1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 #include <linux/iomap.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "iostat.h"
30 #include <trace/events/f2fs.h>
31
32 #define NUM_PREALLOC_POST_READ_CTXS 128
33
34 static struct kmem_cache *bio_post_read_ctx_cache;
35 static struct kmem_cache *bio_entry_slab;
36 static mempool_t *bio_post_read_ctx_pool;
37 static struct bio_set f2fs_bioset;
38
39 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
40
f2fs_init_bioset(void)41 int __init f2fs_init_bioset(void)
42 {
43 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
44 0, BIOSET_NEED_BVECS);
45 }
46
f2fs_destroy_bioset(void)47 void f2fs_destroy_bioset(void)
48 {
49 bioset_exit(&f2fs_bioset);
50 }
51
f2fs_is_cp_guaranteed(struct page * page)52 bool f2fs_is_cp_guaranteed(struct page *page)
53 {
54 struct address_space *mapping = page->mapping;
55 struct inode *inode;
56 struct f2fs_sb_info *sbi;
57
58 if (!mapping)
59 return false;
60
61 inode = mapping->host;
62 sbi = F2FS_I_SB(inode);
63
64 if (inode->i_ino == F2FS_META_INO(sbi) ||
65 inode->i_ino == F2FS_NODE_INO(sbi) ||
66 S_ISDIR(inode->i_mode))
67 return true;
68
69 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
70 page_private_gcing(page))
71 return true;
72 return false;
73 }
74
__read_io_type(struct page * page)75 static enum count_type __read_io_type(struct page *page)
76 {
77 struct address_space *mapping = page_file_mapping(page);
78
79 if (mapping) {
80 struct inode *inode = mapping->host;
81 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
82
83 if (inode->i_ino == F2FS_META_INO(sbi))
84 return F2FS_RD_META;
85
86 if (inode->i_ino == F2FS_NODE_INO(sbi))
87 return F2FS_RD_NODE;
88 }
89 return F2FS_RD_DATA;
90 }
91
92 /* postprocessing steps for read bios */
93 enum bio_post_read_step {
94 #ifdef CONFIG_FS_ENCRYPTION
95 STEP_DECRYPT = BIT(0),
96 #else
97 STEP_DECRYPT = 0, /* compile out the decryption-related code */
98 #endif
99 #ifdef CONFIG_F2FS_FS_COMPRESSION
100 STEP_DECOMPRESS = BIT(1),
101 #else
102 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
103 #endif
104 #ifdef CONFIG_FS_VERITY
105 STEP_VERITY = BIT(2),
106 #else
107 STEP_VERITY = 0, /* compile out the verity-related code */
108 #endif
109 };
110
111 struct bio_post_read_ctx {
112 struct bio *bio;
113 struct f2fs_sb_info *sbi;
114 struct work_struct work;
115 unsigned int enabled_steps;
116 /*
117 * decompression_attempted keeps track of whether
118 * f2fs_end_read_compressed_page() has been called on the pages in the
119 * bio that belong to a compressed cluster yet.
120 */
121 bool decompression_attempted;
122 block_t fs_blkaddr;
123 };
124
125 /*
126 * Update and unlock a bio's pages, and free the bio.
127 *
128 * This marks pages up-to-date only if there was no error in the bio (I/O error,
129 * decryption error, or verity error), as indicated by bio->bi_status.
130 *
131 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
132 * aren't marked up-to-date here, as decompression is done on a per-compression-
133 * cluster basis rather than a per-bio basis. Instead, we only must do two
134 * things for each compressed page here: call f2fs_end_read_compressed_page()
135 * with failed=true if an error occurred before it would have normally gotten
136 * called (i.e., I/O error or decryption error, but *not* verity error), and
137 * release the bio's reference to the decompress_io_ctx of the page's cluster.
138 */
f2fs_finish_read_bio(struct bio * bio,bool in_task)139 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
140 {
141 struct bio_vec *bv;
142 struct bvec_iter_all iter_all;
143 struct bio_post_read_ctx *ctx = bio->bi_private;
144
145 bio_for_each_segment_all(bv, bio, iter_all) {
146 struct page *page = bv->bv_page;
147
148 if (f2fs_is_compressed_page(page)) {
149 if (ctx && !ctx->decompression_attempted)
150 f2fs_end_read_compressed_page(page, true, 0,
151 in_task);
152 f2fs_put_page_dic(page, in_task);
153 continue;
154 }
155
156 if (bio->bi_status)
157 ClearPageUptodate(page);
158 else
159 SetPageUptodate(page);
160 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
161 unlock_page(page);
162 }
163
164 if (ctx)
165 mempool_free(ctx, bio_post_read_ctx_pool);
166 bio_put(bio);
167 }
168
f2fs_verify_bio(struct work_struct * work)169 static void f2fs_verify_bio(struct work_struct *work)
170 {
171 struct bio_post_read_ctx *ctx =
172 container_of(work, struct bio_post_read_ctx, work);
173 struct bio *bio = ctx->bio;
174 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
175
176 /*
177 * fsverity_verify_bio() may call readahead() again, and while verity
178 * will be disabled for this, decryption and/or decompression may still
179 * be needed, resulting in another bio_post_read_ctx being allocated.
180 * So to prevent deadlocks we need to release the current ctx to the
181 * mempool first. This assumes that verity is the last post-read step.
182 */
183 mempool_free(ctx, bio_post_read_ctx_pool);
184 bio->bi_private = NULL;
185
186 /*
187 * Verify the bio's pages with fs-verity. Exclude compressed pages,
188 * as those were handled separately by f2fs_end_read_compressed_page().
189 */
190 if (may_have_compressed_pages) {
191 struct bio_vec *bv;
192 struct bvec_iter_all iter_all;
193
194 bio_for_each_segment_all(bv, bio, iter_all) {
195 struct page *page = bv->bv_page;
196
197 if (!f2fs_is_compressed_page(page) &&
198 !fsverity_verify_page(page)) {
199 bio->bi_status = BLK_STS_IOERR;
200 break;
201 }
202 }
203 } else {
204 fsverity_verify_bio(bio);
205 }
206
207 f2fs_finish_read_bio(bio, true);
208 }
209
210 /*
211 * If the bio's data needs to be verified with fs-verity, then enqueue the
212 * verity work for the bio. Otherwise finish the bio now.
213 *
214 * Note that to avoid deadlocks, the verity work can't be done on the
215 * decryption/decompression workqueue. This is because verifying the data pages
216 * can involve reading verity metadata pages from the file, and these verity
217 * metadata pages may be encrypted and/or compressed.
218 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)219 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
220 {
221 struct bio_post_read_ctx *ctx = bio->bi_private;
222
223 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
224 INIT_WORK(&ctx->work, f2fs_verify_bio);
225 fsverity_enqueue_verify_work(&ctx->work);
226 } else {
227 f2fs_finish_read_bio(bio, in_task);
228 }
229 }
230
231 /*
232 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
233 * remaining page was read by @ctx->bio.
234 *
235 * Note that a bio may span clusters (even a mix of compressed and uncompressed
236 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
237 * that the bio includes at least one compressed page. The actual decompression
238 * is done on a per-cluster basis, not a per-bio basis.
239 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)240 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
241 bool in_task)
242 {
243 struct bio_vec *bv;
244 struct bvec_iter_all iter_all;
245 bool all_compressed = true;
246 block_t blkaddr = ctx->fs_blkaddr;
247
248 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
249 struct page *page = bv->bv_page;
250
251 if (f2fs_is_compressed_page(page))
252 f2fs_end_read_compressed_page(page, false, blkaddr,
253 in_task);
254 else
255 all_compressed = false;
256
257 blkaddr++;
258 }
259
260 ctx->decompression_attempted = true;
261
262 /*
263 * Optimization: if all the bio's pages are compressed, then scheduling
264 * the per-bio verity work is unnecessary, as verity will be fully
265 * handled at the compression cluster level.
266 */
267 if (all_compressed)
268 ctx->enabled_steps &= ~STEP_VERITY;
269 }
270
f2fs_post_read_work(struct work_struct * work)271 static void f2fs_post_read_work(struct work_struct *work)
272 {
273 struct bio_post_read_ctx *ctx =
274 container_of(work, struct bio_post_read_ctx, work);
275 struct bio *bio = ctx->bio;
276
277 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
278 f2fs_finish_read_bio(bio, true);
279 return;
280 }
281
282 if (ctx->enabled_steps & STEP_DECOMPRESS)
283 f2fs_handle_step_decompress(ctx, true);
284
285 f2fs_verify_and_finish_bio(bio, true);
286 }
287
f2fs_read_end_io(struct bio * bio)288 static void f2fs_read_end_io(struct bio *bio)
289 {
290 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
291 struct bio_post_read_ctx *ctx;
292 bool intask = in_task();
293
294 iostat_update_and_unbind_ctx(bio);
295 ctx = bio->bi_private;
296
297 if (time_to_inject(sbi, FAULT_READ_IO))
298 bio->bi_status = BLK_STS_IOERR;
299
300 if (bio->bi_status) {
301 f2fs_finish_read_bio(bio, intask);
302 return;
303 }
304
305 if (ctx) {
306 unsigned int enabled_steps = ctx->enabled_steps &
307 (STEP_DECRYPT | STEP_DECOMPRESS);
308
309 /*
310 * If we have only decompression step between decompression and
311 * decrypt, we don't need post processing for this.
312 */
313 if (enabled_steps == STEP_DECOMPRESS &&
314 !f2fs_low_mem_mode(sbi)) {
315 f2fs_handle_step_decompress(ctx, intask);
316 } else if (enabled_steps) {
317 INIT_WORK(&ctx->work, f2fs_post_read_work);
318 queue_work(ctx->sbi->post_read_wq, &ctx->work);
319 return;
320 }
321 }
322
323 f2fs_verify_and_finish_bio(bio, intask);
324 }
325
f2fs_write_end_io(struct bio * bio)326 static void f2fs_write_end_io(struct bio *bio)
327 {
328 struct f2fs_sb_info *sbi;
329 struct bio_vec *bvec;
330 struct bvec_iter_all iter_all;
331
332 iostat_update_and_unbind_ctx(bio);
333 sbi = bio->bi_private;
334
335 if (time_to_inject(sbi, FAULT_WRITE_IO))
336 bio->bi_status = BLK_STS_IOERR;
337
338 bio_for_each_segment_all(bvec, bio, iter_all) {
339 struct page *page = bvec->bv_page;
340 enum count_type type = WB_DATA_TYPE(page, false);
341
342 if (page_private_dummy(page)) {
343 clear_page_private_dummy(page);
344 unlock_page(page);
345 mempool_free(page, sbi->write_io_dummy);
346
347 if (unlikely(bio->bi_status))
348 f2fs_stop_checkpoint(sbi, true,
349 STOP_CP_REASON_WRITE_FAIL);
350 continue;
351 }
352
353 fscrypt_finalize_bounce_page(&page);
354
355 #ifdef CONFIG_F2FS_FS_COMPRESSION
356 if (f2fs_is_compressed_page(page)) {
357 f2fs_compress_write_end_io(bio, page);
358 continue;
359 }
360 #endif
361
362 if (unlikely(bio->bi_status)) {
363 mapping_set_error(page->mapping, -EIO);
364 if (type == F2FS_WB_CP_DATA)
365 f2fs_stop_checkpoint(sbi, true,
366 STOP_CP_REASON_WRITE_FAIL);
367 }
368
369 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
370 page->index != nid_of_node(page));
371
372 dec_page_count(sbi, type);
373 if (f2fs_in_warm_node_list(sbi, page))
374 f2fs_del_fsync_node_entry(sbi, page);
375 clear_page_private_gcing(page);
376 end_page_writeback(page);
377 }
378 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
379 wq_has_sleeper(&sbi->cp_wait))
380 wake_up(&sbi->cp_wait);
381
382 bio_put(bio);
383 }
384
385 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)386 static void f2fs_zone_write_end_io(struct bio *bio)
387 {
388 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
389
390 bio->bi_private = io->bi_private;
391 complete(&io->zone_wait);
392 f2fs_write_end_io(bio);
393 }
394 #endif
395
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)396 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
397 block_t blk_addr, sector_t *sector)
398 {
399 struct block_device *bdev = sbi->sb->s_bdev;
400 int i;
401
402 if (f2fs_is_multi_device(sbi)) {
403 for (i = 0; i < sbi->s_ndevs; i++) {
404 if (FDEV(i).start_blk <= blk_addr &&
405 FDEV(i).end_blk >= blk_addr) {
406 blk_addr -= FDEV(i).start_blk;
407 bdev = FDEV(i).bdev;
408 break;
409 }
410 }
411 }
412
413 if (sector)
414 *sector = SECTOR_FROM_BLOCK(blk_addr);
415 return bdev;
416 }
417
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)418 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
419 {
420 int i;
421
422 if (!f2fs_is_multi_device(sbi))
423 return 0;
424
425 for (i = 0; i < sbi->s_ndevs; i++)
426 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
427 return i;
428 return 0;
429 }
430
f2fs_io_flags(struct f2fs_io_info * fio)431 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
432 {
433 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
434 unsigned int fua_flag, meta_flag, io_flag;
435 blk_opf_t op_flags = 0;
436
437 if (fio->op != REQ_OP_WRITE)
438 return 0;
439 if (fio->type == DATA)
440 io_flag = fio->sbi->data_io_flag;
441 else if (fio->type == NODE)
442 io_flag = fio->sbi->node_io_flag;
443 else
444 return 0;
445
446 fua_flag = io_flag & temp_mask;
447 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
448
449 /*
450 * data/node io flag bits per temp:
451 * REQ_META | REQ_FUA |
452 * 5 | 4 | 3 | 2 | 1 | 0 |
453 * Cold | Warm | Hot | Cold | Warm | Hot |
454 */
455 if (BIT(fio->temp) & meta_flag)
456 op_flags |= REQ_META;
457 if (BIT(fio->temp) & fua_flag)
458 op_flags |= REQ_FUA;
459 return op_flags;
460 }
461
__bio_alloc(struct f2fs_io_info * fio,int npages)462 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
463 {
464 struct f2fs_sb_info *sbi = fio->sbi;
465 struct block_device *bdev;
466 sector_t sector;
467 struct bio *bio;
468
469 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
470 bio = bio_alloc_bioset(bdev, npages,
471 fio->op | fio->op_flags | f2fs_io_flags(fio),
472 GFP_NOIO, &f2fs_bioset);
473 bio->bi_iter.bi_sector = sector;
474 if (is_read_io(fio->op)) {
475 bio->bi_end_io = f2fs_read_end_io;
476 bio->bi_private = NULL;
477 } else {
478 bio->bi_end_io = f2fs_write_end_io;
479 bio->bi_private = sbi;
480 }
481 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
482
483 if (fio->io_wbc)
484 wbc_init_bio(fio->io_wbc, bio);
485
486 return bio;
487 }
488
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)489 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
490 pgoff_t first_idx,
491 const struct f2fs_io_info *fio,
492 gfp_t gfp_mask)
493 {
494 /*
495 * The f2fs garbage collector sets ->encrypted_page when it wants to
496 * read/write raw data without encryption.
497 */
498 if (!fio || !fio->encrypted_page)
499 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
500 else if (fscrypt_inode_should_skip_dm_default_key(inode))
501 bio_set_skip_dm_default_key(bio);
502 }
503
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)504 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
505 pgoff_t next_idx,
506 const struct f2fs_io_info *fio)
507 {
508 /*
509 * The f2fs garbage collector sets ->encrypted_page when it wants to
510 * read/write raw data without encryption.
