• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 
41 #include "amd_iommu.h"
42 #include "../dma-iommu.h"
43 #include "../irq_remapping.h"
44 
45 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
46 
47 #define LOOP_TIMEOUT	100000
48 
49 /* IO virtual address start page frame number */
50 #define IOVA_START_PFN		(1)
51 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
52 
53 /* Reserved IOVA ranges */
54 #define MSI_RANGE_START		(0xfee00000)
55 #define MSI_RANGE_END		(0xfeefffff)
56 #define HT_RANGE_START		(0xfd00000000ULL)
57 #define HT_RANGE_END		(0xffffffffffULL)
58 
59 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
60 
61 static DEFINE_SPINLOCK(pd_bitmap_lock);
62 
63 LIST_HEAD(ioapic_map);
64 LIST_HEAD(hpet_map);
65 LIST_HEAD(acpihid_map);
66 
67 const struct iommu_ops amd_iommu_ops;
68 
69 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
70 int amd_iommu_max_glx_val = -1;
71 
72 /*
73  * general struct to manage commands send to an IOMMU
74  */
75 struct iommu_cmd {
76 	u32 data[4];
77 };
78 
79 struct kmem_cache *amd_iommu_irq_cache;
80 
81 static void detach_device(struct device *dev);
82 static int domain_enable_v2(struct protection_domain *domain, int pasids);
83 
84 /****************************************************************************
85  *
86  * Helper functions
87  *
88  ****************************************************************************/
89 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)90 static inline int get_acpihid_device_id(struct device *dev,
91 					struct acpihid_map_entry **entry)
92 {
93 	struct acpi_device *adev = ACPI_COMPANION(dev);
94 	struct acpihid_map_entry *p;
95 
96 	if (!adev)
97 		return -ENODEV;
98 
99 	list_for_each_entry(p, &acpihid_map, list) {
100 		if (acpi_dev_hid_uid_match(adev, p->hid,
101 					   p->uid[0] ? p->uid : NULL)) {
102 			if (entry)
103 				*entry = p;
104 			return p->devid;
105 		}
106 	}
107 	return -EINVAL;
108 }
109 
get_device_sbdf_id(struct device * dev)110 static inline int get_device_sbdf_id(struct device *dev)
111 {
112 	int sbdf;
113 
114 	if (dev_is_pci(dev))
115 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
116 	else
117 		sbdf = get_acpihid_device_id(dev, NULL);
118 
119 	return sbdf;
120 }
121 
get_dev_table(struct amd_iommu * iommu)122 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
123 {
124 	struct dev_table_entry *dev_table;
125 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
126 
127 	BUG_ON(pci_seg == NULL);
128 	dev_table = pci_seg->dev_table;
129 	BUG_ON(dev_table == NULL);
130 
131 	return dev_table;
132 }
133 
get_device_segment(struct device * dev)134 static inline u16 get_device_segment(struct device *dev)
135 {
136 	u16 seg;
137 
138 	if (dev_is_pci(dev)) {
139 		struct pci_dev *pdev = to_pci_dev(dev);
140 
141 		seg = pci_domain_nr(pdev->bus);
142 	} else {
143 		u32 devid = get_acpihid_device_id(dev, NULL);
144 
145 		seg = PCI_SBDF_TO_SEGID(devid);
146 	}
147 
148 	return seg;
149 }
150 
151 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)152 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
153 {
154 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
155 
156 	pci_seg->rlookup_table[devid] = iommu;
157 }
158 
__rlookup_amd_iommu(u16 seg,u16 devid)159 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
160 {
161 	struct amd_iommu_pci_seg *pci_seg;
162 
163 	for_each_pci_segment(pci_seg) {
164 		if (pci_seg->id == seg)
165 			return pci_seg->rlookup_table[devid];
166 	}
167 	return NULL;
168 }
169 
rlookup_amd_iommu(struct device * dev)170 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
171 {
172 	u16 seg = get_device_segment(dev);
173 	int devid = get_device_sbdf_id(dev);
174 
175 	if (devid < 0)
176 		return NULL;
177 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
178 }
179 
to_pdomain(struct iommu_domain * dom)180 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
181 {
182 	return container_of(dom, struct protection_domain, domain);
183 }
184 
alloc_dev_data(struct amd_iommu * iommu,u16 devid)185 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
186 {
187 	struct iommu_dev_data *dev_data;
188 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
189 
190 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
191 	if (!dev_data)
192 		return NULL;
193 
194 	spin_lock_init(&dev_data->lock);
195 	dev_data->devid = devid;
196 	ratelimit_default_init(&dev_data->rs);
197 
198 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
199 	return dev_data;
200 }
201 
search_dev_data(struct amd_iommu * iommu,u16 devid)202 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
203 {
204 	struct iommu_dev_data *dev_data;
205 	struct llist_node *node;
206 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
207 
208 	if (llist_empty(&pci_seg->dev_data_list))
209 		return NULL;
210 
211 	node = pci_seg->dev_data_list.first;
212 	llist_for_each_entry(dev_data, node, dev_data_list) {
213 		if (dev_data->devid == devid)
214 			return dev_data;
215 	}
216 
217 	return NULL;
218 }
219 
clone_alias(struct pci_dev * pdev,u16 alias,void * data)220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
221 {
222 	struct amd_iommu *iommu;
223 	struct dev_table_entry *dev_table;
224 	u16 devid = pci_dev_id(pdev);
225 
226 	if (devid == alias)
227 		return 0;
228 
229 	iommu = rlookup_amd_iommu(&pdev->dev);
230 	if (!iommu)
231 		return 0;
232 
233 	amd_iommu_set_rlookup_table(iommu, alias);
234 	dev_table = get_dev_table(iommu);
235 	memcpy(dev_table[alias].data,
236 	       dev_table[devid].data,
237 	       sizeof(dev_table[alias].data));
238 
239 	return 0;
240 }
241 
clone_aliases(struct amd_iommu * iommu,struct device * dev)242 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
243 {
244 	struct pci_dev *pdev;
245 
246 	if (!dev_is_pci(dev))
247 		return;
248 	pdev = to_pci_dev(dev);
249 
250 	/*
251 	 * The IVRS alias stored in the alias table may not be
252 	 * part of the PCI DMA aliases if it's bus differs
253 	 * from the original device.
254 	 */
255 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
256 
257 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
258 }
259 
setup_aliases(struct amd_iommu * iommu,struct device * dev)260 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
261 {
262 	struct pci_dev *pdev = to_pci_dev(dev);
263 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
264 	u16 ivrs_alias;
265 
266 	/* For ACPI HID devices, there are no aliases */
267 	if (!dev_is_pci(dev))
268 		return;
269 
270 	/*
271 	 * Add the IVRS alias to the pci aliases if it is on the same
272 	 * bus. The IVRS table may know about a quirk that we don't.
273 	 */
274 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
275 	if (ivrs_alias != pci_dev_id(pdev) &&
276 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
277 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
278 
279 	clone_aliases(iommu, dev);
280 }
281 
find_dev_data(struct amd_iommu * iommu,u16 devid)282 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
283 {
284 	struct iommu_dev_data *dev_data;
285 
286 	dev_data = search_dev_data(iommu, devid);
287 
288 	if (dev_data == NULL) {
289 		dev_data = alloc_dev_data(iommu, devid);
290 		if (!dev_data)
291 			return NULL;
292 
293 		if (translation_pre_enabled(iommu))
294 			dev_data->defer_attach = true;
295 	}
296 
297 	return dev_data;
298 }
299 
300 /*
301 * Find or create an IOMMU group for a acpihid device.
302 */
acpihid_device_group(struct device * dev)303 static struct iommu_group *acpihid_device_group(struct device *dev)
304 {
305 	struct acpihid_map_entry *p, *entry = NULL;
306 	int devid;
307 
308 	devid = get_acpihid_device_id(dev, &entry);
309 	if (devid < 0)
310 		return ERR_PTR(devid);
311 
312 	list_for_each_entry(p, &acpihid_map, list) {
313 		if ((devid == p->devid) && p->group)
314 			entry->group = p->group;
315 	}
316 
317 	if (!entry->group)
318 		entry->group = generic_device_group(dev);
319 	else
320 		iommu_group_ref_get(entry->group);
321 
322 	return entry->group;
323 }
324 
pci_iommuv2_capable(struct pci_dev * pdev)325 static bool pci_iommuv2_capable(struct pci_dev *pdev)
326 {
327 	static const int caps[] = {
328 		PCI_EXT_CAP_ID_PRI,
329 		PCI_EXT_CAP_ID_PASID,
330 	};
331 	int i, pos;
332 
333 	if (!pci_ats_supported(pdev))
334 		return false;
335 
336 	for (i = 0; i < 2; ++i) {
337 		pos = pci_find_ext_capability(pdev, caps[i]);
338 		if (pos == 0)
339 			return false;
340 	}
341 
342 	return true;
343 }
344 
345 /*
346  * This function checks if the driver got a valid device from the caller to
347  * avoid dereferencing invalid pointers.
