1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic waiting primitives.
4 *
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 */
7 #include <trace/hooks/sched.h>
8
__init_waitqueue_head(struct wait_queue_head * wq_head,const char * name,struct lock_class_key * key)9 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
10 {
11 spin_lock_init(&wq_head->lock);
12 lockdep_set_class_and_name(&wq_head->lock, key, name);
13 INIT_LIST_HEAD(&wq_head->head);
14 }
15
16 EXPORT_SYMBOL(__init_waitqueue_head);
17
add_wait_queue(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)18 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
19 {
20 unsigned long flags;
21
22 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
23 spin_lock_irqsave(&wq_head->lock, flags);
24 __add_wait_queue(wq_head, wq_entry);
25 spin_unlock_irqrestore(&wq_head->lock, flags);
26 }
27 EXPORT_SYMBOL(add_wait_queue);
28
add_wait_queue_exclusive(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)29 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
30 {
31 unsigned long flags;
32
33 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
34 spin_lock_irqsave(&wq_head->lock, flags);
35 __add_wait_queue_entry_tail(wq_head, wq_entry);
36 spin_unlock_irqrestore(&wq_head->lock, flags);
37 }
38 EXPORT_SYMBOL(add_wait_queue_exclusive);
39
add_wait_queue_priority(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)40 void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
41 {
42 unsigned long flags;
43
44 wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
45 spin_lock_irqsave(&wq_head->lock, flags);
46 __add_wait_queue(wq_head, wq_entry);
47 spin_unlock_irqrestore(&wq_head->lock, flags);
48 }
49 EXPORT_SYMBOL_GPL(add_wait_queue_priority);
50
remove_wait_queue(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)51 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&wq_head->lock, flags);
56 __remove_wait_queue(wq_head, wq_entry);
57 spin_unlock_irqrestore(&wq_head->lock, flags);
58 }
59 EXPORT_SYMBOL(remove_wait_queue);
60
61 /*
62 * Scan threshold to break wait queue walk.
63 * This allows a waker to take a break from holding the
64 * wait queue lock during the wait queue walk.
65 */
66 #define WAITQUEUE_WALK_BREAK_CNT 64
67
68 /*
69 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
70 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
71 * number) then we wake that number of exclusive tasks, and potentially all
72 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
73 * the list and any non-exclusive tasks will be woken first. A priority task
74 * may be at the head of the list, and can consume the event without any other
75 * tasks being woken.
76 *
77 * There are circumstances in which we can try to wake a task which has already
78 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
79 * zero in this (rare) case, and we handle it by continuing to scan the queue.
80 */
__wake_up_common(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,int wake_flags,void * key,wait_queue_entry_t * bookmark)81 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
82 int nr_exclusive, int wake_flags, void *key,
83 wait_queue_entry_t *bookmark)
84 {
85 wait_queue_entry_t *curr, *next;
86 int cnt = 0;
87
88 lockdep_assert_held(&wq_head->lock);
89
90 if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
91 curr = list_next_entry(bookmark, entry);
92
93 list_del(&bookmark->entry);
94 bookmark->flags = 0;
95 } else
96 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
97
98 if (&curr->entry == &wq_head->head)
99 return nr_exclusive;
100
101 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
102 unsigned flags = curr->flags;
103 int ret;
104
105 if (flags & WQ_FLAG_BOOKMARK)
106 continue;
107
108 ret = curr->func(curr, mode, wake_flags, key);
109 if (ret < 0)
110 break;
111 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
112 break;
113
114 if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
115 (&next->entry != &wq_head->head)) {
116 bookmark->flags = WQ_FLAG_BOOKMARK;
117 list_add_tail(&bookmark->entry, &next->entry);
118 break;
119 }
120 }
121
122 return nr_exclusive;
123 }
124
__wake_up_common_lock(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,int wake_flags,void * key)125 static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
126 int nr_exclusive, int wake_flags, void *key)
127 {
128 unsigned long flags;
129 wait_queue_entry_t bookmark;
130 int remaining = nr_exclusive;
131
132 bookmark.flags = 0;
133 bookmark.private = NULL;
134 bookmark.func = NULL;
135 INIT_LIST_HEAD(&bookmark.entry);
136
137 do {
138 spin_lock_irqsave(&wq_head->lock, flags);
139 remaining = __wake_up_common(wq_head, mode, remaining,
140 wake_flags, key, &bookmark);
141 spin_unlock_irqrestore(&wq_head->lock, flags);
142 } while (bookmark.flags & WQ_FLAG_BOOKMARK);
143
144 return nr_exclusive - remaining;
145 }
146
147 /**
148 * __wake_up - wake up threads blocked on a waitqueue.