511 */
512 if (fio && fio->encrypted_page)
513 return !bio_has_crypt_ctx(bio) &&
514 (bio_should_skip_dm_default_key(bio) ==
515 fscrypt_inode_should_skip_dm_default_key(inode));
516
517 return fscrypt_mergeable_bio(bio, inode, next_idx);
518 }
519
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)520 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
521 enum page_type type)
522 {
523 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
524 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
525
526 iostat_update_submit_ctx(bio, type);
527 submit_bio(bio);
528 }
529
f2fs_align_write_bio(struct f2fs_sb_info * sbi,struct bio * bio)530 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
531 {
532 unsigned int start =
533 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
534
535 if (start == 0)
536 return;
537
538 /* fill dummy pages */
539 for (; start < F2FS_IO_SIZE(sbi); start++) {
540 struct page *page =
541 mempool_alloc(sbi->write_io_dummy,
542 GFP_NOIO | __GFP_NOFAIL);
543 f2fs_bug_on(sbi, !page);
544
545 lock_page(page);
546
547 zero_user_segment(page, 0, PAGE_SIZE);
548 set_page_private_dummy(page);
549
550 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
551 f2fs_bug_on(sbi, 1);
552 }
553 }
554
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)555 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
556 enum page_type type)
557 {
558 WARN_ON_ONCE(is_read_io(bio_op(bio)));
559
560 if (type == DATA || type == NODE) {
561 if (f2fs_lfs_mode(sbi) && current->plug)
562 blk_finish_plug(current->plug);
563
564 if (F2FS_IO_ALIGNED(sbi)) {
565 f2fs_align_write_bio(sbi, bio);
566 /*
567 * In the NODE case, we lose next block address chain.
568 * So, we need to do checkpoint in f2fs_sync_file.
569 */
570 if (type == NODE)
571 set_sbi_flag(sbi, SBI_NEED_CP);
572 }
573 }
574
575 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
576 iostat_update_submit_ctx(bio, type);
577 submit_bio(bio);
578 }
579
__submit_merged_bio(struct f2fs_bio_info * io)580 static void __submit_merged_bio(struct f2fs_bio_info *io)
581 {
582 struct f2fs_io_info *fio = &io->fio;
583
584 if (!io->bio)
585 return;
586
587 if (is_read_io(fio->op)) {
588 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
589 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
590 } else {
591 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
592 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
593 }
594 io->bio = NULL;
595 }
596
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)597 static bool __has_merged_page(struct bio *bio, struct inode *inode,
598 struct page *page, nid_t ino)
599 {
600 struct bio_vec *bvec;
601 struct bvec_iter_all iter_all;
602
603 if (!bio)
604 return false;
605
606 if (!inode && !page && !ino)
607 return true;
608
609 bio_for_each_segment_all(bvec, bio, iter_all) {
610 struct page *target = bvec->bv_page;
611
612 if (fscrypt_is_bounce_page(target)) {
613 target = fscrypt_pagecache_page(target);
614 if (IS_ERR(target))
615 continue;
616 }
617 if (f2fs_is_compressed_page(target)) {
618 target = f2fs_compress_control_page(target);
619 if (IS_ERR(target))
620 continue;
621 }
622
623 if (inode && inode == target->mapping->host)
624 return true;
625 if (page && page == target)
626 return true;
627 if (ino && ino == ino_of_node(target))
628 return true;
629 }
630
631 return false;
632 }
633
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)634 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
635 {
636 int i;
637
638 for (i = 0; i < NR_PAGE_TYPE; i++) {
639 int n = (i == META) ? 1 : NR_TEMP_TYPE;
640 int j;
641
642 sbi->write_io[i] = f2fs_kmalloc(sbi,
643 array_size(n, sizeof(struct f2fs_bio_info)),
644 GFP_KERNEL);
645 if (!sbi->write_io[i])
646 return -ENOMEM;
647
648 for (j = HOT; j < n; j++) {
649 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
650 sbi->write_io[i][j].sbi = sbi;
651 sbi->write_io[i][j].bio = NULL;
652 spin_lock_init(&sbi->write_io[i][j].io_lock);
653 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
654 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
655 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
656 #ifdef CONFIG_BLK_DEV_ZONED
657 init_completion(&sbi->write_io[i][j].zone_wait);
658 sbi->write_io[i][j].zone_pending_bio = NULL;
659 sbi->write_io[i][j].bi_private = NULL;
660 #endif
661 }
662 }
663
664 return 0;
665 }
666
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)667 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
668 enum page_type type, enum temp_type temp)
669 {
670 enum page_type btype = PAGE_TYPE_OF_BIO(type);
671 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
672
673 f2fs_down_write(&io->io_rwsem);
674
675 if (!io->bio)
676 goto unlock_out;
677
678 /* change META to META_FLUSH in the checkpoint procedure */
679 if (type >= META_FLUSH) {
680 io->fio.type = META_FLUSH;
681 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
682 if (!test_opt(sbi, NOBARRIER))
683 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
684 }
685 __submit_merged_bio(io);
686 unlock_out:
687 f2fs_up_write(&io->io_rwsem);
688 }
689
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)690 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
691 struct inode *inode, struct page *page,
692 nid_t ino, enum page_type type, bool force)
693 {
694 enum temp_type temp;
695 bool ret = true;
696
697 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
698 if (!force) {
699 enum page_type btype = PAGE_TYPE_OF_BIO(type);
700 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
701
702 f2fs_down_read(&io->io_rwsem);
703 ret = __has_merged_page(io->bio, inode, page, ino);
704 f2fs_up_read(&io->io_rwsem);
705 }
706 if (ret)
707 __f2fs_submit_merged_write(sbi, type, temp);
708
709 /* TODO: use HOT temp only for meta pages now. */
710 if (type >= META)
711 break;
712 }
713 }
714
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)715 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
716 {
717 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
718 }
719
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)720 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
721 struct inode *inode, struct page *page,
722 nid_t ino, enum page_type type)
723 {
724 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
725 }
726
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)727 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
728 {
729 f2fs_submit_merged_write(sbi, DATA);
730 f2fs_submit_merged_write(sbi, NODE);
731 f2fs_submit_merged_write(sbi, META);
732 }
733
734 /*
735 * Fill the locked page with data located in the block address.
736 * A caller needs to unlock the page on failure.
737 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)738 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
739 {
740 struct bio *bio;
741 struct page *page = fio->encrypted_page ?
742 fio->encrypted_page : fio->page;
743
744 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
745 fio->is_por ? META_POR : (__is_meta_io(fio) ?
746 META_GENERIC : DATA_GENERIC_ENHANCE))) {
747 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
748 return -EFSCORRUPTED;
749 }
750
751 trace_f2fs_submit_page_bio(page, fio);
752
753 /* Allocate a new bio */
754 bio = __bio_alloc(fio, 1);
755
756 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
757 fio->page->index, fio, GFP_NOIO);
758
759 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
760 bio_put(bio);
761 return -EFAULT;
762 }
763
764 if (fio->io_wbc && !is_read_io(fio->op))
765 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
766
767 inc_page_count(fio->sbi, is_read_io(fio->op) ?
768 __read_io_type(page) : WB_DATA_TYPE(fio->page, false));
769
770 if (is_read_io(bio_op(bio)))
771 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
772 else
773 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
774 return 0;
775 }
776
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)777 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
778 block_t last_blkaddr, block_t cur_blkaddr)
779 {
780 if (unlikely(sbi->max_io_bytes &&
781 bio->bi_iter.bi_size >= sbi->max_io_bytes))
782 return false;
783 if (last_blkaddr + 1 != cur_blkaddr)
784 return false;
785 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
786 }
787
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)788 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
789 struct f2fs_io_info *fio)
790 {
791 if (io->fio.op != fio->op)
792 return false;
793 return io->fio.op_flags == fio->op_flags;
794 }
795
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)796 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
797 struct f2fs_bio_info *io,
798 struct f2fs_io_info *fio,
799 block_t last_blkaddr,
800 block_t cur_blkaddr)
801 {
802 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
803 unsigned int filled_blocks =
804 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
805 unsigned int io_size = F2FS_IO_SIZE(sbi);
806 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
807
808 /* IOs in bio is aligned and left space of vectors is not enough */
809 if (!(filled_blocks % io_size) && left_vecs < io_size)
810 return false;
811 }
812 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
813 return false;
814 return io_type_is_mergeable(io, fio);
815 }
816
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)817 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
818 struct page *page, enum temp_type temp)
819 {
820 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
821 struct bio_entry *be;
822
823 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
824 be->bio = bio;
825 bio_get(bio);
826
827 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
828 f2fs_bug_on(sbi, 1);
829
830 f2fs_down_write(&io->bio_list_lock);
831 list_add_tail(&be->list, &io->bio_list);
832 f2fs_up_write(&io->bio_list_lock);
833 }
834
del_bio_entry(struct bio_entry * be)835 static void del_bio_entry(struct bio_entry *be)
836 {
837 list_del(&be->list);
838 kmem_cache_free(bio_entry_slab, be);
839 }
840
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)841 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
842 struct page *page)
843 {
844 struct f2fs_sb_info *sbi = fio->sbi;
845 enum temp_type temp;
846 bool found = false;
847 int ret = -EAGAIN;
848
849 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
850 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
851 struct list_head *head = &io->bio_list;
852 struct bio_entry *be;
853
854 f2fs_down_write(&io->bio_list_lock);
855 list_for_each_entry(be, head, list) {
856 if (be->bio != *bio)
857 continue;
858
859 found = true;
860
861 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
862 *fio->last_block,
863 fio->new_blkaddr));
864 if (f2fs_crypt_mergeable_bio(*bio,
865 fio->page->mapping->host,
866 fio->page->index, fio) &&
867 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
868 PAGE_SIZE) {
869 ret = 0;
870 break;
871 }
872
873 /* page can't be merged into bio; submit the bio */
874 del_bio_entry(be);
875 f2fs_submit_write_bio(sbi, *bio, DATA);
876 break;
877 }
878 f2fs_up_write(&io->bio_list_lock);
879 }
880
881 if (ret) {
882 bio_put(*bio);
883 *bio = NULL;
884 }
885
886 return ret;
887 }
888
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)889 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
890 struct bio **bio, struct page *page)
891 {
892 enum temp_type temp;
893 bool found = false;
894 struct bio *target = bio ? *bio : NULL;
895
896 f2fs_bug_on(sbi, !target && !page);
897
898 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
899 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
900 struct list_head *head = &io->bio_list;
901 struct bio_entry *be;
902
903 if (list_empty(head))
904 continue;
905
906 f2fs_down_read(&io->bio_list_lock);
907 list_for_each_entry(be, head, list) {
908 if (target)
909 found = (target == be->bio);
910 else
911 found = __has_merged_page(be->bio, NULL,
912 page, 0);
913 if (found)
914 break;
915 }
916 f2fs_up_read(&io->bio_list_lock);
917
918 if (!found)
919 continue;
920
921 found = false;
922
923 f2fs_down_write(&io->bio_list_lock);
924 list_for_each_entry(be, head, list) {
925 if (target)
926 found = (target == be->bio);
927 else
928 found = __has_merged_page(be->bio, NULL,
929 page, 0);
930 if (found) {
931 target = be->bio;
932 del_bio_entry(be);
933 break;
934 }
935 }
936 f2fs_up_write(&io->bio_list_lock);
937 }
938
939 if (found)
940 f2fs_submit_write_bio(sbi, target, DATA);
941 if (bio && *bio) {
942 bio_put(*bio);
943 *bio = NULL;
944 }
945 }
946
f2fs_merge_page_bio(struct f2fs_io_info * fio)947 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
948 {
949 struct bio *bio = *fio->bio;
950 struct page *page = fio->encrypted_page ?
