1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4 */
5
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/interrupt.h>
9 #include <crypto/internal/hash.h>
10
11 #include "common.h"
12 #include "core.h"
13 #include "sha.h"
14
15 struct qce_sha_saved_state {
16 u8 pending_buf[QCE_SHA_MAX_BLOCKSIZE];
17 u8 partial_digest[QCE_SHA_MAX_DIGESTSIZE];
18 __be32 byte_count[2];
19 unsigned int pending_buflen;
20 unsigned int flags;
21 u64 count;
22 bool first_blk;
23 };
24
25 static LIST_HEAD(ahash_algs);
26
27 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
28 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
29 };
30
31 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
32 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
33 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
34 };
35
qce_ahash_done(void * data)36 static void qce_ahash_done(void *data)
37 {
38 struct crypto_async_request *async_req = data;
39 struct ahash_request *req = ahash_request_cast(async_req);
40 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
41 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
42 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
43 struct qce_device *qce = tmpl->qce;
44 struct qce_result_dump *result = qce->dma.result_buf;
45 unsigned int digestsize = crypto_ahash_digestsize(ahash);
46 int error;
47 u32 status;
48
49 error = qce_dma_terminate_all(&qce->dma);
50 if (error)
51 dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
52
53 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
54 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
55
56 memcpy(rctx->digest, result->auth_iv, digestsize);
57 if (req->result && rctx->last_blk)
58 memcpy(req->result, result->auth_iv, digestsize);
59
60 rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
61 rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
62
63 error = qce_check_status(qce, &status);
64 if (error < 0)
65 dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
66
67 req->src = rctx->src_orig;
68 req->nbytes = rctx->nbytes_orig;
69 rctx->last_blk = false;
70 rctx->first_blk = false;
71
72 qce->async_req_done(tmpl->qce, error);
73 }
74
qce_ahash_async_req_handle(struct crypto_async_request * async_req)75 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
76 {
77 struct ahash_request *req = ahash_request_cast(async_req);
78 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
79 struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
80 struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
81 struct qce_device *qce = tmpl->qce;
82 unsigned long flags = rctx->flags;
83 int ret;
84
85 if (IS_SHA_HMAC(flags)) {
86 rctx->authkey = ctx->authkey;
87 rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
88 } else if (IS_CMAC(flags)) {
89 rctx->authkey = ctx->authkey;
90 rctx->authklen = AES_KEYSIZE_128;
91 }
92
93 rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
94 if (rctx->src_nents < 0) {
95 dev_err(qce->dev, "Invalid numbers of src SG.\n");
96 return rctx->src_nents;
97 }
98
99 ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
100 if (!ret)
101 return -EIO;
102
103 sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
104
105 ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
106 if (!ret) {
107 ret = -EIO;
108 goto error_unmap_src;
109 }
110
111 ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
112 &rctx->result_sg, 1, qce_ahash_done, async_req);
113 if (ret)
114 goto error_unmap_dst;
115
116 qce_dma_issue_pending(&qce->dma);
117
118 ret = qce_start(async_req, tmpl->crypto_alg_type);
119 if (ret)
120 goto error_terminate;
121
122 return 0;
123
124 error_terminate:
125 qce_dma_terminate_all(&qce->dma);
126 error_unmap_dst:
127 dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
128 error_unmap_src:
129 dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
130 return ret;
131 }
132
qce_ahash_init(struct ahash_request * req)133 static int qce_ahash_init(struct ahash_request *req)
134 {
135 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
136 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
137 const u32 *std_iv = tmpl->std_iv;
138
