1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24
25 #include "internal.h"
26
27 extern struct acpi_device *acpi_root;
28
29 #define ACPI_BUS_CLASS "system_bus"
30 #define ACPI_BUS_HID "LNXSYBUS"
31 #define ACPI_BUS_DEVICE_NAME "System Bus"
32
33 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
34
35 static const char *dummy_hid = "device";
36
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45
46 /*
47 * The UART device described by the SPCR table is the only object which needs
48 * special-casing. Everything else is covered by ACPI namespace paths in STAO
49 * table.
50 */
51 static u64 spcr_uart_addr;
52
acpi_scan_lock_acquire(void)53 void acpi_scan_lock_acquire(void)
54 {
55 mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
acpi_scan_lock_release(void)59 void acpi_scan_lock_release(void)
60 {
61 mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
acpi_lock_hp_context(void)65 void acpi_lock_hp_context(void)
66 {
67 mutex_lock(&acpi_hp_context_lock);
68 }
69
acpi_unlock_hp_context(void)70 void acpi_unlock_hp_context(void)
71 {
72 mutex_unlock(&acpi_hp_context_lock);
73 }
74
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,int (* notify)(struct acpi_device *,u32),void (* uevent)(struct acpi_device *,u32))75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 struct acpi_hotplug_context *hp,
77 int (*notify)(struct acpi_device *, u32),
78 void (*uevent)(struct acpi_device *, u32))
79 {
80 acpi_lock_hp_context();
81 hp->notify = notify;
82 hp->uevent = uevent;
83 acpi_set_hp_context(adev, hp);
84 acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
acpi_scan_add_handler(struct acpi_scan_handler * handler)88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 if (!handler)
91 return -EINVAL;
92
93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 return 0;
95 }
96
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 const char *hotplug_profile_name)
99 {
100 int error;
101
102 error = acpi_scan_add_handler(handler);
103 if (error)
104 return error;
105
106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 return 0;
108 }
109
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 struct acpi_device_physical_node *pn;
113 bool offline = true;
114 char *envp[] = { "EVENT=offline", NULL };
115
116 /*
117 * acpi_container_offline() calls this for all of the container's
118 * children under the container's physical_node_lock lock.
119 */
120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122 list_for_each_entry(pn, &adev->physical_node_list, node)
123 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 if (uevent)
125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127 offline = false;
128 break;
129 }
130
131 mutex_unlock(&adev->physical_node_lock);
132 return offline;
133 }
134
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 void **ret_p)
137 {
138 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
139 struct acpi_device_physical_node *pn;
140 bool second_pass = (bool)data;
141 acpi_status status = AE_OK;
142
143 if (!device)
144 return AE_OK;
145
146 if (device->handler && !device->handler->hotplug.enabled) {
147 *ret_p = &device->dev;
148 return AE_SUPPORT;
149 }
150
151 mutex_lock(&device->physical_node_lock);
152
153 list_for_each_entry(pn, &device->physical_node_list, node) {
154 int ret;
155
156 if (second_pass) {
157 /* Skip devices offlined by the first pass. */
158 if (pn->put_online)
159 continue;
160 } else {
161 pn->put_online = false;
162 }
163 ret = device_offline(pn->dev);
164 if (ret >= 0) {
165 pn->put_online = !ret;
166 } else {
167 *ret_p = pn->dev;
168 if (second_pass) {
169 status = AE_ERROR;
170 break;
171 }
172 }
173 }
174
175 mutex_unlock(&device->physical_node_lock);
176
177 return status;
178 }
179
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 void **ret_p)
182 {
183 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
184 struct acpi_device_physical_node *pn;
185
186 if (!device)
187 return AE_OK;
188
189 mutex_lock(&device->physical_node_lock);
190
191 list_for_each_entry(pn, &device->physical_node_list, node)
192 if (pn->put_online) {
193 device_online(pn->dev);
194 pn->put_online = false;
195 }
196
197 mutex_unlock(&device->physical_node_lock);
198
199 return AE_OK;
200 }
201
acpi_scan_try_to_offline(struct acpi_device * device)202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 acpi_handle handle = device->handle;
205 struct device *errdev = NULL;
206 acpi_status status;
207
208 /*
209 * Carry out two passes here and ignore errors in the first pass,
210 * because if the devices in question are memory blocks and
211 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 * that the other blocks depend on, but it is not known in advance which
213 * block holds them.
214 *
215 * If the first pass is successful, the second one isn't needed, though.
216 */
217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 NULL, acpi_bus_offline, (void *)false,
219 (void **)&errdev);
220 if (status == AE_SUPPORT) {
221 dev_warn(errdev, "Offline disabled.\n");
222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 acpi_bus_online, NULL, NULL, NULL);
224 return -EPERM;
225 }
226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 if (errdev) {
228 errdev = NULL;
229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 NULL, acpi_bus_offline, (void *)true,
231 (void **)&errdev);
232 if (!errdev)
233 acpi_bus_offline(handle, 0, (void *)true,
234 (void **)&errdev);
235
236 if (errdev) {
237 dev_warn(errdev, "Offline failed.\n");
238 acpi_bus_online(handle, 0, NULL, NULL);
239 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 ACPI_UINT32_MAX, acpi_bus_online,
241 NULL, NULL, NULL);
242 return -EBUSY;
243 }
244 }
245 return 0;
246 }
247
acpi_scan_hot_remove(struct acpi_device * device)248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 acpi_handle handle = device->handle;
251 unsigned long long sta;
252 acpi_status status;
253
254 if (device->handler && device->handler->hotplug.demand_offline) {
255 if (!acpi_scan_is_offline(device, true))
256 return -EBUSY;
257 } else {
258 int error = acpi_scan_try_to_offline(device);
259 if (error)
260 return error;
261 }
262
263 acpi_handle_debug(handle, "Ejecting\n");
264
265 acpi_bus_trim(device);
266
267 acpi_evaluate_lck(handle, 0);
268 /*
269 * TBD: _EJD support.
270 */
271 status = acpi_evaluate_ej0(handle);
272 if (status == AE_NOT_FOUND)
273 return -ENODEV;
274 else if (ACPI_FAILURE(status))
275 return -EIO;
276
277 /*
278 * Verify if eject was indeed successful. If not, log an error
279 * message. No need to call _OST since _EJ0 call was made OK.
280 */
281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 if (ACPI_FAILURE(status)) {
283 acpi_handle_warn(handle,
284 "Status check after eject failed (0x%x)\n", status);
285 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 acpi_handle_warn(handle,
287 "Eject incomplete - status 0x%llx\n", sta);
288 }
289
290 return 0;
291 }
292
acpi_scan_device_not_present(struct acpi_device * adev)293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 if (!acpi_device_enumerated(adev)) {
296 dev_warn(&adev->dev, "Still not present\n");
297 return -EALREADY;
298 }
299 acpi_bus_trim(adev);
300 return 0;
301 }
302
acpi_scan_device_check(struct acpi_device * adev)303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 int error;
306
307 acpi_bus_get_status(adev);
308 if (adev->status.present || adev->status.functional) {
309 /*
310 * This function is only called for device objects for which
311 * matching scan handlers exist. The only situation in which
312 * the scan handler is not attached to this device object yet
313 * is when the device has just appeared (either it wasn't
314 * present at all before or it was removed and then added
315 * again).
316 */
317 if (adev->handler) {
318 dev_warn(&adev->dev, "Already enumerated\n");
319 return -EALREADY;
320 }
321 error = acpi_bus_scan(adev->handle);
322 if (error) {
323 dev_warn(&adev->dev, "Namespace scan failure\n");
324 return error;
325 }
326 if (!adev->handler) {
327 dev_warn(&adev->dev, "Enumeration failure\n");
328 error = -ENODEV;
329 }
330 } else {
331 error = acpi_scan_device_not_present(adev);
332 }
333 return error;
334 }
335
acpi_scan_bus_check(struct acpi_device * adev,void * not_used)336 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
337 {
338 struct acpi_scan_handler *handler = adev->handler;
339 int error;
340
341 acpi_bus_get_status(adev);
342 if (!(adev->status.present || adev->status.functional)) {
343 acpi_scan_device_not_present(adev);
344 return 0;
345 }
346 if (handler && handler->hotplug.scan_dependent)
347 return handler->hotplug.scan_dependent(adev);
348
349 error = acpi_bus_scan(adev->handle);
350 if (error) {
351 dev_warn(&adev->dev, "Namespace scan failure\n");
352 return error;
353 }
354 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
355 }
356
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)357 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
358 {
359 switch (type) {
360 case ACPI_NOTIFY_BUS_CHECK:
361 return acpi_scan_bus_check(adev, NULL);
362 case ACPI_NOTIFY_DEVICE_CHECK:
363 return acpi_scan_device_check(adev);
364 case ACPI_NOTIFY_EJECT_REQUEST:
365 case ACPI_OST_EC_OSPM_EJECT:
366 if (adev->handler && !adev->handler->hotplug.enabled) {
367 dev_info(&adev->dev, "Eject disabled\n");
368 return -EPERM;
369 }
370 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
371 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
372 return acpi_scan_hot_remove(adev);
373 }
374 return -EINVAL;
375 }
376
acpi_device_hotplug(struct acpi_device * adev,u32 src)377 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
378 {
379 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
380 int error = -ENODEV;
381
382 lock_device_hotplug();
383 mutex_lock(&acpi_scan_lock);
384
385 /*
386 * The device object's ACPI handle cannot become invalid as long as we
387 * are holding acpi_scan_lock, but it might have become invalid before
388 * that lock was acquired.
389 */
390 if (adev->handle == INVALID_ACPI_HANDLE)
391 goto err_out;
392
393 if (adev->flags.is_dock_station) {
394 error = dock_notify(adev, src);
395 } else if (adev->flags.hotplug_notify) {
396 error = acpi_generic_hotplug_event(adev, src);
397 } else {
398 int (*notify)(struct acpi_device *, u32);
399
400 acpi_lock_hp_context();
401 notify = adev->hp ? adev->hp->notify : NULL;
402 acpi_unlock_hp_context();
403 /*
404 * There may be additional notify handlers for device objects
405 * without the .event() callback, so ignore them here.
