1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel internal timers
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
8 *
9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
10 * "A Kernel Model for Precision Timekeeping" by Dave Mills
11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12 * serialize accesses to xtime/lost_ticks).
13 * Copyright (C) 1998 Andrea Arcangeli
14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19 */
20
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 #include <linux/sysctl.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/div64.h>
52 #include <asm/timex.h>
53 #include <asm/io.h>
54
55 #include "tick-internal.h"
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/timer.h>
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/timer.h>
61
62 EXPORT_TRACEPOINT_SYMBOL_GPL(hrtimer_expire_entry);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(hrtimer_expire_exit);
64
65 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
66
67 EXPORT_SYMBOL(jiffies_64);
68
69 /*
70 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
71 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
72 * level has a different granularity.
73 *
74 * The level granularity is: LVL_CLK_DIV ^ lvl
75 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
76 *
77 * The array level of a newly armed timer depends on the relative expiry
78 * time. The farther the expiry time is away the higher the array level and
79 * therefor the granularity becomes.
80 *
81 * Contrary to the original timer wheel implementation, which aims for 'exact'
82 * expiry of the timers, this implementation removes the need for recascading
83 * the timers into the lower array levels. The previous 'classic' timer wheel
84 * implementation of the kernel already violated the 'exact' expiry by adding
85 * slack to the expiry time to provide batched expiration. The granularity
86 * levels provide implicit batching.
87 *
88 * This is an optimization of the original timer wheel implementation for the
89 * majority of the timer wheel use cases: timeouts. The vast majority of
90 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
91 * the timeout expires it indicates that normal operation is disturbed, so it
92 * does not matter much whether the timeout comes with a slight delay.
93 *
94 * The only exception to this are networking timers with a small expiry
95 * time. They rely on the granularity. Those fit into the first wheel level,
96 * which has HZ granularity.
97 *
98 * We don't have cascading anymore. timers with a expiry time above the
99 * capacity of the last wheel level are force expired at the maximum timeout
100 * value of the last wheel level. From data sampling we know that the maximum
101 * value observed is 5 days (network connection tracking), so this should not
102 * be an issue.
103 *
104 * The currently chosen array constants values are a good compromise between
105 * array size and granularity.
106 *
107 * This results in the following granularity and range levels:
108 *
109 * HZ 1000 steps
110 * Level Offset Granularity Range
111 * 0 0 1 ms 0 ms - 63 ms
112 * 1 64 8 ms 64 ms - 511 ms
113 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
114 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
115 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
116 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
117 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
118 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
119 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
120 *
121 * HZ 300
122 * Level Offset Granularity Range
123 * 0 0 3 ms 0 ms - 210 ms
124 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
125 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
126 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
127 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
128 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
129 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
130 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
131 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
132 *
133 * HZ 250
134 * Level Offset Granularity Range
135 * 0 0 4 ms 0 ms - 255 ms
136 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
137 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
138 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
139 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
140 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
141 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
142 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
143 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
144 *
145 * HZ 100
146 * Level Offset Granularity Range
147 * 0 0 10 ms 0 ms - 630 ms
148 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
149 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
150 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
151 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
152 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
153 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
154 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
155 */
156
157 /* Clock divisor for the next level */
158 #define LVL_CLK_SHIFT 3
159 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
160 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
161 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
162 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
163
164 /*
165 * The time start value for each level to select the bucket at enqueue
166 * time. We start from the last possible delta of the previous level
167 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
168 */
169 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
170
171 /* Size of each clock level */
172 #define LVL_BITS 6
173 #define LVL_SIZE (1UL << LVL_BITS)
174 #define LVL_MASK (LVL_SIZE - 1)
175 #define LVL_OFFS(n) ((n) * LVL_SIZE)
176
177 /* Level depth */
178 #if HZ > 100
179 # define LVL_DEPTH 9
180 # else
181 # define LVL_DEPTH 8
182 #endif
183
184 /* The cutoff (max. capacity of the wheel) */
185 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
186 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
187
188 /*
189 * The resulting wheel size. If NOHZ is configured we allocate two
190 * wheels so we have a separate storage for the deferrable timers.
191 */
192 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
193
194 #ifdef CONFIG_NO_HZ_COMMON
195 # define NR_BASES 2
196 # define BASE_STD 0
197 # define BASE_DEF 1
198 #else
199 # define NR_BASES 1
200 # define BASE_STD 0
201 # define BASE_DEF 0
202 #endif
203
204 struct timer_base {
205 raw_spinlock_t lock;
206 struct timer_list *running_timer;
207 #ifdef CONFIG_PREEMPT_RT
208 spinlock_t expiry_lock;
209 atomic_t timer_waiters;
210 #endif
211 unsigned long clk;
212 unsigned long next_expiry;
213 unsigned int cpu;
214 bool next_expiry_recalc;
215 bool is_idle;
216 bool timers_pending;
217 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
218 struct hlist_head vectors[WHEEL_SIZE];
219 } ____cacheline_aligned;
220
221 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
222
223 #ifdef CONFIG_NO_HZ_COMMON
224
225 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
226 static DEFINE_MUTEX(timer_keys_mutex);
227
228 static void timer_update_keys(struct work_struct *work);
229 static DECLARE_WORK(timer_update_work, timer_update_keys);
230
231 #ifdef CONFIG_SMP
232 static unsigned int sysctl_timer_migration = 1;
233
234 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
235
timers_update_migration(void)236 static void timers_update_migration(void)
237 {
238 if (sysctl_timer_migration && tick_nohz_active)
239 static_branch_enable(&timers_migration_enabled);
240 else
241 static_branch_disable(&timers_migration_enabled);
242 }
243
244 #ifdef CONFIG_SYSCTL
timer_migration_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)245 static int timer_migration_handler(struct ctl_table *table, int write,
246 void *buffer, size_t *lenp, loff_t *ppos)
247 {
248 int ret;
249
250 mutex_lock(&timer_keys_mutex);
251 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
252 if (!ret && write)
253 timers_update_migration();
254 mutex_unlock(&timer_keys_mutex);
255 return ret;
256 }
257
258 static struct ctl_table timer_sysctl[] = {
259 {
260 .procname = "timer_migration",
261 .data = &sysctl_timer_migration,
262 .maxlen = sizeof(unsigned int),
263 .mode = 0644,
264 .proc_handler = timer_migration_handler,
265 .extra1 = SYSCTL_ZERO,
266 .extra2 = SYSCTL_ONE,
267 },
268 {}
269 };
270
timer_sysctl_init(void)271 static int __init timer_sysctl_init(void)
272 {
273 register_sysctl("kernel", timer_sysctl);
274 return 0;
275 }
276 device_initcall(timer_sysctl_init);
277 #endif /* CONFIG_SYSCTL */
278 #else /* CONFIG_SMP */
timers_update_migration(void)279 static inline void timers_update_migration(void) { }
280 #endif /* !CONFIG_SMP */
281
timer_update_keys(struct work_struct * work)282 static void timer_update_keys(struct work_struct *work)
283 {
284 mutex_lock(&timer_keys_mutex);
285 timers_update_migration();
286 static_branch_enable(&timers_nohz_active);
287 mutex_unlock(&timer_keys_mutex);
288 }
289
timers_update_nohz(void)290 void timers_update_nohz(void)
291 {
292 schedule_work(&timer_update_work);
293 }
294
is_timers_nohz_active(void)295 static inline bool is_timers_nohz_active(void)
296 {
297 return static_branch_unlikely(&timers_nohz_active);
298 }
299 #else
is_timers_nohz_active(void)300 static inline bool is_timers_nohz_active(void) { return false; }
301 #endif /* NO_HZ_COMMON */
302
round_jiffies_common(unsigned long j,int cpu,bool force_up)303 static unsigned long round_jiffies_common(unsigned long j, int cpu,
304 bool force_up)
305 {
306 int rem;
307 unsigned long original = j;
308
309 /*
310 * We don't want all cpus firing their timers at once hitting the
311 * same lock or cachelines, so we skew each extra cpu with an extra
312 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
313 * already did this.
314 * The skew is done by adding 3*cpunr, then round, then subtract this
315 * extra offset again.
316 */
317 j += cpu * 3;
318
319 rem = j % HZ;
320
321 /*
322 * If the target jiffie is just after a whole second (which can happen
323 * due to delays of the timer irq, long irq off times etc etc) then
324 * we should round down to the whole second, not up. Use 1/4th second
325 * as cutoff for this rounding as an extreme upper bound for this.
326 * But never round down if @force_up is set.
327 */
328 if (rem < HZ/4 && !force_up) /* round down */
329 j = j - rem;
330 else /* round up */
331 j = j - rem + HZ;
332
333 /* now that we have rounded, subtract the extra skew again */
334 j -= cpu * 3;
335
336 /*
337 * Make sure j is still in the future. Otherwise return the
338 * unmodified value.