348  */
check_device(struct device * dev)349 static bool check_device(struct device *dev)
350 {
351 	struct amd_iommu_pci_seg *pci_seg;
352 	struct amd_iommu *iommu;
353 	int devid, sbdf;
354 
355 	if (!dev)
356 		return false;
357 
358 	sbdf = get_device_sbdf_id(dev);
359 	if (sbdf < 0)
360 		return false;
361 	devid = PCI_SBDF_TO_DEVID(sbdf);
362 
363 	iommu = rlookup_amd_iommu(dev);
364 	if (!iommu)
365 		return false;
366 
367 	/* Out of our scope? */
368 	pci_seg = iommu->pci_seg;
369 	if (devid > pci_seg->last_bdf)
370 		return false;
371 
372 	return true;
373 }
374 
iommu_init_device(struct amd_iommu * iommu,struct device * dev)375 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
376 {
377 	struct iommu_dev_data *dev_data;
378 	int devid, sbdf;
379 
380 	if (dev_iommu_priv_get(dev))
381 		return 0;
382 
383 	sbdf = get_device_sbdf_id(dev);
384 	if (sbdf < 0)
385 		return sbdf;
386 
387 	devid = PCI_SBDF_TO_DEVID(sbdf);
388 	dev_data = find_dev_data(iommu, devid);
389 	if (!dev_data)
390 		return -ENOMEM;
391 
392 	dev_data->dev = dev;
393 	setup_aliases(iommu, dev);
394 
395 	/*
396 	 * By default we use passthrough mode for IOMMUv2 capable device.
397 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
398 	 * invalid address), we ignore the capability for the device so
399 	 * it'll be forced to go into translation mode.
400 	 */
401 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
402 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
403 		dev_data->iommu_v2 = iommu->is_iommu_v2;
404 	}
405 
406 	dev_iommu_priv_set(dev, dev_data);
407 
408 	return 0;
409 }
410 
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)411 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
412 {
413 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
414 	struct dev_table_entry *dev_table = get_dev_table(iommu);
415 	int devid, sbdf;
416 
417 	sbdf = get_device_sbdf_id(dev);
418 	if (sbdf < 0)
419 		return;
420 
421 	devid = PCI_SBDF_TO_DEVID(sbdf);
422 	pci_seg->rlookup_table[devid] = NULL;
423 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
424 
425 	setup_aliases(iommu, dev);
426 }
427 
amd_iommu_uninit_device(struct device * dev)428 static void amd_iommu_uninit_device(struct device *dev)
429 {
430 	struct iommu_dev_data *dev_data;
431 
432 	dev_data = dev_iommu_priv_get(dev);
433 	if (!dev_data)
434 		return;
435 
436 	if (dev_data->domain)
437 		detach_device(dev);
438 
439 	dev_iommu_priv_set(dev, NULL);
440 
441 	/*
442 	 * We keep dev_data around for unplugged devices and reuse it when the
443 	 * device is re-plugged - not doing so would introduce a ton of races.
444 	 */
445 }
446 
447 /****************************************************************************
448  *
449  * Interrupt handling functions
450  *
451  ****************************************************************************/
452 
dump_dte_entry(struct amd_iommu * iommu,u16 devid)453 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
454 {
455 	int i;
456 	struct dev_table_entry *dev_table = get_dev_table(iommu);
457 
458 	for (i = 0; i < 4; ++i)
459 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
460 }
461 
dump_command(unsigned long phys_addr)462 static void dump_command(unsigned long phys_addr)
463 {
464 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
465 	int i;
466 
467 	for (i = 0; i < 4; ++i)
468 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
469 }
470 
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)471 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
472 {
473 	struct iommu_dev_data *dev_data = NULL;
474 	int devid, vmg_tag, flags;
475 	struct pci_dev *pdev;
476 	u64 spa;
477 
478 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
479 	vmg_tag = (event[1]) & 0xFFFF;
480 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
481 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
482 
483 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
484 					   devid & 0xff);
485 	if (pdev)
486 		dev_data = dev_iommu_priv_get(&pdev->dev);
487 
488 	if (dev_data) {
489 		if (__ratelimit(&dev_data->rs)) {
490 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
491 				vmg_tag, spa, flags);
492 		}
493 	} else {
494 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
495 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
496 			vmg_tag, spa, flags);
497 	}
498 
499 	if (pdev)
500 		pci_dev_put(pdev);
501 }
502 
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)503 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
504 {
505 	struct iommu_dev_data *dev_data = NULL;
506 	int devid, flags_rmp, vmg_tag, flags;
507 	struct pci_dev *pdev;
508 	u64 gpa;
509 
510 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
511 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
512 	vmg_tag   = (event[1]) & 0xFFFF;
513 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
514 	gpa       = ((u64)event[3] << 32) | event[2];
515 
516 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
517 					   devid & 0xff);
518 	if (pdev)
519 		dev_data = dev_iommu_priv_get(&pdev->dev);
520 
521 	if (dev_data) {
522 		if (__ratelimit(&dev_data->rs)) {
523 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
524 				vmg_tag, gpa, flags_rmp, flags);
525 		}
526 	} else {
527 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
528 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
529 			vmg_tag, gpa, flags_rmp, flags);
530 	}
531 
532 	if (pdev)
533 		pci_dev_put(pdev);
534 }
535 
536 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
537 	(((flags) & EVENT_FLAG_I) == 0)
538 
539 #define IS_WRITE_REQUEST(flags)			\
540 	((flags) & EVENT_FLAG_RW)
541 
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)542 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
543 					u16 devid, u16 domain_id,
544 					u64 address, int flags)
545 {
546 	struct iommu_dev_data *dev_data = NULL;
547 	struct pci_dev *pdev;
548 
549 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
550 					   devid & 0xff);
551 	if (pdev)
552 		dev_data = dev_iommu_priv_get(&pdev->dev);
553 
554 	if (dev_data) {
555 		/*
556 		 * If this is a DMA fault (for which the I(nterrupt)
557 		 * bit will be unset), allow report_iommu_fault() to
558 		 * prevent logging it.
559 		 */
560 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
561 			/* Device not attached to domain properly */
562 			if (dev_data->domain == NULL) {
563 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
564 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
565 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
566 						   PCI_FUNC(devid), domain_id);
567 				goto out;
568 			}
569 
570 			if (!report_iommu_fault(&dev_data->domain->domain,
571 						&pdev->dev, address,
572 						IS_WRITE_REQUEST(flags) ?
573 							IOMMU_FAULT_WRITE :
574 							IOMMU_FAULT_READ))
575 				goto out;
576 		}
577 
578 		if (__ratelimit(&dev_data->rs)) {
579 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
580 				domain_id, address, flags);
581 		}
582 	} else {
583 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
584 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 			domain_id, address, flags);
586 	}
587 
588 out:
589 	if (pdev)
590 		pci_dev_put(pdev);
591 }
592 
iommu_print_event(struct amd_iommu * iommu,void * __evt)593 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
594 {
595 	struct device *dev = iommu->iommu.dev;
596 	int type, devid, flags, tag;
597 	volatile u32 *event = __evt;
598 	int count = 0;
599 	u64 address;
600 	u32 pasid;
601 
602 retry:
603 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
604 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
605 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
606 		  (event[1] & EVENT_DOMID_MASK_LO);
607 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
608 	address = (u64)(((u64)event[3]) << 32) | event[2];
609 
610 	if (type == 0) {
611 		/* Did we hit the erratum? */
612 		if (++count == LOOP_TIMEOUT) {
613 			pr_err("No event written to event log\n");
614 			return;
615 		}
616 		udelay(1);
617 		goto retry;
618 	}
619 
620 	if (type == EVENT_TYPE_IO_FAULT) {
621 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
622 		return;
623 	}
624 
625 	switch (type) {
626 	case EVENT_TYPE_ILL_DEV:
627 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
628 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
629 			pasid, address, flags);
630 		dump_dte_entry(iommu, devid);
631 		break;
632 	case EVENT_TYPE_DEV_TAB_ERR:
633 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
634 			"address=0x%llx flags=0x%04x]\n",
635 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
636 			address, flags);
637 		break;
638 	case EVENT_TYPE_PAGE_TAB_ERR:
639 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
640 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
641 			pasid, address, flags);
642 		break;
643 	case EVENT_TYPE_ILL_CMD:
644 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
645 		dump_command(address);
646 		break;
647 	case EVENT_TYPE_CMD_HARD_ERR:
648 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
649 			address, flags);
650 		break;
651 	case EVENT_TYPE_IOTLB_INV_TO:
652 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
653 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
654 			address);
655 		break;
656 	case EVENT_TYPE_INV_DEV_REQ:
657 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
658 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
659 			pasid, address, flags);
660 		break;
661 	case EVENT_TYPE_RMP_FAULT:
662 		amd_iommu_report_rmp_fault(iommu, event);
663 		break;
664 	case EVENT_TYPE_RMP_HW_ERR:
665 		amd_iommu_report_rmp_hw_error(iommu, event);
666 		break;
667 	case EVENT_TYPE_INV_PPR_REQ:
668 		pasid = PPR_PASID(*((u64 *)__evt));
669 		tag = event[1] & 0x03FF;
670 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
671 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
672 			pasid, address, flags, tag);
673 		break;
674 	default:
675 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
676 			event[0], event[1], event[2], event[3]);
677 	}
678 
679 	memset(__evt, 0, 4 * sizeof(u32));
680 }
681 
iommu_poll_events(struct amd_iommu * iommu)682 static void iommu_poll_events(struct amd_iommu *iommu)
683 {
684 	u32 head, tail;
685 
686 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
687 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
688 
689 	while (head != tail) {
690 		iommu_print_event(iommu, iommu->evt_buf + head);
691 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
692 	}
693 
694 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
695 }
696 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)697 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
698 {
699 	struct amd_iommu_fault fault;
700 
701 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
702 		pr_err_ratelimited("Unknown PPR request received\n");
703 		return;
704 	}
705 
706 	fault.address   = raw[1];
707 	fault.pasid     = PPR_PASID(raw[0]);
708 	fault.sbdf      = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
709 	fault.tag       = PPR_TAG(raw[0]);
710 	fault.flags     = PPR_FLAGS(raw[0]);
711 
712 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
713 }
714 
iommu_poll_ppr_log(struct amd_iommu * iommu)715 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
716 {
717 	u32 head, tail;
718 
719 	if (iommu->ppr_log == NULL)
720 		return;
721 
722 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
723 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
724 
725 	while (head != tail) {
726 		volatile u64 *raw;
727 		u64 entry[2];
728 		int i;
729 
730 		raw = (u64 *)(iommu->ppr_log + head);
731 
732 		/*
733 		 * Hardware bug: Interrupt may arrive before the entry is
734 		 * written to memory. If this happens we need to wait for the
735 		 * entry to arrive.
