1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3
4
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/reset.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15
16 #define GPU_PAS_ID 13
17
_a6xx_check_idle(struct msm_gpu * gpu)18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22
23 /* Check that the GMU is idle */
24 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
25 return false;
26
27 /* Check tha the CX master is idle */
28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30 return false;
31
32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35
a6xx_idle(struct msm_gpu * gpu,struct msm_ringbuffer * ring)36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38 /* wait for CP to drain ringbuffer: */
39 if (!adreno_idle(gpu, ring))
40 return false;
41
42 if (spin_until(_a6xx_check_idle(gpu))) {
43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 gpu->name, __builtin_return_address(0),
45 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49 return false;
50 }
51
52 return true;
53 }
54
update_shadow_rptr(struct msm_gpu * gpu,struct msm_ringbuffer * ring)55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59
60 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
61 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
62 OUT_PKT7(ring, CP_WHERE_AM_I, 2);
63 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
64 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
65 }
66 }
67
a6xx_flush(struct msm_gpu * gpu,struct msm_ringbuffer * ring)68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
69 {
70 uint32_t wptr;
71 unsigned long flags;
72
73 update_shadow_rptr(gpu, ring);
74
75 spin_lock_irqsave(&ring->preempt_lock, flags);
76
77 /* Copy the shadow to the actual register */
78 ring->cur = ring->next;
79
80 /* Make sure to wrap wptr if we need to */
81 wptr = get_wptr(ring);
82
83 spin_unlock_irqrestore(&ring->preempt_lock, flags);
84
85 /* Make sure everything is posted before making a decision */
86 mb();
87
88 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
89 }
90
get_stats_counter(struct msm_ringbuffer * ring,u32 counter,u64 iova)91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
92 u64 iova)
93 {
94 OUT_PKT7(ring, CP_REG_TO_MEM, 3);
95 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
96 CP_REG_TO_MEM_0_CNT(2) |
97 CP_REG_TO_MEM_0_64B);
98 OUT_RING(ring, lower_32_bits(iova));
99 OUT_RING(ring, upper_32_bits(iova));
100 }
101
a6xx_set_pagetable(struct a6xx_gpu * a6xx_gpu,struct msm_ringbuffer * ring,struct msm_file_private * ctx)102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
103 struct msm_ringbuffer *ring, struct msm_file_private *ctx)
104 {
105 bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1;
106 phys_addr_t ttbr;
107 u32 asid;
108 u64 memptr = rbmemptr(ring, ttbr0);
109
110 if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
111 return;
112
113 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
114 return;
115
116 if (!sysprof) {
117 /* Turn off protected mode to write to special registers */
118 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
119 OUT_RING(ring, 0);
120
121 OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1);
122 OUT_RING(ring, 1);
123 }
124
125 /* Execute the table update */
126 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
127 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
128
129 OUT_RING(ring,
130 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
131 CP_SMMU_TABLE_UPDATE_1_ASID(asid));
132 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
133 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
134
135 /*
136 * Write the new TTBR0 to the memstore. This is good for debugging.
137 */
138 OUT_PKT7(ring, CP_MEM_WRITE, 4);
139 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
140 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
141 OUT_RING(ring, lower_32_bits(ttbr));
142 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
143
144 /*
145 * And finally, trigger a uche flush to be sure there isn't anything
146 * lingering in that part of the GPU
147 */
148
149 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
150 OUT_RING(ring, CACHE_INVALIDATE);
151
152 if (!sysprof) {
153 /*
154 * Wait for SRAM clear after the pgtable update, so the
155 * two can happen in parallel:
156 */
157 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
158 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ));
159 OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO(
160 REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS));
161 OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0));
162 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1));
163 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1));
164 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0));
165
166 /* Re-enable protected mode: */
167 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
168 OUT_RING(ring, 1);
169 }
170 }
171
a6xx_submit(struct msm_gpu * gpu,struct msm_gem_submit * submit)172 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
173 {
174 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
175 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
176 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
177 struct msm_ringbuffer *ring = submit->ring;
178 unsigned int i, ibs = 0;
179
180 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
181
182 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
183 rbmemptr_stats(ring, index, cpcycles_start));
184
185 /*
186 * For PM4 the GMU register offsets are calculated from the base of the
187 * GPU registers so we need to add 0x1a800 to the register value on A630
188 * to get the right value from PM4.
189 */
190 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
191 rbmemptr_stats(ring, index, alwayson_start));
192
193 /* Invalidate CCU depth and color */
194 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
195 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
196
197 OUT_PKT7(ring, CP_EVENT_WRITE, 1);
198 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
199
200 /* Submit the commands */
201 for (i = 0; i < submit->nr_cmds; i++) {
202 switch (submit->cmd[i].type) {
203 case MSM_SUBMIT_CMD_IB_TARGET_BUF:
204 break;
205 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
206 if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
207 break;
208 fallthrough;
209 case MSM_SUBMIT_CMD_BUF:
210 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
211 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
212 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
213 OUT_RING(ring, submit->cmd[i].size);
214 ibs++;
215 break;
216 }
217
218 /*
219 * Periodically update shadow-wptr if needed, so that we
220 * can see partial progress of submits with large # of
221 * cmds.. otherwise we could needlessly stall waiting for
222 * ringbuffer state, simply due to looking at a shadow
223 * rptr value that has not been updated
224 */
225 if ((ibs % 32) == 0)
226 update_shadow_rptr(gpu, ring);
227 }
228
229 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
230 rbmemptr_stats(ring, index, cpcycles_end));
231 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
232 rbmemptr_stats(ring, index, alwayson_end));
233
234 /* Write the fence to the scratch register */
235 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
236 OUT_RING(ring, submit->seqno);
237
238 /*
239 * Execute a CACHE_FLUSH_TS event. This will ensure that the
240 * timestamp is written to the memory and then triggers the interrupt
241 */
242 OUT_PKT7(ring, CP_EVENT_WRITE, 4);
243 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
244 CP_EVENT_WRITE_0_IRQ);
245 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
246 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
247 OUT_RING(ring, submit->seqno);
248
249 trace_msm_gpu_submit_flush(submit,
250 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO));
251
252 a6xx_flush(gpu, ring);
253 }
254
255 /* For a615 family (a615, a616, a618 and a619) */
256 const struct adreno_reglist a615_hwcg[] = {
257 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
258 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
259 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
260 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
261 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
262 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
263 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
264 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
265 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
266 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
267 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
268 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
269 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
270 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
271 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
272 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
273 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
274 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
275 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
276 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
277 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
278 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
279 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
280 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
281 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
282 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
283 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
284 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
285 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
286 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
287 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
288 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
289 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
290 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
291 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
292 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
293 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020},
294 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
295 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
296 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
297 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
298 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00},
299 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00},
300 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00},
301 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
302 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
303 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
304 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
305 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
306 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
307 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
308 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
309 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
310 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
311 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
312 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
313 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
314 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
315 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
316 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
317 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
318 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
319 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
320 {},
321 };
322
323 const struct adreno_reglist a630_hwcg[] = {
324 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
325 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
326 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
327 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
328 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
329 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
330 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
331 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
332 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
333 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
334 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
335 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
336 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
337 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
338 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
339 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
340 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
341 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
342 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
343 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
344 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
345 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
346 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
347 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
348 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
349 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
350 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
351 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
352 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
353 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
354 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
355 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
356 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
357 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
358 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
359 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
360 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
361 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
362 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
363 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