339 */
340 return time_is_after_jiffies(j) ? j : original;
341 }
342
343 /**
344 * __round_jiffies - function to round jiffies to a full second
345 * @j: the time in (absolute) jiffies that should be rounded
346 * @cpu: the processor number on which the timeout will happen
347 *
348 * __round_jiffies() rounds an absolute time in the future (in jiffies)
349 * up or down to (approximately) full seconds. This is useful for timers
350 * for which the exact time they fire does not matter too much, as long as
351 * they fire approximately every X seconds.
352 *
353 * By rounding these timers to whole seconds, all such timers will fire
354 * at the same time, rather than at various times spread out. The goal
355 * of this is to have the CPU wake up less, which saves power.
356 *
357 * The exact rounding is skewed for each processor to avoid all
358 * processors firing at the exact same time, which could lead
359 * to lock contention or spurious cache line bouncing.
360 *
361 * The return value is the rounded version of the @j parameter.
362 */
__round_jiffies(unsigned long j,int cpu)363 unsigned long __round_jiffies(unsigned long j, int cpu)
364 {
365 return round_jiffies_common(j, cpu, false);
366 }
367 EXPORT_SYMBOL_GPL(__round_jiffies);
368
369 /**
370 * __round_jiffies_relative - function to round jiffies to a full second
371 * @j: the time in (relative) jiffies that should be rounded
372 * @cpu: the processor number on which the timeout will happen
373 *
374 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
375 * up or down to (approximately) full seconds. This is useful for timers
376 * for which the exact time they fire does not matter too much, as long as
377 * they fire approximately every X seconds.
378 *
379 * By rounding these timers to whole seconds, all such timers will fire
380 * at the same time, rather than at various times spread out. The goal
381 * of this is to have the CPU wake up less, which saves power.
382 *
383 * The exact rounding is skewed for each processor to avoid all
384 * processors firing at the exact same time, which could lead
385 * to lock contention or spurious cache line bouncing.
386 *
387 * The return value is the rounded version of the @j parameter.
388 */
__round_jiffies_relative(unsigned long j,int cpu)389 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
390 {
391 unsigned long j0 = jiffies;
392
393 /* Use j0 because jiffies might change while we run */
394 return round_jiffies_common(j + j0, cpu, false) - j0;
395 }
396 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
397
398 /**
399 * round_jiffies - function to round jiffies to a full second
400 * @j: the time in (absolute) jiffies that should be rounded
401 *
402 * round_jiffies() rounds an absolute time in the future (in jiffies)
403 * up or down to (approximately) full seconds. This is useful for timers
404 * for which the exact time they fire does not matter too much, as long as
405 * they fire approximately every X seconds.
406 *
407 * By rounding these timers to whole seconds, all such timers will fire
408 * at the same time, rather than at various times spread out. The goal
409 * of this is to have the CPU wake up less, which saves power.
410 *
411 * The return value is the rounded version of the @j parameter.
412 */
round_jiffies(unsigned long j)413 unsigned long round_jiffies(unsigned long j)
414 {
415 return round_jiffies_common(j, raw_smp_processor_id(), false);
416 }
417 EXPORT_SYMBOL_GPL(round_jiffies);
418
419 /**
420 * round_jiffies_relative - function to round jiffies to a full second
421 * @j: the time in (relative) jiffies that should be rounded
422 *
423 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
424 * up or down to (approximately) full seconds. This is useful for timers
425 * for which the exact time they fire does not matter too much, as long as
426 * they fire approximately every X seconds.
427 *
428 * By rounding these timers to whole seconds, all such timers will fire
429 * at the same time, rather than at various times spread out. The goal
430 * of this is to have the CPU wake up less, which saves power.
431 *
432 * The return value is the rounded version of the @j parameter.
433 */
round_jiffies_relative(unsigned long j)434 unsigned long round_jiffies_relative(unsigned long j)
435 {
436 return __round_jiffies_relative(j, raw_smp_processor_id());
437 }
438 EXPORT_SYMBOL_GPL(round_jiffies_relative);
439
440 /**
441 * __round_jiffies_up - function to round jiffies up to a full second
442 * @j: the time in (absolute) jiffies that should be rounded
443 * @cpu: the processor number on which the timeout will happen
444 *
445 * This is the same as __round_jiffies() except that it will never
446 * round down. This is useful for timeouts for which the exact time
447 * of firing does not matter too much, as long as they don't fire too
448 * early.
449 */
__round_jiffies_up(unsigned long j,int cpu)450 unsigned long __round_jiffies_up(unsigned long j, int cpu)
451 {
452 return round_jiffies_common(j, cpu, true);
453 }
454 EXPORT_SYMBOL_GPL(__round_jiffies_up);
455
456 /**
457 * __round_jiffies_up_relative - function to round jiffies up to a full second
458 * @j: the time in (relative) jiffies that should be rounded
459 * @cpu: the processor number on which the timeout will happen
460 *
461 * This is the same as __round_jiffies_relative() except that it will never
462 * round down. This is useful for timeouts for which the exact time
463 * of firing does not matter too much, as long as they don't fire too
464 * early.
465 */
__round_jiffies_up_relative(unsigned long j,int cpu)466 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
467 {
468 unsigned long j0 = jiffies;
469
470 /* Use j0 because jiffies might change while we run */
471 return round_jiffies_common(j + j0, cpu, true) - j0;
472 }
473 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
474
475 /**
476 * round_jiffies_up - function to round jiffies up to a full second
477 * @j: the time in (absolute) jiffies that should be rounded
478 *
479 * This is the same as round_jiffies() except that it will never
480 * round down. This is useful for timeouts for which the exact time
481 * of firing does not matter too much, as long as they don't fire too
482 * early.
483 */
round_jiffies_up(unsigned long j)484 unsigned long round_jiffies_up(unsigned long j)
485 {
486 return round_jiffies_common(j, raw_smp_processor_id(), true);
487 }
488 EXPORT_SYMBOL_GPL(round_jiffies_up);
489
490 /**
491 * round_jiffies_up_relative - function to round jiffies up to a full second
492 * @j: the time in (relative) jiffies that should be rounded
493 *
494 * This is the same as round_jiffies_relative() except that it will never
495 * round down. This is useful for timeouts for which the exact time
496 * of firing does not matter too much, as long as they don't fire too
497 * early.
498 */
round_jiffies_up_relative(unsigned long j)499 unsigned long round_jiffies_up_relative(unsigned long j)
500 {
501 return __round_jiffies_up_relative(j, raw_smp_processor_id());
502 }
503 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
504
505
timer_get_idx(struct timer_list * timer)506 static inline unsigned int timer_get_idx(struct timer_list *timer)
507 {
508 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
509 }
510
timer_set_idx(struct timer_list * timer,unsigned int idx)511 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
512 {
513 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
514 idx << TIMER_ARRAYSHIFT;
515 }
516
517 /*
518 * Helper function to calculate the array index for a given expiry
519 * time.
520 */
calc_index(unsigned long expires,unsigned lvl,unsigned long * bucket_expiry)521 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
522 unsigned long *bucket_expiry)
523 {
524
525 /*
526 * The timer wheel has to guarantee that a timer does not fire
527 * early. Early expiry can happen due to:
528 * - Timer is armed at the edge of a tick
529 * - Truncation of the expiry time in the outer wheel levels
530 *
531 * Round up with level granularity to prevent this.
532 */
533 trace_android_vh_timer_calc_index(lvl, &expires);
534 expires = (expires >> LVL_SHIFT(lvl)) + 1;
535 *bucket_expiry = expires << LVL_SHIFT(lvl);
536 return LVL_OFFS(lvl) + (expires & LVL_MASK);
537 }
538
calc_wheel_index(unsigned long expires,unsigned long clk,unsigned long * bucket_expiry)539 static int calc_wheel_index(unsigned long expires, unsigned long clk,
540 unsigned long *bucket_expiry)
541 {
542 unsigned long delta = expires - clk;
543 unsigned int idx;
544
545 if (delta < LVL_START(1)) {
546 idx = calc_index(expires, 0, bucket_expiry);
547 } else if (delta < LVL_START(2)) {
548 idx = calc_index(expires, 1, bucket_expiry);
549 } else if (delta < LVL_START(3)) {
550 idx = calc_index(expires, 2, bucket_expiry);
551 } else if (delta < LVL_START(4)) {
552 idx = calc_index(expires, 3, bucket_expiry);
553 } else if (delta < LVL_START(5)) {
554 idx = calc_index(expires, 4, bucket_expiry);
555 } else if (delta < LVL_START(6)) {
556 idx = calc_index(expires, 5, bucket_expiry);
557 } else if (delta < LVL_START(7)) {
558 idx = calc_index(expires, 6, bucket_expiry);
559 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
560 idx = calc_index(expires, 7, bucket_expiry);
561 } else if ((long) delta < 0) {
562 idx = clk & LVL_MASK;
563 *bucket_expiry = clk;
564 } else {
565 /*
566 * Force expire obscene large timeouts to expire at the
567 * capacity limit of the wheel.
