), GFP_ATOMIC,
8387 AUDIT_ANOM_PROMISCUOUS,
8388 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8389 dev->name, (dev->flags & IFF_PROMISC),
8390 (old_flags & IFF_PROMISC),
8391 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8392 from_kuid(&init_user_ns, uid),
8393 from_kgid(&init_user_ns, gid),
8394 audit_get_sessionid(current));
8395 }
8396
8397 dev_change_rx_flags(dev, IFF_PROMISC);
8398 }
8399 if (notify)
8400 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8401 return 0;
8402 }
8403
8404 /**
8405 * dev_set_promiscuity - update promiscuity count on a device
8406 * @dev: device
8407 * @inc: modifier
8408 *
8409 * Add or remove promiscuity from a device. While the count in the device
8410 * remains above zero the interface remains promiscuous. Once it hits zero
8411 * the device reverts back to normal filtering operation. A negative inc
8412 * value is used to drop promiscuity on the device.
8413 * Return 0 if successful or a negative errno code on error.
8414 */
dev_set_promiscuity(struct net_device * dev,int inc)8415 int dev_set_promiscuity(struct net_device *dev, int inc)
8416 {
8417 unsigned int old_flags = dev->flags;
8418 int err;
8419
8420 err = __dev_set_promiscuity(dev, inc, true);
8421 if (err < 0)
8422 return err;
8423 if (dev->flags != old_flags)
8424 dev_set_rx_mode(dev);
8425 return err;
8426 }
8427 EXPORT_SYMBOL(dev_set_promiscuity);
8428
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8429 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8430 {
8431 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8432
8433 ASSERT_RTNL();
8434
8435 dev->flags |= IFF_ALLMULTI;
8436 dev->allmulti += inc;
8437 if (dev->allmulti == 0) {
8438 /*
8439 * Avoid overflow.
8440 * If inc causes overflow, untouch allmulti and return error.
8441 */
8442 if (inc < 0)
8443 dev->flags &= ~IFF_ALLMULTI;
8444 else {
8445 dev->allmulti -= inc;
8446 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8447 return -EOVERFLOW;
8448 }
8449 }
8450 if (dev->flags ^ old_flags) {
8451 dev_change_rx_flags(dev, IFF_ALLMULTI);
8452 dev_set_rx_mode(dev);
8453 if (notify)
8454 __dev_notify_flags(dev, old_flags,
8455 dev->gflags ^ old_gflags);
8456 }
8457 return 0;
8458 }
8459
8460 /**
8461 * dev_set_allmulti - update allmulti count on a device
8462 * @dev: device
8463 * @inc: modifier
8464 *
8465 * Add or remove reception of all multicast frames to a device. While the
8466 * count in the device remains above zero the interface remains listening
8467 * to all interfaces. Once it hits zero the device reverts back to normal
8468 * filtering operation. A negative @inc value is used to drop the counter
8469 * when releasing a resource needing all multicasts.
8470 * Return 0 if successful or a negative errno code on error.
8471 */
8472
dev_set_allmulti(struct net_device * dev,int inc)8473 int dev_set_allmulti(struct net_device *dev, int inc)
8474 {
8475 return __dev_set_allmulti(dev, inc, true);
8476 }
8477 EXPORT_SYMBOL(dev_set_allmulti);
8478
8479 /*
8480 * Upload unicast and multicast address lists to device and
8481 * configure RX filtering. When the device doesn't support unicast
8482 * filtering it is put in promiscuous mode while unicast addresses
8483 * are present.
8484 */
__dev_set_rx_mode(struct net_device * dev)8485 void __dev_set_rx_mode(struct net_device *dev)
8486 {
8487 const struct net_device_ops *ops = dev->netdev_ops;
8488
8489 /* dev_open will call this function so the list will stay sane. */
8490 if (!(dev->flags&IFF_UP))
8491 return;
8492
8493 if (!netif_device_present(dev))
8494 return;
8495
8496 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8497 /* Unicast addresses changes may only happen under the rtnl,
8498 * therefore calling __dev_set_promiscuity here is safe.
8499 */
8500 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8501 __dev_set_promiscuity(dev, 1, false);
8502 dev->uc_promisc = true;
8503 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8504 __dev_set_promiscuity(dev, -1, false);
8505 dev->uc_promisc = false;
8506 }
8507 }
8508
8509 if (ops->ndo_set_rx_mode)
8510 ops->ndo_set_rx_mode(dev);
8511 }
8512
dev_set_rx_mode(struct net_device * dev)8513 void dev_set_rx_mode(struct net_device *dev)
8514 {
8515 netif_addr_lock_bh(dev);
8516 __dev_set_rx_mode(dev);
8517 netif_addr_unlock_bh(dev);
8518 }
8519
8520 /**
8521 * dev_get_flags - get flags reported to userspace
8522 * @dev: device
8523 *
8524 * Get the combination of flag bits exported through APIs to userspace.
8525 */
dev_get_flags(const struct net_device * dev)8526 unsigned int dev_get_flags(const struct net_device *dev)
8527 {
8528 unsigned int flags;
8529
8530 flags = (dev->flags & ~(IFF_PROMISC |
8531 IFF_ALLMULTI |
8532 IFF_RUNNING |
8533 IFF_LOWER_UP |
8534 IFF_DORMANT)) |
8535 (dev->gflags & (IFF_PROMISC |
8536 IFF_ALLMULTI));
8537
8538 if (netif_running(dev)) {
8539 if (netif_oper_up(dev))
8540 flags |= IFF_RUNNING;
8541 if (netif_carrier_ok(dev))
8542 flags |= IFF_LOWER_UP;
8543 if (netif_dormant(dev))
8544 flags |= IFF_DORMANT;
8545 }
8546
8547 return flags;
8548 }
8549 EXPORT_SYMBOL(dev_get_flags);
8550
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8551 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8552 struct netlink_ext_ack *extack)
8553 {
8554 unsigned int old_flags = dev->flags;
8555 int ret;
8556
8557 ASSERT_RTNL();
8558
8559 /*
8560 * Set the flags on our device.
8561 */
8562
8563 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8564 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8565 IFF_AUTOMEDIA)) |
8566 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8567 IFF_ALLMULTI));
8568
8569 /*
8570 * Load in the correct multicast list now the flags have changed.
8571 */
8572
8573 if ((old_flags ^ flags) & IFF_MULTICAST)
8574 dev_change_rx_flags(dev, IFF_MULTICAST);
8575
8576 dev_set_rx_mode(dev);
8577
8578 /*
8579 * Have we downed the interface. We handle IFF_UP ourselves
8580 * according to user attempts to set it, rather than blindly
8581 * setting it.
8582 */
8583
8584 ret = 0;
8585 if ((old_flags ^ flags) & IFF_UP) {
8586 if (old_flags & IFF_UP)
8587 __dev_close(dev);
8588 else
8589 ret = __dev_open(dev, extack);
8590 }
8591
8592 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8593 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8594 unsigned int old_flags = dev->flags;
8595
8596 dev->gflags ^= IFF_PROMISC;
8597
8598 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8599 if (dev->flags != old_flags)
8600 dev_set_rx_mode(dev);
8601 }
8602
8603 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8604 * is important. Some (broken) drivers set IFF_PROMISC, when
8605 * IFF_ALLMULTI is requested not asking us and not reporting.
8606 */
8607 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8608 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8609
8610 dev->gflags ^= IFF_ALLMULTI;
8611 __dev_set_allmulti(dev, inc, false);
8612 }
8613
8614 return ret;
8615 }
8616
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8617 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8618 unsigned int gchanges)
8619 {
8620 unsigned int changes = dev->flags ^ old_flags;
8621
8622 if (gchanges)
8623 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8624
8625 if (changes & IFF_UP) {
8626 if (dev->flags & IFF_UP)
8627 call_netdevice_notifiers(NETDEV_UP, dev);
8628 else
8629 call_netdevice_notifiers(NETDEV_DOWN, dev);
8630 }
8631
8632 if (dev->flags & IFF_UP &&
8633 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8634 struct netdev_notifier_change_info change_info = {
8635 .info = {
8636 .dev = dev,
8637 },
8638 .flags_changed = changes,
8639 };
8640
8641 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8642 }
8643 }
8644
8645 /**
8646 * dev_change_flags - change device settings
8647 * @dev: device
8648 * @flags: device state flags
8649 * @extack: netlink extended ack
8650 *
8651 * Change settings on device based state flags. The flags are
8652 * in the userspace exported format.
8653 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8654 int dev_change_flags(struct net_device *dev, unsigned int flags,
8655 struct netlink_ext_ack *extack)
8656 {
8657 int ret;
8658 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8659
8660 ret = __dev_change_flags(dev, flags, extack);
8661 if (ret < 0)
8662 return ret;
8663
8664 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8665 __dev_notify_flags(dev, old_flags, changes);
8666 return ret;
8667 }
8668 EXPORT_SYMBOL(dev_change_flags);
8669
__dev_set_mtu(struct net_device * dev,int new_mtu)8670 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8671 {
8672 const struct net_device_ops *ops = dev->netdev_ops;
8673
8674 if (ops->ndo_change_mtu)
8675 return ops->ndo_change_mtu(dev, new_mtu);
8676
8677 /* Pairs with all the lockless reads of dev->mtu in the stack */
8678 WRITE_ONCE(dev->mtu, new_mtu);
8679 return 0;
8680 }
8681 EXPORT_SYMBOL(__dev_set_mtu);
8682
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8683 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8684 struct netlink_ext_ack *extack)
8685 {
8686 /* MTU must be positive, and in range */
8687 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8688 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8689 return -EINVAL;
8690 }
8691
8692 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8693 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8694 return -EINVAL;
8695 }
8696 return 0;
8697 }
8698
8699 /**
8700 * dev_set_mtu_ext - Change maximum transfer unit
8701 * @dev: device
8702 * @new_mtu: new transfer unit
8703 * @extack: netlink extended ack
8704 *
8705 * Change the maximum transfer size of the network device.
8706 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8707 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8708 struct netlink_ext_ack *extack)
8709 {
8710 int err, orig_mtu;
8711
8712 if (new_mtu == dev->mtu)
8713 return 0;
8714
8715 err = dev_validate_mtu(dev, new_mtu, extack);
8716 if (err)
8717 return err;
8718
8719 if (!netif_device_present(dev))
8720 return -ENODEV;
8721
8722 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8723 err = notifier_to_errno(err);
8724 if (err)
8725 return err;
8726
8727 orig_mtu = dev->mtu;
8728 err = __dev_set_mtu(dev, new_mtu);
8729
8730 if (!err) {
8731 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8732 orig_mtu);
8733 err = notifier_to_errno(err);
8734 if (err) {
8735 /* setting mtu back and notifying everyone again,
8736 * so that they have a chance to revert changes.