736 		 */
737 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
738 			if (PPR_REQ_TYPE(raw[0]) != 0)
739 				break;
740 			udelay(1);
741 		}
742 
743 		/* Avoid memcpy function-call overhead */
744 		entry[0] = raw[0];
745 		entry[1] = raw[1];
746 
747 		/*
748 		 * To detect the hardware bug we need to clear the entry
749 		 * back to zero.
750 		 */
751 		raw[0] = raw[1] = 0UL;
752 
753 		/* Update head pointer of hardware ring-buffer */
754 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
755 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
756 
757 		/* Handle PPR entry */
758 		iommu_handle_ppr_entry(iommu, entry);
759 
760 		/* Refresh ring-buffer information */
761 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
762 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
763 	}
764 }
765 
766 #ifdef CONFIG_IRQ_REMAP
767 static int (*iommu_ga_log_notifier)(u32);
768 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))769 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
770 {
771 	iommu_ga_log_notifier = notifier;
772 
773 	return 0;
774 }
775 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
776 
iommu_poll_ga_log(struct amd_iommu * iommu)777 static void iommu_poll_ga_log(struct amd_iommu *iommu)
778 {
779 	u32 head, tail, cnt = 0;
780 
781 	if (iommu->ga_log == NULL)
782 		return;
783 
784 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
785 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
786 
787 	while (head != tail) {
788 		volatile u64 *raw;
789 		u64 log_entry;
790 
791 		raw = (u64 *)(iommu->ga_log + head);
792 		cnt++;
793 
794 		/* Avoid memcpy function-call overhead */
795 		log_entry = *raw;
796 
797 		/* Update head pointer of hardware ring-buffer */
798 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
799 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
800 
801 		/* Handle GA entry */
802 		switch (GA_REQ_TYPE(log_entry)) {
803 		case GA_GUEST_NR:
804 			if (!iommu_ga_log_notifier)
805 				break;
806 
807 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
808 				 __func__, GA_DEVID(log_entry),
809 				 GA_TAG(log_entry));
810 
811 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
812 				pr_err("GA log notifier failed.\n");
813 			break;
814 		default:
815 			break;
816 		}
817 	}
818 }
819 
820 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)821 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
822 {
823 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
824 	    pci_dev_has_special_msi_domain(to_pci_dev(dev)))
825 		return;
826 
827 	dev_set_msi_domain(dev, iommu->msi_domain);
828 }
829 
830 #else /* CONFIG_IRQ_REMAP */
831 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)832 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
833 #endif /* !CONFIG_IRQ_REMAP */
834 
835 #define AMD_IOMMU_INT_MASK	\
836 	(MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
837 	 MMIO_STATUS_EVT_INT_MASK | \
838 	 MMIO_STATUS_PPR_INT_MASK | \
839 	 MMIO_STATUS_GALOG_OVERFLOW_MASK | \
840 	 MMIO_STATUS_GALOG_INT_MASK)
841 
amd_iommu_int_thread(int irq,void * data)842 irqreturn_t amd_iommu_int_thread(int irq, void *data)
843 {
844 	struct amd_iommu *iommu = (struct amd_iommu *) data;
845 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
846 
847 	while (status & AMD_IOMMU_INT_MASK) {
848 		/* Enable interrupt sources again */
849 		writel(AMD_IOMMU_INT_MASK,
850 			iommu->mmio_base + MMIO_STATUS_OFFSET);
851 
852 		if (status & MMIO_STATUS_EVT_INT_MASK) {
853 			pr_devel("Processing IOMMU Event Log\n");
854 			iommu_poll_events(iommu);
855 		}
856 
857 		if (status & MMIO_STATUS_PPR_INT_MASK) {
858 			pr_devel("Processing IOMMU PPR Log\n");
859 			iommu_poll_ppr_log(iommu);
860 		}
861 
862 #ifdef CONFIG_IRQ_REMAP
863 		if (status & (MMIO_STATUS_GALOG_INT_MASK |
864 			      MMIO_STATUS_GALOG_OVERFLOW_MASK)) {
865 			pr_devel("Processing IOMMU GA Log\n");
866 			iommu_poll_ga_log(iommu);
867 		}
868 
869 		if (status & MMIO_STATUS_GALOG_OVERFLOW_MASK) {
870 			pr_info_ratelimited("IOMMU GA Log overflow\n");
871 			amd_iommu_restart_ga_log(iommu);
872 		}
873 #endif
874 
875 		if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
876 			pr_info_ratelimited("IOMMU event log overflow\n");
877 			amd_iommu_restart_event_logging(iommu);
878 		}
879 
880 		/*
881 		 * Hardware bug: ERBT1312
882 		 * When re-enabling interrupt (by writing 1
883 		 * to clear the bit), the hardware might also try to set
884 		 * the interrupt bit in the event status register.
885 		 * In this scenario, the bit will be set, and disable
886 		 * subsequent interrupts.
887 		 *
888 		 * Workaround: The IOMMU driver should read back the
889 		 * status register and check if the interrupt bits are cleared.
890 		 * If not, driver will need to go through the interrupt handler
891 		 * again and re-clear the bits
892 		 */
893 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
894 	}
895 	return IRQ_HANDLED;
896 }
897 
amd_iommu_int_handler(int irq,void * data)898 irqreturn_t amd_iommu_int_handler(int irq, void *data)
899 {
900 	return IRQ_WAKE_THREAD;
901 }
902 
903 /****************************************************************************
904  *
905  * IOMMU command queuing functions
906  *
907  ****************************************************************************/
908 
wait_on_sem(struct amd_iommu * iommu,u64 data)909 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
910 {
911 	int i = 0;
912 
913 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
914 		udelay(1);
915 		i += 1;
916 	}
917 
918 	if (i == LOOP_TIMEOUT) {
919 		pr_alert("Completion-Wait loop timed out\n");
920 		return -EIO;
921 	}
922 
923 	return 0;
924 }
925 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)926 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
927 			       struct iommu_cmd *cmd)
928 {
929 	u8 *target;
930 	u32 tail;
931 
932 	/* Copy command to buffer */
933 	tail = iommu->cmd_buf_tail;
934 	target = iommu->cmd_buf + tail;
935 	memcpy(target, cmd, sizeof(*cmd));
936 
937 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
938 	iommu->cmd_buf_tail = tail;
939 
940 	/* Tell the IOMMU about it */
941 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
942 }
943 
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)944 static void build_completion_wait(struct iommu_cmd *cmd,
945 				  struct amd_iommu *iommu,
946 				  u64 data)
947 {
948 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
949 
950 	memset(cmd, 0, sizeof(*cmd));
951 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
952 	cmd->data[1] = upper_32_bits(paddr);
953 	cmd->data[2] = lower_32_bits(data);
954 	cmd->data[3] = upper_32_bits(data);
955 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
956 }
957 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)958 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
959 {
960 	memset(cmd, 0, sizeof(*cmd));
961 	cmd->data[0] = devid;
962 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
963 }
964 
965 /*
966  * Builds an invalidation address which is suitable for one page or multiple
967  * pages. Sets the size bit (S) as needed is more than one page is flushed.
968  */
build_inv_address(u64 address,size_t size)969 static inline u64 build_inv_address(u64 address, size_t size)
970 {
971 	u64 pages, end, msb_diff;
972 
973 	pages = iommu_num_pages(address, size, PAGE_SIZE);
974 
975 	if (pages == 1)
976 		return address & PAGE_MASK;
977 
978 	end = address + size - 1;
979 
980 	/*
981 	 * msb_diff would hold the index of the most significant bit that
982 	 * flipped between the start and end.
983 	 */
984 	msb_diff = fls64(end ^ address) - 1;
985 
986 	/*
987 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
988 	 * between the start and the end, invalidate everything.
989 	 */
990 	if (unlikely(msb_diff > 51)) {
991 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
992 	} else {
993 		/*
994 		 * The msb-bit must be clear on the address. Just set all the
995 		 * lower bits.