568 */
569 if (delta >= WHEEL_TIMEOUT_CUTOFF)
570 expires = clk + WHEEL_TIMEOUT_MAX;
571
572 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
573 }
574 return idx;
575 }
576
577 static void
trigger_dyntick_cpu(struct timer_base * base,struct timer_list * timer)578 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
579 {
580 if (!is_timers_nohz_active())
581 return;
582
583 /*
584 * TODO: This wants some optimizing similar to the code below, but we
585 * will do that when we switch from push to pull for deferrable timers.
586 */
587 if (timer->flags & TIMER_DEFERRABLE) {
588 if (tick_nohz_full_cpu(base->cpu))
589 wake_up_nohz_cpu(base->cpu);
590 return;
591 }
592
593 /*
594 * We might have to IPI the remote CPU if the base is idle and the
595 * timer is not deferrable. If the other CPU is on the way to idle
596 * then it can't set base->is_idle as we hold the base lock:
597 */
598 if (base->is_idle)
599 wake_up_nohz_cpu(base->cpu);
600 }
601
602 /*
603 * Enqueue the timer into the hash bucket, mark it pending in
604 * the bitmap, store the index in the timer flags then wake up
605 * the target CPU if needed.
606 */
enqueue_timer(struct timer_base * base,struct timer_list * timer,unsigned int idx,unsigned long bucket_expiry)607 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
608 unsigned int idx, unsigned long bucket_expiry)
609 {
610
611 hlist_add_head(&timer->entry, base->vectors + idx);
612 __set_bit(idx, base->pending_map);
613 timer_set_idx(timer, idx);
614
615 trace_timer_start(timer, timer->expires, timer->flags);
616
617 /*
618 * Check whether this is the new first expiring timer. The
619 * effective expiry time of the timer is required here
620 * (bucket_expiry) instead of timer->expires.
621 */
622 if (time_before(bucket_expiry, base->next_expiry)) {
623 /*
624 * Set the next expiry time and kick the CPU so it
625 * can reevaluate the wheel:
626 */
627 base->next_expiry = bucket_expiry;
628 base->timers_pending = true;
629 base->next_expiry_recalc = false;
630 trigger_dyntick_cpu(base, timer);
631 }
632 }
633
internal_add_timer(struct timer_base * base,struct timer_list * timer)634 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
635 {
636 unsigned long bucket_expiry;
637 unsigned int idx;
638
639 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
640 enqueue_timer(base, timer, idx, bucket_expiry);
641 }
642
643 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
644
645 static const struct debug_obj_descr timer_debug_descr;
646
647 struct timer_hint {
648 void (*function)(struct timer_list *t);
649 long offset;
650 };
651
652 #define TIMER_HINT(fn, container, timr, hintfn) \
653 { \
654 .function = fn, \
655 .offset = offsetof(container, hintfn) - \
656 offsetof(container, timr) \
657 }
658
659 static const struct timer_hint timer_hints[] = {
660 TIMER_HINT(delayed_work_timer_fn,
661 struct delayed_work, timer, work.func),
662 TIMER_HINT(kthread_delayed_work_timer_fn,
663 struct kthread_delayed_work, timer, work.func),
664 };
665
timer_debug_hint(void * addr)666 static void *timer_debug_hint(void *addr)
667 {
668 struct timer_list *timer = addr;
669 int i;
670
671 for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
672 if (timer_hints[i].function == timer->function) {
673 void (**fn)(void) = addr + timer_hints[i].offset;
674
675 return *fn;
676 }
677 }
678
679 return timer->function;
680 }
681
timer_is_static_object(void * addr)682 static bool timer_is_static_object(void *addr)
683 {
684 struct timer_list *timer = addr;
685
686 return (timer->entry.pprev == NULL &&
687 timer->entry.next == TIMER_ENTRY_STATIC);
688 }
689
690 /*
691 * fixup_init is called when:
692 * - an active object is initialized
693 */
timer_fixup_init(void * addr,enum debug_obj_state state)694 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
695 {
696 struct timer_list *timer = addr;
697
698 switch (state) {
699 case ODEBUG_STATE_ACTIVE:
700 del_timer_sync(timer);
701 debug_object_init(timer, &timer_debug_descr);
702 return true;
703 default:
704 return false;
705 }
706 }
707
708 /* Stub timer callback for improperly used timers. */
stub_timer(struct timer_list * unused)709 static void stub_timer(struct timer_list *unused)
710 {
711 WARN_ON(1);
712 }
713
714 /*
715 * fixup_activate is called when:
716 * - an active object is activated
717 * - an unknown non-static object is activated
718 */
timer_fixup_activate(void * addr,enum debug_obj_state state)719 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
720 {
721 struct timer_list *timer = addr;
722
723 switch (state) {
724 case ODEBUG_STATE_NOTAVAILABLE:
725 timer_setup(timer, stub_timer, 0);
726 return true;
727
728 case ODEBUG_STATE_ACTIVE:
729 WARN_ON(1);
730 fallthrough;
731 default:
732 return false;
733 }
734 }
735
736 /*
737 * fixup_free is called when:
738 * - an active object is freed
739 */
timer_fixup_free(void * addr,enum debug_obj_state state)740 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
741 {
742 struct timer_list *timer = addr;
743
744 switch (state) {
745 case ODEBUG_STATE_ACTIVE:
746 del_timer_sync(timer);
747 debug_object_free(timer, &timer_debug_descr);
748 return true;
749 default:
750 return false;
751 }
752 }
753
754 /*
755 * fixup_assert_init is called when:
756 * - an untracked/uninit-ed object is found
757 */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)758 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
759 {
760 struct timer_list *timer = addr;
761
762 switch (state) {
763 case ODEBUG_STATE_NOTAVAILABLE:
764 timer_setup(timer, stub_timer, 0);
765 return true;
766 default:
767 return false;
768 }
769 }
770
771 static const struct debug_obj_descr timer_debug_descr = {
772 .name = "timer_list",
773 .debug_hint = timer_debug_hint,
774 .is_static_object = timer_is_static_object,
775 .fixup_init = timer_fixup_init,
776 .fixup_activate = timer_fixup_activate,
777 .fixup_free = timer_fixup_free,
778 .fixup_assert_init = timer_fixup_assert_init,
779 };
780
debug_timer_init(struct timer_list * timer)781 static inline void debug_timer_init(struct timer_list *timer)
782 {
783 debug_object_init(timer, &timer_debug_descr);
784 }
785
debug_timer_activate(struct timer_list * timer)786 static inline void debug_timer_activate(struct timer_list *timer)
787 {
788 debug_object_activate(timer, &timer_debug_descr);
789 }
790
debug_timer_deactivate(struct timer_list * timer)791 static inline void debug_timer_deactivate(struct timer_list *timer)
792 {
793 debug_object_deactivate(timer, &timer_debug_descr);
794 }
795
debug_timer_assert_init(struct timer_list * timer)796 static inline void debug_timer_assert_init(struct timer_list *timer)
797 {
798 debug_object_assert_init(timer, &timer_debug_descr);
799 }
800
801 static void do_init_timer(struct timer_list *timer,
802 void (*func)(struct timer_list *),
803 unsigned int flags,
804 const char *name, struct lock_class_key *key);
805
init_timer_on_stack_key(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)806 void init_timer_on_stack_key(struct timer_list *timer,
807 void (*func)(struct timer_list *),
808 unsigned int flags,
809 const char *name, struct lock_class_key *key)
810 {
811 debug_object_init_on_stack(timer, &timer_debug_descr);
812 do_init_timer(timer, func, flags, name, key);
813 }
814 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
815
destroy_timer_on_stack(struct timer_list * timer)816 void destroy_timer_on_stack(struct timer_list *timer)
817 {
818 debug_object_free(timer, &timer_debug_descr);
819 }
820 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
821
822 #else
debug_timer_init(struct timer_list * timer)823 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)824 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)825 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)826 static inline void debug_timer_assert_init(struct timer_list *timer) { }
827 #endif
828
debug_init(struct timer_list * timer)829 static inline void debug_init(struct timer_list *timer)
830 {
831 debug_timer_init(timer);
832 trace_timer_init(timer);
833 }
834
debug_deactivate(struct timer_list * timer)835 static inline void debug_deactivate(struct timer_list *timer)
836 {
837 debug_timer_deactivate(timer);
838 trace_timer_cancel(timer);
839 }
840
debug_assert_init(struct timer_list * timer)841 static inline void debug_assert_init(struct timer_list *timer)
842 {
843 debug_timer_assert_init(timer);
844 }
845
do_init_timer(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)846 static void do_init_timer(struct timer_list *timer,
847 void (*func)(struct timer_list *),
848 unsigned int flags,
849 const char *name, struct lock_class_key *key)
850 {
851 timer->entry.pprev = NULL;
852 timer->function = func;
853 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
854 flags &= TIMER_INIT_FLAGS;
855 timer->flags = flags | raw_smp_processor_id();
856 lockdep_init_map(&timer->lockdep_map, name, key, 0);
857 }
858
859 /**
860 * init_timer_key - initialize a timer
861 * @timer: the timer to be initialized
862 * @func: timer callback function
863 * @flags: timer flags
864 * @name: name of the timer
865 * @key: lockdep class key of the fake lock used for tracking timer
866 * sync lock dependencies
867 *
868 * init_timer_key() must be done to a timer prior calling *any* of the
869 * other timer functions.
