1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22
23 #include "opp.h"
24
25 /*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30 LIST_HEAD(opp_tables);
31
32 /* OPP tables with uninitialized required OPPs */
33 LIST_HEAD(lazy_opp_tables);
34
35 /* Lock to allow exclusive modification to the device and opp lists */
36 DEFINE_MUTEX(opp_table_lock);
37 /* Flag indicating that opp_tables list is being updated at the moment */
38 static bool opp_tables_busy;
39
40 /* OPP ID allocator */
41 static DEFINE_XARRAY_ALLOC1(opp_configs);
42
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)43 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
44 {
45 struct opp_device *opp_dev;
46 bool found = false;
47
48 mutex_lock(&opp_table->lock);
49 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
50 if (opp_dev->dev == dev) {
51 found = true;
52 break;
53 }
54
55 mutex_unlock(&opp_table->lock);
56 return found;
57 }
58
_find_opp_table_unlocked(struct device * dev)59 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
60 {
61 struct opp_table *opp_table;
62
63 list_for_each_entry(opp_table, &opp_tables, node) {
64 if (_find_opp_dev(dev, opp_table)) {
65 _get_opp_table_kref(opp_table);
66 return opp_table;
67 }
68 }
69
70 return ERR_PTR(-ENODEV);
71 }
72
73 /**
74 * _find_opp_table() - find opp_table struct using device pointer
75 * @dev: device pointer used to lookup OPP table
76 *
77 * Search OPP table for one containing matching device.
78 *
79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
80 * -EINVAL based on type of error.
81 *
82 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
83 */
_find_opp_table(struct device * dev)84 struct opp_table *_find_opp_table(struct device *dev)
85 {
86 struct opp_table *opp_table;
87
88 if (IS_ERR_OR_NULL(dev)) {
89 pr_err("%s: Invalid parameters\n", __func__);
90 return ERR_PTR(-EINVAL);
91 }
92
93 mutex_lock(&opp_table_lock);
94 opp_table = _find_opp_table_unlocked(dev);
95 mutex_unlock(&opp_table_lock);
96
97 return opp_table;
98 }
99
100 /*
101 * Returns true if multiple clocks aren't there, else returns false with WARN.
102 *
103 * We don't force clk_count == 1 here as there are users who don't have a clock
104 * representation in the OPP table and manage the clock configuration themselves
105 * in an platform specific way.
106 */
assert_single_clk(struct opp_table * opp_table)107 static bool assert_single_clk(struct opp_table *opp_table)
108 {
109 return !WARN_ON(opp_table->clk_count > 1);
110 }
111
112 /**
113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
114 * @opp: opp for which voltage has to be returned for
115 *
116 * Return: voltage in micro volt corresponding to the opp, else
117 * return 0
118 *
119 * This is useful only for devices with single power supply.
120 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)121 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
122 {
123 if (IS_ERR_OR_NULL(opp)) {
124 pr_err("%s: Invalid parameters\n", __func__);
125 return 0;
126 }
127
128 return opp->supplies[0].u_volt;
129 }
130 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
131
132 /**
133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
134 * @opp: opp for which voltage has to be returned for
135 * @supplies: Placeholder for copying the supply information.
136 *
137 * Return: negative error number on failure, 0 otherwise on success after
138 * setting @supplies.
139 *
140 * This can be used for devices with any number of power supplies. The caller
141 * must ensure the @supplies array must contain space for each regulator.
142 */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)143 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
144 struct dev_pm_opp_supply *supplies)
145 {
146 if (IS_ERR_OR_NULL(opp) || !supplies) {
147 pr_err("%s: Invalid parameters\n", __func__);
148 return -EINVAL;
149 }
150
151 memcpy(supplies, opp->supplies,
152 sizeof(*supplies) * opp->opp_table->regulator_count);
153 return 0;
154 }
155 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
156
157 /**
158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
159 * @opp: opp for which power has to be returned for
160 *
161 * Return: power in micro watt corresponding to the opp, else
162 * return 0
163 *
164 * This is useful only for devices with single power supply.
165 */
dev_pm_opp_get_power(struct dev_pm_opp * opp)166 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
167 {
168 unsigned long opp_power = 0;
169 int i;
170
171 if (IS_ERR_OR_NULL(opp)) {
172 pr_err("%s: Invalid parameters\n", __func__);
173 return 0;
174 }
175 for (i = 0; i < opp->opp_table->regulator_count; i++)
176 opp_power += opp->supplies[i].u_watt;
177
178 return opp_power;
179 }
180 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
181
182 /**
183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
184 * @opp: opp for which frequency has to be returned for
185 *
186 * Return: frequency in hertz corresponding to the opp, else
187 * return 0
188 */
dev_pm_opp_get_freq(struct dev_pm_opp * opp)189 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
190 {
191 if (IS_ERR_OR_NULL(opp)) {
192 pr_err("%s: Invalid parameters\n", __func__);
193 return 0;
194 }
195
196 if (!assert_single_clk(opp->opp_table))
197 return 0;
198
199 return opp->rates[0];
200 }
201 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
202
203 /**
204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
205 * @opp: opp for which level value has to be returned for
206 *
207 * Return: level read from device tree corresponding to the opp, else
208 * return 0.
209 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)210 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
211 {
212 if (IS_ERR_OR_NULL(opp) || !opp->available) {
213 pr_err("%s: Invalid parameters\n", __func__);
214 return 0;
215 }
216
217 return opp->level;
218 }
219 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
220
221 /**
222 * dev_pm_opp_get_required_pstate() - Gets the required performance state
223 * corresponding to an available opp
224 * @opp: opp for which performance state has to be returned for
225 * @index: index of the required opp
226 *
227 * Return: performance state read from device tree corresponding to the
228 * required opp, else return 0.
229 */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)230 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
231 unsigned int index)
232 {
233 if (IS_ERR_OR_NULL(opp) || !opp->available ||
234 index >= opp->opp_table->required_opp_count) {
235 pr_err("%s: Invalid parameters\n", __func__);
236 return 0;
237 }
238
239 /* required-opps not fully initialized yet */
240 if (lazy_linking_pending(opp->opp_table))
241 return 0;
242
243 return opp->required_opps[index]->pstate;
244 }
245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
246
247 /**
248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
249 * @opp: opp for which turbo mode is being verified
250 *
251 * Turbo OPPs are not for normal use, and can be enabled (under certain
252 * conditions) for short duration of times to finish high throughput work
253 * quickly. Running on them for longer times may overheat the chip.
254 *
255 * Return: true if opp is turbo opp, else false.
256 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)257 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
258 {
259 if (IS_ERR_OR_NULL(opp) || !opp->available) {
260 pr_err("%s: Invalid parameters\n", __func__);
261 return false;
262 }
263
264 return opp->turbo;
265 }
266 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
267
268 /**
269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
270 * @dev: device for which we do this operation
271 *
272 * Return: This function returns the max clock latency in nanoseconds.
273 */
dev_pm_opp_get_max_clock_latency(struct device * dev)274 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
275 {
276 struct opp_table *opp_table;
277 unsigned long clock_latency_ns;
278
279 opp_table = _find_opp_table(dev);
280 if (IS_ERR(opp_table))
281 return 0;
282
283 clock_latency_ns = opp_table->clock_latency_ns_max;
284
285 dev_pm_opp_put_opp_table(opp_table);
286
287 return clock_latency_ns;
288 }
289 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
290
291 /**
292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
293 * @dev: device for which we do this operation
294 *
295 * Return: This function returns the max voltage latency in nanoseconds.
296 */
dev_pm_opp_get_max_volt_latency(struct device * dev)297 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
298 {
299 struct opp_table *opp_table;
300 struct dev_pm_opp *opp;
301 struct regulator *reg;
302 unsigned long latency_ns = 0;
303 int ret, i, count;
304 struct {
305 unsigned long min;
306 unsigned long max;
307 } *uV;
308
309 opp_table = _find_opp_table(dev);
310 if (IS_ERR(opp_table))
311 return 0;
312
313 /* Regulator may not be required for the device */
314 if (!opp_table->regulators)
315 goto put_opp_table;
316
317 count = opp_table->regulator_count;
318
319 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
320 if (!uV)
321 goto put_opp_table;
322
323 mutex_lock(&opp_table->lock);
324
325 for (i = 0; i < count; i++) {
326 uV[i].min = ~0;
327 uV[i].max = 0;
328
329 list_for_each_entry(opp, &opp_table->opp_list, node) {
330 if (!opp->available)
331 continue;
332
333 if (opp->supplies[i].u_volt_min < uV[i].min)
334 uV[i].min = opp->supplies[i].u_volt_min;
335 if (opp->supplies[i].u_volt_max > uV[i].max)
336 uV[i].max = opp->supplies[i].u_volt_max;
337 }
338 }
339
340 mutex_unlock(&opp_table->lock);
341
342 /*
343 * The caller needs to ensure that opp_table (and hence the regulator)
344 * isn't freed, while we are executing this routine.
345 */
346 for (i = 0; i < count; i++) {
347 reg = opp_table->regulators[i];
348 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
349 if (ret > 0)
350 latency_ns += ret * 1000;
351 }
352
353 kfree(uV);
354 put_opp_table:
355 dev_pm_opp_put_opp_table(opp_table);
356
357 return latency_ns;
358 }
359 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
360
361 /**
362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
363 * nanoseconds
364 * @dev: device for which we do this operation
365 *
366 * Return: This function returns the max transition latency, in nanoseconds, to
367 * switch from one OPP to other.
368 */
dev_pm_opp_get_max_transition_latency(struct device * dev)369 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
370 {
371 return dev_pm_opp_get_max_volt_latency(dev) +
372 dev_pm_opp_get_max_clock_latency(dev);
373 }
374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
375
376 /**
377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
378 * @dev: device for which we do this operation
379 *
380 * Return: This function returns the frequency of the OPP marked as suspend_opp
381 * if one is available, else returns 0;
382 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)383 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
384 {
385 struct opp_table *opp_table;
386 unsigned long freq = 0;
387
388 opp_table = _find_opp_table(dev);
389 if (IS_ERR(opp_table))
390 return 0;
391
392 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
393 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
394
395 dev_pm_opp_put_opp_table(opp_table);
396
397 return freq;
398 }
399 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
400
_get_opp_count(struct opp_table * opp_table)401 int _get_opp_count(struct opp_table *opp_table)
402 {
403 struct dev_pm_opp *opp;
404 int count = 0;
405
406 mutex_lock(&opp_table->lock);
407
408 list_for_each_entry(opp, &opp_table->opp_list, node) {
409 if (opp->available)
410 count++;
411 }
412
413 mutex_unlock(&opp_table->lock);
414
415 return count;
416 }
417
418 /**
419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
420 * @dev: device for which we do this operation
421 *
422 * Return: This function returns the number of available opps if there are any,
423 * else returns 0 if none or the corresponding error value.