996 		 */
997 		address |= (1ull << msb_diff) - 1;
998 	}
999 
1000 	/* Clear bits 11:0 */
1001 	address &= PAGE_MASK;
1002 
1003 	/* Set the size bit - we flush more than one 4kb page */
1004 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1005 }
1006 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)1007 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1008 				  size_t size, u16 domid, int pde)
1009 {
1010 	u64 inv_address = build_inv_address(address, size);
1011 
1012 	memset(cmd, 0, sizeof(*cmd));
1013 	cmd->data[1] |= domid;
1014 	cmd->data[2]  = lower_32_bits(inv_address);
1015 	cmd->data[3]  = upper_32_bits(inv_address);
1016 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1017 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1018 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1019 }
1020 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)1021 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1022 				  u64 address, size_t size)
1023 {
1024 	u64 inv_address = build_inv_address(address, size);
1025 
1026 	memset(cmd, 0, sizeof(*cmd));
1027 	cmd->data[0]  = devid;
1028 	cmd->data[0] |= (qdep & 0xff) << 24;
1029 	cmd->data[1]  = devid;
1030 	cmd->data[2]  = lower_32_bits(inv_address);
1031 	cmd->data[3]  = upper_32_bits(inv_address);
1032 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1033 }
1034 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,u32 pasid,u64 address,bool size)1035 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1036 				  u64 address, bool size)
1037 {
1038 	memset(cmd, 0, sizeof(*cmd));
1039 
1040 	address &= ~(0xfffULL);
1041 
1042 	cmd->data[0]  = pasid;
1043 	cmd->data[1]  = domid;
1044 	cmd->data[2]  = lower_32_bits(address);
1045 	cmd->data[3]  = upper_32_bits(address);
1046 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1047 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1048 	if (size)
1049 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1050 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1051 }
1052 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,u32 pasid,int qdep,u64 address,bool size)1053 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1054 				  int qdep, u64 address, bool size)
1055 {
1056 	memset(cmd, 0, sizeof(*cmd));
1057 
1058 	address &= ~(0xfffULL);
1059 
1060 	cmd->data[0]  = devid;
1061 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1062 	cmd->data[0] |= (qdep  & 0xff) << 24;
1063 	cmd->data[1]  = devid;
1064 	cmd->data[1] |= (pasid & 0xff) << 16;
1065 	cmd->data[2]  = lower_32_bits(address);
1066 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1067 	cmd->data[3]  = upper_32_bits(address);
1068 	if (size)
1069 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1070 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1071 }
1072 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,bool gn)1073 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1074 			       int status, int tag, bool gn)
1075 {
1076 	memset(cmd, 0, sizeof(*cmd));
1077 
1078 	cmd->data[0]  = devid;
1079 	if (gn) {
1080 		cmd->data[1]  = pasid;
1081 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1082 	}
1083 	cmd->data[3]  = tag & 0x1ff;
1084 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1085 
1086 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1087 }
1088 
build_inv_all(struct iommu_cmd * cmd)1089 static void build_inv_all(struct iommu_cmd *cmd)
1090 {
1091 	memset(cmd, 0, sizeof(*cmd));
1092 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1093 }
1094 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1095 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1096 {
1097 	memset(cmd, 0, sizeof(*cmd));
1098 	cmd->data[0] = devid;
1099 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1100 }
1101 
1102 /*
1103  * Writes the command to the IOMMUs command buffer and informs the
1104  * hardware about the new command.
1105  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1106 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1107 				      struct iommu_cmd *cmd,
1108 				      bool sync)
1109 {
1110 	unsigned int count = 0;
1111 	u32 left, next_tail;
1112 
1113 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1114 again:
1115 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1116 
1117 	if (left <= 0x20) {
1118 		/* Skip udelay() the first time around */
1119 		if (count++) {
1120 			if (count == LOOP_TIMEOUT) {
1121 				pr_err("Command buffer timeout\n");
1122 				return -EIO;
1123 			}
1124 
1125 			udelay(1);
1126 		}
1127 
1128 		/* Update head and recheck remaining space */
1129 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1130 					    MMIO_CMD_HEAD_OFFSET);
1131 
1132 		goto again;
1133 	}
1134 
1135 	copy_cmd_to_buffer(iommu, cmd);
1136 
1137 	/* Do we need to make sure all commands are processed? */
1138 	iommu->need_sync = sync;
1139 
1140 	return 0;
1141 }
1142 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1143 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1144 				    struct iommu_cmd *cmd,
1145 				    bool sync)
1146 {
1147 	unsigned long flags;
1148 	int ret;
1149 
1150 	raw_spin_lock_irqsave(&iommu->lock, flags);
1151 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1152 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1153 
1154 	return ret;
1155 }
1156 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1157 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1158 {
1159 	return iommu_queue_command_sync(iommu, cmd, true);
1160 }
1161 
1162 /*
1163  * This function queues a completion wait command into the command
1164  * buffer of an IOMMU
1165  */
iommu_completion_wait(struct amd_iommu * iommu)1166 static int iommu_completion_wait(struct amd_iommu *iommu)
1167 {
1168 	struct iommu_cmd cmd;
1169 	unsigned long flags;
1170 	int ret;
1171 	u64 data;
1172 
1173 	if (!iommu->need_sync)
1174 		return 0;
1175 
1176 	raw_spin_lock_irqsave(&iommu->lock, flags);
1177 
1178 	data = ++iommu->cmd_sem_val;
1179 	build_completion_wait(&cmd, iommu, data);
1180 
1181 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1182 	if (ret)
1183 		goto out_unlock;
1184 
1185 	ret = wait_on_sem(iommu, data);
1186 
1187 out_unlock:
1188 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1189 
1190 	return ret;
1191 }
1192 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1193 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1194 {
1195 	struct iommu_cmd cmd;
1196 
1197 	build_inv_dte(&cmd, devid);
1198 
1199 	return iommu_queue_command(iommu, &cmd);
1200 }
1201 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1202 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1203 {
1204 	u32 devid;
1205 	u16 last_bdf = iommu->pci_seg->last_bdf;
1206 
1207 	for (devid = 0; devid <= last_bdf; ++devid)
1208 		iommu_flush_dte(iommu, devid);
1209 
1210 	iommu_completion_wait(iommu);
1211 }
1212 
1213 /*
1214  * This function uses heavy locking and may disable irqs for some time. But
1215  * this is no issue because it is only called during resume.
1216  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1217 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1218 {
1219 	u32 dom_id;
1220 	u16 last_bdf = iommu->pci_seg->last_bdf;
1221 
1222 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1223 		struct iommu_cmd cmd;
1224 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1225 				      dom_id, 1);
1226 		iommu_queue_command(iommu, &cmd);
1227 	}
1228 
1229 	iommu_completion_wait(iommu);
1230 }
1231 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1232 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1233 {
1234 	struct iommu_cmd cmd;
1235 
1236 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1237 			      dom_id, 1);
1238 	iommu_queue_command(iommu, &cmd);
1239 
1240 	iommu_completion_wait(iommu);
1241 }
1242 
amd_iommu_flush_all(struct amd_iommu * iommu)1243 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1244 {
1245 	struct iommu_cmd cmd;
1246 
1247 	build_inv_all(&cmd);
1248 
1249 	iommu_queue_command(iommu, &cmd);
1250 	iommu_completion_wait(iommu);
1251 }
1252 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1253 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1254 {
1255 	struct iommu_cmd cmd;
1256 
1257 	build_inv_irt(&cmd, devid);
1258 
1259 	iommu_queue_command(iommu, &cmd);
1260 }
1261 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1262 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1263 {
1264 	u32 devid;
1265 	u16 last_bdf = iommu->pci_seg->last_bdf;
1266 
1267 	for (devid = 0; devid <= last_bdf; devid++)
1268 		iommu_flush_irt(iommu, devid);
1269 
1270 	iommu_completion_wait(iommu);
1271 }
1272 
iommu_flush_all_caches(struct amd_iommu * iommu)1273 void iommu_flush_all_caches(struct amd_iommu *iommu)
1274 {
1275 	if (iommu_feature(iommu, FEATURE_IA)) {
1276 		amd_iommu_flush_all(iommu);
1277 	} else {
1278 		amd_iommu_flush_dte_all(iommu);
1279 		amd_iommu_flush_irt_all(iommu);
1280 		amd_iommu_flush_tlb_all(iommu);
1281 	}
1282 }
1283 
1284 /*
1285  * Command send function for flushing on-device TLB
1286  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1287 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1288 			      u64 address, size_t size)
1289 {
1290 	struct amd_iommu *iommu;
1291 	struct iommu_cmd cmd;
1292 	int qdep;
1293 
1294 	qdep     = dev_data->ats.qdep;
1295 	iommu    = rlookup_amd_iommu(dev_data->dev);
1296 	if (!iommu)
1297 		return -EINVAL;
1298 
1299 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1300 
1301 	return iommu_queue_command(iommu, &cmd);
1302 }
1303 
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1304 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1305 {
1306 	struct amd_iommu *iommu = data;
1307 
1308 	return iommu_flush_dte(iommu, alias);
1309 }
1310 
1311 /*
1312  * Command send function for invalidating a device table entry
1313  */
device_flush_dte(struct iommu_dev_data * dev_data)1314 static int device_flush_dte(struct iommu_dev_data *dev_data)
1315 {
1316 	struct amd_iommu *iommu;
1317 	struct pci_dev *pdev = NULL;
1318 	struct amd_iommu_pci_seg *pci_seg;
1319 	u16 alias;
1320 	int ret;
1321 
1322 	iommu = rlookup_amd_iommu(dev_data->dev);
1323 	if (!iommu)
1324 		return -EINVAL;
1325 
1326 	if (dev_is_pci(dev_data->dev))
1327 		pdev = to_pci_dev(dev_data->dev);
1328 
1329 	if (pdev)
1330 		ret = pci_for_each_dma_alias(pdev,
1331 					     device_flush_dte_alias, iommu);
1332 	else
1333 		ret = iommu_flush_dte(iommu, dev_data->devid);
1334 	if (ret)
1335 		return ret;
1336 
1337 	pci_seg = iommu->pci_seg;
1338 	alias = pci_seg->alias_table[dev_data->devid];
1339 	if (alias != dev_data->devid) {
1340 		ret = iommu_flush_dte(iommu, alias);
1341 		if (ret)
1342 			return ret;
1343 	}
1344 
1345 	if (dev_data->ats.enabled)
1346 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1347 
1348 	return ret;
1349 }
1350 
1351 /*
1352  * TLB invalidation function which is called from the mapping functions.
1353  * It invalidates a single PTE if the range to flush is within a single
1354  * page. Otherwise it flushes the whole TLB of the IOMMU.