149 * @wq_head: the waitqueue
150 * @mode: which threads
151 * @nr_exclusive: how many wake-one or wake-many threads to wake up
152 * @key: is directly passed to the wakeup function
153 *
154 * If this function wakes up a task, it executes a full memory barrier
155 * before accessing the task state. Returns the number of exclusive
156 * tasks that were awaken.
157 */
__wake_up(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,void * key)158 int __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
159 int nr_exclusive, void *key)
160 {
161 return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
162 }
163 EXPORT_SYMBOL(__wake_up);
164
165 /*
166 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
167 */
__wake_up_locked(struct wait_queue_head * wq_head,unsigned int mode,int nr)168 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
169 {
170 __wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
171 }
172 EXPORT_SYMBOL_GPL(__wake_up_locked);
173
__wake_up_locked_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)174 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
175 {
176 __wake_up_common(wq_head, mode, 1, 0, key, NULL);
177 }
178 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
179
__wake_up_locked_key_bookmark(struct wait_queue_head * wq_head,unsigned int mode,void * key,wait_queue_entry_t * bookmark)180 void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
181 unsigned int mode, void *key, wait_queue_entry_t *bookmark)
182 {
183 __wake_up_common(wq_head, mode, 1, 0, key, bookmark);
184 }
185 EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
186
187 /**
188 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
189 * @wq_head: the waitqueue
190 * @mode: which threads
191 * @key: opaque value to be passed to wakeup targets
192 *
193 * The sync wakeup differs that the waker knows that it will schedule
194 * away soon, so while the target thread will be woken up, it will not
195 * be migrated to another CPU - ie. the two threads are 'synchronized'
196 * with each other. This can prevent needless bouncing between CPUs.
197 *
198 * On UP it can prevent extra preemption.
199 *
200 * If this function wakes up a task, it executes a full memory barrier before
201 * accessing the task state.
202 */
__wake_up_sync_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)203 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
204 void *key)
205 {
206 int wake_flags = WF_SYNC;
207
208 if (unlikely(!wq_head))
209 return;
210
211 trace_android_vh_set_wake_flags(&wake_flags, &mode);
212 __wake_up_common_lock(wq_head, mode, 1, wake_flags, key);
213 }
214 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
215
216 /**
217 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
218 * @wq_head: the waitqueue
219 * @mode: which threads
220 * @key: opaque value to be passed to wakeup targets
221 *
222 * The sync wakeup differs in that the waker knows that it will schedule
223 * away soon, so while the target thread will be woken up, it will not
224 * be migrated to another CPU - ie. the two threads are 'synchronized'
225 * with each other. This can prevent needless bouncing between CPUs.
226 *
227 * On UP it can prevent extra preemption.
228 *
229 * If this function wakes up a task, it executes a full memory barrier before
230 * accessing the task state.
231 */
__wake_up_locked_sync_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)232 void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
233 unsigned int mode, void *key)
234 {
235 __wake_up_common(wq_head, mode, 1, WF_SYNC, key, NULL);
236 }
237 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
238
239 /*
240 * __wake_up_sync - see __wake_up_sync_key()
241 */
__wake_up_sync(struct wait_queue_head * wq_head,unsigned int mode)242 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
243 {
244 __wake_up_sync_key(wq_head, mode, NULL);
245 }
246 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
247
__wake_up_pollfree(struct wait_queue_head * wq_head)248 void __wake_up_pollfree(struct wait_queue_head *wq_head)
249 {
250 __wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE));
251 /* POLLFREE must have cleared the queue. */
252 WARN_ON_ONCE(waitqueue_active(wq_head));
253 }
254
255 /*
256 * Note: we use "set_current_state()" _after_ the wait-queue add,
257 * because we need a memory barrier there on SMP, so that any
258 * wake-function that tests for the wait-queue being active
259 * will be guaranteed to see waitqueue addition _or_ subsequent
260 * tests in this thread will see the wakeup having taken place.