424 */
dev_pm_opp_get_opp_count(struct device * dev)425 int dev_pm_opp_get_opp_count(struct device *dev)
426 {
427 struct opp_table *opp_table;
428 int count;
429
430 opp_table = _find_opp_table(dev);
431 if (IS_ERR(opp_table)) {
432 count = PTR_ERR(opp_table);
433 dev_dbg(dev, "%s: OPP table not found (%d)\n",
434 __func__, count);
435 return count;
436 }
437
438 count = _get_opp_count(opp_table);
439 dev_pm_opp_put_opp_table(opp_table);
440
441 return count;
442 }
443 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
444
445 /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)446 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
447 {
448 return opp->rates[0];
449 }
450
_read_level(struct dev_pm_opp * opp,int index)451 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
452 {
453 return opp->level;
454 }
455
_read_bw(struct dev_pm_opp * opp,int index)456 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
457 {
458 return opp->bandwidth[index].peak;
459 }
460
461 /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)462 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
463 unsigned long opp_key, unsigned long key)
464 {
465 if (opp_key == key) {
466 *opp = temp_opp;
467 return true;
468 }
469
470 return false;
471 }
472
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)473 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
474 unsigned long opp_key, unsigned long key)
475 {
476 if (opp_key >= key) {
477 *opp = temp_opp;
478 return true;
479 }
480
481 return false;
482 }
483
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)484 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
485 unsigned long opp_key, unsigned long key)
486 {
487 if (opp_key > key)
488 return true;
489
490 *opp = temp_opp;
491 return false;
492 }
493
494 /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table))495 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
496 unsigned long *key, int index, bool available,
497 unsigned long (*read)(struct dev_pm_opp *opp, int index),
498 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
499 unsigned long opp_key, unsigned long key),
500 bool (*assert)(struct opp_table *opp_table))
501 {
502 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
503
504 /* Assert that the requirement is met */
505 if (assert && !assert(opp_table))
506 return ERR_PTR(-EINVAL);
507
508 mutex_lock(&opp_table->lock);
509
510 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
511 if (temp_opp->available == available) {
512 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
513 break;
514 }
515 }
516
517 /* Increment the reference count of OPP */
518 if (!IS_ERR(opp)) {
519 *key = read(opp, index);
520 dev_pm_opp_get(opp);
521 }
522
523 mutex_unlock(&opp_table->lock);
524
525 return opp;
526 }
527
528 static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table))529 _find_key(struct device *dev, unsigned long *key, int index, bool available,
530 unsigned long (*read)(struct dev_pm_opp *opp, int index),
531 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
532 unsigned long opp_key, unsigned long key),
533 bool (*assert)(struct opp_table *opp_table))
534 {
535 struct opp_table *opp_table;
536 struct dev_pm_opp *opp;
537
538 opp_table = _find_opp_table(dev);
539 if (IS_ERR(opp_table)) {
540 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
541 PTR_ERR(opp_table));
542 return ERR_CAST(opp_table);
543 }
544
545 opp = _opp_table_find_key(opp_table, key, index, available, read,
546 compare, assert);
547
548 dev_pm_opp_put_opp_table(opp_table);
549
550 return opp;
551 }
552
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))553 static struct dev_pm_opp *_find_key_exact(struct device *dev,
554 unsigned long key, int index, bool available,
555 unsigned long (*read)(struct dev_pm_opp *opp, int index),
556 bool (*assert)(struct opp_table *opp_table))
557 {
558 /*
559 * The value of key will be updated here, but will be ignored as the
560 * caller doesn't need it.
561 */
562 return _find_key(dev, &key, index, available, read, _compare_exact,
563 assert);
564 }
565
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))566 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
567 unsigned long *key, int index, bool available,
568 unsigned long (*read)(struct dev_pm_opp *opp, int index),
569 bool (*assert)(struct opp_table *opp_table))
570 {
571 return _opp_table_find_key(opp_table, key, index, available, read,
572 _compare_ceil, assert);
573 }
574
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))575 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
576 int index, bool available,
577 unsigned long (*read)(struct dev_pm_opp *opp, int index),
578 bool (*assert)(struct opp_table *opp_table))
579 {
580 return _find_key(dev, key, index, available, read, _compare_ceil,
581 assert);
582 }
583
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))584 static struct dev_pm_opp *_find_key_floor(struct device *dev,
585 unsigned long *key, int index, bool available,
586 unsigned long (*read)(struct dev_pm_opp *opp, int index),
587 bool (*assert)(struct opp_table *opp_table))
588 {
589 return _find_key(dev, key, index, available, read, _compare_floor,
590 assert);
591 }
592
593 /**
594 * dev_pm_opp_find_freq_exact() - search for an exact frequency
595 * @dev: device for which we do this operation
596 * @freq: frequency to search for
597 * @available: true/false - match for available opp
598 *
599 * Return: Searches for exact match in the opp table and returns pointer to the
600 * matching opp if found, else returns ERR_PTR in case of error and should
601 * be handled using IS_ERR. Error return values can be:
602 * EINVAL: for bad pointer
603 * ERANGE: no match found for search
604 * ENODEV: if device not found in list of registered devices
605 *
606 * Note: available is a modifier for the search. if available=true, then the
607 * match is for exact matching frequency and is available in the stored OPP
608 * table. if false, the match is for exact frequency which is not available.
609 *
610 * This provides a mechanism to enable an opp which is not available currently
611 * or the opposite as well.
612 *
613 * The callers are required to call dev_pm_opp_put() for the returned OPP after
614 * use.
615 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)616 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
617 unsigned long freq, bool available)
618 {
619 return _find_key_exact(dev, freq, 0, available, _read_freq,
620 assert_single_clk);
621 }
622 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
623
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)624 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
625 unsigned long *freq)
626 {
627 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
628 assert_single_clk);
629 }
630
631 /**
632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
633 * @dev: device for which we do this operation
634 * @freq: Start frequency
635 *
636 * Search for the matching ceil *available* OPP from a starting freq
637 * for a device.
638 *
639 * Return: matching *opp and refreshes *freq accordingly, else returns
640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
641 * values can be:
642 * EINVAL: for bad pointer
643 * ERANGE: no match found for search
644 * ENODEV: if device not found in list of registered devices
645 *
646 * The callers are required to call dev_pm_opp_put() for the returned OPP after
647 * use.
648 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)649 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
650 unsigned long *freq)
651 {
652 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
653 }
654 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
655
656 /**
657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
658 * @dev: device for which we do this operation
659 * @freq: Start frequency
660 *
661 * Search for the matching floor *available* OPP from a starting freq
662 * for a device.
663 *
664 * Return: matching *opp and refreshes *freq accordingly, else returns
665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
666 * values can be:
667 * EINVAL: for bad pointer
668 * ERANGE: no match found for search
669 * ENODEV: if device not found in list of registered devices
670 *
671 * The callers are required to call dev_pm_opp_put() for the returned OPP after
672 * use.
673 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)674 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
675 unsigned long *freq)
676 {
677 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
678 }
679 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
680
681 /**
682 * dev_pm_opp_find_level_exact() - search for an exact level
683 * @dev: device for which we do this operation
684 * @level: level to search for
685 *
686 * Return: Searches for exact match in the opp table and returns pointer to the
687 * matching opp if found, else returns ERR_PTR in case of error and should
688 * be handled using IS_ERR. Error return values can be:
689 * EINVAL: for bad pointer
690 * ERANGE: no match found for search
691 * ENODEV: if device not found in list of registered devices
692 *
693 * The callers are required to call dev_pm_opp_put() for the returned OPP after
694 * use.
695 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)696 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
697 unsigned int level)
698 {
699 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
700 }
701 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
702
703 /**
704 * dev_pm_opp_find_level_ceil() - search for an rounded up level
705 * @dev: device for which we do this operation
706 * @level: level to search for
707 *
708 * Return: Searches for rounded up match in the opp table and returns pointer
709 * to the matching opp if found, else returns ERR_PTR in case of error and
710 * should be handled using IS_ERR. Error return values can be:
711 * EINVAL: for bad pointer
712 * ERANGE: no match found for search
713 * ENODEV: if device not found in list of registered devices
714 *
715 * The callers are required to call dev_pm_opp_put() for the returned OPP after
716 * use.
717 */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)718 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
719 unsigned int *level)
720 {
721 unsigned long temp = *level;
722 struct dev_pm_opp *opp;
723
724 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
725 *level = temp;
726 return opp;
727 }
728 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
729
730 /**
731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
732 * @dev: device for which we do this operation
733 * @bw: start bandwidth
734 * @index: which bandwidth to compare, in case of OPPs with several values
735 *
736 * Search for the matching floor *available* OPP from a starting bandwidth
737 * for a device.
738 *
739 * Return: matching *opp and refreshes *bw accordingly, else returns
740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
741 * values can be:
742 * EINVAL: for bad pointer
743 * ERANGE: no match found for search
744 * ENODEV: if device not found in list of registered devices
745 *
746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
747 * use.
748 */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)749 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
750 int index)
751 {
752 unsigned long temp = *bw;
753 struct dev_pm_opp *opp;
754
755 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
756 *bw = temp;
757 return opp;
758 }
759 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
760
761 /**
762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
763 * @dev: device for which we do this operation
764 * @bw: start bandwidth
765 * @index: which bandwidth to compare, in case of OPPs with several values
766 *
767 * Search for the matching floor *available* OPP from a starting bandwidth
768 * for a device.
769 *
770 * Return: matching *opp and refreshes *bw accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)780 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
781 unsigned int *bw, int index)
782 {
783 unsigned long temp = *bw;
784 struct dev_pm_opp *opp;
785
786 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
787 *bw = temp;
788 return opp;
789 }
790 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
791
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)792 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
793 struct dev_pm_opp_supply *supply)
794 {
795 int ret;
796
797 /* Regulator not available for device */
798 if (IS_ERR(reg)) {
799 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
800 PTR_ERR(reg));
801 return 0;
802 }
803
804 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
805 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
806
807 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
808 supply->u_volt, supply->u_volt_max);
809 if (ret)
810 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
811 __func__, supply->u_volt_min, supply->u_volt,
812 supply->u_volt_max, ret);
813
814 return ret;
815 }
816
817 static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)818 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
819 struct dev_pm_opp *opp, void *data, bool scaling_down)
820 {
821 unsigned long *target = data;
822 unsigned long freq;
823 int ret;
824
825 /* One of target and opp must be available */
826 if (target) {
827 freq = *target;
828 } else if (opp) {
829 freq = opp->rates[0];
830 } else {
831 WARN_ON(1);
832 return -EINVAL;
833 }
834
835 ret = clk_set_rate(opp_table->clk, freq);
836 if (ret) {
837 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
838 ret);
839 } else {
840 opp_table->rate_clk_single = freq;
841 }
842
843 return ret;
844 }
845
846 /*
847 * Simple implementation for configuring multiple clocks. Configure clocks in
848 * the order in which they are present in the array while scaling up.