8737 */
8738 __dev_set_mtu(dev, orig_mtu);
8739 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8740 new_mtu);
8741 }
8742 }
8743 return err;
8744 }
8745
dev_set_mtu(struct net_device * dev,int new_mtu)8746 int dev_set_mtu(struct net_device *dev, int new_mtu)
8747 {
8748 struct netlink_ext_ack extack;
8749 int err;
8750
8751 memset(&extack, 0, sizeof(extack));
8752 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8753 if (err && extack._msg)
8754 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8755 return err;
8756 }
8757 EXPORT_SYMBOL(dev_set_mtu);
8758
8759 /**
8760 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8761 * @dev: device
8762 * @new_len: new tx queue length
8763 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8764 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8765 {
8766 unsigned int orig_len = dev->tx_queue_len;
8767 int res;
8768
8769 if (new_len != (unsigned int)new_len)
8770 return -ERANGE;
8771
8772 if (new_len != orig_len) {
8773 dev->tx_queue_len = new_len;
8774 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8775 res = notifier_to_errno(res);
8776 if (res)
8777 goto err_rollback;
8778 res = dev_qdisc_change_tx_queue_len(dev);
8779 if (res)
8780 goto err_rollback;
8781 }
8782
8783 return 0;
8784
8785 err_rollback:
8786 netdev_err(dev, "refused to change device tx_queue_len\n");
8787 dev->tx_queue_len = orig_len;
8788 return res;
8789 }
8790
8791 /**
8792 * dev_set_group - Change group this device belongs to
8793 * @dev: device
8794 * @new_group: group this device should belong to
8795 */
dev_set_group(struct net_device * dev,int new_group)8796 void dev_set_group(struct net_device *dev, int new_group)
8797 {
8798 dev->group = new_group;
8799 }
8800
8801 /**
8802 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8803 * @dev: device
8804 * @addr: new address
8805 * @extack: netlink extended ack
8806 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8807 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8808 struct netlink_ext_ack *extack)
8809 {
8810 struct netdev_notifier_pre_changeaddr_info info = {
8811 .info.dev = dev,
8812 .info.extack = extack,
8813 .dev_addr = addr,
8814 };
8815 int rc;
8816
8817 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8818 return notifier_to_errno(rc);
8819 }
8820 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8821
8822 /**
8823 * dev_set_mac_address - Change Media Access Control Address
8824 * @dev: device
8825 * @sa: new address
8826 * @extack: netlink extended ack
8827 *
8828 * Change the hardware (MAC) address of the device
8829 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8830 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8831 struct netlink_ext_ack *extack)
8832 {
8833 const struct net_device_ops *ops = dev->netdev_ops;
8834 int err;
8835
8836 if (!ops->ndo_set_mac_address)
8837 return -EOPNOTSUPP;
8838 if (sa->sa_family != dev->type)
8839 return -EINVAL;
8840 if (!netif_device_present(dev))
8841 return -ENODEV;
8842 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8843 if (err)
8844 return err;
8845 err = ops->ndo_set_mac_address(dev, sa);
8846 if (err)
8847 return err;
8848 dev->addr_assign_type = NET_ADDR_SET;
8849 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8850 add_device_randomness(dev->dev_addr, dev->addr_len);
8851 return 0;
8852 }
8853 EXPORT_SYMBOL(dev_set_mac_address);
8854
8855 static DECLARE_RWSEM(dev_addr_sem);
8856
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8857 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8858 struct netlink_ext_ack *extack)
8859 {
8860 int ret;
8861
8862 down_write(&dev_addr_sem);
8863 ret = dev_set_mac_address(dev, sa, extack);
8864 up_write(&dev_addr_sem);
8865 return ret;
8866 }
8867 EXPORT_SYMBOL(dev_set_mac_address_user);
8868
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8869 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8870 {
8871 size_t size = sizeof(sa->sa_data);
8872 struct net_device *dev;
8873 int ret = 0;
8874
8875 down_read(&dev_addr_sem);
8876 rcu_read_lock();
8877
8878 dev = dev_get_by_name_rcu(net, dev_name);
8879 if (!dev) {
8880 ret = -ENODEV;
8881 goto unlock;
8882 }
8883 if (!dev->addr_len)
8884 memset(sa->sa_data, 0, size);
8885 else
8886 memcpy(sa->sa_data, dev->dev_addr,
8887 min_t(size_t, size, dev->addr_len));
8888 sa->sa_family = dev->type;
8889
8890 unlock:
8891 rcu_read_unlock();
8892 up_read(&dev_addr_sem);
8893 return ret;
8894 }
8895 EXPORT_SYMBOL(dev_get_mac_address);
8896
8897 /**
8898 * dev_change_carrier - Change device carrier
8899 * @dev: device
8900 * @new_carrier: new value
8901 *
8902 * Change device carrier
8903 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8904 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8905 {
8906 const struct net_device_ops *ops = dev->netdev_ops;
8907
8908 if (!ops->ndo_change_carrier)
8909 return -EOPNOTSUPP;
8910 if (!netif_device_present(dev))
8911 return -ENODEV;
8912 return ops->ndo_change_carrier(dev, new_carrier);
8913 }
8914
8915 /**
8916 * dev_get_phys_port_id - Get device physical port ID
8917 * @dev: device
8918 * @ppid: port ID
8919 *
8920 * Get device physical port ID
8921 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8922 int dev_get_phys_port_id(struct net_device *dev,
8923 struct netdev_phys_item_id *ppid)
8924 {
8925 const struct net_device_ops *ops = dev->netdev_ops;
8926
8927 if (!ops->ndo_get_phys_port_id)
8928 return -EOPNOTSUPP;
8929 return ops->ndo_get_phys_port_id(dev, ppid);
8930 }
8931
8932 /**
8933 * dev_get_phys_port_name - Get device physical port name
8934 * @dev: device
8935 * @name: port name
8936 * @len: limit of bytes to copy to name
8937 *
8938 * Get device physical port name
8939 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8940 int dev_get_phys_port_name(struct net_device *dev,
8941 char *name, size_t len)
8942 {
8943 const struct net_device_ops *ops = dev->netdev_ops;
8944 int err;
8945
8946 if (ops->ndo_get_phys_port_name) {
8947 err = ops->ndo_get_phys_port_name(dev, name, len);
8948 if (err != -EOPNOTSUPP)
8949 return err;
8950 }
8951 return devlink_compat_phys_port_name_get(dev, name, len);
8952 }
8953
8954 /**
8955 * dev_get_port_parent_id - Get the device's port parent identifier
8956 * @dev: network device
8957 * @ppid: pointer to a storage for the port's parent identifier
8958 * @recurse: allow/disallow recursion to lower devices
8959 *
8960 * Get the devices's port parent identifier
8961 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8962 int dev_get_port_parent_id(struct net_device *dev,
8963 struct netdev_phys_item_id *ppid,
8964 bool recurse)
8965 {
8966 const struct net_device_ops *ops = dev->netdev_ops;
8967 struct netdev_phys_item_id first = { };
8968 struct net_device *lower_dev;
8969 struct list_head *iter;
8970 int err;
8971
8972 if (ops->ndo_get_port_parent_id) {
8973 err = ops->ndo_get_port_parent_id(dev, ppid);
8974 if (err != -EOPNOTSUPP)
8975 return err;
8976 }
8977
8978 err = devlink_compat_switch_id_get(dev, ppid);
8979 if (!recurse || err != -EOPNOTSUPP)
8980 return err;
8981
8982 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8983 err = dev_get_port_parent_id(lower_dev, ppid, true);
8984 if (err)
8985 break;
8986 if (!first.id_len)
8987 first = *ppid;
8988 else if (memcmp(&first, ppid, sizeof(*ppid)))
8989 return -EOPNOTSUPP;
8990 }
8991
8992 return err;
8993 }
8994 EXPORT_SYMBOL(dev_get_port_parent_id);
8995
8996 /**
8997 * netdev_port_same_parent_id - Indicate if two network devices have
8998 * the same port parent identifier
8999 * @a: first network device
9000 * @b: second network device
9001 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9002 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9003 {
9004 struct netdev_phys_item_id a_id = { };
9005 struct netdev_phys_item_id b_id = { };
9006
9007 if (dev_get_port_parent_id(a, &a_id, true) ||
9008 dev_get_port_parent_id(b, &b_id, true))
9009 return false;
9010
9011 return netdev_phys_item_id_same(&a_id, &b_id);
9012 }
9013 EXPORT_SYMBOL(netdev_port_same_parent_id);
9014
9015 /**
9016 * dev_change_proto_down - set carrier according to proto_down.
9017 *
9018 * @dev: device
9019 * @proto_down: new value
9020 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9021 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9022 {
9023 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9024 return -EOPNOTSUPP;
9025 if (!netif_device_present(dev))
9026 return -ENODEV;
9027 if (proto_down)
9028 netif_carrier_off(dev);
9029 else
9030 netif_carrier_on(dev);
9031 dev->proto_down = proto_down;
9032 return 0;
9033 }
9034
9035 /**
9036 * dev_change_proto_down_reason - proto down reason
9037 *
9038 * @dev: device
9039 * @mask: proto down mask
9040 * @value: proto down value
9041 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9042 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9043 u32 value)
9044 {
9045 int b;
9046
9047 if (!mask) {
9048 dev->proto_down_reason = value;
9049 } else {
9050 for_each_set_bit(b, &mask, 32) {
9051 if (value & (1 << b))
9052 dev->proto_down_reason |= BIT(b);
9053 else
9054 dev->proto_down_reason &= ~BIT(b);
9055 }
9056 }
9057 }
9058
9059 struct bpf_xdp_link {
9060 struct bpf_link link;
9061 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9062 int flags;
9063 };
9064
dev_xdp_mode(struct net_device * dev,u32 flags)9065 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9066 {
9067 if (flags & XDP_FLAGS_HW_MODE)
9068 return XDP_MODE_HW;
9069 if (flags & XDP_FLAGS_DRV_MODE)
9070 return XDP_MODE_DRV;
9071 if (flags & XDP_FLAGS_SKB_MODE)
9072 return XDP_MODE_SKB;
9073 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9074 }
9075
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9076 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9077 {
9078 switch (mode) {
9079 case XDP_MODE_SKB:
9080 return generic_xdp_install;
9081 case XDP_MODE_DRV:
9082 case XDP_MODE_HW:
9083 return dev->netdev_ops->ndo_bpf;
9084 default:
9085 return NULL;
9086 }
9087 }
9088
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9089 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9090 enum bpf_xdp_mode mode)
9091 {
9092 return dev->xdp_state[mode].link;
9093 }
9094
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9095 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9096 enum bpf_xdp_mode mode)
9097 {
9098 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9099
9100 if (link)
9101 return link->link.prog;
9102 return dev->xdp_state[mode].prog;
9103 }
9104
dev_xdp_prog_count(struct net_device * dev)9105 u8 dev_xdp_prog_count(struct net_device *dev)
9106 {
9107 u8 count = 0;
9108 int i;
9109
9110 for (i = 0; i < __MAX_XDP_MODE; i++)
9111 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9112 count++;
9113 return count;
9114 }
9115 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9116
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9117 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9118 {
9119 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9120
9121 return prog ? prog->aux->id : 0;
9122 }
9123
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9124 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9125 struct bpf_xdp_link *link)
9126 {
9127 dev->xdp_state[mode].link = link;
9128 dev->xdp_state[mode].prog = NULL;
9129 }
9130
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9131 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9132 struct bpf_prog *prog)
9133 {
9134 dev->xdp_state[mode].link = NULL;
9135 dev->xdp_state[mode].prog = prog;
9136 }
9137
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9138 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9139 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9140 u32 flags, struct bpf_prog *prog)
9141 {
9142 struct netdev_bpf xdp;
9143 int err;
9144
9145 memset(&xdp, 0, sizeof(xdp));
9146 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9147 xdp.extack = extack;
9148 xdp.flags = flags;
9149 xdp.prog = prog;
9150
9151 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9152 * "moved" into driver), so they don't increment it on their own, but
9153 * they do decrement refcnt when program is detached or replaced.
9154 * Given net_device also owns link/prog, we need to bump refcnt here
9155 * to prevent drivers from underflowing it.
