• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
47 #include <linux/android_kabi.h>
48 #include <linux/android_vendor.h>
49 
50 /**
51  * DOC: skb checksums
52  *
53  * The interface for checksum offload between the stack and networking drivers
54  * is as follows...
55  *
56  * IP checksum related features
57  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
58  *
59  * Drivers advertise checksum offload capabilities in the features of a device.
60  * From the stack's point of view these are capabilities offered by the driver.
61  * A driver typically only advertises features that it is capable of offloading
62  * to its device.
63  *
64  * .. flat-table:: Checksum related device features
65  *   :widths: 1 10
66  *
67  *   * - %NETIF_F_HW_CSUM
68  *     - The driver (or its device) is able to compute one
69  *	 IP (one's complement) checksum for any combination
70  *	 of protocols or protocol layering. The checksum is
71  *	 computed and set in a packet per the CHECKSUM_PARTIAL
72  *	 interface (see below).
73  *
74  *   * - %NETIF_F_IP_CSUM
75  *     - Driver (device) is only able to checksum plain
76  *	 TCP or UDP packets over IPv4. These are specifically
77  *	 unencapsulated packets of the form IPv4|TCP or
78  *	 IPv4|UDP where the Protocol field in the IPv4 header
79  *	 is TCP or UDP. The IPv4 header may contain IP options.
80  *	 This feature cannot be set in features for a device
81  *	 with NETIF_F_HW_CSUM also set. This feature is being
82  *	 DEPRECATED (see below).
83  *
84  *   * - %NETIF_F_IPV6_CSUM
85  *     - Driver (device) is only able to checksum plain
86  *	 TCP or UDP packets over IPv6. These are specifically
87  *	 unencapsulated packets of the form IPv6|TCP or
88  *	 IPv6|UDP where the Next Header field in the IPv6
89  *	 header is either TCP or UDP. IPv6 extension headers
90  *	 are not supported with this feature. This feature
91  *	 cannot be set in features for a device with
92  *	 NETIF_F_HW_CSUM also set. This feature is being
93  *	 DEPRECATED (see below).
94  *
95  *   * - %NETIF_F_RXCSUM
96  *     - Driver (device) performs receive checksum offload.
97  *	 This flag is only used to disable the RX checksum
98  *	 feature for a device. The stack will accept receive
99  *	 checksum indication in packets received on a device
100  *	 regardless of whether NETIF_F_RXCSUM is set.
101  *
102  * Checksumming of received packets by device
103  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
104  *
105  * Indication of checksum verification is set in &sk_buff.ip_summed.
106  * Possible values are:
107  *
108  * - %CHECKSUM_NONE
109  *
110  *   Device did not checksum this packet e.g. due to lack of capabilities.
111  *   The packet contains full (though not verified) checksum in packet but
112  *   not in skb->csum. Thus, skb->csum is undefined in this case.
113  *
114  * - %CHECKSUM_UNNECESSARY
115  *
116  *   The hardware you're dealing with doesn't calculate the full checksum
117  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
118  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
119  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
120  *   though. A driver or device must never modify the checksum field in the
121  *   packet even if checksum is verified.
122  *
123  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
124  *
125  *     - TCP: IPv6 and IPv4.
126  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
127  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
128  *       may perform further validation in this case.
129  *     - GRE: only if the checksum is present in the header.
130  *     - SCTP: indicates the CRC in SCTP header has been validated.
131  *     - FCOE: indicates the CRC in FC frame has been validated.
132  *
133  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
134  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
135  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
136  *   and a device is able to verify the checksums for UDP (possibly zero),
137  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
138  *   two. If the device were only able to verify the UDP checksum and not
139  *   GRE, either because it doesn't support GRE checksum or because GRE
140  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
141  *   not considered in this case).
142  *
143  * - %CHECKSUM_COMPLETE
144  *
145  *   This is the most generic way. The device supplied checksum of the _whole_
146  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
147  *   hardware doesn't need to parse L3/L4 headers to implement this.
148  *
149  *   Notes:
150  *
151  *   - Even if device supports only some protocols, but is able to produce
152  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
153  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
154  *
155  * - %CHECKSUM_PARTIAL
156  *
157  *   A checksum is set up to be offloaded to a device as described in the
158  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
159  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
160  *   on the same host, or it may be set in the input path in GRO or remote
161  *   checksum offload. For the purposes of checksum verification, the checksum
162  *   referred to by skb->csum_start + skb->csum_offset and any preceding
163  *   checksums in the packet are considered verified. Any checksums in the
164  *   packet that are after the checksum being offloaded are not considered to
165  *   be verified.
166  *
167  * Checksumming on transmit for non-GSO
168  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
169  *
170  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
171  * Values are:
172  *
173  * - %CHECKSUM_PARTIAL
174  *
175  *   The driver is required to checksum the packet as seen by hard_start_xmit()
176  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
177  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
178  *   A driver may verify that the
179  *   csum_start and csum_offset values are valid values given the length and
180  *   offset of the packet, but it should not attempt to validate that the
181  *   checksum refers to a legitimate transport layer checksum -- it is the
182  *   purview of the stack to validate that csum_start and csum_offset are set
183  *   correctly.
184  *
185  *   When the stack requests checksum offload for a packet, the driver MUST
186  *   ensure that the checksum is set correctly. A driver can either offload the
187  *   checksum calculation to the device, or call skb_checksum_help (in the case
188  *   that the device does not support offload for a particular checksum).
189  *
190  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
191  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
192  *   checksum offload capability.
193  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
194  *   on network device checksumming capabilities: if a packet does not match
195  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
196  *   &sk_buff.csum_not_inet, see :ref:`crc`)
197  *   is called to resolve the checksum.
198  *
199  * - %CHECKSUM_NONE
200  *
201  *   The skb was already checksummed by the protocol, or a checksum is not
202  *   required.
203  *
204  * - %CHECKSUM_UNNECESSARY
205  *
206  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
207  *   output.
208  *
209  * - %CHECKSUM_COMPLETE
210  *
211  *   Not used in checksum output. If a driver observes a packet with this value
212  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
213  *
214  * .. _crc:
215  *
216  * Non-IP checksum (CRC) offloads
217  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
218  *
219  * .. flat-table::
220  *   :widths: 1 10
221  *
222  *   * - %NETIF_F_SCTP_CRC
223  *     - This feature indicates that a device is capable of
224  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
225  *	 will set csum_start and csum_offset accordingly, set ip_summed to
226  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
227  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
228  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
229  *	 must verify which offload is configured for a packet by testing the
230  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
231  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
232  *
233  *   * - %NETIF_F_FCOE_CRC
234  *     - This feature indicates that a device is capable of offloading the FCOE
235  *	 CRC in a packet. To perform this offload the stack will set ip_summed
236  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
237  *	 accordingly. Note that there is no indication in the skbuff that the
238  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
239  *	 both IP checksum offload and FCOE CRC offload must verify which offload
240  *	 is configured for a packet, presumably by inspecting packet headers.
241  *
242  * Checksumming on output with GSO
243  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
244  *
245  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
246  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
247  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
248  * part of the GSO operation is implied. If a checksum is being offloaded
249  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
250  * csum_offset are set to refer to the outermost checksum being offloaded
251  * (two offloaded checksums are possible with UDP encapsulation).
252  */
253 
254 /* Don't change this without changing skb_csum_unnecessary! */
255 #define CHECKSUM_NONE		0
256 #define CHECKSUM_UNNECESSARY	1
257 #define CHECKSUM_COMPLETE	2
258 #define CHECKSUM_PARTIAL	3
259 
260 /* Maximum value in skb->csum_level */
261 #define SKB_MAX_CSUM_LEVEL	3
262 
263 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
264 #define SKB_WITH_OVERHEAD(X)	\
265 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266 
267 /* For X bytes available in skb->head, what is the minimal
268  * allocation needed, knowing struct skb_shared_info needs
269  * to be aligned.
270  */
271 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
272 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273 
274 #define SKB_MAX_ORDER(X, ORDER) \
275 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
276 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
277 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
278 
279 /* return minimum truesize of one skb containing X bytes of data */
280 #define SKB_TRUESIZE(X) ((X) +						\
281 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
282 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
283 
284 struct ahash_request;
285 struct net_device;
286 struct scatterlist;
287 struct pipe_inode_info;
288 struct iov_iter;
289 struct napi_struct;
290 struct bpf_prog;
291 union bpf_attr;
292 struct skb_ext;
293 
294 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
295 struct nf_bridge_info {
296 	enum {
297 		BRNF_PROTO_UNCHANGED,
298 		BRNF_PROTO_8021Q,
299 		BRNF_PROTO_PPPOE
300 	} orig_proto:8;
301 	u8			pkt_otherhost:1;
302 	u8			in_prerouting:1;
303 	u8			bridged_dnat:1;
304 	u8			sabotage_in_done:1;
305 	__u16			frag_max_size;
306 	int			physinif;
307 
308 	/* always valid & non-NULL from FORWARD on, for physdev match */
309 	struct net_device	*physoutdev;
310 	union {
311 		/* prerouting: detect dnat in orig/reply direction */
312 		__be32          ipv4_daddr;
313 		struct in6_addr ipv6_daddr;
314 
315 		/* after prerouting + nat detected: store original source
316 		 * mac since neigh resolution overwrites it, only used while
317 		 * skb is out in neigh layer.
318 		 */
319 		char neigh_header[8];
320 	};
321 };
322 #endif
323 
324 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
325 /* Chain in tc_skb_ext will be used to share the tc chain with
326  * ovs recirc_id. It will be set to the current chain by tc
327  * and read by ovs to recirc_id.
328  */
329 struct tc_skb_ext {
330 	__u32 chain;
331 	__u16 mru;
332 	__u16 zone;
333 	u8 post_ct:1;
334 	u8 post_ct_snat:1;
335 	u8 post_ct_dnat:1;
336 };
337 #endif
338 
339 struct sk_buff_head {
340 	/* These two members must be first to match sk_buff. */
341 	struct_group_tagged(sk_buff_list, list,
342 		struct sk_buff	*next;
343 		struct sk_buff	*prev;
344 	);
345 
346 	__u32		qlen;
347 	spinlock_t	lock;
348 };
349 
350 struct sk_buff;
351 
352 /* To allow 64K frame to be packed as single skb without frag_list we
353  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
354  * buffers which do not start on a page boundary.
355  *
356  * Since GRO uses frags we allocate at least 16 regardless of page
357  * size.
358  */
359 #if (65536/PAGE_SIZE + 1) < 16
360 #define MAX_SKB_FRAGS 16UL
361 #else
362 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
363 #endif
364 extern int sysctl_max_skb_frags;
365 
366 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
367  * segment using its current segmentation instead.
368  */
369 #define GSO_BY_FRAGS	0xFFFF
370 
371 typedef struct bio_vec skb_frag_t;
372 
373 /**
374  * skb_frag_size() - Returns the size of a skb fragment
375  * @frag: skb fragment
376  */
skb_frag_size(const skb_frag_t * frag)377 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
378 {
379 	return frag->bv_len;
380 }
381 
382 /**
383  * skb_frag_size_set() - Sets the size of a skb fragment
384  * @frag: skb fragment
385  * @size: size of fragment
386  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)387 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
388 {
389 	frag->bv_len = size;
390 }
391 
392 /**
393  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
394  * @frag: skb fragment
395  * @delta: value to add
396  */
skb_frag_size_add(skb_frag_t * frag,int delta)397 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
398 {
399 	frag->bv_len += delta;
400 }
401 
402 /**
403  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
404  * @frag: skb fragment
405  * @delta: value to subtract
406  */
skb_frag_size_sub(skb_frag_t * frag,int delta)407 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
408 {
409 	frag->bv_len -= delta;
410 }
411 
412 /**
413  * skb_frag_must_loop - Test if %p is a high memory page
414  * @p: fragment's page
415  */
skb_frag_must_loop(struct page * p)416 static inline bool skb_frag_must_loop(struct page *p)
417 {
418 #if defined(CONFIG_HIGHMEM)
419 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
420 		return true;
421 #endif
422 	return false;
423 }
424 
425 /**
426  *	skb_frag_foreach_page - loop over pages in a fragment
427  *
428  *	@f:		skb frag to operate on
429  *	@f_off:		offset from start of f->bv_page
430  *	@f_len:		length from f_off to loop over
431  *	@p:		(temp var) current page
432  *	@p_off:		(temp var) offset from start of current page,
433  *	                           non-zero only on first page.
434  *	@p_len:		(temp var) length in current page,
435  *				   < PAGE_SIZE only on first and last page.
436  *	@copied:	(temp var) length so far, excluding current p_len.
437  *
438  *	A fragment can hold a compound page, in which case per-page
439  *	operations, notably kmap_atomic, must be called for each
440  *	regular page.
441  */
442 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
443 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
444 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
445 	     p_len = skb_frag_must_loop(p) ?				\
446 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
447 	     copied = 0;						\
448 	     copied < f_len;						\
449 	     copied += p_len, p++, p_off = 0,				\
450 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
451 
452 #define HAVE_HW_TIME_STAMP
453 
454 /**
455  * struct skb_shared_hwtstamps - hardware time stamps
456  * @hwtstamp:		hardware time stamp transformed into duration
457  *			since arbitrary point in time
458  * @netdev_data:	address/cookie of network device driver used as
459  *			reference to actual hardware time stamp
460  *
461  * Software time stamps generated by ktime_get_real() are stored in
462  * skb->tstamp.
463  *
464  * hwtstamps can only be compared against other hwtstamps from
465  * the same device.
466  *
467  * This structure is attached to packets as part of the
468  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
469  */
470 struct skb_shared_hwtstamps {
471 	union {
472 		ktime_t	hwtstamp;
473 		void *netdev_data;
474 	};
475 };
476 
477 /* Definitions for tx_flags in struct skb_shared_info */
478 enum {
479 	/* generate hardware time stamp */
480 	SKBTX_HW_TSTAMP = 1 << 0,
481 
482 	/* generate software time stamp when queueing packet to NIC */
483 	SKBTX_SW_TSTAMP = 1 << 1,
484 
485 	/* device driver is going to provide hardware time stamp */
486 	SKBTX_IN_PROGRESS = 1 << 2,
487 
488 	/* generate hardware time stamp based on cycles if supported */
489 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
490 
491 	/* generate wifi status information (where possible) */
492 	SKBTX_WIFI_STATUS = 1 << 4,
493 
494 	/* determine hardware time stamp based on time or cycles */
495 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
496 
497 	/* generate software time stamp when entering packet scheduling */
498 	SKBTX_SCHED_TSTAMP = 1 << 6,
499 };
500 
501 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
502 				 SKBTX_SCHED_TSTAMP)
503 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
504 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
505 				 SKBTX_ANY_SW_TSTAMP)
506 
507 /* Definitions for flags in struct skb_shared_info */
508 enum {
509 	/* use zcopy routines */
510 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
511 
512 	/* This indicates at least one fragment might be overwritten
513 	 * (as in vmsplice(), sendfile() ...)
514 	 * If we need to compute a TX checksum, we'll need to copy
515 	 * all frags to avoid possible bad checksum
516 	 */
517 	SKBFL_SHARED_FRAG = BIT(1),
518 
519 	/* segment contains only zerocopy data and should not be
520 	 * charged to the kernel memory.
521 	 */
522 	SKBFL_PURE_ZEROCOPY = BIT(2),
523 
524 	SKBFL_DONT_ORPHAN = BIT(3),
525 
526 	/* page references are managed by the ubuf_info, so it's safe to
527 	 * use frags only up until ubuf_info is released
528 	 */
529 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
530 };
531 
532 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
533 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
534 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
535 
536 /*
537  * The callback notifies userspace to release buffers when skb DMA is done in
538  * lower device, the skb last reference should be 0 when calling this.
539  * The zerocopy_success argument is true if zero copy transmit occurred,
540  * false on data copy or out of memory error caused by data copy attempt.
541  * The ctx field is used to track device context.
542  * The desc field is used to track userspace buffer index.
543  */
544 struct ubuf_info {
545 	void (*callback)(struct sk_buff *, struct ubuf_info *,
546 			 bool zerocopy_success);
547 	refcount_t refcnt;
548 	u8 flags;
549 };
550 
551 struct ubuf_info_msgzc {
552 	struct ubuf_info ubuf;
553 
554 	union {
555 		struct {
556 			unsigned long desc;
557 			void *ctx;
558 		};
559 		struct {
560 			u32 id;
561 			u16 len;
562 			u16 zerocopy:1;
563 			u32 bytelen;
564 		};
565 	};
566 
567 	struct mmpin {
568 		struct user_struct *user;
569 		unsigned int num_pg;
570 	} mmp;
571 };
572 
573 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
574 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
575 					     ubuf)
576 
577 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
578 void mm_unaccount_pinned_pages(struct mmpin *mmp);
579 
580 /* This data is invariant across clones and lives at
581  * the end of the header data, ie. at skb->end.
582  */
583 struct skb_shared_info {
584 	__u8		flags;
585 	__u8		meta_len;
586 	__u8		nr_frags;
587 	__u8		tx_flags;
588 	unsigned short	gso_size;
589 	/* Warning: this field is not always filled in (UFO)! */
590 	unsigned short	gso_segs;
591 	struct sk_buff	*frag_list;
592 	struct skb_shared_hwtstamps hwtstamps;
593 	unsigned int	gso_type;
594 	u32		tskey;
595 
596 	/*
597 	 * Warning : all fields before dataref are cleared in __alloc_skb()
598 	 */
599 	atomic_t	dataref;
600 	unsigned int	xdp_frags_size;
601 
602 	/* Intermediate layers must ensure that destructor_arg
603 	 * remains valid until skb destructor */
604 	void *		destructor_arg;
605 
606 	ANDROID_OEM_DATA_ARRAY(1, 3);
607 
608 	/* must be last field, see pskb_expand_head() */
609 	skb_frag_t	frags[MAX_SKB_FRAGS];
610 };
611 
612 /**
613  * DOC: dataref and headerless skbs
614  *
615  * Transport layers send out clones of payload skbs they hold for
616  * retransmissions. To allow lower layers of the stack to prepend their headers
617  * we split &skb_shared_info.dataref into two halves.
618  * The lower 16 bits count the overall number of references.
619  * The higher 16 bits indicate how many of the references are payload-only.
620  * skb_header_cloned() checks if skb is allowed to add / write the headers.
621  *
622  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
623  * (via __skb_header_release()). Any clone created from marked skb will get
624  * &sk_buff.hdr_len populated with the available headroom.
625  * If there's the only clone in existence it's able to modify the headroom
626  * at will. The sequence of calls inside the transport layer is::
627  *
628  *  <alloc skb>
629  *  skb_reserve()
630  *  __skb_header_release()
631  *  skb_clone()
632  *  // send the clone down the stack
633  *
634  * This is not a very generic construct and it depends on the transport layers
635  * doing the right thing. In practice there's usually only one payload-only skb.
636  * Having multiple payload-only skbs with different lengths of hdr_len is not
637  * possible. The payload-only skbs should never leave their owner.