951 fio->encrypted_page : fio->page;
952
953 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
954 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
955 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
956 return -EFSCORRUPTED;
957 }
958
959 trace_f2fs_submit_page_bio(page, fio);
960
961 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
962 fio->new_blkaddr))
963 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
964 alloc_new:
965 if (!bio) {
966 bio = __bio_alloc(fio, BIO_MAX_VECS);
967 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
968 fio->page->index, fio, GFP_NOIO);
969
970 add_bio_entry(fio->sbi, bio, page, fio->temp);
971 } else {
972 if (add_ipu_page(fio, &bio, page))
973 goto alloc_new;
974 }
975
976 if (fio->io_wbc)
977 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
978
979 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
980
981 *fio->last_block = fio->new_blkaddr;
982 *fio->bio = bio;
983
984 return 0;
985 }
986
987 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)988 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
989 {
990 int devi = 0;
991
992 if (f2fs_is_multi_device(sbi)) {
993 devi = f2fs_target_device_index(sbi, blkaddr);
994 if (blkaddr < FDEV(devi).start_blk ||
995 blkaddr > FDEV(devi).end_blk) {
996 f2fs_err(sbi, "Invalid block %x", blkaddr);
997 return false;
998 }
999 blkaddr -= FDEV(devi).start_blk;
1000 }
1001 return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
1002 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1003 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1004 }
1005 #endif
1006
f2fs_submit_page_write(struct f2fs_io_info * fio)1007 void f2fs_submit_page_write(struct f2fs_io_info *fio)
1008 {
1009 struct f2fs_sb_info *sbi = fio->sbi;
1010 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1011 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1012 struct page *bio_page;
1013 enum count_type type;
1014
1015 f2fs_bug_on(sbi, is_read_io(fio->op));
1016
1017 f2fs_down_write(&io->io_rwsem);
1018
1019 #ifdef CONFIG_BLK_DEV_ZONED
1020 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1021 wait_for_completion_io(&io->zone_wait);
1022 bio_put(io->zone_pending_bio);
1023 io->zone_pending_bio = NULL;
1024 io->bi_private = NULL;
1025 }
1026 #endif
1027
1028 next:
1029 if (fio->in_list) {
1030 spin_lock(&io->io_lock);
1031 if (list_empty(&io->io_list)) {
1032 spin_unlock(&io->io_lock);
1033 goto out;
1034 }
1035 fio = list_first_entry(&io->io_list,
1036 struct f2fs_io_info, list);
1037 list_del(&fio->list);
1038 spin_unlock(&io->io_lock);
1039 }
1040
1041 verify_fio_blkaddr(fio);
1042
1043 if (fio->encrypted_page)
1044 bio_page = fio->encrypted_page;
1045 else if (fio->compressed_page)
1046 bio_page = fio->compressed_page;
1047 else
1048 bio_page = fio->page;
1049
1050 /* set submitted = true as a return value */
1051 fio->submitted = 1;
1052
1053 type = WB_DATA_TYPE(bio_page, fio->compressed_page);
1054 inc_page_count(sbi, type);
1055
1056 if (io->bio &&
1057 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1058 fio->new_blkaddr) ||
1059 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1060 bio_page->index, fio)))
1061 __submit_merged_bio(io);
1062 alloc_new:
1063 if (io->bio == NULL) {
1064 if (F2FS_IO_ALIGNED(sbi) &&
1065 (fio->type == DATA || fio->type == NODE) &&
1066 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1067 dec_page_count(sbi, WB_DATA_TYPE(bio_page,
1068 fio->compressed_page));
1069 fio->retry = 1;
1070 goto skip;
1071 }
1072 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1073 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1074 bio_page->index, fio, GFP_NOIO);
1075 io->fio = *fio;
1076 }
1077
1078 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1079 __submit_merged_bio(io);
1080 goto alloc_new;
1081 }
1082
1083 if (fio->io_wbc)
1084 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1085
1086 io->last_block_in_bio = fio->new_blkaddr;
1087
1088 trace_f2fs_submit_page_write(fio->page, fio);
1089 skip:
1090 if (fio->in_list)
1091 goto next;
1092 out:
1093 #ifdef CONFIG_BLK_DEV_ZONED
1094 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1095 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1096 bio_get(io->bio);
1097 reinit_completion(&io->zone_wait);
1098 io->bi_private = io->bio->bi_private;
1099 io->bio->bi_private = io;
1100 io->bio->bi_end_io = f2fs_zone_write_end_io;
1101 io->zone_pending_bio = io->bio;
1102 __submit_merged_bio(io);
1103 }
1104 #endif
1105 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1106 !f2fs_is_checkpoint_ready(sbi))
1107 __submit_merged_bio(io);
1108 f2fs_up_write(&io->io_rwsem);
1109 }
1110
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1111 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1112 unsigned nr_pages, blk_opf_t op_flag,
1113 pgoff_t first_idx, bool for_write)
1114 {
1115 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1116 struct bio *bio;
1117 struct bio_post_read_ctx *ctx = NULL;
1118 unsigned int post_read_steps = 0;
1119 sector_t sector;
1120 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1121
1122 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1123 REQ_OP_READ | op_flag,
1124 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1125 if (!bio)
1126 return ERR_PTR(-ENOMEM);
1127 bio->bi_iter.bi_sector = sector;
1128 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1129 bio->bi_end_io = f2fs_read_end_io;
1130
1131 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1132 post_read_steps |= STEP_DECRYPT;
1133
1134 if (f2fs_need_verity(inode, first_idx))
1135 post_read_steps |= STEP_VERITY;
1136
1137 /*
1138 * STEP_DECOMPRESS is handled specially, since a compressed file might
1139 * contain both compressed and uncompressed clusters. We'll allocate a
1140 * bio_post_read_ctx if the file is compressed, but the caller is
1141 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1142 */
1143
1144 if (post_read_steps || f2fs_compressed_file(inode)) {
1145 /* Due to the mempool, this never fails. */
1146 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1147 ctx->bio = bio;
1148 ctx->sbi = sbi;
1149 ctx->enabled_steps = post_read_steps;
1150 ctx->fs_blkaddr = blkaddr;
1151 ctx->decompression_attempted = false;
1152 bio->bi_private = ctx;
1153 }
1154 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1155
1156 return bio;
1157 }
1158
1159 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,blk_opf_t op_flags,bool for_write)1160 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1161 block_t blkaddr, blk_opf_t op_flags,
1162 bool for_write)
1163 {
1164 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1165 struct bio *bio;
1166
1167 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1168 page->index, for_write);
1169 if (IS_ERR(bio))
1170 return PTR_ERR(bio);
1171
1172 /* wait for GCed page writeback via META_MAPPING */
1173 f2fs_wait_on_block_writeback(inode, blkaddr);
1174
1175 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1176 bio_put(bio);
1177 return -EFAULT;
1178 }
1179 inc_page_count(sbi, F2FS_RD_DATA);
1180 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1181 f2fs_submit_read_bio(sbi, bio, DATA);
1182 return 0;
1183 }
1184
__set_data_blkaddr(struct dnode_of_data * dn)1185 static void __set_data_blkaddr(struct dnode_of_data *dn)
1186 {
1187 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1188 __le32 *addr_array;
1189 int base = 0;
1190
1191 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1192 base = get_extra_isize(dn->inode);
1193
1194 /* Get physical address of data block */
1195 addr_array = blkaddr_in_node(rn);
1196 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1197 }
1198
1199 /*
1200 * Lock ordering for the change of data block address:
1201 * ->data_page
1202 * ->node_page
1203 * update block addresses in the node page
1204 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1205 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1206 {
1207 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1208 __set_data_blkaddr(dn);
1209 if (set_page_dirty(dn->node_page))
1210 dn->node_changed = true;
1211 }
1212
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1213 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1214 {
1215 dn->data_blkaddr = blkaddr;
1216 f2fs_set_data_blkaddr(dn);
1217 f2fs_update_read_extent_cache(dn);
1218 }
1219
1220 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1221 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1222 {
1223 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1224 int err;
1225
1226 if (!count)
1227 return 0;
1228
1229 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1230 return -EPERM;
1231 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1232 if (unlikely(err))
1233 return err;
1234
1235 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1236 dn->ofs_in_node, count);
1237
1238 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1239
1240 for (; count > 0; dn->ofs_in_node++) {
1241 block_t blkaddr = f2fs_data_blkaddr(dn);
1242
1243 if (blkaddr == NULL_ADDR) {
1244 dn->data_blkaddr = NEW_ADDR;
1245 __set_data_blkaddr(dn);
1246 count--;
1247 }
1248 }
1249
1250 if (set_page_dirty(dn->node_page))
1251 dn->node_changed = true;
1252 return 0;
1253 }
1254
1255 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1256 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1257 {
1258 unsigned int ofs_in_node = dn->ofs_in_node;
1259 int ret;
1260
1261 ret = f2fs_reserve_new_blocks(dn, 1);
1262 dn->ofs_in_node = ofs_in_node;
1263 return ret;
1264 }
1265
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1266 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1267 {
1268 bool need_put = dn->inode_page ? false : true;
1269 int err;
1270
1271 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1272 if (err)
1273 return err;
1274
1275 if (dn->data_blkaddr == NULL_ADDR)
1276 err = f2fs_reserve_new_block(dn);
1277 if (err || need_put)
1278 f2fs_put_dnode(dn);
1279 return err;
1280 }
1281
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1282 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1283 blk_opf_t op_flags, bool for_write,
1284 pgoff_t *next_pgofs)
1285 {
1286 struct address_space *mapping = inode->i_mapping;
1287 struct dnode_of_data dn;
1288 struct page *page;
1289 int err;
1290
1291 page = f2fs_grab_cache_page(mapping, index, for_write);
1292 if (!page)
1293 return ERR_PTR(-ENOMEM);
1294
1295 if (f2fs_lookup_read_extent_cache_block(inode, index,
1296 &dn.data_blkaddr)) {
1297 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1298 DATA_GENERIC_ENHANCE_READ)) {
1299 err = -EFSCORRUPTED;
1300 f2fs_handle_error(F2FS_I_SB(inode),
1301 ERROR_INVALID_BLKADDR);
1302 goto put_err;
1303 }
1304 goto got_it;
1305 }
1306
1307 set_new_dnode(&dn, inode, NULL, NULL, 0);
1308 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1309 if (err) {
1310 if (err == -ENOENT && next_pgofs)
1311 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1312 goto put_err;
1313 }
1314 f2fs_put_dnode(&dn);
1315
1316 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1317 err = -ENOENT;
1318 if (next_pgofs)
1319 *next_pgofs = index + 1;
1320 goto put_err;
1321 }
1322 if (dn.data_blkaddr != NEW_ADDR &&
1323 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1324 dn.data_blkaddr,
1325 DATA_GENERIC_ENHANCE)) {
1326 err = -EFSCORRUPTED;
1327 f2fs_handle_error(F2FS_I_SB(inode),
1328 ERROR_INVALID_BLKADDR);
1329 goto put_err;
1330 }
1331 got_it:
1332 if (PageUptodate(page)) {
1333 unlock_page(page);
1334 return page;
1335 }
1336
1337 /*
1338 * A new dentry page is allocated but not able to be written, since its
1339 * new inode page couldn't be allocated due to -ENOSPC.
1340 * In such the case, its blkaddr can be remained as NEW_ADDR.
1341 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1342 * f2fs_init_inode_metadata.
1343 */
1344 if (dn.data_blkaddr == NEW_ADDR) {
1345 zero_user_segment(page, 0, PAGE_SIZE);
1346 if (!PageUptodate(page))
1347 SetPageUptodate(page);
1348 unlock_page(page);
1349 return page;
1350 }
1351
1352 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1353 op_flags, for_write);
1354 if (err)
1355 goto put_err;
1356 return page;
1357
1358 put_err:
1359 f2fs_put_page(page, 1);
1360 return ERR_PTR(err);
1361 }
1362
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1363 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1364 pgoff_t *next_pgofs)
1365 {
1366 struct address_space *mapping = inode->i_mapping;
1367 struct page *page;
1368
1369 page = find_get_page(mapping, index);
1370 if (page && PageUptodate(page))
1371 return page;
1372 f2fs_put_page(page, 0);
1373
1374 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1375 if (IS_ERR(page))
1376 return page;
1377
1378 if (PageUptodate(page))
1379 return page;
1380
1381 wait_on_page_locked(page);
1382 if (unlikely(!PageUptodate(page))) {
1383 f2fs_put_page(page, 0);
1384 return ERR_PTR(-EIO);
1385 }
1386 return page;
1387 }
1388
1389 /*
1390 * If it tries to access a hole, return an error.
1391 * Because, the callers, functions in dir.c and GC, should be able to know
1392 * whether this page exists or not.
1393 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1394 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1395 bool for_write)
1396 {
1397 struct address_space *mapping = inode->i_mapping;
1398 struct page *page;
1399
1400 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1401 if (IS_ERR(page))
1402 return page;
1403
1404 /* wait for read completion */
1405 lock_page(page);
1406 if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1407 f2fs_put_page(page, 1);
1408 return ERR_PTR(-EIO);
1409 }
1410 return page;
1411 }
1412
1413 /*
1414 * Caller ensures that this data page is never allocated.
1415 * A new zero-filled data page is allocated in the page cache.
1416 *
1417 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1418 * f2fs_unlock_op().
1419 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1420 * ipage should be released by this function.
1421 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1422 struct page *f2fs_get_new_data_page(struct inode *inode,
1423 struct page *ipage, pgoff_t index, bool new_i_size)
1424 {
1425 struct address_space *mapping = inode->i_mapping;
1426 struct page *page;
1427 struct dnode_of_data dn;
1428 int err;
1429
1430 page = f2fs_grab_cache_page(mapping, index, true);
1431 if (!page) {
1432 /*
1433 * before exiting, we should make sure ipage will be released
1434 * if any error occur.
1435 */
1436 f2fs_put_page(ipage, 1);
1437 return ERR_PTR(-ENOMEM);
1438 }
1439
1440 set_new_dnode(&dn, inode, ipage, NULL, 0);
1441 err = f2fs_reserve_block(&dn, index);
1442 if (err) {
1443 f2fs_put_page(page, 1);
1444 return ERR_PTR(err);
1445 }
1446 if (!ipage)
1447 f2fs_put_dnode(&dn);
1448
1449 if (PageUptodate(page))
1450 goto got_it;
1451
1452 if (dn.data_blkaddr == NEW_ADDR) {
1453 zero_user_segment(page, 0, PAGE_SIZE);
1454 if (!PageUptodate(page))
1455 SetPageUptodate(page);
1456 } else {
1457 f2fs_put_page(page, 1);
1458
1459 /* if ipage exists, blkaddr should be NEW_ADDR */
1460 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1461 page = f2fs_get_lock_data_page(inode, index, true);
1462 if (IS_ERR(page))
1463 return page;
1464 }
1465 got_it:
1466 if (new_i_size && i_size_read(inode) <
1467 ((loff_t)(index + 1) << PAGE_SHIFT))
1468 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1469 return page;
1470 }
1471
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1472 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1473 {
1474 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1475 struct f2fs_summary sum;
1476 struct node_info ni;
1477 block_t old_blkaddr;
1478 blkcnt_t count = 1;
1479 int err;
1480
1481 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1482 return -EPERM;
1483
1484 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1485 if (err)
1486 return err;
1487
1488 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1489 if (dn->data_blkaddr == NULL_ADDR) {
1490 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1491 if (unlikely(err))
1492 return err;
1493 }
1494
1495 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1496 old_blkaddr = dn->data_blkaddr;
1497 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1498 &sum, seg_type, NULL);
1499 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1500 invalidate_mapping_pages(META_MAPPING(sbi),
1501 old_blkaddr, old_blkaddr);
1502 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1503 }
1504 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1505 return 0;
1506 }
1507
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1508 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1509 {
1510 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1511 f2fs_down_read(&sbi->node_change);
1512 else
1513 f2fs_lock_op(sbi);
1514 }
1515
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1516 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1517 {
1518 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1519 f2fs_up_read(&sbi->node_change);
1520 else
1521 f2fs_unlock_op(sbi);
1522 }
1523
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1524 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1525 {
1526 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1527 int err = 0;
1528
1529 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1530 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1531 &dn->data_blkaddr))
1532 err = f2fs_reserve_block(dn, index);
1533 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1534
1535 return err;
1536 }
1537
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1538 static int f2fs_map_no_dnode(struct inode *inode,
1539 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1540 pgoff_t pgoff)
1541 {
1542 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1543
1544 /*
1545 * There is one exceptional case that read_node_page() may return
1546 * -ENOENT due to filesystem has been shutdown or cp_error, return
1547 * -EIO in that case.
1548 */
1549 if (map->m_may_create &&
1550 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1551 return -EIO;
1552
1553 if (map->m_next_pgofs)
1554 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1555 if (map->m_next_extent)
1556 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1557 return 0;
1558 }
1559
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1560 static bool f2fs_map_blocks_cached(struct inode *inode,
1561 struct f2fs_map_blocks *map, int flag)
1562 {
1563 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1564 unsigned int maxblocks = map->m_len;
1565 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1566 struct extent_info ei = {};
1567
1568 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1569 return false;
1570
1571 map->m_pblk = ei.blk + pgoff - ei.fofs;
1572 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1573 map->m_flags = F2FS_MAP_MAPPED;
1574 if (map->m_next_extent)
1575 *map->m_next_extent = pgoff + map->m_len;
1576
1577 /* for hardware encryption, but to avoid potential issue in future */
1578 if (flag == F2FS_GET_BLOCK_DIO)
1579 f2fs_wait_on_block_writeback_range(inode,
1580 map->m_pblk, map->m_len);
1581
1582 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1583 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1584 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1585
1586 map->m_bdev = dev->bdev;
1587 map->m_pblk -= dev->start_blk;
1588 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1589 } else {
1590 map->m_bdev = inode->i_sb->s_bdev;
1591 }
1592 return true;
1593 }
1594
1595 /*
1596 * f2fs_map_blocks() tries to find or build mapping relationship which
1597 * maps continuous logical blocks to physical blocks, and return such
1598 * info via f2fs_map_blocks structure.
