1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47 #include <linux/android_kabi.h>
48 #include <linux/android_vendor.h>
49
50 /**
51 * DOC: skb checksums
52 *
53 * The interface for checksum offload between the stack and networking drivers
54 * is as follows...
55 *
56 * IP checksum related features
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
58 *
59 * Drivers advertise checksum offload capabilities in the features of a device.
60 * From the stack's point of view these are capabilities offered by the driver.
61 * A driver typically only advertises features that it is capable of offloading
62 * to its device.
63 *
64 * .. flat-table:: Checksum related device features
65 * :widths: 1 10
66 *
67 * * - %NETIF_F_HW_CSUM
68 * - The driver (or its device) is able to compute one
69 * IP (one's complement) checksum for any combination
70 * of protocols or protocol layering. The checksum is
71 * computed and set in a packet per the CHECKSUM_PARTIAL
72 * interface (see below).
73 *
74 * * - %NETIF_F_IP_CSUM
75 * - Driver (device) is only able to checksum plain
76 * TCP or UDP packets over IPv4. These are specifically
77 * unencapsulated packets of the form IPv4|TCP or
78 * IPv4|UDP where the Protocol field in the IPv4 header
79 * is TCP or UDP. The IPv4 header may contain IP options.
80 * This feature cannot be set in features for a device
81 * with NETIF_F_HW_CSUM also set. This feature is being
82 * DEPRECATED (see below).
83 *
84 * * - %NETIF_F_IPV6_CSUM
85 * - Driver (device) is only able to checksum plain
86 * TCP or UDP packets over IPv6. These are specifically
87 * unencapsulated packets of the form IPv6|TCP or
88 * IPv6|UDP where the Next Header field in the IPv6
89 * header is either TCP or UDP. IPv6 extension headers
90 * are not supported with this feature. This feature
91 * cannot be set in features for a device with
92 * NETIF_F_HW_CSUM also set. This feature is being
93 * DEPRECATED (see below).
94 *
95 * * - %NETIF_F_RXCSUM
96 * - Driver (device) performs receive checksum offload.
97 * This flag is only used to disable the RX checksum
98 * feature for a device. The stack will accept receive
99 * checksum indication in packets received on a device
100 * regardless of whether NETIF_F_RXCSUM is set.
101 *
102 * Checksumming of received packets by device
103 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
104 *
105 * Indication of checksum verification is set in &sk_buff.ip_summed.
106 * Possible values are:
107 *
108 * - %CHECKSUM_NONE
109 *
110 * Device did not checksum this packet e.g. due to lack of capabilities.
111 * The packet contains full (though not verified) checksum in packet but
112 * not in skb->csum. Thus, skb->csum is undefined in this case.
113 *
114 * - %CHECKSUM_UNNECESSARY
115 *
116 * The hardware you're dealing with doesn't calculate the full checksum
117 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
118 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
119 * if their checksums are okay. &sk_buff.csum is still undefined in this case
120 * though. A driver or device must never modify the checksum field in the
121 * packet even if checksum is verified.
122 *
123 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
124 *
125 * - TCP: IPv6 and IPv4.
126 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
127 * zero UDP checksum for either IPv4 or IPv6, the networking stack
128 * may perform further validation in this case.
129 * - GRE: only if the checksum is present in the header.
130 * - SCTP: indicates the CRC in SCTP header has been validated.
131 * - FCOE: indicates the CRC in FC frame has been validated.
132 *
133 * &sk_buff.csum_level indicates the number of consecutive checksums found in
134 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
135 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
136 * and a device is able to verify the checksums for UDP (possibly zero),
137 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
138 * two. If the device were only able to verify the UDP checksum and not
139 * GRE, either because it doesn't support GRE checksum or because GRE
140 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
141 * not considered in this case).
142 *
143 * - %CHECKSUM_COMPLETE
144 *
145 * This is the most generic way. The device supplied checksum of the _whole_
146 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
147 * hardware doesn't need to parse L3/L4 headers to implement this.
148 *
149 * Notes:
150 *
151 * - Even if device supports only some protocols, but is able to produce
152 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
153 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
154 *
155 * - %CHECKSUM_PARTIAL
156 *
157 * A checksum is set up to be offloaded to a device as described in the
158 * output description for CHECKSUM_PARTIAL. This may occur on a packet
159 * received directly from another Linux OS, e.g., a virtualized Linux kernel
160 * on the same host, or it may be set in the input path in GRO or remote
161 * checksum offload. For the purposes of checksum verification, the checksum
162 * referred to by skb->csum_start + skb->csum_offset and any preceding
163 * checksums in the packet are considered verified. Any checksums in the
164 * packet that are after the checksum being offloaded are not considered to
165 * be verified.
166 *
167 * Checksumming on transmit for non-GSO
168 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
169 *
170 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
171 * Values are:
172 *
173 * - %CHECKSUM_PARTIAL
174 *
175 * The driver is required to checksum the packet as seen by hard_start_xmit()
176 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
177 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
178 * A driver may verify that the
179 * csum_start and csum_offset values are valid values given the length and
180 * offset of the packet, but it should not attempt to validate that the
181 * checksum refers to a legitimate transport layer checksum -- it is the
182 * purview of the stack to validate that csum_start and csum_offset are set
183 * correctly.
184 *
185 * When the stack requests checksum offload for a packet, the driver MUST
186 * ensure that the checksum is set correctly. A driver can either offload the
187 * checksum calculation to the device, or call skb_checksum_help (in the case
188 * that the device does not support offload for a particular checksum).
189 *
190 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
191 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
192 * checksum offload capability.
193 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
194 * on network device checksumming capabilities: if a packet does not match
195 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
196 * &sk_buff.csum_not_inet, see :ref:`crc`)
197 * is called to resolve the checksum.
198 *
199 * - %CHECKSUM_NONE
200 *
201 * The skb was already checksummed by the protocol, or a checksum is not
202 * required.
203 *
204 * - %CHECKSUM_UNNECESSARY
205 *
206 * This has the same meaning as CHECKSUM_NONE for checksum offload on
207 * output.
208 *
209 * - %CHECKSUM_COMPLETE
210 *
211 * Not used in checksum output. If a driver observes a packet with this value
212 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
213 *
214 * .. _crc:
215 *
216 * Non-IP checksum (CRC) offloads
217 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
218 *
219 * .. flat-table::
220 * :widths: 1 10
221 *
222 * * - %NETIF_F_SCTP_CRC
223 * - This feature indicates that a device is capable of
224 * offloading the SCTP CRC in a packet. To perform this offload the stack
225 * will set csum_start and csum_offset accordingly, set ip_summed to
226 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
227 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
228 * A driver that supports both IP checksum offload and SCTP CRC32c offload
229 * must verify which offload is configured for a packet by testing the
230 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
231 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
232 *
233 * * - %NETIF_F_FCOE_CRC
234 * - This feature indicates that a device is capable of offloading the FCOE
235 * CRC in a packet. To perform this offload the stack will set ip_summed
236 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
237 * accordingly. Note that there is no indication in the skbuff that the
238 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
239 * both IP checksum offload and FCOE CRC offload must verify which offload
240 * is configured for a packet, presumably by inspecting packet headers.
241 *
242 * Checksumming on output with GSO
243 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
244 *
245 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
246 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
247 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
248 * part of the GSO operation is implied. If a checksum is being offloaded
249 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
250 * csum_offset are set to refer to the outermost checksum being offloaded
251 * (two offloaded checksums are possible with UDP encapsulation).
252 */
253
254 /* Don't change this without changing skb_csum_unnecessary! */
255 #define CHECKSUM_NONE 0
256 #define CHECKSUM_UNNECESSARY 1
257 #define CHECKSUM_COMPLETE 2
258 #define CHECKSUM_PARTIAL 3
259
260 /* Maximum value in skb->csum_level */
261 #define SKB_MAX_CSUM_LEVEL 3
262
263 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
264 #define SKB_WITH_OVERHEAD(X) \
265 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266
267 /* For X bytes available in skb->head, what is the minimal
268 * allocation needed, knowing struct skb_shared_info needs
269 * to be aligned.
270 */
271 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273
274 #define SKB_MAX_ORDER(X, ORDER) \
275 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
276 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
277 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
278
279 /* return minimum truesize of one skb containing X bytes of data */
280 #define SKB_TRUESIZE(X) ((X) + \
281 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
282 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
283
284 struct ahash_request;
285 struct net_device;
286 struct scatterlist;
287 struct pipe_inode_info;
288 struct iov_iter;
289 struct napi_struct;
290 struct bpf_prog;
291 union bpf_attr;
292 struct skb_ext;
293
294 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
295 struct nf_bridge_info {
296 enum {
297 BRNF_PROTO_UNCHANGED,
298 BRNF_PROTO_8021Q,
299 BRNF_PROTO_PPPOE
300 } orig_proto:8;
301 u8 pkt_otherhost:1;
302 u8 in_prerouting:1;
303 u8 bridged_dnat:1;
304 u8 sabotage_in_done:1;
305 __u16 frag_max_size;
306 int physinif;
307
308 /* always valid & non-NULL from FORWARD on, for physdev match */
309 struct net_device *physoutdev;
310 union {
311 /* prerouting: detect dnat in orig/reply direction */
312 __be32 ipv4_daddr;
313 struct in6_addr ipv6_daddr;
314
315 /* after prerouting + nat detected: store original source
316 * mac since neigh resolution overwrites it, only used while
317 * skb is out in neigh layer.
318 */
319 char neigh_header[8];
320 };
321 };
322 #endif
323
324 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
325 /* Chain in tc_skb_ext will be used to share the tc chain with
326 * ovs recirc_id. It will be set to the current chain by tc
327 * and read by ovs to recirc_id.
328 */
329 struct tc_skb_ext {
330 __u32 chain;
331 __u16 mru;
332 __u16 zone;
333 u8 post_ct:1;
334 u8 post_ct_snat:1;
335 u8 post_ct_dnat:1;
336 };
337 #endif
338
339 struct sk_buff_head {
340 /* These two members must be first to match sk_buff. */
341 struct_group_tagged(sk_buff_list, list,
342 struct sk_buff *next;
343 struct sk_buff *prev;
344 );
345
346 __u32 qlen;
347 spinlock_t lock;
348 };
349
350 struct sk_buff;
351
352 /* To allow 64K frame to be packed as single skb without frag_list we
353 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
354 * buffers which do not start on a page boundary.
355 *
356 * Since GRO uses frags we allocate at least 16 regardless of page
357 * size.
358 */
359 #if (65536/PAGE_SIZE + 1) < 16
360 #define MAX_SKB_FRAGS 16UL
361 #else
362 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
363 #endif
364 extern int sysctl_max_skb_frags;
365
366 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
367 * segment using its current segmentation instead.
368 */
369 #define GSO_BY_FRAGS 0xFFFF
370
371 typedef struct bio_vec skb_frag_t;
372
373 /**
374 * skb_frag_size() - Returns the size of a skb fragment
375 * @frag: skb fragment
376 */
skb_frag_size(const skb_frag_t * frag)377 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
378 {
379 return frag->bv_len;
380 }
381
382 /**
383 * skb_frag_size_set() - Sets the size of a skb fragment
384 * @frag: skb fragment
385 * @size: size of fragment
386 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)387 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
388 {
389 frag->bv_len = size;
390 }
391
392 /**
393 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
394 * @frag: skb fragment
395 * @delta: value to add
396 */
skb_frag_size_add(skb_frag_t * frag,int delta)397 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
398 {
399 frag->bv_len += delta;
400 }
401
402 /**
403 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
404 * @frag: skb fragment
405 * @delta: value to subtract
406 */
skb_frag_size_sub(skb_frag_t * frag,int delta)407 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
408 {
409 frag->bv_len -= delta;
410 }
411
412 /**
413 * skb_frag_must_loop - Test if %p is a high memory page
414 * @p: fragment's page
415 */
skb_frag_must_loop(struct page * p)416 static inline bool skb_frag_must_loop(struct page *p)
417 {
418 #if defined(CONFIG_HIGHMEM)
419 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
420 return true;
421 #endif
422 return false;
423 }
424
425 /**
426 * skb_frag_foreach_page - loop over pages in a fragment
427 *
428 * @f: skb frag to operate on
429 * @f_off: offset from start of f->bv_page
430 * @f_len: length from f_off to loop over
431 * @p: (temp var) current page
432 * @p_off: (temp var) offset from start of current page,
433 * non-zero only on first page.
434 * @p_len: (temp var) length in current page,
435 * < PAGE_SIZE only on first and last page.
436 * @copied: (temp var) length so far, excluding current p_len.
437 *
438 * A fragment can hold a compound page, in which case per-page
439 * operations, notably kmap_atomic, must be called for each
440 * regular page.
441 */
442 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
443 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
444 p_off = (f_off) & (PAGE_SIZE - 1), \
445 p_len = skb_frag_must_loop(p) ? \
446 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
447 copied = 0; \
448 copied < f_len; \
449 copied += p_len, p++, p_off = 0, \
450 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
451
452 #define HAVE_HW_TIME_STAMP
453
454 /**
455 * struct skb_shared_hwtstamps - hardware time stamps
456 * @hwtstamp: hardware time stamp transformed into duration
457 * since arbitrary point in time
458 * @netdev_data: address/cookie of network device driver used as
459 * reference to actual hardware time stamp
460 *
461 * Software time stamps generated by ktime_get_real() are stored in
462 * skb->tstamp.
463 *
464 * hwtstamps can only be compared against other hwtstamps from
465 * the same device.
466 *
467 * This structure is attached to packets as part of the
468 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
469 */
470 struct skb_shared_hwtstamps {
471 union {
472 ktime_t hwtstamp;
473 void *netdev_data;
474 };
475 };
476
477 /* Definitions for tx_flags in struct skb_shared_info */
478 enum {
479 /* generate hardware time stamp */
480 SKBTX_HW_TSTAMP = 1 << 0,
481
482 /* generate software time stamp when queueing packet to NIC */
483 SKBTX_SW_TSTAMP = 1 << 1,
484
485 /* device driver is going to provide hardware time stamp */
486 SKBTX_IN_PROGRESS = 1 << 2,
487
488 /* generate hardware time stamp based on cycles if supported */
489 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
490
491 /* generate wifi status information (where possible) */
492 SKBTX_WIFI_STATUS = 1 << 4,
493
494 /* determine hardware time stamp based on time or cycles */
495 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
496
497 /* generate software time stamp when entering packet scheduling */
498 SKBTX_SCHED_TSTAMP = 1 << 6,
499 };
500
501 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
502 SKBTX_SCHED_TSTAMP)
503 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
504 SKBTX_HW_TSTAMP_USE_CYCLES | \
505 SKBTX_ANY_SW_TSTAMP)
506
507 /* Definitions for flags in struct skb_shared_info */
508 enum {
509 /* use zcopy routines */
510 SKBFL_ZEROCOPY_ENABLE = BIT(0),
511
512 /* This indicates at least one fragment might be overwritten
513 * (as in vmsplice(), sendfile() ...)
514 * If we need to compute a TX checksum, we'll need to copy
515 * all frags to avoid possible bad checksum
516 */
517 SKBFL_SHARED_FRAG = BIT(1),
518
519 /* segment contains only zerocopy data and should not be
520 * charged to the kernel memory.
521 */
522 SKBFL_PURE_ZEROCOPY = BIT(2),
523
524 SKBFL_DONT_ORPHAN = BIT(3),
525
526 /* page references are managed by the ubuf_info, so it's safe to
527 * use frags only up until ubuf_info is released
528 */
529 SKBFL_MANAGED_FRAG_REFS = BIT(4),
530 };
531
532 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
533 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
534 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
535
536 /*
537 * The callback notifies userspace to release buffers when skb DMA is done in
538 * lower device, the skb last reference should be 0 when calling this.
539 * The zerocopy_success argument is true if zero copy transmit occurred,
540 * false on data copy or out of memory error caused by data copy attempt.
541 * The ctx field is used to track device context.
542 * The desc field is used to track userspace buffer index.
543 */
544 struct ubuf_info {
545 void (*callback)(struct sk_buff *, struct ubuf_info *,
546 bool zerocopy_success);
547 refcount_t refcnt;
548 u8 flags;
549 };
550
551 struct ubuf_info_msgzc {
552 struct ubuf_info ubuf;
553
554 union {
555 struct {
556 unsigned long desc;
557 void *ctx;
558 };
559 struct {
560 u32 id;
561 u16 len;
562 u16 zerocopy:1;
563 u32 bytelen;
564 };
565 };
566
567 struct mmpin {
568 struct user_struct *user;
569 unsigned int num_pg;
570 } mmp;
571 };
572
573 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
574 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
575 ubuf)
576
577 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
578 void mm_unaccount_pinned_pages(struct mmpin *mmp);
579
580 /* This data is invariant across clones and lives at
581 * the end of the header data, ie. at skb->end.
582 */
583 struct skb_shared_info {
584 __u8 flags;
585 __u8 meta_len;
586 __u8 nr_frags;
587 __u8 tx_flags;
588 unsigned short gso_size;
589 /* Warning: this field is not always filled in (UFO)! */
590 unsigned short gso_segs;
591 struct sk_buff *frag_list;
592 struct skb_shared_hwtstamps hwtstamps;
593 unsigned int gso_type;
594 u32 tskey;
595
596 /*
597 * Warning : all fields before dataref are cleared in __alloc_skb()
598 */
599 atomic_t dataref;
600 unsigned int xdp_frags_size;
601
602 /* Intermediate layers must ensure that destructor_arg
603 * remains valid until skb destructor */
604 void * destructor_arg;
605
606 ANDROID_OEM_DATA_ARRAY(1, 3);
607
608 /* must be last field, see pskb_expand_head() */
609 skb_frag_t frags[MAX_SKB_FRAGS];
610 };
611
612 /**
613 * DOC: dataref and headerless skbs
614 *
615 * Transport layers send out clones of payload skbs they hold for
616 * retransmissions. To allow lower layers of the stack to prepend their headers
617 * we split &skb_shared_info.dataref into two halves.
618 * The lower 16 bits count the overall number of references.
619 * The higher 16 bits indicate how many of the references are payload-only.
620 * skb_header_cloned() checks if skb is allowed to add / write the headers.
621 *
622 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
623 * (via __skb_header_release()). Any clone created from marked skb will get
624 * &sk_buff.hdr_len populated with the available headroom.
625 * If there's the only clone in existence it's able to modify the headroom
626 * at will. The sequence of calls inside the transport layer is::
627 *
628 * <alloc skb>
629 * skb_reserve()
630 * __skb_header_release()
631 * skb_clone()
632 * // send the clone down the stack
633 *
634 * This is not a very generic construct and it depends on the transport layers
635 * doing the right thing. In practice there's usually only one payload-only skb.