849 */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)850 int dev_pm_opp_config_clks_simple(struct device *dev,
851 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
852 bool scaling_down)
853 {
854 int ret, i;
855
856 if (scaling_down) {
857 for (i = opp_table->clk_count - 1; i >= 0; i--) {
858 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
859 if (ret) {
860 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
861 ret);
862 return ret;
863 }
864 }
865 } else {
866 for (i = 0; i < opp_table->clk_count; i++) {
867 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
868 if (ret) {
869 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
870 ret);
871 return ret;
872 }
873 }
874 }
875
876 return 0;
877 }
878 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
879
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)880 static int _opp_config_regulator_single(struct device *dev,
881 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
882 struct regulator **regulators, unsigned int count)
883 {
884 struct regulator *reg = regulators[0];
885 int ret;
886
887 /* This function only supports single regulator per device */
888 if (WARN_ON(count > 1)) {
889 dev_err(dev, "multiple regulators are not supported\n");
890 return -EINVAL;
891 }
892
893 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
894 if (ret)
895 return ret;
896
897 /*
898 * Enable the regulator after setting its voltages, otherwise it breaks
899 * some boot-enabled regulators.
900 */
901 if (unlikely(!new_opp->opp_table->enabled)) {
902 ret = regulator_enable(reg);
903 if (ret < 0)
904 dev_warn(dev, "Failed to enable regulator: %d", ret);
905 }
906
907 return 0;
908 }
909
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)910 static int _set_opp_bw(const struct opp_table *opp_table,
911 struct dev_pm_opp *opp, struct device *dev)
912 {
913 u32 avg, peak;
914 int i, ret;
915
916 if (!opp_table->paths)
917 return 0;
918
919 for (i = 0; i < opp_table->path_count; i++) {
920 if (!opp) {
921 avg = 0;
922 peak = 0;
923 } else {
924 avg = opp->bandwidth[i].avg;
925 peak = opp->bandwidth[i].peak;
926 }
927 ret = icc_set_bw(opp_table->paths[i], avg, peak);
928 if (ret) {
929 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
930 opp ? "set" : "remove", i, ret);
931 return ret;
932 }
933 }
934
935 return 0;
936 }
937
_set_required_opp(struct device * dev,struct device * pd_dev,struct dev_pm_opp * opp,int i)938 static int _set_required_opp(struct device *dev, struct device *pd_dev,
939 struct dev_pm_opp *opp, int i)
940 {
941 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
942 int ret;
943
944 if (!pd_dev)
945 return 0;
946
947 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
948 if (ret) {
949 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
950 dev_name(pd_dev), pstate, ret);
951 }
952
953 return ret;
954 }
955
956 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)957 static int _set_required_opps(struct device *dev,
958 struct opp_table *opp_table,
959 struct dev_pm_opp *opp, bool up)
960 {
961 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
962 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
963 int i, ret = 0;
964
965 if (!required_opp_tables)
966 return 0;
967
968 /* required-opps not fully initialized yet */
969 if (lazy_linking_pending(opp_table))
970 return -EBUSY;
971
972 /*
973 * We only support genpd's OPPs in the "required-opps" for now, as we
974 * don't know much about other use cases. Error out if the required OPP
975 * doesn't belong to a genpd.
976 */
977 if (unlikely(!required_opp_tables[0]->is_genpd)) {
978 dev_err(dev, "required-opps don't belong to a genpd\n");
979 return -ENOENT;
980 }
981
982 /* Single genpd case */
983 if (!genpd_virt_devs)
984 return _set_required_opp(dev, dev, opp, 0);
985
986 /* Multiple genpd case */
987
988 /*
989 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
990 * after it is freed from another thread.
991 */
992 mutex_lock(&opp_table->genpd_virt_dev_lock);
993
994 /* Scaling up? Set required OPPs in normal order, else reverse */
995 if (up) {
996 for (i = 0; i < opp_table->required_opp_count; i++) {
997 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
998 if (ret)
999 break;
1000 }
1001 } else {
1002 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1004 if (ret)
1005 break;
1006 }
1007 }
1008
1009 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1010
1011 return ret;
1012 }
1013
_find_current_opp(struct device * dev,struct opp_table * opp_table)1014 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1015 {
1016 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1017 unsigned long freq;
1018
1019 if (!IS_ERR(opp_table->clk)) {
1020 freq = clk_get_rate(opp_table->clk);
1021 opp = _find_freq_ceil(opp_table, &freq);
1022 }
1023
1024 /*
1025 * Unable to find the current OPP ? Pick the first from the list since
1026 * it is in ascending order, otherwise rest of the code will need to
1027 * make special checks to validate current_opp.
1028 */
1029 if (IS_ERR(opp)) {
1030 mutex_lock(&opp_table->lock);
1031 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032 dev_pm_opp_get(opp);
1033 mutex_unlock(&opp_table->lock);
1034 }
1035
1036 opp_table->current_opp = opp;
1037 }
1038
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1039 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1040 {
1041 int ret;
1042
1043 if (!opp_table->enabled)
1044 return 0;
1045
1046 /*
1047 * Some drivers need to support cases where some platforms may
1048 * have OPP table for the device, while others don't and
1049 * opp_set_rate() just needs to behave like clk_set_rate().
1050 */
1051 if (!_get_opp_count(opp_table))
1052 return 0;
1053
1054 ret = _set_opp_bw(opp_table, NULL, dev);
1055 if (ret)
1056 return ret;
1057
1058 if (opp_table->regulators)
1059 regulator_disable(opp_table->regulators[0]);
1060
1061 ret = _set_required_opps(dev, opp_table, NULL, false);
1062
1063 opp_table->enabled = false;
1064 return ret;
1065 }
1066
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1067 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068 struct dev_pm_opp *opp, void *clk_data, bool forced)
1069 {
1070 struct dev_pm_opp *old_opp;
1071 int scaling_down, ret;
1072
1073 if (unlikely(!opp))
1074 return _disable_opp_table(dev, opp_table);
1075
1076 /* Find the currently set OPP if we don't know already */
1077 if (unlikely(!opp_table->current_opp))
1078 _find_current_opp(dev, opp_table);
1079
1080 old_opp = opp_table->current_opp;
1081
1082 /* Return early if nothing to do */
1083 if (!forced && old_opp == opp && opp_table->enabled) {
1084 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1085 return 0;
1086 }
1087
1088 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1092
1093 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094 if (scaling_down == -1)
1095 scaling_down = 0;
1096
1097 /* Scaling up? Configure required OPPs before frequency */
1098 if (!scaling_down) {
1099 ret = _set_required_opps(dev, opp_table, opp, true);
1100 if (ret) {
1101 dev_err(dev, "Failed to set required opps: %d\n", ret);
1102 return ret;
1103 }
1104
1105 ret = _set_opp_bw(opp_table, opp, dev);
1106 if (ret) {
1107 dev_err(dev, "Failed to set bw: %d\n", ret);
1108 return ret;
1109 }
1110
1111 if (opp_table->config_regulators) {
1112 ret = opp_table->config_regulators(dev, old_opp, opp,
1113 opp_table->regulators,
1114 opp_table->regulator_count);
1115 if (ret) {
1116 dev_err(dev, "Failed to set regulator voltages: %d\n",
1117 ret);
1118 return ret;
1119 }
1120 }
1121 }
1122
1123 if (opp_table->config_clks) {
1124 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1125 if (ret)
1126 return ret;
1127 }
1128
1129 /* Scaling down? Configure required OPPs after frequency */
1130 if (scaling_down) {
1131 if (opp_table->config_regulators) {
1132 ret = opp_table->config_regulators(dev, old_opp, opp,
1133 opp_table->regulators,
1134 opp_table->regulator_count);
1135 if (ret) {
1136 dev_err(dev, "Failed to set regulator voltages: %d\n",
1137 ret);
1138 return ret;
1139 }
1140 }
1141
1142 ret = _set_opp_bw(opp_table, opp, dev);
1143 if (ret) {
1144 dev_err(dev, "Failed to set bw: %d\n", ret);
1145 return ret;
1146 }
1147
1148 ret = _set_required_opps(dev, opp_table, opp, false);
1149 if (ret) {
1150 dev_err(dev, "Failed to set required opps: %d\n", ret);
1151 return ret;
1152 }
1153 }
1154
1155 opp_table->enabled = true;
1156 dev_pm_opp_put(old_opp);
1157
1158 /* Make sure current_opp doesn't get freed */
1159 dev_pm_opp_get(opp);
1160 opp_table->current_opp = opp;
1161
1162 return ret;
1163 }
1164
1165 /**
1166 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167 * @dev: device for which we do this operation
1168 * @target_freq: frequency to achieve
1169 *
1170 * This configures the power-supplies to the levels specified by the OPP
1171 * corresponding to the target_freq, and programs the clock to a value <=
1172 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173 * provided by the opp, should have already rounded to the target OPP's
1174 * frequency.
1175 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1176 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1177 {
1178 struct opp_table *opp_table;
1179 unsigned long freq = 0, temp_freq;
1180 struct dev_pm_opp *opp = NULL;
1181 bool forced = false;
1182 int ret;
1183
1184 opp_table = _find_opp_table(dev);
1185 if (IS_ERR(opp_table)) {
1186 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187 return PTR_ERR(opp_table);
1188 }
1189
1190 if (target_freq) {
1191 /*
1192 * For IO devices which require an OPP on some platforms/SoCs
1193 * while just needing to scale the clock on some others
1194 * we look for empty OPP tables with just a clock handle and
1195 * scale only the clk. This makes dev_pm_opp_set_rate()
1196 * equivalent to a clk_set_rate()
1197 */
1198 if (!_get_opp_count(opp_table)) {
1199 ret = opp_table->config_clks(dev, opp_table, NULL,
1200 &target_freq, false);
1201 goto put_opp_table;
1202 }
1203
1204 freq = clk_round_rate(opp_table->clk, target_freq);
1205 if ((long)freq <= 0)
1206 freq = target_freq;
1207
1208 /*
1209 * The clock driver may support finer resolution of the
1210 * frequencies than the OPP table, don't update the frequency we
1211 * pass to clk_set_rate() here.
1212 */
1213 temp_freq = freq;
1214 opp = _find_freq_ceil(opp_table, &temp_freq);
1215 if (IS_ERR(opp)) {
1216 ret = PTR_ERR(opp);
1217 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218 __func__, freq, ret);
1219 goto put_opp_table;
1220 }
1221
1222 /*
1223 * An OPP entry specifies the highest frequency at which other
1224 * properties of the OPP entry apply. Even if the new OPP is
1225 * same as the old one, we may still reach here for a different
1226 * value of the frequency. In such a case, do not abort but
1227 * configure the hardware to the desired frequency forcefully.
1228 */
1229 forced = opp_table->rate_clk_single != freq;
1230 }
1231
1232 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1233
1234 if (freq)
1235 dev_pm_opp_put(opp);
1236
1237 put_opp_table:
1238 dev_pm_opp_put_opp_table(opp_table);
1239 return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1242
1243 /**
1244 * dev_pm_opp_set_opp() - Configure device for OPP
1245 * @dev: device for which we do this operation
1246 * @opp: OPP to set to
1247 *
1248 * This configures the device based on the properties of the OPP passed to this
1249 * routine.
1250 *
1251 * Return: 0 on success, a negative error number otherwise.