638  */
639 #define SKB_DATAREF_SHIFT 16
640 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
641 
642 
643 enum {
644 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
645 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
646 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
647 };
648 
649 enum {
650 	SKB_GSO_TCPV4 = 1 << 0,
651 
652 	/* This indicates the skb is from an untrusted source. */
653 	SKB_GSO_DODGY = 1 << 1,
654 
655 	/* This indicates the tcp segment has CWR set. */
656 	SKB_GSO_TCP_ECN = 1 << 2,
657 
658 	SKB_GSO_TCP_FIXEDID = 1 << 3,
659 
660 	SKB_GSO_TCPV6 = 1 << 4,
661 
662 	SKB_GSO_FCOE = 1 << 5,
663 
664 	SKB_GSO_GRE = 1 << 6,
665 
666 	SKB_GSO_GRE_CSUM = 1 << 7,
667 
668 	SKB_GSO_IPXIP4 = 1 << 8,
669 
670 	SKB_GSO_IPXIP6 = 1 << 9,
671 
672 	SKB_GSO_UDP_TUNNEL = 1 << 10,
673 
674 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
675 
676 	SKB_GSO_PARTIAL = 1 << 12,
677 
678 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
679 
680 	SKB_GSO_SCTP = 1 << 14,
681 
682 	SKB_GSO_ESP = 1 << 15,
683 
684 	SKB_GSO_UDP = 1 << 16,
685 
686 	SKB_GSO_UDP_L4 = 1 << 17,
687 
688 	SKB_GSO_FRAGLIST = 1 << 18,
689 };
690 
691 #if BITS_PER_LONG > 32
692 #define NET_SKBUFF_DATA_USES_OFFSET 1
693 #endif
694 
695 #ifdef NET_SKBUFF_DATA_USES_OFFSET
696 typedef unsigned int sk_buff_data_t;
697 #else
698 typedef unsigned char *sk_buff_data_t;
699 #endif
700 
701 /**
702  * DOC: Basic sk_buff geometry
703  *
704  * struct sk_buff itself is a metadata structure and does not hold any packet
705  * data. All the data is held in associated buffers.
706  *
707  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
708  * into two parts:
709  *
710  *  - data buffer, containing headers and sometimes payload;
711  *    this is the part of the skb operated on by the common helpers
712  *    such as skb_put() or skb_pull();
713  *  - shared info (struct skb_shared_info) which holds an array of pointers
714  *    to read-only data in the (page, offset, length) format.
715  *
716  * Optionally &skb_shared_info.frag_list may point to another skb.
717  *
718  * Basic diagram may look like this::
719  *
720  *                                  ---------------
721  *                                 | sk_buff       |
722  *                                  ---------------
723  *     ,---------------------------  + head
724  *    /          ,-----------------  + data
725  *   /          /      ,-----------  + tail
726  *  |          |      |            , + end
727  *  |          |      |           |
728  *  v          v      v           v
729  *   -----------------------------------------------
730  *  | headroom | data |  tailroom | skb_shared_info |
731  *   -----------------------------------------------
732  *                                 + [page frag]
733  *                                 + [page frag]
734  *                                 + [page frag]
735  *                                 + [page frag]       ---------
736  *                                 + frag_list    --> | sk_buff |
737  *                                                     ---------
738  *
739  */
740 
741 /**
742  *	struct sk_buff - socket buffer
743  *	@next: Next buffer in list
744  *	@prev: Previous buffer in list
745  *	@tstamp: Time we arrived/left
746  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
747  *		for retransmit timer
748  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
749  *	@list: queue head
750  *	@ll_node: anchor in an llist (eg socket defer_list)
751  *	@sk: Socket we are owned by
752  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
753  *		fragmentation management
754  *	@dev: Device we arrived on/are leaving by
755  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
756  *	@cb: Control buffer. Free for use by every layer. Put private vars here
757  *	@_skb_refdst: destination entry (with norefcount bit)
758  *	@sp: the security path, used for xfrm
759  *	@len: Length of actual data
760  *	@data_len: Data length
761  *	@mac_len: Length of link layer header
762  *	@hdr_len: writable header length of cloned skb
763  *	@csum: Checksum (must include start/offset pair)
764  *	@csum_start: Offset from skb->head where checksumming should start
765  *	@csum_offset: Offset from csum_start where checksum should be stored
766  *	@priority: Packet queueing priority
767  *	@ignore_df: allow local fragmentation
768  *	@cloned: Head may be cloned (check refcnt to be sure)
769  *	@ip_summed: Driver fed us an IP checksum
770  *	@nohdr: Payload reference only, must not modify header
771  *	@pkt_type: Packet class
772  *	@fclone: skbuff clone status
773  *	@ipvs_property: skbuff is owned by ipvs
774  *	@inner_protocol_type: whether the inner protocol is
775  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
776  *	@remcsum_offload: remote checksum offload is enabled
777  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
778  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
779  *	@tc_skip_classify: do not classify packet. set by IFB device
780  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
781  *	@redirected: packet was redirected by packet classifier
782  *	@from_ingress: packet was redirected from the ingress path
783  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
784  *	@peeked: this packet has been seen already, so stats have been
785  *		done for it, don't do them again
786  *	@nf_trace: netfilter packet trace flag
787  *	@protocol: Packet protocol from driver
788  *	@destructor: Destruct function
789  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
790  *	@_sk_redir: socket redirection information for skmsg
791  *	@_nfct: Associated connection, if any (with nfctinfo bits)
792  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
793  *	@skb_iif: ifindex of device we arrived on
794  *	@tc_index: Traffic control index
795  *	@hash: the packet hash
796  *	@queue_mapping: Queue mapping for multiqueue devices
797  *	@head_frag: skb was allocated from page fragments,
798  *		not allocated by kmalloc() or vmalloc().
799  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
800  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
801  *		page_pool support on driver)
802  *	@active_extensions: active extensions (skb_ext_id types)
803  *	@ndisc_nodetype: router type (from link layer)
804  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
805  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
806  *		ports.
807  *	@sw_hash: indicates hash was computed in software stack
808  *	@wifi_acked_valid: wifi_acked was set
809  *	@wifi_acked: whether frame was acked on wifi or not
810  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
811  *	@encapsulation: indicates the inner headers in the skbuff are valid
812  *	@encap_hdr_csum: software checksum is needed
813  *	@csum_valid: checksum is already valid
814  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
815  *	@csum_complete_sw: checksum was completed by software
816  *	@csum_level: indicates the number of consecutive checksums found in
817  *		the packet minus one that have been verified as
818  *		CHECKSUM_UNNECESSARY (max 3)
819  *	@scm_io_uring: SKB holds io_uring registered files
820  *	@dst_pending_confirm: need to confirm neighbour
821  *	@decrypted: Decrypted SKB
822  *	@slow_gro: state present at GRO time, slower prepare step required
823  *	@mono_delivery_time: When set, skb->tstamp has the
824  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
825  *		skb->tstamp has the (rcv) timestamp at ingress and
826  *		delivery_time at egress.
827  *	@napi_id: id of the NAPI struct this skb came from
828  *	@sender_cpu: (aka @napi_id) source CPU in XPS
829  *	@alloc_cpu: CPU which did the skb allocation.
830  *	@secmark: security marking
831  *	@mark: Generic packet mark
832  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
833  *		at the tail of an sk_buff
834  *	@vlan_present: VLAN tag is present
835  *	@vlan_proto: vlan encapsulation protocol
836  *	@vlan_tci: vlan tag control information
837  *	@inner_protocol: Protocol (encapsulation)
838  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
839  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
840  *	@inner_transport_header: Inner transport layer header (encapsulation)
841  *	@inner_network_header: Network layer header (encapsulation)
842  *	@inner_mac_header: Link layer header (encapsulation)
843  *	@transport_header: Transport layer header
844  *	@network_header: Network layer header
845  *	@mac_header: Link layer header
846  *	@kcov_handle: KCOV remote handle for remote coverage collection
847  *	@tail: Tail pointer
848  *	@end: End pointer
849  *	@head: Head of buffer
850  *	@data: Data head pointer
851  *	@truesize: Buffer size
852  *	@users: User count - see {datagram,tcp}.c
853  *	@extensions: allocated extensions, valid if active_extensions is nonzero
854  */
855 
856 struct sk_buff {
857 	union {
858 		struct {
859 			/* These two members must be first to match sk_buff_head. */
860 			struct sk_buff		*next;
861 			struct sk_buff		*prev;
862 
863 			union {
864 				struct net_device	*dev;
865 				/* Some protocols might use this space to store information,
866 				 * while device pointer would be NULL.
867 				 * UDP receive path is one user.
868 				 */
869 				unsigned long		dev_scratch;
870 			};
871 		};
872 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
873 		struct list_head	list;
874 		struct llist_node	ll_node;
875 	};
876 
877 	union {
878 		struct sock		*sk;
879 		int			ip_defrag_offset;
880 	};
881 
882 	union {
883 		ktime_t		tstamp;
884 		u64		skb_mstamp_ns; /* earliest departure time */
885 	};
886 	/*
887 	 * This is the control buffer. It is free to use for every
888 	 * layer. Please put your private variables there. If you
889 	 * want to keep them across layers you have to do a skb_clone()
890 	 * first. This is owned by whoever has the skb queued ATM.
891 	 */
892 	char			cb[48] __aligned(8);
893 
894 	union {
895 		struct {
896 			unsigned long	_skb_refdst;
897 			void		(*destructor)(struct sk_buff *skb);
898 		};
899 		struct list_head	tcp_tsorted_anchor;
900 #ifdef CONFIG_NET_SOCK_MSG
901 		unsigned long		_sk_redir;
902 #endif
903 	};
904 
905 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
906 	unsigned long		 _nfct;
907 #endif
908 	unsigned int		len,
909 				data_len;
910 	__u16			mac_len,
911 				hdr_len;
912 
913 	/* Following fields are _not_ copied in __copy_skb_header()
914 	 * Note that queue_mapping is here mostly to fill a hole.
915 	 */
916 	__u16			queue_mapping;
917 
918 /* if you move cloned around you also must adapt those constants */
919 #ifdef __BIG_ENDIAN_BITFIELD
920 #define CLONED_MASK	(1 << 7)
921 #else
922 #define CLONED_MASK	1
923 #endif
924 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
925 
926 	/* private: */
927 	__u8			__cloned_offset[0];
928 	/* public: */
929 	__u8			cloned:1,
930 				nohdr:1,
931 				fclone:2,
932 				peeked:1,
933 				head_frag:1,
934 				pfmemalloc:1,
935 				pp_recycle:1; /* page_pool recycle indicator */
936 #ifdef CONFIG_SKB_EXTENSIONS
937 	__u8			active_extensions;
938 #endif
939 
940 	/* Fields enclosed in headers group are copied
941 	 * using a single memcpy() in __copy_skb_header()
942 	 */
943 	struct_group(headers,
944 
945 	/* private: */
946 	__u8			__pkt_type_offset[0];
947 	/* public: */
948 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
949 	__u8			ignore_df:1;
950 	__u8			nf_trace:1;
951 	__u8			ip_summed:2;
952 	__u8			ooo_okay:1;
953 
954 	__u8			l4_hash:1;
955 	__u8			sw_hash:1;
956 	__u8			wifi_acked_valid:1;
957 	__u8			wifi_acked:1;
958 	__u8			no_fcs:1;
959 	/* Indicates the inner headers are valid in the skbuff. */
960 	__u8			encapsulation:1;
961 	__u8			encap_hdr_csum:1;
962 	__u8			csum_valid:1;
963 
964 	/* private: */
965 	__u8			__pkt_vlan_present_offset[0];
966 	/* public: */
967 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
968 	__u8			csum_complete_sw:1;
969 	__u8			csum_level:2;
970 	__u8			dst_pending_confirm:1;
971 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
972 #ifdef CONFIG_NET_CLS_ACT
973 	__u8			tc_skip_classify:1;
974 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
975 #endif
976 #ifdef CONFIG_IPV6_NDISC_NODETYPE
977 	__u8			ndisc_nodetype:2;
978 #endif
979 
980 	__u8			ipvs_property:1;
981 	__u8			inner_protocol_type:1;
982 	__u8			remcsum_offload:1;
983 #ifdef CONFIG_NET_SWITCHDEV
984 	__u8			offload_fwd_mark:1;
985 	__u8			offload_l3_fwd_mark:1;
986 #endif
987 	__u8			redirected:1;
988 #ifdef CONFIG_NET_REDIRECT
989 	__u8			from_ingress:1;
990 #endif
991 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
992 	__u8			nf_skip_egress:1;
993 #endif
994 #ifdef CONFIG_TLS_DEVICE
995 	__u8			decrypted:1;
996 #endif
997 	__u8			slow_gro:1;
998 	__u8			csum_not_inet:1;
999 	__u8			scm_io_uring:1;
1000 
1001 #ifdef CONFIG_NET_SCHED
1002 	__u16			tc_index;	/* traffic control index */
1003 #endif
1004 
1005 	union {
1006 		__wsum		csum;
1007 		struct {
1008 			__u16	csum_start;
1009 			__u16	csum_offset;
1010 		};
1011 	};
1012 	__u32			priority;
1013 	int			skb_iif;
1014 	__u32			hash;
1015 	__be16			vlan_proto;
1016 	__u16			vlan_tci;
1017 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1018 	union {
1019 		unsigned int	napi_id;
1020 		unsigned int	sender_cpu;
1021 	};
1022 #endif
1023 	u16			alloc_cpu;
1024 #ifdef CONFIG_NETWORK_SECMARK
1025 	__u32		secmark;
1026 #endif
1027 
1028 	union {
1029 		__u32		mark;
1030 		__u32		reserved_tailroom;
1031 	};
1032 
1033 	union {
1034 		__be16		inner_protocol;
1035 		__u8		inner_ipproto;
1036 	};
1037 
1038 	__u16			inner_transport_header;
1039 	__u16			inner_network_header;
1040 	__u16			inner_mac_header;
1041 
1042 	__be16			protocol;
1043 	__u16			transport_header;
1044 	__u16			network_header;
1045 	__u16			mac_header;
1046 
1047 #ifdef CONFIG_KCOV
1048 	u64			kcov_handle;
1049 #endif
1050 
1051 	ANDROID_KABI_RESERVE(1);
1052 	ANDROID_KABI_RESERVE(2);
1053 
1054 	); /* end headers group */
1055 
1056 	/* These elements must be at the end, see alloc_skb() for details.  */
1057 	sk_buff_data_t		tail;
1058 	sk_buff_data_t		end;
1059 	unsigned char		*head,
1060 				*data;
1061 	unsigned int		truesize;
1062 	refcount_t		users;
1063 
1064 #ifdef CONFIG_SKB_EXTENSIONS
1065 	/* only useable after checking ->active_extensions != 0 */
1066 	struct skb_ext		*extensions;
1067 #endif
1068 };
1069 
1070 /* if you move pkt_type around you also must adapt those constants */
1071 #ifdef __BIG_ENDIAN_BITFIELD
1072 #define PKT_TYPE_MAX	(7 << 5)
1073 #else
1074 #define PKT_TYPE_MAX	7
1075 #endif
1076 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1077 
1078 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1079  * around, you also must adapt these constants.
1080  */
1081 #ifdef __BIG_ENDIAN_BITFIELD
1082 #define PKT_VLAN_PRESENT_BIT	7
1083 #define TC_AT_INGRESS_MASK		(1 << 0)
1084 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1085 #else
1086 #define PKT_VLAN_PRESENT_BIT	0
1087 #define TC_AT_INGRESS_MASK		(1 << 7)
1088 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1089 #endif
1090 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1091 
1092 #ifdef __KERNEL__
1093 /*
1094  *	Handling routines are only of interest to the kernel
1095  */
1096 
1097 #define SKB_ALLOC_FCLONE	0x01
1098 #define SKB_ALLOC_RX		0x02
1099 #define SKB_ALLOC_NAPI		0x04
1100 
1101 /**
1102  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1103  * @skb: buffer
1104  */
skb_pfmemalloc(const struct sk_buff * skb)1105 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1106 {
1107 	return unlikely(skb->pfmemalloc);
1108 }
1109 
1110 /*
1111  * skb might have a dst pointer attached, refcounted or not.
1112  * _skb_refdst low order bit is set if refcount was _not_ taken
1113  */
1114 #define SKB_DST_NOREF	1UL
1115 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1116 
1117 /**
1118  * skb_dst - returns skb dst_entry
1119  * @skb: buffer
1120  *
1121  * Returns skb dst_entry, regardless of reference taken or not.
1122  */
skb_dst(const struct sk_buff * skb)1123 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1124 {
1125 	/* If refdst was not refcounted, check we still are in a
1126 	 * rcu_read_lock section
1127 	 */
1128 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1129 		!rcu_read_lock_held() &&
1130 		!rcu_read_lock_bh_held());
1131 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1132 }
1133 
1134 /**
1135  * skb_dst_set - sets skb dst
1136  * @skb: buffer
1137  * @dst: dst entry
1138  *
1139  * Sets skb dst, assuming a reference was taken on dst and should
1140  * be released by skb_dst_drop()
1141  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1142 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1143 {
1144 	skb->slow_gro |= !!dst;
1145 	skb->_skb_refdst = (unsigned long)dst;
1146 }
1147 
1148 /**
1149  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1150  * @skb: buffer
1151  * @dst: dst entry
1152  *
1153  * Sets skb dst, assuming a reference was not taken on dst.
1154  * If dst entry is cached, we do not take reference and dst_release
1155  * will be avoided by refdst_drop. If dst entry is not cached, we take
1156  * reference, so that last dst_release can destroy the dst immediately.
1157  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1158 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1159 {
1160 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1161 	skb->slow_gro |= !!dst;
1162 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1163 }
1164 
1165 /**
1166  * skb_dst_is_noref - Test if skb dst isn't refcounted
1167  * @skb: buffer
1168  */
skb_dst_is_noref(const struct sk_buff * skb)1169 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1170 {
1171 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1172 }
1173 
1174 /**
1175  * skb_rtable - Returns the skb &rtable
1176  * @skb: buffer
1177  */
skb_rtable(const struct sk_buff * skb)1178 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1179 {
1180 	return (struct rtable *)skb_dst(skb);
1181 }
1182 
1183 /* For mangling skb->pkt_type from user space side from applications
1184  * such as nft, tc, etc, we only allow a conservative subset of
1185  * possible pkt_types to be set.
1186 */
skb_pkt_type_ok(u32 ptype)1187 static inline bool skb_pkt_type_ok(u32 ptype)
1188 {
1189 	return ptype <= PACKET_OTHERHOST;
1190 }
1191 
1192 /**
1193  * skb_napi_id - Returns the skb's NAPI id
1194  * @skb: buffer
1195  */
skb_napi_id(const struct sk_buff * skb)1196 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1197 {
1198 #ifdef CONFIG_NET_RX_BUSY_POLL
1199 	return skb->napi_id;
1200 #else
1201 	return 0;
1202 #endif
1203 }
1204 
1205 /**
1206  * skb_unref - decrement the skb's reference count
1207  * @skb: buffer
1208  *
1209  * Returns true if we can free the skb.