636 * Having multiple payload-only skbs with different lengths of hdr_len is not
637 * possible. The payload-only skbs should never leave their owner.
638 */
639 #define SKB_DATAREF_SHIFT 16
640 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
641
642
643 enum {
644 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
645 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
646 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
647 };
648
649 enum {
650 SKB_GSO_TCPV4 = 1 << 0,
651
652 /* This indicates the skb is from an untrusted source. */
653 SKB_GSO_DODGY = 1 << 1,
654
655 /* This indicates the tcp segment has CWR set. */
656 SKB_GSO_TCP_ECN = 1 << 2,
657
658 SKB_GSO_TCP_FIXEDID = 1 << 3,
659
660 SKB_GSO_TCPV6 = 1 << 4,
661
662 SKB_GSO_FCOE = 1 << 5,
663
664 SKB_GSO_GRE = 1 << 6,
665
666 SKB_GSO_GRE_CSUM = 1 << 7,
667
668 SKB_GSO_IPXIP4 = 1 << 8,
669
670 SKB_GSO_IPXIP6 = 1 << 9,
671
672 SKB_GSO_UDP_TUNNEL = 1 << 10,
673
674 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
675
676 SKB_GSO_PARTIAL = 1 << 12,
677
678 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
679
680 SKB_GSO_SCTP = 1 << 14,
681
682 SKB_GSO_ESP = 1 << 15,
683
684 SKB_GSO_UDP = 1 << 16,
685
686 SKB_GSO_UDP_L4 = 1 << 17,
687
688 SKB_GSO_FRAGLIST = 1 << 18,
689 };
690
691 #if BITS_PER_LONG > 32
692 #define NET_SKBUFF_DATA_USES_OFFSET 1
693 #endif
694
695 #ifdef NET_SKBUFF_DATA_USES_OFFSET
696 typedef unsigned int sk_buff_data_t;
697 #else
698 typedef unsigned char *sk_buff_data_t;
699 #endif
700
701 /**
702 * DOC: Basic sk_buff geometry
703 *
704 * struct sk_buff itself is a metadata structure and does not hold any packet
705 * data. All the data is held in associated buffers.
706 *
707 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
708 * into two parts:
709 *
710 * - data buffer, containing headers and sometimes payload;
711 * this is the part of the skb operated on by the common helpers
712 * such as skb_put() or skb_pull();
713 * - shared info (struct skb_shared_info) which holds an array of pointers
714 * to read-only data in the (page, offset, length) format.
715 *
716 * Optionally &skb_shared_info.frag_list may point to another skb.
717 *
718 * Basic diagram may look like this::
719 *
720 * ---------------
721 * | sk_buff |
722 * ---------------
723 * ,--------------------------- + head
724 * / ,----------------- + data
725 * / / ,----------- + tail
726 * | | | , + end
727 * | | | |
728 * v v v v
729 * -----------------------------------------------
730 * | headroom | data | tailroom | skb_shared_info |
731 * -----------------------------------------------
732 * + [page frag]
733 * + [page frag]
734 * + [page frag]
735 * + [page frag] ---------
736 * + frag_list --> | sk_buff |
737 * ---------
738 *
739 */
740
741 /**
742 * struct sk_buff - socket buffer
743 * @next: Next buffer in list
744 * @prev: Previous buffer in list
745 * @tstamp: Time we arrived/left
746 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
747 * for retransmit timer
748 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
749 * @list: queue head
750 * @ll_node: anchor in an llist (eg socket defer_list)
751 * @sk: Socket we are owned by
752 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
753 * fragmentation management
754 * @dev: Device we arrived on/are leaving by
755 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
756 * @cb: Control buffer. Free for use by every layer. Put private vars here
757 * @_skb_refdst: destination entry (with norefcount bit)
758 * @sp: the security path, used for xfrm
759 * @len: Length of actual data
760 * @data_len: Data length
761 * @mac_len: Length of link layer header
762 * @hdr_len: writable header length of cloned skb
763 * @csum: Checksum (must include start/offset pair)
764 * @csum_start: Offset from skb->head where checksumming should start
765 * @csum_offset: Offset from csum_start where checksum should be stored
766 * @priority: Packet queueing priority
767 * @ignore_df: allow local fragmentation
768 * @cloned: Head may be cloned (check refcnt to be sure)
769 * @ip_summed: Driver fed us an IP checksum
770 * @nohdr: Payload reference only, must not modify header
771 * @pkt_type: Packet class
772 * @fclone: skbuff clone status
773 * @ipvs_property: skbuff is owned by ipvs
774 * @inner_protocol_type: whether the inner protocol is
775 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
776 * @remcsum_offload: remote checksum offload is enabled
777 * @offload_fwd_mark: Packet was L2-forwarded in hardware
778 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
779 * @tc_skip_classify: do not classify packet. set by IFB device
780 * @tc_at_ingress: used within tc_classify to distinguish in/egress
781 * @redirected: packet was redirected by packet classifier
782 * @from_ingress: packet was redirected from the ingress path
783 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
784 * @peeked: this packet has been seen already, so stats have been
785 * done for it, don't do them again
786 * @nf_trace: netfilter packet trace flag
787 * @protocol: Packet protocol from driver
788 * @destructor: Destruct function
789 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
790 * @_sk_redir: socket redirection information for skmsg
791 * @_nfct: Associated connection, if any (with nfctinfo bits)
792 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
793 * @skb_iif: ifindex of device we arrived on
794 * @tc_index: Traffic control index
795 * @hash: the packet hash
796 * @queue_mapping: Queue mapping for multiqueue devices
797 * @head_frag: skb was allocated from page fragments,
798 * not allocated by kmalloc() or vmalloc().
799 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
800 * @pp_recycle: mark the packet for recycling instead of freeing (implies
801 * page_pool support on driver)
802 * @active_extensions: active extensions (skb_ext_id types)
803 * @ndisc_nodetype: router type (from link layer)
804 * @ooo_okay: allow the mapping of a socket to a queue to be changed
805 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
806 * ports.
807 * @sw_hash: indicates hash was computed in software stack
808 * @wifi_acked_valid: wifi_acked was set
809 * @wifi_acked: whether frame was acked on wifi or not
810 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
811 * @encapsulation: indicates the inner headers in the skbuff are valid
812 * @encap_hdr_csum: software checksum is needed
813 * @csum_valid: checksum is already valid
814 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
815 * @csum_complete_sw: checksum was completed by software
816 * @csum_level: indicates the number of consecutive checksums found in
817 * the packet minus one that have been verified as
818 * CHECKSUM_UNNECESSARY (max 3)
819 * @scm_io_uring: SKB holds io_uring registered files
820 * @dst_pending_confirm: need to confirm neighbour
821 * @decrypted: Decrypted SKB
822 * @slow_gro: state present at GRO time, slower prepare step required
823 * @mono_delivery_time: When set, skb->tstamp has the
824 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
825 * skb->tstamp has the (rcv) timestamp at ingress and
826 * delivery_time at egress.
827 * @napi_id: id of the NAPI struct this skb came from
828 * @sender_cpu: (aka @napi_id) source CPU in XPS
829 * @alloc_cpu: CPU which did the skb allocation.
830 * @secmark: security marking
831 * @mark: Generic packet mark
832 * @reserved_tailroom: (aka @mark) number of bytes of free space available
833 * at the tail of an sk_buff
834 * @vlan_present: VLAN tag is present
835 * @vlan_proto: vlan encapsulation protocol
836 * @vlan_tci: vlan tag control information
837 * @inner_protocol: Protocol (encapsulation)
838 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
839 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
840 * @inner_transport_header: Inner transport layer header (encapsulation)
841 * @inner_network_header: Network layer header (encapsulation)
842 * @inner_mac_header: Link layer header (encapsulation)
843 * @transport_header: Transport layer header
844 * @network_header: Network layer header
845 * @mac_header: Link layer header
846 * @kcov_handle: KCOV remote handle for remote coverage collection
847 * @tail: Tail pointer
848 * @end: End pointer
849 * @head: Head of buffer
850 * @data: Data head pointer
851 * @truesize: Buffer size
852 * @users: User count - see {datagram,tcp}.c
853 * @extensions: allocated extensions, valid if active_extensions is nonzero
854 */
855
856 struct sk_buff {
857 union {
858 struct {
859 /* These two members must be first to match sk_buff_head. */
860 struct sk_buff *next;
861 struct sk_buff *prev;
862
863 union {
864 struct net_device *dev;
865 /* Some protocols might use this space to store information,
866 * while device pointer would be NULL.
867 * UDP receive path is one user.
868 */
869 unsigned long dev_scratch;
870 };
871 };
872 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
873 struct list_head list;
874 struct llist_node ll_node;
875 };
876
877 union {
878 struct sock *sk;
879 int ip_defrag_offset;
880 };
881
882 union {
883 ktime_t tstamp;
884 u64 skb_mstamp_ns; /* earliest departure time */
885 };
886 /*
887 * This is the control buffer. It is free to use for every
888 * layer. Please put your private variables there. If you
889 * want to keep them across layers you have to do a skb_clone()
890 * first. This is owned by whoever has the skb queued ATM.
891 */
892 char cb[48] __aligned(8);
893
894 union {
895 struct {
896 unsigned long _skb_refdst;
897 void (*destructor)(struct sk_buff *skb);
898 };
899 struct list_head tcp_tsorted_anchor;
900 #ifdef CONFIG_NET_SOCK_MSG
901 unsigned long _sk_redir;
902 #endif
903 };
904
905 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
906 unsigned long _nfct;
907 #endif
908 unsigned int len,
909 data_len;
910 __u16 mac_len,
911 hdr_len;
912
913 /* Following fields are _not_ copied in __copy_skb_header()
914 * Note that queue_mapping is here mostly to fill a hole.
915 */
916 __u16 queue_mapping;
917
918 /* if you move cloned around you also must adapt those constants */
919 #ifdef __BIG_ENDIAN_BITFIELD
920 #define CLONED_MASK (1 << 7)
921 #else
922 #define CLONED_MASK 1
923 #endif
924 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
925
926 /* private: */
927 __u8 __cloned_offset[0];
928 /* public: */
929 __u8 cloned:1,
930 nohdr:1,
931 fclone:2,
932 peeked:1,
933 head_frag:1,
934 pfmemalloc:1,
935 pp_recycle:1; /* page_pool recycle indicator */
936 #ifdef CONFIG_SKB_EXTENSIONS
937 __u8 active_extensions;
938 #endif
939
940 /* Fields enclosed in headers group are copied
941 * using a single memcpy() in __copy_skb_header()
942 */
943 struct_group(headers,
944
945 /* private: */
946 __u8 __pkt_type_offset[0];
947 /* public: */
948 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
949 __u8 ignore_df:1;
950 __u8 nf_trace:1;
951 __u8 ip_summed:2;
952 __u8 ooo_okay:1;
953
954 __u8 l4_hash:1;
955 __u8 sw_hash:1;
956 __u8 wifi_acked_valid:1;
957 __u8 wifi_acked:1;
958 __u8 no_fcs:1;
959 /* Indicates the inner headers are valid in the skbuff. */
960 __u8 encapsulation:1;
961 __u8 encap_hdr_csum:1;
962 __u8 csum_valid:1;
963
964 /* private: */
965 __u8 __pkt_vlan_present_offset[0];
966 /* public: */
967 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */
968 __u8 csum_complete_sw:1;
969 __u8 csum_level:2;
970 __u8 dst_pending_confirm:1;
971 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
972 #ifdef CONFIG_NET_CLS_ACT
973 __u8 tc_skip_classify:1;
974 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
975 #endif
976 #ifdef CONFIG_IPV6_NDISC_NODETYPE
977 __u8 ndisc_nodetype:2;
978 #endif
979
980 __u8 ipvs_property:1;
981 __u8 inner_protocol_type:1;
982 __u8 remcsum_offload:1;
983 #ifdef CONFIG_NET_SWITCHDEV
984 __u8 offload_fwd_mark:1;
985 __u8 offload_l3_fwd_mark:1;
986 #endif
987 __u8 redirected:1;
988 #ifdef CONFIG_NET_REDIRECT
989 __u8 from_ingress:1;
990 #endif
991 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
992 __u8 nf_skip_egress:1;
993 #endif
994 #ifdef CONFIG_TLS_DEVICE
995 __u8 decrypted:1;
996 #endif
997 __u8 slow_gro:1;
998 __u8 csum_not_inet:1;
999 __u8 scm_io_uring:1;
1000
1001 #ifdef CONFIG_NET_SCHED
1002 __u16 tc_index; /* traffic control index */
1003 #endif
1004
1005 union {
1006 __wsum csum;
1007 struct {
1008 __u16 csum_start;
1009 __u16 csum_offset;
1010 };
1011 };
1012 __u32 priority;
1013 int skb_iif;
1014 __u32 hash;
1015 __be16 vlan_proto;
1016 __u16 vlan_tci;
1017 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1018 union {
1019 unsigned int napi_id;
1020 unsigned int sender_cpu;
1021 };
1022 #endif
1023 u16 alloc_cpu;
1024 #ifdef CONFIG_NETWORK_SECMARK
1025 __u32 secmark;
1026 #endif
1027
1028 union {
1029 __u32 mark;
1030 __u32 reserved_tailroom;
1031 };
1032
1033 union {
1034 __be16 inner_protocol;
1035 __u8 inner_ipproto;
1036 };
1037
1038 __u16 inner_transport_header;
1039 __u16 inner_network_header;
1040 __u16 inner_mac_header;
1041
1042 __be16 protocol;
1043 __u16 transport_header;
1044 __u16 network_header;
1045 __u16 mac_header;
1046
1047 #ifdef CONFIG_KCOV
1048 u64 kcov_handle;
1049 #endif
1050
1051 ANDROID_KABI_RESERVE(1);
1052 ANDROID_KABI_RESERVE(2);
1053
1054 ); /* end headers group */
1055
1056 /* These elements must be at the end, see alloc_skb() for details. */
1057 sk_buff_data_t tail;
1058 sk_buff_data_t end;
1059 unsigned char *head,
1060 *data;
1061 unsigned int truesize;
1062 refcount_t users;
1063
1064 #ifdef CONFIG_SKB_EXTENSIONS
1065 /* only useable after checking ->active_extensions != 0 */
1066 struct skb_ext *extensions;
1067 #endif
1068 };
1069
1070 /* if you move pkt_type around you also must adapt those constants */
1071 #ifdef __BIG_ENDIAN_BITFIELD
1072 #define PKT_TYPE_MAX (7 << 5)
1073 #else
1074 #define PKT_TYPE_MAX 7
1075 #endif
1076 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1077
1078 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1079 * around, you also must adapt these constants.
1080 */
1081 #ifdef __BIG_ENDIAN_BITFIELD
1082 #define PKT_VLAN_PRESENT_BIT 7
1083 #define TC_AT_INGRESS_MASK (1 << 0)
1084 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1085 #else
1086 #define PKT_VLAN_PRESENT_BIT 0
1087 #define TC_AT_INGRESS_MASK (1 << 7)
1088 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1089 #endif
1090 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1091
1092 #ifdef __KERNEL__
1093 /*
1094 * Handling routines are only of interest to the kernel
1095 */
1096
1097 #define SKB_ALLOC_FCLONE 0x01
1098 #define SKB_ALLOC_RX 0x02
1099 #define SKB_ALLOC_NAPI 0x04
1100
1101 /**
1102 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1103 * @skb: buffer
1104 */
skb_pfmemalloc(const struct sk_buff * skb)1105 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1106 {
1107 return unlikely(skb->pfmemalloc);
1108 }
1109
1110 /*
1111 * skb might have a dst pointer attached, refcounted or not.
1112 * _skb_refdst low order bit is set if refcount was _not_ taken
1113 */
1114 #define SKB_DST_NOREF 1UL
1115 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1116
1117 /**
1118 * skb_dst - returns skb dst_entry
1119 * @skb: buffer
1120 *
1121 * Returns skb dst_entry, regardless of reference taken or not.
1122 */
skb_dst(const struct sk_buff * skb)1123 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1124 {
1125 /* If refdst was not refcounted, check we still are in a
1126 * rcu_read_lock section
1127 */
1128 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1129 !rcu_read_lock_held() &&
1130 !rcu_read_lock_bh_held());
1131 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1132 }
1133
1134 /**
1135 * skb_dst_set - sets skb dst
1136 * @skb: buffer
1137 * @dst: dst entry
1138 *
1139 * Sets skb dst, assuming a reference was taken on dst and should
1140 * be released by skb_dst_drop()
1141 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1142 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1143 {
1144 skb->slow_gro |= !!dst;
1145 skb->_skb_refdst = (unsigned long)dst;
1146 }
1147
1148 /**
1149 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1150 * @skb: buffer
1151 * @dst: dst entry
1152 *
1153 * Sets skb dst, assuming a reference was not taken on dst.
1154 * If dst entry is cached, we do not take reference and dst_release
1155 * will be avoided by refdst_drop. If dst entry is not cached, we take
1156 * reference, so that last dst_release can destroy the dst immediately.
1157 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1158 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1159 {
1160 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1161 skb->slow_gro |= !!dst;
1162 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1163 }
1164
1165 /**
1166 * skb_dst_is_noref - Test if skb dst isn't refcounted
1167 * @skb: buffer
1168 */
skb_dst_is_noref(const struct sk_buff * skb)1169 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1170 {
1171 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1172 }
1173
1174 /**
1175 * skb_rtable - Returns the skb &rtable
1176 * @skb: buffer
1177 */
skb_rtable(const struct sk_buff * skb)1178 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1179 {
1180 return (struct rtable *)skb_dst(skb);
1181 }
1182
1183 /* For mangling skb->pkt_type from user space side from applications
1184 * such as nft, tc, etc, we only allow a conservative subset of
1185 * possible pkt_types to be set.
1186 */
skb_pkt_type_ok(u32 ptype)1187 static inline bool skb_pkt_type_ok(u32 ptype)
1188 {
1189 return ptype <= PACKET_OTHERHOST;
1190 }
1191
1192 /**
1193 * skb_napi_id - Returns the skb's NAPI id
1194 * @skb: buffer
1195 */
skb_napi_id(const struct sk_buff * skb)1196 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1197 {
1198 #ifdef CONFIG_NET_RX_BUSY_POLL
1199 return skb->napi_id;
1200 #else
1201 return 0;
1202 #endif
1203 }
1204
1205 /**
1206 * skb_unref - decrement the skb's reference count
1207 * @skb: buffer
1208 *
1209 * Returns true if we can free the skb.