1599 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1600 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1601 {
1602 unsigned int maxblocks = map->m_len;
1603 struct dnode_of_data dn;
1604 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1605 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1606 pgoff_t pgofs, end_offset, end;
1607 int err = 0, ofs = 1;
1608 unsigned int ofs_in_node, last_ofs_in_node;
1609 blkcnt_t prealloc;
1610 block_t blkaddr;
1611 unsigned int start_pgofs;
1612 int bidx = 0;
1613 bool is_hole;
1614
1615 if (!maxblocks)
1616 return 0;
1617
1618 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1619 goto out;
1620
1621 map->m_bdev = inode->i_sb->s_bdev;
1622 map->m_multidev_dio =
1623 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1624
1625 map->m_len = 0;
1626 map->m_flags = 0;
1627
1628 /* it only supports block size == page size */
1629 pgofs = (pgoff_t)map->m_lblk;
1630 end = pgofs + maxblocks;
1631
1632 next_dnode:
1633 if (map->m_may_create)
1634 f2fs_map_lock(sbi, flag);
1635
1636 /* When reading holes, we need its node page */
1637 set_new_dnode(&dn, inode, NULL, NULL, 0);
1638 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1639 if (err) {
1640 if (flag == F2FS_GET_BLOCK_BMAP)
1641 map->m_pblk = 0;
1642 if (err == -ENOENT)
1643 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1644 goto unlock_out;
1645 }
1646
1647 start_pgofs = pgofs;
1648 prealloc = 0;
1649 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1650 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1651
1652 next_block:
1653 blkaddr = f2fs_data_blkaddr(&dn);
1654 is_hole = !__is_valid_data_blkaddr(blkaddr);
1655 if (!is_hole &&
1656 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1657 err = -EFSCORRUPTED;
1658 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1659 goto sync_out;
1660 }
1661
1662 /* use out-place-update for direct IO under LFS mode */
1663 if (map->m_may_create &&
1664 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1665 if (unlikely(f2fs_cp_error(sbi))) {
1666 err = -EIO;
1667 goto sync_out;
1668 }
1669
1670 switch (flag) {
1671 case F2FS_GET_BLOCK_PRE_AIO:
1672 if (blkaddr == NULL_ADDR) {
1673 prealloc++;
1674 last_ofs_in_node = dn.ofs_in_node;
1675 }
1676 break;
1677 case F2FS_GET_BLOCK_PRE_DIO:
1678 case F2FS_GET_BLOCK_DIO:
1679 err = __allocate_data_block(&dn, map->m_seg_type);
1680 if (err)
1681 goto sync_out;
1682 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1683 file_need_truncate(inode);
1684 set_inode_flag(inode, FI_APPEND_WRITE);
1685 break;
1686 default:
1687 WARN_ON_ONCE(1);
1688 err = -EIO;
1689 goto sync_out;
1690 }
1691
1692 blkaddr = dn.data_blkaddr;
1693 if (is_hole)
1694 map->m_flags |= F2FS_MAP_NEW;
1695 } else if (is_hole) {
1696 if (f2fs_compressed_file(inode) &&
1697 f2fs_sanity_check_cluster(&dn) &&
1698 (flag != F2FS_GET_BLOCK_FIEMAP ||
1699 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1700 err = -EFSCORRUPTED;
1701 f2fs_handle_error(sbi,
1702 ERROR_CORRUPTED_CLUSTER);
1703 goto sync_out;
1704 }
1705
1706 switch (flag) {
1707 case F2FS_GET_BLOCK_PRECACHE:
1708 goto sync_out;
1709 case F2FS_GET_BLOCK_BMAP:
1710 map->m_pblk = 0;
1711 goto sync_out;
1712 case F2FS_GET_BLOCK_FIEMAP:
1713 if (blkaddr == NULL_ADDR) {
1714 if (map->m_next_pgofs)
1715 *map->m_next_pgofs = pgofs + 1;
1716 goto sync_out;
1717 }
1718 break;
1719 default:
1720 /* for defragment case */
1721 if (map->m_next_pgofs)
1722 *map->m_next_pgofs = pgofs + 1;
1723 goto sync_out;
1724 }
1725 }
1726
1727 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1728 goto skip;
1729
1730 if (map->m_multidev_dio)
1731 bidx = f2fs_target_device_index(sbi, blkaddr);
1732
1733 if (map->m_len == 0) {
1734 /* reserved delalloc block should be mapped for fiemap. */
1735 if (blkaddr == NEW_ADDR)
1736 map->m_flags |= F2FS_MAP_DELALLOC;
1737 map->m_flags |= F2FS_MAP_MAPPED;
1738
1739 map->m_pblk = blkaddr;
1740 map->m_len = 1;
1741
1742 if (map->m_multidev_dio)
1743 map->m_bdev = FDEV(bidx).bdev;
1744 } else if ((map->m_pblk != NEW_ADDR &&
1745 blkaddr == (map->m_pblk + ofs)) ||
1746 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1747 flag == F2FS_GET_BLOCK_PRE_DIO) {
1748 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1749 goto sync_out;
1750 ofs++;
1751 map->m_len++;
1752 } else {
1753 goto sync_out;
1754 }
1755
1756 skip:
1757 dn.ofs_in_node++;
1758 pgofs++;
1759
1760 /* preallocate blocks in batch for one dnode page */
1761 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1762 (pgofs == end || dn.ofs_in_node == end_offset)) {
1763
1764 dn.ofs_in_node = ofs_in_node;
1765 err = f2fs_reserve_new_blocks(&dn, prealloc);
1766 if (err)
1767 goto sync_out;
1768
1769 map->m_len += dn.ofs_in_node - ofs_in_node;
1770 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1771 err = -ENOSPC;
1772 goto sync_out;
1773 }
1774 dn.ofs_in_node = end_offset;
1775 }
1776
1777 if (pgofs >= end)
1778 goto sync_out;
1779 else if (dn.ofs_in_node < end_offset)
1780 goto next_block;
1781
1782 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1783 if (map->m_flags & F2FS_MAP_MAPPED) {
1784 unsigned int ofs = start_pgofs - map->m_lblk;
1785
1786 f2fs_update_read_extent_cache_range(&dn,
1787 start_pgofs, map->m_pblk + ofs,
1788 map->m_len - ofs);
1789 }
1790 }
1791
1792 f2fs_put_dnode(&dn);
1793
1794 if (map->m_may_create) {
1795 f2fs_map_unlock(sbi, flag);
1796 f2fs_balance_fs(sbi, dn.node_changed);
1797 }
1798 goto next_dnode;
1799
1800 sync_out:
1801
1802 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1803 /*
1804 * for hardware encryption, but to avoid potential issue
1805 * in future
1806 */
1807 f2fs_wait_on_block_writeback_range(inode,
1808 map->m_pblk, map->m_len);
1809
1810 if (map->m_multidev_dio) {
1811 block_t blk_addr = map->m_pblk;
1812
1813 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1814
1815 map->m_bdev = FDEV(bidx).bdev;
1816 map->m_pblk -= FDEV(bidx).start_blk;
1817
1818 if (map->m_may_create)
1819 f2fs_update_device_state(sbi, inode->i_ino,
1820 blk_addr, map->m_len);
1821
1822 f2fs_bug_on(sbi, blk_addr + map->m_len >
1823 FDEV(bidx).end_blk + 1);
1824 }
1825 }
1826
1827 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1828 if (map->m_flags & F2FS_MAP_MAPPED) {
1829 unsigned int ofs = start_pgofs - map->m_lblk;
1830
1831 f2fs_update_read_extent_cache_range(&dn,
1832 start_pgofs, map->m_pblk + ofs,
1833 map->m_len - ofs);
1834 }
1835 if (map->m_next_extent)
1836 *map->m_next_extent = pgofs + 1;
1837 }
1838 f2fs_put_dnode(&dn);
1839 unlock_out:
1840 if (map->m_may_create) {
1841 f2fs_map_unlock(sbi, flag);
1842 f2fs_balance_fs(sbi, dn.node_changed);
1843 }
1844 out:
1845 trace_f2fs_map_blocks(inode, map, flag, err);
1846 return err;
1847 }
1848
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1849 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1850 {
1851 struct f2fs_map_blocks map;
1852 block_t last_lblk;
1853 int err;
1854
1855 if (pos + len > i_size_read(inode))
1856 return false;
1857
1858 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1859 map.m_next_pgofs = NULL;
1860 map.m_next_extent = NULL;
1861 map.m_seg_type = NO_CHECK_TYPE;
1862 map.m_may_create = false;
1863 last_lblk = F2FS_BLK_ALIGN(pos + len);
1864
1865 while (map.m_lblk < last_lblk) {
1866 map.m_len = last_lblk - map.m_lblk;
1867 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1868 if (err || map.m_len == 0)
1869 return false;
1870 map.m_lblk += map.m_len;
1871 }
1872 return true;
1873 }
1874
bytes_to_blks(struct inode * inode,u64 bytes)1875 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1876 {
1877 return (bytes >> inode->i_blkbits);
1878 }
1879
blks_to_bytes(struct inode * inode,u64 blks)1880 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1881 {
1882 return (blks << inode->i_blkbits);
1883 }
1884
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1885 static int f2fs_xattr_fiemap(struct inode *inode,
1886 struct fiemap_extent_info *fieinfo)
1887 {
1888 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1889 struct page *page;
1890 struct node_info ni;
1891 __u64 phys = 0, len;
1892 __u32 flags;
1893 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1894 int err = 0;
1895
1896 if (f2fs_has_inline_xattr(inode)) {
1897 int offset;
1898
1899 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1900 inode->i_ino, false);
1901 if (!page)
1902 return -ENOMEM;
1903
1904 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1905 if (err) {
1906 f2fs_put_page(page, 1);
1907 return err;
1908 }
1909
1910 phys = blks_to_bytes(inode, ni.blk_addr);
1911 offset = offsetof(struct f2fs_inode, i_addr) +
1912 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1913 get_inline_xattr_addrs(inode));
1914
1915 phys += offset;
1916 len = inline_xattr_size(inode);
1917
1918 f2fs_put_page(page, 1);
1919
1920 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1921
1922 if (!xnid)
1923 flags |= FIEMAP_EXTENT_LAST;
1924
1925 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1926 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1927 if (err)
1928 return err;
1929 }
1930
1931 if (xnid) {
1932 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1933 if (!page)
1934 return -ENOMEM;
1935
1936 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1937 if (err) {
1938 f2fs_put_page(page, 1);
1939 return err;
1940 }
1941
1942 phys = blks_to_bytes(inode, ni.blk_addr);
1943 len = inode->i_sb->s_blocksize;
1944
1945 f2fs_put_page(page, 1);
1946
1947 flags = FIEMAP_EXTENT_LAST;
1948 }
1949
1950 if (phys) {
1951 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1952 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1953 }
1954
1955 return (err < 0 ? err : 0);
1956 }
1957
max_inode_blocks(struct inode * inode)1958 static loff_t max_inode_blocks(struct inode *inode)
1959 {
1960 loff_t result = ADDRS_PER_INODE(inode);
1961 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1962
1963 /* two direct node blocks */
1964 result += (leaf_count * 2);
1965
1966 /* two indirect node blocks */
1967 leaf_count *= NIDS_PER_BLOCK;
1968 result += (leaf_count * 2);
1969
1970 /* one double indirect node block */
1971 leaf_count *= NIDS_PER_BLOCK;
1972 result += leaf_count;
1973
1974 return result;
1975 }
1976
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1977 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1978 u64 start, u64 len)
1979 {
1980 struct f2fs_map_blocks map;
1981 sector_t start_blk, last_blk;
1982 pgoff_t next_pgofs;
1983 u64 logical = 0, phys = 0, size = 0;
1984 u32 flags = 0;
1985 int ret = 0;
1986 bool compr_cluster = false, compr_appended;
1987 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1988 unsigned int count_in_cluster = 0;
1989 loff_t maxbytes;
1990
1991 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1992 ret = f2fs_precache_extents(inode);
1993 if (ret)
1994 return ret;
1995 }
1996
1997 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1998 if (ret)
1999 return ret;
2000
2001 inode_lock(inode);
2002
2003 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
2004 if (start > maxbytes) {
2005 ret = -EFBIG;
2006 goto out;
2007 }
2008
2009 if (len > maxbytes || (maxbytes - len) < start)
2010 len = maxbytes - start;
2011
2012 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
2013 ret = f2fs_xattr_fiemap(inode, fieinfo);
2014 goto out;
2015 }
2016
2017 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2018 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2019 if (ret != -EAGAIN)
2020 goto out;
2021 }
2022
2023 if (bytes_to_blks(inode, len) == 0)
2024 len = blks_to_bytes(inode, 1);
2025
2026 start_blk = bytes_to_blks(inode, start);
2027 last_blk = bytes_to_blks(inode, start + len - 1);
2028
2029 next:
2030 memset(&map, 0, sizeof(map));
2031 map.m_lblk = start_blk;
2032 map.m_len = bytes_to_blks(inode, len);
2033 map.m_next_pgofs = &next_pgofs;
2034 map.m_seg_type = NO_CHECK_TYPE;
2035
2036 if (compr_cluster) {
2037 map.m_lblk += 1;
2038 map.m_len = cluster_size - count_in_cluster;
2039 }
2040
2041 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2042 if (ret)
2043 goto out;
2044
2045 /* HOLE */
2046 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2047 start_blk = next_pgofs;
2048
2049 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2050 max_inode_blocks(inode)))
2051 goto prep_next;
2052
2053 flags |= FIEMAP_EXTENT_LAST;
2054 }
2055
2056 compr_appended = false;
2057 /* In a case of compressed cluster, append this to the last extent */
2058 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2059 !(map.m_flags & F2FS_MAP_FLAGS))) {
2060 compr_appended = true;
2061 goto skip_fill;
2062 }
2063
2064 if (size) {
2065 flags |= FIEMAP_EXTENT_MERGED;
2066 if (IS_ENCRYPTED(inode))
2067 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2068
2069 ret = fiemap_fill_next_extent(fieinfo, logical,
2070 phys, size, flags);
2071 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2072 if (ret)
2073 goto out;
2074 size = 0;
2075 }
2076
2077 if (start_blk > last_blk)
2078 goto out;
2079
2080 skip_fill:
2081 if (map.m_pblk == COMPRESS_ADDR) {
2082 compr_cluster = true;
2083 count_in_cluster = 1;
2084 } else if (compr_appended) {
2085 unsigned int appended_blks = cluster_size -
2086 count_in_cluster + 1;
2087 size += blks_to_bytes(inode, appended_blks);
2088 start_blk += appended_blks;
2089 compr_cluster = false;
2090 } else {
2091 logical = blks_to_bytes(inode, start_blk);
2092 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2093 blks_to_bytes(inode, map.m_pblk) : 0;
2094 size = blks_to_bytes(inode, map.m_len);
2095 flags = 0;
2096
2097 if (compr_cluster) {
2098 flags = FIEMAP_EXTENT_ENCODED;
2099 count_in_cluster += map.m_len;
2100 if (count_in_cluster == cluster_size) {
2101 compr_cluster = false;
2102 size += blks_to_bytes(inode, 1);
2103 }
2104 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2105 flags = FIEMAP_EXTENT_UNWRITTEN;
2106 }
2107
2108 start_blk += bytes_to_blks(inode, size);
2109 }
2110
2111 prep_next:
2112 cond_resched();
2113 if (fatal_signal_pending(current))
2114 ret = -EINTR;
2115 else
2116 goto next;
2117 out:
2118 if (ret == 1)
2119 ret = 0;
2120
2121 inode_unlock(inode);
2122 return ret;
2123 }
2124
f2fs_readpage_limit(struct inode * inode)2125 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2126 {
2127 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2128 return inode->i_sb->s_maxbytes;
2129
2130 return i_size_read(inode);
2131 }
2132
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2133 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2134 unsigned nr_pages,
2135 struct f2fs_map_blocks *map,
2136 struct bio **bio_ret,
2137 sector_t *last_block_in_bio,
2138 bool is_readahead)
2139 {
2140 struct bio *bio = *bio_ret;
2141 const unsigned blocksize = blks_to_bytes(inode, 1);
2142 sector_t block_in_file;
2143 sector_t last_block;
2144 sector_t last_block_in_file;
2145 sector_t block_nr;
2146 int ret = 0;
2147
2148 block_in_file = (sector_t)page_index(page);
2149 last_block = block_in_file + nr_pages;
2150 last_block_in_file = bytes_to_blks(inode,
2151 f2fs_readpage_limit(inode) + blocksize - 1);
2152 if (last_block > last_block_in_file)
2153 last_block = last_block_in_file;
2154
2155 /* just zeroing out page which is beyond EOF */
2156 if (block_in_file >= last_block)
2157 goto zero_out;
2158 /*
2159 * Map blocks using the previous result first.
2160 */
2161 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2162 block_in_file > map->m_lblk &&
2163 block_in_file < (map->m_lblk + map->m_len))
2164 goto got_it;
2165
2166 /*
2167 * Then do more f2fs_map_blocks() calls until we are
2168 * done with this page.