1355  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1356 static void __domain_flush_pages(struct protection_domain *domain,
1357 				 u64 address, size_t size, int pde)
1358 {
1359 	struct iommu_dev_data *dev_data;
1360 	struct iommu_cmd cmd;
1361 	int ret = 0, i;
1362 
1363 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1364 
1365 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1366 		if (!domain->dev_iommu[i])
1367 			continue;
1368 
1369 		/*
1370 		 * Devices of this domain are behind this IOMMU
1371 		 * We need a TLB flush
1372 		 */
1373 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1374 	}
1375 
1376 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1377 
1378 		if (!dev_data->ats.enabled)
1379 			continue;
1380 
1381 		ret |= device_flush_iotlb(dev_data, address, size);
1382 	}
1383 
1384 	WARN_ON(ret);
1385 }
1386 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1387 static void domain_flush_pages(struct protection_domain *domain,
1388 			       u64 address, size_t size, int pde)
1389 {
1390 	if (likely(!amd_iommu_np_cache)) {
1391 		__domain_flush_pages(domain, address, size, pde);
1392 		return;
1393 	}
1394 
1395 	/*
1396 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1397 	 * In such setups it is best to avoid flushes of ranges which are not
1398 	 * naturally aligned, since it would lead to flushes of unmodified
1399 	 * PTEs. Such flushes would require the hypervisor to do more work than
1400 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1401 	 * until you cover the range. Each iteration flushes the smaller
1402 	 * between the natural alignment of the address that we flush and the
1403 	 * greatest naturally aligned region that fits in the range.
1404 	 */
1405 	while (size != 0) {
1406 		int addr_alignment = __ffs(address);
1407 		int size_alignment = __fls(size);
1408 		int min_alignment;
1409 		size_t flush_size;
1410 
1411 		/*
1412 		 * size is always non-zero, but address might be zero, causing
1413 		 * addr_alignment to be negative. As the casting of the
1414 		 * argument in __ffs(address) to long might trim the high bits
1415 		 * of the address on x86-32, cast to long when doing the check.
1416 		 */
1417 		if (likely((unsigned long)address != 0))
1418 			min_alignment = min(addr_alignment, size_alignment);
1419 		else
1420 			min_alignment = size_alignment;
1421 
1422 		flush_size = 1ul << min_alignment;
1423 
1424 		__domain_flush_pages(domain, address, flush_size, pde);
1425 		address += flush_size;
1426 		size -= flush_size;
1427 	}
1428 }
1429 
1430 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_tlb_pde(struct protection_domain * domain)1431 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1432 {
1433 	domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1434 }
1435 
amd_iommu_domain_flush_complete(struct protection_domain * domain)1436 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1437 {
1438 	int i;
1439 
1440 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1441 		if (domain && !domain->dev_iommu[i])
1442 			continue;
1443 
1444 		/*
1445 		 * Devices of this domain are behind this IOMMU
1446 		 * We need to wait for completion of all commands.
1447 		 */
1448 		iommu_completion_wait(amd_iommus[i]);
1449 	}
1450 }
1451 
1452 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1453 static void domain_flush_np_cache(struct protection_domain *domain,
1454 		dma_addr_t iova, size_t size)
1455 {
1456 	if (unlikely(amd_iommu_np_cache)) {
1457 		unsigned long flags;
1458 
1459 		spin_lock_irqsave(&domain->lock, flags);
1460 		domain_flush_pages(domain, iova, size, 1);
1461 		amd_iommu_domain_flush_complete(domain);
1462 		spin_unlock_irqrestore(&domain->lock, flags);
1463 	}
1464 }
1465 
1466 
1467 /*
1468  * This function flushes the DTEs for all devices in domain
1469  */
domain_flush_devices(struct protection_domain * domain)1470 static void domain_flush_devices(struct protection_domain *domain)
1471 {
1472 	struct iommu_dev_data *dev_data;
1473 
1474 	list_for_each_entry(dev_data, &domain->dev_list, list)
1475 		device_flush_dte(dev_data);
1476 }
1477 
1478 /****************************************************************************
1479  *
1480  * The next functions belong to the domain allocation. A domain is
1481  * allocated for every IOMMU as the default domain. If device isolation
1482  * is enabled, every device get its own domain. The most important thing
1483  * about domains is the page table mapping the DMA address space they
1484  * contain.
1485  *
1486  ****************************************************************************/
1487 
domain_id_alloc(void)1488 static u16 domain_id_alloc(void)
1489 {
1490 	int id;
1491 
1492 	spin_lock(&pd_bitmap_lock);
1493 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1494 	BUG_ON(id == 0);
1495 	if (id > 0 && id < MAX_DOMAIN_ID)
1496 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1497 	else
1498 		id = 0;
1499 	spin_unlock(&pd_bitmap_lock);
1500 
1501 	return id;
1502 }
1503 
domain_id_free(int id)1504 static void domain_id_free(int id)
1505 {
1506 	spin_lock(&pd_bitmap_lock);
1507 	if (id > 0 && id < MAX_DOMAIN_ID)
1508 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1509 	spin_unlock(&pd_bitmap_lock);
1510 }
1511 
free_gcr3_tbl_level1(u64 * tbl)1512 static void free_gcr3_tbl_level1(u64 *tbl)
1513 {
1514 	u64 *ptr;
1515 	int i;
1516 
1517 	for (i = 0; i < 512; ++i) {
1518 		if (!(tbl[i] & GCR3_VALID))
1519 			continue;
1520 
1521 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1522 
1523 		free_page((unsigned long)ptr);
1524 	}
1525 }
1526 
free_gcr3_tbl_level2(u64 * tbl)1527 static void free_gcr3_tbl_level2(u64 *tbl)
1528 {
1529 	u64 *ptr;
1530 	int i;
1531 
1532 	for (i = 0; i < 512; ++i) {
1533 		if (!(tbl[i] & GCR3_VALID))
1534 			continue;
1535 
1536 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1537 
1538 		free_gcr3_tbl_level1(ptr);
1539 	}
1540 }
1541 
free_gcr3_table(struct protection_domain * domain)1542 static void free_gcr3_table(struct protection_domain *domain)
1543 {
1544 	if (domain->glx == 2)
1545 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1546 	else if (domain->glx == 1)
1547 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1548 	else
1549 		BUG_ON(domain->glx != 0);
1550 
1551 	free_page((unsigned long)domain->gcr3_tbl);
1552 }
1553 
set_dte_entry(struct amd_iommu * iommu,u16 devid,struct protection_domain * domain,bool ats,bool ppr)1554 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1555 			  struct protection_domain *domain, bool ats, bool ppr)
1556 {
1557 	u64 pte_root = 0;
1558 	u64 flags = 0;
1559 	u32 old_domid;
1560 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1561 
1562 	if (domain->iop.mode != PAGE_MODE_NONE)
1563 		pte_root = iommu_virt_to_phys(domain->iop.root);
1564 
1565 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1566 		    << DEV_ENTRY_MODE_SHIFT;
1567 
1568 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1569 
1570 	/*
1571 	 * When SNP is enabled, Only set TV bit when IOMMU
1572 	 * page translation is in use.
1573 	 */
1574 	if (!amd_iommu_snp_en || (domain->id != 0))
1575 		pte_root |= DTE_FLAG_TV;
1576 
1577 	flags = dev_table[devid].data[1];
1578 
1579 	if (ats)
1580 		flags |= DTE_FLAG_IOTLB;
1581 
1582 	if (ppr) {
1583 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1584 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1585 	}
1586 
1587 	if (domain->flags & PD_IOMMUV2_MASK) {
1588 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1589 		u64 glx  = domain->glx;
1590 		u64 tmp;
1591 
1592 		pte_root |= DTE_FLAG_GV;
1593 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1594 
1595 		/* First mask out possible old values for GCR3 table */
1596 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1597 		flags    &= ~tmp;
1598 
1599 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1600 		flags    &= ~tmp;
1601 
1602 		/* Encode GCR3 table into DTE */
1603 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1604 		pte_root |= tmp;
1605 
1606 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1607 		flags    |= tmp;
1608 
1609 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1610 		flags    |= tmp;
1611 
1612 		if (domain->flags & PD_GIOV_MASK)
1613 			pte_root |= DTE_FLAG_GIOV;
1614 	}
1615 
1616 	flags &= ~DEV_DOMID_MASK;
1617 	flags |= domain->id;
1618 
1619 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1620 	dev_table[devid].data[1]  = flags;
1621 	dev_table[devid].data[0]  = pte_root;
1622 
1623 	/*
1624 	 * A kdump kernel might be replacing a domain ID that was copied from
1625 	 * the previous kernel--if so, it needs to flush the translation cache
1626 	 * entries for the old domain ID that is being overwritten
1627 	 */
1628 	if (old_domid) {
1629 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1630 	}
1631 }
1632 
clear_dte_entry(struct amd_iommu * iommu,u16 devid)1633 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1634 {
1635 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1636 
1637 	/* remove entry from the device table seen by the hardware */
1638 	dev_table[devid].data[0]  = DTE_FLAG_V;
1639 
1640 	if (!amd_iommu_snp_en)
1641 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1642 
1643 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
1644 
1645 	amd_iommu_apply_erratum_63(iommu, devid);
1646 }
1647 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1648 static void do_attach(struct iommu_dev_data *dev_data,
1649 		      struct protection_domain *domain)
1650 {
1651 	struct amd_iommu *iommu;