1252 */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1253 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1254 {
1255 struct opp_table *opp_table;
1256 int ret;
1257
1258 opp_table = _find_opp_table(dev);
1259 if (IS_ERR(opp_table)) {
1260 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261 return PTR_ERR(opp_table);
1262 }
1263
1264 ret = _set_opp(dev, opp_table, opp, NULL, false);
1265 dev_pm_opp_put_opp_table(opp_table);
1266
1267 return ret;
1268 }
1269 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1270
1271 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1272 static void _remove_opp_dev(struct opp_device *opp_dev,
1273 struct opp_table *opp_table)
1274 {
1275 opp_debug_unregister(opp_dev, opp_table);
1276 list_del(&opp_dev->node);
1277 kfree(opp_dev);
1278 }
1279
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1280 struct opp_device *_add_opp_dev(const struct device *dev,
1281 struct opp_table *opp_table)
1282 {
1283 struct opp_device *opp_dev;
1284
1285 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1286 if (!opp_dev)
1287 return NULL;
1288
1289 /* Initialize opp-dev */
1290 opp_dev->dev = dev;
1291
1292 mutex_lock(&opp_table->lock);
1293 list_add(&opp_dev->node, &opp_table->dev_list);
1294 mutex_unlock(&opp_table->lock);
1295
1296 /* Create debugfs entries for the opp_table */
1297 opp_debug_register(opp_dev, opp_table);
1298
1299 return opp_dev;
1300 }
1301
_allocate_opp_table(struct device * dev,int index)1302 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1303 {
1304 struct opp_table *opp_table;
1305 struct opp_device *opp_dev;
1306 int ret;
1307
1308 /*
1309 * Allocate a new OPP table. In the infrequent case where a new
1310 * device is needed to be added, we pay this penalty.
1311 */
1312 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1313 if (!opp_table)
1314 return ERR_PTR(-ENOMEM);
1315
1316 mutex_init(&opp_table->lock);
1317 mutex_init(&opp_table->genpd_virt_dev_lock);
1318 INIT_LIST_HEAD(&opp_table->dev_list);
1319 INIT_LIST_HEAD(&opp_table->lazy);
1320
1321 opp_table->clk = ERR_PTR(-ENODEV);
1322
1323 /* Mark regulator count uninitialized */
1324 opp_table->regulator_count = -1;
1325
1326 opp_dev = _add_opp_dev(dev, opp_table);
1327 if (!opp_dev) {
1328 ret = -ENOMEM;
1329 goto err;
1330 }
1331
1332 _of_init_opp_table(opp_table, dev, index);
1333
1334 /* Find interconnect path(s) for the device */
1335 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1336 if (ret) {
1337 if (ret == -EPROBE_DEFER)
1338 goto remove_opp_dev;
1339
1340 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1341 __func__, ret);
1342 }
1343
1344 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345 INIT_LIST_HEAD(&opp_table->opp_list);
1346 kref_init(&opp_table->kref);
1347
1348 return opp_table;
1349
1350 remove_opp_dev:
1351 _of_clear_opp_table(opp_table);
1352 _remove_opp_dev(opp_dev, opp_table);
1353 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1354 mutex_destroy(&opp_table->lock);
1355 err:
1356 kfree(opp_table);
1357 return ERR_PTR(ret);
1358 }
1359
_get_opp_table_kref(struct opp_table * opp_table)1360 void _get_opp_table_kref(struct opp_table *opp_table)
1361 {
1362 kref_get(&opp_table->kref);
1363 }
1364
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1365 static struct opp_table *_update_opp_table_clk(struct device *dev,
1366 struct opp_table *opp_table,
1367 bool getclk)
1368 {
1369 int ret;
1370
1371 /*
1372 * Return early if we don't need to get clk or we have already done it
1373 * earlier.
1374 */
1375 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1376 opp_table->clks)
1377 return opp_table;
1378
1379 /* Find clk for the device */
1380 opp_table->clk = clk_get(dev, NULL);
1381
1382 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1383 if (!ret) {
1384 opp_table->config_clks = _opp_config_clk_single;
1385 opp_table->clk_count = 1;
1386 return opp_table;
1387 }
1388
1389 if (ret == -ENOENT) {
1390 /*
1391 * There are few platforms which don't want the OPP core to
1392 * manage device's clock settings. In such cases neither the
1393 * platform provides the clks explicitly to us, nor the DT
1394 * contains a valid clk entry. The OPP nodes in DT may still
1395 * contain "opp-hz" property though, which we need to parse and
1396 * allow the platform to find an OPP based on freq later on.
1397 *
1398 * This is a simple solution to take care of such corner cases,
1399 * i.e. make the clk_count 1, which lets us allocate space for
1400 * frequency in opp->rates and also parse the entries in DT.
1401 */
1402 opp_table->clk_count = 1;
1403
1404 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1405 return opp_table;
1406 }
1407
1408 dev_pm_opp_put_opp_table(opp_table);
1409 dev_err_probe(dev, ret, "Couldn't find clock\n");
1410
1411 return ERR_PTR(ret);
1412 }
1413
1414 /*
1415 * We need to make sure that the OPP table for a device doesn't get added twice,
1416 * if this routine gets called in parallel with the same device pointer.
1417 *
1418 * The simplest way to enforce that is to perform everything (find existing
1419 * table and if not found, create a new one) under the opp_table_lock, so only
1420 * one creator gets access to the same. But that expands the critical section
1421 * under the lock and may end up causing circular dependencies with frameworks
1422 * like debugfs, interconnect or clock framework as they may be direct or
1423 * indirect users of OPP core.
1424 *
1425 * And for that reason we have to go for a bit tricky implementation here, which
1426 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1427 * of adding an OPP table and others should wait for it to finish.
1428 */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1429 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1430 bool getclk)
1431 {
1432 struct opp_table *opp_table;
1433
1434 again:
1435 mutex_lock(&opp_table_lock);
1436
1437 opp_table = _find_opp_table_unlocked(dev);
1438 if (!IS_ERR(opp_table))
1439 goto unlock;
1440
1441 /*
1442 * The opp_tables list or an OPP table's dev_list is getting updated by
1443 * another user, wait for it to finish.
1444 */
1445 if (unlikely(opp_tables_busy)) {
1446 mutex_unlock(&opp_table_lock);
1447 cpu_relax();
1448 goto again;
1449 }
1450
1451 opp_tables_busy = true;
1452 opp_table = _managed_opp(dev, index);
1453
1454 /* Drop the lock to reduce the size of critical section */
1455 mutex_unlock(&opp_table_lock);
1456
1457 if (opp_table) {
1458 if (!_add_opp_dev(dev, opp_table)) {
1459 dev_pm_opp_put_opp_table(opp_table);
1460 opp_table = ERR_PTR(-ENOMEM);
1461 }
1462
1463 mutex_lock(&opp_table_lock);
1464 } else {
1465 opp_table = _allocate_opp_table(dev, index);
1466
1467 mutex_lock(&opp_table_lock);
1468 if (!IS_ERR(opp_table))
1469 list_add(&opp_table->node, &opp_tables);
1470 }
1471
1472 opp_tables_busy = false;
1473
1474 unlock:
1475 mutex_unlock(&opp_table_lock);
1476
1477 return _update_opp_table_clk(dev, opp_table, getclk);
1478 }
1479
_add_opp_table(struct device * dev,bool getclk)1480 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1481 {
1482 return _add_opp_table_indexed(dev, 0, getclk);
1483 }
1484
dev_pm_opp_get_opp_table(struct device * dev)1485 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1486 {
1487 return _find_opp_table(dev);
1488 }
1489 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1490
_opp_table_kref_release(struct kref * kref)1491 static void _opp_table_kref_release(struct kref *kref)
1492 {
1493 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1494 struct opp_device *opp_dev, *temp;
1495 int i;
1496
1497 /* Drop the lock as soon as we can */
1498 list_del(&opp_table->node);
1499 mutex_unlock(&opp_table_lock);
1500
1501 if (opp_table->current_opp)
1502 dev_pm_opp_put(opp_table->current_opp);
1503
1504 _of_clear_opp_table(opp_table);
1505
1506 /* Release automatically acquired single clk */
1507 if (!IS_ERR(opp_table->clk))
1508 clk_put(opp_table->clk);
1509
1510 if (opp_table->paths) {
1511 for (i = 0; i < opp_table->path_count; i++)
1512 icc_put(opp_table->paths[i]);
1513 kfree(opp_table->paths);
1514 }
1515
1516 WARN_ON(!list_empty(&opp_table->opp_list));
1517
1518 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1519 /*
1520 * The OPP table is getting removed, drop the performance state
1521 * constraints.
1522 */
1523 if (opp_table->genpd_performance_state)
1524 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1525
1526 _remove_opp_dev(opp_dev, opp_table);
1527 }
1528
1529 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1530 mutex_destroy(&opp_table->lock);
1531 kfree(opp_table);
1532 }
1533
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1534 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1535 {
1536 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1537 &opp_table_lock);
1538 }
1539 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1540
_opp_free(struct dev_pm_opp * opp)1541 void _opp_free(struct dev_pm_opp *opp)
1542 {
1543 kfree(opp);
1544 }
1545
_opp_kref_release(struct kref * kref)1546 static void _opp_kref_release(struct kref *kref)
1547 {
1548 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1549 struct opp_table *opp_table = opp->opp_table;
1550
1551 list_del(&opp->node);
1552 mutex_unlock(&opp_table->lock);
1553
1554 /*
1555 * Notify the changes in the availability of the operable
1556 * frequency/voltage list.
1557 */
1558 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1559 _of_clear_opp(opp_table, opp);
1560 opp_debug_remove_one(opp);
1561 kfree(opp);
1562 }
1563
dev_pm_opp_get(struct dev_pm_opp * opp)1564 void dev_pm_opp_get(struct dev_pm_opp *opp)
1565 {
1566 kref_get(&opp->kref);
1567 }
1568
dev_pm_opp_put(struct dev_pm_opp * opp)1569 void dev_pm_opp_put(struct dev_pm_opp *opp)
1570 {
1571 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1572 }
1573 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1574
1575 /**
1576 * dev_pm_opp_remove() - Remove an OPP from OPP table
1577 * @dev: device for which we do this operation
1578 * @freq: OPP to remove with matching 'freq'
1579 *
1580 * This function removes an opp from the opp table.
1581 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1582 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1583 {
1584 struct dev_pm_opp *opp = NULL, *iter;
1585 struct opp_table *opp_table;
1586
1587 opp_table = _find_opp_table(dev);
1588 if (IS_ERR(opp_table))
1589 return;
1590
1591 if (!assert_single_clk(opp_table))
1592 goto put_table;
1593
1594 mutex_lock(&opp_table->lock);
1595
1596 list_for_each_entry(iter, &opp_table->opp_list, node) {
1597 if (iter->rates[0] == freq) {
1598 opp = iter;
1599 break;
1600 }
1601 }
1602
1603 mutex_unlock(&opp_table->lock);
1604
1605 if (opp) {
1606 dev_pm_opp_put(opp);
1607
1608 /* Drop the reference taken by dev_pm_opp_add() */
1609 dev_pm_opp_put_opp_table(opp_table);
1610 } else {
1611 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1612 __func__, freq);
1613 }
1614
1615 put_table:
1616 /* Drop the reference taken by _find_opp_table() */
1617 dev_pm_opp_put_opp_table(opp_table);
1618 }
1619 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1620
_opp_get_next(struct opp_table * opp_table,bool dynamic)1621 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1622 bool dynamic)
1623 {
1624 struct dev_pm_opp *opp = NULL, *temp;
1625
1626 mutex_lock(&opp_table->lock);
1627 list_for_each_entry(temp, &opp_table->opp_list, node) {
1628 /*
1629 * Refcount must be dropped only once for each OPP by OPP core,
1630 * do that with help of "removed" flag.