2169 */
2170 map->m_lblk = block_in_file;
2171 map->m_len = last_block - block_in_file;
2172
2173 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2174 if (ret)
2175 goto out;
2176 got_it:
2177 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2178 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2179 SetPageMappedToDisk(page);
2180
2181 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2182 !cleancache_get_page(page))) {
2183 SetPageUptodate(page);
2184 goto confused;
2185 }
2186
2187 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2188 DATA_GENERIC_ENHANCE_READ)) {
2189 ret = -EFSCORRUPTED;
2190 f2fs_handle_error(F2FS_I_SB(inode),
2191 ERROR_INVALID_BLKADDR);
2192 goto out;
2193 }
2194 } else {
2195 zero_out:
2196 zero_user_segment(page, 0, PAGE_SIZE);
2197 if (f2fs_need_verity(inode, page->index) &&
2198 !fsverity_verify_page(page)) {
2199 ret = -EIO;
2200 goto out;
2201 }
2202 if (!PageUptodate(page))
2203 SetPageUptodate(page);
2204 unlock_page(page);
2205 goto out;
2206 }
2207
2208 /*
2209 * This page will go to BIO. Do we need to send this
2210 * BIO off first?
2211 */
2212 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2213 *last_block_in_bio, block_nr) ||
2214 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2215 submit_and_realloc:
2216 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2217 bio = NULL;
2218 }
2219 if (bio == NULL) {
2220 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2221 is_readahead ? REQ_RAHEAD : 0, page->index,
2222 false);
2223 if (IS_ERR(bio)) {
2224 ret = PTR_ERR(bio);
2225 bio = NULL;
2226 goto out;
2227 }
2228 }
2229
2230 /*
2231 * If the page is under writeback, we need to wait for
2232 * its completion to see the correct decrypted data.
2233 */
2234 f2fs_wait_on_block_writeback(inode, block_nr);
2235
2236 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2237 goto submit_and_realloc;
2238
2239 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2240 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2241 F2FS_BLKSIZE);
2242 *last_block_in_bio = block_nr;
2243 goto out;
2244 confused:
2245 if (bio) {
2246 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2247 bio = NULL;
2248 }
2249 unlock_page(page);
2250 out:
2251 *bio_ret = bio;
2252 return ret;
2253 }
2254
2255 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2256 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2257 unsigned nr_pages, sector_t *last_block_in_bio,
2258 bool is_readahead, bool for_write)
2259 {
2260 struct dnode_of_data dn;
2261 struct inode *inode = cc->inode;
2262 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2263 struct bio *bio = *bio_ret;
2264 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2265 sector_t last_block_in_file;
2266 const unsigned blocksize = blks_to_bytes(inode, 1);
2267 struct decompress_io_ctx *dic = NULL;
2268 struct extent_info ei = {};
2269 bool from_dnode = true;
2270 int i;
2271 int ret = 0;
2272
2273 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2274
2275 last_block_in_file = bytes_to_blks(inode,
2276 f2fs_readpage_limit(inode) + blocksize - 1);
2277
2278 /* get rid of pages beyond EOF */
2279 for (i = 0; i < cc->cluster_size; i++) {
2280 struct page *page = cc->rpages[i];
2281
2282 if (!page)
2283 continue;
2284 if ((sector_t)page->index >= last_block_in_file) {
2285 zero_user_segment(page, 0, PAGE_SIZE);
2286 if (!PageUptodate(page))
2287 SetPageUptodate(page);
2288 } else if (!PageUptodate(page)) {
2289 continue;
2290 }
2291 unlock_page(page);
2292 if (for_write)
2293 put_page(page);
2294 cc->rpages[i] = NULL;
2295 cc->nr_rpages--;
2296 }
2297
2298 /* we are done since all pages are beyond EOF */
2299 if (f2fs_cluster_is_empty(cc))
2300 goto out;
2301
2302 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2303 from_dnode = false;
2304
2305 if (!from_dnode)
2306 goto skip_reading_dnode;
2307
2308 set_new_dnode(&dn, inode, NULL, NULL, 0);
2309 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2310 if (ret)
2311 goto out;
2312
2313 if (unlikely(f2fs_cp_error(sbi))) {
2314 ret = -EIO;
2315 goto out_put_dnode;
2316 }
2317 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2318
2319 skip_reading_dnode:
2320 for (i = 1; i < cc->cluster_size; i++) {
2321 block_t blkaddr;
2322
2323 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2324 dn.ofs_in_node + i) :
2325 ei.blk + i - 1;
2326
2327 if (!__is_valid_data_blkaddr(blkaddr))
2328 break;
2329
2330 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2331 ret = -EFAULT;
2332 goto out_put_dnode;
2333 }
2334 cc->nr_cpages++;
2335
2336 if (!from_dnode && i >= ei.c_len)
2337 break;
2338 }
2339
2340 /* nothing to decompress */
2341 if (cc->nr_cpages == 0) {
2342 ret = 0;
2343 goto out_put_dnode;
2344 }
2345
2346 dic = f2fs_alloc_dic(cc);
2347 if (IS_ERR(dic)) {
2348 ret = PTR_ERR(dic);
2349 goto out_put_dnode;
2350 }
2351
2352 for (i = 0; i < cc->nr_cpages; i++) {
2353 struct page *page = dic->cpages[i];
2354 block_t blkaddr;
2355 struct bio_post_read_ctx *ctx;
2356
2357 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2358 dn.ofs_in_node + i + 1) :
2359 ei.blk + i;
2360
2361 f2fs_wait_on_block_writeback(inode, blkaddr);
2362
2363 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2364 if (atomic_dec_and_test(&dic->remaining_pages))
2365 f2fs_decompress_cluster(dic, true);
2366 continue;
2367 }
2368
2369 if (bio && (!page_is_mergeable(sbi, bio,
2370 *last_block_in_bio, blkaddr) ||
2371 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2372 submit_and_realloc:
2373 f2fs_submit_read_bio(sbi, bio, DATA);
2374 bio = NULL;
2375 }
2376
2377 if (!bio) {
2378 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2379 is_readahead ? REQ_RAHEAD : 0,
2380 page->index, for_write);
2381 if (IS_ERR(bio)) {
2382 ret = PTR_ERR(bio);
2383 f2fs_decompress_end_io(dic, ret, true);
2384 f2fs_put_dnode(&dn);
2385 *bio_ret = NULL;
2386 return ret;
2387 }
2388 }
2389
2390 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2391 goto submit_and_realloc;
2392
2393 ctx = get_post_read_ctx(bio);
2394 ctx->enabled_steps |= STEP_DECOMPRESS;
2395 refcount_inc(&dic->refcnt);
2396
2397 inc_page_count(sbi, F2FS_RD_DATA);
2398 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2399 *last_block_in_bio = blkaddr;
2400 }
2401
2402 if (from_dnode)
2403 f2fs_put_dnode(&dn);
2404
2405 *bio_ret = bio;
2406 return 0;
2407
2408 out_put_dnode:
2409 if (from_dnode)
2410 f2fs_put_dnode(&dn);
2411 out:
2412 for (i = 0; i < cc->cluster_size; i++) {
2413 if (cc->rpages[i]) {
2414 ClearPageUptodate(cc->rpages[i]);
2415 unlock_page(cc->rpages[i]);
2416 }
2417 }
2418 *bio_ret = bio;
2419 return ret;
2420 }
2421 #endif
2422
2423 /*
2424 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2425 * Major change was from block_size == page_size in f2fs by default.
2426 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2427 static int f2fs_mpage_readpages(struct inode *inode,
2428 struct readahead_control *rac, struct page *page)
2429 {
2430 struct bio *bio = NULL;
2431 sector_t last_block_in_bio = 0;
2432 struct f2fs_map_blocks map;
2433 #ifdef CONFIG_F2FS_FS_COMPRESSION
2434 struct compress_ctx cc = {
2435 .inode = inode,
2436 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2437 .cluster_size = F2FS_I(inode)->i_cluster_size,
2438 .cluster_idx = NULL_CLUSTER,
2439 .rpages = NULL,
2440 .cpages = NULL,
2441 .nr_rpages = 0,
2442 .nr_cpages = 0,
2443 };
2444 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2445 #endif
2446 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2447 unsigned max_nr_pages = nr_pages;
2448 int ret = 0;
2449
2450 map.m_pblk = 0;
2451 map.m_lblk = 0;
2452 map.m_len = 0;
2453 map.m_flags = 0;
2454 map.m_next_pgofs = NULL;
2455 map.m_next_extent = NULL;
2456 map.m_seg_type = NO_CHECK_TYPE;
2457 map.m_may_create = false;
2458
2459 for (; nr_pages; nr_pages--) {
2460 if (rac) {
2461 page = readahead_page(rac);
2462 prefetchw(&page->flags);
2463 }
2464
2465 #ifdef CONFIG_F2FS_FS_COMPRESSION
2466 if (f2fs_compressed_file(inode)) {
2467 /* there are remained compressed pages, submit them */
2468 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2469 ret = f2fs_read_multi_pages(&cc, &bio,
2470 max_nr_pages,
2471 &last_block_in_bio,
2472 rac != NULL, false);
2473 f2fs_destroy_compress_ctx(&cc, false);
2474 if (ret)
2475 goto set_error_page;
2476 }
2477 if (cc.cluster_idx == NULL_CLUSTER) {
2478 if (nc_cluster_idx ==
2479 page->index >> cc.log_cluster_size) {
2480 goto read_single_page;
2481 }
2482
2483 ret = f2fs_is_compressed_cluster(inode, page->index);
2484 if (ret < 0)
2485 goto set_error_page;
2486 else if (!ret) {
2487 nc_cluster_idx =
2488 page->index >> cc.log_cluster_size;
2489 goto read_single_page;
2490 }
2491
2492 nc_cluster_idx = NULL_CLUSTER;
2493 }
2494 ret = f2fs_init_compress_ctx(&cc);
2495 if (ret)
2496 goto set_error_page;
2497
2498 f2fs_compress_ctx_add_page(&cc, page);
2499
2500 goto next_page;
2501 }
2502 read_single_page:
2503 #endif
2504
2505 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2506 &bio, &last_block_in_bio, rac);
2507 if (ret) {
2508 #ifdef CONFIG_F2FS_FS_COMPRESSION
2509 set_error_page:
2510 #endif
2511 zero_user_segment(page, 0, PAGE_SIZE);
2512 unlock_page(page);
2513 }
2514 #ifdef CONFIG_F2FS_FS_COMPRESSION
2515 next_page:
2516 #endif
2517 if (rac)
2518 put_page(page);
2519
2520 #ifdef CONFIG_F2FS_FS_COMPRESSION
2521 if (f2fs_compressed_file(inode)) {
2522 /* last page */
2523 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2524 ret = f2fs_read_multi_pages(&cc, &bio,
2525 max_nr_pages,
2526 &last_block_in_bio,
2527 rac != NULL, false);
2528 f2fs_destroy_compress_ctx(&cc, false);
2529 }
2530 }
2531 #endif
2532 }
2533 if (bio)
2534 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2535 return ret;
2536 }
2537
f2fs_read_data_folio(struct file * file,struct folio * folio)2538 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2539 {
2540 struct page *page = &folio->page;
2541 struct inode *inode = page_file_mapping(page)->host;
2542 int ret = -EAGAIN;
2543
2544 trace_f2fs_readpage(page, DATA);
2545
2546 if (!f2fs_is_compress_backend_ready(inode)) {
2547 unlock_page(page);
2548 return -EOPNOTSUPP;
2549 }
2550
2551 /* If the file has inline data, try to read it directly */
2552 if (f2fs_has_inline_data(inode))
2553 ret = f2fs_read_inline_data(inode, page);
2554 if (ret == -EAGAIN)
2555 ret = f2fs_mpage_readpages(inode, NULL, page);
2556 return ret;
2557 }
2558
f2fs_readahead(struct readahead_control * rac)2559 static void f2fs_readahead(struct readahead_control *rac)
2560 {
2561 struct inode *inode = rac->mapping->host;
2562
2563 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2564
2565 if (!f2fs_is_compress_backend_ready(inode))
2566 return;
2567
2568 /* If the file has inline data, skip readahead */
2569 if (f2fs_has_inline_data(inode))
2570 return;
2571
2572 f2fs_mpage_readpages(inode, rac, NULL);
2573 }
2574
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2575 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2576 {
2577 struct inode *inode = fio->page->mapping->host;
2578 struct page *mpage, *page;
2579 gfp_t gfp_flags = GFP_NOFS;
2580
2581 if (!f2fs_encrypted_file(inode))
2582 return 0;
2583
2584 page = fio->compressed_page ? fio->compressed_page : fio->page;
2585
2586 if (fscrypt_inode_uses_inline_crypto(inode))
2587 return 0;
2588
2589 retry_encrypt:
2590 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2591 PAGE_SIZE, 0, gfp_flags);
2592 if (IS_ERR(fio->encrypted_page)) {
2593 /* flush pending IOs and wait for a while in the ENOMEM case */
2594 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2595 f2fs_flush_merged_writes(fio->sbi);
2596 memalloc_retry_wait(GFP_NOFS);
2597 gfp_flags |= __GFP_NOFAIL;
2598 goto retry_encrypt;
2599 }
2600 return PTR_ERR(fio->encrypted_page);
2601 }
2602
2603 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2604 if (mpage) {
2605 if (PageUptodate(mpage))
2606 memcpy(page_address(mpage),
2607 page_address(fio->encrypted_page), PAGE_SIZE);
2608 f2fs_put_page(mpage, 1);
2609 }
2610 return 0;
2611 }
2612
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2613 static inline bool check_inplace_update_policy(struct inode *inode,
2614 struct f2fs_io_info *fio)
2615 {
2616 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2617
2618 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2619 is_inode_flag_set(inode, FI_OPU_WRITE))
2620 return false;
2621 if (IS_F2FS_IPU_FORCE(sbi))
2622 return true;
2623 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2624 return true;
2625 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2626 return true;
2627 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2628 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2629 return true;
2630
2631 /*
2632 * IPU for rewrite async pages
2633 */
2634 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2635 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2636 return true;
2637
2638 /* this is only set during fdatasync */
2639 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2640 return true;
2641
2642 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2643 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2644 return true;
2645
2646 return false;
2647 }
2648
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2649 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2650 {
2651 /* swap file is migrating in aligned write mode */
2652 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2653 return false;
2654
2655 if (f2fs_is_pinned_file(inode))
2656 return true;
2657
2658 /* if this is cold file, we should overwrite to avoid fragmentation */
2659 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2660 return true;
2661
2662 return check_inplace_update_policy(inode, fio);
2663 }
2664
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2665 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2666 {
2667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2668
2669 /* The below cases were checked when setting it. */
2670 if (f2fs_is_pinned_file(inode))
2671 return false;
2672 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2673 return true;
2674 if (f2fs_lfs_mode(sbi))
2675 return true;
2676 if (S_ISDIR(inode->i_mode))
2677 return true;
2678 if (IS_NOQUOTA(inode))
2679 return true;
2680 if (f2fs_is_atomic_file(inode))
2681 return true;
2682
2683 /* swap file is migrating in aligned write mode */
2684 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2685 return true;
2686
2687 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2688 return true;
2689
2690 if (fio) {
2691 if (page_private_gcing(fio->page))
2692 return true;
2693 if (page_private_dummy(fio->page))
2694 return true;
2695 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2696 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2697 return true;
2698 }
2699 return false;
2700 }
2701
need_inplace_update(struct f2fs_io_info * fio)2702 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2703 {
2704 struct inode *inode = fio->page->mapping->host;
2705
2706 if (f2fs_should_update_outplace(inode, fio))
2707 return false;
2708
2709 return f2fs_should_update_inplace(inode, fio);
2710 }
2711
f2fs_do_write_data_page(struct f2fs_io_info * fio)2712 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2713 {
2714 struct page *page = fio->page;
2715 struct inode *inode = page->mapping->host;
2716 struct dnode_of_data dn;
2717 struct node_info ni;
2718 bool ipu_force = false;
2719 int err = 0;
2720
2721 /* Use COW inode to make dnode_of_data for atomic write */
2722 if (f2fs_is_atomic_file(inode))
2723 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2724 else
2725 set_new_dnode(&dn, inode, NULL, NULL, 0);
2726
2727 if (need_inplace_update(fio) &&
2728 f2fs_lookup_read_extent_cache_block(inode, page->index,
2729 &fio->old_blkaddr)) {
2730 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2731 DATA_GENERIC_ENHANCE)) {
2732 f2fs_handle_error(fio->sbi,
2733 ERROR_INVALID_BLKADDR);
2734 return -EFSCORRUPTED;
2735 }
2736
2737 ipu_force = true;
2738 fio->need_lock = LOCK_DONE;
2739 goto got_it;
2740 }
2741
2742 /* Deadlock due to between page->lock and f2fs_lock_op */
2743 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2744 return -EAGAIN;
2745
2746 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2747 if (err)
2748 goto out;
2749
2750 fio->old_blkaddr = dn.data_blkaddr;
2751
2752 /* This page is already truncated */
2753 if (fio->old_blkaddr == NULL_ADDR) {
2754 ClearPageUptodate(page);
2755 clear_page_private_gcing(page);
2756 goto out_writepage;
2757 }
2758 got_it:
2759 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2760 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2761 DATA_GENERIC_ENHANCE)) {
2762 err = -EFSCORRUPTED;
2763 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2764 goto out_writepage;
2765 }
2766
2767 /* wait for GCed page writeback via META_MAPPING */
2768 if (fio->post_read)
2769 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2770
2771 /*
2772 * If current allocation needs SSR,
2773 * it had better in-place writes for updated data.