1652 	bool ats;
1653 
1654 	iommu = rlookup_amd_iommu(dev_data->dev);
1655 	if (!iommu)
1656 		return;
1657 	ats   = dev_data->ats.enabled;
1658 
1659 	/* Update data structures */
1660 	dev_data->domain = domain;
1661 	list_add(&dev_data->list, &domain->dev_list);
1662 
1663 	/* Do reference counting */
1664 	domain->dev_iommu[iommu->index] += 1;
1665 	domain->dev_cnt                 += 1;
1666 
1667 	/* Update device table */
1668 	set_dte_entry(iommu, dev_data->devid, domain,
1669 		      ats, dev_data->iommu_v2);
1670 	clone_aliases(iommu, dev_data->dev);
1671 
1672 	device_flush_dte(dev_data);
1673 }
1674 
do_detach(struct iommu_dev_data * dev_data)1675 static void do_detach(struct iommu_dev_data *dev_data)
1676 {
1677 	struct protection_domain *domain = dev_data->domain;
1678 	struct amd_iommu *iommu;
1679 
1680 	iommu = rlookup_amd_iommu(dev_data->dev);
1681 	if (!iommu)
1682 		return;
1683 
1684 	/* Update data structures */
1685 	dev_data->domain = NULL;
1686 	list_del(&dev_data->list);
1687 	clear_dte_entry(iommu, dev_data->devid);
1688 	clone_aliases(iommu, dev_data->dev);
1689 
1690 	/* Flush the DTE entry */
1691 	device_flush_dte(dev_data);
1692 
1693 	/* Flush IOTLB */
1694 	amd_iommu_domain_flush_tlb_pde(domain);
1695 
1696 	/* Wait for the flushes to finish */
1697 	amd_iommu_domain_flush_complete(domain);
1698 
1699 	/* decrease reference counters - needs to happen after the flushes */
1700 	domain->dev_iommu[iommu->index] -= 1;
1701 	domain->dev_cnt                 -= 1;
1702 }
1703 
pdev_iommuv2_disable(struct pci_dev * pdev)1704 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1705 {
1706 	pci_disable_ats(pdev);
1707 	pci_disable_pri(pdev);
1708 	pci_disable_pasid(pdev);
1709 }
1710 
pdev_pri_ats_enable(struct pci_dev * pdev)1711 static int pdev_pri_ats_enable(struct pci_dev *pdev)
1712 {
1713 	int ret;
1714 
1715 	/* Only allow access to user-accessible pages */
1716 	ret = pci_enable_pasid(pdev, 0);
1717 	if (ret)
1718 		return ret;
1719 
1720 	/* First reset the PRI state of the device */
1721 	ret = pci_reset_pri(pdev);
1722 	if (ret)
1723 		goto out_err_pasid;
1724 
1725 	/* Enable PRI */
1726 	/* FIXME: Hardcode number of outstanding requests for now */
1727 	ret = pci_enable_pri(pdev, 32);
1728 	if (ret)
1729 		goto out_err_pasid;
1730 
1731 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
1732 	if (ret)
1733 		goto out_err_pri;
1734 
1735 	return 0;
1736 
1737 out_err_pri:
1738 	pci_disable_pri(pdev);
1739 
1740 out_err_pasid:
1741 	pci_disable_pasid(pdev);
1742 
1743 	return ret;
1744 }
1745 
1746 /*
1747  * If a device is not yet associated with a domain, this function makes the
1748  * device visible in the domain
1749  */
attach_device(struct device * dev,struct protection_domain * domain)1750 static int attach_device(struct device *dev,
1751 			 struct protection_domain *domain)
1752 {
1753 	struct iommu_dev_data *dev_data;
1754 	struct pci_dev *pdev;
1755 	unsigned long flags;
1756 	int ret;
1757 
1758 	spin_lock_irqsave(&domain->lock, flags);
1759 
1760 	dev_data = dev_iommu_priv_get(dev);
1761 
1762 	spin_lock(&dev_data->lock);
1763 
1764 	ret = -EBUSY;
1765 	if (dev_data->domain != NULL)
1766 		goto out;
1767 
1768 	if (!dev_is_pci(dev))
1769 		goto skip_ats_check;
1770 
1771 	pdev = to_pci_dev(dev);
1772 	if (domain->flags & PD_IOMMUV2_MASK) {
1773 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1774 
1775 		ret = -EINVAL;
1776 
1777 		/*
1778 		 * In case of using AMD_IOMMU_V1 page table mode and the device
1779 		 * is enabling for PPR/ATS support (using v2 table),
1780 		 * we need to make sure that the domain type is identity map.
1781 		 */
1782 		if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
1783 		    def_domain->type != IOMMU_DOMAIN_IDENTITY) {
1784 			goto out;
1785 		}
1786 
1787 		if (dev_data->iommu_v2) {
1788 			if (pdev_pri_ats_enable(pdev) != 0)
1789 				goto out;
1790 
1791 			dev_data->ats.enabled = true;
1792 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1793 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
1794 		}
1795 	} else if (amd_iommu_iotlb_sup &&
1796 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1797 		dev_data->ats.enabled = true;
1798 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1799 	}
1800 
1801 skip_ats_check:
1802 	ret = 0;
1803 
1804 	do_attach(dev_data, domain);
1805 
1806 	/*
1807 	 * We might boot into a crash-kernel here. The crashed kernel
1808 	 * left the caches in the IOMMU dirty. So we have to flush
1809 	 * here to evict all dirty stuff.
1810 	 */
1811 	amd_iommu_domain_flush_tlb_pde(domain);
1812 
1813 	amd_iommu_domain_flush_complete(domain);
1814 
1815 out:
1816 	spin_unlock(&dev_data->lock);
1817 
1818 	spin_unlock_irqrestore(&domain->lock, flags);
1819 
1820 	return ret;
1821 }
1822 
1823 /*
1824  * Removes a device from a protection domain (with devtable_lock held)
1825  */
detach_device(struct device * dev)1826 static void detach_device(struct device *dev)
1827 {
1828 	struct protection_domain *domain;
1829 	struct iommu_dev_data *dev_data;
1830 	unsigned long flags;
1831 
1832 	dev_data = dev_iommu_priv_get(dev);
1833 	domain   = dev_data->domain;
1834 
1835 	spin_lock_irqsave(&domain->lock, flags);
1836 
1837 	spin_lock(&dev_data->lock);
1838 
1839 	/*
1840 	 * First check if the device is still attached. It might already
1841 	 * be detached from its domain because the generic
1842 	 * iommu_detach_group code detached it and we try again here in
1843 	 * our alias handling.
1844 	 */
1845 	if (WARN_ON(!dev_data->domain))
1846 		goto out;
1847 
1848 	do_detach(dev_data);
1849 
1850 	if (!dev_is_pci(dev))
1851 		goto out;
1852 
1853 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1854 		pdev_iommuv2_disable(to_pci_dev(dev));
1855 	else if (dev_data->ats.enabled)
1856 		pci_disable_ats(to_pci_dev(dev));
1857 
1858 	dev_data->ats.enabled = false;
1859 
1860 out:
1861 	spin_unlock(&dev_data->lock);
1862 
1863 	spin_unlock_irqrestore(&domain->lock, flags);
1864 }
1865 
amd_iommu_probe_device(struct device * dev)1866 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1867 {
1868 	struct iommu_device *iommu_dev;
1869 	struct amd_iommu *iommu;
1870 	int ret;
1871 
1872 	if (!check_device(dev))
1873 		return ERR_PTR(-ENODEV);
1874 
1875 	iommu = rlookup_amd_iommu(dev);
1876 	if (!iommu)
1877 		return ERR_PTR(-ENODEV);
1878 
1879 	/* Not registered yet? */
1880 	if (!iommu->iommu.ops)
1881 		return ERR_PTR(-ENODEV);
1882 
1883 	if (dev_iommu_priv_get(dev))
1884 		return &iommu->iommu;
1885 
1886 	ret = iommu_init_device(iommu, dev);
1887 	if (ret) {
1888 		if (ret != -ENOTSUPP)
1889 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1890 		iommu_dev = ERR_PTR(ret);
1891 		iommu_ignore_device(iommu, dev);
1892 	} else {
1893 		amd_iommu_set_pci_msi_domain(dev, iommu);
1894 		iommu_dev = &iommu->iommu;
1895 	}
1896 
1897 	iommu_completion_wait(iommu);
1898 
1899 	return iommu_dev;
1900 }
1901 
amd_iommu_probe_finalize(struct device * dev)1902 static void amd_iommu_probe_finalize(struct device *dev)
1903 {
1904 	/* Domains are initialized for this device - have a look what we ended up with */
1905 	set_dma_ops(dev, NULL);
1906 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1907 }
1908 
amd_iommu_release_device(struct device * dev)1909 static void amd_iommu_release_device(struct device *dev)
1910 {
1911 	struct amd_iommu *iommu;
1912 
1913 	if (!check_device(dev))
1914 		return;
1915 
1916 	iommu = rlookup_amd_iommu(dev);
1917 	if (!iommu)
1918 		return;
1919 
1920 	amd_iommu_uninit_device(dev);
1921 	iommu_completion_wait(iommu);
1922 }
1923 
amd_iommu_device_group(struct device * dev)1924 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1925 {
1926 	if (dev_is_pci(dev))
1927 		return pci_device_group(dev);
1928 
1929 	return acpihid_device_group(dev);
1930 }
1931 
1932 /*****************************************************************************
1933  *
1934  * The next functions belong to the dma_ops mapping/unmapping code.
1935  *
1936  *****************************************************************************/
1937 
update_device_table(struct protection_domain * domain)1938 static void update_device_table(struct protection_domain *domain)
1939 {
1940 	struct iommu_dev_data *dev_data;
1941 
1942 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1943 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1944 
1945 		if (!iommu)
1946 			continue;
1947 		set_dte_entry(iommu, dev_data->devid, domain,
1948 			      dev_data->ats.enabled, dev_data->iommu_v2);
1949 		clone_aliases(iommu, dev_data->dev);
1950 	}
1951 }
1952 
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1953 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1954 {
1955 	update_device_table(domain);
1956 	domain_flush_devices(domain);
1957 }
1958 
amd_iommu_domain_update(struct protection_domain * domain)1959 void amd_iommu_domain_update(struct protection_domain *domain)
1960 {
1961 	/* Update device table */
1962 	amd_iommu_update_and_flush_device_table(domain);
1963 
1964 	/* Flush domain TLB(s) and wait for completion */
1965 	amd_iommu_domain_flush_tlb_pde(domain);
1966 	amd_iommu_domain_flush_complete(domain);
1967 }
1968 
1969 /*****************************************************************************
1970  *
1971  * The following functions belong to the exported interface of AMD IOMMU
1972  *
1973  * This interface allows access to lower level functions of the IOMMU
1974  * like protection domain handling and assignement of devices to domains
1975  * which is not possible with the dma_ops interface.