1631 */
1632 if (!temp->removed && dynamic == temp->dynamic) {
1633 opp = temp;
1634 break;
1635 }
1636 }
1637
1638 mutex_unlock(&opp_table->lock);
1639 return opp;
1640 }
1641
1642 /*
1643 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1644 * happen lock less to avoid circular dependency issues. This routine must be
1645 * called without the opp_table->lock held.
1646 */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1647 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1648 {
1649 struct dev_pm_opp *opp;
1650
1651 while ((opp = _opp_get_next(opp_table, dynamic))) {
1652 opp->removed = true;
1653 dev_pm_opp_put(opp);
1654
1655 /* Drop the references taken by dev_pm_opp_add() */
1656 if (dynamic)
1657 dev_pm_opp_put_opp_table(opp_table);
1658 }
1659 }
1660
_opp_remove_all_static(struct opp_table * opp_table)1661 bool _opp_remove_all_static(struct opp_table *opp_table)
1662 {
1663 mutex_lock(&opp_table->lock);
1664
1665 if (!opp_table->parsed_static_opps) {
1666 mutex_unlock(&opp_table->lock);
1667 return false;
1668 }
1669
1670 if (--opp_table->parsed_static_opps) {
1671 mutex_unlock(&opp_table->lock);
1672 return true;
1673 }
1674
1675 mutex_unlock(&opp_table->lock);
1676
1677 _opp_remove_all(opp_table, false);
1678 return true;
1679 }
1680
1681 /**
1682 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1683 * @dev: device for which we do this operation
1684 *
1685 * This function removes all dynamically created OPPs from the opp table.
1686 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1687 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1688 {
1689 struct opp_table *opp_table;
1690
1691 opp_table = _find_opp_table(dev);
1692 if (IS_ERR(opp_table))
1693 return;
1694
1695 _opp_remove_all(opp_table, true);
1696
1697 /* Drop the reference taken by _find_opp_table() */
1698 dev_pm_opp_put_opp_table(opp_table);
1699 }
1700 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1701
_opp_allocate(struct opp_table * opp_table)1702 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1703 {
1704 struct dev_pm_opp *opp;
1705 int supply_count, supply_size, icc_size, clk_size;
1706
1707 /* Allocate space for at least one supply */
1708 supply_count = opp_table->regulator_count > 0 ?
1709 opp_table->regulator_count : 1;
1710 supply_size = sizeof(*opp->supplies) * supply_count;
1711 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1712 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1713
1714 /* allocate new OPP node and supplies structures */
1715 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1716 if (!opp)
1717 return NULL;
1718
1719 /* Put the supplies, bw and clock at the end of the OPP structure */
1720 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1721
1722 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1723
1724 if (icc_size)
1725 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1726
1727 INIT_LIST_HEAD(&opp->node);
1728
1729 return opp;
1730 }
1731
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1732 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1733 struct opp_table *opp_table)
1734 {
1735 struct regulator *reg;
1736 int i;
1737
1738 if (!opp_table->regulators)
1739 return true;
1740
1741 for (i = 0; i < opp_table->regulator_count; i++) {
1742 reg = opp_table->regulators[i];
1743
1744 if (!regulator_is_supported_voltage(reg,
1745 opp->supplies[i].u_volt_min,
1746 opp->supplies[i].u_volt_max)) {
1747 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1748 __func__, opp->supplies[i].u_volt_min,
1749 opp->supplies[i].u_volt_max);
1750 return false;
1751 }
1752 }
1753
1754 return true;
1755 }
1756
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1757 static int _opp_compare_rate(struct opp_table *opp_table,
1758 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1759 {
1760 int i;
1761
1762 for (i = 0; i < opp_table->clk_count; i++) {
1763 if (opp1->rates[i] != opp2->rates[i])
1764 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1765 }
1766
1767 /* Same rates for both OPPs */
1768 return 0;
1769 }
1770
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1771 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1772 struct dev_pm_opp *opp2)
1773 {
1774 int i;
1775
1776 for (i = 0; i < opp_table->path_count; i++) {
1777 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1778 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1779 }
1780
1781 /* Same bw for both OPPs */
1782 return 0;
1783 }
1784
1785 /*
1786 * Returns
1787 * 0: opp1 == opp2
1788 * 1: opp1 > opp2
1789 * -1: opp1 < opp2
1790 */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1791 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1792 struct dev_pm_opp *opp2)
1793 {
1794 int ret;
1795
1796 ret = _opp_compare_rate(opp_table, opp1, opp2);
1797 if (ret)
1798 return ret;
1799
1800 ret = _opp_compare_bw(opp_table, opp1, opp2);
1801 if (ret)
1802 return ret;
1803
1804 if (opp1->level != opp2->level)
1805 return opp1->level < opp2->level ? -1 : 1;
1806
1807 /* Duplicate OPPs */
1808 return 0;
1809 }
1810
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1811 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1812 struct opp_table *opp_table,
1813 struct list_head **head)
1814 {
1815 struct dev_pm_opp *opp;
1816 int opp_cmp;
1817
1818 /*
1819 * Insert new OPP in order of increasing frequency and discard if
1820 * already present.
1821 *
1822 * Need to use &opp_table->opp_list in the condition part of the 'for'
1823 * loop, don't replace it with head otherwise it will become an infinite
1824 * loop.
1825 */
1826 list_for_each_entry(opp, &opp_table->opp_list, node) {
1827 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1828 if (opp_cmp > 0) {
1829 *head = &opp->node;
1830 continue;
1831 }
1832
1833 if (opp_cmp < 0)
1834 return 0;
1835
1836 /* Duplicate OPPs */
1837 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1838 __func__, opp->rates[0], opp->supplies[0].u_volt,
1839 opp->available, new_opp->rates[0],
1840 new_opp->supplies[0].u_volt, new_opp->available);
1841
1842 /* Should we compare voltages for all regulators here ? */
1843 return opp->available &&
1844 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1845 }
1846
1847 return 0;
1848 }
1849
_required_opps_available(struct dev_pm_opp * opp,int count)1850 void _required_opps_available(struct dev_pm_opp *opp, int count)
1851 {
1852 int i;
1853
1854 for (i = 0; i < count; i++) {
1855 if (opp->required_opps[i]->available)
1856 continue;
1857
1858 opp->available = false;
1859 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1860 __func__, opp->required_opps[i]->np, opp->rates[0]);
1861 return;
1862 }
1863 }
1864
1865 /*
1866 * Returns:
1867 * 0: On success. And appropriate error message for duplicate OPPs.
1868 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1869 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1870 * sure we don't print error messages unnecessarily if different parts of
1871 * kernel try to initialize the OPP table.
1872 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1873 * should be considered an error by the callers of _opp_add().
1874 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)1875 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1876 struct opp_table *opp_table)
1877 {
1878 struct list_head *head;
1879 int ret;
1880
1881 mutex_lock(&opp_table->lock);
1882 head = &opp_table->opp_list;
1883
1884 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1885 if (ret) {
1886 mutex_unlock(&opp_table->lock);
1887 return ret;
1888 }
1889
1890 list_add(&new_opp->node, head);
1891 mutex_unlock(&opp_table->lock);
1892
1893 new_opp->opp_table = opp_table;
1894 kref_init(&new_opp->kref);
1895
1896 opp_debug_create_one(new_opp, opp_table);
1897
1898 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1899 new_opp->available = false;
1900 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1901 __func__, new_opp->rates[0]);
1902 }
1903
1904 /* required-opps not fully initialized yet */
1905 if (lazy_linking_pending(opp_table))
1906 return 0;
1907
1908 _required_opps_available(new_opp, opp_table->required_opp_count);
1909
1910 return 0;
1911 }
1912
1913 /**
1914 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1915 * @opp_table: OPP table
1916 * @dev: device for which we do this operation
1917 * @freq: Frequency in Hz for this OPP
1918 * @u_volt: Voltage in uVolts for this OPP
1919 * @dynamic: Dynamically added OPPs.
1920 *
1921 * This function adds an opp definition to the opp table and returns status.
1922 * The opp is made available by default and it can be controlled using
1923 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1924 *
1925 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1926 * and freed by dev_pm_opp_of_remove_table.
1927 *
1928 * Return:
1929 * 0 On success OR
1930 * Duplicate OPPs (both freq and volt are same) and opp->available
1931 * -EEXIST Freq are same and volt are different OR
1932 * Duplicate OPPs (both freq and volt are same) and !opp->available
1933 * -ENOMEM Memory allocation failure
1934 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,unsigned long freq,long u_volt,bool dynamic)1935 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1936 unsigned long freq, long u_volt, bool dynamic)
1937 {
1938 struct dev_pm_opp *new_opp;
1939 unsigned long tol;
1940 int ret;
1941
1942 if (!assert_single_clk(opp_table))
1943 return -EINVAL;
1944
1945 new_opp = _opp_allocate(opp_table);
1946 if (!new_opp)
1947 return -ENOMEM;
1948
1949 /* populate the opp table */
1950 new_opp->rates[0] = freq;
1951 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1952 new_opp->supplies[0].u_volt = u_volt;
1953 new_opp->supplies[0].u_volt_min = u_volt - tol;
1954 new_opp->supplies[0].u_volt_max = u_volt + tol;
1955 new_opp->available = true;
1956 new_opp->dynamic = dynamic;
1957
1958 ret = _opp_add(dev, new_opp, opp_table);
1959 if (ret) {
1960 /* Don't return error for duplicate OPPs */
1961 if (ret == -EBUSY)
1962 ret = 0;
1963 goto free_opp;
1964 }
1965
1966 /*
1967 * Notify the changes in the availability of the operable
1968 * frequency/voltage list.
1969 */
1970 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1971 return 0;
1972
1973 free_opp:
1974 _opp_free(new_opp);
1975
1976 return ret;
1977 }
1978
1979 /**
1980 * _opp_set_supported_hw() - Set supported platforms
1981 * @dev: Device for which supported-hw has to be set.
1982 * @versions: Array of hierarchy of versions to match.
1983 * @count: Number of elements in the array.
1984 *
1985 * This is required only for the V2 bindings, and it enables a platform to
1986 * specify the hierarchy of versions it supports. OPP layer will then enable
1987 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1988 * property.
1989 */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)1990 static int _opp_set_supported_hw(struct opp_table *opp_table,
1991 const u32 *versions, unsigned int count)
1992 {
1993 /* Another CPU that shares the OPP table has set the property ? */
1994 if (opp_table->supported_hw)
1995 return 0;
1996
1997 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1998 GFP_KERNEL);
1999 if (!opp_table->supported_hw)
2000 return -ENOMEM;
2001
2002 opp_table->supported_hw_count = count;
2003
2004 return 0;
2005 }
2006
2007 /**
2008 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2009 * @opp_table: OPP table returned by _opp_set_supported_hw().