364 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
365 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
366 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
367 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
368 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
369 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
370 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
371 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
372 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
373 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
374 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
375 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
376 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
377 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
378 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
379 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
380 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
381 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
382 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
383 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
384 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
385 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
386 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
387 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
388 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
389 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
390 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
391 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
392 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
393 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
394 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
395 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
396 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
397 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
398 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
399 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
400 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
401 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
402 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
403 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
404 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
405 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
406 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
407 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
408 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
409 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
410 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
411 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
412 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
413 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
414 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
415 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
416 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
417 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
418 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
419 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
420 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
421 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
422 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
423 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
424 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
425 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
426 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
427 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
428 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
429 {},
430 };
431
432 const struct adreno_reglist a640_hwcg[] = {
433 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
434 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
435 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
436 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
437 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
438 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
439 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
440 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
441 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
442 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
443 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
444 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
445 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
446 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
447 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
448 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
449 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
450 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
451 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
452 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
453 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
454 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
455 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
456 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
457 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
458 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
459 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
460 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
461 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
462 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
463 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
464 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
465 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
466 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
467 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
468 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
469 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
470 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
471 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
472 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
473 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
474 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
475 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
476 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
477 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
478 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
479 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
480 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
481 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
482 {},
483 };
484
485 const struct adreno_reglist a650_hwcg[] = {
486 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
487 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
488 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
489 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
490 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
491 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
492 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
493 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
494 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
495 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
496 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
497 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
498 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
499 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
500 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
501 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
502 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
503 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
504 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
505 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
506 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
507 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
508 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
509 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
510 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
511 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
512 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
513 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
514 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
515 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
516 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
517 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
518 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
519 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
520 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
521 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
522 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
523 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
524 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
525 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
526 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
527 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
528 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
529 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
530 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
531 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
532 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
533 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
534 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
535 {},
536 };
537
538 const struct adreno_reglist a660_hwcg[] = {
539 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
540 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
541 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
542 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
543 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
544 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
545 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
546 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
547 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
548 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
549 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
550 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
551 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
552 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
553 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
554 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
555 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
556 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
557 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
558 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
559 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
560 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
561 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
562 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
563 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
564 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
565 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
566 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
567 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
568 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
569 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
570 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
571 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
572 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
573 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
574 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
575 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
576 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
577 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
578 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
579 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
580 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
581 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
582 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
583 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
584 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
585 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
586 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
587 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
588 {},
589 };
590
a6xx_set_hwcg(struct msm_gpu * gpu,bool state)591 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
592 {
593 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
594 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
595 struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
596 const struct adreno_reglist *reg;
597 unsigned int i;
598 u32 val, clock_cntl_on;
599
600 if (!adreno_gpu->info->hwcg)
601 return;
602
603 if (adreno_is_a630(adreno_gpu))
604 clock_cntl_on = 0x8aa8aa02;
605 else
606 clock_cntl_on = 0x8aa8aa82;
607
608 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
609
610 /* Don't re-program the registers if they are already correct */
611 if ((!state && !val) || (state && (val == clock_cntl_on)))
612 return;
613
614 /* Disable SP clock before programming HWCG registers */
615 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
616
617 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
618 gpu_write(gpu, reg->offset, state ? reg->value : 0);
619
620 /* Enable SP clock */
621 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
622
623 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
624 }
625
626 /* For a615, a616, a618, a619, a630, a640 and a680 */
627 static const u32 a6xx_protect[] = {
628 A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
629 A6XX_PROTECT_RDONLY(0x00501, 0x0005),
630 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
631 A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
632 A6XX_PROTECT_NORDWR(0x00510, 0x0000),
633 A6XX_PROTECT_NORDWR(0x00534, 0x0000),
634 A6XX_PROTECT_NORDWR(0x00800, 0x0082),