1976  *
1977  *****************************************************************************/
1978 
cleanup_domain(struct protection_domain * domain)1979 static void cleanup_domain(struct protection_domain *domain)
1980 {
1981 	struct iommu_dev_data *entry;
1982 	unsigned long flags;
1983 
1984 	spin_lock_irqsave(&domain->lock, flags);
1985 
1986 	while (!list_empty(&domain->dev_list)) {
1987 		entry = list_first_entry(&domain->dev_list,
1988 					 struct iommu_dev_data, list);
1989 		BUG_ON(!entry->domain);
1990 		do_detach(entry);
1991 	}
1992 
1993 	spin_unlock_irqrestore(&domain->lock, flags);
1994 }
1995 
protection_domain_free(struct protection_domain * domain)1996 static void protection_domain_free(struct protection_domain *domain)
1997 {
1998 	if (!domain)
1999 		return;
2000 
2001 	if (domain->iop.pgtbl_cfg.tlb)
2002 		free_io_pgtable_ops(&domain->iop.iop.ops);
2003 
2004 	if (domain->id)
2005 		domain_id_free(domain->id);
2006 
2007 	kfree(domain);
2008 }
2009 
protection_domain_init_v1(struct protection_domain * domain,int mode)2010 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2011 {
2012 	u64 *pt_root = NULL;
2013 
2014 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2015 
2016 	spin_lock_init(&domain->lock);
2017 	domain->id = domain_id_alloc();
2018 	if (!domain->id)
2019 		return -ENOMEM;
2020 	INIT_LIST_HEAD(&domain->dev_list);
2021 
2022 	if (mode != PAGE_MODE_NONE) {
2023 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2024 		if (!pt_root) {
2025 			domain_id_free(domain->id);
2026 			return -ENOMEM;
2027 		}
2028 	}
2029 
2030 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2031 
2032 	return 0;
2033 }
2034 
protection_domain_init_v2(struct protection_domain * domain)2035 static int protection_domain_init_v2(struct protection_domain *domain)
2036 {
2037 	spin_lock_init(&domain->lock);
2038 	domain->id = domain_id_alloc();
2039 	if (!domain->id)
2040 		return -ENOMEM;
2041 	INIT_LIST_HEAD(&domain->dev_list);
2042 
2043 	domain->flags |= PD_GIOV_MASK;
2044 
2045 	domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2046 
2047 	if (domain_enable_v2(domain, 1)) {
2048 		domain_id_free(domain->id);
2049 		return -ENOMEM;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
protection_domain_alloc(unsigned int type)2055 static struct protection_domain *protection_domain_alloc(unsigned int type)
2056 {
2057 	struct io_pgtable_ops *pgtbl_ops;
2058 	struct protection_domain *domain;
2059 	int pgtable;
2060 	int mode = DEFAULT_PGTABLE_LEVEL;
2061 	int ret;
2062 
2063 	/*
2064 	 * Force IOMMU v1 page table when iommu=pt and
2065 	 * when allocating domain for pass-through devices.
2066 	 */
2067 	if (type == IOMMU_DOMAIN_IDENTITY) {
2068 		pgtable = AMD_IOMMU_V1;
2069 		mode = PAGE_MODE_NONE;
2070 	} else if (type == IOMMU_DOMAIN_UNMANAGED) {
2071 		pgtable = AMD_IOMMU_V1;
2072 	} else if (type == IOMMU_DOMAIN_DMA || type == IOMMU_DOMAIN_DMA_FQ) {
2073 		pgtable = amd_iommu_pgtable;
2074 	} else {
2075 		return NULL;
2076 	}
2077 
2078 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2079 	if (!domain)
2080 		return NULL;
2081 
2082 	switch (pgtable) {
2083 	case AMD_IOMMU_V1:
2084 		ret = protection_domain_init_v1(domain, mode);
2085 		break;
2086 	case AMD_IOMMU_V2:
2087 		ret = protection_domain_init_v2(domain);
2088 		break;
2089 	default:
2090 		ret = -EINVAL;
2091 	}
2092 
2093 	if (ret)
2094 		goto out_err;
2095 
2096 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2097 	if (!pgtbl_ops) {
2098 		domain_id_free(domain->id);
2099 		goto out_err;
2100 	}
2101 
2102 	return domain;
2103 out_err:
2104 	kfree(domain);
2105 	return NULL;
2106 }
2107 
dma_max_address(void)2108 static inline u64 dma_max_address(void)
2109 {
2110 	if (amd_iommu_pgtable == AMD_IOMMU_V1)
2111 		return ~0ULL;
2112 
2113 	/* V2 with 4 level page table */
2114 	return ((1ULL << PM_LEVEL_SHIFT(PAGE_MODE_4_LEVEL)) - 1);
2115 }
2116 
amd_iommu_domain_alloc(unsigned type)2117 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2118 {
2119 	struct protection_domain *domain;
2120 
2121 	/*
2122 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2123 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2124 	 */
2125 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2126 		return NULL;
2127 
2128 	domain = protection_domain_alloc(type);
2129 	if (!domain)
2130 		return NULL;
2131 
2132 	domain->domain.geometry.aperture_start = 0;
2133 	domain->domain.geometry.aperture_end   = dma_max_address();
2134 	domain->domain.geometry.force_aperture = true;
2135 
2136 	return &domain->domain;
2137 }
2138 
amd_iommu_domain_free(struct iommu_domain * dom)2139 static void amd_iommu_domain_free(struct iommu_domain *dom)
2140 {
2141 	struct protection_domain *domain;
2142 
2143 	domain = to_pdomain(dom);
2144 
2145 	if (domain->dev_cnt > 0)
2146 		cleanup_domain(domain);
2147 
2148 	BUG_ON(domain->dev_cnt != 0);
2149 
2150 	if (!dom)
2151 		return;
2152 
2153 	if (domain->flags & PD_IOMMUV2_MASK)
2154 		free_gcr3_table(domain);
2155 
2156 	protection_domain_free(domain);
2157 }
2158 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)2159 static void amd_iommu_detach_device(struct iommu_domain *dom,
2160 				    struct device *dev)
2161 {
2162 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2163 	struct amd_iommu *iommu;
2164 
2165 	if (!check_device(dev))
2166 		return;
2167 
2168 	if (dev_data->domain != NULL)
2169 		detach_device(dev);
2170 
2171 	iommu = rlookup_amd_iommu(dev);
2172 	if (!iommu)
2173 		return;
2174 
2175 #ifdef CONFIG_IRQ_REMAP
2176 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2177 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2178 		dev_data->use_vapic = 0;
2179 #endif
2180 
2181 	iommu_completion_wait(iommu);
2182 }
2183 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2184 static int amd_iommu_attach_device(struct iommu_domain *dom,
2185 				   struct device *dev)
2186 {
2187 	struct protection_domain *domain = to_pdomain(dom);
2188 	struct iommu_dev_data *dev_data;
2189 	struct amd_iommu *iommu;
2190 	int ret;
2191 
2192 	if (!check_device(dev))
2193 		return -EINVAL;
2194 
2195 	dev_data = dev_iommu_priv_get(dev);
2196 	dev_data->defer_attach = false;
2197 
2198 	iommu = rlookup_amd_iommu(dev);
2199 	if (!iommu)
2200 		return -EINVAL;
2201 
2202 	if (dev_data->domain)
2203 		detach_device(dev);
2204 
2205 	ret = attach_device(dev, domain);
2206 
2207 #ifdef CONFIG_IRQ_REMAP
2208 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2209 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2210 			dev_data->use_vapic = 1;
2211 		else
2212 			dev_data->use_vapic = 0;
2213 	}
2214 #endif
2215 
2216 	iommu_completion_wait(iommu);
2217 
2218 	return ret;
2219 }
2220 
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2221 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2222 				     unsigned long iova, size_t size)
2223 {
2224 	struct protection_domain *domain = to_pdomain(dom);
2225 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2226 
2227 	if (ops->map_pages)
2228 		domain_flush_np_cache(domain, iova, size);
2229 }
2230 
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2231 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2232 			       phys_addr_t paddr, size_t pgsize, size_t pgcount,
2233 			       int iommu_prot, gfp_t gfp, size_t *mapped)
2234 {
2235 	struct protection_domain *domain = to_pdomain(dom);
2236 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2237 	int prot = 0;
2238 	int ret = -EINVAL;
2239 
2240 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2241 	    (domain->iop.mode == PAGE_MODE_NONE))
2242 		return -EINVAL;
2243 
2244 	if (iommu_prot & IOMMU_READ)
2245 		prot |= IOMMU_PROT_IR;
2246 	if (iommu_prot & IOMMU_WRITE)
2247 		prot |= IOMMU_PROT_IW;
2248 
2249 	if (ops->map_pages) {
2250 		ret = ops->map_pages(ops, iova, paddr, pgsize,
2251 				     pgcount, prot, gfp, mapped);
2252 	}
2253 
2254 	return ret;
2255 }
2256 
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2257 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2258 					    struct iommu_iotlb_gather *gather,
2259 					    unsigned long iova, size_t size)
2260 {
2261 	/*
2262 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2263 	 * Unless we run in a virtual machine, which can be inferred according
2264 	 * to whether "non-present cache" is on, it is probably best to prefer
2265 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2266 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2267 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2268 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2269 	 * should be avoided.