2010 *
2011 * This is required only for the V2 bindings, and is called for a matching
2012 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2013 * will not be freed.
2014 */
_opp_put_supported_hw(struct opp_table * opp_table)2015 static void _opp_put_supported_hw(struct opp_table *opp_table)
2016 {
2017 if (opp_table->supported_hw) {
2018 kfree(opp_table->supported_hw);
2019 opp_table->supported_hw = NULL;
2020 opp_table->supported_hw_count = 0;
2021 }
2022 }
2023
2024 /**
2025 * _opp_set_prop_name() - Set prop-extn name
2026 * @dev: Device for which the prop-name has to be set.
2027 * @name: name to postfix to properties.
2028 *
2029 * This is required only for the V2 bindings, and it enables a platform to
2030 * specify the extn to be used for certain property names. The properties to
2031 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2032 * should postfix the property name with -<name> while looking for them.
2033 */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2034 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2035 {
2036 /* Another CPU that shares the OPP table has set the property ? */
2037 if (!opp_table->prop_name) {
2038 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2039 if (!opp_table->prop_name)
2040 return -ENOMEM;
2041 }
2042
2043 return 0;
2044 }
2045
2046 /**
2047 * _opp_put_prop_name() - Releases resources blocked for prop-name
2048 * @opp_table: OPP table returned by _opp_set_prop_name().
2049 *
2050 * This is required only for the V2 bindings, and is called for a matching
2051 * _opp_set_prop_name(). Until this is called, the opp_table structure
2052 * will not be freed.
2053 */
_opp_put_prop_name(struct opp_table * opp_table)2054 static void _opp_put_prop_name(struct opp_table *opp_table)
2055 {
2056 if (opp_table->prop_name) {
2057 kfree(opp_table->prop_name);
2058 opp_table->prop_name = NULL;
2059 }
2060 }
2061
2062 /**
2063 * _opp_set_regulators() - Set regulator names for the device
2064 * @dev: Device for which regulator name is being set.
2065 * @names: Array of pointers to the names of the regulator.
2066 * @count: Number of regulators.
2067 *
2068 * In order to support OPP switching, OPP layer needs to know the name of the
2069 * device's regulators, as the core would be required to switch voltages as
2070 * well.
2071 *
2072 * This must be called before any OPPs are initialized for the device.
2073 */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2074 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2075 const char * const names[])
2076 {
2077 const char * const *temp = names;
2078 struct regulator *reg;
2079 int count = 0, ret, i;
2080
2081 /* Count number of regulators */
2082 while (*temp++)
2083 count++;
2084
2085 if (!count)
2086 return -EINVAL;
2087
2088 /* Another CPU that shares the OPP table has set the regulators ? */
2089 if (opp_table->regulators)
2090 return 0;
2091
2092 opp_table->regulators = kmalloc_array(count,
2093 sizeof(*opp_table->regulators),
2094 GFP_KERNEL);
2095 if (!opp_table->regulators)
2096 return -ENOMEM;
2097
2098 for (i = 0; i < count; i++) {
2099 reg = regulator_get_optional(dev, names[i]);
2100 if (IS_ERR(reg)) {
2101 ret = dev_err_probe(dev, PTR_ERR(reg),
2102 "%s: no regulator (%s) found\n",
2103 __func__, names[i]);
2104 goto free_regulators;
2105 }
2106
2107 opp_table->regulators[i] = reg;
2108 }
2109
2110 opp_table->regulator_count = count;
2111
2112 /* Set generic config_regulators() for single regulators here */
2113 if (count == 1)
2114 opp_table->config_regulators = _opp_config_regulator_single;
2115
2116 return 0;
2117
2118 free_regulators:
2119 while (i != 0)
2120 regulator_put(opp_table->regulators[--i]);
2121
2122 kfree(opp_table->regulators);
2123 opp_table->regulators = NULL;
2124 opp_table->regulator_count = -1;
2125
2126 return ret;
2127 }
2128
2129 /**
2130 * _opp_put_regulators() - Releases resources blocked for regulator
2131 * @opp_table: OPP table returned from _opp_set_regulators().
2132 */
_opp_put_regulators(struct opp_table * opp_table)2133 static void _opp_put_regulators(struct opp_table *opp_table)
2134 {
2135 int i;
2136
2137 if (!opp_table->regulators)
2138 return;
2139
2140 if (opp_table->enabled) {
2141 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2142 regulator_disable(opp_table->regulators[i]);
2143 }
2144
2145 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2146 regulator_put(opp_table->regulators[i]);
2147
2148 kfree(opp_table->regulators);
2149 opp_table->regulators = NULL;
2150 opp_table->regulator_count = -1;
2151 }
2152
_put_clks(struct opp_table * opp_table,int count)2153 static void _put_clks(struct opp_table *opp_table, int count)
2154 {
2155 int i;
2156
2157 for (i = count - 1; i >= 0; i--)
2158 clk_put(opp_table->clks[i]);
2159
2160 kfree(opp_table->clks);
2161 opp_table->clks = NULL;
2162 }
2163
2164 /**
2165 * _opp_set_clknames() - Set clk names for the device
2166 * @dev: Device for which clk names is being set.
2167 * @names: Clk names.
2168 *
2169 * In order to support OPP switching, OPP layer needs to get pointers to the
2170 * clocks for the device. Simple cases work fine without using this routine
2171 * (i.e. by passing connection-id as NULL), but for a device with multiple
2172 * clocks available, the OPP core needs to know the exact names of the clks to
2173 * use.
2174 *
2175 * This must be called before any OPPs are initialized for the device.
2176 */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2177 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2178 const char * const names[],
2179 config_clks_t config_clks)
2180 {
2181 const char * const *temp = names;
2182 int count = 0, ret, i;
2183 struct clk *clk;
2184
2185 /* Count number of clks */
2186 while (*temp++)
2187 count++;
2188
2189 /*
2190 * This is a special case where we have a single clock, whose connection
2191 * id name is NULL, i.e. first two entries are NULL in the array.
2192 */
2193 if (!count && !names[1])
2194 count = 1;
2195
2196 /* Fail early for invalid configurations */
2197 if (!count || (!config_clks && count > 1))
2198 return -EINVAL;
2199
2200 /* Another CPU that shares the OPP table has set the clkname ? */
2201 if (opp_table->clks)
2202 return 0;
2203
2204 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2205 GFP_KERNEL);
2206 if (!opp_table->clks)
2207 return -ENOMEM;
2208
2209 /* Find clks for the device */
2210 for (i = 0; i < count; i++) {
2211 clk = clk_get(dev, names[i]);
2212 if (IS_ERR(clk)) {
2213 ret = dev_err_probe(dev, PTR_ERR(clk),
2214 "%s: Couldn't find clock with name: %s\n",
2215 __func__, names[i]);
2216 goto free_clks;
2217 }
2218
2219 opp_table->clks[i] = clk;
2220 }
2221
2222 opp_table->clk_count = count;
2223 opp_table->config_clks = config_clks;
2224
2225 /* Set generic single clk set here */
2226 if (count == 1) {
2227 if (!opp_table->config_clks)
2228 opp_table->config_clks = _opp_config_clk_single;
2229
2230 /*
2231 * We could have just dropped the "clk" field and used "clks"
2232 * everywhere. Instead we kept the "clk" field around for
2233 * following reasons:
2234 *
2235 * - avoiding clks[0] everywhere else.
2236 * - not running single clk helpers for multiple clk usecase by
2237 * mistake.
2238 *
2239 * Since this is single-clk case, just update the clk pointer
2240 * too.
2241 */
2242 opp_table->clk = opp_table->clks[0];
2243 }
2244
2245 return 0;
2246
2247 free_clks:
2248 _put_clks(opp_table, i);
2249 return ret;
2250 }
2251
2252 /**
2253 * _opp_put_clknames() - Releases resources blocked for clks.
2254 * @opp_table: OPP table returned from _opp_set_clknames().
2255 */
_opp_put_clknames(struct opp_table * opp_table)2256 static void _opp_put_clknames(struct opp_table *opp_table)
2257 {
2258 if (!opp_table->clks)
2259 return;
2260
2261 opp_table->config_clks = NULL;
2262 opp_table->clk = ERR_PTR(-ENODEV);
2263
2264 _put_clks(opp_table, opp_table->clk_count);
2265 }
2266
2267 /**
2268 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2269 * @dev: Device for which the helper is getting registered.
2270 * @config_regulators: Custom set regulator helper.
2271 *
2272 * This is useful to support platforms with multiple regulators per device.
2273 *
2274 * This must be called before any OPPs are initialized for the device.
2275 */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2276 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2277 struct device *dev, config_regulators_t config_regulators)
2278 {
2279 /* Another CPU that shares the OPP table has set the helper ? */
2280 if (!opp_table->config_regulators)
2281 opp_table->config_regulators = config_regulators;
2282
2283 return 0;
2284 }
2285
2286 /**
2287 * _opp_put_config_regulators_helper() - Releases resources blocked for
2288 * config_regulators helper.
2289 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2290 *
2291 * Release resources blocked for platform specific config_regulators helper.
2292 */
_opp_put_config_regulators_helper(struct opp_table * opp_table)2293 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2294 {
2295 if (opp_table->config_regulators)
2296 opp_table->config_regulators = NULL;
2297 }
2298
_detach_genpd(struct opp_table * opp_table)2299 static void _detach_genpd(struct opp_table *opp_table)
2300 {
2301 int index;
2302
2303 if (!opp_table->genpd_virt_devs)
2304 return;
2305
2306 for (index = 0; index < opp_table->required_opp_count; index++) {
2307 if (!opp_table->genpd_virt_devs[index])
2308 continue;
2309
2310 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2311 opp_table->genpd_virt_devs[index] = NULL;
2312 }
2313
2314 kfree(opp_table->genpd_virt_devs);
2315 opp_table->genpd_virt_devs = NULL;
2316 }
2317
2318 /**
2319 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2320 * @dev: Consumer device for which the genpd is getting attached.
2321 * @names: Null terminated array of pointers containing names of genpd to attach.
2322 * @virt_devs: Pointer to return the array of virtual devices.
2323 *
2324 * Multiple generic power domains for a device are supported with the help of
2325 * virtual genpd devices, which are created for each consumer device - genpd
2326 * pair. These are the device structures which are attached to the power domain
2327 * and are required by the OPP core to set the performance state of the genpd.
2328 * The same API also works for the case where single genpd is available and so
2329 * we don't need to support that separately.
2330 *
2331 * This helper will normally be called by the consumer driver of the device
2332 * "dev", as only that has details of the genpd names.
2333 *
2334 * This helper needs to be called once with a list of all genpd to attach.
2335 * Otherwise the original device structure will be used instead by the OPP core.
2336 *
2337 * The order of entries in the names array must match the order in which
2338 * "required-opps" are added in DT.