635 A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
636 A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
637 A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
638 A6XX_PROTECT_NORDWR(0x00900, 0x004d),
639 A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
640 A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
641 A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
642 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
643 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
644 A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
645 A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
646 A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
647 A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
648 A6XX_PROTECT_NORDWR(0x09624, 0x01db),
649 A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
650 A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
651 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
652 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
653 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
654 A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
655 A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
656 A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
657 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
658 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
659 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
660 };
661
662 /* These are for a620 and a650 */
663 static const u32 a650_protect[] = {
664 A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
665 A6XX_PROTECT_RDONLY(0x00501, 0x0005),
666 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
667 A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
668 A6XX_PROTECT_NORDWR(0x00510, 0x0000),
669 A6XX_PROTECT_NORDWR(0x00534, 0x0000),
670 A6XX_PROTECT_NORDWR(0x00800, 0x0082),
671 A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
672 A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
673 A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
674 A6XX_PROTECT_NORDWR(0x00900, 0x004d),
675 A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
676 A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
677 A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
678 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
679 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
680 A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
681 A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
682 A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
683 A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
684 A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
685 A6XX_PROTECT_NORDWR(0x09624, 0x01db),
686 A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
687 A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
688 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
689 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
690 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
691 A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
692 A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
693 A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
694 A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
695 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
696 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
697 A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
698 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
699 A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
700 A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
701 A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
702 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
703 };
704
705 /* These are for a635 and a660 */
706 static const u32 a660_protect[] = {
707 A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
708 A6XX_PROTECT_RDONLY(0x00501, 0x0005),
709 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
710 A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
711 A6XX_PROTECT_NORDWR(0x00510, 0x0000),
712 A6XX_PROTECT_NORDWR(0x00534, 0x0000),
713 A6XX_PROTECT_NORDWR(0x00800, 0x0082),
714 A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
715 A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
716 A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
717 A6XX_PROTECT_NORDWR(0x00900, 0x004d),
718 A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
719 A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
720 A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
721 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
722 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
723 A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
724 A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
725 A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
726 A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
727 A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
728 A6XX_PROTECT_NORDWR(0x09624, 0x01db),
729 A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
730 A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
731 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
732 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
733 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
734 A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
735 A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
736 A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
737 A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
738 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
739 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
740 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
741 A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
742 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
743 A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
744 A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
745 A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
746 A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
747 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
748 };
749
a6xx_set_cp_protect(struct msm_gpu * gpu)750 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
751 {
752 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
753 const u32 *regs = a6xx_protect;
754 unsigned i, count, count_max;
755
756 if (adreno_is_a650(adreno_gpu)) {
757 regs = a650_protect;
758 count = ARRAY_SIZE(a650_protect);
759 count_max = 48;
760 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
761 } else if (adreno_is_a660_family(adreno_gpu)) {
762 regs = a660_protect;
763 count = ARRAY_SIZE(a660_protect);
764 count_max = 48;
765 BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48);
766 } else {
767 regs = a6xx_protect;
768 count = ARRAY_SIZE(a6xx_protect);
769 count_max = 32;
770 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
771 }
772
773 /*
774 * Enable access protection to privileged registers, fault on an access
775 * protect violation and select the last span to protect from the start
776 * address all the way to the end of the register address space
777 */
778 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
779
780 for (i = 0; i < count - 1; i++)
781 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
782 /* last CP_PROTECT to have "infinite" length on the last entry */
783 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
784 }
785
a6xx_set_ubwc_config(struct msm_gpu * gpu)786 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
787 {
788 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
789 u32 lower_bit = 2;
790 u32 amsbc = 0;
791 u32 rgb565_predicator = 0;
792 u32 uavflagprd_inv = 0;
793
794 /* a618 is using the hw default values */
795 if (adreno_is_a618(adreno_gpu))
796 return;
797
798 if (adreno_is_a640_family(adreno_gpu))
799 amsbc = 1;
800
801 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
802 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
803 lower_bit = 3;
804 amsbc = 1;
805 rgb565_predicator = 1;
806 uavflagprd_inv = 2;
807 }
808
809 if (adreno_is_7c3(adreno_gpu)) {
810 lower_bit = 1;
811 amsbc = 1;
812 rgb565_predicator = 1;
813 uavflagprd_inv = 2;
814 }
815
816 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
817 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
818 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
819 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
820 uavflagprd_inv << 4 | lower_bit << 1);
821 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
822 }
823
a6xx_cp_init(struct msm_gpu * gpu)824 static int a6xx_cp_init(struct msm_gpu *gpu)
825 {
826 struct msm_ringbuffer *ring = gpu->rb[0];
827
828 OUT_PKT7(ring, CP_ME_INIT, 8);
829
830 OUT_RING(ring, 0x0000002f);
831
832 /* Enable multiple hardware contexts */
833 OUT_RING(ring, 0x00000003);
834
835 /* Enable error detection */
836 OUT_RING(ring, 0x20000000);
837
838 /* Don't enable header dump */
839 OUT_RING(ring, 0x00000000);
840 OUT_RING(ring, 0x00000000);
841
842 /* No workarounds enabled */
843 OUT_RING(ring, 0x00000000);
844
845 /* Pad rest of the cmds with 0's */
846 OUT_RING(ring, 0x00000000);
847 OUT_RING(ring, 0x00000000);
848
849 a6xx_flush(gpu, ring);
850 return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
851 }
852
853 /*
854 * Check that the microcode version is new enough to include several key
855 * security fixes. Return true if the ucode is safe.
856 */
a6xx_ucode_check_version(struct a6xx_gpu * a6xx_gpu,struct drm_gem_object * obj)857 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
858 struct drm_gem_object *obj)
859 {
860 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
861 struct msm_gpu *gpu = &adreno_gpu->base;
862 const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
863 u32 *buf = msm_gem_get_vaddr(obj);
864 bool ret = false;
865
866 if (IS_ERR(buf))
867 return false;
868
869 /*
870 * Targets up to a640 (a618, a630 and a640) need to check for a
871 * microcode version that is patched to support the whereami opcode or
872 * one that is new enough to include it by default.
873 *
874 * a650 tier targets don't need whereami but still need to be
875 * equal to or newer than 0.95 for other security fixes
876 *
877 * a660 targets have all the critical security fixes from the start
878 */
879 if (!strcmp(sqe_name, "a630_sqe.fw")) {
880 /*
881 * If the lowest nibble is 0xa that is an indication that this
882 * microcode has been patched. The actual version is in dword
883 * [3] but we only care about the patchlevel which is the lowest
884 * nibble of dword [3]
885 *
886 * Otherwise check that the firmware is greater than or equal
887 * to 1.90 which was the first version that had this fix built
888 * in
889 */
890 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
891 (buf[0] & 0xfff) >= 0x190) {
892 a6xx_gpu->has_whereami = true;
893 ret = true;
894 goto out;
895 }
896
897 DRM_DEV_ERROR(&gpu->pdev->dev,
898 "a630 SQE ucode is too old. Have version %x need at least %x\n",
899 buf[0] & 0xfff, 0x190);
900 } else if (!strcmp(sqe_name, "a650_sqe.fw")) {
901 if ((buf[0] & 0xfff) >= 0x095) {
902 ret = true;
903 goto out;
904 }
905
906 DRM_DEV_ERROR(&gpu->pdev->dev,
907 "a650 SQE ucode is too old. Have version %x need at least %x\n",
908 buf[0] & 0xfff, 0x095);
909 } else if (!strcmp(sqe_name, "a660_sqe.fw")) {
910 ret = true;
911 } else {
912 DRM_DEV_ERROR(&gpu->pdev->dev,
913 "unknown GPU, add it to a6xx_ucode_check_version()!!\n");
914 }
915 out:
916 msm_gem_put_vaddr(obj);
917 return ret;
918 }
919
a6xx_ucode_init(struct msm_gpu * gpu)920 static int a6xx_ucode_init(struct msm_gpu *gpu)
921 {
922 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
923 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
924
925 if (!a6xx_gpu->sqe_bo) {
926 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
927 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
928
929 if (IS_ERR(a6xx_gpu->sqe_bo)) {
930 int ret = PTR_ERR(a6xx_gpu->sqe_bo);
931
932 a6xx_gpu->sqe_bo = NULL;
933 DRM_DEV_ERROR(&gpu->pdev->dev,
934 "Could not allocate SQE ucode: %d\n", ret);
935
936 return ret;
937 }
938
939 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
940 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
941 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
942 drm_gem_object_put(a6xx_gpu->sqe_bo);
943
944 a6xx_gpu->sqe_bo = NULL;
945 return -EPERM;
946 }
947 }
948
949 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova);
950
951 return 0;
952 }
953
a6xx_zap_shader_init(struct msm_gpu * gpu)954 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
955 {
956 static bool loaded;
957 int ret;
958
959 if (loaded)
960 return 0;
961
962 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
963
964 loaded = !ret;
965 return ret;
966 }
967
968 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
969 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
970 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
971 A6XX_RBBM_INT_0_MASK_CP_IB2 | \
972 A6XX_RBBM_INT_0_MASK_CP_IB1 | \
973 A6XX_RBBM_INT_0_MASK_CP_RB | \
974 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
975 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
976 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
977 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
978 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
979
hw_init(struct msm_gpu * gpu)980 static int hw_init(struct msm_gpu *gpu)
981 {
982 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
983 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
984 int ret;
985
986 /* Make sure the GMU keeps the GPU on while we set it up */
987 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
988
989 /* Clear GBIF halt in case GX domain was not collapsed */
990 if (a6xx_has_gbif(adreno_gpu))
991 gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0);
992
993 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
994
995 /*
996 * Disable the trusted memory range - we don't actually supported secure
997 * memory rendering at this point in time and we don't want to block off
998 * part of the virtual memory space.