406 */
407 if (notify)
408 error = notify(adev, src);
409 else
410 goto out;
411 }
412 switch (error) {
413 case 0:
414 ost_code = ACPI_OST_SC_SUCCESS;
415 break;
416 case -EPERM:
417 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
418 break;
419 case -EBUSY:
420 ost_code = ACPI_OST_SC_DEVICE_BUSY;
421 break;
422 default:
423 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
424 break;
425 }
426
427 err_out:
428 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
429
430 out:
431 acpi_put_acpi_dev(adev);
432 mutex_unlock(&acpi_scan_lock);
433 unlock_device_hotplug();
434 }
435
acpi_free_power_resources_lists(struct acpi_device * device)436 static void acpi_free_power_resources_lists(struct acpi_device *device)
437 {
438 int i;
439
440 if (device->wakeup.flags.valid)
441 acpi_power_resources_list_free(&device->wakeup.resources);
442
443 if (!device->power.flags.power_resources)
444 return;
445
446 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
447 struct acpi_device_power_state *ps = &device->power.states[i];
448 acpi_power_resources_list_free(&ps->resources);
449 }
450 }
451
acpi_device_release(struct device * dev)452 static void acpi_device_release(struct device *dev)
453 {
454 struct acpi_device *acpi_dev = to_acpi_device(dev);
455
456 acpi_free_properties(acpi_dev);
457 acpi_free_pnp_ids(&acpi_dev->pnp);
458 acpi_free_power_resources_lists(acpi_dev);
459 kfree(acpi_dev);
460 }
461
acpi_device_del(struct acpi_device * device)462 static void acpi_device_del(struct acpi_device *device)
463 {
464 struct acpi_device_bus_id *acpi_device_bus_id;
465
466 mutex_lock(&acpi_device_lock);
467
468 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
469 if (!strcmp(acpi_device_bus_id->bus_id,
470 acpi_device_hid(device))) {
471 ida_free(&acpi_device_bus_id->instance_ida,
472 device->pnp.instance_no);
473 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
474 list_del(&acpi_device_bus_id->node);
475 kfree_const(acpi_device_bus_id->bus_id);
476 kfree(acpi_device_bus_id);
477 }
478 break;
479 }
480
481 list_del(&device->wakeup_list);
482
483 mutex_unlock(&acpi_device_lock);
484
485 acpi_power_add_remove_device(device, false);
486 acpi_device_remove_files(device);
487 if (device->remove)
488 device->remove(device);
489
490 device_del(&device->dev);
491 }
492
493 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
494
495 static LIST_HEAD(acpi_device_del_list);
496 static DEFINE_MUTEX(acpi_device_del_lock);
497
acpi_device_del_work_fn(struct work_struct * work_not_used)498 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
499 {
500 for (;;) {
501 struct acpi_device *adev;
502
503 mutex_lock(&acpi_device_del_lock);
504
505 if (list_empty(&acpi_device_del_list)) {
506 mutex_unlock(&acpi_device_del_lock);
507 break;
508 }
509 adev = list_first_entry(&acpi_device_del_list,
510 struct acpi_device, del_list);
511 list_del(&adev->del_list);
512
513 mutex_unlock(&acpi_device_del_lock);
514
515 blocking_notifier_call_chain(&acpi_reconfig_chain,
516 ACPI_RECONFIG_DEVICE_REMOVE, adev);
517
518 acpi_device_del(adev);
519 /*
520 * Drop references to all power resources that might have been
521 * used by the device.
522 */
523 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
524 acpi_dev_put(adev);
525 }
526 }
527
528 /**
529 * acpi_scan_drop_device - Drop an ACPI device object.
530 * @handle: Handle of an ACPI namespace node, not used.
531 * @context: Address of the ACPI device object to drop.
532 *
533 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
534 * namespace node the device object pointed to by @context is attached to.
535 *
536 * The unregistration is carried out asynchronously to avoid running
537 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
538 * ensure the correct ordering (the device objects must be unregistered in the
539 * same order in which the corresponding namespace nodes are deleted).
540 */
acpi_scan_drop_device(acpi_handle handle,void * context)541 static void acpi_scan_drop_device(acpi_handle handle, void *context)
542 {
543 static DECLARE_WORK(work, acpi_device_del_work_fn);
544 struct acpi_device *adev = context;
545
546 mutex_lock(&acpi_device_del_lock);
547
548 /*
549 * Use the ACPI hotplug workqueue which is ordered, so this work item
550 * won't run after any hotplug work items submitted subsequently. That
551 * prevents attempts to register device objects identical to those being
552 * deleted from happening concurrently (such attempts result from
553 * hotplug events handled via the ACPI hotplug workqueue). It also will
554 * run after all of the work items submitted previously, which helps
555 * those work items to ensure that they are not accessing stale device
556 * objects.
557 */
558 if (list_empty(&acpi_device_del_list))
559 acpi_queue_hotplug_work(&work);
560
561 list_add_tail(&adev->del_list, &acpi_device_del_list);
562 /* Make acpi_ns_validate_handle() return NULL for this handle. */
563 adev->handle = INVALID_ACPI_HANDLE;
564
565 mutex_unlock(&acpi_device_del_lock);
566 }
567
handle_to_device(acpi_handle handle,void (* callback)(void *))568 static struct acpi_device *handle_to_device(acpi_handle handle,
569 void (*callback)(void *))
570 {
571 struct acpi_device *adev = NULL;
572 acpi_status status;
573
574 status = acpi_get_data_full(handle, acpi_scan_drop_device,
575 (void **)&adev, callback);
576 if (ACPI_FAILURE(status) || !adev) {
577 acpi_handle_debug(handle, "No context!\n");
578 return NULL;
579 }
580 return adev;
581 }
582
583 /**
584 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
585 * @handle: ACPI handle associated with the requested ACPI device object.
586 *
587 * Return a pointer to the ACPI device object associated with @handle, if
588 * present, or NULL otherwise.
589 */
acpi_fetch_acpi_dev(acpi_handle handle)590 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
591 {
592 return handle_to_device(handle, NULL);
593 }
594 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
595
get_acpi_device(void * dev)596 static void get_acpi_device(void *dev)
597 {
598 acpi_dev_get(dev);
599 }
600
601 /**
602 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
603 * @handle: ACPI handle associated with the requested ACPI device object.
604 *
605 * Return a pointer to the ACPI device object associated with @handle and bump
606 * up that object's reference counter (under the ACPI Namespace lock), if
607 * present, or return NULL otherwise.
608 *
609 * The ACPI device object reference acquired by this function needs to be
610 * dropped via acpi_dev_put().
611 */
acpi_get_acpi_dev(acpi_handle handle)612 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
613 {
614 return handle_to_device(handle, get_acpi_device);
615 }
616 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
617
acpi_device_bus_id_match(const char * dev_id)618 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
619 {
620 struct acpi_device_bus_id *acpi_device_bus_id;
621
622 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
623 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
624 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
625 return acpi_device_bus_id;
626 }
627 return NULL;
628 }
629
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)630 static int acpi_device_set_name(struct acpi_device *device,
631 struct acpi_device_bus_id *acpi_device_bus_id)
632 {
633 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
634 int result;
635
636 result = ida_alloc(instance_ida, GFP_KERNEL);
637 if (result < 0)
638 return result;
639
640 device->pnp.instance_no = result;
641 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
642 return 0;
643 }
644
acpi_tie_acpi_dev(struct acpi_device * adev)645 int acpi_tie_acpi_dev(struct acpi_device *adev)
646 {
647 acpi_handle handle = adev->handle;
648 acpi_status status;
649
650 if (!handle)
651 return 0;
652
653 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
654 if (ACPI_FAILURE(status)) {
655 acpi_handle_err(handle, "Unable to attach device data\n");
656 return -ENODEV;
657 }
658
659 return 0;
660 }
661
acpi_store_pld_crc(struct acpi_device * adev)662 static void acpi_store_pld_crc(struct acpi_device *adev)
663 {
664 struct acpi_pld_info *pld;
665 acpi_status status;
666
667 status = acpi_get_physical_device_location(adev->handle, &pld);
668 if (ACPI_FAILURE(status))
669 return;
670
671 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
672 ACPI_FREE(pld);
673 }
674
acpi_device_add(struct acpi_device * device)675 int acpi_device_add(struct acpi_device *device)
676 {
677 struct acpi_device_bus_id *acpi_device_bus_id;
678 int result;
679
680 /*
681 * Linkage
682 * -------
683 * Link this device to its parent and siblings.