9156 */
9157 if (prog)
9158 bpf_prog_inc(prog);
9159 err = bpf_op(dev, &xdp);
9160 if (err) {
9161 if (prog)
9162 bpf_prog_put(prog);
9163 return err;
9164 }
9165
9166 if (mode != XDP_MODE_HW)
9167 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9168
9169 return 0;
9170 }
9171
dev_xdp_uninstall(struct net_device * dev)9172 static void dev_xdp_uninstall(struct net_device *dev)
9173 {
9174 struct bpf_xdp_link *link;
9175 struct bpf_prog *prog;
9176 enum bpf_xdp_mode mode;
9177 bpf_op_t bpf_op;
9178
9179 ASSERT_RTNL();
9180
9181 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9182 prog = dev_xdp_prog(dev, mode);
9183 if (!prog)
9184 continue;
9185
9186 bpf_op = dev_xdp_bpf_op(dev, mode);
9187 if (!bpf_op)
9188 continue;
9189
9190 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9191
9192 /* auto-detach link from net device */
9193 link = dev_xdp_link(dev, mode);
9194 if (link)
9195 link->dev = NULL;
9196 else
9197 bpf_prog_put(prog);
9198
9199 dev_xdp_set_link(dev, mode, NULL);
9200 }
9201 }
9202
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9203 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9204 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9205 struct bpf_prog *old_prog, u32 flags)
9206 {
9207 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9208 struct bpf_prog *cur_prog;
9209 struct net_device *upper;
9210 struct list_head *iter;
9211 enum bpf_xdp_mode mode;
9212 bpf_op_t bpf_op;
9213 int err;
9214
9215 ASSERT_RTNL();
9216
9217 /* either link or prog attachment, never both */
9218 if (link && (new_prog || old_prog))
9219 return -EINVAL;
9220 /* link supports only XDP mode flags */
9221 if (link && (flags & ~XDP_FLAGS_MODES)) {
9222 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9223 return -EINVAL;
9224 }
9225 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9226 if (num_modes > 1) {
9227 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9228 return -EINVAL;
9229 }
9230 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9231 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9232 NL_SET_ERR_MSG(extack,
9233 "More than one program loaded, unset mode is ambiguous");
9234 return -EINVAL;
9235 }
9236 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9237 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9238 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9239 return -EINVAL;
9240 }
9241
9242 mode = dev_xdp_mode(dev, flags);
9243 /* can't replace attached link */
9244 if (dev_xdp_link(dev, mode)) {
9245 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9246 return -EBUSY;
9247 }
9248
9249 /* don't allow if an upper device already has a program */
9250 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9251 if (dev_xdp_prog_count(upper) > 0) {
9252 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9253 return -EEXIST;
9254 }
9255 }
9256
9257 cur_prog = dev_xdp_prog(dev, mode);
9258 /* can't replace attached prog with link */
9259 if (link && cur_prog) {
9260 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9261 return -EBUSY;
9262 }
9263 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9264 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9265 return -EEXIST;
9266 }
9267
9268 /* put effective new program into new_prog */
9269 if (link)
9270 new_prog = link->link.prog;
9271
9272 if (new_prog) {
9273 bool offload = mode == XDP_MODE_HW;
9274 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9275 ? XDP_MODE_DRV : XDP_MODE_SKB;
9276
9277 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9278 NL_SET_ERR_MSG(extack, "XDP program already attached");
9279 return -EBUSY;
9280 }
9281 if (!offload && dev_xdp_prog(dev, other_mode)) {
9282 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9283 return -EEXIST;
9284 }
9285 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9286 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9287 return -EINVAL;
9288 }
9289 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9290 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9291 return -EINVAL;
9292 }
9293 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9294 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9295 return -EINVAL;
9296 }
9297 }
9298
9299 /* don't call drivers if the effective program didn't change */
9300 if (new_prog != cur_prog) {
9301 bpf_op = dev_xdp_bpf_op(dev, mode);
9302 if (!bpf_op) {
9303 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9304 return -EOPNOTSUPP;
9305 }
9306
9307 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9308 if (err)
9309 return err;
9310 }
9311
9312 if (link)
9313 dev_xdp_set_link(dev, mode, link);
9314 else
9315 dev_xdp_set_prog(dev, mode, new_prog);
9316 if (cur_prog)
9317 bpf_prog_put(cur_prog);
9318
9319 return 0;
9320 }
9321
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9322 static int dev_xdp_attach_link(struct net_device *dev,
9323 struct netlink_ext_ack *extack,
9324 struct bpf_xdp_link *link)
9325 {
9326 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9327 }
9328
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9329 static int dev_xdp_detach_link(struct net_device *dev,
9330 struct netlink_ext_ack *extack,
9331 struct bpf_xdp_link *link)
9332 {
9333 enum bpf_xdp_mode mode;
9334 bpf_op_t bpf_op;
9335
9336 ASSERT_RTNL();
9337
9338 mode = dev_xdp_mode(dev, link->flags);
9339 if (dev_xdp_link(dev, mode) != link)
9340 return -EINVAL;
9341
9342 bpf_op = dev_xdp_bpf_op(dev, mode);
9343 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9344 dev_xdp_set_link(dev, mode, NULL);
9345 return 0;
9346 }
9347
bpf_xdp_link_release(struct bpf_link * link)9348 static void bpf_xdp_link_release(struct bpf_link *link)
9349 {
9350 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9351
9352 rtnl_lock();
9353
9354 /* if racing with net_device's tear down, xdp_link->dev might be
9355 * already NULL, in which case link was already auto-detached
9356 */
9357 if (xdp_link->dev) {
9358 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9359 xdp_link->dev = NULL;
9360 }
9361
9362 rtnl_unlock();
9363 }
9364
bpf_xdp_link_detach(struct bpf_link * link)9365 static int bpf_xdp_link_detach(struct bpf_link *link)
9366 {
9367 bpf_xdp_link_release(link);
9368 return 0;
9369 }
9370
bpf_xdp_link_dealloc(struct bpf_link * link)9371 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9372 {
9373 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9374
9375 kfree(xdp_link);
9376 }
9377
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9378 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9379 struct seq_file *seq)
9380 {
9381 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9382 u32 ifindex = 0;
9383
9384 rtnl_lock();
9385 if (xdp_link->dev)
9386 ifindex = xdp_link->dev->ifindex;
9387 rtnl_unlock();
9388
9389 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9390 }
9391
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9392 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9393 struct bpf_link_info *info)
9394 {
9395 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9396 u32 ifindex = 0;
9397
9398 rtnl_lock();
9399 if (xdp_link->dev)
9400 ifindex = xdp_link->dev->ifindex;
9401 rtnl_unlock();
9402
9403 info->xdp.ifindex = ifindex;
9404 return 0;
9405 }
9406
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9407 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9408 struct bpf_prog *old_prog)
9409 {
9410 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9411 enum bpf_xdp_mode mode;
9412 bpf_op_t bpf_op;
9413 int err = 0;
9414
9415 rtnl_lock();
9416
9417 /* link might have been auto-released already, so fail */
9418 if (!xdp_link->dev) {
9419 err = -ENOLINK;
9420 goto out_unlock;
9421 }
9422
9423 if (old_prog && link->prog != old_prog) {
9424 err = -EPERM;
9425 goto out_unlock;
9426 }
9427 old_prog = link->prog;
9428 if (old_prog->type != new_prog->type ||
9429 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9430 err = -EINVAL;
9431 goto out_unlock;
9432 }
9433
9434 if (old_prog == new_prog) {
9435 /* no-op, don't disturb drivers */
9436 bpf_prog_put(new_prog);
9437 goto out_unlock;
9438 }
9439
9440 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9441 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9442 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9443 xdp_link->flags, new_prog);
9444 if (err)
9445 goto out_unlock;
9446
9447 old_prog = xchg(&link->prog, new_prog);
9448 bpf_prog_put(old_prog);
9449
9450 out_unlock:
9451 rtnl_unlock();
9452 return err;
9453 }
9454
9455 static const struct bpf_link_ops bpf_xdp_link_lops = {
9456 .release = bpf_xdp_link_release,
9457 .dealloc = bpf_xdp_link_dealloc,
9458 .detach = bpf_xdp_link_detach,
9459 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9460 .fill_link_info = bpf_xdp_link_fill_link_info,
9461 .update_prog = bpf_xdp_link_update,
9462 };
9463
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9464 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9465 {
9466 struct net *net = current->nsproxy->net_ns;
9467 struct bpf_link_primer link_primer;
9468 struct bpf_xdp_link *link;
9469 struct net_device *dev;
9470 int err, fd;
9471
9472 rtnl_lock();
9473 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9474 if (!dev) {
9475 rtnl_unlock();
9476 return -EINVAL;
9477 }
9478
9479 link = kzalloc(sizeof(*link), GFP_USER);
9480 if (!link) {
9481 err = -ENOMEM;
9482 goto unlock;
9483 }
9484
9485 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9486 link->dev = dev;
9487 link->flags = attr->link_create.flags;
9488
9489 err = bpf_link_prime(&link->link, &link_primer);
9490 if (err) {
9491 kfree(link);
9492 goto unlock;
9493 }
9494
9495 err = dev_xdp_attach_link(dev, NULL, link);
9496 rtnl_unlock();
9497
9498 if (err) {
9499 link->dev = NULL;
9500 bpf_link_cleanup(&link_primer);
9501 goto out_put_dev;
9502 }
9503
9504 fd = bpf_link_settle(&link_primer);
9505 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9506 dev_put(dev);
9507 return fd;
9508
9509 unlock:
9510 rtnl_unlock();
9511
9512 out_put_dev:
9513 dev_put(dev);
9514 return err;
9515 }
9516
9517 /**
9518 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9519 * @dev: device
9520 * @extack: netlink extended ack
9521 * @fd: new program fd or negative value to clear
9522 * @expected_fd: old program fd that userspace expects to replace or clear
9523 * @flags: xdp-related flags
9524 *
9525 * Set or clear a bpf program for a device
9526 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9527 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9528 int fd, int expected_fd, u32 flags)
9529 {
9530 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9531 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9532 int err;
9533
9534 ASSERT_RTNL();
9535
9536 if (fd >= 0) {
9537 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9538 mode != XDP_MODE_SKB);
9539 if (IS_ERR(new_prog))
9540 return PTR_ERR(new_prog);
9541 }
9542
9543 if (expected_fd >= 0) {
9544 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9545 mode != XDP_MODE_SKB);
9546 if (IS_ERR(old_prog)) {
9547 err = PTR_ERR(old_prog);
9548 old_prog = NULL;
9549 goto err_out;
9550 }
9551 }
9552
9553 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9554
9555 err_out:
9556 if (err && new_prog)
9557 bpf_prog_put(new_prog);
9558 if (old_prog)
9559 bpf_prog_put(old_prog);
9560 return err;
9561 }
9562
9563 /**
9564 * dev_new_index - allocate an ifindex
9565 * @net: the applicable net namespace
9566 *
9567 * Returns a suitable unique value for a new device interface
9568 * number. The caller must hold the rtnl semaphore or the
9569 * dev_base_lock to be sure it remains unique.