139 memset(rctx, 0, sizeof(*rctx));
140 rctx->first_blk = true;
141 rctx->last_blk = false;
142 rctx->flags = tmpl->alg_flags;
143 memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
144
145 return 0;
146 }
147
qce_ahash_export(struct ahash_request * req,void * out)148 static int qce_ahash_export(struct ahash_request *req, void *out)
149 {
150 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
151 struct qce_sha_saved_state *export_state = out;
152
153 memcpy(export_state->pending_buf, rctx->buf, rctx->buflen);
154 memcpy(export_state->partial_digest, rctx->digest, sizeof(rctx->digest));
155 export_state->byte_count[0] = rctx->byte_count[0];
156 export_state->byte_count[1] = rctx->byte_count[1];
157 export_state->pending_buflen = rctx->buflen;
158 export_state->count = rctx->count;
159 export_state->first_blk = rctx->first_blk;
160 export_state->flags = rctx->flags;
161
162 return 0;
163 }
164
qce_ahash_import(struct ahash_request * req,const void * in)165 static int qce_ahash_import(struct ahash_request *req, const void *in)
166 {
167 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
168 const struct qce_sha_saved_state *import_state = in;
169
170 memset(rctx, 0, sizeof(*rctx));
171 rctx->count = import_state->count;
172 rctx->buflen = import_state->pending_buflen;
173 rctx->first_blk = import_state->first_blk;
174 rctx->flags = import_state->flags;
175 rctx->byte_count[0] = import_state->byte_count[0];
176 rctx->byte_count[1] = import_state->byte_count[1];
177 memcpy(rctx->buf, import_state->pending_buf, rctx->buflen);
178 memcpy(rctx->digest, import_state->partial_digest, sizeof(rctx->digest));
179
180 return 0;
181 }
182
qce_ahash_update(struct ahash_request * req)183 static int qce_ahash_update(struct ahash_request *req)
184 {
185 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
186 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
187 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
188 struct qce_device *qce = tmpl->qce;
189 struct scatterlist *sg_last, *sg;
190 unsigned int total, len;
191 unsigned int hash_later;
192 unsigned int nbytes;
193 unsigned int blocksize;
194
195 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
196 rctx->count += req->nbytes;
197
198 /* check for buffer from previous updates and append it */
199 total = req->nbytes + rctx->buflen;
200
201 if (total <= blocksize) {
202 scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
203 0, req->nbytes, 0);
204 rctx->buflen += req->nbytes;
205 return 0;
206 }
207
208 /* save the original req structure fields */
209 rctx->src_orig = req->src;
210 rctx->nbytes_orig = req->nbytes;
211
212 /*
213 * if we have data from previous update copy them on buffer. The old
214 * data will be combined with current request bytes.
215 */
216 if (rctx->buflen)
217 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
218
219 /* calculate how many bytes will be hashed later */
220 hash_later = total % blocksize;
221
222 /*
223 * At this point, there is more than one block size of data. If
224 * the available data to transfer is exactly a multiple of block
225 * size, save the last block to be transferred in qce_ahash_final
226 * (with the last block bit set) if this is indeed the end of data
227 * stream. If not this saved block will be transferred as part of
228 * next update. If this block is not held back and if this is
229 * indeed the end of data stream, the digest obtained will be wrong
230 * since qce_ahash_final will see that rctx->buflen is 0 and return
231 * doing nothing which in turn means that a digest will not be
232 * copied to the destination result buffer. qce_ahash_final cannot
233 * be made to alter this behavior and allowed to proceed if
234 * rctx->buflen is 0 because the crypto engine BAM does not allow
235 * for zero length transfers.
236 */
237 if (!hash_later)
238 hash_later = blocksize;
239
240 if (hash_later) {
241 unsigned int src_offset = req->nbytes - hash_later;
242 scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
243 hash_later, 0);
244 }
245
246 /* here nbytes is multiple of blocksize */
247 nbytes = total - hash_later;
248