684 */
685 INIT_LIST_HEAD(&device->wakeup_list);
686 INIT_LIST_HEAD(&device->physical_node_list);
687 INIT_LIST_HEAD(&device->del_list);
688 mutex_init(&device->physical_node_lock);
689
690 mutex_lock(&acpi_device_lock);
691
692 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
693 if (acpi_device_bus_id) {
694 result = acpi_device_set_name(device, acpi_device_bus_id);
695 if (result)
696 goto err_unlock;
697 } else {
698 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
699 GFP_KERNEL);
700 if (!acpi_device_bus_id) {
701 result = -ENOMEM;
702 goto err_unlock;
703 }
704 acpi_device_bus_id->bus_id =
705 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
706 if (!acpi_device_bus_id->bus_id) {
707 kfree(acpi_device_bus_id);
708 result = -ENOMEM;
709 goto err_unlock;
710 }
711
712 ida_init(&acpi_device_bus_id->instance_ida);
713
714 result = acpi_device_set_name(device, acpi_device_bus_id);
715 if (result) {
716 kfree_const(acpi_device_bus_id->bus_id);
717 kfree(acpi_device_bus_id);
718 goto err_unlock;
719 }
720
721 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
722 }
723
724 if (device->wakeup.flags.valid)
725 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
726
727 acpi_store_pld_crc(device);
728
729 mutex_unlock(&acpi_device_lock);
730
731 result = device_add(&device->dev);
732 if (result) {
733 dev_err(&device->dev, "Error registering device\n");
734 goto err;
735 }
736
737 result = acpi_device_setup_files(device);
738 if (result)
739 pr_err("Error creating sysfs interface for device %s\n",
740 dev_name(&device->dev));
741
742 return 0;
743
744 err:
745 mutex_lock(&acpi_device_lock);
746
747 list_del(&device->wakeup_list);
748
749 err_unlock:
750 mutex_unlock(&acpi_device_lock);
751
752 acpi_detach_data(device->handle, acpi_scan_drop_device);
753
754 return result;
755 }
756
757 /* --------------------------------------------------------------------------
758 Device Enumeration
759 -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])760 static bool acpi_info_matches_ids(struct acpi_device_info *info,
761 const char * const ids[])
762 {
763 struct acpi_pnp_device_id_list *cid_list = NULL;
764 int i, index;
765
766 if (!(info->valid & ACPI_VALID_HID))
767 return false;
768
769 index = match_string(ids, -1, info->hardware_id.string);
770 if (index >= 0)
771 return true;
772
773 if (info->valid & ACPI_VALID_CID)
774 cid_list = &info->compatible_id_list;
775
776 if (!cid_list)
777 return false;
778
779 for (i = 0; i < cid_list->count; i++) {
780 index = match_string(ids, -1, cid_list->ids[i].string);
781 if (index >= 0)
782 return true;
783 }
784
785 return false;
786 }
787
788 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
789 static const char * const acpi_ignore_dep_ids[] = {
790 "PNP0D80", /* Windows-compatible System Power Management Controller */
791 "INT33BD", /* Intel Baytrail Mailbox Device */
792 "LATT2021", /* Lattice FW Update Client Driver */
793 NULL
794 };
795
796 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
797 static const char * const acpi_honor_dep_ids[] = {
798 "INT3472", /* Camera sensor PMIC / clk and regulator info */
799 NULL
800 };
801
acpi_find_parent_acpi_dev(acpi_handle handle)802 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
803 {
804 struct acpi_device *adev;
805
806 /*
807 * Fixed hardware devices do not appear in the namespace and do not
808 * have handles, but we fabricate acpi_devices for them, so we have
809 * to deal with them specially.
810 */
811 if (!handle)
812 return acpi_root;
813
814 do {
815 acpi_status status;
816
817 status = acpi_get_parent(handle, &handle);
818 if (ACPI_FAILURE(status)) {
819 if (status != AE_NULL_ENTRY)
820 return acpi_root;
821
822 return NULL;
823 }
824 adev = acpi_fetch_acpi_dev(handle);
825 } while (!adev);
826 return adev;
827 }
828
829 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)830 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
831 {
832 acpi_status status;
833 acpi_handle tmp;
834 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
835 union acpi_object *obj;
836
837 status = acpi_get_handle(handle, "_EJD", &tmp);
838 if (ACPI_FAILURE(status))
839 return status;
840
841 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
842 if (ACPI_SUCCESS(status)) {
843 obj = buffer.pointer;
844 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
845 ejd);
846 kfree(buffer.pointer);
847 }
848 return status;
849 }
850 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
851
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)852 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
853 {
854 acpi_handle handle = dev->handle;
855 struct acpi_device_wakeup *wakeup = &dev->wakeup;
856 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
857 union acpi_object *package = NULL;
858 union acpi_object *element = NULL;
859 acpi_status status;
860 int err = -ENODATA;
861
862 INIT_LIST_HEAD(&wakeup->resources);
863
864 /* _PRW */
865 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
866 if (ACPI_FAILURE(status)) {
867 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
868 acpi_format_exception(status));
869 return err;
870 }
871
872 package = (union acpi_object *)buffer.pointer;
873
874 if (!package || package->package.count < 2)
875 goto out;
876
877 element = &(package->package.elements[0]);
878 if (!element)
879 goto out;
880
881 if (element->type == ACPI_TYPE_PACKAGE) {
882 if ((element->package.count < 2) ||
883 (element->package.elements[0].type !=
884 ACPI_TYPE_LOCAL_REFERENCE)
885 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
886 goto out;
887
888 wakeup->gpe_device =
889 element->package.elements[0].reference.handle;
890 wakeup->gpe_number =
891 (u32) element->package.elements[1].integer.value;
892 } else if (element->type == ACPI_TYPE_INTEGER) {
893 wakeup->gpe_device = NULL;
894 wakeup->gpe_number = element->integer.value;
895 } else {
896 goto out;
897 }
898
899 element = &(package->package.elements[1]);
900 if (element->type != ACPI_TYPE_INTEGER)
901 goto out;
902
903 wakeup->sleep_state = element->integer.value;
904
905 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
906 if (err)
907 goto out;
908
909 if (!list_empty(&wakeup->resources)) {
910 int sleep_state;
911
912 err = acpi_power_wakeup_list_init(&wakeup->resources,
913 &sleep_state);
914 if (err) {
915 acpi_handle_warn(handle, "Retrieving current states "
916 "of wakeup power resources failed\n");
917 acpi_power_resources_list_free(&wakeup->resources);
918 goto out;
919 }
920 if (sleep_state < wakeup->sleep_state) {
921 acpi_handle_warn(handle, "Overriding _PRW sleep state "
922 "(S%d) by S%d from power resources\n",
923 (int)wakeup->sleep_state, sleep_state);
924 wakeup->sleep_state = sleep_state;
925 }
926 }
927
928 out:
929 kfree(buffer.pointer);
930 return err;
931 }
932
acpi_wakeup_gpe_init(struct acpi_device * device)933 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
934 {
935 static const struct acpi_device_id button_device_ids[] = {
936 {"PNP0C0C", 0}, /* Power button */
937 {"PNP0C0D", 0}, /* Lid */
938 {"PNP0C0E", 0}, /* Sleep button */
939 {"", 0},
940 };
941 struct acpi_device_wakeup *wakeup = &device->wakeup;
942 acpi_status status;
943
944 wakeup->flags.notifier_present = 0;
945
946 /* Power button, Lid switch always enable wakeup */
947 if (!acpi_match_device_ids(device, button_device_ids)) {
948 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
949 /* Do not use Lid/sleep button for S5 wakeup */
950 if (wakeup->sleep_state == ACPI_STATE_S5)
951 wakeup->sleep_state = ACPI_STATE_S4;
952 }
953 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
954 device_set_wakeup_capable(&device->dev, true);
955 return true;
956 }
957
958 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
959 wakeup->gpe_number);
960 return ACPI_SUCCESS(status);
961 }
962
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)963 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
964 {
965 int err;
966
967 /* Presence of _PRW indicates wake capable */
968 if (!acpi_has_method(device->handle, "_PRW"))
969 return;
970
971 err = acpi_bus_extract_wakeup_device_power_package(device);
972 if (err) {
973 dev_err(&device->dev, "Unable to extract wakeup power resources");
974 return;
975 }
976
977 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
978 device->wakeup.prepare_count = 0;
979 /*
980 * Call _PSW/_DSW object to disable its ability to wake the sleeping
981 * system for the ACPI device with the _PRW object.
982 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
983 * So it is necessary to call _DSW object first. Only when it is not
984 * present will the _PSW object used.
985 */
986 err = acpi_device_sleep_wake(device, 0, 0, 0);
987 if (err)
988 pr_debug("error in _DSW or _PSW evaluation\n");
989 }
990
acpi_bus_init_power_state(struct acpi_device * device,int state)991 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
992 {
993 struct acpi_device_power_state *ps = &device->power.states[state];
994 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
995 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
996 acpi_status status;
997
998 INIT_LIST_HEAD(&ps->resources);
999
1000 /* Evaluate "_PRx" to get referenced power resources */
1001 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1002 if (ACPI_SUCCESS(status)) {
1003 union acpi_object *package = buffer.pointer;
1004
1005 if (buffer.length && package
1006 && package->type == ACPI_TYPE_PACKAGE
1007 && package->package.count)
1008 acpi_extract_power_resources(package, 0, &ps->resources);
1009
1010 ACPI_FREE(buffer.pointer);
1011 }
1012
1013 /* Evaluate "_PSx" to see if we can do explicit sets */
1014 pathname[2] = 'S';
1015 if (acpi_has_method(device->handle, pathname))
1016 ps->flags.explicit_set = 1;
1017
1018 /* State is valid if there are means to put the device into it. */
1019 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1020 ps->flags.valid = 1;
1021
1022 ps->power = -1; /* Unknown - driver assigned */
1023 ps->latency = -1; /* Unknown - driver assigned */
1024 }
1025
acpi_bus_get_power_flags(struct acpi_device * device)1026 static void acpi_bus_get_power_flags(struct acpi_device *device)
1027 {
1028 unsigned long long dsc = ACPI_STATE_D0;
1029 u32 i;
1030
1031 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1032 if (!acpi_has_method(device->handle, "_PS0") &&
1033 !acpi_has_method(device->handle, "_PR0"))
1034 return;
1035
1036 device->flags.power_manageable = 1;
1037
1038 /*
1039 * Power Management Flags
1040 */
1041 if (acpi_has_method(device->handle, "_PSC"))
1042 device->power.flags.explicit_get = 1;
1043
1044 if (acpi_has_method(device->handle, "_IRC"))
1045 device->power.flags.inrush_current = 1;
1046
1047 if (acpi_has_method(device->handle, "_DSW"))
1048 device->power.flags.dsw_present = 1;
1049
1050 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1051 device->power.state_for_enumeration = dsc;
1052
1053 /*
1054 * Enumerate supported power management states
1055 */
1056 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1057 acpi_bus_init_power_state(device, i);
1058
1059 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1060
1061 /* Set the defaults for D0 and D3hot (always supported). */
1062 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1063 device->power.states[ACPI_STATE_D0].power = 100;
1064 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1065
1066 /*
1067 * Use power resources only if the D0 list of them is populated, because
1068 * some platforms may provide _PR3 only to indicate D3cold support and
1069 * in those cases the power resources list returned by it may be bogus.