9570 */
dev_new_index(struct net * net)9571 static int dev_new_index(struct net *net)
9572 {
9573 int ifindex = net->ifindex;
9574
9575 for (;;) {
9576 if (++ifindex <= 0)
9577 ifindex = 1;
9578 if (!__dev_get_by_index(net, ifindex))
9579 return net->ifindex = ifindex;
9580 }
9581 }
9582
9583 /* Delayed registration/unregisteration */
9584 LIST_HEAD(net_todo_list);
9585 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9586
net_set_todo(struct net_device * dev)9587 static void net_set_todo(struct net_device *dev)
9588 {
9589 list_add_tail(&dev->todo_list, &net_todo_list);
9590 atomic_inc(&dev_net(dev)->dev_unreg_count);
9591 }
9592
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9593 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9594 struct net_device *upper, netdev_features_t features)
9595 {
9596 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9597 netdev_features_t feature;
9598 int feature_bit;
9599
9600 for_each_netdev_feature(upper_disables, feature_bit) {
9601 feature = __NETIF_F_BIT(feature_bit);
9602 if (!(upper->wanted_features & feature)
9603 && (features & feature)) {
9604 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9605 &feature, upper->name);
9606 features &= ~feature;
9607 }
9608 }
9609
9610 return features;
9611 }
9612
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9613 static void netdev_sync_lower_features(struct net_device *upper,
9614 struct net_device *lower, netdev_features_t features)
9615 {
9616 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9617 netdev_features_t feature;
9618 int feature_bit;
9619
9620 for_each_netdev_feature(upper_disables, feature_bit) {
9621 feature = __NETIF_F_BIT(feature_bit);
9622 if (!(features & feature) && (lower->features & feature)) {
9623 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9624 &feature, lower->name);
9625 lower->wanted_features &= ~feature;
9626 __netdev_update_features(lower);
9627
9628 if (unlikely(lower->features & feature))
9629 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9630 &feature, lower->name);
9631 else
9632 netdev_features_change(lower);
9633 }
9634 }
9635 }
9636
netdev_fix_features(struct net_device * dev,netdev_features_t features)9637 static netdev_features_t netdev_fix_features(struct net_device *dev,
9638 netdev_features_t features)
9639 {
9640 /* Fix illegal checksum combinations */
9641 if ((features & NETIF_F_HW_CSUM) &&
9642 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9643 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9644 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9645 }
9646
9647 /* TSO requires that SG is present as well. */
9648 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9649 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9650 features &= ~NETIF_F_ALL_TSO;
9651 }
9652
9653 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9654 !(features & NETIF_F_IP_CSUM)) {
9655 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9656 features &= ~NETIF_F_TSO;
9657 features &= ~NETIF_F_TSO_ECN;
9658 }
9659
9660 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9661 !(features & NETIF_F_IPV6_CSUM)) {
9662 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9663 features &= ~NETIF_F_TSO6;
9664 }
9665
9666 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9667 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9668 features &= ~NETIF_F_TSO_MANGLEID;
9669
9670 /* TSO ECN requires that TSO is present as well. */
9671 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9672 features &= ~NETIF_F_TSO_ECN;
9673
9674 /* Software GSO depends on SG. */
9675 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9676 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9677 features &= ~NETIF_F_GSO;
9678 }
9679
9680 /* GSO partial features require GSO partial be set */
9681 if ((features & dev->gso_partial_features) &&
9682 !(features & NETIF_F_GSO_PARTIAL)) {
9683 netdev_dbg(dev,
9684 "Dropping partially supported GSO features since no GSO partial.\n");
9685 features &= ~dev->gso_partial_features;
9686 }
9687
9688 if (!(features & NETIF_F_RXCSUM)) {
9689 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9690 * successfully merged by hardware must also have the
9691 * checksum verified by hardware. If the user does not
9692 * want to enable RXCSUM, logically, we should disable GRO_HW.
9693 */
9694 if (features & NETIF_F_GRO_HW) {
9695 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9696 features &= ~NETIF_F_GRO_HW;
9697 }
9698 }
9699
9700 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9701 if (features & NETIF_F_RXFCS) {
9702 if (features & NETIF_F_LRO) {
9703 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9704 features &= ~NETIF_F_LRO;
9705 }
9706
9707 if (features & NETIF_F_GRO_HW) {
9708 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9709 features &= ~NETIF_F_GRO_HW;
9710 }
9711 }
9712
9713 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9714 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9715 features &= ~NETIF_F_LRO;
9716 }
9717
9718 if (features & NETIF_F_HW_TLS_TX) {
9719 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9720 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9721 bool hw_csum = features & NETIF_F_HW_CSUM;
9722
9723 if (!ip_csum && !hw_csum) {
9724 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9725 features &= ~NETIF_F_HW_TLS_TX;
9726 }
9727 }
9728
9729 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9730 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9731 features &= ~NETIF_F_HW_TLS_RX;
9732 }
9733
9734 return features;
9735 }
9736
__netdev_update_features(struct net_device * dev)9737 int __netdev_update_features(struct net_device *dev)
9738 {
9739 struct net_device *upper, *lower;
9740 netdev_features_t features;
9741 struct list_head *iter;
9742 int err = -1;
9743
9744 ASSERT_RTNL();
9745
9746 features = netdev_get_wanted_features(dev);
9747
9748 if (dev->netdev_ops->ndo_fix_features)
9749 features = dev->netdev_ops->ndo_fix_features(dev, features);
9750
9751 /* driver might be less strict about feature dependencies */
9752 features = netdev_fix_features(dev, features);
9753
9754 /* some features can't be enabled if they're off on an upper device */
9755 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9756 features = netdev_sync_upper_features(dev, upper, features);
9757
9758 if (dev->features == features)
9759 goto sync_lower;
9760
9761 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9762 &dev->features, &features);
9763
9764 if (dev->netdev_ops->ndo_set_features)
9765 err = dev->netdev_ops->ndo_set_features(dev, features);
9766 else
9767 err = 0;
9768
9769 if (unlikely(err < 0)) {
9770 netdev_err(dev,
9771 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9772 err, &features, &dev->features);
9773 /* return non-0 since some features might have changed and
9774 * it's better to fire a spurious notification than miss it
9775 */
9776 return -1;
9777 }
9778
9779 sync_lower:
9780 /* some features must be disabled on lower devices when disabled
9781 * on an upper device (think: bonding master or bridge)
9782 */
9783 netdev_for_each_lower_dev(dev, lower, iter)
9784 netdev_sync_lower_features(dev, lower, features);
9785
9786 if (!err) {
9787 netdev_features_t diff = features ^ dev->features;
9788
9789 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9790 /* udp_tunnel_{get,drop}_rx_info both need
9791 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9792 * device, or they won't do anything.
9793 * Thus we need to update dev->features
9794 * *before* calling udp_tunnel_get_rx_info,
9795 * but *after* calling udp_tunnel_drop_rx_info.
9796 */
9797 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9798 dev->features = features;
9799 udp_tunnel_get_rx_info(dev);
9800 } else {
9801 udp_tunnel_drop_rx_info(dev);
9802 }
9803 }
9804
9805 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9806 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9807 dev->features = features;
9808 err |= vlan_get_rx_ctag_filter_info(dev);
9809 } else {
9810 vlan_drop_rx_ctag_filter_info(dev);
9811 }
9812 }
9813
9814 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9815 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9816 dev->features = features;
9817 err |= vlan_get_rx_stag_filter_info(dev);
9818 } else {
9819 vlan_drop_rx_stag_filter_info(dev);
9820 }
9821 }
9822
9823 dev->features = features;
9824 }
9825
9826 return err < 0 ? 0 : 1;
9827 }
9828
9829 /**
9830 * netdev_update_features - recalculate device features
9831 * @dev: the device to check
9832 *
9833 * Recalculate dev->features set and send notifications if it
9834 * has changed. Should be called after driver or hardware dependent
9835 * conditions might have changed that influence the features.
9836 */
netdev_update_features(struct net_device * dev)9837 void netdev_update_features(struct net_device *dev)
9838 {
9839 if (__netdev_update_features(dev))
9840 netdev_features_change(dev);
9841 }
9842 EXPORT_SYMBOL(netdev_update_features);
9843
9844 /**
9845 * netdev_change_features - recalculate device features
9846 * @dev: the device to check
9847 *
9848 * Recalculate dev->features set and send notifications even
9849 * if they have not changed. Should be called instead of
9850 * netdev_update_features() if also dev->vlan_features might
9851 * have changed to allow the changes to be propagated to stacked
9852 * VLAN devices.
9853 */
netdev_change_features(struct net_device * dev)9854 void netdev_change_features(struct net_device *dev)
9855 {
9856 __netdev_update_features(dev);
9857 netdev_features_change(dev);
9858 }
9859 EXPORT_SYMBOL(netdev_change_features);
9860
9861 /**
9862 * netif_stacked_transfer_operstate - transfer operstate
9863 * @rootdev: the root or lower level device to transfer state from
9864 * @dev: the device to transfer operstate to
9865 *
9866 * Transfer operational state from root to device. This is normally
9867 * called when a stacking relationship exists between the root
9868 * device and the device(a leaf device).
9869 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9870 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9871 struct net_device *dev)
9872 {
9873 if (rootdev->operstate == IF_OPER_DORMANT)
9874 netif_dormant_on(dev);
9875 else
9876 netif_dormant_off(dev);
9877
9878 if (rootdev->operstate == IF_OPER_TESTING)
9879 netif_testing_on(dev);
9880 else
9881 netif_testing_off(dev);
9882
9883 if (netif_carrier_ok(rootdev))
9884 netif_carrier_on(dev);
9885 else
9886 netif_carrier_off(dev);
9887 }
9888 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9889
netif_alloc_rx_queues(struct net_device * dev)9890 static int netif_alloc_rx_queues(struct net_device *dev)
9891 {
9892 unsigned int i, count = dev->num_rx_queues;
9893 struct netdev_rx_queue *rx;
9894 size_t sz = count * sizeof(*rx);
9895 int err = 0;
9896
9897 BUG_ON(count < 1);
9898
9899 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9900 if (!rx)
9901 return -ENOMEM;
9902
9903 dev->_rx = rx;
9904
9905 for (i = 0; i < count; i++) {
9906 rx[i].dev = dev;
9907
9908 /* XDP RX-queue setup */
9909 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9910 if (err < 0)
9911 goto err_rxq_info;
9912 }
9913 return 0;
9914
9915 err_rxq_info:
9916 /* Rollback successful reg's and free other resources */
9917 while (i--)
9918 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9919 kvfree(dev->_rx);
9920 dev->_rx = NULL;
9921 return err;
9922 }
9923
netif_free_rx_queues(struct net_device * dev)9924 static void netif_free_rx_queues(struct net_device *dev)
9925 {
9926 unsigned int i, count = dev->num_rx_queues;
9927
9928 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9929 if (!dev->_rx)
9930 return;
9931
9932 for (i = 0; i < count; i++)
9933 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9934
9935 kvfree(dev->_rx);
9936 }
9937
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9938 static void netdev_init_one_queue(struct net_device *dev,
9939 struct netdev_queue *queue, void *_unused)
9940 {
9941 /* Initialize queue lock */
9942 spin_lock_init(&queue->_xmit_lock);
9943 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9944 queue->xmit_lock_owner = -1;
9945 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9946 queue->dev = dev;
9947 #ifdef CONFIG_BQL
9948 dql_init(&queue->dql, HZ);
9949 #endif
9950 }
9951
netif_free_tx_queues(struct net_device * dev)9952 static void netif_free_tx_queues(struct net_device *dev)
9953 {
9954 kvfree(dev->_tx);
9955 }
9956
netif_alloc_netdev_queues(struct net_device * dev)9957 static int netif_alloc_netdev_queues(struct net_device *dev)
9958 {
9959 unsigned int count = dev->num_tx_queues;
9960 struct netdev_queue *tx;
9961 size_t sz = count * sizeof(*tx);
9962
9963 if (count < 1 || count > 0xffff)
9964 return -EINVAL;
9965
9966 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9967 if (!tx)
9968 return -ENOMEM;
9969
9970 dev->_tx = tx;
9971
9972 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9973 spin_lock_init(&dev->tx_global_lock);
9974
9975 return 0;
9976 }
9977
netif_tx_stop_all_queues(struct net_device * dev)9978 void netif_tx_stop_all_queues(struct net_device *dev)
9979 {
9980 unsigned int i;
9981
9982 for (i = 0; i < dev->num_tx_queues; i++) {
9983 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9984
9985 netif_tx_stop_queue(txq);
9986 }
9987 }
9988 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9989
9990 /**
9991 * register_netdevice() - register a network device
9992 * @dev: device to register
9993 *
9994 * Take a prepared network device structure and make it externally accessible.
9995 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9996 * Callers must hold the rtnl lock - you may want register_netdev()
9997 * instead of this.