1210 */
skb_unref(struct sk_buff * skb)1211 static inline bool skb_unref(struct sk_buff *skb)
1212 {
1213 if (unlikely(!skb))
1214 return false;
1215 if (likely(refcount_read(&skb->users) == 1))
1216 smp_rmb();
1217 else if (likely(!refcount_dec_and_test(&skb->users)))
1218 return false;
1219
1220 return true;
1221 }
1222
1223 void __fix_address
1224 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1225
1226 /**
1227 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1228 * @skb: buffer to free
1229 */
kfree_skb(struct sk_buff * skb)1230 static inline void kfree_skb(struct sk_buff *skb)
1231 {
1232 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1233 }
1234
1235 void skb_release_head_state(struct sk_buff *skb);
1236 void kfree_skb_list_reason(struct sk_buff *segs,
1237 enum skb_drop_reason reason);
1238 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1239 void skb_tx_error(struct sk_buff *skb);
1240
kfree_skb_list(struct sk_buff * segs)1241 static inline void kfree_skb_list(struct sk_buff *segs)
1242 {
1243 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1244 }
1245
1246 #ifdef CONFIG_TRACEPOINTS
1247 void consume_skb(struct sk_buff *skb);
1248 #else
consume_skb(struct sk_buff * skb)1249 static inline void consume_skb(struct sk_buff *skb)
1250 {
1251 return kfree_skb(skb);
1252 }
1253 #endif
1254
1255 void __consume_stateless_skb(struct sk_buff *skb);
1256 void __kfree_skb(struct sk_buff *skb);
1257 extern struct kmem_cache *skbuff_head_cache;
1258
1259 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1260 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1261 bool *fragstolen, int *delta_truesize);
1262
1263 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1264 int node);
1265 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1266 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1267 struct sk_buff *build_skb_around(struct sk_buff *skb,
1268 void *data, unsigned int frag_size);
1269 void skb_attempt_defer_free(struct sk_buff *skb);
1270
1271 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1272
1273 /**
1274 * alloc_skb - allocate a network buffer
1275 * @size: size to allocate
1276 * @priority: allocation mask
1277 *
1278 * This function is a convenient wrapper around __alloc_skb().
1279 */
alloc_skb(unsigned int size,gfp_t priority)1280 static inline struct sk_buff *alloc_skb(unsigned int size,
1281 gfp_t priority)
1282 {
1283 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1284 }
1285
1286 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1287 unsigned long data_len,
1288 int max_page_order,
1289 int *errcode,
1290 gfp_t gfp_mask);
1291 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1292
1293 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1294 struct sk_buff_fclones {
1295 struct sk_buff skb1;
1296
1297 struct sk_buff skb2;
1298
1299 refcount_t fclone_ref;
1300 };
1301
1302 /**
1303 * skb_fclone_busy - check if fclone is busy
1304 * @sk: socket
1305 * @skb: buffer
1306 *
1307 * Returns true if skb is a fast clone, and its clone is not freed.
1308 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1309 * so we also check that this didnt happen.
1310 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1311 static inline bool skb_fclone_busy(const struct sock *sk,
1312 const struct sk_buff *skb)
1313 {
1314 const struct sk_buff_fclones *fclones;
1315
1316 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1317
1318 return skb->fclone == SKB_FCLONE_ORIG &&
1319 refcount_read(&fclones->fclone_ref) > 1 &&
1320 READ_ONCE(fclones->skb2.sk) == sk;
1321 }
1322
1323 /**
1324 * alloc_skb_fclone - allocate a network buffer from fclone cache
1325 * @size: size to allocate
1326 * @priority: allocation mask
1327 *
1328 * This function is a convenient wrapper around __alloc_skb().
1329 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1330 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1331 gfp_t priority)
1332 {
1333 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1334 }
1335
1336 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1337 void skb_headers_offset_update(struct sk_buff *skb, int off);
1338 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1339 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1340 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1342 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1343 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1344 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1345 gfp_t gfp_mask)
1346 {
1347 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1348 }
1349
1350 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1351 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1352 unsigned int headroom);
1353 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1354 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1355 int newtailroom, gfp_t priority);
1356 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1357 int offset, int len);
1358 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1359 int offset, int len);
1360 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1361 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1362
1363 /**
1364 * skb_pad - zero pad the tail of an skb
1365 * @skb: buffer to pad
1366 * @pad: space to pad
1367 *
1368 * Ensure that a buffer is followed by a padding area that is zero
1369 * filled. Used by network drivers which may DMA or transfer data
1370 * beyond the buffer end onto the wire.
1371 *
1372 * May return error in out of memory cases. The skb is freed on error.
1373 */
skb_pad(struct sk_buff * skb,int pad)1374 static inline int skb_pad(struct sk_buff *skb, int pad)
1375 {
1376 return __skb_pad(skb, pad, true);
1377 }
1378 #define dev_kfree_skb(a) consume_skb(a)
1379
1380 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1381 int offset, size_t size);
1382
1383 struct skb_seq_state {
1384 __u32 lower_offset;
1385 __u32 upper_offset;
1386 __u32 frag_idx;
1387 __u32 stepped_offset;
1388 struct sk_buff *root_skb;
1389 struct sk_buff *cur_skb;
1390 __u8 *frag_data;
1391 __u32 frag_off;
1392 };
1393
1394 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1395 unsigned int to, struct skb_seq_state *st);
1396 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1397 struct skb_seq_state *st);
1398 void skb_abort_seq_read(struct skb_seq_state *st);
1399
1400 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1401 unsigned int to, struct ts_config *config);
1402
1403 /*
1404 * Packet hash types specify the type of hash in skb_set_hash.
1405 *
1406 * Hash types refer to the protocol layer addresses which are used to
1407 * construct a packet's hash. The hashes are used to differentiate or identify
1408 * flows of the protocol layer for the hash type. Hash types are either
1409 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1410 *
1411 * Properties of hashes:
1412 *
1413 * 1) Two packets in different flows have different hash values
1414 * 2) Two packets in the same flow should have the same hash value
1415 *
1416 * A hash at a higher layer is considered to be more specific. A driver should
1417 * set the most specific hash possible.
1418 *
1419 * A driver cannot indicate a more specific hash than the layer at which a hash
1420 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1421 *
1422 * A driver may indicate a hash level which is less specific than the
1423 * actual layer the hash was computed on. For instance, a hash computed
1424 * at L4 may be considered an L3 hash. This should only be done if the
1425 * driver can't unambiguously determine that the HW computed the hash at
1426 * the higher layer. Note that the "should" in the second property above
1427 * permits this.
1428 */
1429 enum pkt_hash_types {
1430 PKT_HASH_TYPE_NONE, /* Undefined type */
1431 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1432 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1433 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1434 };
1435
skb_clear_hash(struct sk_buff * skb)1436 static inline void skb_clear_hash(struct sk_buff *skb)
1437 {
1438 skb->hash = 0;
1439 skb->sw_hash = 0;
1440 skb->l4_hash = 0;
1441 }
1442
skb_clear_hash_if_not_l4(struct sk_buff * skb)1443 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1444 {
1445 if (!skb->l4_hash)
1446 skb_clear_hash(skb);
1447 }
1448
1449 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1450 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1451 {
1452 skb->l4_hash = is_l4;
1453 skb->sw_hash = is_sw;
1454 skb->hash = hash;
1455 }
1456
1457 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1458 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1459 {
1460 /* Used by drivers to set hash from HW */
1461 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1462 }
1463
1464 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1465 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1466 {
1467 __skb_set_hash(skb, hash, true, is_l4);
1468 }
1469
1470 void __skb_get_hash(struct sk_buff *skb);
1471 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1472 u32 skb_get_poff(const struct sk_buff *skb);
1473 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1474 const struct flow_keys_basic *keys, int hlen);
1475 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1476 const void *data, int hlen_proto);
1477
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1478 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1479 int thoff, u8 ip_proto)
1480 {
1481 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1482 }
1483
1484 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1485 const struct flow_dissector_key *key,
1486 unsigned int key_count);
1487
1488 struct bpf_flow_dissector;
1489 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1490 __be16 proto, int nhoff, int hlen, unsigned int flags);
1491
1492 bool __skb_flow_dissect(const struct net *net,
1493 const struct sk_buff *skb,
1494 struct flow_dissector *flow_dissector,
1495 void *target_container, const void *data,
1496 __be16 proto, int nhoff, int hlen, unsigned int flags);
1497
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1498 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1499 struct flow_dissector *flow_dissector,
1500 void *target_container, unsigned int flags)
1501 {
1502 return __skb_flow_dissect(NULL, skb, flow_dissector,
1503 target_container, NULL, 0, 0, 0, flags);
1504 }
1505
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1506 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1507 struct flow_keys *flow,
1508 unsigned int flags)
1509 {
1510 memset(flow, 0, sizeof(*flow));
1511 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1512 flow, NULL, 0, 0, 0, flags);
1513 }
1514
1515 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1516 skb_flow_dissect_flow_keys_basic(const struct net *net,
1517 const struct sk_buff *skb,
1518 struct flow_keys_basic *flow,
1519 const void *data, __be16 proto,
1520 int nhoff, int hlen, unsigned int flags)
1521 {
1522 memset(flow, 0, sizeof(*flow));
1523 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1524 data, proto, nhoff, hlen, flags);
1525 }
1526
1527 void skb_flow_dissect_meta(const struct sk_buff *skb,
1528 struct flow_dissector *flow_dissector,
1529 void *target_container);
1530
1531 /* Gets a skb connection tracking info, ctinfo map should be a
1532 * map of mapsize to translate enum ip_conntrack_info states
1533 * to user states.
1534 */
1535 void
1536 skb_flow_dissect_ct(const struct sk_buff *skb,
1537 struct flow_dissector *flow_dissector,
1538 void *target_container,
1539 u16 *ctinfo_map, size_t mapsize,
1540 bool post_ct, u16 zone);
1541 void
1542 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1543 struct flow_dissector *flow_dissector,
1544 void *target_container);
1545
1546 void skb_flow_dissect_hash(const struct sk_buff *skb,
1547 struct flow_dissector *flow_dissector,
1548 void *target_container);
1549
skb_get_hash(struct sk_buff * skb)1550 static inline __u32 skb_get_hash(struct sk_buff *skb)
1551 {
1552 if (!skb->l4_hash && !skb->sw_hash)
1553 __skb_get_hash(skb);
1554
1555 return skb->hash;
1556 }
1557
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1558 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1559 {
1560 if (!skb->l4_hash && !skb->sw_hash) {
1561 struct flow_keys keys;
1562 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1563
1564 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1565 }
1566
1567 return skb->hash;
1568 }
1569
1570 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1571 const siphash_key_t *perturb);
1572
skb_get_hash_raw(const struct sk_buff * skb)1573 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1574 {
1575 return skb->hash;
1576 }
1577
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1578 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1579 {
1580 to->hash = from->hash;
1581 to->sw_hash = from->sw_hash;
1582 to->l4_hash = from->l4_hash;
1583 };
1584
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1585 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1586 const struct sk_buff *skb2)
1587 {
1588 #ifdef CONFIG_TLS_DEVICE
1589 return skb2->decrypted - skb1->decrypted;
1590 #else
1591 return 0;
1592 #endif
1593 }
1594
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1595 static inline void skb_copy_decrypted(struct sk_buff *to,
1596 const struct sk_buff *from)
1597 {
1598 #ifdef CONFIG_TLS_DEVICE
1599 to->decrypted = from->decrypted;
1600 #endif
1601 }
1602
1603 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1604 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1605 {
1606 return skb->head + skb->end;
1607 }
1608
skb_end_offset(const struct sk_buff * skb)1609 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1610 {
1611 return skb->end;
1612 }
1613
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1614 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1615 {
1616 skb->end = offset;
1617 }
1618 #else
skb_end_pointer(const struct sk_buff * skb)1619 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1620 {
1621 return skb->end;
1622 }
1623
skb_end_offset(const struct sk_buff * skb)1624 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1625 {
1626 return skb->end - skb->head;
1627 }
1628
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1629 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1630 {
1631 skb->end = skb->head + offset;
1632 }
1633 #endif
1634
1635 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1636 struct ubuf_info *uarg);
1637
1638 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1639
1640 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1641 bool success);
1642
1643 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1644 struct sk_buff *skb, struct iov_iter *from,
1645 size_t length);
1646
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1647 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1648 struct msghdr *msg, int len)
1649 {
1650 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1651 }
1652
1653 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1654 struct msghdr *msg, int len,
1655 struct ubuf_info *uarg);
1656
1657 /* Internal */
1658 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1659
skb_hwtstamps(struct sk_buff * skb)1660 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1661 {
1662 return &skb_shinfo(skb)->hwtstamps;
1663 }
1664
skb_zcopy(struct sk_buff * skb)1665 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1666 {
1667 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1668
1669 return is_zcopy ? skb_uarg(skb) : NULL;
1670 }
1671
skb_zcopy_pure(const struct sk_buff * skb)1672 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1673 {
1674 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1675 }
1676
skb_zcopy_managed(const struct sk_buff * skb)1677 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1678 {
1679 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1680 }
1681
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1682 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1683 const struct sk_buff *skb2)
1684 {
1685 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1686 }
1687
net_zcopy_get(struct ubuf_info * uarg)1688 static inline void net_zcopy_get(struct ubuf_info *uarg)
1689 {
1690 refcount_inc(&uarg->refcnt);
1691 }
1692
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1693 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1694 {
1695 skb_shinfo(skb)->destructor_arg = uarg;
1696 skb_shinfo(skb)->flags |= uarg->flags;
1697 }
1698
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1699 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1700 bool *have_ref)
1701 {
1702 if (skb && uarg && !skb_zcopy(skb)) {
1703 if (unlikely(have_ref && *have_ref))
1704 *have_ref = false;
1705 else
1706 net_zcopy_get(uarg);
1707 skb_zcopy_init(skb, uarg);
1708 }
1709 }
1710
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1711 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1712 {
1713 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1714 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1715 }
1716
skb_zcopy_is_nouarg(struct sk_buff * skb)1717 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1718 {
1719 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1720 }
1721
skb_zcopy_get_nouarg(struct sk_buff * skb)1722 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1723 {
1724 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1725 }
1726
net_zcopy_put(struct ubuf_info * uarg)1727 static inline void net_zcopy_put(struct ubuf_info *uarg)
1728 {
1729 if (uarg)
1730 uarg->callback(NULL, uarg, true);
1731 }
1732
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1733 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1734 {
1735 if (uarg) {
1736 if (uarg->callback == msg_zerocopy_callback)
1737 msg_zerocopy_put_abort(uarg, have_uref);
1738 else if (have_uref)
1739 net_zcopy_put(uarg);
1740 }
1741 }
1742
1743 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1744 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1745 {
1746 struct ubuf_info *uarg = skb_zcopy(skb);
1747
1748 if (uarg) {
1749 if (!skb_zcopy_is_nouarg(skb))
1750 uarg->callback(skb, uarg, zerocopy_success);
1751
1752 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1753 }
1754 }
1755
1756 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1757
skb_zcopy_downgrade_managed(struct sk_buff * skb)1758 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1759 {
1760 if (unlikely(skb_zcopy_managed(skb)))
1761 __skb_zcopy_downgrade_managed(skb);
1762 }
1763
skb_mark_not_on_list(struct sk_buff * skb)1764 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1765 {
1766 skb->next = NULL;
1767 }
1768
1769 /* Iterate through singly-linked GSO fragments of an skb. */
1770 #define skb_list_walk_safe(first, skb, next_skb) \
1771 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1772 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1773
skb_list_del_init(struct sk_buff * skb)1774 static inline void skb_list_del_init(struct sk_buff *skb)
1775 {
1776 __list_del_entry(&skb->list);
1777 skb_mark_not_on_list(skb);
1778 }
1779
1780 /**
1781 * skb_queue_empty - check if a queue is empty
1782 * @list: queue head
1783 *
1784 * Returns true if the queue is empty, false otherwise.
1785 */
skb_queue_empty(const struct sk_buff_head * list)1786 static inline int skb_queue_empty(const struct sk_buff_head *list)
1787 {
1788 return list->next == (const struct sk_buff *) list;
1789 }
1790
1791 /**
1792 * skb_queue_empty_lockless - check if a queue is empty
1793 * @list: queue head
1794 *
1795 * Returns true if the queue is empty, false otherwise.
1796 * This variant can be used in lockless contexts.
1797 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1798 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1799 {
1800 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1801 }
1802
1803
1804 /**
1805 * skb_queue_is_last - check if skb is the last entry in the queue
1806 * @list: queue head
1807 * @skb: buffer
1808 *
1809 * Returns true if @skb is the last buffer on the list.
1810 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1811 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1812 const struct sk_buff *skb)
1813 {
1814 return skb->next == (const struct sk_buff *) list;
1815 }
1816
1817 /**
1818 * skb_queue_is_first - check if skb is the first entry in the queue
1819 * @list: queue head
1820 * @skb: buffer
1821 *
1822 * Returns true if @skb is the first buffer on the list.
1823 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1824 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1825 const struct sk_buff *skb)
1826 {
1827 return skb->prev == (const struct sk_buff *) list;
1828 }
1829
1830 /**
1831 * skb_queue_next - return the next packet in the queue
1832 * @list: queue head
1833 * @skb: current buffer
1834 *
1835 * Return the next packet in @list after @skb. It is only valid to
1836 * call this if skb_queue_is_last() evaluates to false.
1837 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1838 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1839 const struct sk_buff *skb)
1840 {
1841 /* This BUG_ON may seem severe, but if we just return then we
1842 * are going to dereference garbage.
1843 */
1844 BUG_ON(skb_queue_is_last(list, skb));
1845 return skb->next;
1846 }
1847
1848 /**
1849 * skb_queue_prev - return the prev packet in the queue
1850 * @list: queue head
1851 * @skb: current buffer
1852 *
1853 * Return the prev packet in @list before @skb. It is only valid to
1854 * call this if skb_queue_is_first() evaluates to false.
1855 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1856 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1857 const struct sk_buff *skb)
1858 {
1859 /* This BUG_ON may seem severe, but if we just return then we
1860 * are going to dereference garbage.
1861 */
1862 BUG_ON(skb_queue_is_first(list, skb));
1863 return skb->prev;
1864 }
1865
1866 /**
1867 * skb_get - reference buffer
1868 * @skb: buffer to reference
1869 *
1870 * Makes another reference to a socket buffer and returns a pointer
1871 * to the buffer.
1872 */
skb_get(struct sk_buff * skb)1873 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1874 {
1875 refcount_inc(&skb->users);
1876 return skb;
1877 }
1878
1879 /*
1880 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1881 */
1882
1883 /**
1884 * skb_cloned - is the buffer a clone
1885 * @skb: buffer to check
1886 *
1887 * Returns true if the buffer was generated with skb_clone() and is
1888 * one of multiple shared copies of the buffer. Cloned buffers are
1889 * shared data so must not be written to under normal circumstances.