1210  */
skb_unref(struct sk_buff * skb)1211 static inline bool skb_unref(struct sk_buff *skb)
1212 {
1213 	if (unlikely(!skb))
1214 		return false;
1215 	if (likely(refcount_read(&skb->users) == 1))
1216 		smp_rmb();
1217 	else if (likely(!refcount_dec_and_test(&skb->users)))
1218 		return false;
1219 
1220 	return true;
1221 }
1222 
1223 void __fix_address
1224 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1225 
1226 /**
1227  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1228  *	@skb: buffer to free
1229  */
kfree_skb(struct sk_buff * skb)1230 static inline void kfree_skb(struct sk_buff *skb)
1231 {
1232 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1233 }
1234 
1235 void skb_release_head_state(struct sk_buff *skb);
1236 void kfree_skb_list_reason(struct sk_buff *segs,
1237 			   enum skb_drop_reason reason);
1238 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1239 void skb_tx_error(struct sk_buff *skb);
1240 
kfree_skb_list(struct sk_buff * segs)1241 static inline void kfree_skb_list(struct sk_buff *segs)
1242 {
1243 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1244 }
1245 
1246 #ifdef CONFIG_TRACEPOINTS
1247 void consume_skb(struct sk_buff *skb);
1248 #else
consume_skb(struct sk_buff * skb)1249 static inline void consume_skb(struct sk_buff *skb)
1250 {
1251 	return kfree_skb(skb);
1252 }
1253 #endif
1254 
1255 void __consume_stateless_skb(struct sk_buff *skb);
1256 void  __kfree_skb(struct sk_buff *skb);
1257 extern struct kmem_cache *skbuff_head_cache;
1258 
1259 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1260 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1261 		      bool *fragstolen, int *delta_truesize);
1262 
1263 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1264 			    int node);
1265 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1266 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1267 struct sk_buff *build_skb_around(struct sk_buff *skb,
1268 				 void *data, unsigned int frag_size);
1269 void skb_attempt_defer_free(struct sk_buff *skb);
1270 
1271 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1272 
1273 /**
1274  * alloc_skb - allocate a network buffer
1275  * @size: size to allocate
1276  * @priority: allocation mask
1277  *
1278  * This function is a convenient wrapper around __alloc_skb().
1279  */
alloc_skb(unsigned int size,gfp_t priority)1280 static inline struct sk_buff *alloc_skb(unsigned int size,
1281 					gfp_t priority)
1282 {
1283 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1284 }
1285 
1286 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1287 				     unsigned long data_len,
1288 				     int max_page_order,
1289 				     int *errcode,
1290 				     gfp_t gfp_mask);
1291 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1292 
1293 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1294 struct sk_buff_fclones {
1295 	struct sk_buff	skb1;
1296 
1297 	struct sk_buff	skb2;
1298 
1299 	refcount_t	fclone_ref;
1300 };
1301 
1302 /**
1303  *	skb_fclone_busy - check if fclone is busy
1304  *	@sk: socket
1305  *	@skb: buffer
1306  *
1307  * Returns true if skb is a fast clone, and its clone is not freed.
1308  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1309  * so we also check that this didnt happen.
1310  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1311 static inline bool skb_fclone_busy(const struct sock *sk,
1312 				   const struct sk_buff *skb)
1313 {
1314 	const struct sk_buff_fclones *fclones;
1315 
1316 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1317 
1318 	return skb->fclone == SKB_FCLONE_ORIG &&
1319 	       refcount_read(&fclones->fclone_ref) > 1 &&
1320 	       READ_ONCE(fclones->skb2.sk) == sk;
1321 }
1322 
1323 /**
1324  * alloc_skb_fclone - allocate a network buffer from fclone cache
1325  * @size: size to allocate
1326  * @priority: allocation mask
1327  *
1328  * This function is a convenient wrapper around __alloc_skb().
1329  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1330 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1331 					       gfp_t priority)
1332 {
1333 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1334 }
1335 
1336 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1337 void skb_headers_offset_update(struct sk_buff *skb, int off);
1338 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1339 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1340 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1341 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1342 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1343 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1344 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1345 					  gfp_t gfp_mask)
1346 {
1347 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1348 }
1349 
1350 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1351 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1352 				     unsigned int headroom);
1353 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1354 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1355 				int newtailroom, gfp_t priority);
1356 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1357 				     int offset, int len);
1358 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1359 			      int offset, int len);
1360 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1361 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1362 
1363 /**
1364  *	skb_pad			-	zero pad the tail of an skb
1365  *	@skb: buffer to pad
1366  *	@pad: space to pad
1367  *
1368  *	Ensure that a buffer is followed by a padding area that is zero
1369  *	filled. Used by network drivers which may DMA or transfer data
1370  *	beyond the buffer end onto the wire.
1371  *
1372  *	May return error in out of memory cases. The skb is freed on error.
1373  */
skb_pad(struct sk_buff * skb,int pad)1374 static inline int skb_pad(struct sk_buff *skb, int pad)
1375 {
1376 	return __skb_pad(skb, pad, true);
1377 }
1378 #define dev_kfree_skb(a)	consume_skb(a)
1379 
1380 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1381 			 int offset, size_t size);
1382 
1383 struct skb_seq_state {
1384 	__u32		lower_offset;
1385 	__u32		upper_offset;
1386 	__u32		frag_idx;
1387 	__u32		stepped_offset;
1388 	struct sk_buff	*root_skb;
1389 	struct sk_buff	*cur_skb;
1390 	__u8		*frag_data;
1391 	__u32		frag_off;
1392 };
1393 
1394 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1395 			  unsigned int to, struct skb_seq_state *st);
1396 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1397 			  struct skb_seq_state *st);
1398 void skb_abort_seq_read(struct skb_seq_state *st);
1399 
1400 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1401 			   unsigned int to, struct ts_config *config);
1402 
1403 /*
1404  * Packet hash types specify the type of hash in skb_set_hash.
1405  *
1406  * Hash types refer to the protocol layer addresses which are used to
1407  * construct a packet's hash. The hashes are used to differentiate or identify
1408  * flows of the protocol layer for the hash type. Hash types are either
1409  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1410  *
1411  * Properties of hashes:
1412  *
1413  * 1) Two packets in different flows have different hash values
1414  * 2) Two packets in the same flow should have the same hash value
1415  *
1416  * A hash at a higher layer is considered to be more specific. A driver should
1417  * set the most specific hash possible.
1418  *
1419  * A driver cannot indicate a more specific hash than the layer at which a hash
1420  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1421  *
1422  * A driver may indicate a hash level which is less specific than the
1423  * actual layer the hash was computed on. For instance, a hash computed
1424  * at L4 may be considered an L3 hash. This should only be done if the
1425  * driver can't unambiguously determine that the HW computed the hash at
1426  * the higher layer. Note that the "should" in the second property above
1427  * permits this.
1428  */
1429 enum pkt_hash_types {
1430 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1431 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1432 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1433 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1434 };
1435 
skb_clear_hash(struct sk_buff * skb)1436 static inline void skb_clear_hash(struct sk_buff *skb)
1437 {
1438 	skb->hash = 0;
1439 	skb->sw_hash = 0;
1440 	skb->l4_hash = 0;
1441 }
1442 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1443 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1444 {
1445 	if (!skb->l4_hash)
1446 		skb_clear_hash(skb);
1447 }
1448 
1449 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1450 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1451 {
1452 	skb->l4_hash = is_l4;
1453 	skb->sw_hash = is_sw;
1454 	skb->hash = hash;
1455 }
1456 
1457 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1458 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1459 {
1460 	/* Used by drivers to set hash from HW */
1461 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1462 }
1463 
1464 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1465 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1466 {
1467 	__skb_set_hash(skb, hash, true, is_l4);
1468 }
1469 
1470 void __skb_get_hash(struct sk_buff *skb);
1471 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1472 u32 skb_get_poff(const struct sk_buff *skb);
1473 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1474 		   const struct flow_keys_basic *keys, int hlen);
1475 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1476 			    const void *data, int hlen_proto);
1477 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1478 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1479 					int thoff, u8 ip_proto)
1480 {
1481 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1482 }
1483 
1484 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1485 			     const struct flow_dissector_key *key,
1486 			     unsigned int key_count);
1487 
1488 struct bpf_flow_dissector;
1489 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1490 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1491 
1492 bool __skb_flow_dissect(const struct net *net,
1493 			const struct sk_buff *skb,
1494 			struct flow_dissector *flow_dissector,
1495 			void *target_container, const void *data,
1496 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1497 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1498 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1499 				    struct flow_dissector *flow_dissector,
1500 				    void *target_container, unsigned int flags)
1501 {
1502 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1503 				  target_container, NULL, 0, 0, 0, flags);
1504 }
1505 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1506 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1507 					      struct flow_keys *flow,
1508 					      unsigned int flags)
1509 {
1510 	memset(flow, 0, sizeof(*flow));
1511 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1512 				  flow, NULL, 0, 0, 0, flags);
1513 }
1514 
1515 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1516 skb_flow_dissect_flow_keys_basic(const struct net *net,
1517 				 const struct sk_buff *skb,
1518 				 struct flow_keys_basic *flow,
1519 				 const void *data, __be16 proto,
1520 				 int nhoff, int hlen, unsigned int flags)
1521 {
1522 	memset(flow, 0, sizeof(*flow));
1523 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1524 				  data, proto, nhoff, hlen, flags);
1525 }
1526 
1527 void skb_flow_dissect_meta(const struct sk_buff *skb,
1528 			   struct flow_dissector *flow_dissector,
1529 			   void *target_container);
1530 
1531 /* Gets a skb connection tracking info, ctinfo map should be a
1532  * map of mapsize to translate enum ip_conntrack_info states
1533  * to user states.
1534  */
1535 void
1536 skb_flow_dissect_ct(const struct sk_buff *skb,
1537 		    struct flow_dissector *flow_dissector,
1538 		    void *target_container,
1539 		    u16 *ctinfo_map, size_t mapsize,
1540 		    bool post_ct, u16 zone);
1541 void
1542 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1543 			     struct flow_dissector *flow_dissector,
1544 			     void *target_container);
1545 
1546 void skb_flow_dissect_hash(const struct sk_buff *skb,
1547 			   struct flow_dissector *flow_dissector,
1548 			   void *target_container);
1549 
skb_get_hash(struct sk_buff * skb)1550 static inline __u32 skb_get_hash(struct sk_buff *skb)
1551 {
1552 	if (!skb->l4_hash && !skb->sw_hash)
1553 		__skb_get_hash(skb);
1554 
1555 	return skb->hash;
1556 }
1557 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1558 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1559 {
1560 	if (!skb->l4_hash && !skb->sw_hash) {
1561 		struct flow_keys keys;
1562 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1563 
1564 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1565 	}
1566 
1567 	return skb->hash;
1568 }
1569 
1570 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1571 			   const siphash_key_t *perturb);
1572 
skb_get_hash_raw(const struct sk_buff * skb)1573 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1574 {
1575 	return skb->hash;
1576 }
1577 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1578 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1579 {
1580 	to->hash = from->hash;
1581 	to->sw_hash = from->sw_hash;
1582 	to->l4_hash = from->l4_hash;
1583 };
1584 
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1585 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1586 				    const struct sk_buff *skb2)
1587 {
1588 #ifdef CONFIG_TLS_DEVICE
1589 	return skb2->decrypted - skb1->decrypted;
1590 #else
1591 	return 0;
1592 #endif
1593 }
1594 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1595 static inline void skb_copy_decrypted(struct sk_buff *to,
1596 				      const struct sk_buff *from)
1597 {
1598 #ifdef CONFIG_TLS_DEVICE
1599 	to->decrypted = from->decrypted;
1600 #endif
1601 }
1602 
1603 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1604 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1605 {
1606 	return skb->head + skb->end;
1607 }
1608 
skb_end_offset(const struct sk_buff * skb)1609 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1610 {
1611 	return skb->end;
1612 }
1613 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1614 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1615 {
1616 	skb->end = offset;
1617 }
1618 #else
skb_end_pointer(const struct sk_buff * skb)1619 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1620 {
1621 	return skb->end;
1622 }
1623 
skb_end_offset(const struct sk_buff * skb)1624 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1625 {
1626 	return skb->end - skb->head;
1627 }
1628 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1629 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1630 {
1631 	skb->end = skb->head + offset;
1632 }
1633 #endif
1634 
1635 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1636 				       struct ubuf_info *uarg);
1637 
1638 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1639 
1640 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1641 			   bool success);
1642 
1643 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1644 			    struct sk_buff *skb, struct iov_iter *from,
1645 			    size_t length);
1646 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1647 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1648 					  struct msghdr *msg, int len)
1649 {
1650 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1651 }
1652 
1653 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1654 			     struct msghdr *msg, int len,
1655 			     struct ubuf_info *uarg);
1656 
1657 /* Internal */
1658 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1659 
skb_hwtstamps(struct sk_buff * skb)1660 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1661 {
1662 	return &skb_shinfo(skb)->hwtstamps;
1663 }
1664 
skb_zcopy(struct sk_buff * skb)1665 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1666 {
1667 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1668 
1669 	return is_zcopy ? skb_uarg(skb) : NULL;
1670 }
1671 
skb_zcopy_pure(const struct sk_buff * skb)1672 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1673 {
1674 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1675 }
1676 
skb_zcopy_managed(const struct sk_buff * skb)1677 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1678 {
1679 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1680 }
1681 
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1682 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1683 				       const struct sk_buff *skb2)
1684 {
1685 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1686 }
1687 
net_zcopy_get(struct ubuf_info * uarg)1688 static inline void net_zcopy_get(struct ubuf_info *uarg)
1689 {
1690 	refcount_inc(&uarg->refcnt);
1691 }
1692 
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1693 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1694 {
1695 	skb_shinfo(skb)->destructor_arg = uarg;
1696 	skb_shinfo(skb)->flags |= uarg->flags;
1697 }
1698 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1699 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1700 				 bool *have_ref)
1701 {
1702 	if (skb && uarg && !skb_zcopy(skb)) {
1703 		if (unlikely(have_ref && *have_ref))
1704 			*have_ref = false;
1705 		else
1706 			net_zcopy_get(uarg);
1707 		skb_zcopy_init(skb, uarg);
1708 	}
1709 }
1710 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1711 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1712 {
1713 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1714 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1715 }
1716 
skb_zcopy_is_nouarg(struct sk_buff * skb)1717 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1718 {
1719 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1720 }
1721 
skb_zcopy_get_nouarg(struct sk_buff * skb)1722 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1723 {
1724 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1725 }
1726 
net_zcopy_put(struct ubuf_info * uarg)1727 static inline void net_zcopy_put(struct ubuf_info *uarg)
1728 {
1729 	if (uarg)
1730 		uarg->callback(NULL, uarg, true);
1731 }
1732 
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1733 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1734 {
1735 	if (uarg) {
1736 		if (uarg->callback == msg_zerocopy_callback)
1737 			msg_zerocopy_put_abort(uarg, have_uref);
1738 		else if (have_uref)
1739 			net_zcopy_put(uarg);
1740 	}
1741 }
1742 
1743 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1744 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1745 {
1746 	struct ubuf_info *uarg = skb_zcopy(skb);
1747 
1748 	if (uarg) {
1749 		if (!skb_zcopy_is_nouarg(skb))
1750 			uarg->callback(skb, uarg, zerocopy_success);
1751 
1752 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1753 	}
1754 }
1755 
1756 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1757 
skb_zcopy_downgrade_managed(struct sk_buff * skb)1758 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1759 {
1760 	if (unlikely(skb_zcopy_managed(skb)))
1761 		__skb_zcopy_downgrade_managed(skb);
1762 }
1763 
skb_mark_not_on_list(struct sk_buff * skb)1764 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1765 {
1766 	skb->next = NULL;
1767 }
1768 
1769 /* Iterate through singly-linked GSO fragments of an skb. */
1770 #define skb_list_walk_safe(first, skb, next_skb)                               \
1771 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1772 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1773 
skb_list_del_init(struct sk_buff * skb)1774 static inline void skb_list_del_init(struct sk_buff *skb)
1775 {
1776 	__list_del_entry(&skb->list);
1777 	skb_mark_not_on_list(skb);
1778 }
1779 
1780 /**
1781  *	skb_queue_empty - check if a queue is empty
1782  *	@list: queue head
1783  *
1784  *	Returns true if the queue is empty, false otherwise.
1785  */
skb_queue_empty(const struct sk_buff_head * list)1786 static inline int skb_queue_empty(const struct sk_buff_head *list)
1787 {
1788 	return list->next == (const struct sk_buff *) list;
1789 }
1790 
1791 /**
1792  *	skb_queue_empty_lockless - check if a queue is empty
1793  *	@list: queue head
1794  *
1795  *	Returns true if the queue is empty, false otherwise.
1796  *	This variant can be used in lockless contexts.
1797  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1798 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1799 {
1800 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1801 }
1802 
1803 
1804 /**
1805  *	skb_queue_is_last - check if skb is the last entry in the queue
1806  *	@list: queue head
1807  *	@skb: buffer
1808  *
1809  *	Returns true if @skb is the last buffer on the list.
1810  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1811 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1812 				     const struct sk_buff *skb)
1813 {
1814 	return skb->next == (const struct sk_buff *) list;
1815 }
1816 
1817 /**
1818  *	skb_queue_is_first - check if skb is the first entry in the queue
1819  *	@list: queue head
1820  *	@skb: buffer
1821  *
1822  *	Returns true if @skb is the first buffer on the list.
1823  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1824 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1825 				      const struct sk_buff *skb)
1826 {
1827 	return skb->prev == (const struct sk_buff *) list;
1828 }
1829 
1830 /**
1831  *	skb_queue_next - return the next packet in the queue
1832  *	@list: queue head
1833  *	@skb: current buffer
1834  *
1835  *	Return the next packet in @list after @skb.  It is only valid to
1836  *	call this if skb_queue_is_last() evaluates to false.
1837  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1838 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1839 					     const struct sk_buff *skb)
1840 {
1841 	/* This BUG_ON may seem severe, but if we just return then we
1842 	 * are going to dereference garbage.
1843 	 */
1844 	BUG_ON(skb_queue_is_last(list, skb));
1845 	return skb->next;
1846 }
1847 
1848 /**
1849  *	skb_queue_prev - return the prev packet in the queue
1850  *	@list: queue head
1851  *	@skb: current buffer
1852  *
1853  *	Return the prev packet in @list before @skb.  It is only valid to
1854  *	call this if skb_queue_is_first() evaluates to false.
1855  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1856 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1857 					     const struct sk_buff *skb)
1858 {
1859 	/* This BUG_ON may seem severe, but if we just return then we
1860 	 * are going to dereference garbage.