870 */
init_timer_key(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)871 void init_timer_key(struct timer_list *timer,
872 void (*func)(struct timer_list *), unsigned int flags,
873 const char *name, struct lock_class_key *key)
874 {
875 debug_init(timer);
876 do_init_timer(timer, func, flags, name, key);
877 }
878 EXPORT_SYMBOL(init_timer_key);
879
detach_timer(struct timer_list * timer,bool clear_pending)880 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
881 {
882 struct hlist_node *entry = &timer->entry;
883
884 debug_deactivate(timer);
885
886 __hlist_del(entry);
887 if (clear_pending)
888 entry->pprev = NULL;
889 entry->next = LIST_POISON2;
890 }
891
detach_if_pending(struct timer_list * timer,struct timer_base * base,bool clear_pending)892 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
893 bool clear_pending)
894 {
895 unsigned idx = timer_get_idx(timer);
896
897 if (!timer_pending(timer))
898 return 0;
899
900 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
901 __clear_bit(idx, base->pending_map);
902 base->next_expiry_recalc = true;
903 }
904
905 detach_timer(timer, clear_pending);
906 return 1;
907 }
908
get_timer_cpu_base(u32 tflags,u32 cpu)909 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
910 {
911 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
912
913 /*
914 * If the timer is deferrable and NO_HZ_COMMON is set then we need
915 * to use the deferrable base.
916 */
917 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
918 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
919 return base;
920 }
921
get_timer_this_cpu_base(u32 tflags)922 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
923 {
924 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
925
926 /*
927 * If the timer is deferrable and NO_HZ_COMMON is set then we need
928 * to use the deferrable base.
929 */
930 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
931 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
932 return base;
933 }
934
get_timer_base(u32 tflags)935 static inline struct timer_base *get_timer_base(u32 tflags)
936 {
937 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
938 }
939
940 static inline struct timer_base *
get_target_base(struct timer_base * base,unsigned tflags)941 get_target_base(struct timer_base *base, unsigned tflags)
942 {
943 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
944 if (static_branch_likely(&timers_migration_enabled) &&
945 !(tflags & TIMER_PINNED))
946 return get_timer_cpu_base(tflags, get_nohz_timer_target());
947 #endif
948 return get_timer_this_cpu_base(tflags);
949 }
950
forward_timer_base(struct timer_base * base)951 static inline void forward_timer_base(struct timer_base *base)
952 {
953 unsigned long jnow = READ_ONCE(jiffies);
954
955 /*
956 * No need to forward if we are close enough below jiffies.
957 * Also while executing timers, base->clk is 1 offset ahead
958 * of jiffies to avoid endless requeuing to current jiffies.
959 */
960 if ((long)(jnow - base->clk) < 1)
961 return;
962
963 /*
964 * If the next expiry value is > jiffies, then we fast forward to
965 * jiffies otherwise we forward to the next expiry value.
966 */
967 if (time_after(base->next_expiry, jnow)) {
968 base->clk = jnow;
969 } else {
970 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
971 return;
972 base->clk = base->next_expiry;
973 }
974 }
975
976
977 /*
978 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
979 * that all timers which are tied to this base are locked, and the base itself
980 * is locked too.
981 *
982 * So __run_timers/migrate_timers can safely modify all timers which could
983 * be found in the base->vectors array.
984 *
985 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
986 * to wait until the migration is done.
987 */
lock_timer_base(struct timer_list * timer,unsigned long * flags)988 static struct timer_base *lock_timer_base(struct timer_list *timer,
989 unsigned long *flags)
990 __acquires(timer->base->lock)
991 {
992 for (;;) {
993 struct timer_base *base;
994 u32 tf;
995
996 /*
997 * We need to use READ_ONCE() here, otherwise the compiler
998 * might re-read @tf between the check for TIMER_MIGRATING
999 * and spin_lock().
1000 */
1001 tf = READ_ONCE(timer->flags);
1002
1003 if (!(tf & TIMER_MIGRATING)) {
1004 base = get_timer_base(tf);
1005 raw_spin_lock_irqsave(&base->lock, *flags);
1006 if (timer->flags == tf)
1007 return base;
1008 raw_spin_unlock_irqrestore(&base->lock, *flags);
1009 }
1010 cpu_relax();
1011 }
1012 }
1013
1014 #define MOD_TIMER_PENDING_ONLY 0x01
1015 #define MOD_TIMER_REDUCE 0x02
1016 #define MOD_TIMER_NOTPENDING 0x04
1017
1018 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,unsigned int options)1019 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1020 {
1021 unsigned long clk = 0, flags, bucket_expiry;
1022 struct timer_base *base, *new_base;
1023 unsigned int idx = UINT_MAX;
1024 int ret = 0;
1025
1026 BUG_ON(!timer->function);
1027
1028 /*
1029 * This is a common optimization triggered by the networking code - if
1030 * the timer is re-modified to have the same timeout or ends up in the
1031 * same array bucket then just return:
1032 */
1033 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1034 /*
1035 * The downside of this optimization is that it can result in
1036 * larger granularity than you would get from adding a new
1037 * timer with this expiry.
1038 */
1039 long diff = timer->expires - expires;
1040
1041 if (!diff)
1042 return 1;
1043 if (options & MOD_TIMER_REDUCE && diff <= 0)
1044 return 1;
1045
1046 /*
1047 * We lock timer base and calculate the bucket index right
1048 * here. If the timer ends up in the same bucket, then we
1049 * just update the expiry time and avoid the whole
1050 * dequeue/enqueue dance.
1051 */
1052 base = lock_timer_base(timer, &flags);
1053 forward_timer_base(base);
1054
1055 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1056 time_before_eq(timer->expires, expires)) {
1057 ret = 1;
1058 goto out_unlock;
1059 }
1060
1061 clk = base->clk;
1062 idx = calc_wheel_index(expires, clk, &bucket_expiry);
1063
1064 /*
1065 * Retrieve and compare the array index of the pending
1066 * timer. If it matches set the expiry to the new value so a
1067 * subsequent call will exit in the expires check above.
1068 */
1069 if (idx == timer_get_idx(timer)) {
1070 if (!(options & MOD_TIMER_REDUCE))
1071 timer->expires = expires;
1072 else if (time_after(timer->expires, expires))
1073 timer->expires = expires;
1074 ret = 1;
1075 goto out_unlock;
1076 }
1077 } else {
1078 base = lock_timer_base(timer, &flags);
1079 forward_timer_base(base);
1080 }
1081
1082 ret = detach_if_pending(timer, base, false);
1083 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1084 goto out_unlock;
1085
1086 new_base = get_target_base(base, timer->flags);
1087
1088 if (base != new_base) {
1089 /*
1090 * We are trying to schedule the timer on the new base.
1091 * However we can't change timer's base while it is running,
1092 * otherwise del_timer_sync() can't detect that the timer's
1093 * handler yet has not finished. This also guarantees that the
1094 * timer is serialized wrt itself.
1095 */
1096 if (likely(base->running_timer != timer)) {
1097 /* See the comment in lock_timer_base() */
1098 timer->flags |= TIMER_MIGRATING;
1099
1100 raw_spin_unlock(&base->lock);
1101 base = new_base;
1102 raw_spin_lock(&base->lock);
1103 WRITE_ONCE(timer->flags,
1104 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1105 forward_timer_base(base);
1106 }
1107 }
1108
1109 debug_timer_activate(timer);
1110
1111 timer->expires = expires;
1112 /*
1113 * If 'idx' was calculated above and the base time did not advance
1114 * between calculating 'idx' and possibly switching the base, only
1115 * enqueue_timer() is required. Otherwise we need to (re)calculate
1116 * the wheel index via internal_add_timer().