1070 */
1071 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1072 device->power.flags.power_resources = 1;
1073 /*
1074 * D3cold is supported if the D3hot list of power resources is
1075 * not empty.
1076 */
1077 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1078 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1079 }
1080
1081 if (acpi_bus_init_power(device))
1082 device->flags.power_manageable = 0;
1083 }
1084
acpi_bus_get_flags(struct acpi_device * device)1085 static void acpi_bus_get_flags(struct acpi_device *device)
1086 {
1087 /* Presence of _STA indicates 'dynamic_status' */
1088 if (acpi_has_method(device->handle, "_STA"))
1089 device->flags.dynamic_status = 1;
1090
1091 /* Presence of _RMV indicates 'removable' */
1092 if (acpi_has_method(device->handle, "_RMV"))
1093 device->flags.removable = 1;
1094
1095 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1096 if (acpi_has_method(device->handle, "_EJD") ||
1097 acpi_has_method(device->handle, "_EJ0"))
1098 device->flags.ejectable = 1;
1099 }
1100
acpi_device_get_busid(struct acpi_device * device)1101 static void acpi_device_get_busid(struct acpi_device *device)
1102 {
1103 char bus_id[5] = { '?', 0 };
1104 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1105 int i = 0;
1106
1107 /*
1108 * Bus ID
1109 * ------
1110 * The device's Bus ID is simply the object name.
1111 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1112 */
1113 if (!acpi_dev_parent(device)) {
1114 strcpy(device->pnp.bus_id, "ACPI");
1115 return;
1116 }
1117
1118 switch (device->device_type) {
1119 case ACPI_BUS_TYPE_POWER_BUTTON:
1120 strcpy(device->pnp.bus_id, "PWRF");
1121 break;
1122 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1123 strcpy(device->pnp.bus_id, "SLPF");
1124 break;
1125 case ACPI_BUS_TYPE_ECDT_EC:
1126 strcpy(device->pnp.bus_id, "ECDT");
1127 break;
1128 default:
1129 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1130 /* Clean up trailing underscores (if any) */
1131 for (i = 3; i > 1; i--) {
1132 if (bus_id[i] == '_')
1133 bus_id[i] = '\0';
1134 else
1135 break;
1136 }
1137 strcpy(device->pnp.bus_id, bus_id);
1138 break;
1139 }
1140 }
1141
1142 /*
1143 * acpi_ata_match - see if an acpi object is an ATA device
1144 *
1145 * If an acpi object has one of the ACPI ATA methods defined,
1146 * then we can safely call it an ATA device.
1147 */
acpi_ata_match(acpi_handle handle)1148 bool acpi_ata_match(acpi_handle handle)
1149 {
1150 return acpi_has_method(handle, "_GTF") ||
1151 acpi_has_method(handle, "_GTM") ||
1152 acpi_has_method(handle, "_STM") ||
1153 acpi_has_method(handle, "_SDD");
1154 }
1155
1156 /*
1157 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1158 *
1159 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1160 * then we can safely call it an ejectable drive bay
1161 */
acpi_bay_match(acpi_handle handle)1162 bool acpi_bay_match(acpi_handle handle)
1163 {
1164 acpi_handle phandle;
1165
1166 if (!acpi_has_method(handle, "_EJ0"))
1167 return false;
1168 if (acpi_ata_match(handle))
1169 return true;
1170 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1171 return false;
1172
1173 return acpi_ata_match(phandle);
1174 }
1175
acpi_device_is_battery(struct acpi_device * adev)1176 bool acpi_device_is_battery(struct acpi_device *adev)
1177 {
1178 struct acpi_hardware_id *hwid;
1179
1180 list_for_each_entry(hwid, &adev->pnp.ids, list)
1181 if (!strcmp("PNP0C0A", hwid->id))
1182 return true;
1183
1184 return false;
1185 }
1186
is_ejectable_bay(struct acpi_device * adev)1187 static bool is_ejectable_bay(struct acpi_device *adev)
1188 {
1189 acpi_handle handle = adev->handle;
1190
1191 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1192 return true;
1193
1194 return acpi_bay_match(handle);
1195 }
1196
1197 /*
1198 * acpi_dock_match - see if an acpi object has a _DCK method
1199 */
acpi_dock_match(acpi_handle handle)1200 bool acpi_dock_match(acpi_handle handle)
1201 {
1202 return acpi_has_method(handle, "_DCK");
1203 }
1204
1205 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1206 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1207 void **return_value)
1208 {
1209 long *cap = context;
1210
1211 if (acpi_has_method(handle, "_BCM") &&
1212 acpi_has_method(handle, "_BCL")) {
1213 acpi_handle_debug(handle, "Found generic backlight support\n");
1214 *cap |= ACPI_VIDEO_BACKLIGHT;
1215 /* We have backlight support, no need to scan further */
1216 return AE_CTRL_TERMINATE;
1217 }
1218 return 0;
1219 }
1220
1221 /* Returns true if the ACPI object is a video device which can be
1222 * handled by video.ko.
1223 * The device will get a Linux specific CID added in scan.c to
1224 * identify the device as an ACPI graphics device
1225 * Be aware that the graphics device may not be physically present
1226 * Use acpi_video_get_capabilities() to detect general ACPI video
1227 * capabilities of present cards
1228 */
acpi_is_video_device(acpi_handle handle)1229 long acpi_is_video_device(acpi_handle handle)
1230 {
1231 long video_caps = 0;
1232
1233 /* Is this device able to support video switching ? */
1234 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1235 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1236
1237 /* Is this device able to retrieve a video ROM ? */
1238 if (acpi_has_method(handle, "_ROM"))
1239 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1240
1241 /* Is this device able to configure which video head to be POSTed ? */
1242 if (acpi_has_method(handle, "_VPO") &&
1243 acpi_has_method(handle, "_GPD") &&
1244 acpi_has_method(handle, "_SPD"))
1245 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1246
1247 /* Only check for backlight functionality if one of the above hit. */
1248 if (video_caps)
1249 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1250 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1251 &video_caps, NULL);
1252
1253 return video_caps;
1254 }
1255 EXPORT_SYMBOL(acpi_is_video_device);
1256
acpi_device_hid(struct acpi_device * device)1257 const char *acpi_device_hid(struct acpi_device *device)
1258 {
1259 struct acpi_hardware_id *hid;
1260
1261 if (list_empty(&device->pnp.ids))
1262 return dummy_hid;
1263
1264 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1265 return hid->id;
1266 }
1267 EXPORT_SYMBOL(acpi_device_hid);
1268
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1269 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1270 {
1271 struct acpi_hardware_id *id;
1272
1273 id = kmalloc(sizeof(*id), GFP_KERNEL);
1274 if (!id)
1275 return;
1276
1277 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1278 if (!id->id) {
1279 kfree(id);
1280 return;
1281 }
1282
1283 list_add_tail(&id->list, &pnp->ids);
1284 pnp->type.hardware_id = 1;
1285 }
1286
1287 /*
1288 * Old IBM workstations have a DSDT bug wherein the SMBus object
1289 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1290 * prefix. Work around this.
1291 */
acpi_ibm_smbus_match(acpi_handle handle)1292 static bool acpi_ibm_smbus_match(acpi_handle handle)
1293 {
1294 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1295 struct acpi_buffer path = { sizeof(node_name), node_name };
1296
1297 if (!dmi_name_in_vendors("IBM"))
1298 return false;
1299
1300 /* Look for SMBS object */
1301 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1302 strcmp("SMBS", path.pointer))
1303 return false;
1304
1305 /* Does it have the necessary (but misnamed) methods? */
1306 if (acpi_has_method(handle, "SBI") &&
1307 acpi_has_method(handle, "SBR") &&
1308 acpi_has_method(handle, "SBW"))
1309 return true;
1310
1311 return false;
1312 }
1313
acpi_object_is_system_bus(acpi_handle handle)1314 static bool acpi_object_is_system_bus(acpi_handle handle)
1315 {
1316 acpi_handle tmp;
1317
1318 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1319 tmp == handle)
1320 return true;
1321 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1322 tmp == handle)
1323 return true;
1324
1325 return false;
1326 }
1327
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1328 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1329 int device_type)
1330 {
1331 struct acpi_device_info *info = NULL;
1332 struct acpi_pnp_device_id_list *cid_list;
1333 int i;
1334
1335 switch (device_type) {
1336 case ACPI_BUS_TYPE_DEVICE:
1337 if (handle == ACPI_ROOT_OBJECT) {
1338 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1339 break;
1340 }
1341
1342 acpi_get_object_info(handle, &info);
1343 if (!info) {
1344 pr_err("%s: Error reading device info\n", __func__);
1345 return;
1346 }
1347
1348 if (info->valid & ACPI_VALID_HID) {
1349 acpi_add_id(pnp, info->hardware_id.string);
1350 pnp->type.platform_id = 1;
1351 }
1352 if (info->valid & ACPI_VALID_CID) {
1353 cid_list = &info->compatible_id_list;
1354 for (i = 0; i < cid_list->count; i++)
1355 acpi_add_id(pnp, cid_list->ids[i].string);
1356 }
1357 if (info->valid & ACPI_VALID_ADR) {
1358 pnp->bus_address = info->address;
1359 pnp->type.bus_address = 1;
1360 }
1361 if (info->valid & ACPI_VALID_UID)
1362 pnp->unique_id = kstrdup(info->unique_id.string,
1363 GFP_KERNEL);
1364 if (info->valid & ACPI_VALID_CLS)
1365 acpi_add_id(pnp, info->class_code.string);
1366
1367 kfree(info);
1368
1369 /*
1370 * Some devices don't reliably have _HIDs & _CIDs, so add
1371 * synthetic HIDs to make sure drivers can find them.