1861 	 */
1862 	BUG_ON(skb_queue_is_first(list, skb));
1863 	return skb->prev;
1864 }
1865 
1866 /**
1867  *	skb_get - reference buffer
1868  *	@skb: buffer to reference
1869  *
1870  *	Makes another reference to a socket buffer and returns a pointer
1871  *	to the buffer.
1872  */
skb_get(struct sk_buff * skb)1873 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1874 {
1875 	refcount_inc(&skb->users);
1876 	return skb;
1877 }
1878 
1879 /*
1880  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1881  */
1882 
1883 /**
1884  *	skb_cloned - is the buffer a clone
1885  *	@skb: buffer to check
1886  *
1887  *	Returns true if the buffer was generated with skb_clone() and is
1888  *	one of multiple shared copies of the buffer. Cloned buffers are
1889  *	shared data so must not be written to under normal circumstances.
1890  */
skb_cloned(const struct sk_buff * skb)1891 static inline int skb_cloned(const struct sk_buff *skb)
1892 {
1893 	return skb->cloned &&
1894 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1895 }
1896 
skb_unclone(struct sk_buff * skb,gfp_t pri)1897 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1898 {
1899 	might_sleep_if(gfpflags_allow_blocking(pri));
1900 
1901 	if (skb_cloned(skb))
1902 		return pskb_expand_head(skb, 0, 0, pri);
1903 
1904 	return 0;
1905 }
1906 
1907 /* This variant of skb_unclone() makes sure skb->truesize
1908  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1909  *
1910  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1911  * when various debugging features are in place.
1912  */
1913 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1914 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1915 {
1916 	might_sleep_if(gfpflags_allow_blocking(pri));
1917 
1918 	if (skb_cloned(skb))
1919 		return __skb_unclone_keeptruesize(skb, pri);
1920 	return 0;
1921 }
1922 
1923 /**
1924  *	skb_header_cloned - is the header a clone
1925  *	@skb: buffer to check
1926  *
1927  *	Returns true if modifying the header part of the buffer requires
1928  *	the data to be copied.
1929  */
skb_header_cloned(const struct sk_buff * skb)1930 static inline int skb_header_cloned(const struct sk_buff *skb)
1931 {
1932 	int dataref;
1933 
1934 	if (!skb->cloned)
1935 		return 0;
1936 
1937 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1938 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1939 	return dataref != 1;
1940 }
1941 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1942 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1943 {
1944 	might_sleep_if(gfpflags_allow_blocking(pri));
1945 
1946 	if (skb_header_cloned(skb))
1947 		return pskb_expand_head(skb, 0, 0, pri);
1948 
1949 	return 0;
1950 }
1951 
1952 /**
1953  * __skb_header_release() - allow clones to use the headroom
1954  * @skb: buffer to operate on
1955  *
1956  * See "DOC: dataref and headerless skbs".
1957  */
__skb_header_release(struct sk_buff * skb)1958 static inline void __skb_header_release(struct sk_buff *skb)
1959 {
1960 	skb->nohdr = 1;
1961 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1962 }
1963 
1964 
1965 /**
1966  *	skb_shared - is the buffer shared
1967  *	@skb: buffer to check
1968  *
1969  *	Returns true if more than one person has a reference to this
1970  *	buffer.
1971  */
skb_shared(const struct sk_buff * skb)1972 static inline int skb_shared(const struct sk_buff *skb)
1973 {
1974 	return refcount_read(&skb->users) != 1;
1975 }
1976 
1977 /**
1978  *	skb_share_check - check if buffer is shared and if so clone it
1979  *	@skb: buffer to check
1980  *	@pri: priority for memory allocation
1981  *
1982  *	If the buffer is shared the buffer is cloned and the old copy
1983  *	drops a reference. A new clone with a single reference is returned.
1984  *	If the buffer is not shared the original buffer is returned. When
1985  *	being called from interrupt status or with spinlocks held pri must
1986  *	be GFP_ATOMIC.
1987  *
1988  *	NULL is returned on a memory allocation failure.
1989  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1990 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1991 {
1992 	might_sleep_if(gfpflags_allow_blocking(pri));
1993 	if (skb_shared(skb)) {
1994 		struct sk_buff *nskb = skb_clone(skb, pri);
1995 
1996 		if (likely(nskb))
1997 			consume_skb(skb);
1998 		else
1999 			kfree_skb(skb);
2000 		skb = nskb;
2001 	}
2002 	return skb;
2003 }
2004 
2005 /*
2006  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2007  *	packets to handle cases where we have a local reader and forward
2008  *	and a couple of other messy ones. The normal one is tcpdumping
2009  *	a packet thats being forwarded.
2010  */
2011 
2012 /**
2013  *	skb_unshare - make a copy of a shared buffer
2014  *	@skb: buffer to check
2015  *	@pri: priority for memory allocation
2016  *
2017  *	If the socket buffer is a clone then this function creates a new
2018  *	copy of the data, drops a reference count on the old copy and returns
2019  *	the new copy with the reference count at 1. If the buffer is not a clone
2020  *	the original buffer is returned. When called with a spinlock held or
2021  *	from interrupt state @pri must be %GFP_ATOMIC
2022  *
2023  *	%NULL is returned on a memory allocation failure.
2024  */
skb_unshare(struct sk_buff * skb,gfp_t pri)2025 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2026 					  gfp_t pri)
2027 {
2028 	might_sleep_if(gfpflags_allow_blocking(pri));
2029 	if (skb_cloned(skb)) {
2030 		struct sk_buff *nskb = skb_copy(skb, pri);
2031 
2032 		/* Free our shared copy */
2033 		if (likely(nskb))
2034 			consume_skb(skb);
2035 		else
2036 			kfree_skb(skb);
2037 		skb = nskb;
2038 	}
2039 	return skb;
2040 }
2041 
2042 /**
2043  *	skb_peek - peek at the head of an &sk_buff_head
2044  *	@list_: list to peek at
2045  *
2046  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2047  *	be careful with this one. A peek leaves the buffer on the
2048  *	list and someone else may run off with it. You must hold
2049  *	the appropriate locks or have a private queue to do this.
2050  *
2051  *	Returns %NULL for an empty list or a pointer to the head element.
2052  *	The reference count is not incremented and the reference is therefore
2053  *	volatile. Use with caution.
2054  */
skb_peek(const struct sk_buff_head * list_)2055 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2056 {
2057 	struct sk_buff *skb = list_->next;
2058 
2059 	if (skb == (struct sk_buff *)list_)
2060 		skb = NULL;
2061 	return skb;
2062 }
2063 
2064 /**
2065  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2066  *	@list_: list to peek at
2067  *
2068  *	Like skb_peek(), but the caller knows that the list is not empty.
2069  */
__skb_peek(const struct sk_buff_head * list_)2070 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2071 {
2072 	return list_->next;
2073 }
2074 
2075 /**
2076  *	skb_peek_next - peek skb following the given one from a queue
2077  *	@skb: skb to start from
2078  *	@list_: list to peek at
2079  *
2080  *	Returns %NULL when the end of the list is met or a pointer to the
2081  *	next element. The reference count is not incremented and the
2082  *	reference is therefore volatile. Use with caution.
2083  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2084 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2085 		const struct sk_buff_head *list_)
2086 {
2087 	struct sk_buff *next = skb->next;
2088 
2089 	if (next == (struct sk_buff *)list_)
2090 		next = NULL;
2091 	return next;
2092 }
2093 
2094 /**
2095  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2096  *	@list_: list to peek at
2097  *
2098  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2099  *	be careful with this one. A peek leaves the buffer on the
2100  *	list and someone else may run off with it. You must hold
2101  *	the appropriate locks or have a private queue to do this.
2102  *
2103  *	Returns %NULL for an empty list or a pointer to the tail element.
2104  *	The reference count is not incremented and the reference is therefore
2105  *	volatile. Use with caution.
2106  */
skb_peek_tail(const struct sk_buff_head * list_)2107 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2108 {
2109 	struct sk_buff *skb = READ_ONCE(list_->prev);
2110 
2111 	if (skb == (struct sk_buff *)list_)
2112 		skb = NULL;
2113 	return skb;
2114 
2115 }
2116 
2117 /**
2118  *	skb_queue_len	- get queue length
2119  *	@list_: list to measure
2120  *
2121  *	Return the length of an &sk_buff queue.
2122  */
skb_queue_len(const struct sk_buff_head * list_)2123 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2124 {
2125 	return list_->qlen;
2126 }
2127 
2128 /**
2129  *	skb_queue_len_lockless	- get queue length
2130  *	@list_: list to measure
2131  *
2132  *	Return the length of an &sk_buff queue.
2133  *	This variant can be used in lockless contexts.
2134  */
skb_queue_len_lockless(const struct sk_buff_head * list_)2135 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2136 {
2137 	return READ_ONCE(list_->qlen);
2138 }
2139 
2140 /**
2141  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2142  *	@list: queue to initialize
2143  *
2144  *	This initializes only the list and queue length aspects of
2145  *	an sk_buff_head object.  This allows to initialize the list
2146  *	aspects of an sk_buff_head without reinitializing things like
2147  *	the spinlock.  It can also be used for on-stack sk_buff_head
2148  *	objects where the spinlock is known to not be used.
2149  */
__skb_queue_head_init(struct sk_buff_head * list)2150 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2151 {
2152 	list->prev = list->next = (struct sk_buff *)list;
2153 	list->qlen = 0;
2154 }
2155 
2156 /*
2157  * This function creates a split out lock class for each invocation;
2158  * this is needed for now since a whole lot of users of the skb-queue
2159  * infrastructure in drivers have different locking usage (in hardirq)
2160  * than the networking core (in softirq only). In the long run either the
2161  * network layer or drivers should need annotation to consolidate the
2162  * main types of usage into 3 classes.
2163  */
skb_queue_head_init(struct sk_buff_head * list)2164 static inline void skb_queue_head_init(struct sk_buff_head *list)
2165 {
2166 	spin_lock_init(&list->lock);
2167 	__skb_queue_head_init(list);
2168 }
2169 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2170 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2171 		struct lock_class_key *class)
2172 {
2173 	skb_queue_head_init(list);
2174 	lockdep_set_class(&list->lock, class);
2175 }
2176 
2177 /*
2178  *	Insert an sk_buff on a list.
2179  *
2180  *	The "__skb_xxxx()" functions are the non-atomic ones that
2181  *	can only be called with interrupts disabled.
2182  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2183 static inline void __skb_insert(struct sk_buff *newsk,
2184 				struct sk_buff *prev, struct sk_buff *next,
2185 				struct sk_buff_head *list)
2186 {
2187 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2188 	 * for the opposite READ_ONCE()
2189 	 */
2190 	WRITE_ONCE(newsk->next, next);
2191 	WRITE_ONCE(newsk->prev, prev);
2192 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2193 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2194 	WRITE_ONCE(list->qlen, list->qlen + 1);
2195 }
2196 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2197 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2198 				      struct sk_buff *prev,
2199 				      struct sk_buff *next)
2200 {
2201 	struct sk_buff *first = list->next;
2202 	struct sk_buff *last = list->prev;
2203 
2204 	WRITE_ONCE(first->prev, prev);
2205 	WRITE_ONCE(prev->next, first);
2206 
2207 	WRITE_ONCE(last->next, next);
2208 	WRITE_ONCE(next->prev, last);
2209 }
2210 
2211 /**
2212  *	skb_queue_splice - join two skb lists, this is designed for stacks
2213  *	@list: the new list to add
2214  *	@head: the place to add it in the first list
2215  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2216 static inline void skb_queue_splice(const struct sk_buff_head *list,
2217 				    struct sk_buff_head *head)
2218 {
2219 	if (!skb_queue_empty(list)) {
2220 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2221 		head->qlen += list->qlen;
2222 	}
2223 }
2224 
2225 /**
2226  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2227  *	@list: the new list to add
2228  *	@head: the place to add it in the first list
2229  *
2230  *	The list at @list is reinitialised
2231  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2232 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2233 					 struct sk_buff_head *head)
2234 {
2235 	if (!skb_queue_empty(list)) {
2236 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2237 		head->qlen += list->qlen;
2238 		__skb_queue_head_init(list);
2239 	}
2240 }
2241 
2242 /**
2243  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2244  *	@list: the new list to add
2245  *	@head: the place to add it in the first list
2246  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2247 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2248 					 struct sk_buff_head *head)
2249 {
2250 	if (!skb_queue_empty(list)) {
2251 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2252 		head->qlen += list->qlen;
2253 	}
2254 }
2255 
2256 /**
2257  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2258  *	@list: the new list to add
2259  *	@head: the place to add it in the first list
2260  *
2261  *	Each of the lists is a queue.
2262  *	The list at @list is reinitialised
2263  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2264 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2265 					      struct sk_buff_head *head)
2266 {
2267 	if (!skb_queue_empty(list)) {
2268 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2269 		head->qlen += list->qlen;
2270 		__skb_queue_head_init(list);
2271 	}
2272 }
2273 
2274 /**
2275  *	__skb_queue_after - queue a buffer at the list head
2276  *	@list: list to use
2277  *	@prev: place after this buffer
2278  *	@newsk: buffer to queue
2279  *
2280  *	Queue a buffer int the middle of a list. This function takes no locks
2281  *	and you must therefore hold required locks before calling it.
2282  *
2283  *	A buffer cannot be placed on two lists at the same time.
2284  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2285 static inline void __skb_queue_after(struct sk_buff_head *list,
2286 				     struct sk_buff *prev,
2287 				     struct sk_buff *newsk)
2288 {
2289 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2290 }
2291 
2292 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2293 		struct sk_buff_head *list);
2294 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2295 static inline void __skb_queue_before(struct sk_buff_head *list,
2296 				      struct sk_buff *next,
2297 				      struct sk_buff *newsk)
2298 {
2299 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2300 }
2301 
2302 /**
2303  *	__skb_queue_head - queue a buffer at the list head
2304  *	@list: list to use
2305  *	@newsk: buffer to queue
2306  *
2307  *	Queue a buffer at the start of a list. This function takes no locks
2308  *	and you must therefore hold required locks before calling it.
2309  *
2310  *	A buffer cannot be placed on two lists at the same time.
2311  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2312 static inline void __skb_queue_head(struct sk_buff_head *list,
2313 				    struct sk_buff *newsk)
2314 {
2315 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2316 }
2317 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2318 
2319 /**
2320  *	__skb_queue_tail - queue a buffer at the list tail
2321  *	@list: list to use
2322  *	@newsk: buffer to queue
2323  *
2324  *	Queue a buffer at the end of a list. This function takes no locks
2325  *	and you must therefore hold required locks before calling it.
2326  *
2327  *	A buffer cannot be placed on two lists at the same time.
2328  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2329 static inline void __skb_queue_tail(struct sk_buff_head *list,
2330 				   struct sk_buff *newsk)
2331 {
2332 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2333 }
2334 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2335 
2336 /*
2337  * remove sk_buff from list. _Must_ be called atomically, and with
2338  * the list known..
2339  */
2340 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2341 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2342 {
2343 	struct sk_buff *next, *prev;
2344 
2345 	WRITE_ONCE(list->qlen, list->qlen - 1);
2346 	next	   = skb->next;
2347 	prev	   = skb->prev;
2348 	skb->next  = skb->prev = NULL;
2349 	WRITE_ONCE(next->prev, prev);
2350 	WRITE_ONCE(prev->next, next);
2351 }
2352 
2353 /**
2354  *	__skb_dequeue - remove from the head of the queue
2355  *	@list: list to dequeue from
2356  *
2357  *	Remove the head of the list. This function does not take any locks
2358  *	so must be used with appropriate locks held only. The head item is
2359  *	returned or %NULL if the list is empty.
2360  */
__skb_dequeue(struct sk_buff_head * list)2361 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2362 {
2363 	struct sk_buff *skb = skb_peek(list);
2364 	if (skb)
2365 		__skb_unlink(skb, list);
2366 	return skb;
2367 }
2368 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2369 
2370 /**
2371  *	__skb_dequeue_tail - remove from the tail of the queue
2372  *	@list: list to dequeue from
2373  *
2374  *	Remove the tail of the list. This function does not take any locks
2375  *	so must be used with appropriate locks held only. The tail item is
2376  *	returned or %NULL if the list is empty.
2377  */
__skb_dequeue_tail(struct sk_buff_head * list)2378 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2379 {
2380 	struct sk_buff *skb = skb_peek_tail(list);
2381 	if (skb)
2382 		__skb_unlink(skb, list);
2383 	return skb;
2384 }
2385 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2386 
2387 
skb_is_nonlinear(const struct sk_buff * skb)2388 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2389 {
2390 	return skb->data_len;
2391 }
2392 
skb_headlen(const struct sk_buff * skb)2393 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2394 {
2395 	return skb->len - skb->data_len;
2396 }
2397 
__skb_pagelen(const struct sk_buff * skb)2398 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2399 {
2400 	unsigned int i, len = 0;
2401 
2402 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2403 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2404 	return len;
2405 }
2406 
skb_pagelen(const struct sk_buff * skb)2407 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2408 {
2409 	return skb_headlen(skb) + __skb_pagelen(skb);
2410 }
2411 
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2412 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2413 					      int i, struct page *page,
2414 					      int off, int size)
2415 {
2416 	skb_frag_t *frag = &shinfo->frags[i];
2417 
2418 	/*
2419 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2420 	 * that not all callers have unique ownership of the page but rely
2421 	 * on page_is_pfmemalloc doing the right thing(tm).
2422 	 */
2423 	frag->bv_page		  = page;
2424 	frag->bv_offset		  = off;
2425 	skb_frag_size_set(frag, size);
2426 }
2427 
2428 /**
2429  * skb_len_add - adds a number to len fields of skb
2430  * @skb: buffer to add len to
2431  * @delta: number of bytes to add
2432  */
skb_len_add(struct sk_buff * skb,int delta)2433 static inline void skb_len_add(struct sk_buff *skb, int delta)
2434 {
2435 	skb->len += delta;
2436 	skb->data_len += delta;
2437 	skb->truesize += delta;
2438 }
2439 
2440 /**
2441  * __skb_fill_page_desc - initialise a paged fragment in an skb
2442  * @skb: buffer containing fragment to be initialised
2443  * @i: paged fragment index to initialise
2444  * @page: the page to use for this fragment
2445  * @off: the offset to the data with @page
2446  * @size: the length of the data
2447  *
2448  * Initialises the @i'th fragment of @skb to point to &size bytes at
2449  * offset @off within @page.
2450  *
2451  * Does not take any additional reference on the fragment.
2452  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2453 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2454 					struct page *page, int off, int size)
2455 {
2456 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2457 	page = compound_head(page);
2458 	if (page_is_pfmemalloc(page))
2459 		skb->pfmemalloc	= true;
2460 }
2461 
2462 /**
2463  * skb_fill_page_desc - initialise a paged fragment in an skb
2464  * @skb: buffer containing fragment to be initialised
2465  * @i: paged fragment index to initialise
2466  * @page: the page to use for this fragment
2467  * @off: the offset to the data with @page
2468  * @size: the length of the data
2469  *
2470  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2471  * @skb to point to @size bytes at offset @off within @page. In
2472  * addition updates @skb such that @i is the last fragment.