249 len = rctx->buflen;
250 sg = sg_last = req->src;
251
252 while (len < nbytes && sg) {
253 if (len + sg_dma_len(sg) > nbytes)
254 break;
255 len += sg_dma_len(sg);
256 sg_last = sg;
257 sg = sg_next(sg);
258 }
259
260 if (!sg_last)
261 return -EINVAL;
262
263 if (rctx->buflen) {
264 sg_init_table(rctx->sg, 2);
265 sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
266 sg_chain(rctx->sg, 2, req->src);
267 req->src = rctx->sg;
268 }
269
270 req->nbytes = nbytes;
271 rctx->buflen = hash_later;
272
273 return qce->async_req_enqueue(tmpl->qce, &req->base);
274 }
275
qce_ahash_final(struct ahash_request * req)276 static int qce_ahash_final(struct ahash_request *req)
277 {
278 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
279 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
280 struct qce_device *qce = tmpl->qce;
281
282 if (!rctx->buflen) {
283 if (tmpl->hash_zero)
284 memcpy(req->result, tmpl->hash_zero,
285 tmpl->alg.ahash.halg.digestsize);
286 return 0;
287 }
288
289 rctx->last_blk = true;
290
291 rctx->src_orig = req->src;
292 rctx->nbytes_orig = req->nbytes;
293
294 memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
295 sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
296
297 req->src = rctx->sg;
298 req->nbytes = rctx->buflen;
299
300 return qce->async_req_enqueue(tmpl->qce, &req->base);
301 }
302
qce_ahash_digest(struct ahash_request * req)303 static int qce_ahash_digest(struct ahash_request *req)
304 {
305 struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
306 struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
307 struct qce_device *qce = tmpl->qce;
308 int ret;
309
310 ret = qce_ahash_init(req);
311 if (ret)
312 return ret;
313
314 rctx->src_orig = req->src;
315 rctx->nbytes_orig = req->nbytes;
316 rctx->first_blk = true;
317 rctx->last_blk = true;
318
319 if (!rctx->nbytes_orig) {
320 if (tmpl->hash_zero)
321 memcpy(req->result, tmpl->hash_zero,
322 tmpl->alg.ahash.halg.digestsize);
323 return 0;
324 }
325
326 return qce->async_req_enqueue(tmpl->qce, &req->base);
327 }
328
qce_ahash_hmac_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)329 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
330 unsigned int keylen)
331 {
332 unsigned int digestsize = crypto_ahash_digestsize(tfm);
333 struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
334 struct crypto_wait wait;
335 struct ahash_request *req;
336 struct scatterlist sg;
337 unsigned int blocksize;
338 struct crypto_ahash *ahash_tfm;
339 u8 *buf;
340 int ret;
341 const char *alg_name;
342
343 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
344 memset(ctx->authkey, 0, sizeof(ctx->authkey));
345
346 if (keylen <= blocksize) {
347 memcpy(ctx->authkey, key, keylen);
348 return 0;
349 }
350
351 if (digestsize == SHA1_DIGEST_SIZE)
352 alg_name = "sha1-qce";
353 else if (digestsize == SHA256_DIGEST_SIZE)
354 alg_name = "sha256-qce";
355 else
356 return -EINVAL;
357
358 ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
359 if (IS_ERR(ahash_tfm))
360 return PTR_ERR(ahash_tfm);
361
362 req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
363 if (!req) {
364 ret = -ENOMEM;
365 goto err_free_ahash;
366 }
367
368 crypto_init_wait(&wait);
369 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
370 crypto_req_done, &wait);
371 crypto_ahash_clear_flags(ahash_tfm, ~0);
372
373 buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
374 if (!buf) {
375 ret = -ENOMEM;
376 goto err_free_req;
377 }
378
379 memcpy(buf, key, keylen);
380 sg_init_one(&sg, buf, keylen);
381 ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
382
383 ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
384
385 kfree(buf);
386 err_free_req:
387 ahash_request_free(req);
388 err_free_ahash:
389 crypto_free_ahash(ahash_tfm);
390 return ret;
391 }
392
qce_ahash_cra_init(struct crypto_tfm * tfm)393 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
394 {
395 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
396 struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
397
398 crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
399 memset(ctx, 0, sizeof(*ctx));