1372 */
1373 if (acpi_is_video_device(handle)) {
1374 acpi_add_id(pnp, ACPI_VIDEO_HID);
1375 pnp->type.backlight = 1;
1376 break;
1377 }
1378 if (acpi_bay_match(handle))
1379 acpi_add_id(pnp, ACPI_BAY_HID);
1380 else if (acpi_dock_match(handle))
1381 acpi_add_id(pnp, ACPI_DOCK_HID);
1382 else if (acpi_ibm_smbus_match(handle))
1383 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1384 else if (list_empty(&pnp->ids) &&
1385 acpi_object_is_system_bus(handle)) {
1386 /* \_SB, \_TZ, LNXSYBUS */
1387 acpi_add_id(pnp, ACPI_BUS_HID);
1388 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1389 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1390 }
1391
1392 break;
1393 case ACPI_BUS_TYPE_POWER:
1394 acpi_add_id(pnp, ACPI_POWER_HID);
1395 break;
1396 case ACPI_BUS_TYPE_PROCESSOR:
1397 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1398 break;
1399 case ACPI_BUS_TYPE_THERMAL:
1400 acpi_add_id(pnp, ACPI_THERMAL_HID);
1401 break;
1402 case ACPI_BUS_TYPE_POWER_BUTTON:
1403 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1404 break;
1405 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1406 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1407 break;
1408 case ACPI_BUS_TYPE_ECDT_EC:
1409 acpi_add_id(pnp, ACPI_ECDT_HID);
1410 break;
1411 }
1412 }
1413
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1414 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1415 {
1416 struct acpi_hardware_id *id, *tmp;
1417
1418 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1419 kfree_const(id->id);
1420 kfree(id);
1421 }
1422 kfree(pnp->unique_id);
1423 }
1424
1425 /**
1426 * acpi_dma_supported - Check DMA support for the specified device.
1427 * @adev: The pointer to acpi device
1428 *
1429 * Return false if DMA is not supported. Otherwise, return true
1430 */
acpi_dma_supported(const struct acpi_device * adev)1431 bool acpi_dma_supported(const struct acpi_device *adev)
1432 {
1433 if (!adev)
1434 return false;
1435
1436 if (adev->flags.cca_seen)
1437 return true;
1438
1439 /*
1440 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1441 * DMA on "Intel platforms". Presumably that includes all x86 and
1442 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1443 */
1444 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1445 return true;
1446
1447 return false;
1448 }
1449
1450 /**
1451 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1452 * @adev: The pointer to acpi device
1453 *
1454 * Return enum dev_dma_attr.
1455 */
acpi_get_dma_attr(struct acpi_device * adev)1456 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1457 {
1458 if (!acpi_dma_supported(adev))
1459 return DEV_DMA_NOT_SUPPORTED;
1460
1461 if (adev->flags.coherent_dma)
1462 return DEV_DMA_COHERENT;
1463 else
1464 return DEV_DMA_NON_COHERENT;
1465 }
1466
1467 /**
1468 * acpi_dma_get_range() - Get device DMA parameters.
1469 *
1470 * @dev: device to configure
1471 * @map: pointer to DMA ranges result
1472 *
1473 * Evaluate DMA regions and return pointer to DMA regions on
1474 * parsing success; it does not update the passed in values on failure.
1475 *
1476 * Return 0 on success, < 0 on failure.
1477 */
acpi_dma_get_range(struct device * dev,const struct bus_dma_region ** map)1478 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1479 {
1480 struct acpi_device *adev;
1481 LIST_HEAD(list);
1482 struct resource_entry *rentry;
1483 int ret;
1484 struct device *dma_dev = dev;
1485 struct bus_dma_region *r;
1486
1487 /*
1488 * Walk the device tree chasing an ACPI companion with a _DMA
1489 * object while we go. Stop if we find a device with an ACPI
1490 * companion containing a _DMA method.
1491 */
1492 do {
1493 adev = ACPI_COMPANION(dma_dev);
1494 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1495 break;
1496
1497 dma_dev = dma_dev->parent;
1498 } while (dma_dev);
1499
1500 if (!dma_dev)
1501 return -ENODEV;
1502
1503 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1504 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1505 return -EINVAL;
1506 }
1507
1508 ret = acpi_dev_get_dma_resources(adev, &list);
1509 if (ret > 0) {
1510 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1511 if (!r) {
1512 ret = -ENOMEM;
1513 goto out;
1514 }
1515
1516 *map = r;
1517
1518 list_for_each_entry(rentry, &list, node) {
1519 if (rentry->res->start >= rentry->res->end) {
1520 kfree(*map);
1521 *map = NULL;
1522 ret = -EINVAL;
1523 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1524 goto out;
1525 }
1526
1527 r->cpu_start = rentry->res->start;
1528 r->dma_start = rentry->res->start - rentry->offset;
1529 r->size = resource_size(rentry->res);
1530 r->offset = rentry->offset;
1531 r++;
1532 }
1533 }
1534 out:
1535 acpi_dev_free_resource_list(&list);
1536
1537 return ret >= 0 ? 0 : ret;
1538 }
1539
1540 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1541 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1542 struct fwnode_handle *fwnode,
1543 const struct iommu_ops *ops)
1544 {
1545 int ret = iommu_fwspec_init(dev, fwnode, ops);
1546
1547 if (!ret)
1548 ret = iommu_fwspec_add_ids(dev, &id, 1);
1549
1550 return ret;
1551 }
1552
acpi_iommu_fwspec_ops(struct device * dev)1553 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1554 {
1555 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1556
1557 return fwspec ? fwspec->ops : NULL;
1558 }
1559
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1560 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1561 const u32 *id_in)
1562 {
1563 int err;
1564 const struct iommu_ops *ops;
1565
1566 /* Serialise to make dev->iommu stable under our potential fwspec */
1567 mutex_lock(&iommu_probe_device_lock);
1568 /*
1569 * If we already translated the fwspec there is nothing left to do,
1570 * return the iommu_ops.
1571 */
1572 ops = acpi_iommu_fwspec_ops(dev);
1573 if (ops) {
1574 mutex_unlock(&iommu_probe_device_lock);
1575 return ops;
1576 }
1577
1578 err = iort_iommu_configure_id(dev, id_in);
1579 if (err && err != -EPROBE_DEFER)
1580 err = viot_iommu_configure(dev);
1581 mutex_unlock(&iommu_probe_device_lock);
1582
1583 /*
1584 * If we have reason to believe the IOMMU driver missed the initial
1585 * iommu_probe_device() call for dev, replay it to get things in order.
1586 */
1587 if (!err && dev->bus && !device_iommu_mapped(dev))
1588 err = iommu_probe_device(dev);
1589
1590 /* Ignore all other errors apart from EPROBE_DEFER */
1591 if (err == -EPROBE_DEFER) {
1592 return ERR_PTR(err);
1593 } else if (err) {
1594 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1595 return NULL;
1596 }
1597 return acpi_iommu_fwspec_ops(dev);
1598 }
1599
1600 #else /* !CONFIG_IOMMU_API */
1601
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1602 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1603 struct fwnode_handle *fwnode,
1604 const struct iommu_ops *ops)
1605 {
1606 return -ENODEV;
1607 }
1608
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1609 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1610 const u32 *id_in)
1611 {
1612 return NULL;
1613 }
1614
1615 #endif /* !CONFIG_IOMMU_API */
1616
1617 /**
1618 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1619 * @dev: The pointer to the device
1620 * @attr: device dma attributes
1621 * @input_id: input device id const value pointer
1622 */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1623 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1624 const u32 *input_id)
1625 {
1626 const struct iommu_ops *iommu;
1627
1628 if (attr == DEV_DMA_NOT_SUPPORTED) {
1629 set_dma_ops(dev, &dma_dummy_ops);
1630 return 0;
1631 }
1632
1633 acpi_arch_dma_setup(dev);
1634
1635 iommu = acpi_iommu_configure_id(dev, input_id);
1636 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1637 return -EPROBE_DEFER;
1638
1639 arch_setup_dma_ops(dev, 0, U64_MAX,
1640 iommu, attr == DEV_DMA_COHERENT);
1641
1642 return 0;
1643 }
1644 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1645
acpi_init_coherency(struct acpi_device * adev)1646 static void acpi_init_coherency(struct acpi_device *adev)
1647 {
1648 unsigned long long cca = 0;
1649 acpi_status status;
1650 struct acpi_device *parent = acpi_dev_parent(adev);
1651
1652 if (parent && parent->flags.cca_seen) {
1653 /*
1654 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1655 * already saw one.
1656 */
1657 adev->flags.cca_seen = 1;
1658 cca = parent->flags.coherent_dma;
1659 } else {
1660 status = acpi_evaluate_integer(adev->handle, "_CCA",
1661 NULL, &cca);
1662 if (ACPI_SUCCESS(status))
1663 adev->flags.cca_seen = 1;
1664 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1665 /*
1666 * If architecture does not specify that _CCA is
1667 * required for DMA-able devices (e.g. x86),
1668 * we default to _CCA=1.
1669 */
1670 cca = 1;
1671 else
1672 acpi_handle_debug(adev->handle,
1673 "ACPI device is missing _CCA.\n");
1674 }
1675
1676 adev->flags.coherent_dma = cca;
1677 }
1678
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1679 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1680 {
1681 bool *is_serial_bus_slave_p = data;
1682
1683 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1684 return 1;
1685
1686 *is_serial_bus_slave_p = true;
1687
1688 /* no need to do more checking */
1689 return -1;
1690 }
1691
acpi_is_indirect_io_slave(struct acpi_device * device)1692 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1693 {
1694 struct acpi_device *parent = acpi_dev_parent(device);
1695 static const struct acpi_device_id indirect_io_hosts[] = {
1696 {"HISI0191", 0},
1697 {}
1698 };
1699
1700 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1701 }
1702
acpi_device_enumeration_by_parent(struct acpi_device * device)1703 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1704 {
1705 struct list_head resource_list;
1706 bool is_serial_bus_slave = false;
1707 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1708 /*
1709 * These devices have multiple SerialBus resources and a client
1710 * device must be instantiated for each of them, each with
1711 * its own device id.