2473  *
2474  * Does not take any additional reference on the fragment.
2475  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2476 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2477 				      struct page *page, int off, int size)
2478 {
2479 	__skb_fill_page_desc(skb, i, page, off, size);
2480 	skb_shinfo(skb)->nr_frags = i + 1;
2481 }
2482 
2483 /**
2484  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2485  * @skb: buffer containing fragment to be initialised
2486  * @i: paged fragment index to initialise
2487  * @page: the page to use for this fragment
2488  * @off: the offset to the data with @page
2489  * @size: the length of the data
2490  *
2491  * Variant of skb_fill_page_desc() which does not deal with
2492  * pfmemalloc, if page is not owned by us.
2493  */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2494 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2495 					    struct page *page, int off,
2496 					    int size)
2497 {
2498 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2499 
2500 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2501 	shinfo->nr_frags = i + 1;
2502 }
2503 
2504 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2505 		     int size, unsigned int truesize);
2506 
2507 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2508 			  unsigned int truesize);
2509 
2510 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2511 
2512 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2513 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2514 {
2515 	return skb->head + skb->tail;
2516 }
2517 
skb_reset_tail_pointer(struct sk_buff * skb)2518 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2519 {
2520 	skb->tail = skb->data - skb->head;
2521 }
2522 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2523 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2524 {
2525 	skb_reset_tail_pointer(skb);
2526 	skb->tail += offset;
2527 }
2528 
2529 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2530 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2531 {
2532 	return skb->tail;
2533 }
2534 
skb_reset_tail_pointer(struct sk_buff * skb)2535 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2536 {
2537 	skb->tail = skb->data;
2538 }
2539 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2540 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2541 {
2542 	skb->tail = skb->data + offset;
2543 }
2544 
2545 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2546 
skb_assert_len(struct sk_buff * skb)2547 static inline void skb_assert_len(struct sk_buff *skb)
2548 {
2549 #ifdef CONFIG_DEBUG_NET
2550 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2551 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2552 #endif /* CONFIG_DEBUG_NET */
2553 }
2554 
2555 /*
2556  *	Add data to an sk_buff
2557  */
2558 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2559 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2560 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2561 {
2562 	void *tmp = skb_tail_pointer(skb);
2563 	SKB_LINEAR_ASSERT(skb);
2564 	skb->tail += len;
2565 	skb->len  += len;
2566 	return tmp;
2567 }
2568 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2569 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2570 {
2571 	void *tmp = __skb_put(skb, len);
2572 
2573 	memset(tmp, 0, len);
2574 	return tmp;
2575 }
2576 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2577 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2578 				   unsigned int len)
2579 {
2580 	void *tmp = __skb_put(skb, len);
2581 
2582 	memcpy(tmp, data, len);
2583 	return tmp;
2584 }
2585 
__skb_put_u8(struct sk_buff * skb,u8 val)2586 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2587 {
2588 	*(u8 *)__skb_put(skb, 1) = val;
2589 }
2590 
skb_put_zero(struct sk_buff * skb,unsigned int len)2591 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2592 {
2593 	void *tmp = skb_put(skb, len);
2594 
2595 	memset(tmp, 0, len);
2596 
2597 	return tmp;
2598 }
2599 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2600 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2601 				 unsigned int len)
2602 {
2603 	void *tmp = skb_put(skb, len);
2604 
2605 	memcpy(tmp, data, len);
2606 
2607 	return tmp;
2608 }
2609 
skb_put_u8(struct sk_buff * skb,u8 val)2610 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2611 {
2612 	*(u8 *)skb_put(skb, 1) = val;
2613 }
2614 
2615 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2616 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2617 {
2618 	skb->data -= len;
2619 	skb->len  += len;
2620 	return skb->data;
2621 }
2622 
2623 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2624 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2625 {
2626 	skb->len -= len;
2627 	if (unlikely(skb->len < skb->data_len)) {
2628 #if defined(CONFIG_DEBUG_NET)
2629 		skb->len += len;
2630 		pr_err("__skb_pull(len=%u)\n", len);
2631 		skb_dump(KERN_ERR, skb, false);
2632 #endif
2633 		BUG();
2634 	}
2635 	return skb->data += len;
2636 }
2637 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2638 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2639 {
2640 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2641 }
2642 
2643 void *skb_pull_data(struct sk_buff *skb, size_t len);
2644 
2645 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2646 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2647 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2648 {
2649 	if (likely(len <= skb_headlen(skb)))
2650 		return true;
2651 	if (unlikely(len > skb->len))
2652 		return false;
2653 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2654 }
2655 
pskb_pull(struct sk_buff * skb,unsigned int len)2656 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2657 {
2658 	if (!pskb_may_pull(skb, len))
2659 		return NULL;
2660 
2661 	skb->len -= len;
2662 	return skb->data += len;
2663 }
2664 
2665 void skb_condense(struct sk_buff *skb);
2666 
2667 /**
2668  *	skb_headroom - bytes at buffer head
2669  *	@skb: buffer to check
2670  *
2671  *	Return the number of bytes of free space at the head of an &sk_buff.
2672  */
skb_headroom(const struct sk_buff * skb)2673 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2674 {
2675 	return skb->data - skb->head;
2676 }
2677 
2678 /**
2679  *	skb_tailroom - bytes at buffer end
2680  *	@skb: buffer to check
2681  *
2682  *	Return the number of bytes of free space at the tail of an sk_buff
2683  */
skb_tailroom(const struct sk_buff * skb)2684 static inline int skb_tailroom(const struct sk_buff *skb)
2685 {
2686 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2687 }
2688 
2689 /**
2690  *	skb_availroom - bytes at buffer end
2691  *	@skb: buffer to check
2692  *
2693  *	Return the number of bytes of free space at the tail of an sk_buff
2694  *	allocated by sk_stream_alloc()
2695  */
skb_availroom(const struct sk_buff * skb)2696 static inline int skb_availroom(const struct sk_buff *skb)
2697 {
2698 	if (skb_is_nonlinear(skb))
2699 		return 0;
2700 
2701 	return skb->end - skb->tail - skb->reserved_tailroom;
2702 }
2703 
2704 /**
2705  *	skb_reserve - adjust headroom
2706  *	@skb: buffer to alter
2707  *	@len: bytes to move
2708  *
2709  *	Increase the headroom of an empty &sk_buff by reducing the tail
2710  *	room. This is only allowed for an empty buffer.
2711  */
skb_reserve(struct sk_buff * skb,int len)2712 static inline void skb_reserve(struct sk_buff *skb, int len)
2713 {
2714 	skb->data += len;
2715 	skb->tail += len;
2716 }
2717 
2718 /**
2719  *	skb_tailroom_reserve - adjust reserved_tailroom
2720  *	@skb: buffer to alter
2721  *	@mtu: maximum amount of headlen permitted
2722  *	@needed_tailroom: minimum amount of reserved_tailroom
2723  *
2724  *	Set reserved_tailroom so that headlen can be as large as possible but
2725  *	not larger than mtu and tailroom cannot be smaller than
2726  *	needed_tailroom.
2727  *	The required headroom should already have been reserved before using
2728  *	this function.
2729  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2730 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2731 					unsigned int needed_tailroom)
2732 {
2733 	SKB_LINEAR_ASSERT(skb);
2734 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2735 		/* use at most mtu */
2736 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2737 	else
2738 		/* use up to all available space */
2739 		skb->reserved_tailroom = needed_tailroom;
2740 }
2741 
2742 #define ENCAP_TYPE_ETHER	0
2743 #define ENCAP_TYPE_IPPROTO	1
2744 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2745 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2746 					  __be16 protocol)
2747 {
2748 	skb->inner_protocol = protocol;
2749 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2750 }
2751 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2752 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2753 					 __u8 ipproto)
2754 {
2755 	skb->inner_ipproto = ipproto;
2756 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2757 }
2758 
skb_reset_inner_headers(struct sk_buff * skb)2759 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2760 {
2761 	skb->inner_mac_header = skb->mac_header;
2762 	skb->inner_network_header = skb->network_header;
2763 	skb->inner_transport_header = skb->transport_header;
2764 }
2765 
skb_reset_mac_len(struct sk_buff * skb)2766 static inline void skb_reset_mac_len(struct sk_buff *skb)
2767 {
2768 	skb->mac_len = skb->network_header - skb->mac_header;
2769 }
2770 
skb_inner_transport_header(const struct sk_buff * skb)2771 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2772 							*skb)
2773 {
2774 	return skb->head + skb->inner_transport_header;
2775 }
2776 
skb_inner_transport_offset(const struct sk_buff * skb)2777 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2778 {
2779 	return skb_inner_transport_header(skb) - skb->data;
2780 }
2781 
skb_reset_inner_transport_header(struct sk_buff * skb)2782 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2783 {
2784 	skb->inner_transport_header = skb->data - skb->head;
2785 }
2786 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2787 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2788 						   const int offset)
2789 {
2790 	skb_reset_inner_transport_header(skb);
2791 	skb->inner_transport_header += offset;
2792 }
2793 
skb_inner_network_header(const struct sk_buff * skb)2794 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2795 {
2796 	return skb->head + skb->inner_network_header;
2797 }
2798 
skb_reset_inner_network_header(struct sk_buff * skb)2799 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2800 {
2801 	skb->inner_network_header = skb->data - skb->head;
2802 }
2803 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2804 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2805 						const int offset)
2806 {
2807 	skb_reset_inner_network_header(skb);
2808 	skb->inner_network_header += offset;
2809 }
2810 
skb_inner_mac_header(const struct sk_buff * skb)2811 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2812 {
2813 	return skb->head + skb->inner_mac_header;
2814 }
2815 
skb_reset_inner_mac_header(struct sk_buff * skb)2816 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2817 {
2818 	skb->inner_mac_header = skb->data - skb->head;
2819 }
2820 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2821 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2822 					    const int offset)
2823 {
2824 	skb_reset_inner_mac_header(skb);
2825 	skb->inner_mac_header += offset;
2826 }
skb_transport_header_was_set(const struct sk_buff * skb)2827 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2828 {
2829 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2830 }
2831 
skb_transport_header(const struct sk_buff * skb)2832 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2833 {
2834 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2835 	return skb->head + skb->transport_header;
2836 }
2837 
skb_reset_transport_header(struct sk_buff * skb)2838 static inline void skb_reset_transport_header(struct sk_buff *skb)
2839 {
2840 	skb->transport_header = skb->data - skb->head;
2841 }
2842 
skb_set_transport_header(struct sk_buff * skb,const int offset)2843 static inline void skb_set_transport_header(struct sk_buff *skb,
2844 					    const int offset)
2845 {
2846 	skb_reset_transport_header(skb);
2847 	skb->transport_header += offset;
2848 }
2849 
skb_network_header(const struct sk_buff * skb)2850 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2851 {
2852 	return skb->head + skb->network_header;
2853 }
2854 
skb_reset_network_header(struct sk_buff * skb)2855 static inline void skb_reset_network_header(struct sk_buff *skb)
2856 {
2857 	skb->network_header = skb->data - skb->head;
2858 }
2859 
skb_set_network_header(struct sk_buff * skb,const int offset)2860 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2861 {
2862 	skb_reset_network_header(skb);
2863 	skb->network_header += offset;
2864 }
2865 
skb_mac_header_was_set(const struct sk_buff * skb)2866 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2867 {
2868 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2869 }
2870 
skb_mac_header(const struct sk_buff * skb)2871 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2872 {
2873 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2874 	return skb->head + skb->mac_header;
2875 }
2876 
skb_mac_offset(const struct sk_buff * skb)2877 static inline int skb_mac_offset(const struct sk_buff *skb)
2878 {
2879 	return skb_mac_header(skb) - skb->data;
2880 }
2881 
skb_mac_header_len(const struct sk_buff * skb)2882 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2883 {
2884 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2885 	return skb->network_header - skb->mac_header;
2886 }
2887 
skb_unset_mac_header(struct sk_buff * skb)2888 static inline void skb_unset_mac_header(struct sk_buff *skb)
2889 {
2890 	skb->mac_header = (typeof(skb->mac_header))~0U;
2891 }
2892 
skb_reset_mac_header(struct sk_buff * skb)2893 static inline void skb_reset_mac_header(struct sk_buff *skb)
2894 {
2895 	skb->mac_header = skb->data - skb->head;
2896 }
2897 
skb_set_mac_header(struct sk_buff * skb,const int offset)2898 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2899 {
2900 	skb_reset_mac_header(skb);
2901 	skb->mac_header += offset;
2902 }
2903 
skb_pop_mac_header(struct sk_buff * skb)2904 static inline void skb_pop_mac_header(struct sk_buff *skb)
2905 {
2906 	skb->mac_header = skb->network_header;
2907 }
2908 
skb_probe_transport_header(struct sk_buff * skb)2909 static inline void skb_probe_transport_header(struct sk_buff *skb)
2910 {
2911 	struct flow_keys_basic keys;
2912 
2913 	if (skb_transport_header_was_set(skb))
2914 		return;
2915 
2916 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2917 					     NULL, 0, 0, 0, 0))
2918 		skb_set_transport_header(skb, keys.control.thoff);
2919 }
2920 
skb_mac_header_rebuild(struct sk_buff * skb)2921 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2922 {
2923 	if (skb_mac_header_was_set(skb)) {
2924 		const unsigned char *old_mac = skb_mac_header(skb);
2925 
2926 		skb_set_mac_header(skb, -skb->mac_len);
2927 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2928 	}
2929 }
2930 
skb_checksum_start_offset(const struct sk_buff * skb)2931 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2932 {
2933 	return skb->csum_start - skb_headroom(skb);
2934 }
2935 
skb_checksum_start(const struct sk_buff * skb)2936 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2937 {
2938 	return skb->head + skb->csum_start;
2939 }
2940 
skb_transport_offset(const struct sk_buff * skb)2941 static inline int skb_transport_offset(const struct sk_buff *skb)
2942 {
2943 	return skb_transport_header(skb) - skb->data;
2944 }
2945 
skb_network_header_len(const struct sk_buff * skb)2946 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2947 {
2948 	return skb->transport_header - skb->network_header;
2949 }
2950 
skb_inner_network_header_len(const struct sk_buff * skb)2951 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2952 {
2953 	return skb->inner_transport_header - skb->inner_network_header;
2954 }
2955 
skb_network_offset(const struct sk_buff * skb)2956 static inline int skb_network_offset(const struct sk_buff *skb)
2957 {
2958 	return skb_network_header(skb) - skb->data;
2959 }
2960 
skb_inner_network_offset(const struct sk_buff * skb)2961 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2962 {
2963 	return skb_inner_network_header(skb) - skb->data;
2964 }
2965 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2966 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2967 {
2968 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2969 }
2970 
2971 /*
2972  * CPUs often take a performance hit when accessing unaligned memory
2973  * locations. The actual performance hit varies, it can be small if the
2974  * hardware handles it or large if we have to take an exception and fix it
2975  * in software.
2976  *
2977  * Since an ethernet header is 14 bytes network drivers often end up with
2978  * the IP header at an unaligned offset. The IP header can be aligned by
2979  * shifting the start of the packet by 2 bytes. Drivers should do this
2980  * with:
2981  *
2982  * skb_reserve(skb, NET_IP_ALIGN);
2983  *
2984  * The downside to this alignment of the IP header is that the DMA is now
2985  * unaligned. On some architectures the cost of an unaligned DMA is high
2986  * and this cost outweighs the gains made by aligning the IP header.
2987  *
2988  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2989  * to be overridden.
2990  */
2991 #ifndef NET_IP_ALIGN
2992 #define NET_IP_ALIGN	2
2993 #endif
2994 
2995 /*
2996  * The networking layer reserves some headroom in skb data (via
2997  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2998  * the header has to grow. In the default case, if the header has to grow
2999  * 32 bytes or less we avoid the reallocation.
3000  *
3001  * Unfortunately this headroom changes the DMA alignment of the resulting
3002  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3003  * on some architectures. An architecture can override this value,
3004  * perhaps setting it to a cacheline in size (since that will maintain
3005  * cacheline alignment of the DMA). It must be a power of 2.
3006  *
3007  * Various parts of the networking layer expect at least 32 bytes of
3008  * headroom, you should not reduce this.
3009  *
3010  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3011  * to reduce average number of cache lines per packet.
3012  * get_rps_cpu() for example only access one 64 bytes aligned block :
3013  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3014  */
3015 #ifndef NET_SKB_PAD
3016 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3017 #endif
3018 
3019 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3020 
__skb_set_length(struct sk_buff * skb,unsigned int len)3021 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3022 {
3023 	if (WARN_ON(skb_is_nonlinear(skb)))
3024 		return;
3025 	skb->len = len;
3026 	skb_set_tail_pointer(skb, len);
3027 }
3028 
__skb_trim(struct sk_buff * skb,unsigned int len)3029 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3030 {
3031 	__skb_set_length(skb, len);
3032 }
3033 
3034 void skb_trim(struct sk_buff *skb, unsigned int len);
3035 
__pskb_trim(struct sk_buff * skb,unsigned int len)3036 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3037 {
3038 	if (skb->data_len)
3039 		return ___pskb_trim(skb, len);
3040 	__skb_trim(skb, len);
3041 	return 0;
3042 }
3043 
pskb_trim(struct sk_buff * skb,unsigned int len)3044 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3045 {
3046 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3047 }
3048 
3049 /**
3050  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3051  *	@skb: buffer to alter
3052  *	@len: new length
3053  *
3054  *	This is identical to pskb_trim except that the caller knows that
3055  *	the skb is not cloned so we should never get an error due to out-
3056  *	of-memory.
3057  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3058 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3059 {
3060 	int err = pskb_trim(skb, len);
3061 	BUG_ON(err);
3062 }
3063 
__skb_grow(struct sk_buff * skb,unsigned int len)3064 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3065 {
3066 	unsigned int diff = len - skb->len;
3067 
3068 	if (skb_tailroom(skb) < diff) {
3069 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3070 					   GFP_ATOMIC);
3071 		if (ret)
3072 			return ret;
3073 	}
3074 	__skb_set_length(skb, len);
3075 	return 0;
3076 }
3077 
3078 /**
3079  *	skb_orphan - orphan a buffer
3080  *	@skb: buffer to orphan
3081  *
3082  *	If a buffer currently has an owner then we call the owner's
3083  *	destructor function and make the @skb unowned. The buffer continues
3084  *	to exist but is no longer charged to its former owner.
3085  */
skb_orphan(struct sk_buff * skb)3086 static inline void skb_orphan(struct sk_buff *skb)
3087 {
3088 	if (skb->destructor) {
3089 		skb->destructor(skb);
3090 		skb->destructor = NULL;
3091 		skb->sk		= NULL;
3092 	} else {
3093 		BUG_ON(skb->sk);
3094 	}
3095 }
3096 
3097 /**
3098  *	skb_orphan_frags - orphan the frags contained in a buffer
3099  *	@skb: buffer to orphan frags from
3100  *	@gfp_mask: allocation mask for replacement pages
3101  *
3102  *	For each frag in the SKB which needs a destructor (i.e. has an
3103  *	owner) create a copy of that frag and release the original
3104  *	page by calling the destructor.