9998 */
register_netdevice(struct net_device * dev)9999 int register_netdevice(struct net_device *dev)
10000 {
10001 int ret;
10002 struct net *net = dev_net(dev);
10003
10004 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10005 NETDEV_FEATURE_COUNT);
10006 BUG_ON(dev_boot_phase);
10007 ASSERT_RTNL();
10008
10009 might_sleep();
10010
10011 /* When net_device's are persistent, this will be fatal. */
10012 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10013 BUG_ON(!net);
10014
10015 ret = ethtool_check_ops(dev->ethtool_ops);
10016 if (ret)
10017 return ret;
10018
10019 spin_lock_init(&dev->addr_list_lock);
10020 netdev_set_addr_lockdep_class(dev);
10021
10022 ret = dev_get_valid_name(net, dev, dev->name);
10023 if (ret < 0)
10024 goto out;
10025
10026 ret = -ENOMEM;
10027 dev->name_node = netdev_name_node_head_alloc(dev);
10028 if (!dev->name_node)
10029 goto out;
10030
10031 /* Init, if this function is available */
10032 if (dev->netdev_ops->ndo_init) {
10033 ret = dev->netdev_ops->ndo_init(dev);
10034 if (ret) {
10035 if (ret > 0)
10036 ret = -EIO;
10037 goto err_free_name;
10038 }
10039 }
10040
10041 if (((dev->hw_features | dev->features) &
10042 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10043 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10044 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10045 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10046 ret = -EINVAL;
10047 goto err_uninit;
10048 }
10049
10050 ret = -EBUSY;
10051 if (!dev->ifindex)
10052 dev->ifindex = dev_new_index(net);
10053 else if (__dev_get_by_index(net, dev->ifindex))
10054 goto err_uninit;
10055
10056 /* Transfer changeable features to wanted_features and enable
10057 * software offloads (GSO and GRO).
10058 */
10059 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10060 dev->features |= NETIF_F_SOFT_FEATURES;
10061
10062 if (dev->udp_tunnel_nic_info) {
10063 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10064 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10065 }
10066
10067 dev->wanted_features = dev->features & dev->hw_features;
10068
10069 if (!(dev->flags & IFF_LOOPBACK))
10070 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10071
10072 /* If IPv4 TCP segmentation offload is supported we should also
10073 * allow the device to enable segmenting the frame with the option
10074 * of ignoring a static IP ID value. This doesn't enable the
10075 * feature itself but allows the user to enable it later.
10076 */
10077 if (dev->hw_features & NETIF_F_TSO)
10078 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10079 if (dev->vlan_features & NETIF_F_TSO)
10080 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10081 if (dev->mpls_features & NETIF_F_TSO)
10082 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10083 if (dev->hw_enc_features & NETIF_F_TSO)
10084 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10085
10086 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10087 */
10088 dev->vlan_features |= NETIF_F_HIGHDMA;
10089
10090 /* Make NETIF_F_SG inheritable to tunnel devices.
10091 */
10092 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10093
10094 /* Make NETIF_F_SG inheritable to MPLS.
10095 */
10096 dev->mpls_features |= NETIF_F_SG;
10097
10098 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10099 ret = notifier_to_errno(ret);
10100 if (ret)
10101 goto err_uninit;
10102
10103 ret = netdev_register_kobject(dev);
10104 write_lock(&dev_base_lock);
10105 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10106 write_unlock(&dev_base_lock);
10107 if (ret)
10108 goto err_uninit;
10109
10110 __netdev_update_features(dev);
10111
10112 /*
10113 * Default initial state at registry is that the
10114 * device is present.
10115 */
10116
10117 set_bit(__LINK_STATE_PRESENT, &dev->state);
10118
10119 linkwatch_init_dev(dev);
10120
10121 dev_init_scheduler(dev);
10122
10123 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10124 list_netdevice(dev);
10125
10126 add_device_randomness(dev->dev_addr, dev->addr_len);
10127
10128 /* If the device has permanent device address, driver should
10129 * set dev_addr and also addr_assign_type should be set to
10130 * NET_ADDR_PERM (default value).
10131 */
10132 if (dev->addr_assign_type == NET_ADDR_PERM)
10133 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10134
10135 /* Notify protocols, that a new device appeared. */
10136 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10137 ret = notifier_to_errno(ret);
10138 if (ret) {
10139 /* Expect explicit free_netdev() on failure */
10140 dev->needs_free_netdev = false;
10141 unregister_netdevice_queue(dev, NULL);
10142 goto out;
10143 }
10144 /*
10145 * Prevent userspace races by waiting until the network
10146 * device is fully setup before sending notifications.
10147 */
10148 if (!dev->rtnl_link_ops ||
10149 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10150 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10151
10152 out:
10153 return ret;
10154
10155 err_uninit:
10156 if (dev->netdev_ops->ndo_uninit)
10157 dev->netdev_ops->ndo_uninit(dev);
10158 if (dev->priv_destructor)
10159 dev->priv_destructor(dev);
10160 err_free_name:
10161 netdev_name_node_free(dev->name_node);
10162 goto out;
10163 }
10164 EXPORT_SYMBOL(register_netdevice);
10165
10166 /**
10167 * init_dummy_netdev - init a dummy network device for NAPI
10168 * @dev: device to init
10169 *
10170 * This takes a network device structure and initialize the minimum
10171 * amount of fields so it can be used to schedule NAPI polls without
10172 * registering a full blown interface. This is to be used by drivers
10173 * that need to tie several hardware interfaces to a single NAPI
10174 * poll scheduler due to HW limitations.
10175 */
init_dummy_netdev(struct net_device * dev)10176 int init_dummy_netdev(struct net_device *dev)
10177 {
10178 /* Clear everything. Note we don't initialize spinlocks
10179 * are they aren't supposed to be taken by any of the
10180 * NAPI code and this dummy netdev is supposed to be
10181 * only ever used for NAPI polls
10182 */
10183 memset(dev, 0, sizeof(struct net_device));
10184
10185 /* make sure we BUG if trying to hit standard
10186 * register/unregister code path
10187 */
10188 dev->reg_state = NETREG_DUMMY;
10189
10190 /* NAPI wants this */
10191 INIT_LIST_HEAD(&dev->napi_list);
10192
10193 /* a dummy interface is started by default */
10194 set_bit(__LINK_STATE_PRESENT, &dev->state);
10195 set_bit(__LINK_STATE_START, &dev->state);
10196
10197 /* napi_busy_loop stats accounting wants this */
10198 dev_net_set(dev, &init_net);
10199
10200 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10201 * because users of this 'device' dont need to change
10202 * its refcount.
10203 */
10204
10205 return 0;
10206 }
10207 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10208
10209
10210 /**
10211 * register_netdev - register a network device
10212 * @dev: device to register
10213 *
10214 * Take a completed network device structure and add it to the kernel
10215 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10216 * chain. 0 is returned on success. A negative errno code is returned
10217 * on a failure to set up the device, or if the name is a duplicate.
10218 *
10219 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10220 * and expands the device name if you passed a format string to
10221 * alloc_netdev.
10222 */
register_netdev(struct net_device * dev)10223 int register_netdev(struct net_device *dev)
10224 {
10225 int err;
10226
10227 if (rtnl_lock_killable())
10228 return -EINTR;
10229 err = register_netdevice(dev);
10230 rtnl_unlock();
10231 return err;
10232 }
10233 EXPORT_SYMBOL(register_netdev);
10234
netdev_refcnt_read(const struct net_device * dev)10235 int netdev_refcnt_read(const struct net_device *dev)
10236 {
10237 #ifdef CONFIG_PCPU_DEV_REFCNT
10238 int i, refcnt = 0;
10239
10240 for_each_possible_cpu(i)
10241 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10242 return refcnt;
10243 #else
10244 return refcount_read(&dev->dev_refcnt);
10245 #endif
10246 }
10247 EXPORT_SYMBOL(netdev_refcnt_read);
10248
10249 int netdev_unregister_timeout_secs __read_mostly = 10;
10250
10251 #define WAIT_REFS_MIN_MSECS 1
10252 #define WAIT_REFS_MAX_MSECS 250
10253 /**
10254 * netdev_wait_allrefs_any - wait until all references are gone.
10255 * @list: list of net_devices to wait on
10256 *
10257 * This is called when unregistering network devices.
10258 *
10259 * Any protocol or device that holds a reference should register
10260 * for netdevice notification, and cleanup and put back the
10261 * reference if they receive an UNREGISTER event.
10262 * We can get stuck here if buggy protocols don't correctly
10263 * call dev_put.
10264 */
netdev_wait_allrefs_any(struct list_head * list)10265 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10266 {
10267 unsigned long rebroadcast_time, warning_time;
10268 struct net_device *dev;
10269 int wait = 0;
10270
10271 rebroadcast_time = warning_time = jiffies;
10272
10273 list_for_each_entry(dev, list, todo_list)
10274 if (netdev_refcnt_read(dev) == 1)
10275 return dev;
10276
10277 while (true) {
10278 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10279 rtnl_lock();
10280
10281 /* Rebroadcast unregister notification */
10282 list_for_each_entry(dev, list, todo_list)
10283 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10284
10285 __rtnl_unlock();
10286 rcu_barrier();
10287 rtnl_lock();
10288
10289 list_for_each_entry(dev, list, todo_list)
10290 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10291 &dev->state)) {
10292 /* We must not have linkwatch events
10293 * pending on unregister. If this
10294 * happens, we simply run the queue
10295 * unscheduled, resulting in a noop
10296 * for this device.
10297 */
10298 linkwatch_run_queue();
10299 break;
10300 }
10301
10302 __rtnl_unlock();
10303
10304 rebroadcast_time = jiffies;
10305 }
10306
10307 if (!wait) {
10308 rcu_barrier();
10309 wait = WAIT_REFS_MIN_MSECS;
10310 } else {
10311 msleep(wait);
10312 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10313 }
10314
10315 list_for_each_entry(dev, list, todo_list)
10316 if (netdev_refcnt_read(dev) == 1)
10317 return dev;
10318
10319 if (time_after(jiffies, warning_time +
10320 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10321 list_for_each_entry(dev, list, todo_list) {
10322 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10323 dev->name, netdev_refcnt_read(dev));
10324 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10325 }
10326
10327 warning_time = jiffies;
10328 }
10329 }
10330 }
10331
10332 /* The sequence is:
10333 *
10334 * rtnl_lock();
10335 * ...
10336 * register_netdevice(x1);
10337 * register_netdevice(x2);
10338 * ...
10339 * unregister_netdevice(y1);
10340 * unregister_netdevice(y2);
10341 * ...
10342 * rtnl_unlock();
10343 * free_netdev(y1);
10344 * free_netdev(y2);
10345 *
10346 * We are invoked by rtnl_unlock().
10347 * This allows us to deal with problems:
10348 * 1) We can delete sysfs objects which invoke hotplug
10349 * without deadlocking with linkwatch via keventd.
10350 * 2) Since we run with the RTNL semaphore not held, we can sleep
10351 * safely in order to wait for the netdev refcnt to drop to zero.
10352 *
10353 * We must not return until all unregister events added during
10354 * the interval the lock was held have been completed.