1712 * Normally we only instantiate one client device for the first
1713 * resource, using the ACPI HID as id. These special cases are handled
1714 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1715 * knows which client device id to use for each resource.
1716 */
1717 {"BSG1160", },
1718 {"BSG2150", },
1719 {"CSC3551", },
1720 {"CSC3556", },
1721 {"INT33FE", },
1722 {"INT3515", },
1723 /* Non-conforming _HID for Cirrus Logic already released */
1724 {"CLSA0100", },
1725 {"CLSA0101", },
1726 /*
1727 * Some ACPI devs contain SerialBus resources even though they are not
1728 * attached to a serial bus at all.
1729 */
1730 {"MSHW0028", },
1731 /*
1732 * HIDs of device with an UartSerialBusV2 resource for which userspace
1733 * expects a regular tty cdev to be created (instead of the in kernel
1734 * serdev) and which have a kernel driver which expects a platform_dev
1735 * such as the rfkill-gpio driver.
1736 */
1737 {"BCM4752", },
1738 {"LNV4752", },
1739 {}
1740 };
1741
1742 if (acpi_is_indirect_io_slave(device))
1743 return true;
1744
1745 /* Macs use device properties in lieu of _CRS resources */
1746 if (x86_apple_machine &&
1747 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1748 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1749 fwnode_property_present(&device->fwnode, "baud")))
1750 return true;
1751
1752 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1753 return false;
1754
1755 INIT_LIST_HEAD(&resource_list);
1756 acpi_dev_get_resources(device, &resource_list,
1757 acpi_check_serial_bus_slave,
1758 &is_serial_bus_slave);
1759 acpi_dev_free_resource_list(&resource_list);
1760
1761 return is_serial_bus_slave;
1762 }
1763
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type,void (* release)(struct device *))1764 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1765 int type, void (*release)(struct device *))
1766 {
1767 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1768
1769 INIT_LIST_HEAD(&device->pnp.ids);
1770 device->device_type = type;
1771 device->handle = handle;
1772 device->dev.parent = parent ? &parent->dev : NULL;
1773 device->dev.release = release;
1774 device->dev.bus = &acpi_bus_type;
1775 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1776 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1777 acpi_device_get_busid(device);
1778 acpi_set_pnp_ids(handle, &device->pnp, type);
1779 acpi_init_properties(device);
1780 acpi_bus_get_flags(device);
1781 device->flags.match_driver = false;
1782 device->flags.initialized = true;
1783 device->flags.enumeration_by_parent =
1784 acpi_device_enumeration_by_parent(device);
1785 acpi_device_clear_enumerated(device);
1786 device_initialize(&device->dev);
1787 dev_set_uevent_suppress(&device->dev, true);
1788 acpi_init_coherency(device);
1789 }
1790
acpi_scan_dep_init(struct acpi_device * adev)1791 static void acpi_scan_dep_init(struct acpi_device *adev)
1792 {
1793 struct acpi_dep_data *dep;
1794
1795 list_for_each_entry(dep, &acpi_dep_list, node) {
1796 if (dep->consumer == adev->handle) {
1797 if (dep->honor_dep)
1798 adev->flags.honor_deps = 1;
1799
1800 adev->dep_unmet++;
1801 }
1802 }
1803 }
1804
acpi_device_add_finalize(struct acpi_device * device)1805 void acpi_device_add_finalize(struct acpi_device *device)
1806 {
1807 dev_set_uevent_suppress(&device->dev, false);
1808 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1809 }
1810
acpi_scan_init_status(struct acpi_device * adev)1811 static void acpi_scan_init_status(struct acpi_device *adev)
1812 {
1813 if (acpi_bus_get_status(adev))
1814 acpi_set_device_status(adev, 0);
1815 }
1816
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1817 static int acpi_add_single_object(struct acpi_device **child,
1818 acpi_handle handle, int type, bool dep_init)
1819 {
1820 struct acpi_device *device;
1821 bool release_dep_lock = false;
1822 int result;
1823
1824 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1825 if (!device)
1826 return -ENOMEM;
1827
1828 acpi_init_device_object(device, handle, type, acpi_device_release);
1829 /*
1830 * Getting the status is delayed till here so that we can call
1831 * acpi_bus_get_status() and use its quirk handling. Note that
1832 * this must be done before the get power-/wakeup_dev-flags calls.
1833 */
1834 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1835 if (dep_init) {
1836 mutex_lock(&acpi_dep_list_lock);
1837 /*
1838 * Hold the lock until the acpi_tie_acpi_dev() call
1839 * below to prevent concurrent acpi_scan_clear_dep()
1840 * from deleting a dependency list entry without
1841 * updating dep_unmet for the device.
1842 */
1843 release_dep_lock = true;
1844 acpi_scan_dep_init(device);
1845 }
1846 acpi_scan_init_status(device);
1847 }
1848
1849 acpi_bus_get_power_flags(device);
1850 acpi_bus_get_wakeup_device_flags(device);
1851
1852 result = acpi_tie_acpi_dev(device);
1853
1854 if (release_dep_lock)
1855 mutex_unlock(&acpi_dep_list_lock);
1856
1857 if (!result)
1858 result = acpi_device_add(device);
1859
1860 if (result) {
1861 acpi_device_release(&device->dev);
1862 return result;
1863 }
1864
1865 acpi_power_add_remove_device(device, true);
1866 acpi_device_add_finalize(device);
1867
1868 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1869 dev_name(&device->dev), device->dev.parent ?
1870 dev_name(device->dev.parent) : "(null)");
1871
1872 *child = device;
1873 return 0;
1874 }
1875
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1876 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1877 void *context)
1878 {
1879 struct resource *res = context;
1880
1881 if (acpi_dev_resource_memory(ares, res))
1882 return AE_CTRL_TERMINATE;
1883
1884 return AE_OK;
1885 }
1886
acpi_device_should_be_hidden(acpi_handle handle)1887 static bool acpi_device_should_be_hidden(acpi_handle handle)
1888 {
1889 acpi_status status;
1890 struct resource res;
1891
1892 /* Check if it should ignore the UART device */
1893 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1894 return false;
1895
1896 /*
1897 * The UART device described in SPCR table is assumed to have only one
1898 * memory resource present. So we only look for the first one here.
1899 */
1900 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1901 acpi_get_resource_memory, &res);
1902 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1903 return false;
1904
1905 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1906 &res.start);
1907
1908 return true;
1909 }
1910
acpi_device_is_present(const struct acpi_device * adev)1911 bool acpi_device_is_present(const struct acpi_device *adev)
1912 {
1913 return adev->status.present || adev->status.functional;
1914 }
1915
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1916 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1917 const char *idstr,
1918 const struct acpi_device_id **matchid)
1919 {
1920 const struct acpi_device_id *devid;
1921
1922 if (handler->match)
1923 return handler->match(idstr, matchid);
1924
1925 for (devid = handler->ids; devid->id[0]; devid++)
1926 if (!strcmp((char *)devid->id, idstr)) {
1927 if (matchid)
1928 *matchid = devid;
1929
1930 return true;
1931 }
1932
1933 return false;
1934 }
1935
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1936 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1937 const struct acpi_device_id **matchid)
1938 {
1939 struct acpi_scan_handler *handler;
1940
1941 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1942 if (acpi_scan_handler_matching(handler, idstr, matchid))
1943 return handler;
1944
1945 return NULL;
1946 }
1947
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1948 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1949 {
1950 if (!!hotplug->enabled == !!val)
1951 return;
1952
1953 mutex_lock(&acpi_scan_lock);
1954
1955 hotplug->enabled = val;
1956
1957 mutex_unlock(&acpi_scan_lock);
1958 }
1959
acpi_scan_init_hotplug(struct acpi_device * adev)1960 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1961 {
1962 struct acpi_hardware_id *hwid;
1963
1964 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1965 acpi_dock_add(adev);
1966 return;
1967 }
1968 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1969 struct acpi_scan_handler *handler;
1970
1971 handler = acpi_scan_match_handler(hwid->id, NULL);
1972 if (handler) {
1973 adev->flags.hotplug_notify = true;
1974 break;
1975 }
1976 }
1977 }
1978
acpi_scan_check_dep(acpi_handle handle,bool check_dep)1979 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1980 {
1981 struct acpi_handle_list dep_devices;
1982 acpi_status status;
1983 u32 count;
1984 int i;
1985
1986 /*
1987 * Check for _HID here to avoid deferring the enumeration of:
1988 * 1. PCI devices.
1989 * 2. ACPI nodes describing USB ports.
1990 * Still, checking for _HID catches more then just these cases ...