1117 */
1118 if (idx != UINT_MAX && clk == base->clk)
1119 enqueue_timer(base, timer, idx, bucket_expiry);
1120 else
1121 internal_add_timer(base, timer);
1122
1123 out_unlock:
1124 raw_spin_unlock_irqrestore(&base->lock, flags);
1125
1126 return ret;
1127 }
1128
1129 /**
1130 * mod_timer_pending - modify a pending timer's timeout
1131 * @timer: the pending timer to be modified
1132 * @expires: new timeout in jiffies
1133 *
1134 * mod_timer_pending() is the same for pending timers as mod_timer(),
1135 * but will not re-activate and modify already deleted timers.
1136 *
1137 * It is useful for unserialized use of timers.
1138 */
mod_timer_pending(struct timer_list * timer,unsigned long expires)1139 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1140 {
1141 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1142 }
1143 EXPORT_SYMBOL(mod_timer_pending);
1144
1145 /**
1146 * mod_timer - modify a timer's timeout
1147 * @timer: the timer to be modified
1148 * @expires: new timeout in jiffies
1149 *
1150 * mod_timer() is a more efficient way to update the expire field of an
1151 * active timer (if the timer is inactive it will be activated)
1152 *
1153 * mod_timer(timer, expires) is equivalent to:
1154 *
1155 * del_timer(timer); timer->expires = expires; add_timer(timer);
1156 *
1157 * Note that if there are multiple unserialized concurrent users of the
1158 * same timer, then mod_timer() is the only safe way to modify the timeout,
1159 * since add_timer() cannot modify an already running timer.
1160 *
1161 * The function returns whether it has modified a pending timer or not.
1162 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1163 * active timer returns 1.)
1164 */
mod_timer(struct timer_list * timer,unsigned long expires)1165 int mod_timer(struct timer_list *timer, unsigned long expires)
1166 {
1167 return __mod_timer(timer, expires, 0);
1168 }
1169 EXPORT_SYMBOL(mod_timer);
1170
1171 /**
1172 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1173 * @timer: The timer to be modified
1174 * @expires: New timeout in jiffies
1175 *
1176 * timer_reduce() is very similar to mod_timer(), except that it will only
1177 * modify a running timer if that would reduce the expiration time (it will
1178 * start a timer that isn't running).
1179 */
timer_reduce(struct timer_list * timer,unsigned long expires)1180 int timer_reduce(struct timer_list *timer, unsigned long expires)
1181 {
1182 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1183 }
1184 EXPORT_SYMBOL(timer_reduce);
1185
1186 /**
1187 * add_timer - start a timer
1188 * @timer: the timer to be added
1189 *
1190 * The kernel will do a ->function(@timer) callback from the
1191 * timer interrupt at the ->expires point in the future. The
1192 * current time is 'jiffies'.
1193 *
1194 * The timer's ->expires, ->function fields must be set prior calling this
1195 * function.
1196 *
1197 * Timers with an ->expires field in the past will be executed in the next
1198 * timer tick.
1199 */
add_timer(struct timer_list * timer)1200 void add_timer(struct timer_list *timer)
1201 {
1202 BUG_ON(timer_pending(timer));
1203 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1204 }
1205 EXPORT_SYMBOL(add_timer);
1206
1207 /**
1208 * add_timer_on - start a timer on a particular CPU
1209 * @timer: the timer to be added
1210 * @cpu: the CPU to start it on
1211 *
1212 * This is not very scalable on SMP. Double adds are not possible.
1213 */
add_timer_on(struct timer_list * timer,int cpu)1214 void add_timer_on(struct timer_list *timer, int cpu)
1215 {
1216 struct timer_base *new_base, *base;
1217 unsigned long flags;
1218
1219 BUG_ON(timer_pending(timer) || !timer->function);
1220
1221 new_base = get_timer_cpu_base(timer->flags, cpu);
1222
1223 /*
1224 * If @timer was on a different CPU, it should be migrated with the
1225 * old base locked to prevent other operations proceeding with the
1226 * wrong base locked. See lock_timer_base().
1227 */
1228 base = lock_timer_base(timer, &flags);
1229 if (base != new_base) {
1230 timer->flags |= TIMER_MIGRATING;
1231
1232 raw_spin_unlock(&base->lock);
1233 base = new_base;
1234 raw_spin_lock(&base->lock);
1235 WRITE_ONCE(timer->flags,
1236 (timer->flags & ~TIMER_BASEMASK) | cpu);
1237 }
1238 forward_timer_base(base);
1239
1240 debug_timer_activate(timer);
1241 internal_add_timer(base, timer);
1242 raw_spin_unlock_irqrestore(&base->lock, flags);
1243 }
1244 EXPORT_SYMBOL_GPL(add_timer_on);
1245
1246 /**
1247 * del_timer - deactivate a timer.
1248 * @timer: the timer to be deactivated
1249 *
1250 * del_timer() deactivates a timer - this works on both active and inactive
1251 * timers.
1252 *
1253 * The function returns whether it has deactivated a pending timer or not.
1254 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1255 * active timer returns 1.)
1256 */
del_timer(struct timer_list * timer)1257 int del_timer(struct timer_list *timer)
1258 {
1259 struct timer_base *base;
1260 unsigned long flags;
1261 int ret = 0;
1262
1263 debug_assert_init(timer);
1264
1265 if (timer_pending(timer)) {
1266 base = lock_timer_base(timer, &flags);
1267 ret = detach_if_pending(timer, base, true);
1268 raw_spin_unlock_irqrestore(&base->lock, flags);
1269 }
1270
1271 return ret;
1272 }
1273 EXPORT_SYMBOL(del_timer);
1274
1275 /**
1276 * try_to_del_timer_sync - Try to deactivate a timer
1277 * @timer: timer to delete
1278 *
1279 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1280 * exit the timer is not queued and the handler is not running on any CPU.
1281 */
try_to_del_timer_sync(struct timer_list * timer)1282 int try_to_del_timer_sync(struct timer_list *timer)
1283 {
1284 struct timer_base *base;
1285 unsigned long flags;
1286 int ret = -1;
1287
1288 debug_assert_init(timer);
1289
1290 base = lock_timer_base(timer, &flags);
1291
1292 if (base->running_timer != timer)
1293 ret = detach_if_pending(timer, base, true);
1294
1295 raw_spin_unlock_irqrestore(&base->lock, flags);
1296
1297 return ret;
1298 }
1299 EXPORT_SYMBOL(try_to_del_timer_sync);
1300
1301 #ifdef CONFIG_PREEMPT_RT
timer_base_init_expiry_lock(struct timer_base * base)1302 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1303 {
1304 spin_lock_init(&base->expiry_lock);
1305 }
1306
timer_base_lock_expiry(struct timer_base * base)1307 static inline void timer_base_lock_expiry(struct timer_base *base)
1308 {
1309 spin_lock(&base->expiry_lock);
1310 }
1311
timer_base_unlock_expiry(struct timer_base * base)1312 static inline void timer_base_unlock_expiry(struct timer_base *base)
1313 {
1314 spin_unlock(&base->expiry_lock);
1315 }
1316
1317 /*
1318 * The counterpart to del_timer_wait_running().
1319 *
1320 * If there is a waiter for base->expiry_lock, then it was waiting for the
1321 * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1322 * the waiter to acquire the lock and make progress.
1323 */
timer_sync_wait_running(struct timer_base * base)1324 static void timer_sync_wait_running(struct timer_base *base)
1325 {
1326 if (atomic_read(&base->timer_waiters)) {
1327 raw_spin_unlock_irq(&base->lock);
1328 spin_unlock(&base->expiry_lock);
1329 spin_lock(&base->expiry_lock);
1330 raw_spin_lock_irq(&base->lock);
1331 }
1332 }
1333
1334 /*
1335 * This function is called on PREEMPT_RT kernels when the fast path
1336 * deletion of a timer failed because the timer callback function was
1337 * running.
1338 *
1339 * This prevents priority inversion, if the softirq thread on a remote CPU
1340 * got preempted, and it prevents a life lock when the task which tries to
1341 * delete a timer preempted the softirq thread running the timer callback
1342 * function.
1343 */
del_timer_wait_running(struct timer_list * timer)1344 static void del_timer_wait_running(struct timer_list *timer)
1345 {
1346 u32 tf;
1347
1348 tf = READ_ONCE(timer->flags);
1349 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1350 struct timer_base *base = get_timer_base(tf);
1351
1352 /*
1353 * Mark the base as contended and grab the expiry lock,
1354 * which is held by the softirq across the timer
1355 * callback. Drop the lock immediately so the softirq can
1356 * expire the next timer. In theory the timer could already
1357 * be running again, but that's more than unlikely and just
1358 * causes another wait loop.