3105  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3106 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3107 {
3108 	if (likely(!skb_zcopy(skb)))
3109 		return 0;
3110 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3111 		return 0;
3112 	return skb_copy_ubufs(skb, gfp_mask);
3113 }
3114 
3115 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3116 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3117 {
3118 	if (likely(!skb_zcopy(skb)))
3119 		return 0;
3120 	return skb_copy_ubufs(skb, gfp_mask);
3121 }
3122 
3123 /**
3124  *	__skb_queue_purge - empty a list
3125  *	@list: list to empty
3126  *
3127  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3128  *	the list and one reference dropped. This function does not take the
3129  *	list lock and the caller must hold the relevant locks to use it.
3130  */
__skb_queue_purge(struct sk_buff_head * list)3131 static inline void __skb_queue_purge(struct sk_buff_head *list)
3132 {
3133 	struct sk_buff *skb;
3134 	while ((skb = __skb_dequeue(list)) != NULL)
3135 		kfree_skb(skb);
3136 }
3137 void skb_queue_purge(struct sk_buff_head *list);
3138 
3139 unsigned int skb_rbtree_purge(struct rb_root *root);
3140 
3141 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3142 
3143 /**
3144  * netdev_alloc_frag - allocate a page fragment
3145  * @fragsz: fragment size
3146  *
3147  * Allocates a frag from a page for receive buffer.
3148  * Uses GFP_ATOMIC allocations.
3149  */
netdev_alloc_frag(unsigned int fragsz)3150 static inline void *netdev_alloc_frag(unsigned int fragsz)
3151 {
3152 	return __netdev_alloc_frag_align(fragsz, ~0u);
3153 }
3154 
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3155 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3156 					    unsigned int align)
3157 {
3158 	WARN_ON_ONCE(!is_power_of_2(align));
3159 	return __netdev_alloc_frag_align(fragsz, -align);
3160 }
3161 
3162 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3163 				   gfp_t gfp_mask);
3164 
3165 /**
3166  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3167  *	@dev: network device to receive on
3168  *	@length: length to allocate
3169  *
3170  *	Allocate a new &sk_buff and assign it a usage count of one. The
3171  *	buffer has unspecified headroom built in. Users should allocate
3172  *	the headroom they think they need without accounting for the
3173  *	built in space. The built in space is used for optimisations.
3174  *
3175  *	%NULL is returned if there is no free memory. Although this function
3176  *	allocates memory it can be called from an interrupt.
3177  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3178 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3179 					       unsigned int length)
3180 {
3181 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3182 }
3183 
3184 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3185 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3186 					      gfp_t gfp_mask)
3187 {
3188 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3189 }
3190 
3191 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3192 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3193 {
3194 	return netdev_alloc_skb(NULL, length);
3195 }
3196 
3197 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3198 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3199 		unsigned int length, gfp_t gfp)
3200 {
3201 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3202 
3203 	if (NET_IP_ALIGN && skb)
3204 		skb_reserve(skb, NET_IP_ALIGN);
3205 	return skb;
3206 }
3207 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3208 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3209 		unsigned int length)
3210 {
3211 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3212 }
3213 
skb_free_frag(void * addr)3214 static inline void skb_free_frag(void *addr)
3215 {
3216 	page_frag_free(addr);
3217 }
3218 
3219 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3220 
napi_alloc_frag(unsigned int fragsz)3221 static inline void *napi_alloc_frag(unsigned int fragsz)
3222 {
3223 	return __napi_alloc_frag_align(fragsz, ~0u);
3224 }
3225 
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3226 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3227 					  unsigned int align)
3228 {
3229 	WARN_ON_ONCE(!is_power_of_2(align));
3230 	return __napi_alloc_frag_align(fragsz, -align);
3231 }
3232 
3233 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3234 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3235 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3236 					     unsigned int length)
3237 {
3238 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3239 }
3240 void napi_consume_skb(struct sk_buff *skb, int budget);
3241 
3242 void napi_skb_free_stolen_head(struct sk_buff *skb);
3243 void __kfree_skb_defer(struct sk_buff *skb);
3244 
3245 /**
3246  * __dev_alloc_pages - allocate page for network Rx
3247  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3248  * @order: size of the allocation
3249  *
3250  * Allocate a new page.
3251  *
3252  * %NULL is returned if there is no free memory.
3253 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3254 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3255 					     unsigned int order)
3256 {
3257 	/* This piece of code contains several assumptions.
3258 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3259 	 * 2.  The expectation is the user wants a compound page.
3260 	 * 3.  If requesting a order 0 page it will not be compound
3261 	 *     due to the check to see if order has a value in prep_new_page
3262 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3263 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3264 	 */
3265 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3266 
3267 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3268 }
3269 
dev_alloc_pages(unsigned int order)3270 static inline struct page *dev_alloc_pages(unsigned int order)
3271 {
3272 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3273 }
3274 
3275 /**
3276  * __dev_alloc_page - allocate a page for network Rx
3277  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3278  *
3279  * Allocate a new page.
3280  *
3281  * %NULL is returned if there is no free memory.
3282  */
__dev_alloc_page(gfp_t gfp_mask)3283 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3284 {
3285 	return __dev_alloc_pages(gfp_mask, 0);
3286 }
3287 
dev_alloc_page(void)3288 static inline struct page *dev_alloc_page(void)
3289 {
3290 	return dev_alloc_pages(0);
3291 }
3292 
3293 /**
3294  * dev_page_is_reusable - check whether a page can be reused for network Rx
3295  * @page: the page to test
3296  *
3297  * A page shouldn't be considered for reusing/recycling if it was allocated
3298  * under memory pressure or at a distant memory node.
3299  *
3300  * Returns false if this page should be returned to page allocator, true
3301  * otherwise.
3302  */
dev_page_is_reusable(const struct page * page)3303 static inline bool dev_page_is_reusable(const struct page *page)
3304 {
3305 	return likely(page_to_nid(page) == numa_mem_id() &&
3306 		      !page_is_pfmemalloc(page));
3307 }
3308 
3309 /**
3310  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3311  *	@page: The page that was allocated from skb_alloc_page
3312  *	@skb: The skb that may need pfmemalloc set
3313  */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3314 static inline void skb_propagate_pfmemalloc(const struct page *page,
3315 					    struct sk_buff *skb)
3316 {
3317 	if (page_is_pfmemalloc(page))
3318 		skb->pfmemalloc = true;
3319 }
3320 
3321 /**
3322  * skb_frag_off() - Returns the offset of a skb fragment
3323  * @frag: the paged fragment
3324  */
skb_frag_off(const skb_frag_t * frag)3325 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3326 {
3327 	return frag->bv_offset;
3328 }
3329 
3330 /**
3331  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3332  * @frag: skb fragment
3333  * @delta: value to add
3334  */
skb_frag_off_add(skb_frag_t * frag,int delta)3335 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3336 {
3337 	frag->bv_offset += delta;
3338 }
3339 
3340 /**
3341  * skb_frag_off_set() - Sets the offset of a skb fragment
3342  * @frag: skb fragment
3343  * @offset: offset of fragment
3344  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3345 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3346 {
3347 	frag->bv_offset = offset;
3348 }
3349 
3350 /**
3351  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3352  * @fragto: skb fragment where offset is set
3353  * @fragfrom: skb fragment offset is copied from
3354  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3355 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3356 				     const skb_frag_t *fragfrom)
3357 {
3358 	fragto->bv_offset = fragfrom->bv_offset;
3359 }
3360 
3361 /**
3362  * skb_frag_page - retrieve the page referred to by a paged fragment
3363  * @frag: the paged fragment
3364  *
3365  * Returns the &struct page associated with @frag.
3366  */
skb_frag_page(const skb_frag_t * frag)3367 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3368 {
3369 	return frag->bv_page;
3370 }
3371 
3372 /**
3373  * __skb_frag_ref - take an addition reference on a paged fragment.
3374  * @frag: the paged fragment
3375  *
3376  * Takes an additional reference on the paged fragment @frag.
3377  */
__skb_frag_ref(skb_frag_t * frag)3378 static inline void __skb_frag_ref(skb_frag_t *frag)
3379 {
3380 	get_page(skb_frag_page(frag));
3381 }
3382 
3383 /**
3384  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3385  * @skb: the buffer
3386  * @f: the fragment offset.
3387  *
3388  * Takes an additional reference on the @f'th paged fragment of @skb.
3389  */
skb_frag_ref(struct sk_buff * skb,int f)3390 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3391 {
3392 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3393 }
3394 
3395 /**
3396  * __skb_frag_unref - release a reference on a paged fragment.
3397  * @frag: the paged fragment
3398  * @recycle: recycle the page if allocated via page_pool
3399  *
3400  * Releases a reference on the paged fragment @frag
3401  * or recycles the page via the page_pool API.
3402  */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3403 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3404 {
3405 	struct page *page = skb_frag_page(frag);
3406 
3407 #ifdef CONFIG_PAGE_POOL
3408 	if (recycle && page_pool_return_skb_page(page))
3409 		return;
3410 #endif
3411 	put_page(page);
3412 }
3413 
3414 /**
3415  * skb_frag_unref - release a reference on a paged fragment of an skb.
3416  * @skb: the buffer
3417  * @f: the fragment offset
3418  *
3419  * Releases a reference on the @f'th paged fragment of @skb.
3420  */
skb_frag_unref(struct sk_buff * skb,int f)3421 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3422 {
3423 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3424 
3425 	if (!skb_zcopy_managed(skb))
3426 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3427 }
3428 
3429 /**
3430  * skb_frag_address - gets the address of the data contained in a paged fragment
3431  * @frag: the paged fragment buffer
3432  *
3433  * Returns the address of the data within @frag. The page must already
3434  * be mapped.
3435  */
skb_frag_address(const skb_frag_t * frag)3436 static inline void *skb_frag_address(const skb_frag_t *frag)
3437 {
3438 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3439 }
3440 
3441 /**
3442  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3443  * @frag: the paged fragment buffer
3444  *
3445  * Returns the address of the data within @frag. Checks that the page
3446  * is mapped and returns %NULL otherwise.
3447  */
skb_frag_address_safe(const skb_frag_t * frag)3448 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3449 {
3450 	void *ptr = page_address(skb_frag_page(frag));
3451 	if (unlikely(!ptr))
3452 		return NULL;
3453 
3454 	return ptr + skb_frag_off(frag);
3455 }
3456 
3457 /**
3458  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3459  * @fragto: skb fragment where page is set
3460  * @fragfrom: skb fragment page is copied from
3461  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3462 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3463 				      const skb_frag_t *fragfrom)
3464 {
3465 	fragto->bv_page = fragfrom->bv_page;
3466 }
3467 
3468 /**
3469  * __skb_frag_set_page - sets the page contained in a paged fragment
3470  * @frag: the paged fragment
3471  * @page: the page to set
3472  *
3473  * Sets the fragment @frag to contain @page.
3474  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3475 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3476 {
3477 	frag->bv_page = page;
3478 }
3479 
3480 /**
3481  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3482  * @skb: the buffer
3483  * @f: the fragment offset
3484  * @page: the page to set
3485  *
3486  * Sets the @f'th fragment of @skb to contain @page.
3487  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3488 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3489 				     struct page *page)
3490 {
3491 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3492 }
3493 
3494 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3495 
3496 /**
3497  * skb_frag_dma_map - maps a paged fragment via the DMA API
3498  * @dev: the device to map the fragment to
3499  * @frag: the paged fragment to map
3500  * @offset: the offset within the fragment (starting at the
3501  *          fragment's own offset)
3502  * @size: the number of bytes to map
3503  * @dir: the direction of the mapping (``PCI_DMA_*``)
3504  *
3505  * Maps the page associated with @frag to @device.
3506  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3507 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3508 					  const skb_frag_t *frag,
3509 					  size_t offset, size_t size,
3510 					  enum dma_data_direction dir)
3511 {
3512 	return dma_map_page(dev, skb_frag_page(frag),
3513 			    skb_frag_off(frag) + offset, size, dir);
3514 }
3515 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3516 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3517 					gfp_t gfp_mask)
3518 {
3519 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3520 }
3521 
3522 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3523 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3524 						  gfp_t gfp_mask)
3525 {
3526 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3527 }
3528 
3529 
3530 /**
3531  *	skb_clone_writable - is the header of a clone writable
3532  *	@skb: buffer to check
3533  *	@len: length up to which to write
3534  *
3535  *	Returns true if modifying the header part of the cloned buffer
3536  *	does not requires the data to be copied.
3537  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3538 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3539 {
3540 	return !skb_header_cloned(skb) &&
3541 	       skb_headroom(skb) + len <= skb->hdr_len;
3542 }
3543 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3544 static inline int skb_try_make_writable(struct sk_buff *skb,
3545 					unsigned int write_len)
3546 {
3547 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3548 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3549 }
3550 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3551 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3552 			    int cloned)
3553 {
3554 	int delta = 0;
3555 
3556 	if (headroom > skb_headroom(skb))
3557 		delta = headroom - skb_headroom(skb);
3558 
3559 	if (delta || cloned)
3560 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3561 					GFP_ATOMIC);
3562 	return 0;
3563 }
3564 
3565 /**
3566  *	skb_cow - copy header of skb when it is required
3567  *	@skb: buffer to cow
3568  *	@headroom: needed headroom
3569  *
3570  *	If the skb passed lacks sufficient headroom or its data part
3571  *	is shared, data is reallocated. If reallocation fails, an error
3572  *	is returned and original skb is not changed.
3573  *
3574  *	The result is skb with writable area skb->head...skb->tail
3575  *	and at least @headroom of space at head.
3576  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3577 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3578 {
3579 	return __skb_cow(skb, headroom, skb_cloned(skb));
3580 }
3581 
3582 /**
3583  *	skb_cow_head - skb_cow but only making the head writable
3584  *	@skb: buffer to cow
3585  *	@headroom: needed headroom
3586  *
3587  *	This function is identical to skb_cow except that we replace the
3588  *	skb_cloned check by skb_header_cloned.  It should be used when
3589  *	you only need to push on some header and do not need to modify
3590  *	the data.
3591  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3592 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3593 {
3594 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3595 }
3596 
3597 /**
3598  *	skb_padto	- pad an skbuff up to a minimal size
3599  *	@skb: buffer to pad
3600  *	@len: minimal length
3601  *
3602  *	Pads up a buffer to ensure the trailing bytes exist and are
3603  *	blanked. If the buffer already contains sufficient data it
3604  *	is untouched. Otherwise it is extended. Returns zero on
3605  *	success. The skb is freed on error.
3606  */
skb_padto(struct sk_buff * skb,unsigned int len)3607 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3608 {
3609 	unsigned int size = skb->len;
3610 	if (likely(size >= len))
3611 		return 0;
3612 	return skb_pad(skb, len - size);
3613 }
3614 
3615 /**
3616  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3617  *	@skb: buffer to pad
3618  *	@len: minimal length
3619  *	@free_on_error: free buffer on error
3620  *
3621  *	Pads up a buffer to ensure the trailing bytes exist and are
3622  *	blanked. If the buffer already contains sufficient data it
3623  *	is untouched. Otherwise it is extended. Returns zero on
3624  *	success. The skb is freed on error if @free_on_error is true.
3625  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3626 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3627 					       unsigned int len,
3628 					       bool free_on_error)
3629 {
3630 	unsigned int size = skb->len;
3631 
3632 	if (unlikely(size < len)) {
3633 		len -= size;
3634 		if (__skb_pad(skb, len, free_on_error))
3635 			return -ENOMEM;
3636 		__skb_put(skb, len);
3637 	}
3638 	return 0;
3639 }
3640 
3641 /**
3642  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3643  *	@skb: buffer to pad
3644  *	@len: minimal length
3645  *
3646  *	Pads up a buffer to ensure the trailing bytes exist and are
3647  *	blanked. If the buffer already contains sufficient data it
3648  *	is untouched. Otherwise it is extended. Returns zero on
3649  *	success. The skb is freed on error.
3650  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3651 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3652 {
3653 	return __skb_put_padto(skb, len, true);
3654 }
3655 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3656 static inline int skb_add_data(struct sk_buff *skb,
3657 			       struct iov_iter *from, int copy)
3658 {
3659 	const int off = skb->len;
3660 
3661 	if (skb->ip_summed == CHECKSUM_NONE) {
3662 		__wsum csum = 0;
3663 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3664 					         &csum, from)) {
3665 			skb->csum = csum_block_add(skb->csum, csum, off);
3666 			return 0;
3667 		}
3668 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3669 		return 0;
3670 
3671 	__skb_trim(skb, off);
3672 	return -EFAULT;
3673 }
3674 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3675 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3676 				    const struct page *page, int off)
3677 {
3678 	if (skb_zcopy(skb))
3679 		return false;
3680 	if (i) {
3681 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3682 
3683 		return page == skb_frag_page(frag) &&
3684 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3685 	}
3686 	return false;
3687 }
3688 
__skb_linearize(struct sk_buff * skb)3689 static inline int __skb_linearize(struct sk_buff *skb)
3690 {
3691 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3692 }
3693 
3694 /**
3695  *	skb_linearize - convert paged skb to linear one
3696  *	@skb: buffer to linarize
3697  *
3698  *	If there is no free memory -ENOMEM is returned, otherwise zero
3699  *	is returned and the old skb data released.
3700  */
skb_linearize(struct sk_buff * skb)3701 static inline int skb_linearize(struct sk_buff *skb)
3702 {
3703 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3704 }
3705 
3706 /**
3707  * skb_has_shared_frag - can any frag be overwritten
3708  * @skb: buffer to test
3709  *
3710  * Return true if the skb has at least one frag that might be modified
3711  * by an external entity (as in vmsplice()/sendfile())
3712  */
skb_has_shared_frag(const struct sk_buff * skb)3713 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3714 {
3715 	return skb_is_nonlinear(skb) &&
3716 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3717 }
3718 
3719 /**
3720  *	skb_linearize_cow - make sure skb is linear and writable
3721  *	@skb: buffer to process
3722  *
3723  *	If there is no free memory -ENOMEM is returned, otherwise zero
3724  *	is returned and the old skb data released.