1991 */
1992 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1993 !acpi_has_method(handle, "_HID"))
1994 return 0;
1995
1996 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1997 if (ACPI_FAILURE(status)) {
1998 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1999 return 0;
2000 }
2001
2002 for (count = 0, i = 0; i < dep_devices.count; i++) {
2003 struct acpi_device_info *info;
2004 struct acpi_dep_data *dep;
2005 bool skip, honor_dep;
2006
2007 status = acpi_get_object_info(dep_devices.handles[i], &info);
2008 if (ACPI_FAILURE(status)) {
2009 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2010 continue;
2011 }
2012
2013 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2014 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2015 kfree(info);
2016
2017 if (skip)
2018 continue;
2019
2020 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2021 if (!dep)
2022 continue;
2023
2024 count++;
2025
2026 dep->supplier = dep_devices.handles[i];
2027 dep->consumer = handle;
2028 dep->honor_dep = honor_dep;
2029
2030 mutex_lock(&acpi_dep_list_lock);
2031 list_add_tail(&dep->node , &acpi_dep_list);
2032 mutex_unlock(&acpi_dep_list_lock);
2033 }
2034
2035 return count;
2036 }
2037
2038 static bool acpi_bus_scan_second_pass;
2039
acpi_bus_check_add(acpi_handle handle,bool check_dep,struct acpi_device ** adev_p)2040 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2041 struct acpi_device **adev_p)
2042 {
2043 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2044 acpi_object_type acpi_type;
2045 int type;
2046
2047 if (device)
2048 goto out;
2049
2050 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2051 return AE_OK;
2052
2053 switch (acpi_type) {
2054 case ACPI_TYPE_DEVICE:
2055 if (acpi_device_should_be_hidden(handle))
2056 return AE_OK;
2057
2058 /* Bail out if there are dependencies. */
2059 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2060 acpi_bus_scan_second_pass = true;
2061 return AE_CTRL_DEPTH;
2062 }
2063
2064 fallthrough;
2065 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2066 type = ACPI_BUS_TYPE_DEVICE;
2067 break;
2068
2069 case ACPI_TYPE_PROCESSOR:
2070 type = ACPI_BUS_TYPE_PROCESSOR;
2071 break;
2072
2073 case ACPI_TYPE_THERMAL:
2074 type = ACPI_BUS_TYPE_THERMAL;
2075 break;
2076
2077 case ACPI_TYPE_POWER:
2078 acpi_add_power_resource(handle);
2079 fallthrough;
2080 default:
2081 return AE_OK;
2082 }
2083
2084 /*
2085 * If check_dep is true at this point, the device has no dependencies,
2086 * or the creation of the device object would have been postponed above.
2087 */
2088 acpi_add_single_object(&device, handle, type, !check_dep);
2089 if (!device)
2090 return AE_CTRL_DEPTH;
2091
2092 acpi_scan_init_hotplug(device);
2093
2094 out:
2095 if (!*adev_p)
2096 *adev_p = device;
2097
2098 return AE_OK;
2099 }
2100
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2101 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2102 void *not_used, void **ret_p)
2103 {
2104 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2105 }
2106
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2107 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2108 void *not_used, void **ret_p)
2109 {
2110 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2111 }
2112
acpi_default_enumeration(struct acpi_device * device)2113 static void acpi_default_enumeration(struct acpi_device *device)
2114 {
2115 /*
2116 * Do not enumerate devices with enumeration_by_parent flag set as
2117 * they will be enumerated by their respective parents.
2118 */
2119 if (!device->flags.enumeration_by_parent) {
2120 acpi_create_platform_device(device, NULL);
2121 acpi_device_set_enumerated(device);
2122 } else {
2123 blocking_notifier_call_chain(&acpi_reconfig_chain,
2124 ACPI_RECONFIG_DEVICE_ADD, device);
2125 }
2126 }
2127
2128 static const struct acpi_device_id generic_device_ids[] = {
2129 {ACPI_DT_NAMESPACE_HID, },
2130 {"", },
2131 };
2132
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2133 static int acpi_generic_device_attach(struct acpi_device *adev,
2134 const struct acpi_device_id *not_used)
2135 {
2136 /*
2137 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2138 * below can be unconditional.
2139 */
2140 if (adev->data.of_compatible)
2141 acpi_default_enumeration(adev);
2142
2143 return 1;
2144 }
2145
2146 static struct acpi_scan_handler generic_device_handler = {
2147 .ids = generic_device_ids,
2148 .attach = acpi_generic_device_attach,
2149 };
2150
acpi_scan_attach_handler(struct acpi_device * device)2151 static int acpi_scan_attach_handler(struct acpi_device *device)
2152 {
2153 struct acpi_hardware_id *hwid;
2154 int ret = 0;
2155
2156 list_for_each_entry(hwid, &device->pnp.ids, list) {
2157 const struct acpi_device_id *devid;
2158 struct acpi_scan_handler *handler;
2159
2160 handler = acpi_scan_match_handler(hwid->id, &devid);
2161 if (handler) {
2162 if (!handler->attach) {
2163 device->pnp.type.platform_id = 0;
2164 continue;
2165 }
2166 device->handler = handler;
2167 ret = handler->attach(device, devid);
2168 if (ret > 0)
2169 break;
2170
2171 device->handler = NULL;
2172 if (ret < 0)
2173 break;
2174 }
2175 }
2176
2177 return ret;
2178 }
2179
acpi_bus_attach(struct acpi_device * device,void * first_pass)2180 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2181 {
2182 bool skip = !first_pass && device->flags.visited;
2183 acpi_handle ejd;
2184 int ret;
2185
2186 if (skip)
2187 goto ok;
2188
2189 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2190 register_dock_dependent_device(device, ejd);
2191
2192 acpi_bus_get_status(device);
2193 /* Skip devices that are not ready for enumeration (e.g. not present) */
2194 if (!acpi_dev_ready_for_enumeration(device)) {
2195 device->flags.initialized = false;
2196 acpi_device_clear_enumerated(device);
2197 device->flags.power_manageable = 0;
2198 return 0;
2199 }
2200 if (device->handler)
2201 goto ok;
2202
2203 if (!device->flags.initialized) {
2204 device->flags.power_manageable =
2205 device->power.states[ACPI_STATE_D0].flags.valid;
2206 if (acpi_bus_init_power(device))
2207 device->flags.power_manageable = 0;
2208
2209 device->flags.initialized = true;
2210 } else if (device->flags.visited) {
2211 goto ok;
2212 }
2213
2214 ret = acpi_scan_attach_handler(device);
2215 if (ret < 0)
2216 return 0;
2217
2218 device->flags.match_driver = true;
2219 if (ret > 0 && !device->flags.enumeration_by_parent) {
2220 acpi_device_set_enumerated(device);
2221 goto ok;
2222 }
2223
2224 ret = device_attach(&device->dev);
2225 if (ret < 0)
2226 return 0;
2227
2228 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2229 acpi_default_enumeration(device);
2230 else
2231 acpi_device_set_enumerated(device);
2232
2233 ok:
2234 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2235
2236 if (!skip && device->handler && device->handler->hotplug.notify_online)
2237 device->handler->hotplug.notify_online(device);
2238
2239 return 0;
2240 }
2241
acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2242 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2243 {
2244 struct acpi_device **adev_p = data;
2245 struct acpi_device *adev = *adev_p;
2246
2247 /*
2248 * If we're passed a 'previous' consumer device then we need to skip
2249 * any consumers until we meet the previous one, and then NULL @data
2250 * so the next one can be returned.
2251 */
2252 if (adev) {
2253 if (dep->consumer == adev->handle)
2254 *adev_p = NULL;
2255
2256 return 0;
2257 }
2258
2259 adev = acpi_get_acpi_dev(dep->consumer);
2260 if (adev) {
2261 *(struct acpi_device **)data = adev;
2262 return 1;
2263 }
2264 /* Continue parsing if the device object is not present. */
2265 return 0;
2266 }
2267
2268 struct acpi_scan_clear_dep_work {
2269 struct work_struct work;
2270 struct acpi_device *adev;
2271 };
2272
acpi_scan_clear_dep_fn(struct work_struct * work)2273 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2274 {
2275 struct acpi_scan_clear_dep_work *cdw;
2276
2277 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2278
2279 acpi_scan_lock_acquire();
2280 acpi_bus_attach(cdw->adev, (void *)true);
2281 acpi_scan_lock_release();
2282
2283 acpi_dev_put(cdw->adev);
2284 kfree(cdw);
2285 }
2286
acpi_scan_clear_dep_queue(struct acpi_device * adev)2287 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2288 {
2289 struct acpi_scan_clear_dep_work *cdw;
2290
2291 if (adev->dep_unmet)
2292 return false;
2293
2294 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2295 if (!cdw)
2296 return false;
2297
2298 cdw->adev = adev;
2299 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2300 /*
2301 * Since the work function may block on the lock until the entire
2302 * initial enumeration of devices is complete, put it into the unbound
2303 * workqueue.
2304 */
2305 queue_work(system_unbound_wq, &cdw->work);
2306
2307 return true;
2308 }
2309
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2310 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2311 {
2312 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2313
2314 if (adev) {
2315 adev->dep_unmet--;
2316 if (!acpi_scan_clear_dep_queue(adev))
2317 acpi_dev_put(adev);
2318 }
2319
2320 list_del(&dep->node);
2321 kfree(dep);
2322
2323 return 0;
2324 }
2325
2326 /**
2327 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2328 * @handle: The ACPI handle of the supplier device
2329 * @callback: Pointer to the callback function to apply
2330 * @data: Pointer to some data to pass to the callback
2331 *
2332 * The return value of the callback determines this function's behaviour. If 0
2333 * is returned we continue to iterate over acpi_dep_list. If a positive value
2334 * is returned then the loop is broken but this function returns 0. If a
2335 * negative value is returned by the callback then the loop is broken and that
2336 * value is returned as the final error.
2337 */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2338 static int acpi_walk_dep_device_list(acpi_handle handle,
2339 int (*callback)(struct acpi_dep_data *, void *),
2340 void *data)
2341 {
2342 struct acpi_dep_data *dep, *tmp;
2343 int ret = 0;
2344
2345 mutex_lock(&acpi_dep_list_lock);
2346 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2347 if (dep->supplier == handle) {
2348 ret = callback(dep, data);
2349 if (ret)
2350 break;
2351 }
2352 }
2353 mutex_unlock(&acpi_dep_list_lock);
2354
2355 return ret > 0 ? 0 : ret;
2356 }
2357
2358 /**
2359 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2360 * @supplier: Pointer to the supplier &struct acpi_device
2361 *
2362 * Clear dependencies on the given device.