10355 */
netdev_run_todo(void)10356 void netdev_run_todo(void)
10357 {
10358 struct net_device *dev, *tmp;
10359 struct list_head list;
10360 #ifdef CONFIG_LOCKDEP
10361 struct list_head unlink_list;
10362
10363 list_replace_init(&net_unlink_list, &unlink_list);
10364
10365 while (!list_empty(&unlink_list)) {
10366 struct net_device *dev = list_first_entry(&unlink_list,
10367 struct net_device,
10368 unlink_list);
10369 list_del_init(&dev->unlink_list);
10370 dev->nested_level = dev->lower_level - 1;
10371 }
10372 #endif
10373
10374 /* Snapshot list, allow later requests */
10375 list_replace_init(&net_todo_list, &list);
10376
10377 __rtnl_unlock();
10378
10379 /* Wait for rcu callbacks to finish before next phase */
10380 if (!list_empty(&list))
10381 rcu_barrier();
10382
10383 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10384 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10385 netdev_WARN(dev, "run_todo but not unregistering\n");
10386 list_del(&dev->todo_list);
10387 continue;
10388 }
10389
10390 write_lock(&dev_base_lock);
10391 dev->reg_state = NETREG_UNREGISTERED;
10392 write_unlock(&dev_base_lock);
10393 linkwatch_forget_dev(dev);
10394 }
10395
10396 while (!list_empty(&list)) {
10397 dev = netdev_wait_allrefs_any(&list);
10398 list_del(&dev->todo_list);
10399
10400 /* paranoia */
10401 BUG_ON(netdev_refcnt_read(dev) != 1);
10402 BUG_ON(!list_empty(&dev->ptype_all));
10403 BUG_ON(!list_empty(&dev->ptype_specific));
10404 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10405 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10406
10407 if (dev->priv_destructor)
10408 dev->priv_destructor(dev);
10409 if (dev->needs_free_netdev)
10410 free_netdev(dev);
10411
10412 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10413 wake_up(&netdev_unregistering_wq);
10414
10415 /* Free network device */
10416 kobject_put(&dev->dev.kobj);
10417 }
10418 }
10419
10420 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10421 * all the same fields in the same order as net_device_stats, with only
10422 * the type differing, but rtnl_link_stats64 may have additional fields
10423 * at the end for newer counters.
10424 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10425 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10426 const struct net_device_stats *netdev_stats)
10427 {
10428 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10429 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10430 u64 *dst = (u64 *)stats64;
10431
10432 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10433 for (i = 0; i < n; i++)
10434 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10435 /* zero out counters that only exist in rtnl_link_stats64 */
10436 memset((char *)stats64 + n * sizeof(u64), 0,
10437 sizeof(*stats64) - n * sizeof(u64));
10438 }
10439 EXPORT_SYMBOL(netdev_stats_to_stats64);
10440
netdev_core_stats_alloc(struct net_device * dev)10441 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10442 {
10443 struct net_device_core_stats __percpu *p;
10444
10445 p = alloc_percpu_gfp(struct net_device_core_stats,
10446 GFP_ATOMIC | __GFP_NOWARN);
10447
10448 if (p && cmpxchg(&dev->core_stats, NULL, p))
10449 free_percpu(p);
10450
10451 /* This READ_ONCE() pairs with the cmpxchg() above */
10452 return READ_ONCE(dev->core_stats);
10453 }
10454 EXPORT_SYMBOL(netdev_core_stats_alloc);
10455
10456 /**
10457 * dev_get_stats - get network device statistics
10458 * @dev: device to get statistics from
10459 * @storage: place to store stats
10460 *
10461 * Get network statistics from device. Return @storage.
10462 * The device driver may provide its own method by setting
10463 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10464 * otherwise the internal statistics structure is used.
10465 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10466 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10467 struct rtnl_link_stats64 *storage)
10468 {
10469 const struct net_device_ops *ops = dev->netdev_ops;
10470 const struct net_device_core_stats __percpu *p;
10471
10472 if (ops->ndo_get_stats64) {
10473 memset(storage, 0, sizeof(*storage));
10474 ops->ndo_get_stats64(dev, storage);
10475 } else if (ops->ndo_get_stats) {
10476 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10477 } else {
10478 netdev_stats_to_stats64(storage, &dev->stats);
10479 }
10480
10481 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10482 p = READ_ONCE(dev->core_stats);
10483 if (p) {
10484 const struct net_device_core_stats *core_stats;
10485 int i;
10486
10487 for_each_possible_cpu(i) {
10488 core_stats = per_cpu_ptr(p, i);
10489 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10490 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10491 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10492 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10493 }
10494 }
10495 return storage;
10496 }
10497 EXPORT_SYMBOL(dev_get_stats);
10498
10499 /**
10500 * dev_fetch_sw_netstats - get per-cpu network device statistics
10501 * @s: place to store stats
10502 * @netstats: per-cpu network stats to read from
10503 *
10504 * Read per-cpu network statistics and populate the related fields in @s.
10505 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10506 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10507 const struct pcpu_sw_netstats __percpu *netstats)
10508 {
10509 int cpu;
10510
10511 for_each_possible_cpu(cpu) {
10512 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10513 const struct pcpu_sw_netstats *stats;
10514 unsigned int start;
10515
10516 stats = per_cpu_ptr(netstats, cpu);
10517 do {
10518 start = u64_stats_fetch_begin_irq(&stats->syncp);
10519 rx_packets = u64_stats_read(&stats->rx_packets);
10520 rx_bytes = u64_stats_read(&stats->rx_bytes);
10521 tx_packets = u64_stats_read(&stats->tx_packets);
10522 tx_bytes = u64_stats_read(&stats->tx_bytes);
10523 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10524
10525 s->rx_packets += rx_packets;
10526 s->rx_bytes += rx_bytes;
10527 s->tx_packets += tx_packets;
10528 s->tx_bytes += tx_bytes;
10529 }
10530 }
10531 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10532
10533 /**
10534 * dev_get_tstats64 - ndo_get_stats64 implementation
10535 * @dev: device to get statistics from
10536 * @s: place to store stats
10537 *
10538 * Populate @s from dev->stats and dev->tstats. Can be used as
10539 * ndo_get_stats64() callback.
10540 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10541 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10542 {
10543 netdev_stats_to_stats64(s, &dev->stats);
10544 dev_fetch_sw_netstats(s, dev->tstats);
10545 }
10546 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10547
dev_ingress_queue_create(struct net_device * dev)10548 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10549 {
10550 struct netdev_queue *queue = dev_ingress_queue(dev);
10551
10552 #ifdef CONFIG_NET_CLS_ACT
10553 if (queue)
10554 return queue;
10555 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10556 if (!queue)
10557 return NULL;
10558 netdev_init_one_queue(dev, queue, NULL);
10559 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10560 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10561 rcu_assign_pointer(dev->ingress_queue, queue);
10562 #endif
10563 return queue;
10564 }
10565
10566 static const struct ethtool_ops default_ethtool_ops;
10567
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10568 void netdev_set_default_ethtool_ops(struct net_device *dev,
10569 const struct ethtool_ops *ops)
10570 {
10571 if (dev->ethtool_ops == &default_ethtool_ops)
10572 dev->ethtool_ops = ops;
10573 }
10574 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10575
netdev_freemem(struct net_device * dev)10576 void netdev_freemem(struct net_device *dev)
10577 {
10578 char *addr = (char *)dev - dev->padded;
10579
10580 kvfree(addr);
10581 }
10582
10583 /**
10584 * alloc_netdev_mqs - allocate network device
10585 * @sizeof_priv: size of private data to allocate space for
10586 * @name: device name format string
10587 * @name_assign_type: origin of device name
10588 * @setup: callback to initialize device
10589 * @txqs: the number of TX subqueues to allocate
10590 * @rxqs: the number of RX subqueues to allocate
10591 *
10592 * Allocates a struct net_device with private data area for driver use
10593 * and performs basic initialization. Also allocates subqueue structs
10594 * for each queue on the device.
10595 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10596 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10597 unsigned char name_assign_type,
10598 void (*setup)(struct net_device *),
10599 unsigned int txqs, unsigned int rxqs)
10600 {
10601 struct net_device *dev;
10602 unsigned int alloc_size;
10603 struct net_device *p;
10604
10605 BUG_ON(strlen(name) >= sizeof(dev->name));
10606
10607 if (txqs < 1) {
10608 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10609 return NULL;
10610 }
10611
10612 if (rxqs < 1) {
10613 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10614 return NULL;
10615 }
10616
10617 alloc_size = sizeof(struct net_device);
10618 if (sizeof_priv) {
10619 /* ensure 32-byte alignment of private area */
10620 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10621 alloc_size += sizeof_priv;
10622 }
10623 /* ensure 32-byte alignment of whole construct */
10624 alloc_size += NETDEV_ALIGN - 1;
10625
10626 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10627 if (!p)
10628 return NULL;
10629
10630 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10631 dev->padded = (char *)dev - (char *)p;
10632
10633 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10634 #ifdef CONFIG_PCPU_DEV_REFCNT
10635 dev->pcpu_refcnt = alloc_percpu(int);
10636 if (!dev->pcpu_refcnt)
10637 goto free_dev;
10638 __dev_hold(dev);
10639 #else
10640 refcount_set(&dev->dev_refcnt, 1);
10641 #endif
10642
10643 if (dev_addr_init(dev))
10644 goto free_pcpu;
10645
10646 dev_mc_init(dev);
10647 dev_uc_init(dev);
10648
10649 dev_net_set(dev, &init_net);
10650
10651 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10652 dev->gso_max_segs = GSO_MAX_SEGS;
10653 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10654 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10655 dev->tso_max_segs = TSO_MAX_SEGS;
10656 dev->upper_level = 1;
10657 dev->lower_level = 1;
10658 #ifdef CONFIG_LOCKDEP
10659 dev->nested_level = 0;
10660 INIT_LIST_HEAD(&dev->unlink_list);
10661 #endif
10662
10663 INIT_LIST_HEAD(&dev->napi_list);
10664 INIT_LIST_HEAD(&dev->unreg_list);
10665 INIT_LIST_HEAD(&dev->close_list);
10666 INIT_LIST_HEAD(&dev->link_watch_list);
10667 INIT_LIST_HEAD(&dev->adj_list.upper);
10668 INIT_LIST_HEAD(&dev->adj_list.lower);
10669 INIT_LIST_HEAD(&dev->ptype_all);
10670 INIT_LIST_HEAD(&dev->ptype_specific);
10671 INIT_LIST_HEAD(&dev->net_notifier_list);
10672 #ifdef CONFIG_NET_SCHED
10673 hash_init(dev->qdisc_hash);
10674 #endif
10675 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10676 setup(dev);
10677
10678 if (!dev->tx_queue_len) {
10679 dev->priv_flags |= IFF_NO_QUEUE;
10680 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10681 }
10682
10683 dev->num_tx_queues = txqs;
10684 dev->real_num_tx_queues = txqs;
10685 if (netif_alloc_netdev_queues(dev))
10686 goto free_all;
10687
10688 dev->num_rx_queues = rxqs;
10689 dev->real_num_rx_queues = rxqs;
10690 if (netif_alloc_rx_queues(dev))
10691 goto free_all;
10692
10693 strcpy(dev->name, name);
10694 dev->name_assign_type = name_assign_type;
10695 dev->group = INIT_NETDEV_GROUP;
10696 if (!dev->ethtool_ops)
10697 dev->ethtool_ops = &default_ethtool_ops;
10698
10699 nf_hook_netdev_init(dev);
10700
10701 return dev;
10702
10703 free_all:
10704 free_netdev(dev);
10705 return NULL;
10706
10707 free_pcpu:
10708 #ifdef CONFIG_PCPU_DEV_REFCNT
10709 free_percpu(dev->pcpu_refcnt);
10710 free_dev:
10711 #endif
10712 netdev_freemem(dev);
10713 return NULL;
10714 }
10715 EXPORT_SYMBOL(alloc_netdev_mqs);
10716
10717 /**
10718 * free_netdev - free network device
10719 * @dev: device
10720 *
10721 * This function does the last stage of destroying an allocated device
10722 * interface. The reference to the device object is released. If this
10723 * is the last reference then it will be freed.Must be called in process
10724 * context.
10725 */
free_netdev(struct net_device * dev)10726 void free_netdev(struct net_device *dev)
10727 {
10728 struct napi_struct *p, *n;
10729
10730 might_sleep();
10731
10732 /* When called immediately after register_netdevice() failed the unwind
10733 * handling may still be dismantling the device. Handle that case by
10734 * deferring the free.