999 */
1000 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 0x00000000);
1001 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
1002
1003 /* Turn on 64 bit addressing for all blocks */
1004 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
1005 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
1006 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
1007 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
1008 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
1009 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
1010 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
1011 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
1012 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
1013 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
1014 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
1015 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
1016
1017 /* enable hardware clockgating */
1018 a6xx_set_hwcg(gpu, true);
1019
1020 /* VBIF/GBIF start*/
1021 if (adreno_is_a640_family(adreno_gpu) ||
1022 adreno_is_a650_family(adreno_gpu)) {
1023 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
1024 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
1025 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
1026 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1027 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1028 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
1029 } else {
1030 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
1031 }
1032
1033 if (adreno_is_a630(adreno_gpu))
1034 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
1035
1036 /* Make all blocks contribute to the GPU BUSY perf counter */
1037 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
1038
1039 /* Disable L2 bypass in the UCHE */
1040 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
1041 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
1042 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
1043 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
1044 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
1045 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
1046
1047 if (!adreno_is_a650_family(adreno_gpu)) {
1048 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
1049 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000);
1050
1051 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
1052 0x00100000 + adreno_gpu->gmem - 1);
1053 }
1054
1055 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
1056 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
1057
1058 if (adreno_is_a640_family(adreno_gpu) ||
1059 adreno_is_a650_family(adreno_gpu))
1060 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
1061 else
1062 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
1063 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
1064
1065 if (adreno_is_a660_family(adreno_gpu))
1066 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
1067
1068 /* Setting the mem pool size */
1069 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
1070
1071 /* Setting the primFifo thresholds default values,
1072 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
1073 */
1074 if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1075 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1076 else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
1077 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
1078 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1079 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1080 else
1081 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
1082
1083 /* Set the AHB default slave response to "ERROR" */
1084 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
1085
1086 /* Turn on performance counters */
1087 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
1088
1089 /* Select CP0 to always count cycles */
1090 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
1091
1092 a6xx_set_ubwc_config(gpu);
1093
1094 /* Enable fault detection */
1095 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
1096 (1 << 30) | 0x1fffff);
1097
1098 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
1099
1100 /* Set weights for bicubic filtering */
1101 if (adreno_is_a650_family(adreno_gpu)) {
1102 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1103 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1104 0x3fe05ff4);
1105 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1106 0x3fa0ebee);
1107 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1108 0x3f5193ed);
1109 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1110 0x3f0243f0);
1111 }
1112
1113 /* Protect registers from the CP */
1114 a6xx_set_cp_protect(gpu);
1115
1116 if (adreno_is_a660_family(adreno_gpu)) {
1117 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1118 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1119 }
1120
1121 /* Set dualQ + disable afull for A660 GPU */
1122 if (adreno_is_a660(adreno_gpu))
1123 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1124
1125 /* Enable expanded apriv for targets that support it */
1126 if (gpu->hw_apriv) {
1127 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1128 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1129 }
1130
1131 /* Enable interrupts */
1132 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1133
1134 ret = adreno_hw_init(gpu);
1135 if (ret)
1136 goto out;
1137
1138 ret = a6xx_ucode_init(gpu);
1139 if (ret)
1140 goto out;
1141
1142 /* Set the ringbuffer address */
1143 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova);
1144
1145 /* Targets that support extended APRIV can use the RPTR shadow from
1146 * hardware but all the other ones need to disable the feature. Targets
1147 * that support the WHERE_AM_I opcode can use that instead
1148 */
1149 if (adreno_gpu->base.hw_apriv)
1150 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1151 else
1152 gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1153 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1154
1155 /*
1156 * Expanded APRIV and targets that support WHERE_AM_I both need a
1157 * privileged buffer to store the RPTR shadow
1158 */
1159
1160 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1161 if (!a6xx_gpu->shadow_bo) {
1162 a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1163 sizeof(u32) * gpu->nr_rings,
1164 MSM_BO_WC | MSM_BO_MAP_PRIV,
1165 gpu->aspace, &a6xx_gpu->shadow_bo,
1166 &a6xx_gpu->shadow_iova);
1167
1168 if (IS_ERR(a6xx_gpu->shadow))
1169 return PTR_ERR(a6xx_gpu->shadow);
1170
1171 msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
1172 }
1173
1174 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1175 shadowptr(a6xx_gpu, gpu->rb[0]));
1176 }
1177
1178 /* Always come up on rb 0 */
1179 a6xx_gpu->cur_ring = gpu->rb[0];
1180
1181 gpu->cur_ctx_seqno = 0;
1182
1183 /* Enable the SQE_to start the CP engine */
1184 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1185
1186 ret = a6xx_cp_init(gpu);
1187 if (ret)
1188 goto out;
1189
1190 /*
1191 * Try to load a zap shader into the secure world. If successful
1192 * we can use the CP to switch out of secure mode. If not then we
1193 * have no resource but to try to switch ourselves out manually. If we
1194 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1195 * be blocked and a permissions violation will soon follow.