1890 */
skb_cloned(const struct sk_buff * skb)1891 static inline int skb_cloned(const struct sk_buff *skb)
1892 {
1893 return skb->cloned &&
1894 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1895 }
1896
skb_unclone(struct sk_buff * skb,gfp_t pri)1897 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1898 {
1899 might_sleep_if(gfpflags_allow_blocking(pri));
1900
1901 if (skb_cloned(skb))
1902 return pskb_expand_head(skb, 0, 0, pri);
1903
1904 return 0;
1905 }
1906
1907 /* This variant of skb_unclone() makes sure skb->truesize
1908 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1909 *
1910 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1911 * when various debugging features are in place.
1912 */
1913 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1914 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1915 {
1916 might_sleep_if(gfpflags_allow_blocking(pri));
1917
1918 if (skb_cloned(skb))
1919 return __skb_unclone_keeptruesize(skb, pri);
1920 return 0;
1921 }
1922
1923 /**
1924 * skb_header_cloned - is the header a clone
1925 * @skb: buffer to check
1926 *
1927 * Returns true if modifying the header part of the buffer requires
1928 * the data to be copied.
1929 */
skb_header_cloned(const struct sk_buff * skb)1930 static inline int skb_header_cloned(const struct sk_buff *skb)
1931 {
1932 int dataref;
1933
1934 if (!skb->cloned)
1935 return 0;
1936
1937 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1938 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1939 return dataref != 1;
1940 }
1941
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1942 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1943 {
1944 might_sleep_if(gfpflags_allow_blocking(pri));
1945
1946 if (skb_header_cloned(skb))
1947 return pskb_expand_head(skb, 0, 0, pri);
1948
1949 return 0;
1950 }
1951
1952 /**
1953 * __skb_header_release() - allow clones to use the headroom
1954 * @skb: buffer to operate on
1955 *
1956 * See "DOC: dataref and headerless skbs".
1957 */
__skb_header_release(struct sk_buff * skb)1958 static inline void __skb_header_release(struct sk_buff *skb)
1959 {
1960 skb->nohdr = 1;
1961 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1962 }
1963
1964
1965 /**
1966 * skb_shared - is the buffer shared
1967 * @skb: buffer to check
1968 *
1969 * Returns true if more than one person has a reference to this
1970 * buffer.
1971 */
skb_shared(const struct sk_buff * skb)1972 static inline int skb_shared(const struct sk_buff *skb)
1973 {
1974 return refcount_read(&skb->users) != 1;
1975 }
1976
1977 /**
1978 * skb_share_check - check if buffer is shared and if so clone it
1979 * @skb: buffer to check
1980 * @pri: priority for memory allocation
1981 *
1982 * If the buffer is shared the buffer is cloned and the old copy
1983 * drops a reference. A new clone with a single reference is returned.
1984 * If the buffer is not shared the original buffer is returned. When
1985 * being called from interrupt status or with spinlocks held pri must
1986 * be GFP_ATOMIC.
1987 *
1988 * NULL is returned on a memory allocation failure.
1989 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1990 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1991 {
1992 might_sleep_if(gfpflags_allow_blocking(pri));
1993 if (skb_shared(skb)) {
1994 struct sk_buff *nskb = skb_clone(skb, pri);
1995
1996 if (likely(nskb))
1997 consume_skb(skb);
1998 else
1999 kfree_skb(skb);
2000 skb = nskb;
2001 }
2002 return skb;
2003 }
2004
2005 /*
2006 * Copy shared buffers into a new sk_buff. We effectively do COW on
2007 * packets to handle cases where we have a local reader and forward
2008 * and a couple of other messy ones. The normal one is tcpdumping
2009 * a packet thats being forwarded.
2010 */
2011
2012 /**
2013 * skb_unshare - make a copy of a shared buffer
2014 * @skb: buffer to check
2015 * @pri: priority for memory allocation
2016 *
2017 * If the socket buffer is a clone then this function creates a new
2018 * copy of the data, drops a reference count on the old copy and returns
2019 * the new copy with the reference count at 1. If the buffer is not a clone
2020 * the original buffer is returned. When called with a spinlock held or
2021 * from interrupt state @pri must be %GFP_ATOMIC
2022 *
2023 * %NULL is returned on a memory allocation failure.
2024 */
skb_unshare(struct sk_buff * skb,gfp_t pri)2025 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2026 gfp_t pri)
2027 {
2028 might_sleep_if(gfpflags_allow_blocking(pri));
2029 if (skb_cloned(skb)) {
2030 struct sk_buff *nskb = skb_copy(skb, pri);
2031
2032 /* Free our shared copy */
2033 if (likely(nskb))
2034 consume_skb(skb);
2035 else
2036 kfree_skb(skb);
2037 skb = nskb;
2038 }
2039 return skb;
2040 }
2041
2042 /**
2043 * skb_peek - peek at the head of an &sk_buff_head
2044 * @list_: list to peek at
2045 *
2046 * Peek an &sk_buff. Unlike most other operations you _MUST_
2047 * be careful with this one. A peek leaves the buffer on the
2048 * list and someone else may run off with it. You must hold
2049 * the appropriate locks or have a private queue to do this.
2050 *
2051 * Returns %NULL for an empty list or a pointer to the head element.
2052 * The reference count is not incremented and the reference is therefore
2053 * volatile. Use with caution.
2054 */
skb_peek(const struct sk_buff_head * list_)2055 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2056 {
2057 struct sk_buff *skb = list_->next;
2058
2059 if (skb == (struct sk_buff *)list_)
2060 skb = NULL;
2061 return skb;
2062 }
2063
2064 /**
2065 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2066 * @list_: list to peek at
2067 *
2068 * Like skb_peek(), but the caller knows that the list is not empty.
2069 */
__skb_peek(const struct sk_buff_head * list_)2070 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2071 {
2072 return list_->next;
2073 }
2074
2075 /**
2076 * skb_peek_next - peek skb following the given one from a queue
2077 * @skb: skb to start from
2078 * @list_: list to peek at
2079 *
2080 * Returns %NULL when the end of the list is met or a pointer to the
2081 * next element. The reference count is not incremented and the
2082 * reference is therefore volatile. Use with caution.
2083 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2084 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2085 const struct sk_buff_head *list_)
2086 {
2087 struct sk_buff *next = skb->next;
2088
2089 if (next == (struct sk_buff *)list_)
2090 next = NULL;
2091 return next;
2092 }
2093
2094 /**
2095 * skb_peek_tail - peek at the tail of an &sk_buff_head
2096 * @list_: list to peek at
2097 *
2098 * Peek an &sk_buff. Unlike most other operations you _MUST_
2099 * be careful with this one. A peek leaves the buffer on the
2100 * list and someone else may run off with it. You must hold
2101 * the appropriate locks or have a private queue to do this.
2102 *
2103 * Returns %NULL for an empty list or a pointer to the tail element.
2104 * The reference count is not incremented and the reference is therefore
2105 * volatile. Use with caution.
2106 */
skb_peek_tail(const struct sk_buff_head * list_)2107 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2108 {
2109 struct sk_buff *skb = READ_ONCE(list_->prev);
2110
2111 if (skb == (struct sk_buff *)list_)
2112 skb = NULL;
2113 return skb;
2114
2115 }
2116
2117 /**
2118 * skb_queue_len - get queue length
2119 * @list_: list to measure
2120 *
2121 * Return the length of an &sk_buff queue.
2122 */
skb_queue_len(const struct sk_buff_head * list_)2123 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2124 {
2125 return list_->qlen;
2126 }
2127
2128 /**
2129 * skb_queue_len_lockless - get queue length
2130 * @list_: list to measure
2131 *
2132 * Return the length of an &sk_buff queue.
2133 * This variant can be used in lockless contexts.
2134 */
skb_queue_len_lockless(const struct sk_buff_head * list_)2135 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2136 {
2137 return READ_ONCE(list_->qlen);
2138 }
2139
2140 /**
2141 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2142 * @list: queue to initialize
2143 *
2144 * This initializes only the list and queue length aspects of
2145 * an sk_buff_head object. This allows to initialize the list
2146 * aspects of an sk_buff_head without reinitializing things like
2147 * the spinlock. It can also be used for on-stack sk_buff_head
2148 * objects where the spinlock is known to not be used.
2149 */
__skb_queue_head_init(struct sk_buff_head * list)2150 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2151 {
2152 list->prev = list->next = (struct sk_buff *)list;
2153 list->qlen = 0;
2154 }
2155
2156 /*
2157 * This function creates a split out lock class for each invocation;
2158 * this is needed for now since a whole lot of users of the skb-queue
2159 * infrastructure in drivers have different locking usage (in hardirq)
2160 * than the networking core (in softirq only). In the long run either the
2161 * network layer or drivers should need annotation to consolidate the
2162 * main types of usage into 3 classes.
2163 */
skb_queue_head_init(struct sk_buff_head * list)2164 static inline void skb_queue_head_init(struct sk_buff_head *list)
2165 {
2166 spin_lock_init(&list->lock);
2167 __skb_queue_head_init(list);
2168 }
2169
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2170 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2171 struct lock_class_key *class)
2172 {
2173 skb_queue_head_init(list);
2174 lockdep_set_class(&list->lock, class);
2175 }
2176
2177 /*
2178 * Insert an sk_buff on a list.
2179 *
2180 * The "__skb_xxxx()" functions are the non-atomic ones that
2181 * can only be called with interrupts disabled.
2182 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2183 static inline void __skb_insert(struct sk_buff *newsk,
2184 struct sk_buff *prev, struct sk_buff *next,
2185 struct sk_buff_head *list)
2186 {
2187 /* See skb_queue_empty_lockless() and skb_peek_tail()
2188 * for the opposite READ_ONCE()
2189 */
2190 WRITE_ONCE(newsk->next, next);
2191 WRITE_ONCE(newsk->prev, prev);
2192 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2193 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2194 WRITE_ONCE(list->qlen, list->qlen + 1);
2195 }
2196
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2197 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2198 struct sk_buff *prev,
2199 struct sk_buff *next)
2200 {
2201 struct sk_buff *first = list->next;
2202 struct sk_buff *last = list->prev;
2203
2204 WRITE_ONCE(first->prev, prev);
2205 WRITE_ONCE(prev->next, first);
2206
2207 WRITE_ONCE(last->next, next);
2208 WRITE_ONCE(next->prev, last);
2209 }
2210
2211 /**
2212 * skb_queue_splice - join two skb lists, this is designed for stacks
2213 * @list: the new list to add
2214 * @head: the place to add it in the first list
2215 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2216 static inline void skb_queue_splice(const struct sk_buff_head *list,
2217 struct sk_buff_head *head)
2218 {
2219 if (!skb_queue_empty(list)) {
2220 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2221 head->qlen += list->qlen;
2222 }
2223 }
2224
2225 /**
2226 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2227 * @list: the new list to add
2228 * @head: the place to add it in the first list
2229 *
2230 * The list at @list is reinitialised
2231 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2232 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2233 struct sk_buff_head *head)
2234 {
2235 if (!skb_queue_empty(list)) {
2236 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2237 head->qlen += list->qlen;
2238 __skb_queue_head_init(list);
2239 }
2240 }
2241
2242 /**
2243 * skb_queue_splice_tail - join two skb lists, each list being a queue
2244 * @list: the new list to add
2245 * @head: the place to add it in the first list
2246 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2247 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2248 struct sk_buff_head *head)
2249 {
2250 if (!skb_queue_empty(list)) {
2251 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2252 head->qlen += list->qlen;
2253 }
2254 }
2255
2256 /**
2257 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2258 * @list: the new list to add
2259 * @head: the place to add it in the first list
2260 *
2261 * Each of the lists is a queue.
2262 * The list at @list is reinitialised
2263 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2264 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2265 struct sk_buff_head *head)
2266 {
2267 if (!skb_queue_empty(list)) {
2268 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2269 head->qlen += list->qlen;
2270 __skb_queue_head_init(list);
2271 }
2272 }
2273
2274 /**
2275 * __skb_queue_after - queue a buffer at the list head
2276 * @list: list to use
2277 * @prev: place after this buffer
2278 * @newsk: buffer to queue
2279 *
2280 * Queue a buffer int the middle of a list. This function takes no locks
2281 * and you must therefore hold required locks before calling it.
2282 *
2283 * A buffer cannot be placed on two lists at the same time.
2284 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2285 static inline void __skb_queue_after(struct sk_buff_head *list,
2286 struct sk_buff *prev,
2287 struct sk_buff *newsk)
2288 {
2289 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2290 }
2291
2292 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2293 struct sk_buff_head *list);
2294
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2295 static inline void __skb_queue_before(struct sk_buff_head *list,
2296 struct sk_buff *next,
2297 struct sk_buff *newsk)
2298 {
2299 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2300 }
2301
2302 /**
2303 * __skb_queue_head - queue a buffer at the list head
2304 * @list: list to use
2305 * @newsk: buffer to queue
2306 *
2307 * Queue a buffer at the start of a list. This function takes no locks
2308 * and you must therefore hold required locks before calling it.
2309 *
2310 * A buffer cannot be placed on two lists at the same time.
2311 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2312 static inline void __skb_queue_head(struct sk_buff_head *list,
2313 struct sk_buff *newsk)
2314 {
2315 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2316 }
2317 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2318
2319 /**
2320 * __skb_queue_tail - queue a buffer at the list tail
2321 * @list: list to use
2322 * @newsk: buffer to queue
2323 *
2324 * Queue a buffer at the end of a list. This function takes no locks
2325 * and you must therefore hold required locks before calling it.
2326 *
2327 * A buffer cannot be placed on two lists at the same time.
2328 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2329 static inline void __skb_queue_tail(struct sk_buff_head *list,
2330 struct sk_buff *newsk)
2331 {
2332 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2333 }
2334 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2335
2336 /*
2337 * remove sk_buff from list. _Must_ be called atomically, and with
2338 * the list known..
2339 */
2340 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2341 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2342 {
2343 struct sk_buff *next, *prev;
2344
2345 WRITE_ONCE(list->qlen, list->qlen - 1);
2346 next = skb->next;
2347 prev = skb->prev;
2348 skb->next = skb->prev = NULL;
2349 WRITE_ONCE(next->prev, prev);
2350 WRITE_ONCE(prev->next, next);
2351 }
2352
2353 /**
2354 * __skb_dequeue - remove from the head of the queue
2355 * @list: list to dequeue from
2356 *
2357 * Remove the head of the list. This function does not take any locks
2358 * so must be used with appropriate locks held only. The head item is
2359 * returned or %NULL if the list is empty.
2360 */
__skb_dequeue(struct sk_buff_head * list)2361 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2362 {
2363 struct sk_buff *skb = skb_peek(list);
2364 if (skb)
2365 __skb_unlink(skb, list);
2366 return skb;
2367 }
2368 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2369
2370 /**
2371 * __skb_dequeue_tail - remove from the tail of the queue
2372 * @list: list to dequeue from
2373 *
2374 * Remove the tail of the list. This function does not take any locks
2375 * so must be used with appropriate locks held only. The tail item is
2376 * returned or %NULL if the list is empty.
2377 */
__skb_dequeue_tail(struct sk_buff_head * list)2378 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2379 {
2380 struct sk_buff *skb = skb_peek_tail(list);
2381 if (skb)
2382 __skb_unlink(skb, list);
2383 return skb;
2384 }
2385 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2386
2387
skb_is_nonlinear(const struct sk_buff * skb)2388 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2389 {
2390 return skb->data_len;
2391 }
2392
skb_headlen(const struct sk_buff * skb)2393 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2394 {
2395 return skb->len - skb->data_len;
2396 }
2397
__skb_pagelen(const struct sk_buff * skb)2398 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2399 {
2400 unsigned int i, len = 0;
2401
2402 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2403 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2404 return len;
2405 }
2406
skb_pagelen(const struct sk_buff * skb)2407 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2408 {
2409 return skb_headlen(skb) + __skb_pagelen(skb);
2410 }
2411
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2412 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2413 int i, struct page *page,
2414 int off, int size)
2415 {
2416 skb_frag_t *frag = &shinfo->frags[i];
2417
2418 /*
2419 * Propagate page pfmemalloc to the skb if we can. The problem is
2420 * that not all callers have unique ownership of the page but rely
2421 * on page_is_pfmemalloc doing the right thing(tm).
2422 */
2423 frag->bv_page = page;
2424 frag->bv_offset = off;
2425 skb_frag_size_set(frag, size);
2426 }
2427
2428 /**
2429 * skb_len_add - adds a number to len fields of skb
2430 * @skb: buffer to add len to
2431 * @delta: number of bytes to add
2432 */
skb_len_add(struct sk_buff * skb,int delta)2433 static inline void skb_len_add(struct sk_buff *skb, int delta)
2434 {
2435 skb->len += delta;
2436 skb->data_len += delta;
2437 skb->truesize += delta;
2438 }
2439
2440 /**
2441 * __skb_fill_page_desc - initialise a paged fragment in an skb
2442 * @skb: buffer containing fragment to be initialised
2443 * @i: paged fragment index to initialise
2444 * @page: the page to use for this fragment
2445 * @off: the offset to the data with @page
2446 * @size: the length of the data
2447 *
2448 * Initialises the @i'th fragment of @skb to point to &size bytes at
2449 * offset @off within @page.
2450 *
2451 * Does not take any additional reference on the fragment.
2452 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2453 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2454 struct page *page, int off, int size)
2455 {
2456 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2457 page = compound_head(page);
2458 if (page_is_pfmemalloc(page))
2459 skb->pfmemalloc = true;
2460 }
2461
2462 /**
2463 * skb_fill_page_desc - initialise a paged fragment in an skb
2464 * @skb: buffer containing fragment to be initialised
2465 * @i: paged fragment index to initialise
2466 * @page: the page to use for this fragment
2467 * @off: the offset to the data with @page
2468 * @size: the length of the data
2469 *
2470 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2471 * @skb to point to @size bytes at offset @off within @page. In
2472 * addition updates @skb such that @i is the last fragment.
2473 *
2474 * Does not take any additional reference on the fragment.
2475 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2476 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2477 struct page *page, int off, int size)
2478 {
2479 __skb_fill_page_desc(skb, i, page, off, size);
2480 skb_shinfo(skb)->nr_frags = i + 1;
2481 }
2482
2483 /**
2484 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2485 * @skb: buffer containing fragment to be initialised
2486 * @i: paged fragment index to initialise
2487 * @page: the page to use for this fragment
2488 * @off: the offset to the data with @page
2489 * @size: the length of the data
2490 *
2491 * Variant of skb_fill_page_desc() which does not deal with
2492 * pfmemalloc, if page is not owned by us.