1359 */
1360 atomic_inc(&base->timer_waiters);
1361 spin_lock_bh(&base->expiry_lock);
1362 atomic_dec(&base->timer_waiters);
1363 spin_unlock_bh(&base->expiry_lock);
1364 }
1365 }
1366 #else
timer_base_init_expiry_lock(struct timer_base * base)1367 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
timer_base_lock_expiry(struct timer_base * base)1368 static inline void timer_base_lock_expiry(struct timer_base *base) { }
timer_base_unlock_expiry(struct timer_base * base)1369 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
timer_sync_wait_running(struct timer_base * base)1370 static inline void timer_sync_wait_running(struct timer_base *base) { }
del_timer_wait_running(struct timer_list * timer)1371 static inline void del_timer_wait_running(struct timer_list *timer) { }
1372 #endif
1373
1374 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1375 /**
1376 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1377 * @timer: the timer to be deactivated
1378 *
1379 * This function only differs from del_timer() on SMP: besides deactivating
1380 * the timer it also makes sure the handler has finished executing on other
1381 * CPUs.
1382 *
1383 * Synchronization rules: Callers must prevent restarting of the timer,
1384 * otherwise this function is meaningless. It must not be called from
1385 * interrupt contexts unless the timer is an irqsafe one. The caller must
1386 * not hold locks which would prevent completion of the timer's
1387 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1388 * timer is not queued and the handler is not running on any CPU.
1389 *
1390 * Note: For !irqsafe timers, you must not hold locks that are held in
1391 * interrupt context while calling this function. Even if the lock has
1392 * nothing to do with the timer in question. Here's why::
1393 *
1394 * CPU0 CPU1
1395 * ---- ----
1396 * <SOFTIRQ>
1397 * call_timer_fn();
1398 * base->running_timer = mytimer;
1399 * spin_lock_irq(somelock);
1400 * <IRQ>
1401 * spin_lock(somelock);
1402 * del_timer_sync(mytimer);
1403 * while (base->running_timer == mytimer);
1404 *
1405 * Now del_timer_sync() will never return and never release somelock.
1406 * The interrupt on the other CPU is waiting to grab somelock but
1407 * it has interrupted the softirq that CPU0 is waiting to finish.
1408 *
1409 * The function returns whether it has deactivated a pending timer or not.
1410 */
del_timer_sync(struct timer_list * timer)1411 int del_timer_sync(struct timer_list *timer)
1412 {
1413 int ret;
1414
1415 #ifdef CONFIG_LOCKDEP
1416 unsigned long flags;
1417
1418 /*
1419 * If lockdep gives a backtrace here, please reference
1420 * the synchronization rules above.
1421 */
1422 local_irq_save(flags);
1423 lock_map_acquire(&timer->lockdep_map);
1424 lock_map_release(&timer->lockdep_map);
1425 local_irq_restore(flags);
1426 #endif
1427 /*
1428 * don't use it in hardirq context, because it
1429 * could lead to deadlock.
1430 */
1431 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1432
1433 /*
1434 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1435 * del_timer_wait_running().
1436 */
1437 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1438 lockdep_assert_preemption_enabled();
1439
1440 do {
1441 ret = try_to_del_timer_sync(timer);
1442
1443 if (unlikely(ret < 0)) {
1444 del_timer_wait_running(timer);
1445 cpu_relax();
1446 }
1447 } while (ret < 0);
1448
1449 return ret;
1450 }
1451 EXPORT_SYMBOL(del_timer_sync);
1452 #endif
1453
call_timer_fn(struct timer_list * timer,void (* fn)(struct timer_list *),unsigned long baseclk)1454 static void call_timer_fn(struct timer_list *timer,
1455 void (*fn)(struct timer_list *),
1456 unsigned long baseclk)
1457 {
1458 int count = preempt_count();
1459
1460 #ifdef CONFIG_LOCKDEP
1461 /*
1462 * It is permissible to free the timer from inside the
1463 * function that is called from it, this we need to take into
1464 * account for lockdep too. To avoid bogus "held lock freed"
1465 * warnings as well as problems when looking into
1466 * timer->lockdep_map, make a copy and use that here.
1467 */
1468 struct lockdep_map lockdep_map;
1469
1470 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1471 #endif
1472 /*
1473 * Couple the lock chain with the lock chain at
1474 * del_timer_sync() by acquiring the lock_map around the fn()
1475 * call here and in del_timer_sync().
1476 */
1477 lock_map_acquire(&lockdep_map);
1478
1479 trace_timer_expire_entry(timer, baseclk);
1480 fn(timer);
1481 trace_timer_expire_exit(timer);
1482
1483 lock_map_release(&lockdep_map);
1484
1485 if (count != preempt_count()) {
1486 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1487 fn, count, preempt_count());
1488 /*
1489 * Restore the preempt count. That gives us a decent
1490 * chance to survive and extract information. If the
1491 * callback kept a lock held, bad luck, but not worse
1492 * than the BUG() we had.
1493 */
1494 preempt_count_set(count);
1495 }
1496 }
1497
expire_timers(struct timer_base * base,struct hlist_head * head)1498 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1499 {
1500 /*
1501 * This value is required only for tracing. base->clk was
1502 * incremented directly before expire_timers was called. But expiry
1503 * is related to the old base->clk value.
1504 */
1505 unsigned long baseclk = base->clk - 1;
1506
1507 while (!hlist_empty(head)) {
1508 struct timer_list *timer;
1509 void (*fn)(struct timer_list *);
1510
1511 timer = hlist_entry(head->first, struct timer_list, entry);
1512
1513 base->running_timer = timer;
1514 detach_timer(timer, true);
1515
1516 fn = timer->function;
1517
1518 if (timer->flags & TIMER_IRQSAFE) {
1519 raw_spin_unlock(&base->lock);
1520 call_timer_fn(timer, fn, baseclk);
1521 raw_spin_lock(&base->lock);
1522 base->running_timer = NULL;
1523 } else {
1524 raw_spin_unlock_irq(&base->lock);
1525 call_timer_fn(timer, fn, baseclk);
1526 raw_spin_lock_irq(&base->lock);
1527 base->running_timer = NULL;
1528 timer_sync_wait_running(base);
1529 }
1530 }
1531 }
1532
collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1533 static int collect_expired_timers(struct timer_base *base,
1534 struct hlist_head *heads)
1535 {
1536 unsigned long clk = base->clk = base->next_expiry;
1537 struct hlist_head *vec;
1538 int i, levels = 0;
1539 unsigned int idx;
1540
1541 for (i = 0; i < LVL_DEPTH; i++) {
1542 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1543
1544 if (__test_and_clear_bit(idx, base->pending_map)) {
1545 vec = base->vectors + idx;
1546 hlist_move_list(vec, heads++);
1547 levels++;
1548 }
1549 /* Is it time to look at the next level? */
1550 if (clk & LVL_CLK_MASK)
1551 break;
1552 /* Shift clock for the next level granularity */
1553 clk >>= LVL_CLK_SHIFT;
1554 }
1555 return levels;
1556 }
1557
1558 /*
1559 * Find the next pending bucket of a level. Search from level start (@offset)
1560 * + @clk upwards and if nothing there, search from start of the level
1561 * (@offset) up to @offset + clk.
1562 */
next_pending_bucket(struct timer_base * base,unsigned offset,unsigned clk)1563 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1564 unsigned clk)
1565 {
1566 unsigned pos, start = offset + clk;
1567 unsigned end = offset + LVL_SIZE;
1568
1569 pos = find_next_bit(base->pending_map, end, start);
1570 if (pos < end)
1571 return pos - start;
1572
1573 pos = find_next_bit(base->pending_map, start, offset);
1574 return pos < start ? pos + LVL_SIZE - start : -1;
1575 }
1576
1577 /*
1578 * Search the first expiring timer in the various clock levels. Caller must
1579 * hold base->lock.
1580 */
__next_timer_interrupt(struct timer_base * base)1581 static unsigned long __next_timer_interrupt(struct timer_base *base)
1582 {
1583 unsigned long clk, next, adj;
1584 unsigned lvl, offset = 0;
1585
1586 next = base->clk + NEXT_TIMER_MAX_DELTA;
1587 clk = base->clk;
1588 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1589 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1590 unsigned long lvl_clk = clk & LVL_CLK_MASK;
1591
1592 if (pos >= 0) {
1593 unsigned long tmp = clk + (unsigned long) pos;
1594
1595 tmp <<= LVL_SHIFT(lvl);
1596 if (time_before(tmp, next))
1597 next = tmp;
1598
1599 /*
1600 * If the next expiration happens before we reach
1601 * the next level, no need to check further.
1602 */
1603 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1604 break;
1605 }
1606 /*
1607 * Clock for the next level. If the current level clock lower
1608 * bits are zero, we look at the next level as is. If not we
1609 * need to advance it by one because that's going to be the
1610 * next expiring bucket in that level. base->clk is the next
1611 * expiring jiffie. So in case of:
1612 *
1613 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1614 * 0 0 0 0 0 0
1615 *
1616 * we have to look at all levels @index 0. With
1617 *
1618 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1619 * 0 0 0 0 0 2
1620 *
1621 * LVL0 has the next expiring bucket @index 2. The upper
1622 * levels have the next expiring bucket @index 1.