10735 */
10736 if (dev->reg_state == NETREG_UNREGISTERING) {
10737 ASSERT_RTNL();
10738 dev->needs_free_netdev = true;
10739 return;
10740 }
10741
10742 netif_free_tx_queues(dev);
10743 netif_free_rx_queues(dev);
10744
10745 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10746
10747 /* Flush device addresses */
10748 dev_addr_flush(dev);
10749
10750 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10751 netif_napi_del(p);
10752
10753 ref_tracker_dir_exit(&dev->refcnt_tracker);
10754 #ifdef CONFIG_PCPU_DEV_REFCNT
10755 free_percpu(dev->pcpu_refcnt);
10756 dev->pcpu_refcnt = NULL;
10757 #endif
10758 free_percpu(dev->core_stats);
10759 dev->core_stats = NULL;
10760 free_percpu(dev->xdp_bulkq);
10761 dev->xdp_bulkq = NULL;
10762
10763 /* Compatibility with error handling in drivers */
10764 if (dev->reg_state == NETREG_UNINITIALIZED) {
10765 netdev_freemem(dev);
10766 return;
10767 }
10768
10769 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10770 dev->reg_state = NETREG_RELEASED;
10771
10772 /* will free via device release */
10773 put_device(&dev->dev);
10774 }
10775 EXPORT_SYMBOL(free_netdev);
10776
10777 /**
10778 * synchronize_net - Synchronize with packet receive processing
10779 *
10780 * Wait for packets currently being received to be done.
10781 * Does not block later packets from starting.
10782 */
synchronize_net(void)10783 void synchronize_net(void)
10784 {
10785 might_sleep();
10786 if (rtnl_is_locked())
10787 synchronize_rcu_expedited();
10788 else
10789 synchronize_rcu();
10790 }
10791 EXPORT_SYMBOL(synchronize_net);
10792
10793 /**
10794 * unregister_netdevice_queue - remove device from the kernel
10795 * @dev: device
10796 * @head: list
10797 *
10798 * This function shuts down a device interface and removes it
10799 * from the kernel tables.
10800 * If head not NULL, device is queued to be unregistered later.
10801 *
10802 * Callers must hold the rtnl semaphore. You may want
10803 * unregister_netdev() instead of this.
10804 */
10805
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10806 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10807 {
10808 ASSERT_RTNL();
10809
10810 if (head) {
10811 list_move_tail(&dev->unreg_list, head);
10812 } else {
10813 LIST_HEAD(single);
10814
10815 list_add(&dev->unreg_list, &single);
10816 unregister_netdevice_many(&single);
10817 }
10818 }
10819 EXPORT_SYMBOL(unregister_netdevice_queue);
10820
10821 /**
10822 * unregister_netdevice_many - unregister many devices
10823 * @head: list of devices
10824 *
10825 * Note: As most callers use a stack allocated list_head,
10826 * we force a list_del() to make sure stack wont be corrupted later.
10827 */
unregister_netdevice_many(struct list_head * head)10828 void unregister_netdevice_many(struct list_head *head)
10829 {
10830 struct net_device *dev, *tmp;
10831 LIST_HEAD(close_head);
10832
10833 BUG_ON(dev_boot_phase);
10834 ASSERT_RTNL();
10835
10836 if (list_empty(head))
10837 return;
10838
10839 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10840 /* Some devices call without registering
10841 * for initialization unwind. Remove those
10842 * devices and proceed with the remaining.
10843 */
10844 if (dev->reg_state == NETREG_UNINITIALIZED) {
10845 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10846 dev->name, dev);
10847
10848 WARN_ON(1);
10849 list_del(&dev->unreg_list);
10850 continue;
10851 }
10852 dev->dismantle = true;
10853 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10854 }
10855
10856 /* If device is running, close it first. */
10857 list_for_each_entry(dev, head, unreg_list)
10858 list_add_tail(&dev->close_list, &close_head);
10859 dev_close_many(&close_head, true);
10860
10861 list_for_each_entry(dev, head, unreg_list) {
10862 /* And unlink it from device chain. */
10863 write_lock(&dev_base_lock);
10864 unlist_netdevice(dev, false);
10865 dev->reg_state = NETREG_UNREGISTERING;
10866 write_unlock(&dev_base_lock);
10867 }
10868 flush_all_backlogs();
10869
10870 synchronize_net();
10871
10872 list_for_each_entry(dev, head, unreg_list) {
10873 struct sk_buff *skb = NULL;
10874
10875 /* Shutdown queueing discipline. */
10876 dev_shutdown(dev);
10877
10878 dev_xdp_uninstall(dev);
10879
10880 netdev_offload_xstats_disable_all(dev);
10881
10882 /* Notify protocols, that we are about to destroy
10883 * this device. They should clean all the things.
10884 */
10885 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10886
10887 if (!dev->rtnl_link_ops ||
10888 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10889 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10890 GFP_KERNEL, NULL, 0);
10891
10892 /*
10893 * Flush the unicast and multicast chains
10894 */
10895 dev_uc_flush(dev);
10896 dev_mc_flush(dev);
10897
10898 netdev_name_node_alt_flush(dev);
10899 netdev_name_node_free(dev->name_node);
10900
10901 if (dev->netdev_ops->ndo_uninit)
10902 dev->netdev_ops->ndo_uninit(dev);
10903
10904 if (skb)
10905 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10906
10907 /* Notifier chain MUST detach us all upper devices. */
10908 WARN_ON(netdev_has_any_upper_dev(dev));
10909 WARN_ON(netdev_has_any_lower_dev(dev));
10910
10911 /* Remove entries from kobject tree */
10912 netdev_unregister_kobject(dev);
10913 #ifdef CONFIG_XPS
10914 /* Remove XPS queueing entries */
10915 netif_reset_xps_queues_gt(dev, 0);
10916 #endif
10917 }
10918
10919 synchronize_net();
10920
10921 list_for_each_entry(dev, head, unreg_list) {
10922 netdev_put(dev, &dev->dev_registered_tracker);
10923 net_set_todo(dev);
10924 }
10925
10926 list_del(head);
10927 }
10928 EXPORT_SYMBOL(unregister_netdevice_many);
10929
10930 /**
10931 * unregister_netdev - remove device from the kernel
10932 * @dev: device
10933 *
10934 * This function shuts down a device interface and removes it
10935 * from the kernel tables.
10936 *
10937 * This is just a wrapper for unregister_netdevice that takes
10938 * the rtnl semaphore. In general you want to use this and not
10939 * unregister_netdevice.
10940 */
unregister_netdev(struct net_device * dev)10941 void unregister_netdev(struct net_device *dev)
10942 {
10943 rtnl_lock();
10944 unregister_netdevice(dev);
10945 rtnl_unlock();
10946 }
10947 EXPORT_SYMBOL(unregister_netdev);
10948
10949 /**
10950 * __dev_change_net_namespace - move device to different nethost namespace
10951 * @dev: device
10952 * @net: network namespace
10953 * @pat: If not NULL name pattern to try if the current device name
10954 * is already taken in the destination network namespace.
10955 * @new_ifindex: If not zero, specifies device index in the target
10956 * namespace.
10957 *
10958 * This function shuts down a device interface and moves it
10959 * to a new network namespace. On success 0 is returned, on
10960 * a failure a netagive errno code is returned.
10961 *
10962 * Callers must hold the rtnl semaphore.
10963 */
10964
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)10965 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10966 const char *pat, int new_ifindex)
10967 {
10968 struct netdev_name_node *name_node;
10969 struct net *net_old = dev_net(dev);
10970 char new_name[IFNAMSIZ] = {};
10971 int err, new_nsid;
10972
10973 ASSERT_RTNL();
10974
10975 /* Don't allow namespace local devices to be moved. */
10976 err = -EINVAL;
10977 if (dev->features & NETIF_F_NETNS_LOCAL)
10978 goto out;
10979
10980 /* Ensure the device has been registrered */
10981 if (dev->reg_state != NETREG_REGISTERED)
10982 goto out;
10983
10984 /* Get out if there is nothing todo */
10985 err = 0;
10986 if (net_eq(net_old, net))
10987 goto out;
10988
10989 /* Pick the destination device name, and ensure
10990 * we can use it in the destination network namespace.
10991 */
10992 err = -EEXIST;
10993 if (netdev_name_in_use(net, dev->name)) {
10994 /* We get here if we can't use the current device name */
10995 if (!pat)
10996 goto out;
10997 err = dev_prep_valid_name(net, dev, pat, new_name);
10998 if (err < 0)
10999 goto out;
11000 }
11001 /* Check that none of the altnames conflicts. */
11002 err = -EEXIST;
11003 netdev_for_each_altname(dev, name_node)
11004 if (netdev_name_in_use(net, name_node->name))
11005 goto out;
11006
11007 /* Check that new_ifindex isn't used yet. */
11008 err = -EBUSY;
11009 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11010 goto out;
11011
11012 /*
11013 * And now a mini version of register_netdevice unregister_netdevice.
11014 */
11015
11016 /* If device is running close it first. */
11017 dev_close(dev);
11018
11019 /* And unlink it from device chain */
11020 unlist_netdevice(dev, true);
11021
11022 synchronize_net();
11023
11024 /* Shutdown queueing discipline. */
11025 dev_shutdown(dev);
11026
11027 /* Notify protocols, that we are about to destroy
11028 * this device. They should clean all the things.
11029 *
11030 * Note that dev->reg_state stays at NETREG_REGISTERED.
11031 * This is wanted because this way 8021q and macvlan know
11032 * the device is just moving and can keep their slaves up.
11033 */
11034 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11035 rcu_barrier();
11036
11037 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11038 /* If there is an ifindex conflict assign a new one */
11039 if (!new_ifindex) {
11040 if (__dev_get_by_index(net, dev->ifindex))
11041 new_ifindex = dev_new_index(net);
11042 else
11043 new_ifindex = dev->ifindex;
11044 }
11045
11046 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11047 new_ifindex);
11048
11049 /*
11050 * Flush the unicast and multicast chains
11051 */
11052 dev_uc_flush(dev);
11053 dev_mc_flush(dev);
11054
11055 /* Send a netdev-removed uevent to the old namespace */
11056 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11057 netdev_adjacent_del_links(dev);
11058
11059 /* Move per-net netdevice notifiers that are following the netdevice */
11060 move_netdevice_notifiers_dev_net(dev, net);
11061
11062 /* Actually switch the network namespace */
11063 dev_net_set(dev, net);
11064 dev->ifindex = new_ifindex;
11065
11066 /* Send a netdev-add uevent to the new namespace */
11067 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11068 netdev_adjacent_add_links(dev);
11069
11070 if (new_name[0]) /* Rename the netdev to prepared name */
11071 strscpy(dev->name, new_name, IFNAMSIZ);
11072
11073 /* Fixup kobjects */
11074 err = device_rename(&dev->dev, dev->name);
11075 WARN_ON(err);
11076
11077 /* Adapt owner in case owning user namespace of target network
11078 * namespace is different from the original one.
11079 */
11080 err = netdev_change_owner(dev, net_old, net);
11081 WARN_ON(err);
11082
11083 /* Add the device back in the hashes */
11084 list_netdevice(dev);
11085
11086 /* Notify protocols, that a new device appeared. */
11087 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11088
11089 /*
11090 * Prevent userspace races by waiting until the network
11091 * device is fully setup before sending notifications.
11092 */
11093 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11094
11095 synchronize_net();
11096 err = 0;
11097 out:
11098 return err;
11099 }
11100 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11101
dev_cpu_dead(unsigned int oldcpu)11102 static int dev_cpu_dead(unsigned int oldcpu)
11103 {
11104 struct sk_buff **list_skb;
11105 struct sk_buff *skb;
11106 unsigned int cpu;
11107 struct softnet_data *sd, *oldsd, *remsd = NULL;
11108
11109 local_irq_disable();
11110 cpu = smp_processor_id();
11111 sd = &per_cpu(softnet_data, cpu);
11112 oldsd = &per_cpu(softnet_data, oldcpu);
11113
11114 /* Find end of our completion_queue. */
11115 list_skb = &sd->completion_queue;
11116 while (*list_skb)
11117 list_skb = &(*list_skb)->next;
11118 /* Append completion queue from offline CPU. */
11119 *list_skb = oldsd->completion_queue;
11120 oldsd->completion_queue = NULL;
11121
11122 /* Append output queue from offline CPU. */
11123 if (oldsd->output_queue) {
11124 *sd->output_queue_tailp = oldsd->output_queue;
11125 sd->output_queue_tailp = oldsd->output_queue_tailp;
11126 oldsd->output_queue = NULL;
11127 oldsd->output_queue_tailp = &oldsd->output_queue;
11128 }
11129 /* Append NAPI poll list from offline CPU, with one exception :
11130 * process_backlog() must be called by cpu owning percpu backlog.