3725  */
skb_linearize_cow(struct sk_buff * skb)3726 static inline int skb_linearize_cow(struct sk_buff *skb)
3727 {
3728 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3729 	       __skb_linearize(skb) : 0;
3730 }
3731 
3732 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3733 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3734 		     unsigned int off)
3735 {
3736 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3737 		skb->csum = csum_block_sub(skb->csum,
3738 					   csum_partial(start, len, 0), off);
3739 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3740 		 skb_checksum_start_offset(skb) < 0)
3741 		skb->ip_summed = CHECKSUM_NONE;
3742 }
3743 
3744 /**
3745  *	skb_postpull_rcsum - update checksum for received skb after pull
3746  *	@skb: buffer to update
3747  *	@start: start of data before pull
3748  *	@len: length of data pulled
3749  *
3750  *	After doing a pull on a received packet, you need to call this to
3751  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3752  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3753  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3754 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3755 				      const void *start, unsigned int len)
3756 {
3757 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3758 		skb->csum = wsum_negate(csum_partial(start, len,
3759 						     wsum_negate(skb->csum)));
3760 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3761 		 skb_checksum_start_offset(skb) < 0)
3762 		skb->ip_summed = CHECKSUM_NONE;
3763 }
3764 
3765 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3766 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3767 		     unsigned int off)
3768 {
3769 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3770 		skb->csum = csum_block_add(skb->csum,
3771 					   csum_partial(start, len, 0), off);
3772 }
3773 
3774 /**
3775  *	skb_postpush_rcsum - update checksum for received skb after push
3776  *	@skb: buffer to update
3777  *	@start: start of data after push
3778  *	@len: length of data pushed
3779  *
3780  *	After doing a push on a received packet, you need to call this to
3781  *	update the CHECKSUM_COMPLETE checksum.
3782  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3783 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3784 				      const void *start, unsigned int len)
3785 {
3786 	__skb_postpush_rcsum(skb, start, len, 0);
3787 }
3788 
3789 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3790 
3791 /**
3792  *	skb_push_rcsum - push skb and update receive checksum
3793  *	@skb: buffer to update
3794  *	@len: length of data pulled
3795  *
3796  *	This function performs an skb_push on the packet and updates
3797  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3798  *	receive path processing instead of skb_push unless you know
3799  *	that the checksum difference is zero (e.g., a valid IP header)
3800  *	or you are setting ip_summed to CHECKSUM_NONE.
3801  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3802 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3803 {
3804 	skb_push(skb, len);
3805 	skb_postpush_rcsum(skb, skb->data, len);
3806 	return skb->data;
3807 }
3808 
3809 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3810 /**
3811  *	pskb_trim_rcsum - trim received skb and update checksum
3812  *	@skb: buffer to trim
3813  *	@len: new length
3814  *
3815  *	This is exactly the same as pskb_trim except that it ensures the
3816  *	checksum of received packets are still valid after the operation.
3817  *	It can change skb pointers.
3818  */
3819 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3820 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3821 {
3822 	if (likely(len >= skb->len))
3823 		return 0;
3824 	return pskb_trim_rcsum_slow(skb, len);
3825 }
3826 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3827 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3828 {
3829 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3830 		skb->ip_summed = CHECKSUM_NONE;
3831 	__skb_trim(skb, len);
3832 	return 0;
3833 }
3834 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3835 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3836 {
3837 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3838 		skb->ip_summed = CHECKSUM_NONE;
3839 	return __skb_grow(skb, len);
3840 }
3841 
3842 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3843 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3844 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3845 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3846 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3847 
3848 #define skb_queue_walk(queue, skb) \
3849 		for (skb = (queue)->next;					\
3850 		     skb != (struct sk_buff *)(queue);				\
3851 		     skb = skb->next)
3852 
3853 #define skb_queue_walk_safe(queue, skb, tmp)					\
3854 		for (skb = (queue)->next, tmp = skb->next;			\
3855 		     skb != (struct sk_buff *)(queue);				\
3856 		     skb = tmp, tmp = skb->next)
3857 
3858 #define skb_queue_walk_from(queue, skb)						\
3859 		for (; skb != (struct sk_buff *)(queue);			\
3860 		     skb = skb->next)
3861 
3862 #define skb_rbtree_walk(skb, root)						\
3863 		for (skb = skb_rb_first(root); skb != NULL;			\
3864 		     skb = skb_rb_next(skb))
3865 
3866 #define skb_rbtree_walk_from(skb)						\
3867 		for (; skb != NULL;						\
3868 		     skb = skb_rb_next(skb))
3869 
3870 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3871 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3872 		     skb = tmp)
3873 
3874 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3875 		for (tmp = skb->next;						\
3876 		     skb != (struct sk_buff *)(queue);				\
3877 		     skb = tmp, tmp = skb->next)
3878 
3879 #define skb_queue_reverse_walk(queue, skb) \
3880 		for (skb = (queue)->prev;					\
3881 		     skb != (struct sk_buff *)(queue);				\
3882 		     skb = skb->prev)
3883 
3884 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3885 		for (skb = (queue)->prev, tmp = skb->prev;			\
3886 		     skb != (struct sk_buff *)(queue);				\
3887 		     skb = tmp, tmp = skb->prev)
3888 
3889 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3890 		for (tmp = skb->prev;						\
3891 		     skb != (struct sk_buff *)(queue);				\
3892 		     skb = tmp, tmp = skb->prev)
3893 
skb_has_frag_list(const struct sk_buff * skb)3894 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3895 {
3896 	return skb_shinfo(skb)->frag_list != NULL;
3897 }
3898 
skb_frag_list_init(struct sk_buff * skb)3899 static inline void skb_frag_list_init(struct sk_buff *skb)
3900 {
3901 	skb_shinfo(skb)->frag_list = NULL;
3902 }
3903 
3904 #define skb_walk_frags(skb, iter)	\
3905 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3906 
3907 
3908 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3909 				int *err, long *timeo_p,
3910 				const struct sk_buff *skb);
3911 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3912 					  struct sk_buff_head *queue,
3913 					  unsigned int flags,
3914 					  int *off, int *err,
3915 					  struct sk_buff **last);
3916 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3917 					struct sk_buff_head *queue,
3918 					unsigned int flags, int *off, int *err,
3919 					struct sk_buff **last);
3920 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3921 				    struct sk_buff_head *sk_queue,
3922 				    unsigned int flags, int *off, int *err);
3923 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3924 __poll_t datagram_poll(struct file *file, struct socket *sock,
3925 			   struct poll_table_struct *wait);
3926 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3927 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3928 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3929 					struct msghdr *msg, int size)
3930 {
3931 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3932 }
3933 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3934 				   struct msghdr *msg);
3935 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3936 			   struct iov_iter *to, int len,
3937 			   struct ahash_request *hash);
3938 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3939 				 struct iov_iter *from, int len);
3940 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3941 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3942 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3943 static inline void skb_free_datagram_locked(struct sock *sk,
3944 					    struct sk_buff *skb)
3945 {
3946 	__skb_free_datagram_locked(sk, skb, 0);
3947 }
3948 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3949 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3950 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3951 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3952 			      int len);
3953 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3954 		    struct pipe_inode_info *pipe, unsigned int len,
3955 		    unsigned int flags);
3956 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3957 			 int len);
3958 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3959 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3960 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3961 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3962 		 int len, int hlen);
3963 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3964 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3965 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3966 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3967 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3968 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3969 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3970 				 unsigned int offset);
3971 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3972 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3973 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3974 int skb_vlan_pop(struct sk_buff *skb);
3975 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3976 int skb_eth_pop(struct sk_buff *skb);
3977 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3978 		 const unsigned char *src);
3979 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3980 		  int mac_len, bool ethernet);
3981 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3982 		 bool ethernet);
3983 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3984 int skb_mpls_dec_ttl(struct sk_buff *skb);
3985 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3986 			     gfp_t gfp);
3987 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3988 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3989 {
3990 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3991 }
3992 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3993 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3994 {
3995 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3996 }
3997 
3998 struct skb_checksum_ops {
3999 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4000 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4001 };
4002 
4003 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4004 
4005 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4006 		      __wsum csum, const struct skb_checksum_ops *ops);
4007 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4008 		    __wsum csum);
4009 
4010 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4011 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4012 		     const void *data, int hlen, void *buffer)
4013 {
4014 	if (likely(hlen - offset >= len))
4015 		return (void *)data + offset;
4016 
4017 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4018 		return NULL;
4019 
4020 	return buffer;
4021 }
4022 
4023 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4024 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4025 {
4026 	return __skb_header_pointer(skb, offset, len, skb->data,
4027 				    skb_headlen(skb), buffer);
4028 }
4029 
4030 /**
4031  *	skb_needs_linearize - check if we need to linearize a given skb
4032  *			      depending on the given device features.
4033  *	@skb: socket buffer to check
4034  *	@features: net device features
4035  *
4036  *	Returns true if either:
4037  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4038  *	2. skb is fragmented and the device does not support SG.
4039  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4040 static inline bool skb_needs_linearize(struct sk_buff *skb,
4041 				       netdev_features_t features)
4042 {
4043 	return skb_is_nonlinear(skb) &&
4044 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4045 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4046 }
4047 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4048 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4049 					     void *to,
4050 					     const unsigned int len)
4051 {
4052 	memcpy(to, skb->data, len);
4053 }
4054 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4055 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4056 						    const int offset, void *to,
4057 						    const unsigned int len)
4058 {
4059 	memcpy(to, skb->data + offset, len);
4060 }
4061 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4062 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4063 					   const void *from,
4064 					   const unsigned int len)
4065 {
4066 	memcpy(skb->data, from, len);
4067 }
4068 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4069 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4070 						  const int offset,
4071 						  const void *from,
4072 						  const unsigned int len)
4073 {
4074 	memcpy(skb->data + offset, from, len);
4075 }
4076 
4077 void skb_init(void);
4078 
skb_get_ktime(const struct sk_buff * skb)4079 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4080 {
4081 	return skb->tstamp;
4082 }
4083 
4084 /**
4085  *	skb_get_timestamp - get timestamp from a skb
4086  *	@skb: skb to get stamp from
4087  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4088  *
4089  *	Timestamps are stored in the skb as offsets to a base timestamp.
4090  *	This function converts the offset back to a struct timeval and stores
4091  *	it in stamp.
4092  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4093 static inline void skb_get_timestamp(const struct sk_buff *skb,
4094 				     struct __kernel_old_timeval *stamp)
4095 {
4096 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4097 }
4098 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4099 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4100 					 struct __kernel_sock_timeval *stamp)
4101 {
4102 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4103 
4104 	stamp->tv_sec = ts.tv_sec;
4105 	stamp->tv_usec = ts.tv_nsec / 1000;
4106 }
4107 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4108 static inline void skb_get_timestampns(const struct sk_buff *skb,
4109 				       struct __kernel_old_timespec *stamp)
4110 {
4111 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4112 
4113 	stamp->tv_sec = ts.tv_sec;
4114 	stamp->tv_nsec = ts.tv_nsec;
4115 }
4116 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4117 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4118 					   struct __kernel_timespec *stamp)
4119 {
4120 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4121 
4122 	stamp->tv_sec = ts.tv_sec;
4123 	stamp->tv_nsec = ts.tv_nsec;
4124 }
4125 
__net_timestamp(struct sk_buff * skb)4126 static inline void __net_timestamp(struct sk_buff *skb)
4127 {
4128 	skb->tstamp = ktime_get_real();
4129 	skb->mono_delivery_time = 0;
4130 }
4131 
net_timedelta(ktime_t t)4132 static inline ktime_t net_timedelta(ktime_t t)
4133 {
4134 	return ktime_sub(ktime_get_real(), t);
4135 }
4136 
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4137 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4138 					 bool mono)
4139 {
4140 	skb->tstamp = kt;
4141 	skb->mono_delivery_time = kt && mono;
4142 }
4143 
4144 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4145 
4146 /* It is used in the ingress path to clear the delivery_time.
4147  * If needed, set the skb->tstamp to the (rcv) timestamp.
4148  */
skb_clear_delivery_time(struct sk_buff * skb)4149 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4150 {
4151 	if (skb->mono_delivery_time) {
4152 		skb->mono_delivery_time = 0;
4153 		if (static_branch_unlikely(&netstamp_needed_key))
4154 			skb->tstamp = ktime_get_real();
4155 		else
4156 			skb->tstamp = 0;
4157 	}
4158 }
4159 
skb_clear_tstamp(struct sk_buff * skb)4160 static inline void skb_clear_tstamp(struct sk_buff *skb)
4161 {
4162 	if (skb->mono_delivery_time)
4163 		return;
4164 
4165 	skb->tstamp = 0;
4166 }
4167 
skb_tstamp(const struct sk_buff * skb)4168 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4169 {
4170 	if (skb->mono_delivery_time)
4171 		return 0;
4172 
4173 	return skb->tstamp;
4174 }
4175 
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4176 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4177 {
4178 	if (!skb->mono_delivery_time && skb->tstamp)
4179 		return skb->tstamp;
4180 
4181 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4182 		return ktime_get_real();
4183 
4184 	return 0;
4185 }
4186 
skb_metadata_len(const struct sk_buff * skb)4187 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4188 {
4189 	return skb_shinfo(skb)->meta_len;
4190 }
4191 
skb_metadata_end(const struct sk_buff * skb)4192 static inline void *skb_metadata_end(const struct sk_buff *skb)
4193 {
4194 	return skb_mac_header(skb);
4195 }
4196 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4197 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4198 					  const struct sk_buff *skb_b,
4199 					  u8 meta_len)
4200 {
4201 	const void *a = skb_metadata_end(skb_a);
4202 	const void *b = skb_metadata_end(skb_b);
4203 	/* Using more efficient varaiant than plain call to memcmp(). */
4204 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4205 	u64 diffs = 0;
4206 
4207 	switch (meta_len) {
4208 #define __it(x, op) (x -= sizeof(u##op))
4209 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4210 	case 32: diffs |= __it_diff(a, b, 64);
4211 		fallthrough;
4212 	case 24: diffs |= __it_diff(a, b, 64);
4213 		fallthrough;
4214 	case 16: diffs |= __it_diff(a, b, 64);
4215 		fallthrough;
4216 	case  8: diffs |= __it_diff(a, b, 64);
4217 		break;
4218 	case 28: diffs |= __it_diff(a, b, 64);
4219 		fallthrough;
4220 	case 20: diffs |= __it_diff(a, b, 64);
4221 		fallthrough;
4222 	case 12: diffs |= __it_diff(a, b, 64);
4223 		fallthrough;
4224 	case  4: diffs |= __it_diff(a, b, 32);
4225 		break;
4226 	}
4227 	return diffs;
4228 #else
4229 	return memcmp(a - meta_len, b - meta_len, meta_len);
4230 #endif
4231 }
4232 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4233 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4234 					const struct sk_buff *skb_b)
4235 {
4236 	u8 len_a = skb_metadata_len(skb_a);
4237 	u8 len_b = skb_metadata_len(skb_b);
4238 
4239 	if (!(len_a | len_b))
4240 		return false;
4241 
4242 	return len_a != len_b ?
4243 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4244 }
4245 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4246 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4247 {
4248 	skb_shinfo(skb)->meta_len = meta_len;
4249 }
4250 
skb_metadata_clear(struct sk_buff * skb)4251 static inline void skb_metadata_clear(struct sk_buff *skb)
4252 {
4253 	skb_metadata_set(skb, 0);
4254 }
4255 
4256 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4257 
4258 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4259 
4260 void skb_clone_tx_timestamp(struct sk_buff *skb);
4261 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4262 
4263 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4264 
skb_clone_tx_timestamp(struct sk_buff * skb)4265 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4266 {
4267 }
4268 
skb_defer_rx_timestamp(struct sk_buff * skb)4269 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4270 {
4271 	return false;
4272 }
4273 
4274 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4275 
4276 /**
4277  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4278  *
4279  * PHY drivers may accept clones of transmitted packets for
4280  * timestamping via their phy_driver.txtstamp method. These drivers
4281  * must call this function to return the skb back to the stack with a
4282  * timestamp.
4283  *
4284  * @skb: clone of the original outgoing packet
4285  * @hwtstamps: hardware time stamps
4286  *
4287  */
4288 void skb_complete_tx_timestamp(struct sk_buff *skb,
4289 			       struct skb_shared_hwtstamps *hwtstamps);
4290 
4291 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4292 		     struct skb_shared_hwtstamps *hwtstamps,
4293 		     struct sock *sk, int tstype);
4294 
4295 /**
4296  * skb_tstamp_tx - queue clone of skb with send time stamps
4297  * @orig_skb:	the original outgoing packet
4298  * @hwtstamps:	hardware time stamps, may be NULL if not available
4299  *
4300  * If the skb has a socket associated, then this function clones the
4301  * skb (thus sharing the actual data and optional structures), stores
4302  * the optional hardware time stamping information (if non NULL) or
4303  * generates a software time stamp (otherwise), then queues the clone
4304  * to the error queue of the socket.  Errors are silently ignored.
4305  */
4306 void skb_tstamp_tx(struct sk_buff *orig_skb,
4307 		   struct skb_shared_hwtstamps *hwtstamps);
4308 
4309 /**
4310  * skb_tx_timestamp() - Driver hook for transmit timestamping
4311  *
4312  * Ethernet MAC Drivers should call this function in their hard_xmit()
4313  * function immediately before giving the sk_buff to the MAC hardware.
4314  *
4315  * Specifically, one should make absolutely sure that this function is
4316  * called before TX completion of this packet can trigger.  Otherwise
4317  * the packet could potentially already be freed.
4318  *
4319  * @skb: A socket buffer.
4320  */
skb_tx_timestamp(struct sk_buff * skb)4321 static inline void skb_tx_timestamp(struct sk_buff *skb)
4322 {
4323 	skb_clone_tx_timestamp(skb);
4324 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4325 		skb_tstamp_tx(skb, NULL);
4326 }
4327 
4328 /**
4329  * skb_complete_wifi_ack - deliver skb with wifi status
4330  *
4331  * @skb: the original outgoing packet
4332  * @acked: ack status
4333  *
4334  */
4335 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4336 
4337 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4338 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4339 
skb_csum_unnecessary(const struct sk_buff * skb)4340 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4341 {
4342 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4343 		skb->csum_valid ||
4344 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4345 		 skb_checksum_start_offset(skb) >= 0));
4346 }
4347 
4348 /**
4349  *	skb_checksum_complete - Calculate checksum of an entire packet
4350  *	@skb: packet to process
4351  *
4352  *	This function calculates the checksum over the entire packet plus
4353  *	the value of skb->csum.  The latter can be used to supply the
4354  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4355  *	checksum.
4356  *
4357  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4358  *	this function can be used to verify that checksum on received
4359  *	packets.  In that case the function should return zero if the
4360  *	checksum is correct.  In particular, this function will return zero
4361  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4362  *	hardware has already verified the correctness of the checksum.
4363  */
skb_checksum_complete(struct sk_buff * skb)4364 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4365 {
4366 	return skb_csum_unnecessary(skb) ?
4367 	       0 : __skb_checksum_complete(skb);
4368 }
4369 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4370 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4371 {
4372 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4373 		if (skb->csum_level == 0)
4374 			skb->ip_summed = CHECKSUM_NONE;
4375 		else
4376 			skb->csum_level--;
4377 	}
4378 }
4379 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4380 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4381 {
4382 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4383 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4384 			skb->csum_level++;
4385 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4386 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4387 		skb->csum_level = 0;
4388 	}
4389 }
4390 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4391 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4392 {
4393 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4394 		skb->ip_summed = CHECKSUM_NONE;
4395 		skb->csum_level = 0;
4396 	}
4397 }
4398 
4399 /* Check if we need to perform checksum complete validation.