2493 */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2494 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2495 struct page *page, int off,
2496 int size)
2497 {
2498 struct skb_shared_info *shinfo = skb_shinfo(skb);
2499
2500 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2501 shinfo->nr_frags = i + 1;
2502 }
2503
2504 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2505 int size, unsigned int truesize);
2506
2507 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2508 unsigned int truesize);
2509
2510 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2511
2512 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2513 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2514 {
2515 return skb->head + skb->tail;
2516 }
2517
skb_reset_tail_pointer(struct sk_buff * skb)2518 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2519 {
2520 skb->tail = skb->data - skb->head;
2521 }
2522
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2523 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2524 {
2525 skb_reset_tail_pointer(skb);
2526 skb->tail += offset;
2527 }
2528
2529 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2530 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2531 {
2532 return skb->tail;
2533 }
2534
skb_reset_tail_pointer(struct sk_buff * skb)2535 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2536 {
2537 skb->tail = skb->data;
2538 }
2539
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2540 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2541 {
2542 skb->tail = skb->data + offset;
2543 }
2544
2545 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2546
skb_assert_len(struct sk_buff * skb)2547 static inline void skb_assert_len(struct sk_buff *skb)
2548 {
2549 #ifdef CONFIG_DEBUG_NET
2550 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2551 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2552 #endif /* CONFIG_DEBUG_NET */
2553 }
2554
2555 /*
2556 * Add data to an sk_buff
2557 */
2558 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2559 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2560 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2561 {
2562 void *tmp = skb_tail_pointer(skb);
2563 SKB_LINEAR_ASSERT(skb);
2564 skb->tail += len;
2565 skb->len += len;
2566 return tmp;
2567 }
2568
__skb_put_zero(struct sk_buff * skb,unsigned int len)2569 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2570 {
2571 void *tmp = __skb_put(skb, len);
2572
2573 memset(tmp, 0, len);
2574 return tmp;
2575 }
2576
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2577 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2578 unsigned int len)
2579 {
2580 void *tmp = __skb_put(skb, len);
2581
2582 memcpy(tmp, data, len);
2583 return tmp;
2584 }
2585
__skb_put_u8(struct sk_buff * skb,u8 val)2586 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2587 {
2588 *(u8 *)__skb_put(skb, 1) = val;
2589 }
2590
skb_put_zero(struct sk_buff * skb,unsigned int len)2591 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2592 {
2593 void *tmp = skb_put(skb, len);
2594
2595 memset(tmp, 0, len);
2596
2597 return tmp;
2598 }
2599
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2600 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2601 unsigned int len)
2602 {
2603 void *tmp = skb_put(skb, len);
2604
2605 memcpy(tmp, data, len);
2606
2607 return tmp;
2608 }
2609
skb_put_u8(struct sk_buff * skb,u8 val)2610 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2611 {
2612 *(u8 *)skb_put(skb, 1) = val;
2613 }
2614
2615 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2616 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2617 {
2618 skb->data -= len;
2619 skb->len += len;
2620 return skb->data;
2621 }
2622
2623 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2624 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2625 {
2626 skb->len -= len;
2627 if (unlikely(skb->len < skb->data_len)) {
2628 #if defined(CONFIG_DEBUG_NET)
2629 skb->len += len;
2630 pr_err("__skb_pull(len=%u)\n", len);
2631 skb_dump(KERN_ERR, skb, false);
2632 #endif
2633 BUG();
2634 }
2635 return skb->data += len;
2636 }
2637
skb_pull_inline(struct sk_buff * skb,unsigned int len)2638 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2639 {
2640 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2641 }
2642
2643 void *skb_pull_data(struct sk_buff *skb, size_t len);
2644
2645 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2646
pskb_may_pull(struct sk_buff * skb,unsigned int len)2647 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2648 {
2649 if (likely(len <= skb_headlen(skb)))
2650 return true;
2651 if (unlikely(len > skb->len))
2652 return false;
2653 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2654 }
2655
pskb_pull(struct sk_buff * skb,unsigned int len)2656 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2657 {
2658 if (!pskb_may_pull(skb, len))
2659 return NULL;
2660
2661 skb->len -= len;
2662 return skb->data += len;
2663 }
2664
2665 void skb_condense(struct sk_buff *skb);
2666
2667 /**
2668 * skb_headroom - bytes at buffer head
2669 * @skb: buffer to check
2670 *
2671 * Return the number of bytes of free space at the head of an &sk_buff.
2672 */
skb_headroom(const struct sk_buff * skb)2673 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2674 {
2675 return skb->data - skb->head;
2676 }
2677
2678 /**
2679 * skb_tailroom - bytes at buffer end
2680 * @skb: buffer to check
2681 *
2682 * Return the number of bytes of free space at the tail of an sk_buff
2683 */
skb_tailroom(const struct sk_buff * skb)2684 static inline int skb_tailroom(const struct sk_buff *skb)
2685 {
2686 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2687 }
2688
2689 /**
2690 * skb_availroom - bytes at buffer end
2691 * @skb: buffer to check
2692 *
2693 * Return the number of bytes of free space at the tail of an sk_buff
2694 * allocated by sk_stream_alloc()
2695 */
skb_availroom(const struct sk_buff * skb)2696 static inline int skb_availroom(const struct sk_buff *skb)
2697 {
2698 if (skb_is_nonlinear(skb))
2699 return 0;
2700
2701 return skb->end - skb->tail - skb->reserved_tailroom;
2702 }
2703
2704 /**
2705 * skb_reserve - adjust headroom
2706 * @skb: buffer to alter
2707 * @len: bytes to move
2708 *
2709 * Increase the headroom of an empty &sk_buff by reducing the tail
2710 * room. This is only allowed for an empty buffer.
2711 */
skb_reserve(struct sk_buff * skb,int len)2712 static inline void skb_reserve(struct sk_buff *skb, int len)
2713 {
2714 skb->data += len;
2715 skb->tail += len;
2716 }
2717
2718 /**
2719 * skb_tailroom_reserve - adjust reserved_tailroom
2720 * @skb: buffer to alter
2721 * @mtu: maximum amount of headlen permitted
2722 * @needed_tailroom: minimum amount of reserved_tailroom
2723 *
2724 * Set reserved_tailroom so that headlen can be as large as possible but
2725 * not larger than mtu and tailroom cannot be smaller than
2726 * needed_tailroom.
2727 * The required headroom should already have been reserved before using
2728 * this function.
2729 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2730 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2731 unsigned int needed_tailroom)
2732 {
2733 SKB_LINEAR_ASSERT(skb);
2734 if (mtu < skb_tailroom(skb) - needed_tailroom)
2735 /* use at most mtu */
2736 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2737 else
2738 /* use up to all available space */
2739 skb->reserved_tailroom = needed_tailroom;
2740 }
2741
2742 #define ENCAP_TYPE_ETHER 0
2743 #define ENCAP_TYPE_IPPROTO 1
2744
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2745 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2746 __be16 protocol)
2747 {
2748 skb->inner_protocol = protocol;
2749 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2750 }
2751
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2752 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2753 __u8 ipproto)
2754 {
2755 skb->inner_ipproto = ipproto;
2756 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2757 }
2758
skb_reset_inner_headers(struct sk_buff * skb)2759 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2760 {
2761 skb->inner_mac_header = skb->mac_header;
2762 skb->inner_network_header = skb->network_header;
2763 skb->inner_transport_header = skb->transport_header;
2764 }
2765
skb_reset_mac_len(struct sk_buff * skb)2766 static inline void skb_reset_mac_len(struct sk_buff *skb)
2767 {
2768 skb->mac_len = skb->network_header - skb->mac_header;
2769 }
2770
skb_inner_transport_header(const struct sk_buff * skb)2771 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2772 *skb)
2773 {
2774 return skb->head + skb->inner_transport_header;
2775 }
2776
skb_inner_transport_offset(const struct sk_buff * skb)2777 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2778 {
2779 return skb_inner_transport_header(skb) - skb->data;
2780 }
2781
skb_reset_inner_transport_header(struct sk_buff * skb)2782 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2783 {
2784 skb->inner_transport_header = skb->data - skb->head;
2785 }
2786
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2787 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2788 const int offset)
2789 {
2790 skb_reset_inner_transport_header(skb);
2791 skb->inner_transport_header += offset;
2792 }
2793
skb_inner_network_header(const struct sk_buff * skb)2794 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2795 {
2796 return skb->head + skb->inner_network_header;
2797 }
2798
skb_reset_inner_network_header(struct sk_buff * skb)2799 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2800 {
2801 skb->inner_network_header = skb->data - skb->head;
2802 }
2803
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2804 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2805 const int offset)
2806 {
2807 skb_reset_inner_network_header(skb);
2808 skb->inner_network_header += offset;
2809 }
2810
skb_inner_mac_header(const struct sk_buff * skb)2811 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2812 {
2813 return skb->head + skb->inner_mac_header;
2814 }
2815
skb_reset_inner_mac_header(struct sk_buff * skb)2816 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2817 {
2818 skb->inner_mac_header = skb->data - skb->head;
2819 }
2820
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2821 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2822 const int offset)
2823 {
2824 skb_reset_inner_mac_header(skb);
2825 skb->inner_mac_header += offset;
2826 }
skb_transport_header_was_set(const struct sk_buff * skb)2827 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2828 {
2829 return skb->transport_header != (typeof(skb->transport_header))~0U;
2830 }
2831
skb_transport_header(const struct sk_buff * skb)2832 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2833 {
2834 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2835 return skb->head + skb->transport_header;
2836 }
2837
skb_reset_transport_header(struct sk_buff * skb)2838 static inline void skb_reset_transport_header(struct sk_buff *skb)
2839 {
2840 skb->transport_header = skb->data - skb->head;
2841 }
2842
skb_set_transport_header(struct sk_buff * skb,const int offset)2843 static inline void skb_set_transport_header(struct sk_buff *skb,
2844 const int offset)
2845 {
2846 skb_reset_transport_header(skb);
2847 skb->transport_header += offset;
2848 }
2849
skb_network_header(const struct sk_buff * skb)2850 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2851 {
2852 return skb->head + skb->network_header;
2853 }
2854
skb_reset_network_header(struct sk_buff * skb)2855 static inline void skb_reset_network_header(struct sk_buff *skb)
2856 {
2857 skb->network_header = skb->data - skb->head;
2858 }
2859
skb_set_network_header(struct sk_buff * skb,const int offset)2860 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2861 {
2862 skb_reset_network_header(skb);
2863 skb->network_header += offset;
2864 }
2865
skb_mac_header_was_set(const struct sk_buff * skb)2866 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2867 {
2868 return skb->mac_header != (typeof(skb->mac_header))~0U;
2869 }
2870
skb_mac_header(const struct sk_buff * skb)2871 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2872 {
2873 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2874 return skb->head + skb->mac_header;
2875 }
2876
skb_mac_offset(const struct sk_buff * skb)2877 static inline int skb_mac_offset(const struct sk_buff *skb)
2878 {
2879 return skb_mac_header(skb) - skb->data;
2880 }
2881
skb_mac_header_len(const struct sk_buff * skb)2882 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2883 {
2884 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2885 return skb->network_header - skb->mac_header;
2886 }
2887
skb_unset_mac_header(struct sk_buff * skb)2888 static inline void skb_unset_mac_header(struct sk_buff *skb)
2889 {
2890 skb->mac_header = (typeof(skb->mac_header))~0U;
2891 }
2892
skb_reset_mac_header(struct sk_buff * skb)2893 static inline void skb_reset_mac_header(struct sk_buff *skb)
2894 {
2895 skb->mac_header = skb->data - skb->head;
2896 }
2897
skb_set_mac_header(struct sk_buff * skb,const int offset)2898 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2899 {
2900 skb_reset_mac_header(skb);
2901 skb->mac_header += offset;
2902 }
2903
skb_pop_mac_header(struct sk_buff * skb)2904 static inline void skb_pop_mac_header(struct sk_buff *skb)
2905 {
2906 skb->mac_header = skb->network_header;
2907 }
2908
skb_probe_transport_header(struct sk_buff * skb)2909 static inline void skb_probe_transport_header(struct sk_buff *skb)
2910 {
2911 struct flow_keys_basic keys;
2912
2913 if (skb_transport_header_was_set(skb))
2914 return;
2915
2916 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2917 NULL, 0, 0, 0, 0))
2918 skb_set_transport_header(skb, keys.control.thoff);
2919 }
2920
skb_mac_header_rebuild(struct sk_buff * skb)2921 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2922 {
2923 if (skb_mac_header_was_set(skb)) {
2924 const unsigned char *old_mac = skb_mac_header(skb);
2925
2926 skb_set_mac_header(skb, -skb->mac_len);
2927 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2928 }
2929 }
2930
skb_checksum_start_offset(const struct sk_buff * skb)2931 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2932 {
2933 return skb->csum_start - skb_headroom(skb);
2934 }
2935
skb_checksum_start(const struct sk_buff * skb)2936 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2937 {
2938 return skb->head + skb->csum_start;
2939 }
2940
skb_transport_offset(const struct sk_buff * skb)2941 static inline int skb_transport_offset(const struct sk_buff *skb)
2942 {
2943 return skb_transport_header(skb) - skb->data;
2944 }
2945
skb_network_header_len(const struct sk_buff * skb)2946 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2947 {
2948 return skb->transport_header - skb->network_header;
2949 }
2950
skb_inner_network_header_len(const struct sk_buff * skb)2951 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2952 {
2953 return skb->inner_transport_header - skb->inner_network_header;
2954 }
2955
skb_network_offset(const struct sk_buff * skb)2956 static inline int skb_network_offset(const struct sk_buff *skb)
2957 {
2958 return skb_network_header(skb) - skb->data;
2959 }
2960
skb_inner_network_offset(const struct sk_buff * skb)2961 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2962 {
2963 return skb_inner_network_header(skb) - skb->data;
2964 }
2965
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2966 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2967 {
2968 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2969 }
2970
2971 /*
2972 * CPUs often take a performance hit when accessing unaligned memory
2973 * locations. The actual performance hit varies, it can be small if the
2974 * hardware handles it or large if we have to take an exception and fix it
2975 * in software.
2976 *
2977 * Since an ethernet header is 14 bytes network drivers often end up with
2978 * the IP header at an unaligned offset. The IP header can be aligned by
2979 * shifting the start of the packet by 2 bytes. Drivers should do this
2980 * with:
2981 *
2982 * skb_reserve(skb, NET_IP_ALIGN);
2983 *
2984 * The downside to this alignment of the IP header is that the DMA is now
2985 * unaligned. On some architectures the cost of an unaligned DMA is high
2986 * and this cost outweighs the gains made by aligning the IP header.
2987 *
2988 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2989 * to be overridden.
2990 */
2991 #ifndef NET_IP_ALIGN
2992 #define NET_IP_ALIGN 2
2993 #endif
2994
2995 /*
2996 * The networking layer reserves some headroom in skb data (via
2997 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2998 * the header has to grow. In the default case, if the header has to grow
2999 * 32 bytes or less we avoid the reallocation.
3000 *
3001 * Unfortunately this headroom changes the DMA alignment of the resulting
3002 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3003 * on some architectures. An architecture can override this value,
3004 * perhaps setting it to a cacheline in size (since that will maintain
3005 * cacheline alignment of the DMA). It must be a power of 2.
3006 *
3007 * Various parts of the networking layer expect at least 32 bytes of
3008 * headroom, you should not reduce this.
3009 *
3010 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3011 * to reduce average number of cache lines per packet.
3012 * get_rps_cpu() for example only access one 64 bytes aligned block :
3013 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3014 */
3015 #ifndef NET_SKB_PAD
3016 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3017 #endif
3018
3019 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3020
__skb_set_length(struct sk_buff * skb,unsigned int len)3021 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3022 {
3023 if (WARN_ON(skb_is_nonlinear(skb)))
3024 return;
3025 skb->len = len;
3026 skb_set_tail_pointer(skb, len);
3027 }
3028
__skb_trim(struct sk_buff * skb,unsigned int len)3029 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3030 {
3031 __skb_set_length(skb, len);
3032 }
3033
3034 void skb_trim(struct sk_buff *skb, unsigned int len);
3035
__pskb_trim(struct sk_buff * skb,unsigned int len)3036 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3037 {
3038 if (skb->data_len)
3039 return ___pskb_trim(skb, len);
3040 __skb_trim(skb, len);
3041 return 0;
3042 }
3043
pskb_trim(struct sk_buff * skb,unsigned int len)3044 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3045 {
3046 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3047 }
3048
3049 /**
3050 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3051 * @skb: buffer to alter
3052 * @len: new length
3053 *
3054 * This is identical to pskb_trim except that the caller knows that
3055 * the skb is not cloned so we should never get an error due to out-
3056 * of-memory.
3057 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3058 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3059 {
3060 int err = pskb_trim(skb, len);
3061 BUG_ON(err);
3062 }
3063
__skb_grow(struct sk_buff * skb,unsigned int len)3064 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3065 {
3066 unsigned int diff = len - skb->len;
3067
3068 if (skb_tailroom(skb) < diff) {
3069 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3070 GFP_ATOMIC);
3071 if (ret)
3072 return ret;
3073 }
3074 __skb_set_length(skb, len);
3075 return 0;
3076 }
3077
3078 /**
3079 * skb_orphan - orphan a buffer
3080 * @skb: buffer to orphan
3081 *
3082 * If a buffer currently has an owner then we call the owner's
3083 * destructor function and make the @skb unowned. The buffer continues
3084 * to exist but is no longer charged to its former owner.
3085 */
skb_orphan(struct sk_buff * skb)3086 static inline void skb_orphan(struct sk_buff *skb)
3087 {
3088 if (skb->destructor) {
3089 skb->destructor(skb);
3090 skb->destructor = NULL;
3091 skb->sk = NULL;
3092 } else {
3093 BUG_ON(skb->sk);
3094 }
3095 }
3096
3097 /**
3098 * skb_orphan_frags - orphan the frags contained in a buffer
3099 * @skb: buffer to orphan frags from
3100 * @gfp_mask: allocation mask for replacement pages
3101 *
3102 * For each frag in the SKB which needs a destructor (i.e. has an
3103 * owner) create a copy of that frag and release the original
3104 * page by calling the destructor.