261 *
262 * The spin_unlock() itself is semi-permeable and only protects
263 * one way (it only protects stuff inside the critical region and
264 * stops them from bleeding out - it would still allow subsequent
265 * loads to move into the critical region).
266 */
267 void
prepare_to_wait(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)268 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
269 {
270 unsigned long flags;
271
272 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
273 spin_lock_irqsave(&wq_head->lock, flags);
274 if (list_empty(&wq_entry->entry))
275 __add_wait_queue(wq_head, wq_entry);
276 set_current_state(state);
277 spin_unlock_irqrestore(&wq_head->lock, flags);
278 }
279 EXPORT_SYMBOL(prepare_to_wait);
280
281 /* Returns true if we are the first waiter in the queue, false otherwise. */
282 bool
prepare_to_wait_exclusive(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)283 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
284 {
285 unsigned long flags;
286 bool was_empty = false;
287
288 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
289 spin_lock_irqsave(&wq_head->lock, flags);
290 if (list_empty(&wq_entry->entry)) {
291 was_empty = list_empty(&wq_head->head);
292 __add_wait_queue_entry_tail(wq_head, wq_entry);
293 }
294 set_current_state(state);
295 spin_unlock_irqrestore(&wq_head->lock, flags);
296 return was_empty;
297 }
298 EXPORT_SYMBOL(prepare_to_wait_exclusive);
299
init_wait_entry(struct wait_queue_entry * wq_entry,int flags)300 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
301 {
302 wq_entry->flags = flags;
303 wq_entry->private = current;
304 wq_entry->func = autoremove_wake_function;
305 INIT_LIST_HEAD(&wq_entry->entry);
306 }
307 EXPORT_SYMBOL(init_wait_entry);
308
prepare_to_wait_event(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)309 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
310 {
311 unsigned long flags;
312 long ret = 0;
313
314 spin_lock_irqsave(&wq_head->lock, flags);
315 if (signal_pending_state(state, current)) {
316 /*
317 * Exclusive waiter must not fail if it was selected by wakeup,
318 * it should "consume" the condition we were waiting for.
319 *
320 * The caller will recheck the condition and return success if
321 * we were already woken up, we can not miss the event because
322 * wakeup locks/unlocks the same wq_head->lock.
323 *
324 * But we need to ensure that set-condition + wakeup after that
325 * can't see us, it should wake up another exclusive waiter if
326 * we fail.
327 */
328 list_del_init(&wq_entry->entry);
329 ret = -ERESTARTSYS;
330 } else {
331 if (list_empty(&wq_entry->entry)) {
332 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
333 __add_wait_queue_entry_tail(wq_head, wq_entry);
334 else
335 __add_wait_queue(wq_head, wq_entry);
336 }
337 set_current_state(state);
338 }
339 spin_unlock_irqrestore(&wq_head->lock, flags);
340
341 return ret;
342 }
343 EXPORT_SYMBOL(prepare_to_wait_event);
344
345 /*
346 * Note! These two wait functions are entered with the
347 * wait-queue lock held (and interrupts off in the _irq
348 * case), so there is no race with testing the wakeup
349 * condition in the caller before they add the wait
350 * entry to the wake queue.