2339 */
_opp_attach_genpd(struct opp_table * opp_table,struct device * dev,const char * const * names,struct device *** virt_devs)2340 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2341 const char * const *names, struct device ***virt_devs)
2342 {
2343 struct device *virt_dev;
2344 int index = 0, ret = -EINVAL;
2345 const char * const *name = names;
2346
2347 if (opp_table->genpd_virt_devs)
2348 return 0;
2349
2350 /*
2351 * If the genpd's OPP table isn't already initialized, parsing of the
2352 * required-opps fail for dev. We should retry this after genpd's OPP
2353 * table is added.
2354 */
2355 if (!opp_table->required_opp_count)
2356 return -EPROBE_DEFER;
2357
2358 mutex_lock(&opp_table->genpd_virt_dev_lock);
2359
2360 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2361 sizeof(*opp_table->genpd_virt_devs),
2362 GFP_KERNEL);
2363 if (!opp_table->genpd_virt_devs)
2364 goto unlock;
2365
2366 while (*name) {
2367 if (index >= opp_table->required_opp_count) {
2368 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2369 *name, opp_table->required_opp_count, index);
2370 goto err;
2371 }
2372
2373 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2374 if (IS_ERR_OR_NULL(virt_dev)) {
2375 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2376 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2377 goto err;
2378 }
2379
2380 opp_table->genpd_virt_devs[index] = virt_dev;
2381 index++;
2382 name++;
2383 }
2384
2385 if (virt_devs)
2386 *virt_devs = opp_table->genpd_virt_devs;
2387 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2388
2389 return 0;
2390
2391 err:
2392 _detach_genpd(opp_table);
2393 unlock:
2394 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2395 return ret;
2396
2397 }
2398
2399 /**
2400 * _opp_detach_genpd() - Detach genpd(s) from the device.
2401 * @opp_table: OPP table returned by _opp_attach_genpd().
2402 *
2403 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2404 * OPP table.
2405 */
_opp_detach_genpd(struct opp_table * opp_table)2406 static void _opp_detach_genpd(struct opp_table *opp_table)
2407 {
2408 /*
2409 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2410 * used in parallel.
2411 */
2412 mutex_lock(&opp_table->genpd_virt_dev_lock);
2413 _detach_genpd(opp_table);
2414 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2415 }
2416
_opp_clear_config(struct opp_config_data * data)2417 static void _opp_clear_config(struct opp_config_data *data)
2418 {
2419 if (data->flags & OPP_CONFIG_GENPD)
2420 _opp_detach_genpd(data->opp_table);
2421 if (data->flags & OPP_CONFIG_REGULATOR)
2422 _opp_put_regulators(data->opp_table);
2423 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2424 _opp_put_supported_hw(data->opp_table);
2425 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2426 _opp_put_config_regulators_helper(data->opp_table);
2427 if (data->flags & OPP_CONFIG_PROP_NAME)
2428 _opp_put_prop_name(data->opp_table);
2429 if (data->flags & OPP_CONFIG_CLK)
2430 _opp_put_clknames(data->opp_table);
2431
2432 dev_pm_opp_put_opp_table(data->opp_table);
2433 kfree(data);
2434 }
2435
2436 /**
2437 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2438 * @dev: Device for which configuration is being set.
2439 * @config: OPP configuration.
2440 *
2441 * This allows all device OPP configurations to be performed at once.
2442 *
2443 * This must be called before any OPPs are initialized for the device. This may
2444 * be called multiple times for the same OPP table, for example once for each
2445 * CPU that share the same table. This must be balanced by the same number of
2446 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2447 *
2448 * This returns a token to the caller, which must be passed to
2449 * dev_pm_opp_clear_config() to free the resources later. The value of the
2450 * returned token will be >= 1 for success and negative for errors. The minimum
2451 * value of 1 is chosen here to make it easy for callers to manage the resource.
2452 */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2453 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2454 {
2455 struct opp_table *opp_table;
2456 struct opp_config_data *data;
2457 unsigned int id;
2458 int ret;
2459
2460 data = kmalloc(sizeof(*data), GFP_KERNEL);
2461 if (!data)
2462 return -ENOMEM;
2463
2464 opp_table = _add_opp_table(dev, false);
2465 if (IS_ERR(opp_table)) {
2466 kfree(data);
2467 return PTR_ERR(opp_table);
2468 }
2469
2470 data->opp_table = opp_table;
2471 data->flags = 0;
2472
2473 /* This should be called before OPPs are initialized */
2474 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2475 ret = -EBUSY;
2476 goto err;
2477 }
2478
2479 /* Configure clocks */
2480 if (config->clk_names) {
2481 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2482 config->config_clks);
2483 if (ret)
2484 goto err;
2485
2486 data->flags |= OPP_CONFIG_CLK;
2487 } else if (config->config_clks) {
2488 /* Don't allow config callback without clocks */
2489 ret = -EINVAL;
2490 goto err;
2491 }
2492
2493 /* Configure property names */
2494 if (config->prop_name) {
2495 ret = _opp_set_prop_name(opp_table, config->prop_name);
2496 if (ret)
2497 goto err;
2498
2499 data->flags |= OPP_CONFIG_PROP_NAME;
2500 }
2501
2502 /* Configure config_regulators helper */
2503 if (config->config_regulators) {
2504 ret = _opp_set_config_regulators_helper(opp_table, dev,
2505 config->config_regulators);
2506 if (ret)
2507 goto err;
2508
2509 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2510 }
2511
2512 /* Configure supported hardware */
2513 if (config->supported_hw) {
2514 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2515 config->supported_hw_count);
2516 if (ret)
2517 goto err;
2518
2519 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2520 }
2521
2522 /* Configure supplies */
2523 if (config->regulator_names) {
2524 ret = _opp_set_regulators(opp_table, dev,
2525 config->regulator_names);
2526 if (ret)
2527 goto err;
2528
2529 data->flags |= OPP_CONFIG_REGULATOR;
2530 }
2531
2532 /* Attach genpds */
2533 if (config->genpd_names) {
2534 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2535 config->virt_devs);
2536 if (ret)
2537 goto err;
2538
2539 data->flags |= OPP_CONFIG_GENPD;
2540 }
2541
2542 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2543 GFP_KERNEL);
2544 if (ret)
2545 goto err;
2546
2547 return id;
2548
2549 err:
2550 _opp_clear_config(data);
2551 return ret;
2552 }
2553 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2554
2555 /**
2556 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2557 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2558 *
2559 * This allows all device OPP configurations to be cleared at once. This must be
2560 * called once for each call made to dev_pm_opp_set_config(), in order to free
2561 * the OPPs properly.
2562 *
2563 * Currently the first call itself ends up freeing all the OPP configurations,
2564 * while the later ones only drop the OPP table reference. This works well for
2565 * now as we would never want to use an half initialized OPP table and want to
2566 * remove the configurations together.
2567 */
dev_pm_opp_clear_config(int token)2568 void dev_pm_opp_clear_config(int token)
2569 {
2570 struct opp_config_data *data;
2571
2572 /*
2573 * This lets the callers call this unconditionally and keep their code
2574 * simple.
2575 */
2576 if (unlikely(token <= 0))
2577 return;
2578
2579 data = xa_erase(&opp_configs, token);
2580 if (WARN_ON(!data))
2581 return;
2582
2583 _opp_clear_config(data);
2584 }
2585 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2586
devm_pm_opp_config_release(void * token)2587 static void devm_pm_opp_config_release(void *token)
2588 {
2589 dev_pm_opp_clear_config((unsigned long)token);
2590 }
2591
2592 /**
2593 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2594 * @dev: Device for which configuration is being set.
2595 * @config: OPP configuration.
2596 *
2597 * This allows all device OPP configurations to be performed at once.
2598 * This is a resource-managed variant of dev_pm_opp_set_config().
2599 *
2600 * Return: 0 on success and errorno otherwise.
2601 */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2602 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2603 {
2604 int token = dev_pm_opp_set_config(dev, config);
2605
2606 if (token < 0)
2607 return token;
2608
2609 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2610 (void *) ((unsigned long) token));
2611 }
2612 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2613
2614 /**
2615 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2616 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2617 * @dst_table: Required OPP table of the @src_table.
2618 * @src_opp: OPP from the @src_table.
2619 *
2620 * This function returns the OPP (present in @dst_table) pointed out by the
2621 * "required-opps" property of the @src_opp (present in @src_table).
2622 *
2623 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2624 * use.
2625 *
2626 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2627 */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2628 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2629 struct opp_table *dst_table,
2630 struct dev_pm_opp *src_opp)
2631 {
2632 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2633 int i;
2634
2635 if (!src_table || !dst_table || !src_opp ||
2636 !src_table->required_opp_tables)
2637 return ERR_PTR(-EINVAL);
2638
2639 /* required-opps not fully initialized yet */
2640 if (lazy_linking_pending(src_table))
2641 return ERR_PTR(-EBUSY);
2642
2643 for (i = 0; i < src_table->required_opp_count; i++) {
2644 if (src_table->required_opp_tables[i] == dst_table) {
2645 mutex_lock(&src_table->lock);
2646
2647 list_for_each_entry(opp, &src_table->opp_list, node) {
2648 if (opp == src_opp) {
2649 dest_opp = opp->required_opps[i];
2650 dev_pm_opp_get(dest_opp);
2651 break;
2652 }
2653 }
2654
2655 mutex_unlock(&src_table->lock);
2656 break;
2657 }
2658 }
2659
2660 if (IS_ERR(dest_opp)) {
2661 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2662 src_table, dst_table);
2663 }
2664
2665 return dest_opp;
2666 }
2667 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2668
2669 /**
2670 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2671 * @src_table: OPP table which has dst_table as one of its required OPP table.
2672 * @dst_table: Required OPP table of the src_table.
2673 * @pstate: Current performance state of the src_table.
2674 *
2675 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2676 * "required-opps" property of the OPP (present in @src_table) which has
2677 * performance state set to @pstate.
2678 *
2679 * Return: Zero or positive performance state on success, otherwise negative
2680 * value on errors.
2681 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2682 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2683 struct opp_table *dst_table,
2684 unsigned int pstate)
2685 {
2686 struct dev_pm_opp *opp;
2687 int dest_pstate = -EINVAL;
2688 int i;
2689
2690 /*
2691 * Normally the src_table will have the "required_opps" property set to
2692 * point to one of the OPPs in the dst_table, but in some cases the
2693 * genpd and its master have one to one mapping of performance states
2694 * and so none of them have the "required-opps" property set. Return the
2695 * pstate of the src_table as it is in such cases.