3105 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3106 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3107 {
3108 if (likely(!skb_zcopy(skb)))
3109 return 0;
3110 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3111 return 0;
3112 return skb_copy_ubufs(skb, gfp_mask);
3113 }
3114
3115 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3116 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3117 {
3118 if (likely(!skb_zcopy(skb)))
3119 return 0;
3120 return skb_copy_ubufs(skb, gfp_mask);
3121 }
3122
3123 /**
3124 * __skb_queue_purge - empty a list
3125 * @list: list to empty
3126 *
3127 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3128 * the list and one reference dropped. This function does not take the
3129 * list lock and the caller must hold the relevant locks to use it.
3130 */
__skb_queue_purge(struct sk_buff_head * list)3131 static inline void __skb_queue_purge(struct sk_buff_head *list)
3132 {
3133 struct sk_buff *skb;
3134 while ((skb = __skb_dequeue(list)) != NULL)
3135 kfree_skb(skb);
3136 }
3137 void skb_queue_purge(struct sk_buff_head *list);
3138
3139 unsigned int skb_rbtree_purge(struct rb_root *root);
3140
3141 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3142
3143 /**
3144 * netdev_alloc_frag - allocate a page fragment
3145 * @fragsz: fragment size
3146 *
3147 * Allocates a frag from a page for receive buffer.
3148 * Uses GFP_ATOMIC allocations.
3149 */
netdev_alloc_frag(unsigned int fragsz)3150 static inline void *netdev_alloc_frag(unsigned int fragsz)
3151 {
3152 return __netdev_alloc_frag_align(fragsz, ~0u);
3153 }
3154
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3155 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3156 unsigned int align)
3157 {
3158 WARN_ON_ONCE(!is_power_of_2(align));
3159 return __netdev_alloc_frag_align(fragsz, -align);
3160 }
3161
3162 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3163 gfp_t gfp_mask);
3164
3165 /**
3166 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3167 * @dev: network device to receive on
3168 * @length: length to allocate
3169 *
3170 * Allocate a new &sk_buff and assign it a usage count of one. The
3171 * buffer has unspecified headroom built in. Users should allocate
3172 * the headroom they think they need without accounting for the
3173 * built in space. The built in space is used for optimisations.
3174 *
3175 * %NULL is returned if there is no free memory. Although this function
3176 * allocates memory it can be called from an interrupt.
3177 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3178 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3179 unsigned int length)
3180 {
3181 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3182 }
3183
3184 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3185 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3186 gfp_t gfp_mask)
3187 {
3188 return __netdev_alloc_skb(NULL, length, gfp_mask);
3189 }
3190
3191 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3192 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3193 {
3194 return netdev_alloc_skb(NULL, length);
3195 }
3196
3197
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3198 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3199 unsigned int length, gfp_t gfp)
3200 {
3201 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3202
3203 if (NET_IP_ALIGN && skb)
3204 skb_reserve(skb, NET_IP_ALIGN);
3205 return skb;
3206 }
3207
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3208 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3209 unsigned int length)
3210 {
3211 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3212 }
3213
skb_free_frag(void * addr)3214 static inline void skb_free_frag(void *addr)
3215 {
3216 page_frag_free(addr);
3217 }
3218
3219 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3220
napi_alloc_frag(unsigned int fragsz)3221 static inline void *napi_alloc_frag(unsigned int fragsz)
3222 {
3223 return __napi_alloc_frag_align(fragsz, ~0u);
3224 }
3225
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3226 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3227 unsigned int align)
3228 {
3229 WARN_ON_ONCE(!is_power_of_2(align));
3230 return __napi_alloc_frag_align(fragsz, -align);
3231 }
3232
3233 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3234 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3235 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3236 unsigned int length)
3237 {
3238 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3239 }
3240 void napi_consume_skb(struct sk_buff *skb, int budget);
3241
3242 void napi_skb_free_stolen_head(struct sk_buff *skb);
3243 void __kfree_skb_defer(struct sk_buff *skb);
3244
3245 /**
3246 * __dev_alloc_pages - allocate page for network Rx
3247 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3248 * @order: size of the allocation
3249 *
3250 * Allocate a new page.
3251 *
3252 * %NULL is returned if there is no free memory.
3253 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3254 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3255 unsigned int order)
3256 {
3257 /* This piece of code contains several assumptions.
3258 * 1. This is for device Rx, therefor a cold page is preferred.
3259 * 2. The expectation is the user wants a compound page.
3260 * 3. If requesting a order 0 page it will not be compound
3261 * due to the check to see if order has a value in prep_new_page
3262 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3263 * code in gfp_to_alloc_flags that should be enforcing this.
3264 */
3265 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3266
3267 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3268 }
3269
dev_alloc_pages(unsigned int order)3270 static inline struct page *dev_alloc_pages(unsigned int order)
3271 {
3272 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3273 }
3274
3275 /**
3276 * __dev_alloc_page - allocate a page for network Rx
3277 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3278 *
3279 * Allocate a new page.
3280 *
3281 * %NULL is returned if there is no free memory.
3282 */
__dev_alloc_page(gfp_t gfp_mask)3283 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3284 {
3285 return __dev_alloc_pages(gfp_mask, 0);
3286 }
3287
dev_alloc_page(void)3288 static inline struct page *dev_alloc_page(void)
3289 {
3290 return dev_alloc_pages(0);
3291 }
3292
3293 /**
3294 * dev_page_is_reusable - check whether a page can be reused for network Rx
3295 * @page: the page to test
3296 *
3297 * A page shouldn't be considered for reusing/recycling if it was allocated
3298 * under memory pressure or at a distant memory node.
3299 *
3300 * Returns false if this page should be returned to page allocator, true
3301 * otherwise.
3302 */
dev_page_is_reusable(const struct page * page)3303 static inline bool dev_page_is_reusable(const struct page *page)
3304 {
3305 return likely(page_to_nid(page) == numa_mem_id() &&
3306 !page_is_pfmemalloc(page));
3307 }
3308
3309 /**
3310 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3311 * @page: The page that was allocated from skb_alloc_page
3312 * @skb: The skb that may need pfmemalloc set
3313 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3314 static inline void skb_propagate_pfmemalloc(const struct page *page,
3315 struct sk_buff *skb)
3316 {
3317 if (page_is_pfmemalloc(page))
3318 skb->pfmemalloc = true;
3319 }
3320
3321 /**
3322 * skb_frag_off() - Returns the offset of a skb fragment
3323 * @frag: the paged fragment
3324 */
skb_frag_off(const skb_frag_t * frag)3325 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3326 {
3327 return frag->bv_offset;
3328 }
3329
3330 /**
3331 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3332 * @frag: skb fragment
3333 * @delta: value to add
3334 */
skb_frag_off_add(skb_frag_t * frag,int delta)3335 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3336 {
3337 frag->bv_offset += delta;
3338 }
3339
3340 /**
3341 * skb_frag_off_set() - Sets the offset of a skb fragment
3342 * @frag: skb fragment
3343 * @offset: offset of fragment
3344 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3345 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3346 {
3347 frag->bv_offset = offset;
3348 }
3349
3350 /**
3351 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3352 * @fragto: skb fragment where offset is set
3353 * @fragfrom: skb fragment offset is copied from
3354 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3355 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3356 const skb_frag_t *fragfrom)
3357 {
3358 fragto->bv_offset = fragfrom->bv_offset;
3359 }
3360
3361 /**
3362 * skb_frag_page - retrieve the page referred to by a paged fragment
3363 * @frag: the paged fragment
3364 *
3365 * Returns the &struct page associated with @frag.
3366 */
skb_frag_page(const skb_frag_t * frag)3367 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3368 {
3369 return frag->bv_page;
3370 }
3371
3372 /**
3373 * __skb_frag_ref - take an addition reference on a paged fragment.
3374 * @frag: the paged fragment
3375 *
3376 * Takes an additional reference on the paged fragment @frag.
3377 */
__skb_frag_ref(skb_frag_t * frag)3378 static inline void __skb_frag_ref(skb_frag_t *frag)
3379 {
3380 get_page(skb_frag_page(frag));
3381 }
3382
3383 /**
3384 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3385 * @skb: the buffer
3386 * @f: the fragment offset.
3387 *
3388 * Takes an additional reference on the @f'th paged fragment of @skb.
3389 */
skb_frag_ref(struct sk_buff * skb,int f)3390 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3391 {
3392 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3393 }
3394
3395 /**
3396 * __skb_frag_unref - release a reference on a paged fragment.
3397 * @frag: the paged fragment
3398 * @recycle: recycle the page if allocated via page_pool
3399 *
3400 * Releases a reference on the paged fragment @frag
3401 * or recycles the page via the page_pool API.
3402 */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3403 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3404 {
3405 struct page *page = skb_frag_page(frag);
3406
3407 #ifdef CONFIG_PAGE_POOL
3408 if (recycle && page_pool_return_skb_page(page))
3409 return;
3410 #endif
3411 put_page(page);
3412 }
3413
3414 /**
3415 * skb_frag_unref - release a reference on a paged fragment of an skb.
3416 * @skb: the buffer
3417 * @f: the fragment offset
3418 *
3419 * Releases a reference on the @f'th paged fragment of @skb.
3420 */
skb_frag_unref(struct sk_buff * skb,int f)3421 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3422 {
3423 struct skb_shared_info *shinfo = skb_shinfo(skb);
3424
3425 if (!skb_zcopy_managed(skb))
3426 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3427 }
3428
3429 /**
3430 * skb_frag_address - gets the address of the data contained in a paged fragment
3431 * @frag: the paged fragment buffer
3432 *
3433 * Returns the address of the data within @frag. The page must already
3434 * be mapped.
3435 */
skb_frag_address(const skb_frag_t * frag)3436 static inline void *skb_frag_address(const skb_frag_t *frag)
3437 {
3438 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3439 }
3440
3441 /**
3442 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3443 * @frag: the paged fragment buffer
3444 *
3445 * Returns the address of the data within @frag. Checks that the page
3446 * is mapped and returns %NULL otherwise.
3447 */
skb_frag_address_safe(const skb_frag_t * frag)3448 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3449 {
3450 void *ptr = page_address(skb_frag_page(frag));
3451 if (unlikely(!ptr))
3452 return NULL;
3453
3454 return ptr + skb_frag_off(frag);
3455 }
3456
3457 /**
3458 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3459 * @fragto: skb fragment where page is set
3460 * @fragfrom: skb fragment page is copied from
3461 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3462 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3463 const skb_frag_t *fragfrom)
3464 {
3465 fragto->bv_page = fragfrom->bv_page;
3466 }
3467
3468 /**
3469 * __skb_frag_set_page - sets the page contained in a paged fragment
3470 * @frag: the paged fragment
3471 * @page: the page to set
3472 *
3473 * Sets the fragment @frag to contain @page.
3474 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3475 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3476 {
3477 frag->bv_page = page;
3478 }
3479
3480 /**
3481 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3482 * @skb: the buffer
3483 * @f: the fragment offset
3484 * @page: the page to set
3485 *
3486 * Sets the @f'th fragment of @skb to contain @page.
3487 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3488 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3489 struct page *page)
3490 {
3491 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3492 }
3493
3494 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3495
3496 /**
3497 * skb_frag_dma_map - maps a paged fragment via the DMA API
3498 * @dev: the device to map the fragment to
3499 * @frag: the paged fragment to map
3500 * @offset: the offset within the fragment (starting at the
3501 * fragment's own offset)
3502 * @size: the number of bytes to map
3503 * @dir: the direction of the mapping (``PCI_DMA_*``)
3504 *
3505 * Maps the page associated with @frag to @device.
3506 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3507 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3508 const skb_frag_t *frag,
3509 size_t offset, size_t size,
3510 enum dma_data_direction dir)
3511 {
3512 return dma_map_page(dev, skb_frag_page(frag),
3513 skb_frag_off(frag) + offset, size, dir);
3514 }
3515
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3516 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3517 gfp_t gfp_mask)
3518 {
3519 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3520 }
3521
3522
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3523 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3524 gfp_t gfp_mask)
3525 {
3526 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3527 }
3528
3529
3530 /**
3531 * skb_clone_writable - is the header of a clone writable
3532 * @skb: buffer to check
3533 * @len: length up to which to write
3534 *
3535 * Returns true if modifying the header part of the cloned buffer
3536 * does not requires the data to be copied.
3537 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3538 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3539 {
3540 return !skb_header_cloned(skb) &&
3541 skb_headroom(skb) + len <= skb->hdr_len;
3542 }
3543
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3544 static inline int skb_try_make_writable(struct sk_buff *skb,
3545 unsigned int write_len)
3546 {
3547 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3548 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3549 }
3550
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3551 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3552 int cloned)
3553 {
3554 int delta = 0;
3555
3556 if (headroom > skb_headroom(skb))
3557 delta = headroom - skb_headroom(skb);
3558
3559 if (delta || cloned)
3560 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3561 GFP_ATOMIC);
3562 return 0;
3563 }
3564
3565 /**
3566 * skb_cow - copy header of skb when it is required
3567 * @skb: buffer to cow
3568 * @headroom: needed headroom
3569 *
3570 * If the skb passed lacks sufficient headroom or its data part
3571 * is shared, data is reallocated. If reallocation fails, an error
3572 * is returned and original skb is not changed.
3573 *
3574 * The result is skb with writable area skb->head...skb->tail
3575 * and at least @headroom of space at head.
3576 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3577 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3578 {
3579 return __skb_cow(skb, headroom, skb_cloned(skb));
3580 }
3581
3582 /**
3583 * skb_cow_head - skb_cow but only making the head writable
3584 * @skb: buffer to cow
3585 * @headroom: needed headroom
3586 *
3587 * This function is identical to skb_cow except that we replace the
3588 * skb_cloned check by skb_header_cloned. It should be used when
3589 * you only need to push on some header and do not need to modify
3590 * the data.
3591 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3592 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3593 {
3594 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3595 }
3596
3597 /**
3598 * skb_padto - pad an skbuff up to a minimal size
3599 * @skb: buffer to pad
3600 * @len: minimal length
3601 *
3602 * Pads up a buffer to ensure the trailing bytes exist and are
3603 * blanked. If the buffer already contains sufficient data it
3604 * is untouched. Otherwise it is extended. Returns zero on
3605 * success. The skb is freed on error.
3606 */
skb_padto(struct sk_buff * skb,unsigned int len)3607 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3608 {
3609 unsigned int size = skb->len;
3610 if (likely(size >= len))
3611 return 0;
3612 return skb_pad(skb, len - size);
3613 }
3614
3615 /**
3616 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3617 * @skb: buffer to pad
3618 * @len: minimal length
3619 * @free_on_error: free buffer on error
3620 *
3621 * Pads up a buffer to ensure the trailing bytes exist and are
3622 * blanked. If the buffer already contains sufficient data it
3623 * is untouched. Otherwise it is extended. Returns zero on
3624 * success. The skb is freed on error if @free_on_error is true.
3625 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3626 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3627 unsigned int len,
3628 bool free_on_error)
3629 {
3630 unsigned int size = skb->len;
3631
3632 if (unlikely(size < len)) {
3633 len -= size;
3634 if (__skb_pad(skb, len, free_on_error))
3635 return -ENOMEM;
3636 __skb_put(skb, len);
3637 }
3638 return 0;
3639 }
3640
3641 /**
3642 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3643 * @skb: buffer to pad
3644 * @len: minimal length
3645 *
3646 * Pads up a buffer to ensure the trailing bytes exist and are
3647 * blanked. If the buffer already contains sufficient data it
3648 * is untouched. Otherwise it is extended. Returns zero on
3649 * success. The skb is freed on error.
3650 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3651 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3652 {
3653 return __skb_put_padto(skb, len, true);
3654 }
3655
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3656 static inline int skb_add_data(struct sk_buff *skb,
3657 struct iov_iter *from, int copy)
3658 {
3659 const int off = skb->len;
3660
3661 if (skb->ip_summed == CHECKSUM_NONE) {
3662 __wsum csum = 0;
3663 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3664 &csum, from)) {
3665 skb->csum = csum_block_add(skb->csum, csum, off);
3666 return 0;
3667 }
3668 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3669 return 0;
3670
3671 __skb_trim(skb, off);
3672 return -EFAULT;
3673 }
3674
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3675 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3676 const struct page *page, int off)
3677 {
3678 if (skb_zcopy(skb))
3679 return false;
3680 if (i) {
3681 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3682
3683 return page == skb_frag_page(frag) &&
3684 off == skb_frag_off(frag) + skb_frag_size(frag);
3685 }
3686 return false;
3687 }
3688
__skb_linearize(struct sk_buff * skb)3689 static inline int __skb_linearize(struct sk_buff *skb)
3690 {
3691 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3692 }
3693
3694 /**
3695 * skb_linearize - convert paged skb to linear one
3696 * @skb: buffer to linarize
3697 *
3698 * If there is no free memory -ENOMEM is returned, otherwise zero
3699 * is returned and the old skb data released.
3700 */
skb_linearize(struct sk_buff * skb)3701 static inline int skb_linearize(struct sk_buff *skb)
3702 {
3703 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3704 }
3705
3706 /**
3707 * skb_has_shared_frag - can any frag be overwritten
3708 * @skb: buffer to test
3709 *
3710 * Return true if the skb has at least one frag that might be modified
3711 * by an external entity (as in vmsplice()/sendfile())
3712 */
skb_has_shared_frag(const struct sk_buff * skb)3713 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3714 {
3715 return skb_is_nonlinear(skb) &&
3716 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3717 }
3718
3719 /**
3720 * skb_linearize_cow - make sure skb is linear and writable
3721 * @skb: buffer to process
3722 *
3723 * If there is no free memory -ENOMEM is returned, otherwise zero
3724 * is returned and the old skb data released.
3725 */
skb_linearize_cow(struct sk_buff * skb)3726 static inline int skb_linearize_cow(struct sk_buff *skb)
3727 {
3728 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3729 __skb_linearize(skb) : 0;
3730 }
3731
3732 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3733 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3734 unsigned int off)
3735 {
3736 if (skb->ip_summed == CHECKSUM_COMPLETE)
3737 skb->csum = csum_block_sub(skb->csum,
3738 csum_partial(start, len, 0), off);
3739 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3740 skb_checksum_start_offset(skb) < 0)
3741 skb->ip_summed = CHECKSUM_NONE;
3742 }
3743
3744 /**
3745 * skb_postpull_rcsum - update checksum for received skb after pull
3746 * @skb: buffer to update
3747 * @start: start of data before pull
3748 * @len: length of data pulled
3749 *
3750 * After doing a pull on a received packet, you need to call this to
3751 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3752 * CHECKSUM_NONE so that it can be recomputed from scratch.