400 return 0;
401 }
402
403 struct qce_ahash_def {
404 unsigned long flags;
405 const char *name;
406 const char *drv_name;
407 unsigned int digestsize;
408 unsigned int blocksize;
409 unsigned int statesize;
410 const u32 *std_iv;
411 };
412
413 static const struct qce_ahash_def ahash_def[] = {
414 {
415 .flags = QCE_HASH_SHA1,
416 .name = "sha1",
417 .drv_name = "sha1-qce",
418 .digestsize = SHA1_DIGEST_SIZE,
419 .blocksize = SHA1_BLOCK_SIZE,
420 .statesize = sizeof(struct qce_sha_saved_state),
421 .std_iv = std_iv_sha1,
422 },
423 {
424 .flags = QCE_HASH_SHA256,
425 .name = "sha256",
426 .drv_name = "sha256-qce",
427 .digestsize = SHA256_DIGEST_SIZE,
428 .blocksize = SHA256_BLOCK_SIZE,
429 .statesize = sizeof(struct qce_sha_saved_state),
430 .std_iv = std_iv_sha256,
431 },
432 {
433 .flags = QCE_HASH_SHA1_HMAC,
434 .name = "hmac(sha1)",
435 .drv_name = "hmac-sha1-qce",
436 .digestsize = SHA1_DIGEST_SIZE,
437 .blocksize = SHA1_BLOCK_SIZE,
438 .statesize = sizeof(struct qce_sha_saved_state),
439 .std_iv = std_iv_sha1,
440 },
441 {
442 .flags = QCE_HASH_SHA256_HMAC,
443 .name = "hmac(sha256)",
444 .drv_name = "hmac-sha256-qce",
445 .digestsize = SHA256_DIGEST_SIZE,
446 .blocksize = SHA256_BLOCK_SIZE,
447 .statesize = sizeof(struct qce_sha_saved_state),
448 .std_iv = std_iv_sha256,
449 },
450 };
451
qce_ahash_register_one(const struct qce_ahash_def * def,struct qce_device * qce)452 static int qce_ahash_register_one(const struct qce_ahash_def *def,
453 struct qce_device *qce)
454 {
455 struct qce_alg_template *tmpl;
456 struct ahash_alg *alg;
457 struct crypto_alg *base;
458 int ret;
459
460 tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
461 if (!tmpl)
462 return -ENOMEM;
463
464 tmpl->std_iv = def->std_iv;
465
466 alg = &tmpl->alg.ahash;
467 alg->init = qce_ahash_init;
468 alg->update = qce_ahash_update;
469 alg->final = qce_ahash_final;
470 alg->digest = qce_ahash_digest;
471 alg->export = qce_ahash_export;
472 alg->import = qce_ahash_import;
473 if (IS_SHA_HMAC(def->flags))
474 alg->setkey = qce_ahash_hmac_setkey;
475 alg->halg.digestsize = def->digestsize;
476 alg->halg.statesize = def->statesize;
477
478 if (IS_SHA1(def->flags))
479 tmpl->hash_zero = sha1_zero_message_hash;
480 else if (IS_SHA256(def->flags))
481 tmpl->hash_zero = sha256_zero_message_hash;
482
483 base = &alg->halg.base;
484 base->cra_blocksize = def->blocksize;
485 base->cra_priority = 300;
486 base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
487 base->cra_ctxsize = sizeof(struct qce_sha_ctx);
488 base->cra_alignmask = 0;
489 base->cra_module = THIS_MODULE;
490 base->cra_init = qce_ahash_cra_init;
491
492 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
493 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
494 def->drv_name);
495
496 INIT_LIST_HEAD(&tmpl->entry);
497 tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
498 tmpl->alg_flags = def->flags;
499 tmpl->qce = qce;
500
501 ret = crypto_register_ahash(alg);
502 if (ret) {
503 dev_err(qce->dev, "%s registration failed\n", base->cra_name);
504 kfree(tmpl);
505 return ret;
506 }
507
508 list_add_tail(&tmpl->entry, &ahash_algs);
509 dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
510 return 0;
511 }
512
qce_ahash_unregister(struct qce_device * qce)513 static void qce_ahash_unregister(struct qce_device *qce)
514 {
515 struct qce_alg_template *tmpl, *n;
516
517 list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
518 crypto_unregister_ahash(&tmpl->alg.ahash);
519 list_del(&tmpl->entry);
520 kfree(tmpl);
521 }
522 }
523
qce_ahash_register(struct qce_device * qce)524 static int qce_ahash_register(struct qce_device *qce)
525 {
526 int ret, i;
527
528 for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
529 ret = qce_ahash_register_one(&ahash_def[i], qce);
530 if (ret)
531 goto err;
532 }
533
534 return 0;
535 err:
536 qce_ahash_unregister(qce);
537 return ret;
538 }
539
540 const struct qce_algo_ops ahash_ops = {
541 .type = CRYPTO_ALG_TYPE_AHASH,
542 .register_algs = qce_ahash_register,
543 .unregister_algs = qce_ahash_unregister,
544 .async_req_handle = qce_ahash_async_req_handle,
545 };
546