2774 */
2775 if (ipu_force ||
2776 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2777 need_inplace_update(fio))) {
2778 err = f2fs_encrypt_one_page(fio);
2779 if (err)
2780 goto out_writepage;
2781
2782 set_page_writeback(page);
2783 f2fs_put_dnode(&dn);
2784 if (fio->need_lock == LOCK_REQ)
2785 f2fs_unlock_op(fio->sbi);
2786 err = f2fs_inplace_write_data(fio);
2787 if (err) {
2788 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2789 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2790 if (PageWriteback(page))
2791 end_page_writeback(page);
2792 } else {
2793 set_inode_flag(inode, FI_UPDATE_WRITE);
2794 }
2795 trace_f2fs_do_write_data_page(fio->page, IPU);
2796 return err;
2797 }
2798
2799 if (fio->need_lock == LOCK_RETRY) {
2800 if (!f2fs_trylock_op(fio->sbi)) {
2801 err = -EAGAIN;
2802 goto out_writepage;
2803 }
2804 fio->need_lock = LOCK_REQ;
2805 }
2806
2807 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2808 if (err)
2809 goto out_writepage;
2810
2811 fio->version = ni.version;
2812
2813 err = f2fs_encrypt_one_page(fio);
2814 if (err)
2815 goto out_writepage;
2816
2817 set_page_writeback(page);
2818
2819 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2820 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2821
2822 /* LFS mode write path */
2823 f2fs_outplace_write_data(&dn, fio);
2824 trace_f2fs_do_write_data_page(page, OPU);
2825 set_inode_flag(inode, FI_APPEND_WRITE);
2826 if (page->index == 0)
2827 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2828 out_writepage:
2829 f2fs_put_dnode(&dn);
2830 out:
2831 if (fio->need_lock == LOCK_REQ)
2832 f2fs_unlock_op(fio->sbi);
2833 return err;
2834 }
2835
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2836 int f2fs_write_single_data_page(struct page *page, int *submitted,
2837 struct bio **bio,
2838 sector_t *last_block,
2839 struct writeback_control *wbc,
2840 enum iostat_type io_type,
2841 int compr_blocks,
2842 bool allow_balance)
2843 {
2844 struct inode *inode = page->mapping->host;
2845 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2846 loff_t i_size = i_size_read(inode);
2847 const pgoff_t end_index = ((unsigned long long)i_size)
2848 >> PAGE_SHIFT;
2849 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2850 unsigned offset = 0;
2851 bool need_balance_fs = false;
2852 bool quota_inode = IS_NOQUOTA(inode);
2853 int err = 0;
2854 struct f2fs_io_info fio = {
2855 .sbi = sbi,
2856 .ino = inode->i_ino,
2857 .type = DATA,
2858 .op = REQ_OP_WRITE,
2859 .op_flags = wbc_to_write_flags(wbc),
2860 .old_blkaddr = NULL_ADDR,
2861 .page = page,
2862 .encrypted_page = NULL,
2863 .submitted = 0,
2864 .compr_blocks = compr_blocks,
2865 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2866 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2867 .io_type = io_type,
2868 .io_wbc = wbc,
2869 .bio = bio,
2870 .last_block = last_block,
2871 };
2872
2873 trace_f2fs_writepage(page, DATA);
2874
2875 /* we should bypass data pages to proceed the kworker jobs */
2876 if (unlikely(f2fs_cp_error(sbi))) {
2877 mapping_set_error(page->mapping, -EIO);
2878 /*
2879 * don't drop any dirty dentry pages for keeping lastest
2880 * directory structure.
2881 */
2882 if (S_ISDIR(inode->i_mode) &&
2883 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2884 goto redirty_out;
2885 goto out;
2886 }
2887
2888 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2889 goto redirty_out;
2890
2891 if (page->index < end_index ||
2892 f2fs_verity_in_progress(inode) ||
2893 compr_blocks)
2894 goto write;
2895
2896 /*
2897 * If the offset is out-of-range of file size,
2898 * this page does not have to be written to disk.
2899 */
2900 offset = i_size & (PAGE_SIZE - 1);
2901 if ((page->index >= end_index + 1) || !offset)
2902 goto out;
2903
2904 zero_user_segment(page, offset, PAGE_SIZE);
2905 write:
2906 if (f2fs_is_drop_cache(inode))
2907 goto out;
2908
2909 /* Dentry/quota blocks are controlled by checkpoint */
2910 if (S_ISDIR(inode->i_mode) || quota_inode) {
2911 /*
2912 * We need to wait for node_write to avoid block allocation during
2913 * checkpoint. This can only happen to quota writes which can cause
2914 * the below discard race condition.
2915 */
2916 if (quota_inode)
2917 f2fs_down_read(&sbi->node_write);
2918
2919 fio.need_lock = LOCK_DONE;
2920 err = f2fs_do_write_data_page(&fio);
2921
2922 if (quota_inode)
2923 f2fs_up_read(&sbi->node_write);
2924
2925 goto done;
2926 }
2927
2928 if (!wbc->for_reclaim)
2929 need_balance_fs = true;
2930 else if (has_not_enough_free_secs(sbi, 0, 0))
2931 goto redirty_out;
2932 else
2933 set_inode_flag(inode, FI_HOT_DATA);
2934
2935 err = -EAGAIN;
2936 if (f2fs_has_inline_data(inode)) {
2937 err = f2fs_write_inline_data(inode, page);
2938 if (!err)
2939 goto out;
2940 }
2941
2942 if (err == -EAGAIN) {
2943 err = f2fs_do_write_data_page(&fio);
2944 if (err == -EAGAIN) {
2945 f2fs_bug_on(sbi, compr_blocks);
2946 fio.need_lock = LOCK_REQ;
2947 err = f2fs_do_write_data_page(&fio);
2948 }
2949 }
2950
2951 if (err) {
2952 file_set_keep_isize(inode);
2953 } else {
2954 spin_lock(&F2FS_I(inode)->i_size_lock);
2955 if (F2FS_I(inode)->last_disk_size < psize)
2956 F2FS_I(inode)->last_disk_size = psize;
2957 spin_unlock(&F2FS_I(inode)->i_size_lock);
2958 }
2959
2960 done:
2961 if (err && err != -ENOENT)
2962 goto redirty_out;
2963
2964 out:
2965 inode_dec_dirty_pages(inode);
2966 if (err) {
2967 ClearPageUptodate(page);
2968 clear_page_private_gcing(page);
2969 }
2970
2971 if (wbc->for_reclaim) {
2972 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2973 clear_inode_flag(inode, FI_HOT_DATA);
2974 f2fs_remove_dirty_inode(inode);
2975 submitted = NULL;
2976 }
2977 unlock_page(page);
2978 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2979 !F2FS_I(inode)->wb_task && allow_balance)
2980 f2fs_balance_fs(sbi, need_balance_fs);
2981
2982 if (unlikely(f2fs_cp_error(sbi))) {
2983 f2fs_submit_merged_write(sbi, DATA);
2984 if (bio && *bio)
2985 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2986 submitted = NULL;
2987 }
2988
2989 if (submitted)
2990 *submitted = fio.submitted;
2991
2992 return 0;
2993
2994 redirty_out:
2995 redirty_page_for_writepage(wbc, page);
2996 /*
2997 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2998 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2999 * file_write_and_wait_range() will see EIO error, which is critical
3000 * to return value of fsync() followed by atomic_write failure to user.
3001 */
3002 if (!err || wbc->for_reclaim)
3003 return AOP_WRITEPAGE_ACTIVATE;
3004 unlock_page(page);
3005 return err;
3006 }
3007
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)3008 static int f2fs_write_data_page(struct page *page,
3009 struct writeback_control *wbc)
3010 {
3011 #ifdef CONFIG_F2FS_FS_COMPRESSION
3012 struct inode *inode = page->mapping->host;
3013
3014 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3015 goto out;
3016
3017 if (f2fs_compressed_file(inode)) {
3018 if (f2fs_is_compressed_cluster(inode, page->index)) {
3019 redirty_page_for_writepage(wbc, page);
3020 return AOP_WRITEPAGE_ACTIVATE;
3021 }
3022 }
3023 out:
3024 #endif
3025
3026 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3027 wbc, FS_DATA_IO, 0, true);
3028 }
3029
3030 /*
3031 * This function was copied from write_cache_pages from mm/page-writeback.c.
3032 * The major change is making write step of cold data page separately from
3033 * warm/hot data page.
3034 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3035 static int f2fs_write_cache_pages(struct address_space *mapping,
3036 struct writeback_control *wbc,
3037 enum iostat_type io_type)
3038 {
3039 int ret = 0;
3040 int done = 0, retry = 0;
3041 struct page *pages[F2FS_ONSTACK_PAGES];
3042 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3043 struct bio *bio = NULL;
3044 sector_t last_block;
3045 #ifdef CONFIG_F2FS_FS_COMPRESSION
3046 struct inode *inode = mapping->host;
3047 struct compress_ctx cc = {
3048 .inode = inode,
3049 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3050 .cluster_size = F2FS_I(inode)->i_cluster_size,
3051 .cluster_idx = NULL_CLUSTER,
3052 .rpages = NULL,
3053 .nr_rpages = 0,
3054 .cpages = NULL,
3055 .valid_nr_cpages = 0,
3056 .rbuf = NULL,
3057 .cbuf = NULL,
3058 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3059 .private = NULL,
3060 };
3061 #endif
3062 int nr_pages;
3063 pgoff_t index;
3064 pgoff_t end; /* Inclusive */
3065 pgoff_t done_index;
3066 int range_whole = 0;
3067 xa_mark_t tag;
3068 int nwritten = 0;
3069 int submitted = 0;
3070 int i;
3071
3072 if (get_dirty_pages(mapping->host) <=
3073 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3074 set_inode_flag(mapping->host, FI_HOT_DATA);
3075 else
3076 clear_inode_flag(mapping->host, FI_HOT_DATA);
3077
3078 if (wbc->range_cyclic) {
3079 index = mapping->writeback_index; /* prev offset */
3080 end = -1;
3081 } else {
3082 index = wbc->range_start >> PAGE_SHIFT;
3083 end = wbc->range_end >> PAGE_SHIFT;
3084 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3085 range_whole = 1;
3086 }
3087 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3088 tag = PAGECACHE_TAG_TOWRITE;
3089 else
3090 tag = PAGECACHE_TAG_DIRTY;
3091 retry:
3092 retry = 0;
3093 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3094 tag_pages_for_writeback(mapping, index, end);
3095 done_index = index;
3096 while (!done && !retry && (index <= end)) {
3097 nr_pages = find_get_pages_range_tag(mapping, &index, end,
3098 tag, F2FS_ONSTACK_PAGES, pages);
3099 if (nr_pages == 0)
3100 break;
3101
3102 for (i = 0; i < nr_pages; i++) {
3103 struct page *page = pages[i];
3104 bool need_readd;
3105 readd:
3106 need_readd = false;
3107 #ifdef CONFIG_F2FS_FS_COMPRESSION
3108 if (f2fs_compressed_file(inode)) {
3109 void *fsdata = NULL;
3110 struct page *pagep;
3111 int ret2;
3112
3113 ret = f2fs_init_compress_ctx(&cc);
3114 if (ret) {
3115 done = 1;
3116 break;
3117 }
3118
3119 if (!f2fs_cluster_can_merge_page(&cc,
3120 page->index)) {
3121 ret = f2fs_write_multi_pages(&cc,
3122 &submitted, wbc, io_type);
3123 if (!ret)
3124 need_readd = true;
3125 goto result;
3126 }
3127
3128 if (unlikely(f2fs_cp_error(sbi)))
3129 goto lock_page;
3130
3131 if (!f2fs_cluster_is_empty(&cc))
3132 goto lock_page;
3133
3134 if (f2fs_all_cluster_page_ready(&cc,
3135 pages, i, nr_pages, true))
3136 goto lock_page;
3137
3138 ret2 = f2fs_prepare_compress_overwrite(
3139 inode, &pagep,
3140 page->index, &fsdata);
3141 if (ret2 < 0) {
3142 ret = ret2;
3143 done = 1;
3144 break;
3145 } else if (ret2 &&
3146 (!f2fs_compress_write_end(inode,
3147 fsdata, page->index, 1) ||
3148 !f2fs_all_cluster_page_ready(&cc,
3149 pages, i, nr_pages, false))) {
3150 retry = 1;
3151 break;
3152 }
3153 }
3154 #endif
3155 /* give a priority to WB_SYNC threads */
3156 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3157 wbc->sync_mode == WB_SYNC_NONE) {
3158 done = 1;
3159 break;
3160 }
3161 #ifdef CONFIG_F2FS_FS_COMPRESSION
3162 lock_page:
3163 #endif
3164 done_index = page->index;
3165 retry_write:
3166 lock_page(page);
3167
3168 if (unlikely(page->mapping != mapping)) {
3169 continue_unlock:
3170 unlock_page(page);
3171 continue;
3172 }
3173
3174 if (!PageDirty(page)) {
3175 /* someone wrote it for us */
3176 goto continue_unlock;
3177 }
3178
3179 if (PageWriteback(page)) {
3180 if (wbc->sync_mode == WB_SYNC_NONE)
3181 goto continue_unlock;
3182 f2fs_wait_on_page_writeback(page, DATA, true, true);
3183 }
3184
3185 if (!clear_page_dirty_for_io(page))
3186 goto continue_unlock;
3187
3188 #ifdef CONFIG_F2FS_FS_COMPRESSION
3189 if (f2fs_compressed_file(inode)) {
3190 get_page(page);
3191 f2fs_compress_ctx_add_page(&cc, page);
3192 continue;
3193 }
3194 #endif
3195 ret = f2fs_write_single_data_page(page, &submitted,
3196 &bio, &last_block, wbc, io_type,
3197 0, true);
3198 if (ret == AOP_WRITEPAGE_ACTIVATE)
3199 unlock_page(page);
3200 #ifdef CONFIG_F2FS_FS_COMPRESSION
3201 result:
3202 #endif
3203 nwritten += submitted;
3204 wbc->nr_to_write -= submitted;
3205
3206 if (unlikely(ret)) {
3207 /*
3208 * keep nr_to_write, since vfs uses this to
3209 * get # of written pages.