3753 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3754 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3755 const void *start, unsigned int len)
3756 {
3757 if (skb->ip_summed == CHECKSUM_COMPLETE)
3758 skb->csum = wsum_negate(csum_partial(start, len,
3759 wsum_negate(skb->csum)));
3760 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3761 skb_checksum_start_offset(skb) < 0)
3762 skb->ip_summed = CHECKSUM_NONE;
3763 }
3764
3765 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3766 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3767 unsigned int off)
3768 {
3769 if (skb->ip_summed == CHECKSUM_COMPLETE)
3770 skb->csum = csum_block_add(skb->csum,
3771 csum_partial(start, len, 0), off);
3772 }
3773
3774 /**
3775 * skb_postpush_rcsum - update checksum for received skb after push
3776 * @skb: buffer to update
3777 * @start: start of data after push
3778 * @len: length of data pushed
3779 *
3780 * After doing a push on a received packet, you need to call this to
3781 * update the CHECKSUM_COMPLETE checksum.
3782 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3783 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3784 const void *start, unsigned int len)
3785 {
3786 __skb_postpush_rcsum(skb, start, len, 0);
3787 }
3788
3789 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3790
3791 /**
3792 * skb_push_rcsum - push skb and update receive checksum
3793 * @skb: buffer to update
3794 * @len: length of data pulled
3795 *
3796 * This function performs an skb_push on the packet and updates
3797 * the CHECKSUM_COMPLETE checksum. It should be used on
3798 * receive path processing instead of skb_push unless you know
3799 * that the checksum difference is zero (e.g., a valid IP header)
3800 * or you are setting ip_summed to CHECKSUM_NONE.
3801 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3802 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3803 {
3804 skb_push(skb, len);
3805 skb_postpush_rcsum(skb, skb->data, len);
3806 return skb->data;
3807 }
3808
3809 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3810 /**
3811 * pskb_trim_rcsum - trim received skb and update checksum
3812 * @skb: buffer to trim
3813 * @len: new length
3814 *
3815 * This is exactly the same as pskb_trim except that it ensures the
3816 * checksum of received packets are still valid after the operation.
3817 * It can change skb pointers.
3818 */
3819
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3820 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3821 {
3822 if (likely(len >= skb->len))
3823 return 0;
3824 return pskb_trim_rcsum_slow(skb, len);
3825 }
3826
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3827 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3828 {
3829 if (skb->ip_summed == CHECKSUM_COMPLETE)
3830 skb->ip_summed = CHECKSUM_NONE;
3831 __skb_trim(skb, len);
3832 return 0;
3833 }
3834
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3835 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3836 {
3837 if (skb->ip_summed == CHECKSUM_COMPLETE)
3838 skb->ip_summed = CHECKSUM_NONE;
3839 return __skb_grow(skb, len);
3840 }
3841
3842 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3843 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3844 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3845 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3846 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3847
3848 #define skb_queue_walk(queue, skb) \
3849 for (skb = (queue)->next; \
3850 skb != (struct sk_buff *)(queue); \
3851 skb = skb->next)
3852
3853 #define skb_queue_walk_safe(queue, skb, tmp) \
3854 for (skb = (queue)->next, tmp = skb->next; \
3855 skb != (struct sk_buff *)(queue); \
3856 skb = tmp, tmp = skb->next)
3857
3858 #define skb_queue_walk_from(queue, skb) \
3859 for (; skb != (struct sk_buff *)(queue); \
3860 skb = skb->next)
3861
3862 #define skb_rbtree_walk(skb, root) \
3863 for (skb = skb_rb_first(root); skb != NULL; \
3864 skb = skb_rb_next(skb))
3865
3866 #define skb_rbtree_walk_from(skb) \
3867 for (; skb != NULL; \
3868 skb = skb_rb_next(skb))
3869
3870 #define skb_rbtree_walk_from_safe(skb, tmp) \
3871 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3872 skb = tmp)
3873
3874 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3875 for (tmp = skb->next; \
3876 skb != (struct sk_buff *)(queue); \
3877 skb = tmp, tmp = skb->next)
3878
3879 #define skb_queue_reverse_walk(queue, skb) \
3880 for (skb = (queue)->prev; \
3881 skb != (struct sk_buff *)(queue); \
3882 skb = skb->prev)
3883
3884 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3885 for (skb = (queue)->prev, tmp = skb->prev; \
3886 skb != (struct sk_buff *)(queue); \
3887 skb = tmp, tmp = skb->prev)
3888
3889 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3890 for (tmp = skb->prev; \
3891 skb != (struct sk_buff *)(queue); \
3892 skb = tmp, tmp = skb->prev)
3893
skb_has_frag_list(const struct sk_buff * skb)3894 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3895 {
3896 return skb_shinfo(skb)->frag_list != NULL;
3897 }
3898
skb_frag_list_init(struct sk_buff * skb)3899 static inline void skb_frag_list_init(struct sk_buff *skb)
3900 {
3901 skb_shinfo(skb)->frag_list = NULL;
3902 }
3903
3904 #define skb_walk_frags(skb, iter) \
3905 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3906
3907
3908 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3909 int *err, long *timeo_p,
3910 const struct sk_buff *skb);
3911 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3912 struct sk_buff_head *queue,
3913 unsigned int flags,
3914 int *off, int *err,
3915 struct sk_buff **last);
3916 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3917 struct sk_buff_head *queue,
3918 unsigned int flags, int *off, int *err,
3919 struct sk_buff **last);
3920 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3921 struct sk_buff_head *sk_queue,
3922 unsigned int flags, int *off, int *err);
3923 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3924 __poll_t datagram_poll(struct file *file, struct socket *sock,
3925 struct poll_table_struct *wait);
3926 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3927 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3928 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3929 struct msghdr *msg, int size)
3930 {
3931 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3932 }
3933 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3934 struct msghdr *msg);
3935 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3936 struct iov_iter *to, int len,
3937 struct ahash_request *hash);
3938 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3939 struct iov_iter *from, int len);
3940 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3941 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3942 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3943 static inline void skb_free_datagram_locked(struct sock *sk,
3944 struct sk_buff *skb)
3945 {
3946 __skb_free_datagram_locked(sk, skb, 0);
3947 }
3948 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3949 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3950 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3951 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3952 int len);
3953 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3954 struct pipe_inode_info *pipe, unsigned int len,
3955 unsigned int flags);
3956 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3957 int len);
3958 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3959 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3960 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3961 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3962 int len, int hlen);
3963 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3964 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3965 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3966 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3967 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3968 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3969 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3970 unsigned int offset);
3971 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3972 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3973 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3974 int skb_vlan_pop(struct sk_buff *skb);
3975 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3976 int skb_eth_pop(struct sk_buff *skb);
3977 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3978 const unsigned char *src);
3979 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3980 int mac_len, bool ethernet);
3981 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3982 bool ethernet);
3983 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3984 int skb_mpls_dec_ttl(struct sk_buff *skb);
3985 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3986 gfp_t gfp);
3987
memcpy_from_msg(void * data,struct msghdr * msg,int len)3988 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3989 {
3990 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3991 }
3992
memcpy_to_msg(struct msghdr * msg,void * data,int len)3993 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3994 {
3995 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3996 }
3997
3998 struct skb_checksum_ops {
3999 __wsum (*update)(const void *mem, int len, __wsum wsum);
4000 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4001 };
4002
4003 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4004
4005 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4006 __wsum csum, const struct skb_checksum_ops *ops);
4007 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4008 __wsum csum);
4009
4010 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4011 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4012 const void *data, int hlen, void *buffer)
4013 {
4014 if (likely(hlen - offset >= len))
4015 return (void *)data + offset;
4016
4017 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4018 return NULL;
4019
4020 return buffer;
4021 }
4022
4023 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4024 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4025 {
4026 return __skb_header_pointer(skb, offset, len, skb->data,
4027 skb_headlen(skb), buffer);
4028 }
4029
4030 /**
4031 * skb_needs_linearize - check if we need to linearize a given skb
4032 * depending on the given device features.
4033 * @skb: socket buffer to check
4034 * @features: net device features
4035 *
4036 * Returns true if either:
4037 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4038 * 2. skb is fragmented and the device does not support SG.
4039 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4040 static inline bool skb_needs_linearize(struct sk_buff *skb,
4041 netdev_features_t features)
4042 {
4043 return skb_is_nonlinear(skb) &&
4044 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4045 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4046 }
4047
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4048 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4049 void *to,
4050 const unsigned int len)
4051 {
4052 memcpy(to, skb->data, len);
4053 }
4054
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4055 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4056 const int offset, void *to,
4057 const unsigned int len)
4058 {
4059 memcpy(to, skb->data + offset, len);
4060 }
4061
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4062 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4063 const void *from,
4064 const unsigned int len)
4065 {
4066 memcpy(skb->data, from, len);
4067 }
4068
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4069 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4070 const int offset,
4071 const void *from,
4072 const unsigned int len)
4073 {
4074 memcpy(skb->data + offset, from, len);
4075 }
4076
4077 void skb_init(void);
4078
skb_get_ktime(const struct sk_buff * skb)4079 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4080 {
4081 return skb->tstamp;
4082 }
4083
4084 /**
4085 * skb_get_timestamp - get timestamp from a skb
4086 * @skb: skb to get stamp from
4087 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4088 *
4089 * Timestamps are stored in the skb as offsets to a base timestamp.
4090 * This function converts the offset back to a struct timeval and stores
4091 * it in stamp.
4092 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4093 static inline void skb_get_timestamp(const struct sk_buff *skb,
4094 struct __kernel_old_timeval *stamp)
4095 {
4096 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4097 }
4098
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4099 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4100 struct __kernel_sock_timeval *stamp)
4101 {
4102 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4103
4104 stamp->tv_sec = ts.tv_sec;
4105 stamp->tv_usec = ts.tv_nsec / 1000;
4106 }
4107
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4108 static inline void skb_get_timestampns(const struct sk_buff *skb,
4109 struct __kernel_old_timespec *stamp)
4110 {
4111 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4112
4113 stamp->tv_sec = ts.tv_sec;
4114 stamp->tv_nsec = ts.tv_nsec;
4115 }
4116
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4117 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4118 struct __kernel_timespec *stamp)
4119 {
4120 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4121
4122 stamp->tv_sec = ts.tv_sec;
4123 stamp->tv_nsec = ts.tv_nsec;
4124 }
4125
__net_timestamp(struct sk_buff * skb)4126 static inline void __net_timestamp(struct sk_buff *skb)
4127 {
4128 skb->tstamp = ktime_get_real();
4129 skb->mono_delivery_time = 0;
4130 }
4131
net_timedelta(ktime_t t)4132 static inline ktime_t net_timedelta(ktime_t t)
4133 {
4134 return ktime_sub(ktime_get_real(), t);
4135 }
4136
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4137 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4138 bool mono)
4139 {
4140 skb->tstamp = kt;
4141 skb->mono_delivery_time = kt && mono;
4142 }
4143
4144 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4145
4146 /* It is used in the ingress path to clear the delivery_time.
4147 * If needed, set the skb->tstamp to the (rcv) timestamp.
4148 */
skb_clear_delivery_time(struct sk_buff * skb)4149 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4150 {
4151 if (skb->mono_delivery_time) {
4152 skb->mono_delivery_time = 0;
4153 if (static_branch_unlikely(&netstamp_needed_key))
4154 skb->tstamp = ktime_get_real();
4155 else
4156 skb->tstamp = 0;
4157 }
4158 }
4159
skb_clear_tstamp(struct sk_buff * skb)4160 static inline void skb_clear_tstamp(struct sk_buff *skb)
4161 {
4162 if (skb->mono_delivery_time)
4163 return;
4164
4165 skb->tstamp = 0;
4166 }
4167
skb_tstamp(const struct sk_buff * skb)4168 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4169 {
4170 if (skb->mono_delivery_time)
4171 return 0;
4172
4173 return skb->tstamp;
4174 }
4175
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4176 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4177 {
4178 if (!skb->mono_delivery_time && skb->tstamp)
4179 return skb->tstamp;
4180
4181 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4182 return ktime_get_real();
4183
4184 return 0;
4185 }
4186
skb_metadata_len(const struct sk_buff * skb)4187 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4188 {
4189 return skb_shinfo(skb)->meta_len;
4190 }
4191
skb_metadata_end(const struct sk_buff * skb)4192 static inline void *skb_metadata_end(const struct sk_buff *skb)
4193 {
4194 return skb_mac_header(skb);
4195 }
4196
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4197 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4198 const struct sk_buff *skb_b,
4199 u8 meta_len)
4200 {
4201 const void *a = skb_metadata_end(skb_a);
4202 const void *b = skb_metadata_end(skb_b);
4203 /* Using more efficient varaiant than plain call to memcmp(). */
4204 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4205 u64 diffs = 0;
4206
4207 switch (meta_len) {
4208 #define __it(x, op) (x -= sizeof(u##op))
4209 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4210 case 32: diffs |= __it_diff(a, b, 64);
4211 fallthrough;
4212 case 24: diffs |= __it_diff(a, b, 64);
4213 fallthrough;
4214 case 16: diffs |= __it_diff(a, b, 64);
4215 fallthrough;
4216 case 8: diffs |= __it_diff(a, b, 64);
4217 break;
4218 case 28: diffs |= __it_diff(a, b, 64);
4219 fallthrough;
4220 case 20: diffs |= __it_diff(a, b, 64);
4221 fallthrough;
4222 case 12: diffs |= __it_diff(a, b, 64);
4223 fallthrough;
4224 case 4: diffs |= __it_diff(a, b, 32);
4225 break;
4226 }
4227 return diffs;
4228 #else
4229 return memcmp(a - meta_len, b - meta_len, meta_len);
4230 #endif
4231 }
4232
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4233 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4234 const struct sk_buff *skb_b)
4235 {
4236 u8 len_a = skb_metadata_len(skb_a);
4237 u8 len_b = skb_metadata_len(skb_b);
4238
4239 if (!(len_a | len_b))
4240 return false;
4241
4242 return len_a != len_b ?
4243 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4244 }
4245
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4246 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4247 {
4248 skb_shinfo(skb)->meta_len = meta_len;
4249 }
4250
skb_metadata_clear(struct sk_buff * skb)4251 static inline void skb_metadata_clear(struct sk_buff *skb)
4252 {
4253 skb_metadata_set(skb, 0);
4254 }
4255
4256 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4257
4258 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4259
4260 void skb_clone_tx_timestamp(struct sk_buff *skb);
4261 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4262
4263 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4264
skb_clone_tx_timestamp(struct sk_buff * skb)4265 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4266 {
4267 }
4268
skb_defer_rx_timestamp(struct sk_buff * skb)4269 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4270 {
4271 return false;
4272 }
4273
4274 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4275
4276 /**
4277 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4278 *
4279 * PHY drivers may accept clones of transmitted packets for
4280 * timestamping via their phy_driver.txtstamp method. These drivers
4281 * must call this function to return the skb back to the stack with a
4282 * timestamp.
4283 *
4284 * @skb: clone of the original outgoing packet
4285 * @hwtstamps: hardware time stamps
4286 *
4287 */
4288 void skb_complete_tx_timestamp(struct sk_buff *skb,
4289 struct skb_shared_hwtstamps *hwtstamps);
4290
4291 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4292 struct skb_shared_hwtstamps *hwtstamps,
4293 struct sock *sk, int tstype);
4294
4295 /**
4296 * skb_tstamp_tx - queue clone of skb with send time stamps
4297 * @orig_skb: the original outgoing packet
4298 * @hwtstamps: hardware time stamps, may be NULL if not available
4299 *
4300 * If the skb has a socket associated, then this function clones the
4301 * skb (thus sharing the actual data and optional structures), stores
4302 * the optional hardware time stamping information (if non NULL) or
4303 * generates a software time stamp (otherwise), then queues the clone
4304 * to the error queue of the socket. Errors are silently ignored.
4305 */
4306 void skb_tstamp_tx(struct sk_buff *orig_skb,
4307 struct skb_shared_hwtstamps *hwtstamps);
4308
4309 /**
4310 * skb_tx_timestamp() - Driver hook for transmit timestamping
4311 *
4312 * Ethernet MAC Drivers should call this function in their hard_xmit()
4313 * function immediately before giving the sk_buff to the MAC hardware.
4314 *
4315 * Specifically, one should make absolutely sure that this function is
4316 * called before TX completion of this packet can trigger. Otherwise
4317 * the packet could potentially already be freed.
4318 *
4319 * @skb: A socket buffer.
4320 */
skb_tx_timestamp(struct sk_buff * skb)4321 static inline void skb_tx_timestamp(struct sk_buff *skb)
4322 {
4323 skb_clone_tx_timestamp(skb);
4324 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4325 skb_tstamp_tx(skb, NULL);
4326 }
4327
4328 /**
4329 * skb_complete_wifi_ack - deliver skb with wifi status
4330 *
4331 * @skb: the original outgoing packet
4332 * @acked: ack status
4333 *
4334 */
4335 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4336
4337 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4338 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4339
skb_csum_unnecessary(const struct sk_buff * skb)4340 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4341 {
4342 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4343 skb->csum_valid ||
4344 (skb->ip_summed == CHECKSUM_PARTIAL &&
4345 skb_checksum_start_offset(skb) >= 0));
4346 }
4347
4348 /**
4349 * skb_checksum_complete - Calculate checksum of an entire packet
4350 * @skb: packet to process
4351 *
4352 * This function calculates the checksum over the entire packet plus
4353 * the value of skb->csum. The latter can be used to supply the
4354 * checksum of a pseudo header as used by TCP/UDP. It returns the
4355 * checksum.
4356 *
4357 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4358 * this function can be used to verify that checksum on received
4359 * packets. In that case the function should return zero if the
4360 * checksum is correct. In particular, this function will return zero
4361 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4362 * hardware has already verified the correctness of the checksum.
4363 */
skb_checksum_complete(struct sk_buff * skb)4364 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4365 {
4366 return skb_csum_unnecessary(skb) ?
4367 0 : __skb_checksum_complete(skb);
4368 }
4369
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4370 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4371 {
4372 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4373 if (skb->csum_level == 0)
4374 skb->ip_summed = CHECKSUM_NONE;
4375 else
4376 skb->csum_level--;
4377 }
4378 }
4379
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4380 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4381 {
4382 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4383 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4384 skb->csum_level++;
4385 } else if (skb->ip_summed == CHECKSUM_NONE) {
4386 skb->ip_summed = CHECKSUM_UNNECESSARY;
4387 skb->csum_level = 0;
4388 }
4389 }
4390
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4391 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4392 {
4393 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4394 skb->ip_summed = CHECKSUM_NONE;
4395 skb->csum_level = 0;
4396 }
4397 }
4398
4399 /* Check if we need to perform checksum complete validation.
4400 *
4401 * Returns true if checksum complete is needed, false otherwise
4402 * (either checksum is unnecessary or zero checksum is allowed).