4400  *
4401  * Returns true if checksum complete is needed, false otherwise
4402  * (either checksum is unnecessary or zero checksum is allowed).
4403  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4404 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4405 						  bool zero_okay,
4406 						  __sum16 check)
4407 {
4408 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4409 		skb->csum_valid = 1;
4410 		__skb_decr_checksum_unnecessary(skb);
4411 		return false;
4412 	}
4413 
4414 	return true;
4415 }
4416 
4417 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4418  * in checksum_init.
4419  */
4420 #define CHECKSUM_BREAK 76
4421 
4422 /* Unset checksum-complete
4423  *
4424  * Unset checksum complete can be done when packet is being modified
4425  * (uncompressed for instance) and checksum-complete value is
4426  * invalidated.
4427  */
skb_checksum_complete_unset(struct sk_buff * skb)4428 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4429 {
4430 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4431 		skb->ip_summed = CHECKSUM_NONE;
4432 }
4433 
4434 /* Validate (init) checksum based on checksum complete.
4435  *
4436  * Return values:
4437  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4438  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4439  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4440  *   non-zero: value of invalid checksum
4441  *
4442  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4443 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4444 						       bool complete,
4445 						       __wsum psum)
4446 {
4447 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4448 		if (!csum_fold(csum_add(psum, skb->csum))) {
4449 			skb->csum_valid = 1;
4450 			return 0;
4451 		}
4452 	}
4453 
4454 	skb->csum = psum;
4455 
4456 	if (complete || skb->len <= CHECKSUM_BREAK) {
4457 		__sum16 csum;
4458 
4459 		csum = __skb_checksum_complete(skb);
4460 		skb->csum_valid = !csum;
4461 		return csum;
4462 	}
4463 
4464 	return 0;
4465 }
4466 
null_compute_pseudo(struct sk_buff * skb,int proto)4467 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4468 {
4469 	return 0;
4470 }
4471 
4472 /* Perform checksum validate (init). Note that this is a macro since we only
4473  * want to calculate the pseudo header which is an input function if necessary.
4474  * First we try to validate without any computation (checksum unnecessary) and
4475  * then calculate based on checksum complete calling the function to compute
4476  * pseudo header.
4477  *
4478  * Return values:
4479  *   0: checksum is validated or try to in skb_checksum_complete
4480  *   non-zero: value of invalid checksum
4481  */
4482 #define __skb_checksum_validate(skb, proto, complete,			\
4483 				zero_okay, check, compute_pseudo)	\
4484 ({									\
4485 	__sum16 __ret = 0;						\
4486 	skb->csum_valid = 0;						\
4487 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4488 		__ret = __skb_checksum_validate_complete(skb,		\
4489 				complete, compute_pseudo(skb, proto));	\
4490 	__ret;								\
4491 })
4492 
4493 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4494 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4495 
4496 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4497 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4498 
4499 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4500 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4501 
4502 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4503 					 compute_pseudo)		\
4504 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4505 
4506 #define skb_checksum_simple_validate(skb)				\
4507 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4508 
__skb_checksum_convert_check(struct sk_buff * skb)4509 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4510 {
4511 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4512 }
4513 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4514 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4515 {
4516 	skb->csum = ~pseudo;
4517 	skb->ip_summed = CHECKSUM_COMPLETE;
4518 }
4519 
4520 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4521 do {									\
4522 	if (__skb_checksum_convert_check(skb))				\
4523 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4524 } while (0)
4525 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4526 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4527 					      u16 start, u16 offset)
4528 {
4529 	skb->ip_summed = CHECKSUM_PARTIAL;
4530 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4531 	skb->csum_offset = offset - start;
4532 }
4533 
4534 /* Update skbuf and packet to reflect the remote checksum offload operation.
4535  * When called, ptr indicates the starting point for skb->csum when
4536  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4537  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4538  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4539 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4540 				       int start, int offset, bool nopartial)
4541 {
4542 	__wsum delta;
4543 
4544 	if (!nopartial) {
4545 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4546 		return;
4547 	}
4548 
4549 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4550 		__skb_checksum_complete(skb);
4551 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4552 	}
4553 
4554 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4555 
4556 	/* Adjust skb->csum since we changed the packet */
4557 	skb->csum = csum_add(skb->csum, delta);
4558 }
4559 
skb_nfct(const struct sk_buff * skb)4560 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4561 {
4562 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4563 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4564 #else
4565 	return NULL;
4566 #endif
4567 }
4568 
skb_get_nfct(const struct sk_buff * skb)4569 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4570 {
4571 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4572 	return skb->_nfct;
4573 #else
4574 	return 0UL;
4575 #endif
4576 }
4577 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4578 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4579 {
4580 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4581 	skb->slow_gro |= !!nfct;
4582 	skb->_nfct = nfct;
4583 #endif
4584 }
4585 
4586 #ifdef CONFIG_SKB_EXTENSIONS
4587 enum skb_ext_id {
4588 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4589 	SKB_EXT_BRIDGE_NF,
4590 #endif
4591 #ifdef CONFIG_XFRM
4592 	SKB_EXT_SEC_PATH,
4593 #endif
4594 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4595 	TC_SKB_EXT,
4596 #endif
4597 #if IS_ENABLED(CONFIG_MPTCP)
4598 	SKB_EXT_MPTCP,
4599 #endif
4600 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4601 	SKB_EXT_MCTP,
4602 #endif
4603 	SKB_EXT_NUM, /* must be last */
4604 };
4605 
4606 /**
4607  *	struct skb_ext - sk_buff extensions
4608  *	@refcnt: 1 on allocation, deallocated on 0
4609  *	@offset: offset to add to @data to obtain extension address
4610  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4611  *	@data: start of extension data, variable sized
4612  *
4613  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4614  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4615  */
4616 struct skb_ext {
4617 	refcount_t refcnt;
4618 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4619 	u8 chunks;		/* same */
4620 	char data[] __aligned(8);
4621 };
4622 
4623 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4624 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4625 		    struct skb_ext *ext);
4626 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4627 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4628 void __skb_ext_put(struct skb_ext *ext);
4629 
skb_ext_put(struct sk_buff * skb)4630 static inline void skb_ext_put(struct sk_buff *skb)
4631 {
4632 	if (skb->active_extensions)
4633 		__skb_ext_put(skb->extensions);
4634 }
4635 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4636 static inline void __skb_ext_copy(struct sk_buff *dst,
4637 				  const struct sk_buff *src)
4638 {
4639 	dst->active_extensions = src->active_extensions;
4640 
4641 	if (src->active_extensions) {
4642 		struct skb_ext *ext = src->extensions;
4643 
4644 		refcount_inc(&ext->refcnt);
4645 		dst->extensions = ext;
4646 	}
4647 }
4648 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4649 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4650 {
4651 	skb_ext_put(dst);
4652 	__skb_ext_copy(dst, src);
4653 }
4654 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4655 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4656 {
4657 	return !!ext->offset[i];
4658 }
4659 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4660 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4661 {
4662 	return skb->active_extensions & (1 << id);
4663 }
4664 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4665 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4666 {
4667 	if (skb_ext_exist(skb, id))
4668 		__skb_ext_del(skb, id);
4669 }
4670 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4671 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4672 {
4673 	if (skb_ext_exist(skb, id)) {
4674 		struct skb_ext *ext = skb->extensions;
4675 
4676 		return (void *)ext + (ext->offset[id] << 3);
4677 	}
4678 
4679 	return NULL;
4680 }
4681 
skb_ext_reset(struct sk_buff * skb)4682 static inline void skb_ext_reset(struct sk_buff *skb)
4683 {
4684 	if (unlikely(skb->active_extensions)) {
4685 		__skb_ext_put(skb->extensions);
4686 		skb->active_extensions = 0;
4687 	}
4688 }
4689 
skb_has_extensions(struct sk_buff * skb)4690 static inline bool skb_has_extensions(struct sk_buff *skb)
4691 {
4692 	return unlikely(skb->active_extensions);
4693 }
4694 #else
skb_ext_put(struct sk_buff * skb)4695 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4696 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4697 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4698 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4699 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4700 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4701 #endif /* CONFIG_SKB_EXTENSIONS */
4702 
nf_reset_ct(struct sk_buff * skb)4703 static inline void nf_reset_ct(struct sk_buff *skb)
4704 {
4705 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4706 	nf_conntrack_put(skb_nfct(skb));
4707 	skb->_nfct = 0;
4708 #endif
4709 }
4710 
nf_reset_trace(struct sk_buff * skb)4711 static inline void nf_reset_trace(struct sk_buff *skb)
4712 {
4713 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4714 	skb->nf_trace = 0;
4715 #endif
4716 }
4717 
ipvs_reset(struct sk_buff * skb)4718 static inline void ipvs_reset(struct sk_buff *skb)
4719 {
4720 #if IS_ENABLED(CONFIG_IP_VS)
4721 	skb->ipvs_property = 0;
4722 #endif
4723 }
4724 
4725 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4726 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4727 			     bool copy)
4728 {
4729 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4730 	dst->_nfct = src->_nfct;
4731 	nf_conntrack_get(skb_nfct(src));
4732 #endif
4733 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4734 	if (copy)
4735 		dst->nf_trace = src->nf_trace;
4736 #endif
4737 }
4738 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4739 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4740 {
4741 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4742 	nf_conntrack_put(skb_nfct(dst));
4743 #endif
4744 	dst->slow_gro = src->slow_gro;
4745 	__nf_copy(dst, src, true);
4746 }
4747 
4748 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4749 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4750 {
4751 	to->secmark = from->secmark;
4752 }
4753 
skb_init_secmark(struct sk_buff * skb)4754 static inline void skb_init_secmark(struct sk_buff *skb)
4755 {
4756 	skb->secmark = 0;
4757 }
4758 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4759 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4760 { }
4761 
skb_init_secmark(struct sk_buff * skb)4762 static inline void skb_init_secmark(struct sk_buff *skb)
4763 { }
4764 #endif
4765 
secpath_exists(const struct sk_buff * skb)4766 static inline int secpath_exists(const struct sk_buff *skb)
4767 {
4768 #ifdef CONFIG_XFRM
4769 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4770 #else
4771 	return 0;
4772 #endif
4773 }
4774 
skb_irq_freeable(const struct sk_buff * skb)4775 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4776 {
4777 	return !skb->destructor &&
4778 		!secpath_exists(skb) &&
4779 		!skb_nfct(skb) &&
4780 		!skb->_skb_refdst &&
4781 		!skb_has_frag_list(skb);
4782 }
4783 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4784 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4785 {
4786 	skb->queue_mapping = queue_mapping;
4787 }
4788 
skb_get_queue_mapping(const struct sk_buff * skb)4789 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4790 {
4791 	return skb->queue_mapping;
4792 }
4793 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4794 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4795 {
4796 	to->queue_mapping = from->queue_mapping;
4797 }
4798 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4799 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4800 {
4801 	skb->queue_mapping = rx_queue + 1;
4802 }
4803 
skb_get_rx_queue(const struct sk_buff * skb)4804 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4805 {
4806 	return skb->queue_mapping - 1;
4807 }
4808 
skb_rx_queue_recorded(const struct sk_buff * skb)4809 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4810 {
4811 	return skb->queue_mapping != 0;
4812 }
4813 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4814 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4815 {
4816 	skb->dst_pending_confirm = val;
4817 }
4818 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4819 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4820 {
4821 	return skb->dst_pending_confirm != 0;
4822 }
4823 
skb_sec_path(const struct sk_buff * skb)4824 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4825 {
4826 #ifdef CONFIG_XFRM
4827 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4828 #else
4829 	return NULL;
4830 #endif
4831 }
4832 
4833 /* Keeps track of mac header offset relative to skb->head.
4834  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4835  * For non-tunnel skb it points to skb_mac_header() and for
4836  * tunnel skb it points to outer mac header.
4837  * Keeps track of level of encapsulation of network headers.
4838  */
4839 struct skb_gso_cb {
4840 	union {
4841 		int	mac_offset;
4842 		int	data_offset;
4843 	};
4844 	int	encap_level;
4845 	__wsum	csum;
4846 	__u16	csum_start;
4847 };
4848 #define SKB_GSO_CB_OFFSET	32
4849 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4850 
skb_tnl_header_len(const struct sk_buff * inner_skb)4851 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4852 {
4853 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4854 		SKB_GSO_CB(inner_skb)->mac_offset;
4855 }
4856 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4857 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4858 {
4859 	int new_headroom, headroom;
4860 	int ret;
4861 
4862 	headroom = skb_headroom(skb);
4863 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4864 	if (ret)
4865 		return ret;
4866 
4867 	new_headroom = skb_headroom(skb);
4868 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4869 	return 0;
4870 }
4871 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4872 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4873 {
4874 	/* Do not update partial checksums if remote checksum is enabled. */
4875 	if (skb->remcsum_offload)
4876 		return;
4877 
4878 	SKB_GSO_CB(skb)->csum = res;
4879 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4880 }
4881 
4882 /* Compute the checksum for a gso segment. First compute the checksum value
4883  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4884  * then add in skb->csum (checksum from csum_start to end of packet).
4885  * skb->csum and csum_start are then updated to reflect the checksum of the
4886  * resultant packet starting from the transport header-- the resultant checksum
4887  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4888  * header.
4889  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4890 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4891 {
4892 	unsigned char *csum_start = skb_transport_header(skb);
4893 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4894 	__wsum partial = SKB_GSO_CB(skb)->csum;
4895 
4896 	SKB_GSO_CB(skb)->csum = res;
4897 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4898 
4899 	return csum_fold(csum_partial(csum_start, plen, partial));
4900 }
4901 
skb_is_gso(const struct sk_buff * skb)4902 static inline bool skb_is_gso(const struct sk_buff *skb)
4903 {
4904 	return skb_shinfo(skb)->gso_size;
4905 }
4906 
4907 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4908 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4909 {
4910 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4911 }
4912 
4913 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4914 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4915 {
4916 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4917 }
4918 
4919 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4920 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4921 {
4922 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4923 }
4924 
skb_gso_reset(struct sk_buff * skb)4925 static inline void skb_gso_reset(struct sk_buff *skb)
4926 {
4927 	skb_shinfo(skb)->gso_size = 0;
4928 	skb_shinfo(skb)->gso_segs = 0;
4929 	skb_shinfo(skb)->gso_type = 0;
4930 }
4931 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4932 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4933 					 u16 increment)
4934 {
4935 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4936 		return;
4937 	shinfo->gso_size += increment;
4938 }
4939 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4940 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4941 					 u16 decrement)
4942 {
4943 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4944 		return;
4945 	shinfo->gso_size -= decrement;
4946 }
4947 
4948 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4949 
skb_warn_if_lro(const struct sk_buff * skb)4950 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4951 {
4952 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4953 	 * wanted then gso_type will be set. */
4954 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4955 
4956 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4957 	    unlikely(shinfo->gso_type == 0)) {
4958 		__skb_warn_lro_forwarding(skb);
4959 		return true;
4960 	}
4961 	return false;
4962 }
4963 
skb_forward_csum(struct sk_buff * skb)4964 static inline void skb_forward_csum(struct sk_buff *skb)
4965 {
4966 	/* Unfortunately we don't support this one.  Any brave souls? */
4967 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4968 		skb->ip_summed = CHECKSUM_NONE;
4969 }
4970 
4971 /**
4972  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4973  * @skb: skb to check
4974  *
4975  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4976  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4977  * use this helper, to document places where we make this assertion.
4978  */
skb_checksum_none_assert(const struct sk_buff * skb)4979 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4980 {
4981 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4982 }
4983 
4984 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4985 
4986 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4987 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4988 				     unsigned int transport_len,
4989 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4990 
4991 /**
4992  * skb_head_is_locked - Determine if the skb->head is locked down
4993  * @skb: skb to check
4994  *
4995  * The head on skbs build around a head frag can be removed if they are
4996  * not cloned.  This function returns true if the skb head is locked down
4997  * due to either being allocated via kmalloc, or by being a clone with
4998  * multiple references to the head.
4999  */
skb_head_is_locked(const struct sk_buff * skb)5000 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5001 {
5002 	return !skb->head_frag || skb_cloned(skb);
5003 }
5004 
5005 /* Local Checksum Offload.
5006  * Compute outer checksum based on the assumption that the
5007  * inner checksum will be offloaded later.
5008  * See Documentation/networking/checksum-offloads.rst for
5009  * explanation of how this works.
5010  * Fill in outer checksum adjustment (e.g. with sum of outer
5011  * pseudo-header) before calling.
5012  * Also ensure that inner checksum is in linear data area.
5013  */
lco_csum(struct sk_buff * skb)5014 static inline __wsum lco_csum(struct sk_buff *skb)
5015 {
5016 	unsigned char *csum_start = skb_checksum_start(skb);
5017 	unsigned char *l4_hdr = skb_transport_header(skb);
5018 	__wsum partial;
5019 
5020 	/* Start with complement of inner checksum adjustment */
5021 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5022 						    skb->csum_offset));
5023 
5024 	/* Add in checksum of our headers (incl. outer checksum
5025 	 * adjustment filled in by caller) and return result.
5026 	 */
5027 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5028 }
5029 
skb_is_redirected(const struct sk_buff * skb)5030 static inline bool skb_is_redirected(const struct sk_buff *skb)
5031 {
5032 	return skb->redirected;
5033 }
5034 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5035 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5036 {
5037 	skb->redirected = 1;
5038 #ifdef CONFIG_NET_REDIRECT
5039 	skb->from_ingress = from_ingress;
5040 	if (skb->from_ingress)
5041 		skb_clear_tstamp(skb);
5042 #endif
5043 }
5044 
skb_reset_redirect(struct sk_buff * skb)5045 static inline void skb_reset_redirect(struct sk_buff *skb)
5046 {
5047 	skb->redirected = 0;
5048 }
5049 
skb_csum_is_sctp(struct sk_buff * skb)5050 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5051 {
5052 	return skb->csum_not_inet;
5053 }
5054 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5055 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5056 				       const u64 kcov_handle)
5057 {
5058 #ifdef CONFIG_KCOV
5059 	skb->kcov_handle = kcov_handle;
5060 #endif
5061 }
5062 
skb_get_kcov_handle(struct sk_buff * skb)5063 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5064 {
5065 #ifdef CONFIG_KCOV
5066 	return skb->kcov_handle;
5067 #else
5068 	return 0;
5069 #endif
5070 }
5071 
5072 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)5073 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5074 {
5075 	skb->pp_recycle = 1;
5076 }
5077 #endif
5078 
skb_pp_recycle(struct sk_buff * skb,void * data)5079 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5080 {
5081 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5082 		return false;
5083 	return page_pool_return_skb_page(virt_to_page(data));
5084 }
5085 
5086 #endif	/* __KERNEL__ */
5087 #endif	/* _LINUX_SKBUFF_H */
5088