3210 */
3211 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3212 ret = 0;
3213 goto next;
3214 } else if (ret == -EAGAIN) {
3215 ret = 0;
3216 if (wbc->sync_mode == WB_SYNC_ALL) {
3217 f2fs_io_schedule_timeout(
3218 DEFAULT_IO_TIMEOUT);
3219 goto retry_write;
3220 }
3221 goto next;
3222 }
3223 done_index = page->index + 1;
3224 done = 1;
3225 break;
3226 }
3227
3228 if (wbc->nr_to_write <= 0 &&
3229 wbc->sync_mode == WB_SYNC_NONE) {
3230 done = 1;
3231 break;
3232 }
3233 next:
3234 if (need_readd)
3235 goto readd;
3236 }
3237 release_pages(pages, nr_pages);
3238 cond_resched();
3239 }
3240 #ifdef CONFIG_F2FS_FS_COMPRESSION
3241 /* flush remained pages in compress cluster */
3242 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3243 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3244 nwritten += submitted;
3245 wbc->nr_to_write -= submitted;
3246 if (ret) {
3247 done = 1;
3248 retry = 0;
3249 }
3250 }
3251 if (f2fs_compressed_file(inode))
3252 f2fs_destroy_compress_ctx(&cc, false);
3253 #endif
3254 if (retry) {
3255 index = 0;
3256 end = -1;
3257 goto retry;
3258 }
3259 if (wbc->range_cyclic && !done)
3260 done_index = 0;
3261 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3262 mapping->writeback_index = done_index;
3263
3264 if (nwritten)
3265 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3266 NULL, 0, DATA);
3267 /* submit cached bio of IPU write */
3268 if (bio)
3269 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3270
3271 return ret;
3272 }
3273
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3274 static inline bool __should_serialize_io(struct inode *inode,
3275 struct writeback_control *wbc)
3276 {
3277 /* to avoid deadlock in path of data flush */
3278 if (F2FS_I(inode)->wb_task)
3279 return false;
3280
3281 if (!S_ISREG(inode->i_mode))
3282 return false;
3283 if (IS_NOQUOTA(inode))
3284 return false;
3285
3286 if (f2fs_need_compress_data(inode))
3287 return true;
3288 if (wbc->sync_mode != WB_SYNC_ALL)
3289 return true;
3290 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3291 return true;
3292 return false;
3293 }
3294
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3295 static int __f2fs_write_data_pages(struct address_space *mapping,
3296 struct writeback_control *wbc,
3297 enum iostat_type io_type)
3298 {
3299 struct inode *inode = mapping->host;
3300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3301 struct blk_plug plug;
3302 int ret;
3303 bool locked = false;
3304
3305 /* deal with chardevs and other special file */
3306 if (!mapping->a_ops->writepage)
3307 return 0;
3308
3309 /* skip writing if there is no dirty page in this inode */
3310 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3311 return 0;
3312
3313 /* during POR, we don't need to trigger writepage at all. */
3314 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3315 goto skip_write;
3316
3317 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3318 wbc->sync_mode == WB_SYNC_NONE &&
3319 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3320 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3321 goto skip_write;
3322
3323 /* skip writing in file defragment preparing stage */
3324 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3325 goto skip_write;
3326
3327 trace_f2fs_writepages(mapping->host, wbc, DATA);
3328
3329 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3330 if (wbc->sync_mode == WB_SYNC_ALL)
3331 atomic_inc(&sbi->wb_sync_req[DATA]);
3332 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3333 /* to avoid potential deadlock */
3334 if (current->plug)
3335 blk_finish_plug(current->plug);
3336 goto skip_write;
3337 }
3338
3339 if (__should_serialize_io(inode, wbc)) {
3340 mutex_lock(&sbi->writepages);
3341 locked = true;
3342 }
3343
3344 blk_start_plug(&plug);
3345 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3346 blk_finish_plug(&plug);
3347
3348 if (locked)
3349 mutex_unlock(&sbi->writepages);
3350
3351 if (wbc->sync_mode == WB_SYNC_ALL)
3352 atomic_dec(&sbi->wb_sync_req[DATA]);
3353 /*
3354 * if some pages were truncated, we cannot guarantee its mapping->host
3355 * to detect pending bios.
3356 */
3357
3358 f2fs_remove_dirty_inode(inode);
3359 return ret;
3360
3361 skip_write:
3362 wbc->pages_skipped += get_dirty_pages(inode);
3363 trace_f2fs_writepages(mapping->host, wbc, DATA);
3364 return 0;
3365 }
3366
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3367 static int f2fs_write_data_pages(struct address_space *mapping,
3368 struct writeback_control *wbc)
3369 {
3370 struct inode *inode = mapping->host;
3371
3372 return __f2fs_write_data_pages(mapping, wbc,
3373 F2FS_I(inode)->cp_task == current ?
3374 FS_CP_DATA_IO : FS_DATA_IO);
3375 }
3376
f2fs_write_failed(struct inode * inode,loff_t to)3377 void f2fs_write_failed(struct inode *inode, loff_t to)
3378 {
3379 loff_t i_size = i_size_read(inode);
3380
3381 if (IS_NOQUOTA(inode))
3382 return;
3383
3384 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3385 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3386 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3387 filemap_invalidate_lock(inode->i_mapping);
3388
3389 truncate_pagecache(inode, i_size);
3390 f2fs_truncate_blocks(inode, i_size, true);
3391
3392 filemap_invalidate_unlock(inode->i_mapping);
3393 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3394 }
3395 }
3396
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3397 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3398 struct page *page, loff_t pos, unsigned len,
3399 block_t *blk_addr, bool *node_changed)
3400 {
3401 struct inode *inode = page->mapping->host;
3402 pgoff_t index = page->index;
3403 struct dnode_of_data dn;
3404 struct page *ipage;
3405 bool locked = false;
3406 int flag = F2FS_GET_BLOCK_PRE_AIO;
3407 int err = 0;
3408
3409 /*
3410 * If a whole page is being written and we already preallocated all the
3411 * blocks, then there is no need to get a block address now.
3412 */
3413 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3414 return 0;
3415
3416 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3417 if (f2fs_has_inline_data(inode)) {
3418 if (pos + len > MAX_INLINE_DATA(inode))
3419 flag = F2FS_GET_BLOCK_DEFAULT;
3420 f2fs_map_lock(sbi, flag);
3421 locked = true;
3422 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3423 f2fs_map_lock(sbi, flag);
3424 locked = true;
3425 }
3426
3427 restart:
3428 /* check inline_data */
3429 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3430 if (IS_ERR(ipage)) {
3431 err = PTR_ERR(ipage);
3432 goto unlock_out;
3433 }
3434
3435 set_new_dnode(&dn, inode, ipage, ipage, 0);
3436
3437 if (f2fs_has_inline_data(inode)) {
3438 if (pos + len <= MAX_INLINE_DATA(inode)) {
3439 f2fs_do_read_inline_data(page, ipage);
3440 set_inode_flag(inode, FI_DATA_EXIST);
3441 if (inode->i_nlink)
3442 set_page_private_inline(ipage);
3443 goto out;
3444 }
3445 err = f2fs_convert_inline_page(&dn, page);
3446 if (err || dn.data_blkaddr != NULL_ADDR)
3447 goto out;
3448 }
3449
3450 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3451 &dn.data_blkaddr)) {
3452 if (locked) {
3453 err = f2fs_reserve_block(&dn, index);
3454 goto out;
3455 }
3456
3457 /* hole case */
3458 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3459 if (!err && dn.data_blkaddr != NULL_ADDR)
3460 goto out;
3461 f2fs_put_dnode(&dn);
3462 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3463 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3464 locked = true;
3465 goto restart;
3466 }
3467 out:
3468 if (!err) {
3469 /* convert_inline_page can make node_changed */
3470 *blk_addr = dn.data_blkaddr;
3471 *node_changed = dn.node_changed;
3472 }
3473 f2fs_put_dnode(&dn);
3474 unlock_out:
3475 if (locked)
3476 f2fs_map_unlock(sbi, flag);
3477 return err;
3478 }
3479
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3480 static int __find_data_block(struct inode *inode, pgoff_t index,
3481 block_t *blk_addr)
3482 {
3483 struct dnode_of_data dn;
3484 struct page *ipage;
3485 int err = 0;
3486
3487 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3488 if (IS_ERR(ipage))
3489 return PTR_ERR(ipage);
3490
3491 set_new_dnode(&dn, inode, ipage, ipage, 0);
3492
3493 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3494 &dn.data_blkaddr)) {
3495 /* hole case */
3496 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3497 if (err) {
3498 dn.data_blkaddr = NULL_ADDR;
3499 err = 0;
3500 }
3501 }
3502 *blk_addr = dn.data_blkaddr;
3503 f2fs_put_dnode(&dn);
3504 return err;
3505 }
3506
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3507 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3508 block_t *blk_addr, bool *node_changed)
3509 {
3510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3511 struct dnode_of_data dn;
3512 struct page *ipage;
3513 int err = 0;
3514
3515 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3516
3517 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3518 if (IS_ERR(ipage)) {
3519 err = PTR_ERR(ipage);
3520 goto unlock_out;
3521 }
3522 set_new_dnode(&dn, inode, ipage, ipage, 0);
3523
3524 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3525 &dn.data_blkaddr))
3526 err = f2fs_reserve_block(&dn, index);
3527
3528 *blk_addr = dn.data_blkaddr;
3529 *node_changed = dn.node_changed;
3530 f2fs_put_dnode(&dn);
3531
3532 unlock_out:
3533 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3534 return err;
3535 }
3536
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3537 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3538 struct page *page, loff_t pos, unsigned int len,
3539 block_t *blk_addr, bool *node_changed, bool *use_cow)
3540 {
3541 struct inode *inode = page->mapping->host;
3542 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3543 pgoff_t index = page->index;
3544 int err = 0;
3545 block_t ori_blk_addr = NULL_ADDR;
3546
3547 /* If pos is beyond the end of file, reserve a new block in COW inode */
3548 if ((pos & PAGE_MASK) >= i_size_read(inode))
3549 goto reserve_block;
3550
3551 /* Look for the block in COW inode first */
3552 err = __find_data_block(cow_inode, index, blk_addr);
3553 if (err) {
3554 return err;
3555 } else if (*blk_addr != NULL_ADDR) {
3556 *use_cow = true;
3557 return 0;
3558 }
3559
3560 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3561 goto reserve_block;
3562
3563 /* Look for the block in the original inode */
3564 err = __find_data_block(inode, index, &ori_blk_addr);
3565 if (err)
3566 return err;
3567
3568 reserve_block:
3569 /* Finally, we should reserve a new block in COW inode for the update */
3570 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3571 if (err)
3572 return err;
3573 inc_atomic_write_cnt(inode);
3574
3575 if (ori_blk_addr != NULL_ADDR)
3576 *blk_addr = ori_blk_addr;
3577 return 0;
3578 }
3579
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)3580 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3581 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3582 {
3583 struct inode *inode = mapping->host;
3584 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3585 struct page *page = NULL;
3586 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3587 bool need_balance = false;
3588 bool use_cow = false;
3589 block_t blkaddr = NULL_ADDR;
3590 int err = 0;
3591
3592 trace_f2fs_write_begin(inode, pos, len);
3593
3594 if (!f2fs_is_checkpoint_ready(sbi)) {
3595 err = -ENOSPC;
3596 goto fail;
3597 }
3598
3599 /*
3600 * We should check this at this moment to avoid deadlock on inode page
3601 * and #0 page. The locking rule for inline_data conversion should be:
3602 * lock_page(page #0) -> lock_page(inode_page)
3603 */
3604 if (index != 0) {
3605 err = f2fs_convert_inline_inode(inode);
3606 if (err)
3607 goto fail;
3608 }
3609
3610 #ifdef CONFIG_F2FS_FS_COMPRESSION
3611 if (f2fs_compressed_file(inode)) {
3612 int ret;
3613
3614 *fsdata = NULL;
3615
3616 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3617 goto repeat;
3618
3619 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3620 index, fsdata);
3621 if (ret < 0) {
3622 err = ret;
3623 goto fail;
3624 } else if (ret) {
3625 return 0;
3626 }
3627 }
3628 #endif
3629
3630 repeat:
3631 /*
3632 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3633 * wait_for_stable_page. Will wait that below with our IO control.
3634 */
3635 page = f2fs_pagecache_get_page(mapping, index,
3636 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3637 if (!page) {
3638 err = -ENOMEM;
3639 goto fail;
3640 }
3641
3642 /* TODO: cluster can be compressed due to race with .writepage */
3643
3644 *pagep = page;
3645
3646 if (f2fs_is_atomic_file(inode))
3647 err = prepare_atomic_write_begin(sbi, page, pos, len,
3648 &blkaddr, &need_balance, &use_cow);
3649 else
3650 err = prepare_write_begin(sbi, page, pos, len,
3651 &blkaddr, &need_balance);
3652 if (err)
3653 goto fail;
3654
3655 if (need_balance && !IS_NOQUOTA(inode) &&
3656 has_not_enough_free_secs(sbi, 0, 0)) {
3657 unlock_page(page);
3658 f2fs_balance_fs(sbi, true);
3659 lock_page(page);
3660 if (page->mapping != mapping) {
3661 /* The page got truncated from under us */
3662 f2fs_put_page(page, 1);
3663 goto repeat;
3664 }
3665 }
3666
3667 f2fs_wait_on_page_writeback(page, DATA, false, true);
3668
3669 if (len == PAGE_SIZE || PageUptodate(page))
3670 return 0;
3671
3672 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3673 !f2fs_verity_in_progress(inode)) {
3674 zero_user_segment(page, len, PAGE_SIZE);
3675 return 0;
3676 }
3677
3678 if (blkaddr == NEW_ADDR) {
3679 zero_user_segment(page, 0, PAGE_SIZE);
3680 SetPageUptodate(page);
3681 } else {
3682 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3683 DATA_GENERIC_ENHANCE_READ)) {
3684 err = -EFSCORRUPTED;
3685 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3686 goto fail;
3687 }
3688 err = f2fs_submit_page_read(use_cow ?
3689 F2FS_I(inode)->cow_inode : inode, page,
3690 blkaddr, 0, true);
3691 if (err)
3692 goto fail;
3693
3694 lock_page(page);
3695 if (unlikely(page->mapping != mapping)) {
3696 f2fs_put_page(page, 1);
3697 goto repeat;
3698 }
3699 if (unlikely(!PageUptodate(page))) {
3700 err = -EIO;
3701 goto fail;
3702 }
3703 }
3704 return 0;
3705
3706 fail:
3707 f2fs_put_page(page, 1);
3708 f2fs_write_failed(inode, pos + len);
3709 return err;
3710 }
3711
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3712 static int f2fs_write_end(struct file *file,
3713 struct address_space *mapping,
3714 loff_t pos, unsigned len, unsigned copied,
3715 struct page *page, void *fsdata)
3716 {
3717 struct inode *inode = page->mapping->host;
3718
3719 trace_f2fs_write_end(inode, pos, len, copied);
3720
3721 /*
3722 * This should be come from len == PAGE_SIZE, and we expect copied
3723 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3724 * let generic_perform_write() try to copy data again through copied=0.