1196 */
1197 ret = a6xx_zap_shader_init(gpu);
1198 if (!ret) {
1199 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1200 OUT_RING(gpu->rb[0], 0x00000000);
1201
1202 a6xx_flush(gpu, gpu->rb[0]);
1203 if (!a6xx_idle(gpu, gpu->rb[0]))
1204 return -EINVAL;
1205 } else if (ret == -ENODEV) {
1206 /*
1207 * This device does not use zap shader (but print a warning
1208 * just in case someone got their dt wrong.. hopefully they
1209 * have a debug UART to realize the error of their ways...
1210 * if you mess this up you are about to crash horribly)
1211 */
1212 dev_warn_once(gpu->dev->dev,
1213 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1214 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1215 ret = 0;
1216 } else {
1217 return ret;
1218 }
1219
1220 out:
1221 /*
1222 * Tell the GMU that we are done touching the GPU and it can start power
1223 * management
1224 */
1225 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1226
1227 if (a6xx_gpu->gmu.legacy) {
1228 /* Take the GMU out of its special boot mode */
1229 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1230 }
1231
1232 return ret;
1233 }
1234
a6xx_hw_init(struct msm_gpu * gpu)1235 static int a6xx_hw_init(struct msm_gpu *gpu)
1236 {
1237 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1238 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1239 int ret;
1240
1241 mutex_lock(&a6xx_gpu->gmu.lock);
1242 ret = hw_init(gpu);
1243 mutex_unlock(&a6xx_gpu->gmu.lock);
1244
1245 return ret;
1246 }
1247
a6xx_dump(struct msm_gpu * gpu)1248 static void a6xx_dump(struct msm_gpu *gpu)
1249 {
1250 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n",
1251 gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1252 adreno_dump(gpu);
1253 }
1254
1255 #define VBIF_RESET_ACK_TIMEOUT 100
1256 #define VBIF_RESET_ACK_MASK 0x00f0
1257
a6xx_recover(struct msm_gpu * gpu)1258 static void a6xx_recover(struct msm_gpu *gpu)
1259 {
1260 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1261 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1262 int i, active_submits;
1263
1264 adreno_dump_info(gpu);
1265
1266 for (i = 0; i < 8; i++)
1267 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1268 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1269
1270 if (hang_debug)
1271 a6xx_dump(gpu);
1272
1273 /*
1274 * To handle recovery specific sequences during the rpm suspend we are
1275 * about to trigger
1276 */
1277 a6xx_gpu->hung = true;
1278
1279 /* Halt SQE first */
1280 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3);
1281
1282 /*
1283 * Turn off keep alive that might have been enabled by the hang
1284 * interrupt
1285 */
1286 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1287
1288 pm_runtime_dont_use_autosuspend(&gpu->pdev->dev);
1289
1290 /* active_submit won't change until we make a submission */
1291 mutex_lock(&gpu->active_lock);
1292 active_submits = gpu->active_submits;
1293
1294 /*
1295 * Temporarily clear active_submits count to silence a WARN() in the
1296 * runtime suspend cb
1297 */
1298 gpu->active_submits = 0;
1299
1300 /* Drop the rpm refcount from active submits */
1301 if (active_submits)
1302 pm_runtime_put(&gpu->pdev->dev);
1303
1304 /* And the final one from recover worker */
1305 pm_runtime_put_sync(&gpu->pdev->dev);
1306
1307 /* Call into gpucc driver to poll for cx gdsc collapse */
1308 reset_control_reset(gpu->cx_collapse);
1309
1310 pm_runtime_use_autosuspend(&gpu->pdev->dev);
1311
1312 if (active_submits)
1313 pm_runtime_get(&gpu->pdev->dev);
1314
1315 pm_runtime_get_sync(&gpu->pdev->dev);
1316
1317 gpu->active_submits = active_submits;
1318 mutex_unlock(&gpu->active_lock);
1319
1320 msm_gpu_hw_init(gpu);
1321 a6xx_gpu->hung = false;
1322 }
1323
a6xx_uche_fault_block(struct msm_gpu * gpu,u32 mid)1324 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1325 {
1326 static const char *uche_clients[7] = {
1327 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1328 };
1329 u32 val;
1330
1331 if (mid < 1 || mid > 3)
1332 return "UNKNOWN";
1333
1334 /*
1335 * The source of the data depends on the mid ID read from FSYNR1.
1336 * and the client ID read from the UCHE block
1337 */
1338 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1339
1340 /* mid = 3 is most precise and refers to only one block per client */
1341 if (mid == 3)
1342 return uche_clients[val & 7];
1343
1344 /* For mid=2 the source is TP or VFD except when the client id is 0 */
1345 if (mid == 2)
1346 return ((val & 7) == 0) ? "TP" : "TP|VFD";
1347
1348 /* For mid=1 just return "UCHE" as a catchall for everything else */
1349 return "UCHE";
1350 }
1351
a6xx_fault_block(struct msm_gpu * gpu,u32 id)1352 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1353 {
1354 if (id == 0)
1355 return "CP";
1356 else if (id == 4)
1357 return "CCU";
1358 else if (id == 6)
1359 return "CDP Prefetch";
1360
1361 return a6xx_uche_fault_block(gpu, id);
1362 }
1363
1364 #define ARM_SMMU_FSR_TF BIT(1)
1365 #define ARM_SMMU_FSR_PF BIT(3)
1366 #define ARM_SMMU_FSR_EF BIT(4)
1367
a6xx_fault_handler(void * arg,unsigned long iova,int flags,void * data)1368 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1369 {
1370 struct msm_gpu *gpu = arg;
1371 struct adreno_smmu_fault_info *info = data;
1372 const char *type = "UNKNOWN";
1373 const char *block;
1374 bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1375
1376 /*
1377 * If we aren't going to be resuming later from fault_worker, then do
1378 * it now.