11131 * We properly handle process_queue & input_pkt_queue later.
11132 */
11133 while (!list_empty(&oldsd->poll_list)) {
11134 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11135 struct napi_struct,
11136 poll_list);
11137
11138 list_del_init(&napi->poll_list);
11139 if (napi->poll == process_backlog)
11140 napi->state = 0;
11141 else
11142 ____napi_schedule(sd, napi);
11143 }
11144
11145 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11146 local_irq_enable();
11147
11148 #ifdef CONFIG_RPS
11149 remsd = oldsd->rps_ipi_list;
11150 oldsd->rps_ipi_list = NULL;
11151 #endif
11152 /* send out pending IPI's on offline CPU */
11153 net_rps_send_ipi(remsd);
11154
11155 /* Process offline CPU's input_pkt_queue */
11156 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11157 netif_rx(skb);
11158 input_queue_head_incr(oldsd);
11159 }
11160 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11161 netif_rx(skb);
11162 input_queue_head_incr(oldsd);
11163 }
11164
11165 return 0;
11166 }
11167
11168 /**
11169 * netdev_increment_features - increment feature set by one
11170 * @all: current feature set
11171 * @one: new feature set
11172 * @mask: mask feature set
11173 *
11174 * Computes a new feature set after adding a device with feature set
11175 * @one to the master device with current feature set @all. Will not
11176 * enable anything that is off in @mask. Returns the new feature set.
11177 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11178 netdev_features_t netdev_increment_features(netdev_features_t all,
11179 netdev_features_t one, netdev_features_t mask)
11180 {
11181 if (mask & NETIF_F_HW_CSUM)
11182 mask |= NETIF_F_CSUM_MASK;
11183 mask |= NETIF_F_VLAN_CHALLENGED;
11184
11185 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11186 all &= one | ~NETIF_F_ALL_FOR_ALL;
11187
11188 /* If one device supports hw checksumming, set for all. */
11189 if (all & NETIF_F_HW_CSUM)
11190 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11191
11192 return all;
11193 }
11194 EXPORT_SYMBOL(netdev_increment_features);
11195
netdev_create_hash(void)11196 static struct hlist_head * __net_init netdev_create_hash(void)
11197 {
11198 int i;
11199 struct hlist_head *hash;
11200
11201 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11202 if (hash != NULL)
11203 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11204 INIT_HLIST_HEAD(&hash[i]);
11205
11206 return hash;
11207 }
11208
11209 /* Initialize per network namespace state */
netdev_init(struct net * net)11210 static int __net_init netdev_init(struct net *net)
11211 {
11212 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11213 8 * sizeof_field(struct napi_struct, gro_bitmask));
11214
11215 INIT_LIST_HEAD(&net->dev_base_head);
11216
11217 net->dev_name_head = netdev_create_hash();
11218 if (net->dev_name_head == NULL)
11219 goto err_name;
11220
11221 net->dev_index_head = netdev_create_hash();
11222 if (net->dev_index_head == NULL)
11223 goto err_idx;
11224
11225 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11226
11227 return 0;
11228
11229 err_idx:
11230 kfree(net->dev_name_head);
11231 err_name:
11232 return -ENOMEM;
11233 }
11234
11235 /**
11236 * netdev_drivername - network driver for the device
11237 * @dev: network device
11238 *
11239 * Determine network driver for device.
11240 */
netdev_drivername(const struct net_device * dev)11241 const char *netdev_drivername(const struct net_device *dev)
11242 {
11243 const struct device_driver *driver;
11244 const struct device *parent;
11245 const char *empty = "";
11246
11247 parent = dev->dev.parent;
11248 if (!parent)
11249 return empty;
11250
11251 driver = parent->driver;
11252 if (driver && driver->name)
11253 return driver->name;
11254 return empty;
11255 }
11256
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11257 static void __netdev_printk(const char *level, const struct net_device *dev,
11258 struct va_format *vaf)
11259 {
11260 if (dev && dev->dev.parent) {
11261 dev_printk_emit(level[1] - '0',
11262 dev->dev.parent,
11263 "%s %s %s%s: %pV",
11264 dev_driver_string(dev->dev.parent),
11265 dev_name(dev->dev.parent),
11266 netdev_name(dev), netdev_reg_state(dev),
11267 vaf);
11268 } else if (dev) {
11269 printk("%s%s%s: %pV",
11270 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11271 } else {
11272 printk("%s(NULL net_device): %pV", level, vaf);
11273 }
11274 }
11275
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11276 void netdev_printk(const char *level, const struct net_device *dev,
11277 const char *format, ...)
11278 {
11279 struct va_format vaf;
11280 va_list args;
11281
11282 va_start(args, format);
11283
11284 vaf.fmt = format;
11285 vaf.va = &args;
11286
11287 __netdev_printk(level, dev, &vaf);
11288
11289 va_end(args);
11290 }
11291 EXPORT_SYMBOL(netdev_printk);
11292
11293 #define define_netdev_printk_level(func, level) \
11294 void func(const struct net_device *dev, const char *fmt, ...) \
11295 { \
11296 struct va_format vaf; \
11297 va_list args; \
11298 \
11299 va_start(args, fmt); \
11300 \
11301 vaf.fmt = fmt; \
11302 vaf.va = &args; \
11303 \
11304 __netdev_printk(level, dev, &vaf); \
11305 \
11306 va_end(args); \
11307 } \
11308 EXPORT_SYMBOL(func);
11309
11310 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11311 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11312 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11313 define_netdev_printk_level(netdev_err, KERN_ERR);
11314 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11315 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11316 define_netdev_printk_level(netdev_info, KERN_INFO);
11317
netdev_exit(struct net * net)11318 static void __net_exit netdev_exit(struct net *net)
11319 {
11320 kfree(net->dev_name_head);
11321 kfree(net->dev_index_head);
11322 if (net != &init_net)
11323 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11324 }
11325
11326 static struct pernet_operations __net_initdata netdev_net_ops = {
11327 .init = netdev_init,
11328 .exit = netdev_exit,
11329 };
11330
default_device_exit_net(struct net * net)11331 static void __net_exit default_device_exit_net(struct net *net)
11332 {
11333 struct netdev_name_node *name_node, *tmp;
11334 struct net_device *dev, *aux;
11335 /*
11336 * Push all migratable network devices back to the
11337 * initial network namespace
11338 */
11339 ASSERT_RTNL();
11340 for_each_netdev_safe(net, dev, aux) {
11341 int err;
11342 char fb_name[IFNAMSIZ];
11343
11344 /* Ignore unmoveable devices (i.e. loopback) */
11345 if (dev->features & NETIF_F_NETNS_LOCAL)
11346 continue;
11347
11348 /* Leave virtual devices for the generic cleanup */
11349 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11350 continue;
11351
11352 /* Push remaining network devices to init_net */
11353 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11354 if (netdev_name_in_use(&init_net, fb_name))
11355 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11356
11357 netdev_for_each_altname_safe(dev, name_node, tmp)
11358 if (netdev_name_in_use(&init_net, name_node->name)) {
11359 netdev_name_node_del(name_node);
11360 synchronize_rcu();
11361 __netdev_name_node_alt_destroy(name_node);
11362 }
11363
11364 err = dev_change_net_namespace(dev, &init_net, fb_name);
11365 if (err) {
11366 pr_emerg("%s: failed to move %s to init_net: %d\n",
11367 __func__, dev->name, err);
11368 BUG();
11369 }
11370 }
11371 }
11372
default_device_exit_batch(struct list_head * net_list)11373 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11374 {
11375 /* At exit all network devices most be removed from a network
11376 * namespace. Do this in the reverse order of registration.
11377 * Do this across as many network namespaces as possible to
11378 * improve batching efficiency.
11379 */
11380 struct net_device *dev;
11381 struct net *net;
11382 LIST_HEAD(dev_kill_list);
11383
11384 rtnl_lock();
11385 list_for_each_entry(net, net_list, exit_list) {
11386 default_device_exit_net(net);
11387 cond_resched();
11388 }
11389
11390 list_for_each_entry(net, net_list, exit_list) {
11391 for_each_netdev_reverse(net, dev) {
11392 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11393 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11394 else
11395 unregister_netdevice_queue(dev, &dev_kill_list);
11396 }
11397 }
11398 unregister_netdevice_many(&dev_kill_list);
11399 rtnl_unlock();
11400 }
11401
11402 static struct pernet_operations __net_initdata default_device_ops = {
11403 .exit_batch = default_device_exit_batch,
11404 };
11405
11406 /*
11407 * Initialize the DEV module. At boot time this walks the device list and
11408 * unhooks any devices that fail to initialise (normally hardware not
11409 * present) and leaves us with a valid list of present and active devices.
11410 *
11411 */
11412
11413 /*
11414 * This is called single threaded during boot, so no need
11415 * to take the rtnl semaphore.
11416 */
net_dev_init(void)11417 static int __init net_dev_init(void)
11418 {
11419 int i, rc = -ENOMEM;
11420
11421 BUG_ON(!dev_boot_phase);
11422
11423 if (dev_proc_init())
11424 goto out;
11425
11426 if (netdev_kobject_init())
11427 goto out;
11428
11429 INIT_LIST_HEAD(&ptype_all);
11430 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11431 INIT_LIST_HEAD(&ptype_base[i]);
11432
11433 if (register_pernet_subsys(&netdev_net_ops))
11434 goto out;
11435
11436 /*
11437 * Initialise the packet receive queues.
11438 */
11439
11440 for_each_possible_cpu(i) {
11441 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11442 struct softnet_data *sd = &per_cpu(softnet_data, i);
11443
11444 INIT_WORK(flush, flush_backlog);
11445
11446 skb_queue_head_init(&sd->input_pkt_queue);
11447 skb_queue_head_init(&sd->process_queue);
11448 #ifdef CONFIG_XFRM_OFFLOAD
11449 skb_queue_head_init(&sd->xfrm_backlog);
11450 #endif
11451 INIT_LIST_HEAD(&sd->poll_list);
11452 sd->output_queue_tailp = &sd->output_queue;
11453 #ifdef CONFIG_RPS
11454 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11455 sd->cpu = i;
11456 #endif
11457 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11458 spin_lock_init(&sd->defer_lock);
11459
11460 init_gro_hash(&sd->backlog);
11461 sd->backlog.poll = process_backlog;
11462 sd->backlog.weight = weight_p;
11463 }
11464
11465 dev_boot_phase = 0;
11466
11467 /* The loopback device is special if any other network devices
11468 * is present in a network namespace the loopback device must
11469 * be present. Since we now dynamically allocate and free the
11470 * loopback device ensure this invariant is maintained by
11471 * keeping the loopback device as the first device on the
11472 * list of network devices. Ensuring the loopback devices
11473 * is the first device that appears and the last network device
11474 * that disappears.
11475 */
11476 if (register_pernet_device(&loopback_net_ops))
11477 goto out;
11478
11479 if (register_pernet_device(&default_device_ops))
11480 goto out;
11481
11482 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11483 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11484
11485 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11486 NULL, dev_cpu_dead);
11487 WARN_ON(rc < 0);
11488 rc = 0;
11489 out:
11490 return rc;
11491 }
11492
11493 subsys_initcall(net_dev_init);
11494