351 */
do_wait_intr(wait_queue_head_t * wq,wait_queue_entry_t * wait)352 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
353 {
354 if (likely(list_empty(&wait->entry)))
355 __add_wait_queue_entry_tail(wq, wait);
356
357 set_current_state(TASK_INTERRUPTIBLE);
358 if (signal_pending(current))
359 return -ERESTARTSYS;
360
361 spin_unlock(&wq->lock);
362 schedule();
363 spin_lock(&wq->lock);
364
365 return 0;
366 }
367 EXPORT_SYMBOL(do_wait_intr);
368
do_wait_intr_irq(wait_queue_head_t * wq,wait_queue_entry_t * wait)369 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
370 {
371 if (likely(list_empty(&wait->entry)))
372 __add_wait_queue_entry_tail(wq, wait);
373
374 set_current_state(TASK_INTERRUPTIBLE);
375 if (signal_pending(current))
376 return -ERESTARTSYS;
377
378 spin_unlock_irq(&wq->lock);
379 schedule();
380 spin_lock_irq(&wq->lock);
381
382 return 0;
383 }
384 EXPORT_SYMBOL(do_wait_intr_irq);
385
386 /**
387 * finish_wait - clean up after waiting in a queue
388 * @wq_head: waitqueue waited on
389 * @wq_entry: wait descriptor
390 *
391 * Sets current thread back to running state and removes
392 * the wait descriptor from the given waitqueue if still
393 * queued.
394 */
finish_wait(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)395 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
396 {
397 unsigned long flags;
398
399 __set_current_state(TASK_RUNNING);
400 /*
401 * We can check for list emptiness outside the lock
402 * IFF:
403 * - we use the "careful" check that verifies both
404 * the next and prev pointers, so that there cannot
405 * be any half-pending updates in progress on other
406 * CPU's that we haven't seen yet (and that might
407 * still change the stack area.
408 * and
409 * - all other users take the lock (ie we can only
410 * have _one_ other CPU that looks at or modifies
411 * the list).
412 */
413 if (!list_empty_careful(&wq_entry->entry)) {
414 spin_lock_irqsave(&wq_head->lock, flags);
415 list_del_init(&wq_entry->entry);
416 spin_unlock_irqrestore(&wq_head->lock, flags);
417 }
418 }
419 EXPORT_SYMBOL(finish_wait);
420
autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned mode,int sync,void * key)421 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
422 {
423 int ret = default_wake_function(wq_entry, mode, sync, key);
424
425 if (ret)
426 list_del_init_careful(&wq_entry->entry);
427
428 return ret;
429 }
430 EXPORT_SYMBOL(autoremove_wake_function);
431
432 /*
433 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
434 *
435 * add_wait_queue(&wq_head, &wait);
436 * for (;;) {
437 * if (condition)
438 * break;
439 *
440 * // in wait_woken() // in woken_wake_function()
441 *
442 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN;
443 * smp_mb(); // A try_to_wake_up():
444 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier>
445 * schedule() if (p->state & mode)
446 * p->state = TASK_RUNNING; p->state = TASK_RUNNING;
447 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~
448 * smp_mb(); // B condition = true;
449 * } smp_mb(); // C
450 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN;
451 */
wait_woken(struct wait_queue_entry * wq_entry,unsigned mode,long timeout)452 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
453 {
454 /*
455 * The below executes an smp_mb(), which matches with the full barrier
456 * executed by the try_to_wake_up() in woken_wake_function() such that
457 * either we see the store to wq_entry->flags in woken_wake_function()
458 * or woken_wake_function() sees our store to current->state.
459 */
460 set_current_state(mode); /* A */
461 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !kthread_should_stop_or_park())
462 timeout = schedule_timeout(timeout);
463 __set_current_state(TASK_RUNNING);
464
465 /*
466 * The below executes an smp_mb(), which matches with the smp_mb() (C)
467 * in woken_wake_function() such that either we see the wait condition
468 * being true or the store to wq_entry->flags in woken_wake_function()
469 * follows ours in the coherence order.
470 */
471 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
472
473 return timeout;
474 }
475 EXPORT_SYMBOL(wait_woken);
476
woken_wake_function(struct wait_queue_entry * wq_entry,unsigned mode,int sync,void * key)477 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
478 {
479 /* Pairs with the smp_store_mb() in wait_woken(). */
480 smp_mb(); /* C */
481 wq_entry->flags |= WQ_FLAG_WOKEN;
482
483 return default_wake_function(wq_entry, mode, sync, key);
484 }
485 EXPORT_SYMBOL(woken_wake_function);
486