1623 *
1624 * In case that the propagation wraps the next level the same
1625 * rules apply:
1626 *
1627 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1628 * 0 0 0 0 F 2
1629 *
1630 * So after looking at LVL0 we get:
1631 *
1632 * LVL5 LVL4 LVL3 LVL2 LVL1
1633 * 0 0 0 1 0
1634 *
1635 * So no propagation from LVL1 to LVL2 because that happened
1636 * with the add already, but then we need to propagate further
1637 * from LVL2 to LVL3.
1638 *
1639 * So the simple check whether the lower bits of the current
1640 * level are 0 or not is sufficient for all cases.
1641 */
1642 adj = lvl_clk ? 1 : 0;
1643 clk >>= LVL_CLK_SHIFT;
1644 clk += adj;
1645 }
1646
1647 base->next_expiry_recalc = false;
1648 base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1649
1650 return next;
1651 }
1652
1653 #ifdef CONFIG_NO_HZ_COMMON
1654 /*
1655 * Check, if the next hrtimer event is before the next timer wheel
1656 * event:
1657 */
cmp_next_hrtimer_event(u64 basem,u64 expires)1658 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1659 {
1660 u64 nextevt = hrtimer_get_next_event();
1661
1662 /*
1663 * If high resolution timers are enabled
1664 * hrtimer_get_next_event() returns KTIME_MAX.
1665 */
1666 if (expires <= nextevt)
1667 return expires;
1668
1669 /*
1670 * If the next timer is already expired, return the tick base
1671 * time so the tick is fired immediately.
1672 */
1673 if (nextevt <= basem)
1674 return basem;
1675
1676 /*
1677 * Round up to the next jiffie. High resolution timers are
1678 * off, so the hrtimers are expired in the tick and we need to
1679 * make sure that this tick really expires the timer to avoid
1680 * a ping pong of the nohz stop code.
1681 *
1682 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1683 */
1684 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1685 }
1686
1687 /**
1688 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1689 * @basej: base time jiffies
1690 * @basem: base time clock monotonic
1691 *
1692 * Returns the tick aligned clock monotonic time of the next pending
1693 * timer or KTIME_MAX if no timer is pending.
1694 */
get_next_timer_interrupt(unsigned long basej,u64 basem)1695 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1696 {
1697 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1698 u64 expires = KTIME_MAX;
1699 unsigned long nextevt;
1700
1701 /*
1702 * Pretend that there is no timer pending if the cpu is offline.
1703 * Possible pending timers will be migrated later to an active cpu.
1704 */
1705 if (cpu_is_offline(smp_processor_id()))
1706 return expires;
1707
1708 raw_spin_lock(&base->lock);
1709 if (base->next_expiry_recalc)
1710 base->next_expiry = __next_timer_interrupt(base);
1711 nextevt = base->next_expiry;
1712
1713 /*
1714 * We have a fresh next event. Check whether we can forward the
1715 * base. We can only do that when @basej is past base->clk
1716 * otherwise we might rewind base->clk.
1717 */
1718 if (time_after(basej, base->clk)) {
1719 if (time_after(nextevt, basej))
1720 base->clk = basej;
1721 else if (time_after(nextevt, base->clk))
1722 base->clk = nextevt;
1723 }
1724
1725 if (time_before_eq(nextevt, basej)) {
1726 expires = basem;
1727 base->is_idle = false;
1728 } else {
1729 if (base->timers_pending)
1730 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1731 /*
1732 * If we expect to sleep more than a tick, mark the base idle.
1733 * Also the tick is stopped so any added timer must forward
1734 * the base clk itself to keep granularity small. This idle
1735 * logic is only maintained for the BASE_STD base, deferrable
1736 * timers may still see large granularity skew (by design).
1737 */
1738 if ((expires - basem) > TICK_NSEC)
1739 base->is_idle = true;
1740 }
1741 raw_spin_unlock(&base->lock);
1742
1743 return cmp_next_hrtimer_event(basem, expires);
1744 }
1745
1746 /**
1747 * timer_clear_idle - Clear the idle state of the timer base
1748 *
1749 * Called with interrupts disabled
1750 */
timer_clear_idle(void)1751 void timer_clear_idle(void)
1752 {
1753 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1754
1755 /*
1756 * We do this unlocked. The worst outcome is a remote enqueue sending
1757 * a pointless IPI, but taking the lock would just make the window for
1758 * sending the IPI a few instructions smaller for the cost of taking
1759 * the lock in the exit from idle path.
1760 */
1761 base->is_idle = false;
1762 }
1763 #endif
1764
1765 /**
1766 * __run_timers - run all expired timers (if any) on this CPU.
1767 * @base: the timer vector to be processed.
1768 */
__run_timers(struct timer_base * base)1769 static inline void __run_timers(struct timer_base *base)
1770 {
1771 struct hlist_head heads[LVL_DEPTH];
1772 int levels;
1773
1774 if (time_before(jiffies, base->next_expiry))
1775 return;
1776
1777 timer_base_lock_expiry(base);
1778 raw_spin_lock_irq(&base->lock);
1779
1780 while (time_after_eq(jiffies, base->clk) &&
1781 time_after_eq(jiffies, base->next_expiry)) {
1782 levels = collect_expired_timers(base, heads);
1783 /*
1784 * The two possible reasons for not finding any expired
1785 * timer at this clk are that all matching timers have been
1786 * dequeued or no timer has been queued since
1787 * base::next_expiry was set to base::clk +
1788 * NEXT_TIMER_MAX_DELTA.
1789 */
1790 WARN_ON_ONCE(!levels && !base->next_expiry_recalc
1791 && base->timers_pending);
1792 base->clk++;
1793 base->next_expiry = __next_timer_interrupt(base);
1794
1795 while (levels--)
1796 expire_timers(base, heads + levels);
1797 }
1798 raw_spin_unlock_irq(&base->lock);
1799 timer_base_unlock_expiry(base);
1800 }
1801
1802 /*
1803 * This function runs timers and the timer-tq in bottom half context.
1804 */
run_timer_softirq(struct softirq_action * h)1805 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1806 {
1807 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1808
1809 __run_timers(base);
1810 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1811 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1812 }
1813
1814 /*
1815 * Called by the local, per-CPU timer interrupt on SMP.
1816 */
run_local_timers(void)1817 static void run_local_timers(void)
1818 {
1819 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1820
1821 hrtimer_run_queues();
1822 /* Raise the softirq only if required. */
1823 if (time_before(jiffies, base->next_expiry)) {
1824 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1825 return;
1826 /* CPU is awake, so check the deferrable base. */
1827 base++;
1828 if (time_before(jiffies, base->next_expiry))
1829 return;
1830 }
1831 raise_softirq(TIMER_SOFTIRQ);
1832 }
1833
1834 /*
1835 * Called from the timer interrupt handler to charge one tick to the current
1836 * process. user_tick is 1 if the tick is user time, 0 for system.
1837 */
update_process_times(int user_tick)1838 void update_process_times(int user_tick)
1839 {
1840 struct task_struct *p = current;
1841
1842 /* Note: this timer irq context must be accounted for as well. */
1843 account_process_tick(p, user_tick);
1844 run_local_timers();
1845 rcu_sched_clock_irq(user_tick);
1846 #ifdef CONFIG_IRQ_WORK
1847 if (in_irq())
1848 irq_work_tick();
1849 #endif
1850 scheduler_tick();
1851 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1852 run_posix_cpu_timers();
1853 }
1854
1855 /*
1856 * Since schedule_timeout()'s timer is defined on the stack, it must store
1857 * the target task on the stack as well.
1858 */
1859 struct process_timer {
1860 struct timer_list timer;
1861 struct task_struct *task;
1862 };
1863
process_timeout(struct timer_list * t)1864 static void process_timeout(struct timer_list *t)
1865 {
1866 struct process_timer *timeout = from_timer(timeout, t, timer);
1867
1868 wake_up_process(timeout->task);
1869 }
1870
1871 /**
1872 * schedule_timeout - sleep until timeout
1873 * @timeout: timeout value in jiffies
1874 *
1875 * Make the current task sleep until @timeout jiffies have elapsed.
1876 * The function behavior depends on the current task state
1877 * (see also set_current_state() description):
1878 *
1879 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1880 * at all. That happens because sched_submit_work() does nothing for
1881 * tasks in %TASK_RUNNING state.
1882 *
1883 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1884 * pass before the routine returns unless the current task is explicitly
1885 * woken up, (e.g. by wake_up_process()).
1886 *
1887 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1888 * delivered to the current task or the current task is explicitly woken
1889 * up.