1379 */
1380 if (!do_devcoredump) {
1381 gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1382 }
1383
1384 /*
1385 * Print a default message if we couldn't get the data from the
1386 * adreno-smmu-priv
1387 */
1388 if (!info) {
1389 pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1390 iova, flags,
1391 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1392 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1393 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1394 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1395
1396 return 0;
1397 }
1398
1399 if (info->fsr & ARM_SMMU_FSR_TF)
1400 type = "TRANSLATION";
1401 else if (info->fsr & ARM_SMMU_FSR_PF)
1402 type = "PERMISSION";
1403 else if (info->fsr & ARM_SMMU_FSR_EF)
1404 type = "EXTERNAL";
1405
1406 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1407
1408 pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1409 info->ttbr0, iova,
1410 flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1411 type, block,
1412 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1413 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1414 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1415 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1416
1417 if (do_devcoredump) {
1418 /* Turn off the hangcheck timer to keep it from bothering us */
1419 del_timer(&gpu->hangcheck_timer);
1420
1421 gpu->fault_info.ttbr0 = info->ttbr0;
1422 gpu->fault_info.iova = iova;
1423 gpu->fault_info.flags = flags;
1424 gpu->fault_info.type = type;
1425 gpu->fault_info.block = block;
1426
1427 kthread_queue_work(gpu->worker, &gpu->fault_work);
1428 }
1429
1430 return 0;
1431 }
1432
a6xx_cp_hw_err_irq(struct msm_gpu * gpu)1433 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1434 {
1435 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1436
1437 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1438 u32 val;
1439
1440 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1441 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1442 dev_err_ratelimited(&gpu->pdev->dev,
1443 "CP | opcode error | possible opcode=0x%8.8X\n",
1444 val);
1445 }
1446
1447 if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1448 dev_err_ratelimited(&gpu->pdev->dev,
1449 "CP ucode error interrupt\n");
1450
1451 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1452 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1453 gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1454
1455 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1456 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1457
1458 dev_err_ratelimited(&gpu->pdev->dev,
1459 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1460 val & (1 << 20) ? "READ" : "WRITE",
1461 (val & 0x3ffff), val);
1462 }
1463
1464 if (status & A6XX_CP_INT_CP_AHB_ERROR)
1465 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1466
1467 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1468 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1469
1470 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1471 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1472
1473 }
1474
a6xx_fault_detect_irq(struct msm_gpu * gpu)1475 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1476 {
1477 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1478 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1479 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1480
1481 /*
1482 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1483 * but the fault handler will trigger the devcore dump, and we want
1484 * to otherwise resume normally rather than killing the submit, so
1485 * just bail.
1486 */
1487 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1488 return;
1489
1490 /*
1491 * Force the GPU to stay on until after we finish
1492 * collecting information
1493 */
1494 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1495
1496 DRM_DEV_ERROR(&gpu->pdev->dev,
1497 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1498 ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
1499 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1500 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1501 gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1502 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
1503 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1504 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
1505 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1506
1507 /* Turn off the hangcheck timer to keep it from bothering us */
1508 del_timer(&gpu->hangcheck_timer);
1509
1510 kthread_queue_work(gpu->worker, &gpu->recover_work);
1511 }
1512
a6xx_irq(struct msm_gpu * gpu)1513 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1514 {
1515 struct msm_drm_private *priv = gpu->dev->dev_private;
1516 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1517
1518 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1519
1520 if (priv->disable_err_irq)
1521 status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
1522
1523 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1524 a6xx_fault_detect_irq(gpu);
1525
1526 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1527 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1528
1529 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1530 a6xx_cp_hw_err_irq(gpu);
1531
1532 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1533 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1534
1535 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1536 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1537
1538 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1539 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1540
1541 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1542 msm_gpu_retire(gpu);
1543
1544 return IRQ_HANDLED;
1545 }
1546
a6xx_llc_rmw(struct a6xx_gpu * a6xx_gpu,u32 reg,u32 mask,u32 or)1547 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1548 {
1549 return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1550 }
1551
a6xx_llc_write(struct a6xx_gpu * a6xx_gpu,u32 reg,u32 value)1552 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1553 {
1554 msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1555 }
1556
a6xx_llc_deactivate(struct a6xx_gpu * a6xx_gpu)1557 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1558 {
1559 llcc_slice_deactivate(a6xx_gpu->llc_slice);
1560 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1561 }
1562
a6xx_llc_activate(struct a6xx_gpu * a6xx_gpu)1563 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1564 {
1565 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1566 struct msm_gpu *gpu = &adreno_gpu->base;
1567 u32 cntl1_regval = 0;
1568
1569 if (IS_ERR(a6xx_gpu->llc_mmio))
1570 return;
1571
1572 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1573 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1574
1575 gpu_scid &= 0x1f;
1576 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1577 (gpu_scid << 15) | (gpu_scid << 20);
1578
1579 /* On A660, the SCID programming for UCHE traffic is done in
1580 * A6XX_GBIF_SCACHE_CNTL0[14:10]
1581 */
1582 if (adreno_is_a660_family(adreno_gpu))
1583 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1584 (1 << 8), (gpu_scid << 10) | (1 << 8));
1585 }
1586
1587 /*
1588 * For targets with a MMU500, activate the slice but don't program the
1589 * register. The XBL will take care of that.
1590 */
1591 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1592 if (!a6xx_gpu->have_mmu500) {
1593 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1594
1595 gpuhtw_scid &= 0x1f;
1596 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1597 }
1598 }
1599
1600 if (!cntl1_regval)
1601 return;
1602
1603 /*
1604 * Program the slice IDs for the various GPU blocks and GPU MMU
1605 * pagetables
1606 */
1607 if (!a6xx_gpu->have_mmu500) {
1608 a6xx_llc_write(a6xx_gpu,
1609 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1610
1611 /*
1612 * Program cacheability overrides to not allocate cache
1613 * lines on a write miss
1614 */
1615 a6xx_llc_rmw(a6xx_gpu,
1616 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1617 return;
1618 }
1619
1620 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1621 }
1622