2363 */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2364 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2365 {
2366 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2367 }
2368 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2369
2370 /**
2371 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2372 * @device: Pointer to the &struct acpi_device to check
2373 *
2374 * Check if the device is present and has no unmet dependencies.
2375 *
2376 * Return true if the device is ready for enumeratino. Otherwise, return false.
2377 */
acpi_dev_ready_for_enumeration(const struct acpi_device * device)2378 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2379 {
2380 if (device->flags.honor_deps && device->dep_unmet)
2381 return false;
2382
2383 return acpi_device_is_present(device);
2384 }
2385 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2386
2387 /**
2388 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2389 * @supplier: Pointer to the dependee device
2390 * @start: Pointer to the current dependent device
2391 *
2392 * Returns the next &struct acpi_device which declares itself dependent on
2393 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2394 *
2395 * If the returned adev is not passed as @start to this function, the caller is
2396 * responsible for putting the reference to adev when it is no longer needed.
2397 */
acpi_dev_get_next_consumer_dev(struct acpi_device * supplier,struct acpi_device * start)2398 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2399 struct acpi_device *start)
2400 {
2401 struct acpi_device *adev = start;
2402
2403 acpi_walk_dep_device_list(supplier->handle,
2404 acpi_dev_get_next_consumer_dev_cb, &adev);
2405
2406 acpi_dev_put(start);
2407
2408 if (adev == start)
2409 return NULL;
2410
2411 return adev;
2412 }
2413 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2414
2415 /**
2416 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2417 * @handle: Root of the namespace scope to scan.
2418 *
2419 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2420 * found devices.
2421 *
2422 * If no devices were found, -ENODEV is returned, but it does not mean that
2423 * there has been a real error. There just have been no suitable ACPI objects
2424 * in the table trunk from which the kernel could create a device and add an
2425 * appropriate driver.
2426 *
2427 * Must be called under acpi_scan_lock.
2428 */
acpi_bus_scan(acpi_handle handle)2429 int acpi_bus_scan(acpi_handle handle)
2430 {
2431 struct acpi_device *device = NULL;
2432
2433 acpi_bus_scan_second_pass = false;
2434
2435 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2436
2437 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2438 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2439 acpi_bus_check_add_1, NULL, NULL,
2440 (void **)&device);
2441
2442 if (!device)
2443 return -ENODEV;
2444
2445 acpi_bus_attach(device, (void *)true);
2446
2447 if (!acpi_bus_scan_second_pass)
2448 return 0;
2449
2450 /* Pass 2: Enumerate all of the remaining devices. */
2451
2452 device = NULL;
2453
2454 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2455 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2456 acpi_bus_check_add_2, NULL, NULL,
2457 (void **)&device);
2458
2459 acpi_bus_attach(device, NULL);
2460
2461 return 0;
2462 }
2463 EXPORT_SYMBOL(acpi_bus_scan);
2464
acpi_bus_trim_one(struct acpi_device * adev,void * not_used)2465 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2466 {
2467 struct acpi_scan_handler *handler = adev->handler;
2468
2469 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2470
2471 adev->flags.match_driver = false;
2472 if (handler) {
2473 if (handler->detach)
2474 handler->detach(adev);
2475
2476 adev->handler = NULL;
2477 } else {
2478 device_release_driver(&adev->dev);
2479 }
2480 /*
2481 * Most likely, the device is going away, so put it into D3cold before
2482 * that.
2483 */
2484 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2485 adev->flags.initialized = false;
2486 acpi_device_clear_enumerated(adev);
2487
2488 return 0;
2489 }
2490
2491 /**
2492 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2493 * @adev: Root of the ACPI namespace scope to walk.
2494 *
2495 * Must be called under acpi_scan_lock.
2496 */
acpi_bus_trim(struct acpi_device * adev)2497 void acpi_bus_trim(struct acpi_device *adev)
2498 {
2499 acpi_bus_trim_one(adev, NULL);
2500 }
2501 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2502
acpi_bus_register_early_device(int type)2503 int acpi_bus_register_early_device(int type)
2504 {
2505 struct acpi_device *device = NULL;
2506 int result;
2507
2508 result = acpi_add_single_object(&device, NULL, type, false);
2509 if (result)
2510 return result;
2511
2512 device->flags.match_driver = true;
2513 return device_attach(&device->dev);
2514 }
2515 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2516
acpi_bus_scan_fixed(void)2517 static void acpi_bus_scan_fixed(void)
2518 {
2519 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2520 struct acpi_device *adev = NULL;
2521
2522 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2523 false);
2524 if (adev) {
2525 adev->flags.match_driver = true;
2526 if (device_attach(&adev->dev) >= 0)
2527 device_init_wakeup(&adev->dev, true);
2528 else
2529 dev_dbg(&adev->dev, "No driver\n");
2530 }
2531 }
2532
2533 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2534 struct acpi_device *adev = NULL;
2535
2536 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2537 false);
2538 if (adev) {
2539 adev->flags.match_driver = true;
2540 if (device_attach(&adev->dev) < 0)
2541 dev_dbg(&adev->dev, "No driver\n");
2542 }
2543 }
2544 }
2545
acpi_get_spcr_uart_addr(void)2546 static void __init acpi_get_spcr_uart_addr(void)
2547 {
2548 acpi_status status;
2549 struct acpi_table_spcr *spcr_ptr;
2550
2551 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2552 (struct acpi_table_header **)&spcr_ptr);
2553 if (ACPI_FAILURE(status)) {
2554 pr_warn("STAO table present, but SPCR is missing\n");
2555 return;
2556 }
2557
2558 spcr_uart_addr = spcr_ptr->serial_port.address;
2559 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2560 }
2561
2562 static bool acpi_scan_initialized;
2563
acpi_scan_init(void)2564 void __init acpi_scan_init(void)
2565 {
2566 acpi_status status;
2567 struct acpi_table_stao *stao_ptr;
2568
2569 acpi_pci_root_init();
2570 acpi_pci_link_init();
2571 acpi_processor_init();
2572 acpi_platform_init();
2573 acpi_lpss_init();
2574 acpi_apd_init();
2575 acpi_cmos_rtc_init();
2576 acpi_container_init();
2577 acpi_memory_hotplug_init();
2578 acpi_watchdog_init();
2579 acpi_pnp_init();
2580 acpi_int340x_thermal_init();
2581 acpi_amba_init();
2582 acpi_init_lpit();
2583
2584 acpi_scan_add_handler(&generic_device_handler);
2585
2586 /*
2587 * If there is STAO table, check whether it needs to ignore the UART
2588 * device in SPCR table.
2589 */
2590 status = acpi_get_table(ACPI_SIG_STAO, 0,
2591 (struct acpi_table_header **)&stao_ptr);
2592 if (ACPI_SUCCESS(status)) {
2593 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2594 pr_info("STAO Name List not yet supported.\n");
2595
2596 if (stao_ptr->ignore_uart)
2597 acpi_get_spcr_uart_addr();
2598
2599 acpi_put_table((struct acpi_table_header *)stao_ptr);
2600 }
2601
2602 acpi_gpe_apply_masked_gpes();
2603 acpi_update_all_gpes();
2604
2605 /*
2606 * Although we call __add_memory() that is documented to require the
2607 * device_hotplug_lock, it is not necessary here because this is an
2608 * early code when userspace or any other code path cannot trigger
2609 * hotplug/hotunplug operations.
2610 */
2611 mutex_lock(&acpi_scan_lock);
2612 /*
2613 * Enumerate devices in the ACPI namespace.
2614 */
2615 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2616 goto unlock;
2617
2618 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2619 if (!acpi_root)
2620 goto unlock;
2621
2622 /* Fixed feature devices do not exist on HW-reduced platform */
2623 if (!acpi_gbl_reduced_hardware)
2624 acpi_bus_scan_fixed();
2625
2626 acpi_turn_off_unused_power_resources();
2627
2628 acpi_scan_initialized = true;
2629
2630 unlock:
2631 mutex_unlock(&acpi_scan_lock);
2632 }
2633
2634 static struct acpi_probe_entry *ape;
2635 static int acpi_probe_count;
2636 static DEFINE_MUTEX(acpi_probe_mutex);
2637
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2638 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2639 const unsigned long end)
2640 {
2641 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2642 if (!ape->probe_subtbl(header, end))
2643 acpi_probe_count++;
2644
2645 return 0;
2646 }
2647
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2648 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2649 {
2650 int count = 0;
2651
2652 if (acpi_disabled)
2653 return 0;
2654
2655 mutex_lock(&acpi_probe_mutex);
2656 for (ape = ap_head; nr; ape++, nr--) {
2657 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2658 acpi_probe_count = 0;
2659 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2660 count += acpi_probe_count;
2661 } else {
2662 int res;
2663 res = acpi_table_parse(ape->id, ape->probe_table);
2664 if (!res)
2665 count++;
2666 }
2667 }
2668 mutex_unlock(&acpi_probe_mutex);
2669
2670 return count;
2671 }
2672
acpi_table_events_fn(struct work_struct * work)2673 static void acpi_table_events_fn(struct work_struct *work)
2674 {
2675 acpi_scan_lock_acquire();
2676 acpi_bus_scan(ACPI_ROOT_OBJECT);
2677 acpi_scan_lock_release();
2678
2679 kfree(work);
2680 }
2681
acpi_scan_table_notify(void)2682 void acpi_scan_table_notify(void)
2683 {
2684 struct work_struct *work;
2685
2686 if (!acpi_scan_initialized)
2687 return;
2688
2689 work = kmalloc(sizeof(*work), GFP_KERNEL);
2690 if (!work)
2691 return;
2692
2693 INIT_WORK(work, acpi_table_events_fn);
2694 schedule_work(work);
2695 }
2696
acpi_reconfig_notifier_register(struct notifier_block * nb)2697 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2698 {
2699 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2700 }
2701 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2702
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2703 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2704 {
2705 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2706 }
2707 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2708