4403 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4404 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4405 bool zero_okay,
4406 __sum16 check)
4407 {
4408 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4409 skb->csum_valid = 1;
4410 __skb_decr_checksum_unnecessary(skb);
4411 return false;
4412 }
4413
4414 return true;
4415 }
4416
4417 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4418 * in checksum_init.
4419 */
4420 #define CHECKSUM_BREAK 76
4421
4422 /* Unset checksum-complete
4423 *
4424 * Unset checksum complete can be done when packet is being modified
4425 * (uncompressed for instance) and checksum-complete value is
4426 * invalidated.
4427 */
skb_checksum_complete_unset(struct sk_buff * skb)4428 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4429 {
4430 if (skb->ip_summed == CHECKSUM_COMPLETE)
4431 skb->ip_summed = CHECKSUM_NONE;
4432 }
4433
4434 /* Validate (init) checksum based on checksum complete.
4435 *
4436 * Return values:
4437 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4438 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4439 * checksum is stored in skb->csum for use in __skb_checksum_complete
4440 * non-zero: value of invalid checksum
4441 *
4442 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4443 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4444 bool complete,
4445 __wsum psum)
4446 {
4447 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4448 if (!csum_fold(csum_add(psum, skb->csum))) {
4449 skb->csum_valid = 1;
4450 return 0;
4451 }
4452 }
4453
4454 skb->csum = psum;
4455
4456 if (complete || skb->len <= CHECKSUM_BREAK) {
4457 __sum16 csum;
4458
4459 csum = __skb_checksum_complete(skb);
4460 skb->csum_valid = !csum;
4461 return csum;
4462 }
4463
4464 return 0;
4465 }
4466
null_compute_pseudo(struct sk_buff * skb,int proto)4467 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4468 {
4469 return 0;
4470 }
4471
4472 /* Perform checksum validate (init). Note that this is a macro since we only
4473 * want to calculate the pseudo header which is an input function if necessary.
4474 * First we try to validate without any computation (checksum unnecessary) and
4475 * then calculate based on checksum complete calling the function to compute
4476 * pseudo header.
4477 *
4478 * Return values:
4479 * 0: checksum is validated or try to in skb_checksum_complete
4480 * non-zero: value of invalid checksum
4481 */
4482 #define __skb_checksum_validate(skb, proto, complete, \
4483 zero_okay, check, compute_pseudo) \
4484 ({ \
4485 __sum16 __ret = 0; \
4486 skb->csum_valid = 0; \
4487 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4488 __ret = __skb_checksum_validate_complete(skb, \
4489 complete, compute_pseudo(skb, proto)); \
4490 __ret; \
4491 })
4492
4493 #define skb_checksum_init(skb, proto, compute_pseudo) \
4494 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4495
4496 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4497 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4498
4499 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4500 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4501
4502 #define skb_checksum_validate_zero_check(skb, proto, check, \
4503 compute_pseudo) \
4504 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4505
4506 #define skb_checksum_simple_validate(skb) \
4507 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4508
__skb_checksum_convert_check(struct sk_buff * skb)4509 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4510 {
4511 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4512 }
4513
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4514 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4515 {
4516 skb->csum = ~pseudo;
4517 skb->ip_summed = CHECKSUM_COMPLETE;
4518 }
4519
4520 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4521 do { \
4522 if (__skb_checksum_convert_check(skb)) \
4523 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4524 } while (0)
4525
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4526 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4527 u16 start, u16 offset)
4528 {
4529 skb->ip_summed = CHECKSUM_PARTIAL;
4530 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4531 skb->csum_offset = offset - start;
4532 }
4533
4534 /* Update skbuf and packet to reflect the remote checksum offload operation.
4535 * When called, ptr indicates the starting point for skb->csum when
4536 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4537 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4538 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4539 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4540 int start, int offset, bool nopartial)
4541 {
4542 __wsum delta;
4543
4544 if (!nopartial) {
4545 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4546 return;
4547 }
4548
4549 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4550 __skb_checksum_complete(skb);
4551 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4552 }
4553
4554 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4555
4556 /* Adjust skb->csum since we changed the packet */
4557 skb->csum = csum_add(skb->csum, delta);
4558 }
4559
skb_nfct(const struct sk_buff * skb)4560 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4561 {
4562 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4563 return (void *)(skb->_nfct & NFCT_PTRMASK);
4564 #else
4565 return NULL;
4566 #endif
4567 }
4568
skb_get_nfct(const struct sk_buff * skb)4569 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4570 {
4571 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4572 return skb->_nfct;
4573 #else
4574 return 0UL;
4575 #endif
4576 }
4577
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4578 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4579 {
4580 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4581 skb->slow_gro |= !!nfct;
4582 skb->_nfct = nfct;
4583 #endif
4584 }
4585
4586 #ifdef CONFIG_SKB_EXTENSIONS
4587 enum skb_ext_id {
4588 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4589 SKB_EXT_BRIDGE_NF,
4590 #endif
4591 #ifdef CONFIG_XFRM
4592 SKB_EXT_SEC_PATH,
4593 #endif
4594 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4595 TC_SKB_EXT,
4596 #endif
4597 #if IS_ENABLED(CONFIG_MPTCP)
4598 SKB_EXT_MPTCP,
4599 #endif
4600 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4601 SKB_EXT_MCTP,
4602 #endif
4603 SKB_EXT_NUM, /* must be last */
4604 };
4605
4606 /**
4607 * struct skb_ext - sk_buff extensions
4608 * @refcnt: 1 on allocation, deallocated on 0
4609 * @offset: offset to add to @data to obtain extension address
4610 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4611 * @data: start of extension data, variable sized
4612 *
4613 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4614 * to use 'u8' types while allowing up to 2kb worth of extension data.
4615 */
4616 struct skb_ext {
4617 refcount_t refcnt;
4618 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4619 u8 chunks; /* same */
4620 char data[] __aligned(8);
4621 };
4622
4623 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4624 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4625 struct skb_ext *ext);
4626 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4627 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4628 void __skb_ext_put(struct skb_ext *ext);
4629
skb_ext_put(struct sk_buff * skb)4630 static inline void skb_ext_put(struct sk_buff *skb)
4631 {
4632 if (skb->active_extensions)
4633 __skb_ext_put(skb->extensions);
4634 }
4635
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4636 static inline void __skb_ext_copy(struct sk_buff *dst,
4637 const struct sk_buff *src)
4638 {
4639 dst->active_extensions = src->active_extensions;
4640
4641 if (src->active_extensions) {
4642 struct skb_ext *ext = src->extensions;
4643
4644 refcount_inc(&ext->refcnt);
4645 dst->extensions = ext;
4646 }
4647 }
4648
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4649 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4650 {
4651 skb_ext_put(dst);
4652 __skb_ext_copy(dst, src);
4653 }
4654
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4655 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4656 {
4657 return !!ext->offset[i];
4658 }
4659
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4660 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4661 {
4662 return skb->active_extensions & (1 << id);
4663 }
4664
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4665 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4666 {
4667 if (skb_ext_exist(skb, id))
4668 __skb_ext_del(skb, id);
4669 }
4670
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4671 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4672 {
4673 if (skb_ext_exist(skb, id)) {
4674 struct skb_ext *ext = skb->extensions;
4675
4676 return (void *)ext + (ext->offset[id] << 3);
4677 }
4678
4679 return NULL;
4680 }
4681
skb_ext_reset(struct sk_buff * skb)4682 static inline void skb_ext_reset(struct sk_buff *skb)
4683 {
4684 if (unlikely(skb->active_extensions)) {
4685 __skb_ext_put(skb->extensions);
4686 skb->active_extensions = 0;
4687 }
4688 }
4689
skb_has_extensions(struct sk_buff * skb)4690 static inline bool skb_has_extensions(struct sk_buff *skb)
4691 {
4692 return unlikely(skb->active_extensions);
4693 }
4694 #else
skb_ext_put(struct sk_buff * skb)4695 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4696 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4697 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4698 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4699 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4700 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4701 #endif /* CONFIG_SKB_EXTENSIONS */
4702
nf_reset_ct(struct sk_buff * skb)4703 static inline void nf_reset_ct(struct sk_buff *skb)
4704 {
4705 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4706 nf_conntrack_put(skb_nfct(skb));
4707 skb->_nfct = 0;
4708 #endif
4709 }
4710
nf_reset_trace(struct sk_buff * skb)4711 static inline void nf_reset_trace(struct sk_buff *skb)
4712 {
4713 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4714 skb->nf_trace = 0;
4715 #endif
4716 }
4717
ipvs_reset(struct sk_buff * skb)4718 static inline void ipvs_reset(struct sk_buff *skb)
4719 {
4720 #if IS_ENABLED(CONFIG_IP_VS)
4721 skb->ipvs_property = 0;
4722 #endif
4723 }
4724
4725 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4726 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4727 bool copy)
4728 {
4729 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4730 dst->_nfct = src->_nfct;
4731 nf_conntrack_get(skb_nfct(src));
4732 #endif
4733 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4734 if (copy)
4735 dst->nf_trace = src->nf_trace;
4736 #endif
4737 }
4738
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4739 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4740 {
4741 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4742 nf_conntrack_put(skb_nfct(dst));
4743 #endif
4744 dst->slow_gro = src->slow_gro;
4745 __nf_copy(dst, src, true);
4746 }
4747
4748 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4749 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4750 {
4751 to->secmark = from->secmark;
4752 }
4753
skb_init_secmark(struct sk_buff * skb)4754 static inline void skb_init_secmark(struct sk_buff *skb)
4755 {
4756 skb->secmark = 0;
4757 }
4758 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4759 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4760 { }
4761
skb_init_secmark(struct sk_buff * skb)4762 static inline void skb_init_secmark(struct sk_buff *skb)
4763 { }
4764 #endif
4765
secpath_exists(const struct sk_buff * skb)4766 static inline int secpath_exists(const struct sk_buff *skb)
4767 {
4768 #ifdef CONFIG_XFRM
4769 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4770 #else
4771 return 0;
4772 #endif
4773 }
4774
skb_irq_freeable(const struct sk_buff * skb)4775 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4776 {
4777 return !skb->destructor &&
4778 !secpath_exists(skb) &&
4779 !skb_nfct(skb) &&
4780 !skb->_skb_refdst &&
4781 !skb_has_frag_list(skb);
4782 }
4783
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4784 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4785 {
4786 skb->queue_mapping = queue_mapping;
4787 }
4788
skb_get_queue_mapping(const struct sk_buff * skb)4789 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4790 {
4791 return skb->queue_mapping;
4792 }
4793
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4794 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4795 {
4796 to->queue_mapping = from->queue_mapping;
4797 }
4798
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4799 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4800 {
4801 skb->queue_mapping = rx_queue + 1;
4802 }
4803
skb_get_rx_queue(const struct sk_buff * skb)4804 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4805 {
4806 return skb->queue_mapping - 1;
4807 }
4808
skb_rx_queue_recorded(const struct sk_buff * skb)4809 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4810 {
4811 return skb->queue_mapping != 0;
4812 }
4813
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4814 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4815 {
4816 skb->dst_pending_confirm = val;
4817 }
4818
skb_get_dst_pending_confirm(const struct sk_buff * skb)4819 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4820 {
4821 return skb->dst_pending_confirm != 0;
4822 }
4823
skb_sec_path(const struct sk_buff * skb)4824 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4825 {
4826 #ifdef CONFIG_XFRM
4827 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4828 #else
4829 return NULL;
4830 #endif
4831 }
4832
4833 /* Keeps track of mac header offset relative to skb->head.
4834 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4835 * For non-tunnel skb it points to skb_mac_header() and for
4836 * tunnel skb it points to outer mac header.
4837 * Keeps track of level of encapsulation of network headers.
4838 */
4839 struct skb_gso_cb {
4840 union {
4841 int mac_offset;
4842 int data_offset;
4843 };
4844 int encap_level;
4845 __wsum csum;
4846 __u16 csum_start;
4847 };
4848 #define SKB_GSO_CB_OFFSET 32
4849 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4850
skb_tnl_header_len(const struct sk_buff * inner_skb)4851 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4852 {
4853 return (skb_mac_header(inner_skb) - inner_skb->head) -
4854 SKB_GSO_CB(inner_skb)->mac_offset;
4855 }
4856
gso_pskb_expand_head(struct sk_buff * skb,int extra)4857 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4858 {
4859 int new_headroom, headroom;
4860 int ret;
4861
4862 headroom = skb_headroom(skb);
4863 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4864 if (ret)
4865 return ret;
4866
4867 new_headroom = skb_headroom(skb);
4868 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4869 return 0;
4870 }
4871
gso_reset_checksum(struct sk_buff * skb,__wsum res)4872 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4873 {
4874 /* Do not update partial checksums if remote checksum is enabled. */
4875 if (skb->remcsum_offload)
4876 return;
4877
4878 SKB_GSO_CB(skb)->csum = res;
4879 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4880 }
4881
4882 /* Compute the checksum for a gso segment. First compute the checksum value
4883 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4884 * then add in skb->csum (checksum from csum_start to end of packet).
4885 * skb->csum and csum_start are then updated to reflect the checksum of the
4886 * resultant packet starting from the transport header-- the resultant checksum
4887 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4888 * header.
4889 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4890 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4891 {
4892 unsigned char *csum_start = skb_transport_header(skb);
4893 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4894 __wsum partial = SKB_GSO_CB(skb)->csum;
4895
4896 SKB_GSO_CB(skb)->csum = res;
4897 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4898
4899 return csum_fold(csum_partial(csum_start, plen, partial));
4900 }
4901
skb_is_gso(const struct sk_buff * skb)4902 static inline bool skb_is_gso(const struct sk_buff *skb)
4903 {
4904 return skb_shinfo(skb)->gso_size;
4905 }
4906
4907 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4908 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4909 {
4910 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4911 }
4912
4913 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4914 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4915 {
4916 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4917 }
4918
4919 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4920 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4921 {
4922 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4923 }
4924
skb_gso_reset(struct sk_buff * skb)4925 static inline void skb_gso_reset(struct sk_buff *skb)
4926 {
4927 skb_shinfo(skb)->gso_size = 0;
4928 skb_shinfo(skb)->gso_segs = 0;
4929 skb_shinfo(skb)->gso_type = 0;
4930 }
4931
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4932 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4933 u16 increment)
4934 {
4935 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4936 return;
4937 shinfo->gso_size += increment;
4938 }
4939
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4940 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4941 u16 decrement)
4942 {
4943 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4944 return;
4945 shinfo->gso_size -= decrement;
4946 }
4947
4948 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4949
skb_warn_if_lro(const struct sk_buff * skb)4950 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4951 {
4952 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4953 * wanted then gso_type will be set. */
4954 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4955
4956 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4957 unlikely(shinfo->gso_type == 0)) {
4958 __skb_warn_lro_forwarding(skb);
4959 return true;
4960 }
4961 return false;
4962 }
4963
skb_forward_csum(struct sk_buff * skb)4964 static inline void skb_forward_csum(struct sk_buff *skb)
4965 {
4966 /* Unfortunately we don't support this one. Any brave souls? */
4967 if (skb->ip_summed == CHECKSUM_COMPLETE)
4968 skb->ip_summed = CHECKSUM_NONE;
4969 }
4970
4971 /**
4972 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4973 * @skb: skb to check
4974 *
4975 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4976 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4977 * use this helper, to document places where we make this assertion.
4978 */
skb_checksum_none_assert(const struct sk_buff * skb)4979 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4980 {
4981 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4982 }
4983
4984 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4985
4986 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4987 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4988 unsigned int transport_len,
4989 __sum16(*skb_chkf)(struct sk_buff *skb));
4990
4991 /**
4992 * skb_head_is_locked - Determine if the skb->head is locked down
4993 * @skb: skb to check
4994 *
4995 * The head on skbs build around a head frag can be removed if they are
4996 * not cloned. This function returns true if the skb head is locked down
4997 * due to either being allocated via kmalloc, or by being a clone with
4998 * multiple references to the head.
4999 */
skb_head_is_locked(const struct sk_buff * skb)5000 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5001 {
5002 return !skb->head_frag || skb_cloned(skb);
5003 }
5004
5005 /* Local Checksum Offload.
5006 * Compute outer checksum based on the assumption that the
5007 * inner checksum will be offloaded later.
5008 * See Documentation/networking/checksum-offloads.rst for
5009 * explanation of how this works.
5010 * Fill in outer checksum adjustment (e.g. with sum of outer
5011 * pseudo-header) before calling.
5012 * Also ensure that inner checksum is in linear data area.
5013 */
lco_csum(struct sk_buff * skb)5014 static inline __wsum lco_csum(struct sk_buff *skb)
5015 {
5016 unsigned char *csum_start = skb_checksum_start(skb);
5017 unsigned char *l4_hdr = skb_transport_header(skb);
5018 __wsum partial;
5019
5020 /* Start with complement of inner checksum adjustment */
5021 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5022 skb->csum_offset));
5023
5024 /* Add in checksum of our headers (incl. outer checksum
5025 * adjustment filled in by caller) and return result.
5026 */
5027 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5028 }
5029
skb_is_redirected(const struct sk_buff * skb)5030 static inline bool skb_is_redirected(const struct sk_buff *skb)
5031 {
5032 return skb->redirected;
5033 }
5034
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5035 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5036 {
5037 skb->redirected = 1;
5038 #ifdef CONFIG_NET_REDIRECT
5039 skb->from_ingress = from_ingress;
5040 if (skb->from_ingress)
5041 skb_clear_tstamp(skb);
5042 #endif
5043 }
5044
skb_reset_redirect(struct sk_buff * skb)5045 static inline void skb_reset_redirect(struct sk_buff *skb)
5046 {
5047 skb->redirected = 0;
5048 }
5049
skb_csum_is_sctp(struct sk_buff * skb)5050 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5051 {
5052 return skb->csum_not_inet;
5053 }
5054
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5055 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5056 const u64 kcov_handle)
5057 {
5058 #ifdef CONFIG_KCOV
5059 skb->kcov_handle = kcov_handle;
5060 #endif
5061 }
5062
skb_get_kcov_handle(struct sk_buff * skb)5063 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5064 {
5065 #ifdef CONFIG_KCOV
5066 return skb->kcov_handle;
5067 #else
5068 return 0;
5069 #endif
5070 }
5071
5072 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)5073 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5074 {
5075 skb->pp_recycle = 1;
5076 }
5077 #endif
5078
skb_pp_recycle(struct sk_buff * skb,void * data)5079 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5080 {
5081 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5082 return false;
5083 return page_pool_return_skb_page(virt_to_page(data));
5084 }
5085
5086 #endif /* __KERNEL__ */
5087 #endif /* _LINUX_SKBUFF_H */
5088