2696 */
2697 if (!src_table || !src_table->required_opp_count)
2698 return pstate;
2699
2700 /* required-opps not fully initialized yet */
2701 if (lazy_linking_pending(src_table))
2702 return -EBUSY;
2703
2704 for (i = 0; i < src_table->required_opp_count; i++) {
2705 if (src_table->required_opp_tables[i]->np == dst_table->np)
2706 break;
2707 }
2708
2709 if (unlikely(i == src_table->required_opp_count)) {
2710 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2711 __func__, src_table, dst_table);
2712 return -EINVAL;
2713 }
2714
2715 mutex_lock(&src_table->lock);
2716
2717 list_for_each_entry(opp, &src_table->opp_list, node) {
2718 if (opp->pstate == pstate) {
2719 dest_pstate = opp->required_opps[i]->pstate;
2720 goto unlock;
2721 }
2722 }
2723
2724 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2725 dst_table);
2726
2727 unlock:
2728 mutex_unlock(&src_table->lock);
2729
2730 return dest_pstate;
2731 }
2732
2733 /**
2734 * dev_pm_opp_add() - Add an OPP table from a table definitions
2735 * @dev: device for which we do this operation
2736 * @freq: Frequency in Hz for this OPP
2737 * @u_volt: Voltage in uVolts for this OPP
2738 *
2739 * This function adds an opp definition to the opp table and returns status.
2740 * The opp is made available by default and it can be controlled using
2741 * dev_pm_opp_enable/disable functions.
2742 *
2743 * Return:
2744 * 0 On success OR
2745 * Duplicate OPPs (both freq and volt are same) and opp->available
2746 * -EEXIST Freq are same and volt are different OR
2747 * Duplicate OPPs (both freq and volt are same) and !opp->available
2748 * -ENOMEM Memory allocation failure
2749 */
dev_pm_opp_add(struct device * dev,unsigned long freq,unsigned long u_volt)2750 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2751 {
2752 struct opp_table *opp_table;
2753 int ret;
2754
2755 opp_table = _add_opp_table(dev, true);
2756 if (IS_ERR(opp_table))
2757 return PTR_ERR(opp_table);
2758
2759 /* Fix regulator count for dynamic OPPs */
2760 opp_table->regulator_count = 1;
2761
2762 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2763 if (ret)
2764 dev_pm_opp_put_opp_table(opp_table);
2765
2766 return ret;
2767 }
2768 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2769
2770 /**
2771 * _opp_set_availability() - helper to set the availability of an opp
2772 * @dev: device for which we do this operation
2773 * @freq: OPP frequency to modify availability
2774 * @availability_req: availability status requested for this opp
2775 *
2776 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2777 * which is isolated here.
2778 *
2779 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2780 * copy operation, returns 0 if no modification was done OR modification was
2781 * successful.
2782 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2783 static int _opp_set_availability(struct device *dev, unsigned long freq,
2784 bool availability_req)
2785 {
2786 struct opp_table *opp_table;
2787 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2788 int r = 0;
2789
2790 /* Find the opp_table */
2791 opp_table = _find_opp_table(dev);
2792 if (IS_ERR(opp_table)) {
2793 r = PTR_ERR(opp_table);
2794 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2795 return r;
2796 }
2797
2798 if (!assert_single_clk(opp_table)) {
2799 r = -EINVAL;
2800 goto put_table;
2801 }
2802
2803 mutex_lock(&opp_table->lock);
2804
2805 /* Do we have the frequency? */
2806 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2807 if (tmp_opp->rates[0] == freq) {
2808 opp = tmp_opp;
2809 break;
2810 }
2811 }
2812
2813 if (IS_ERR(opp)) {
2814 r = PTR_ERR(opp);
2815 goto unlock;
2816 }
2817
2818 /* Is update really needed? */
2819 if (opp->available == availability_req)
2820 goto unlock;
2821
2822 opp->available = availability_req;
2823
2824 dev_pm_opp_get(opp);
2825 mutex_unlock(&opp_table->lock);
2826
2827 /* Notify the change of the OPP availability */
2828 if (availability_req)
2829 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2830 opp);
2831 else
2832 blocking_notifier_call_chain(&opp_table->head,
2833 OPP_EVENT_DISABLE, opp);
2834
2835 dev_pm_opp_put(opp);
2836 goto put_table;
2837
2838 unlock:
2839 mutex_unlock(&opp_table->lock);
2840 put_table:
2841 dev_pm_opp_put_opp_table(opp_table);
2842 return r;
2843 }
2844
2845 /**
2846 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2847 * @dev: device for which we do this operation
2848 * @freq: OPP frequency to adjust voltage of
2849 * @u_volt: new OPP target voltage
2850 * @u_volt_min: new OPP min voltage
2851 * @u_volt_max: new OPP max voltage
2852 *
2853 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2854 * copy operation, returns 0 if no modifcation was done OR modification was
2855 * successful.
2856 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2857 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2858 unsigned long u_volt, unsigned long u_volt_min,
2859 unsigned long u_volt_max)
2860
2861 {
2862 struct opp_table *opp_table;
2863 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2864 int r = 0;
2865
2866 /* Find the opp_table */
2867 opp_table = _find_opp_table(dev);
2868 if (IS_ERR(opp_table)) {
2869 r = PTR_ERR(opp_table);
2870 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2871 return r;
2872 }
2873
2874 if (!assert_single_clk(opp_table)) {
2875 r = -EINVAL;
2876 goto put_table;
2877 }
2878
2879 mutex_lock(&opp_table->lock);
2880
2881 /* Do we have the frequency? */
2882 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2883 if (tmp_opp->rates[0] == freq) {
2884 opp = tmp_opp;
2885 break;
2886 }
2887 }
2888
2889 if (IS_ERR(opp)) {
2890 r = PTR_ERR(opp);
2891 goto adjust_unlock;
2892 }
2893
2894 /* Is update really needed? */
2895 if (opp->supplies->u_volt == u_volt)
2896 goto adjust_unlock;
2897
2898 opp->supplies->u_volt = u_volt;
2899 opp->supplies->u_volt_min = u_volt_min;
2900 opp->supplies->u_volt_max = u_volt_max;
2901
2902 dev_pm_opp_get(opp);
2903 mutex_unlock(&opp_table->lock);
2904
2905 /* Notify the voltage change of the OPP */
2906 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2907 opp);
2908
2909 dev_pm_opp_put(opp);
2910 goto put_table;
2911
2912 adjust_unlock:
2913 mutex_unlock(&opp_table->lock);
2914 put_table:
2915 dev_pm_opp_put_opp_table(opp_table);
2916 return r;
2917 }
2918 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2919
2920 /**
2921 * dev_pm_opp_enable() - Enable a specific OPP
2922 * @dev: device for which we do this operation
2923 * @freq: OPP frequency to enable
2924 *
2925 * Enables a provided opp. If the operation is valid, this returns 0, else the
2926 * corresponding error value. It is meant to be used for users an OPP available
2927 * after being temporarily made unavailable with dev_pm_opp_disable.
2928 *
2929 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2930 * copy operation, returns 0 if no modification was done OR modification was
2931 * successful.
2932 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)2933 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2934 {
2935 return _opp_set_availability(dev, freq, true);
2936 }
2937 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2938
2939 /**
2940 * dev_pm_opp_disable() - Disable a specific OPP
2941 * @dev: device for which we do this operation
2942 * @freq: OPP frequency to disable
2943 *
2944 * Disables a provided opp. If the operation is valid, this returns
2945 * 0, else the corresponding error value. It is meant to be a temporary
2946 * control by users to make this OPP not available until the circumstances are
2947 * right to make it available again (with a call to dev_pm_opp_enable).
2948 *
2949 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2950 * copy operation, returns 0 if no modification was done OR modification was
2951 * successful.
2952 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)2953 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2954 {
2955 return _opp_set_availability(dev, freq, false);
2956 }
2957 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2958
2959 /**
2960 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2961 * @dev: Device for which notifier needs to be registered
2962 * @nb: Notifier block to be registered
2963 *
2964 * Return: 0 on success or a negative error value.
2965 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)2966 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2967 {
2968 struct opp_table *opp_table;
2969 int ret;
2970
2971 opp_table = _find_opp_table(dev);
2972 if (IS_ERR(opp_table))
2973 return PTR_ERR(opp_table);
2974
2975 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2976
2977 dev_pm_opp_put_opp_table(opp_table);
2978
2979 return ret;
2980 }
2981 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2982
2983 /**
2984 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2985 * @dev: Device for which notifier needs to be unregistered
2986 * @nb: Notifier block to be unregistered
2987 *
2988 * Return: 0 on success or a negative error value.
2989 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)2990 int dev_pm_opp_unregister_notifier(struct device *dev,
2991 struct notifier_block *nb)
2992 {
2993 struct opp_table *opp_table;
2994 int ret;
2995
2996 opp_table = _find_opp_table(dev);
2997 if (IS_ERR(opp_table))
2998 return PTR_ERR(opp_table);
2999
3000 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3001
3002 dev_pm_opp_put_opp_table(opp_table);
3003
3004 return ret;
3005 }
3006 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3007
3008 /**
3009 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3010 * @dev: device pointer used to lookup OPP table.
3011 *
3012 * Free both OPPs created using static entries present in DT and the
3013 * dynamically added entries.
3014 */
dev_pm_opp_remove_table(struct device * dev)3015 void dev_pm_opp_remove_table(struct device *dev)
3016 {
3017 struct opp_table *opp_table;
3018
3019 /* Check for existing table for 'dev' */
3020 opp_table = _find_opp_table(dev);
3021 if (IS_ERR(opp_table)) {
3022 int error = PTR_ERR(opp_table);
3023
3024 if (error != -ENODEV)
3025 WARN(1, "%s: opp_table: %d\n",
3026 IS_ERR_OR_NULL(dev) ?
3027 "Invalid device" : dev_name(dev),
3028 error);
3029 return;
3030 }
3031
3032 /*
3033 * Drop the extra reference only if the OPP table was successfully added
3034 * with dev_pm_opp_of_add_table() earlier.
3035 **/
3036 if (_opp_remove_all_static(opp_table))
3037 dev_pm_opp_put_opp_table(opp_table);
3038
3039 /* Drop reference taken by _find_opp_table() */
3040 dev_pm_opp_put_opp_table(opp_table);
3041 }
3042 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3043
3044 /**
3045 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3046 * @dev: device for which we do this operation
3047 *
3048 * Sync voltage state of the OPP table regulators.
3049 *
3050 * Return: 0 on success or a negative error value.
3051 */
dev_pm_opp_sync_regulators(struct device * dev)3052 int dev_pm_opp_sync_regulators(struct device *dev)
3053 {
3054 struct opp_table *opp_table;
3055 struct regulator *reg;
3056 int i, ret = 0;
3057
3058 /* Device may not have OPP table */
3059 opp_table = _find_opp_table(dev);
3060 if (IS_ERR(opp_table))
3061 return 0;
3062
3063 /* Regulator may not be required for the device */
3064 if (unlikely(!opp_table->regulators))
3065 goto put_table;
3066
3067 /* Nothing to sync if voltage wasn't changed */
3068 if (!opp_table->enabled)
3069 goto put_table;
3070
3071 for (i = 0; i < opp_table->regulator_count; i++) {
3072 reg = opp_table->regulators[i];
3073 ret = regulator_sync_voltage(reg);
3074 if (ret)
3075 break;
3076 }
3077 put_table:
3078 /* Drop reference taken by _find_opp_table() */
3079 dev_pm_opp_put_opp_table(opp_table);
3080
3081 return ret;
3082 }
3083 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3084