3725 */
3726 if (!PageUptodate(page)) {
3727 if (unlikely(copied != len))
3728 copied = 0;
3729 else
3730 SetPageUptodate(page);
3731 }
3732
3733 #ifdef CONFIG_F2FS_FS_COMPRESSION
3734 /* overwrite compressed file */
3735 if (f2fs_compressed_file(inode) && fsdata) {
3736 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3737 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3738
3739 if (pos + copied > i_size_read(inode) &&
3740 !f2fs_verity_in_progress(inode))
3741 f2fs_i_size_write(inode, pos + copied);
3742 return copied;
3743 }
3744 #endif
3745
3746 if (!copied)
3747 goto unlock_out;
3748
3749 set_page_dirty(page);
3750
3751 if (pos + copied > i_size_read(inode) &&
3752 !f2fs_verity_in_progress(inode)) {
3753 f2fs_i_size_write(inode, pos + copied);
3754 if (f2fs_is_atomic_file(inode))
3755 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3756 pos + copied);
3757 }
3758 unlock_out:
3759 f2fs_put_page(page, 1);
3760 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3761 return copied;
3762 }
3763
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3764 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3765 {
3766 struct inode *inode = folio->mapping->host;
3767 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3768
3769 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3770 (offset || length != folio_size(folio)))
3771 return;
3772
3773 if (folio_test_dirty(folio)) {
3774 if (inode->i_ino == F2FS_META_INO(sbi)) {
3775 dec_page_count(sbi, F2FS_DIRTY_META);
3776 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3777 dec_page_count(sbi, F2FS_DIRTY_NODES);
3778 } else {
3779 inode_dec_dirty_pages(inode);
3780 f2fs_remove_dirty_inode(inode);
3781 }
3782 }
3783 clear_page_private_all(&folio->page);
3784 }
3785
f2fs_release_folio(struct folio * folio,gfp_t wait)3786 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3787 {
3788 /* If this is dirty folio, keep private data */
3789 if (folio_test_dirty(folio))
3790 return false;
3791
3792 clear_page_private_all(&folio->page);
3793 return true;
3794 }
3795
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3796 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3797 struct folio *folio)
3798 {
3799 struct inode *inode = mapping->host;
3800
3801 trace_f2fs_set_page_dirty(&folio->page, DATA);
3802
3803 if (!folio_test_uptodate(folio))
3804 folio_mark_uptodate(folio);
3805 BUG_ON(folio_test_swapcache(folio));
3806
3807 if (filemap_dirty_folio(mapping, folio)) {
3808 f2fs_update_dirty_folio(inode, folio);
3809 return true;
3810 }
3811 return false;
3812 }
3813
3814
f2fs_bmap_compress(struct inode * inode,sector_t block)3815 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3816 {
3817 #ifdef CONFIG_F2FS_FS_COMPRESSION
3818 struct dnode_of_data dn;
3819 sector_t start_idx, blknr = 0;
3820 int ret;
3821
3822 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3823
3824 set_new_dnode(&dn, inode, NULL, NULL, 0);
3825 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3826 if (ret)
3827 return 0;
3828
3829 if (dn.data_blkaddr != COMPRESS_ADDR) {
3830 dn.ofs_in_node += block - start_idx;
3831 blknr = f2fs_data_blkaddr(&dn);
3832 if (!__is_valid_data_blkaddr(blknr))
3833 blknr = 0;
3834 }
3835
3836 f2fs_put_dnode(&dn);
3837 return blknr;
3838 #else
3839 return 0;
3840 #endif
3841 }
3842
3843
f2fs_bmap(struct address_space * mapping,sector_t block)3844 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3845 {
3846 struct inode *inode = mapping->host;
3847 sector_t blknr = 0;
3848
3849 if (f2fs_has_inline_data(inode))
3850 goto out;
3851
3852 /* make sure allocating whole blocks */
3853 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3854 filemap_write_and_wait(mapping);
3855
3856 /* Block number less than F2FS MAX BLOCKS */
3857 if (unlikely(block >= max_file_blocks(inode)))
3858 goto out;
3859
3860 if (f2fs_compressed_file(inode)) {
3861 blknr = f2fs_bmap_compress(inode, block);
3862 } else {
3863 struct f2fs_map_blocks map;
3864
3865 memset(&map, 0, sizeof(map));
3866 map.m_lblk = block;
3867 map.m_len = 1;
3868 map.m_next_pgofs = NULL;
3869 map.m_seg_type = NO_CHECK_TYPE;
3870
3871 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3872 blknr = map.m_pblk;
3873 }
3874 out:
3875 trace_f2fs_bmap(inode, block, blknr);
3876 return blknr;
3877 }
3878
3879 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3880 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3881 unsigned int blkcnt)
3882 {
3883 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3884 unsigned int blkofs;
3885 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3886 unsigned int secidx = start_blk / blk_per_sec;
3887 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3888 int ret = 0;
3889
3890 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3891 filemap_invalidate_lock(inode->i_mapping);
3892
3893 set_inode_flag(inode, FI_ALIGNED_WRITE);
3894 set_inode_flag(inode, FI_OPU_WRITE);
3895
3896 for (; secidx < end_sec; secidx++) {
3897 f2fs_down_write(&sbi->pin_sem);
3898
3899 f2fs_lock_op(sbi);
3900 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3901 f2fs_unlock_op(sbi);
3902
3903 set_inode_flag(inode, FI_SKIP_WRITES);
3904
3905 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3906 struct page *page;
3907 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3908
3909 page = f2fs_get_lock_data_page(inode, blkidx, true);
3910 if (IS_ERR(page)) {
3911 f2fs_up_write(&sbi->pin_sem);
3912 ret = PTR_ERR(page);
3913 goto done;
3914 }
3915
3916 set_page_dirty(page);
3917 f2fs_put_page(page, 1);
3918 }
3919
3920 clear_inode_flag(inode, FI_SKIP_WRITES);
3921
3922 ret = filemap_fdatawrite(inode->i_mapping);
3923
3924 f2fs_up_write(&sbi->pin_sem);
3925
3926 if (ret)
3927 break;
3928 }
3929
3930 done:
3931 clear_inode_flag(inode, FI_SKIP_WRITES);
3932 clear_inode_flag(inode, FI_OPU_WRITE);
3933 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3934
3935 filemap_invalidate_unlock(inode->i_mapping);
3936 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3937
3938 return ret;
3939 }
3940
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3941 static int check_swap_activate(struct swap_info_struct *sis,
3942 struct file *swap_file, sector_t *span)
3943 {
3944 struct address_space *mapping = swap_file->f_mapping;
3945 struct inode *inode = mapping->host;
3946 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3947 sector_t cur_lblock;
3948 sector_t last_lblock;
3949 sector_t pblock;
3950 sector_t lowest_pblock = -1;
3951 sector_t highest_pblock = 0;
3952 int nr_extents = 0;
3953 unsigned long nr_pblocks;
3954 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3955 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3956 unsigned int not_aligned = 0;
3957 int ret = 0;
3958
3959 /*
3960 * Map all the blocks into the extent list. This code doesn't try
3961 * to be very smart.
3962 */
3963 cur_lblock = 0;
3964 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3965
3966 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3967 struct f2fs_map_blocks map;
3968 retry:
3969 cond_resched();
3970
3971 memset(&map, 0, sizeof(map));
3972 map.m_lblk = cur_lblock;
3973 map.m_len = last_lblock - cur_lblock;
3974 map.m_next_pgofs = NULL;
3975 map.m_next_extent = NULL;
3976 map.m_seg_type = NO_CHECK_TYPE;
3977 map.m_may_create = false;
3978
3979 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3980 if (ret)
3981 goto out;
3982
3983 /* hole */
3984 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3985 f2fs_err(sbi, "Swapfile has holes");
3986 ret = -EINVAL;
3987 goto out;
3988 }
3989
3990 pblock = map.m_pblk;
3991 nr_pblocks = map.m_len;
3992
3993 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3994 nr_pblocks & sec_blks_mask) {
3995 not_aligned++;
3996
3997 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3998 if (cur_lblock + nr_pblocks > sis->max)
3999 nr_pblocks -= blks_per_sec;
4000
4001 if (!nr_pblocks) {
4002 /* this extent is last one */
4003 nr_pblocks = map.m_len;
4004 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4005 goto next;
4006 }
4007
4008 ret = f2fs_migrate_blocks(inode, cur_lblock,
4009 nr_pblocks);
4010 if (ret)
4011 goto out;
4012 goto retry;
4013 }
4014 next:
4015 if (cur_lblock + nr_pblocks >= sis->max)
4016 nr_pblocks = sis->max - cur_lblock;
4017
4018 if (cur_lblock) { /* exclude the header page */
4019 if (pblock < lowest_pblock)
4020 lowest_pblock = pblock;
4021 if (pblock + nr_pblocks - 1 > highest_pblock)
4022 highest_pblock = pblock + nr_pblocks - 1;
4023 }
4024
4025 /*
4026 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4027 */
4028 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4029 if (ret < 0)
4030 goto out;
4031 nr_extents += ret;
4032 cur_lblock += nr_pblocks;
4033 }
4034 ret = nr_extents;
4035 *span = 1 + highest_pblock - lowest_pblock;
4036 if (cur_lblock == 0)
4037 cur_lblock = 1; /* force Empty message */
4038 sis->max = cur_lblock;
4039 sis->pages = cur_lblock - 1;
4040 sis->highest_bit = cur_lblock - 1;
4041 out:
4042 if (not_aligned)
4043 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4044 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4045 return ret;
4046 }
4047
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4048 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4049 sector_t *span)
4050 {
4051 struct inode *inode = file_inode(file);
4052 int ret;
4053
4054 if (!S_ISREG(inode->i_mode))
4055 return -EINVAL;
4056
4057 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4058 return -EROFS;
4059
4060 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4061 f2fs_err(F2FS_I_SB(inode),
4062 "Swapfile not supported in LFS mode");
4063 return -EINVAL;
4064 }
4065
4066 ret = f2fs_convert_inline_inode(inode);
4067 if (ret)
4068 return ret;
4069
4070 if (!f2fs_disable_compressed_file(inode))
4071 return -EINVAL;
4072
4073 f2fs_precache_extents(inode);
4074
4075 ret = check_swap_activate(sis, file, span);
4076 if (ret < 0)
4077 return ret;
4078
4079 stat_inc_swapfile_inode(inode);
4080 set_inode_flag(inode, FI_PIN_FILE);
4081 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4082 return ret;
4083 }
4084
f2fs_swap_deactivate(struct file * file)4085 static void f2fs_swap_deactivate(struct file *file)
4086 {
4087 struct inode *inode = file_inode(file);
4088
4089 stat_dec_swapfile_inode(inode);
4090 clear_inode_flag(inode, FI_PIN_FILE);
4091 }
4092 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4093 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4094 sector_t *span)
4095 {
4096 return -EOPNOTSUPP;
4097 }
4098
f2fs_swap_deactivate(struct file * file)4099 static void f2fs_swap_deactivate(struct file *file)
4100 {
4101 }
4102 #endif
4103
4104 const struct address_space_operations f2fs_dblock_aops = {
4105 .read_folio = f2fs_read_data_folio,
4106 .readahead = f2fs_readahead,
4107 .writepage = f2fs_write_data_page,
4108 .writepages = f2fs_write_data_pages,
4109 .write_begin = f2fs_write_begin,
4110 .write_end = f2fs_write_end,
4111 .dirty_folio = f2fs_dirty_data_folio,
4112 .migrate_folio = filemap_migrate_folio,
4113 .invalidate_folio = f2fs_invalidate_folio,
4114 .release_folio = f2fs_release_folio,
4115 .direct_IO = noop_direct_IO,
4116 .bmap = f2fs_bmap,
4117 .swap_activate = f2fs_swap_activate,
4118 .swap_deactivate = f2fs_swap_deactivate,
4119 };
4120
f2fs_clear_page_cache_dirty_tag(struct page * page)4121 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4122 {
4123 struct address_space *mapping = page_mapping(page);
4124 unsigned long flags;
4125
4126 xa_lock_irqsave(&mapping->i_pages, flags);
4127 __xa_clear_mark(&mapping->i_pages, page_index(page),
4128 PAGECACHE_TAG_DIRTY);
4129 xa_unlock_irqrestore(&mapping->i_pages, flags);
4130 }
4131
f2fs_init_post_read_processing(void)4132 int __init f2fs_init_post_read_processing(void)
4133 {
4134 bio_post_read_ctx_cache =
4135 kmem_cache_create("f2fs_bio_post_read_ctx",
4136 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4137 if (!bio_post_read_ctx_cache)
4138 goto fail;
4139 bio_post_read_ctx_pool =
4140 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4141 bio_post_read_ctx_cache);
4142 if (!bio_post_read_ctx_pool)
4143 goto fail_free_cache;
4144 return 0;
4145
4146 fail_free_cache:
4147 kmem_cache_destroy(bio_post_read_ctx_cache);
4148 fail:
4149 return -ENOMEM;
4150 }
4151
f2fs_destroy_post_read_processing(void)4152 void f2fs_destroy_post_read_processing(void)
4153 {
4154 mempool_destroy(bio_post_read_ctx_pool);
4155 kmem_cache_destroy(bio_post_read_ctx_cache);
4156 }
4157
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4158 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4159 {
4160 if (!f2fs_sb_has_encrypt(sbi) &&
4161 !f2fs_sb_has_verity(sbi) &&
4162 !f2fs_sb_has_compression(sbi))
4163 return 0;
4164
4165 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4166 WQ_UNBOUND | WQ_HIGHPRI,
4167 num_online_cpus());
4168 return sbi->post_read_wq ? 0 : -ENOMEM;
4169 }
4170
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4171 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4172 {
4173 if (sbi->post_read_wq)
4174 destroy_workqueue(sbi->post_read_wq);
4175 }
4176
f2fs_init_bio_entry_cache(void)4177 int __init f2fs_init_bio_entry_cache(void)
4178 {
4179 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4180 sizeof(struct bio_entry));
4181 return bio_entry_slab ? 0 : -ENOMEM;
4182 }
4183
f2fs_destroy_bio_entry_cache(void)4184 void f2fs_destroy_bio_entry_cache(void)
4185 {
4186 kmem_cache_destroy(bio_entry_slab);
4187 }
4188
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4189 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4190 unsigned int flags, struct iomap *iomap,
4191 struct iomap *srcmap)
4192 {
4193 struct f2fs_map_blocks map = {};
4194 pgoff_t next_pgofs = 0;
4195 int err;
4196
4197 map.m_lblk = bytes_to_blks(inode, offset);
4198 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4199 map.m_next_pgofs = &next_pgofs;
4200 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4201 if (flags & IOMAP_WRITE)
4202 map.m_may_create = true;
4203
4204 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4205 if (err)
4206 return err;
4207
4208 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4209
4210 /*
4211 * When inline encryption is enabled, sometimes I/O to an encrypted file
4212 * has to be broken up to guarantee DUN contiguity. Handle this by
4213 * limiting the length of the mapping returned.
4214 */
4215 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4216
4217 /*
4218 * We should never see delalloc or compressed extents here based on
4219 * prior flushing and checks.
4220 */
4221 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4222 return -EINVAL;
4223 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4224 return -EINVAL;
4225
4226 if (map.m_pblk != NULL_ADDR) {
4227 iomap->length = blks_to_bytes(inode, map.m_len);
4228 iomap->type = IOMAP_MAPPED;
4229 iomap->flags |= IOMAP_F_MERGED;
4230 iomap->bdev = map.m_bdev;
4231 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4232 } else {
4233 if (flags & IOMAP_WRITE)
4234 return -ENOTBLK;
4235 iomap->length = blks_to_bytes(inode, next_pgofs) -
4236 iomap->offset;
4237 iomap->type = IOMAP_HOLE;
4238 iomap->addr = IOMAP_NULL_ADDR;
4239 }
4240
4241 if (map.m_flags & F2FS_MAP_NEW)
4242 iomap->flags |= IOMAP_F_NEW;
4243 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4244 offset + length > i_size_read(inode))
4245 iomap->flags |= IOMAP_F_DIRTY;
4246
4247 return 0;
4248 }
4249
4250 const struct iomap_ops f2fs_iomap_ops = {
4251 .iomap_begin = f2fs_iomap_begin,
4252 };
4253