a6xx_llc_slices_destroy(struct a6xx_gpu * a6xx_gpu)1623 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1624 {
1625 llcc_slice_putd(a6xx_gpu->llc_slice);
1626 llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1627 }
1628
a6xx_llc_slices_init(struct platform_device * pdev,struct a6xx_gpu * a6xx_gpu)1629 static void a6xx_llc_slices_init(struct platform_device *pdev,
1630 struct a6xx_gpu *a6xx_gpu)
1631 {
1632 struct device_node *phandle;
1633
1634 /*
1635 * There is a different programming path for targets with an mmu500
1636 * attached, so detect if that is the case
1637 */
1638 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1639 a6xx_gpu->have_mmu500 = (phandle &&
1640 of_device_is_compatible(phandle, "arm,mmu-500"));
1641 of_node_put(phandle);
1642
1643 if (a6xx_gpu->have_mmu500)
1644 a6xx_gpu->llc_mmio = NULL;
1645 else
1646 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem");
1647
1648 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1649 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1650
1651 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1652 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1653 }
1654
a6xx_pm_resume(struct msm_gpu * gpu)1655 static int a6xx_pm_resume(struct msm_gpu *gpu)
1656 {
1657 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1658 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1659 int ret;
1660
1661 gpu->needs_hw_init = true;
1662
1663 trace_msm_gpu_resume(0);
1664
1665 mutex_lock(&a6xx_gpu->gmu.lock);
1666 ret = a6xx_gmu_resume(a6xx_gpu);
1667 mutex_unlock(&a6xx_gpu->gmu.lock);
1668 if (ret)
1669 return ret;
1670
1671 msm_devfreq_resume(gpu);
1672
1673 a6xx_llc_activate(a6xx_gpu);
1674
1675 return 0;
1676 }
1677
a6xx_pm_suspend(struct msm_gpu * gpu)1678 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1679 {
1680 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1681 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1682 int i, ret;
1683
1684 trace_msm_gpu_suspend(0);
1685
1686 a6xx_llc_deactivate(a6xx_gpu);
1687
1688 msm_devfreq_suspend(gpu);
1689
1690 mutex_lock(&a6xx_gpu->gmu.lock);
1691 ret = a6xx_gmu_stop(a6xx_gpu);
1692 mutex_unlock(&a6xx_gpu->gmu.lock);
1693 if (ret)
1694 return ret;
1695
1696 if (a6xx_gpu->shadow_bo)
1697 for (i = 0; i < gpu->nr_rings; i++)
1698 a6xx_gpu->shadow[i] = 0;
1699
1700 gpu->suspend_count++;
1701
1702 return 0;
1703 }
1704
a6xx_get_timestamp(struct msm_gpu * gpu,uint64_t * value)1705 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1706 {
1707 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1708 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1709
1710 mutex_lock(&a6xx_gpu->gmu.lock);
1711
1712 /* Force the GPU power on so we can read this register */
1713 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1714
1715 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO);
1716
1717 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1718
1719 mutex_unlock(&a6xx_gpu->gmu.lock);
1720
1721 return 0;
1722 }
1723
a6xx_active_ring(struct msm_gpu * gpu)1724 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1725 {
1726 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1727 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1728
1729 return a6xx_gpu->cur_ring;
1730 }
1731
a6xx_destroy(struct msm_gpu * gpu)1732 static void a6xx_destroy(struct msm_gpu *gpu)
1733 {
1734 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1735 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1736
1737 if (a6xx_gpu->sqe_bo) {
1738 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1739 drm_gem_object_put(a6xx_gpu->sqe_bo);
1740 }
1741
1742 if (a6xx_gpu->shadow_bo) {
1743 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1744 drm_gem_object_put(a6xx_gpu->shadow_bo);
1745 }
1746
1747 a6xx_llc_slices_destroy(a6xx_gpu);
1748
1749 a6xx_gmu_remove(a6xx_gpu);
1750
1751 adreno_gpu_cleanup(adreno_gpu);
1752
1753 kfree(a6xx_gpu);
1754 }
1755
a6xx_gpu_busy(struct msm_gpu * gpu,unsigned long * out_sample_rate)1756 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
1757 {
1758 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1759 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1760 u64 busy_cycles;
1761
1762 /* 19.2MHz */
1763 *out_sample_rate = 19200000;
1764
1765 busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1766 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1767 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1768
1769 return busy_cycles;
1770 }
1771
a6xx_gpu_set_freq(struct msm_gpu * gpu,struct dev_pm_opp * opp,bool suspended)1772 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
1773 bool suspended)
1774 {
1775 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1776 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1777
1778 mutex_lock(&a6xx_gpu->gmu.lock);
1779 a6xx_gmu_set_freq(gpu, opp, suspended);
1780 mutex_unlock(&a6xx_gpu->gmu.lock);
1781 }
1782
1783 static struct msm_gem_address_space *
a6xx_create_address_space(struct msm_gpu * gpu,struct platform_device * pdev)1784 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1785 {
1786 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1787 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1788 struct iommu_domain *iommu;
1789 struct msm_mmu *mmu;
1790 struct msm_gem_address_space *aspace;
1791 u64 start, size;
1792
1793 iommu = iommu_domain_alloc(&platform_bus_type);
1794 if (!iommu)
1795 return NULL;
1796
1797 /*
1798 * This allows GPU to set the bus attributes required to use system
1799 * cache on behalf of the iommu page table walker.
1800 */
1801 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1802 adreno_set_llc_attributes(iommu);
1803
1804 mmu = msm_iommu_new(&pdev->dev, iommu);
1805 if (IS_ERR(mmu)) {
1806 iommu_domain_free(iommu);
1807 return ERR_CAST(mmu);
1808 }
1809
1810 /*
1811 * Use the aperture start or SZ_16M, whichever is greater. This will
1812 * ensure that we align with the allocated pagetable range while still
1813 * allowing room in the lower 32 bits for GMEM and whatnot
1814 */
1815 start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1816 size = iommu->geometry.aperture_end - start + 1;
1817
1818 aspace = msm_gem_address_space_create(mmu, "gpu",
1819 start & GENMASK_ULL(48, 0), size);
1820
1821 if (IS_ERR(aspace) && !IS_ERR(mmu))
1822 mmu->funcs->destroy(mmu);
1823
1824 return aspace;
1825 }
1826
1827 static struct msm_gem_address_space *
a6xx_create_private_address_space(struct msm_gpu * gpu)1828 a6xx_create_private_address_space(struct msm_gpu *gpu)
1829 {
1830 struct msm_mmu *mmu;
1831
1832 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1833
1834 if (IS_ERR(mmu))
1835 return ERR_CAST(mmu);
1836
1837 return msm_gem_address_space_create(mmu,
1838 "gpu", 0x100000000ULL,
1839 adreno_private_address_space_size(gpu));
1840 }
1841
a6xx_get_rptr(struct msm_gpu * gpu,struct msm_ringbuffer * ring)1842 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1843 {
1844 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1845 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1846
1847 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1848 return a6xx_gpu->shadow[ring->id];
1849
1850 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1851 }
1852
a6xx_progress(struct msm_gpu * gpu,struct msm_ringbuffer * ring)1853 static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1854 {
1855 struct msm_cp_state cp_state = {
1856 .ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
1857 .ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
1858 .ib1_rem = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1859 .ib2_rem = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE),
1860 };
1861 bool progress;
1862
1863 /*
1864 * Adjust the remaining data to account for what has already been
1865 * fetched from memory, but not yet consumed by the SQE.
1866 *
1867 * This is not *technically* correct, the amount buffered could
1868 * exceed the IB size due to hw prefetching ahead, but:
1869 *
1870 * (1) We aren't trying to find the exact position, just whether
1871 * progress has been made
1872 * (2) The CP_REG_TO_MEM at the end of a submit should be enough
1873 * to prevent prefetching into an unrelated submit. (And
1874 * either way, at some point the ROQ will be full.)