1890 *
1891 * The current task state is guaranteed to be %TASK_RUNNING when this
1892 * routine returns.
1893 *
1894 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1895 * the CPU away without a bound on the timeout. In this case the return
1896 * value will be %MAX_SCHEDULE_TIMEOUT.
1897 *
1898 * Returns 0 when the timer has expired otherwise the remaining time in
1899 * jiffies will be returned. In all cases the return value is guaranteed
1900 * to be non-negative.
1901 */
schedule_timeout(signed long timeout)1902 signed long __sched schedule_timeout(signed long timeout)
1903 {
1904 struct process_timer timer;
1905 unsigned long expire;
1906
1907 switch (timeout)
1908 {
1909 case MAX_SCHEDULE_TIMEOUT:
1910 /*
1911 * These two special cases are useful to be comfortable
1912 * in the caller. Nothing more. We could take
1913 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1914 * but I' d like to return a valid offset (>=0) to allow
1915 * the caller to do everything it want with the retval.
1916 */
1917 schedule();
1918 goto out;
1919 default:
1920 /*
1921 * Another bit of PARANOID. Note that the retval will be
1922 * 0 since no piece of kernel is supposed to do a check
1923 * for a negative retval of schedule_timeout() (since it
1924 * should never happens anyway). You just have the printk()
1925 * that will tell you if something is gone wrong and where.
1926 */
1927 if (timeout < 0) {
1928 printk(KERN_ERR "schedule_timeout: wrong timeout "
1929 "value %lx\n", timeout);
1930 dump_stack();
1931 __set_current_state(TASK_RUNNING);
1932 goto out;
1933 }
1934 }
1935
1936 expire = timeout + jiffies;
1937
1938 timer.task = current;
1939 timer_setup_on_stack(&timer.timer, process_timeout, 0);
1940 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1941 schedule();
1942 del_singleshot_timer_sync(&timer.timer);
1943
1944 /* Remove the timer from the object tracker */
1945 destroy_timer_on_stack(&timer.timer);
1946
1947 timeout = expire - jiffies;
1948
1949 out:
1950 return timeout < 0 ? 0 : timeout;
1951 }
1952 EXPORT_SYMBOL(schedule_timeout);
1953
1954 /*
1955 * We can use __set_current_state() here because schedule_timeout() calls
1956 * schedule() unconditionally.
1957 */
schedule_timeout_interruptible(signed long timeout)1958 signed long __sched schedule_timeout_interruptible(signed long timeout)
1959 {
1960 __set_current_state(TASK_INTERRUPTIBLE);
1961 return schedule_timeout(timeout);
1962 }
1963 EXPORT_SYMBOL(schedule_timeout_interruptible);
1964
schedule_timeout_killable(signed long timeout)1965 signed long __sched schedule_timeout_killable(signed long timeout)
1966 {
1967 __set_current_state(TASK_KILLABLE);
1968 return schedule_timeout(timeout);
1969 }
1970 EXPORT_SYMBOL(schedule_timeout_killable);
1971
schedule_timeout_uninterruptible(signed long timeout)1972 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1973 {
1974 __set_current_state(TASK_UNINTERRUPTIBLE);
1975 return schedule_timeout(timeout);
1976 }
1977 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1978
1979 /*
1980 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1981 * to load average.
1982 */
schedule_timeout_idle(signed long timeout)1983 signed long __sched schedule_timeout_idle(signed long timeout)
1984 {
1985 __set_current_state(TASK_IDLE);
1986 return schedule_timeout(timeout);
1987 }
1988 EXPORT_SYMBOL(schedule_timeout_idle);
1989
1990 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct timer_base * new_base,struct hlist_head * head)1991 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1992 {
1993 struct timer_list *timer;
1994 int cpu = new_base->cpu;
1995
1996 while (!hlist_empty(head)) {
1997 timer = hlist_entry(head->first, struct timer_list, entry);
1998 detach_timer(timer, false);
1999 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2000 internal_add_timer(new_base, timer);
2001 }
2002 }
2003
timers_prepare_cpu(unsigned int cpu)2004 int timers_prepare_cpu(unsigned int cpu)
2005 {
2006 struct timer_base *base;
2007 int b;
2008
2009 for (b = 0; b < NR_BASES; b++) {
2010 base = per_cpu_ptr(&timer_bases[b], cpu);
2011 base->clk = jiffies;
2012 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2013 base->next_expiry_recalc = false;
2014 base->timers_pending = false;
2015 base->is_idle = false;
2016 }
2017 return 0;
2018 }
2019
timers_dead_cpu(unsigned int cpu)2020 int timers_dead_cpu(unsigned int cpu)
2021 {
2022 struct timer_base *old_base;
2023 struct timer_base *new_base;
2024 int b, i;
2025
2026 BUG_ON(cpu_online(cpu));
2027
2028 for (b = 0; b < NR_BASES; b++) {
2029 old_base = per_cpu_ptr(&timer_bases[b], cpu);
2030 new_base = get_cpu_ptr(&timer_bases[b]);
2031 /*
2032 * The caller is globally serialized and nobody else
2033 * takes two locks at once, deadlock is not possible.
2034 */
2035 raw_spin_lock_irq(&new_base->lock);
2036 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2037
2038 /*
2039 * The current CPUs base clock might be stale. Update it
2040 * before moving the timers over.
2041 */
2042 forward_timer_base(new_base);
2043
2044 BUG_ON(old_base->running_timer);
2045
2046 for (i = 0; i < WHEEL_SIZE; i++)
2047 migrate_timer_list(new_base, old_base->vectors + i);
2048
2049 raw_spin_unlock(&old_base->lock);
2050 raw_spin_unlock_irq(&new_base->lock);
2051 put_cpu_ptr(&timer_bases);
2052 }
2053 return 0;
2054 }
2055
2056 #endif /* CONFIG_HOTPLUG_CPU */
2057
init_timer_cpu(int cpu)2058 static void __init init_timer_cpu(int cpu)
2059 {
2060 struct timer_base *base;
2061 int i;
2062
2063 for (i = 0; i < NR_BASES; i++) {
2064 base = per_cpu_ptr(&timer_bases[i], cpu);
2065 base->cpu = cpu;
2066 raw_spin_lock_init(&base->lock);
2067 base->clk = jiffies;
2068 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2069 timer_base_init_expiry_lock(base);
2070 }
2071 }
2072
init_timer_cpus(void)2073 static void __init init_timer_cpus(void)
2074 {
2075 int cpu;
2076
2077 for_each_possible_cpu(cpu)
2078 init_timer_cpu(cpu);
2079 }
2080
init_timers(void)2081 void __init init_timers(void)
2082 {
2083 init_timer_cpus();
2084 posix_cputimers_init_work();
2085 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2086 }
2087
2088 /**
2089 * msleep - sleep safely even with waitqueue interruptions
2090 * @msecs: Time in milliseconds to sleep for
2091 */
msleep(unsigned int msecs)2092 void msleep(unsigned int msecs)
2093 {
2094 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2095
2096 while (timeout)
2097 timeout = schedule_timeout_uninterruptible(timeout);
2098 }
2099
2100 EXPORT_SYMBOL(msleep);
2101
2102 /**
2103 * msleep_interruptible - sleep waiting for signals
2104 * @msecs: Time in milliseconds to sleep for
2105 */
msleep_interruptible(unsigned int msecs)2106 unsigned long msleep_interruptible(unsigned int msecs)
2107 {
2108 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2109
2110 while (timeout && !signal_pending(current))
2111 timeout = schedule_timeout_interruptible(timeout);
2112 return jiffies_to_msecs(timeout);
2113 }
2114
2115 EXPORT_SYMBOL(msleep_interruptible);
2116
2117 /**
2118 * usleep_range_state - Sleep for an approximate time in a given state
2119 * @min: Minimum time in usecs to sleep
2120 * @max: Maximum time in usecs to sleep
2121 * @state: State of the current task that will be while sleeping
2122 *
2123 * In non-atomic context where the exact wakeup time is flexible, use
2124 * usleep_range_state() instead of udelay(). The sleep improves responsiveness
2125 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2126 * power usage by allowing hrtimers to take advantage of an already-
2127 * scheduled interrupt instead of scheduling a new one just for this sleep.
2128 */
usleep_range_state(unsigned long min,unsigned long max,unsigned int state)2129 void __sched usleep_range_state(unsigned long min, unsigned long max,
2130 unsigned int state)
2131 {
2132 ktime_t exp = ktime_add_us(ktime_get(), min);
2133 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2134
2135 for (;;) {
2136 __set_current_state(state);
2137 /* Do not return before the requested sleep time has elapsed */
2138 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2139 break;
2140 }
2141 }
2142 EXPORT_SYMBOL(usleep_range_state);
2143