1875 */
1876 cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_CSQ_IB1_STAT) >> 16;
1877 cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_CSQ_IB2_STAT) >> 16;
1878
1879 progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state));
1880
1881 ring->last_cp_state = cp_state;
1882
1883 return progress;
1884 }
1885
a618_get_speed_bin(u32 fuse)1886 static u32 a618_get_speed_bin(u32 fuse)
1887 {
1888 if (fuse == 0)
1889 return 0;
1890 else if (fuse == 169)
1891 return 1;
1892 else if (fuse == 174)
1893 return 2;
1894
1895 return UINT_MAX;
1896 }
1897
a619_get_speed_bin(u32 fuse)1898 static u32 a619_get_speed_bin(u32 fuse)
1899 {
1900 if (fuse == 0)
1901 return 0;
1902 else if (fuse == 120)
1903 return 4;
1904 else if (fuse == 138)
1905 return 3;
1906 else if (fuse == 169)
1907 return 2;
1908 else if (fuse == 180)
1909 return 1;
1910
1911 return UINT_MAX;
1912 }
1913
adreno_7c3_get_speed_bin(u32 fuse)1914 static u32 adreno_7c3_get_speed_bin(u32 fuse)
1915 {
1916 if (fuse == 0)
1917 return 0;
1918 else if (fuse == 117)
1919 return 0;
1920 else if (fuse == 190)
1921 return 1;
1922
1923 return UINT_MAX;
1924 }
1925
fuse_to_supp_hw(struct device * dev,struct adreno_rev rev,u32 fuse)1926 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse)
1927 {
1928 u32 val = UINT_MAX;
1929
1930 if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev))
1931 val = a618_get_speed_bin(fuse);
1932
1933 if (adreno_cmp_rev(ADRENO_REV(6, 1, 9, ANY_ID), rev))
1934 val = a619_get_speed_bin(fuse);
1935
1936 if (adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), rev))
1937 val = adreno_7c3_get_speed_bin(fuse);
1938
1939 if (val == UINT_MAX) {
1940 DRM_DEV_ERROR(dev,
1941 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n",
1942 fuse);
1943 return UINT_MAX;
1944 }
1945
1946 return (1 << val);
1947 }
1948
a6xx_set_supported_hw(struct device * dev,struct adreno_rev rev)1949 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev)
1950 {
1951 u32 supp_hw;
1952 u32 speedbin;
1953 int ret;
1954
1955 ret = adreno_read_speedbin(dev, &speedbin);
1956 /*
1957 * -ENOENT means that the platform doesn't support speedbin which is
1958 * fine
1959 */
1960 if (ret == -ENOENT) {
1961 return 0;
1962 } else if (ret) {
1963 dev_err_probe(dev, ret,
1964 "failed to read speed-bin. Some OPPs may not be supported by hardware\n");
1965 return ret;
1966 }
1967
1968 supp_hw = fuse_to_supp_hw(dev, rev, speedbin);
1969
1970 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1971 if (ret)
1972 return ret;
1973
1974 return 0;
1975 }
1976
1977 static const struct adreno_gpu_funcs funcs = {
1978 .base = {
1979 .get_param = adreno_get_param,
1980 .set_param = adreno_set_param,
1981 .hw_init = a6xx_hw_init,
1982 .pm_suspend = a6xx_pm_suspend,
1983 .pm_resume = a6xx_pm_resume,
1984 .recover = a6xx_recover,
1985 .submit = a6xx_submit,
1986 .active_ring = a6xx_active_ring,
1987 .irq = a6xx_irq,
1988 .destroy = a6xx_destroy,
1989 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1990 .show = a6xx_show,
1991 #endif
1992 .gpu_busy = a6xx_gpu_busy,
1993 .gpu_get_freq = a6xx_gmu_get_freq,
1994 .gpu_set_freq = a6xx_gpu_set_freq,
1995 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1996 .gpu_state_get = a6xx_gpu_state_get,
1997 .gpu_state_put = a6xx_gpu_state_put,
1998 #endif
1999 .create_address_space = a6xx_create_address_space,
2000 .create_private_address_space = a6xx_create_private_address_space,
2001 .get_rptr = a6xx_get_rptr,
2002 .progress = a6xx_progress,
2003 },
2004 .get_timestamp = a6xx_get_timestamp,
2005 };
2006
a6xx_gpu_init(struct drm_device * dev)2007 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
2008 {
2009 struct msm_drm_private *priv = dev->dev_private;
2010 struct platform_device *pdev = priv->gpu_pdev;
2011 struct adreno_platform_config *config = pdev->dev.platform_data;
2012 const struct adreno_info *info;
2013 struct device_node *node;
2014 struct a6xx_gpu *a6xx_gpu;
2015 struct adreno_gpu *adreno_gpu;
2016 struct msm_gpu *gpu;
2017 int ret;
2018
2019 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
2020 if (!a6xx_gpu)
2021 return ERR_PTR(-ENOMEM);
2022
2023 adreno_gpu = &a6xx_gpu->base;
2024 gpu = &adreno_gpu->base;
2025
2026 adreno_gpu->registers = NULL;
2027
2028 /*
2029 * We need to know the platform type before calling into adreno_gpu_init
2030 * so that the hw_apriv flag can be correctly set. Snoop into the info
2031 * and grab the revision number
2032 */
2033 info = adreno_info(config->rev);
2034
2035 if (info && (info->revn == 650 || info->revn == 660 ||
2036 adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev)))
2037 adreno_gpu->base.hw_apriv = true;
2038
2039 /*
2040 * For now only clamp to idle freq for devices where this is known not
2041 * to cause power supply issues:
2042 */
2043 if (info && (info->revn == 618))
2044 gpu->clamp_to_idle = true;
2045
2046 a6xx_llc_slices_init(pdev, a6xx_gpu);
2047
2048 ret = a6xx_set_supported_hw(&pdev->dev, config->rev);
2049 if (ret) {
2050 a6xx_destroy(&(a6xx_gpu->base.base));
2051 return ERR_PTR(ret);
2052 }
2053
2054 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
2055 if (ret) {
2056 a6xx_destroy(&(a6xx_gpu->base.base));
2057 return ERR_PTR(ret);
2058 }
2059
2060 /* Check if there is a GMU phandle and set it up */
2061 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
2062
2063 /* FIXME: How do we gracefully handle this? */
2064 BUG_ON(!node);
2065
2066 ret = a6xx_gmu_init(a6xx_gpu, node);
2067 of_node_put(node);
2068 if (ret) {
2069 a6xx_destroy(&(a6xx_gpu->base.base));
2070 return ERR_PTR(ret);
2071 }
2072
2073 if (gpu->aspace)
2074 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
2075 a6xx_fault_handler);
2076
2077 return gpu;
2078 }
2079