2270 	 */
2271 	if (amd_iommu_np_cache &&
2272 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2273 		iommu_iotlb_sync(domain, gather);
2274 
2275 	iommu_iotlb_gather_add_range(gather, iova, size);
2276 }
2277 
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2278 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2279 				    size_t pgsize, size_t pgcount,
2280 				    struct iommu_iotlb_gather *gather)
2281 {
2282 	struct protection_domain *domain = to_pdomain(dom);
2283 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2284 	size_t r;
2285 
2286 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2287 	    (domain->iop.mode == PAGE_MODE_NONE))
2288 		return 0;
2289 
2290 	r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2291 
2292 	if (r)
2293 		amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2294 
2295 	return r;
2296 }
2297 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2298 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2299 					  dma_addr_t iova)
2300 {
2301 	struct protection_domain *domain = to_pdomain(dom);
2302 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2303 
2304 	return ops->iova_to_phys(ops, iova);
2305 }
2306 
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2307 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2308 {
2309 	switch (cap) {
2310 	case IOMMU_CAP_CACHE_COHERENCY:
2311 		return true;
2312 	case IOMMU_CAP_INTR_REMAP:
2313 		return (irq_remapping_enabled == 1);
2314 	case IOMMU_CAP_NOEXEC:
2315 		return false;
2316 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2317 		return amdr_ivrs_remap_support;
2318 	default:
2319 		break;
2320 	}
2321 
2322 	return false;
2323 }
2324 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2325 static void amd_iommu_get_resv_regions(struct device *dev,
2326 				       struct list_head *head)
2327 {
2328 	struct iommu_resv_region *region;
2329 	struct unity_map_entry *entry;
2330 	struct amd_iommu *iommu;
2331 	struct amd_iommu_pci_seg *pci_seg;
2332 	int devid, sbdf;
2333 
2334 	sbdf = get_device_sbdf_id(dev);
2335 	if (sbdf < 0)
2336 		return;
2337 
2338 	devid = PCI_SBDF_TO_DEVID(sbdf);
2339 	iommu = rlookup_amd_iommu(dev);
2340 	if (!iommu)
2341 		return;
2342 	pci_seg = iommu->pci_seg;
2343 
2344 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2345 		int type, prot = 0;
2346 		size_t length;
2347 
2348 		if (devid < entry->devid_start || devid > entry->devid_end)
2349 			continue;
2350 
2351 		type   = IOMMU_RESV_DIRECT;
2352 		length = entry->address_end - entry->address_start;
2353 		if (entry->prot & IOMMU_PROT_IR)
2354 			prot |= IOMMU_READ;
2355 		if (entry->prot & IOMMU_PROT_IW)
2356 			prot |= IOMMU_WRITE;
2357 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2358 			/* Exclusion range */
2359 			type = IOMMU_RESV_RESERVED;
2360 
2361 		region = iommu_alloc_resv_region(entry->address_start,
2362 						 length, prot, type,
2363 						 GFP_KERNEL);
2364 		if (!region) {
2365 			dev_err(dev, "Out of memory allocating dm-regions\n");
2366 			return;
2367 		}
2368 		list_add_tail(&region->list, head);
2369 	}
2370 
2371 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2372 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2373 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
2374 	if (!region)
2375 		return;
2376 	list_add_tail(&region->list, head);
2377 
2378 	region = iommu_alloc_resv_region(HT_RANGE_START,
2379 					 HT_RANGE_END - HT_RANGE_START + 1,
2380 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2381 	if (!region)
2382 		return;
2383 	list_add_tail(&region->list, head);
2384 }
2385 
amd_iommu_is_attach_deferred(struct device * dev)2386 bool amd_iommu_is_attach_deferred(struct device *dev)
2387 {
2388 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2389 
2390 	return dev_data->defer_attach;
2391 }
2392 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2393 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2394 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2395 {
2396 	struct protection_domain *dom = to_pdomain(domain);
2397 	unsigned long flags;
2398 
2399 	spin_lock_irqsave(&dom->lock, flags);
2400 	amd_iommu_domain_flush_tlb_pde(dom);
2401 	amd_iommu_domain_flush_complete(dom);
2402 	spin_unlock_irqrestore(&dom->lock, flags);
2403 }
2404 
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2405 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2406 				 struct iommu_iotlb_gather *gather)
2407 {
2408 	struct protection_domain *dom = to_pdomain(domain);
2409 	unsigned long flags;
2410 
2411 	spin_lock_irqsave(&dom->lock, flags);
2412 	domain_flush_pages(dom, gather->start, gather->end - gather->start + 1, 1);
2413 	amd_iommu_domain_flush_complete(dom);
2414 	spin_unlock_irqrestore(&dom->lock, flags);
2415 }
2416 
amd_iommu_def_domain_type(struct device * dev)2417 static int amd_iommu_def_domain_type(struct device *dev)
2418 {
2419 	struct iommu_dev_data *dev_data;
2420 
2421 	dev_data = dev_iommu_priv_get(dev);
2422 	if (!dev_data)
2423 		return 0;
2424 
2425 	/*
2426 	 * Do not identity map IOMMUv2 capable devices when:
2427 	 *  - memory encryption is active, because some of those devices
2428 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
2429 	 *    and require remapping.
2430 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
2431 	 */
2432 	if (dev_data->iommu_v2 &&
2433 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2434 	    !amd_iommu_snp_en) {
2435 		return IOMMU_DOMAIN_IDENTITY;
2436 	}
2437 
2438 	return 0;
2439 }
2440 
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)2441 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2442 {
2443 	/* IOMMU_PTE_FC is always set */
2444 	return true;
2445 }
2446 
2447 const struct iommu_ops amd_iommu_ops = {
2448 	.capable = amd_iommu_capable,
2449 	.domain_alloc = amd_iommu_domain_alloc,
2450 	.probe_device = amd_iommu_probe_device,
2451 	.release_device = amd_iommu_release_device,
2452 	.probe_finalize = amd_iommu_probe_finalize,
2453 	.device_group = amd_iommu_device_group,
2454 	.get_resv_regions = amd_iommu_get_resv_regions,
2455 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2456 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2457 	.def_domain_type = amd_iommu_def_domain_type,
2458 	.default_domain_ops = &(const struct iommu_domain_ops) {
2459 		.attach_dev	= amd_iommu_attach_device,
2460 		.detach_dev	= amd_iommu_detach_device,
2461 		.map_pages	= amd_iommu_map_pages,
2462 		.unmap_pages	= amd_iommu_unmap_pages,
2463 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2464 		.iova_to_phys	= amd_iommu_iova_to_phys,
2465 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2466 		.iotlb_sync	= amd_iommu_iotlb_sync,
2467 		.free		= amd_iommu_domain_free,
2468 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2469 	}
2470 };
2471 
2472 /*****************************************************************************
2473  *
2474  * The next functions do a basic initialization of IOMMU for pass through
2475  * mode
2476  *
2477  * In passthrough mode the IOMMU is initialized and enabled but not used for
2478  * DMA-API translation.
2479  *
2480  *****************************************************************************/
2481 
2482 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)2483 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2484 {
2485 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2486 }
2487 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2488 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)2489 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2490 {
2491 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2492 }
2493 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2494 
amd_iommu_domain_direct_map(struct iommu_domain * dom)2495 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2496 {
2497 	struct protection_domain *domain = to_pdomain(dom);
2498 	unsigned long flags;
2499 
2500 	spin_lock_irqsave(&domain->lock, flags);
2501 
2502 	if (domain->iop.pgtbl_cfg.tlb)
2503 		free_io_pgtable_ops(&domain->iop.iop.ops);
2504 
2505 	spin_unlock_irqrestore(&domain->lock, flags);
2506 }
2507 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2508 
2509 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
domain_enable_v2(struct protection_domain * domain,int pasids)2510 static int domain_enable_v2(struct protection_domain *domain, int pasids)
2511 {
2512 	int levels;
2513 
2514 	/* Number of GCR3 table levels required */
2515 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2516 		levels += 1;
2517 
2518 	if (levels > amd_iommu_max_glx_val)
2519 		return -EINVAL;
2520 
2521 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2522 	if (domain->gcr3_tbl == NULL)
2523 		return -ENOMEM;
2524 
2525 	domain->glx      = levels;
2526 	domain->flags   |= PD_IOMMUV2_MASK;
2527 
2528 	amd_iommu_domain_update(domain);
2529 
2530 	return 0;
2531 }
2532 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)2533 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2534 {
2535 	struct protection_domain *pdom = to_pdomain(dom);
2536 	unsigned long flags;
2537 	int ret;
2538 
2539 	spin_lock_irqsave(&pdom->lock, flags);
2540 
2541 	/*
2542 	 * Save us all sanity checks whether devices already in the
2543 	 * domain support IOMMUv2. Just force that the domain has no
2544 	 * devices attached when it is switched into IOMMUv2 mode.
2545 	 */
2546 	ret = -EBUSY;
2547 	if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK)
2548 		goto out;
2549 
2550 	if (!pdom->gcr3_tbl)
2551 		ret = domain_enable_v2(pdom, pasids);
2552 
2553 out:
2554 	spin_unlock_irqrestore(&pdom->lock, flags);
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2558 
__flush_pasid(struct protection_domain * domain,u32 pasid,u64 address,bool size)2559 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2560 			 u64 address, bool size)
2561 {
2562 	struct iommu_dev_data *dev_data;
2563 	struct iommu_cmd cmd;
2564 	int i, ret;
2565 
2566 	if (!(domain->flags & PD_IOMMUV2_MASK))
2567 		return -EINVAL;
2568 
2569 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2570 
2571 	/*
2572 	 * IOMMU TLB needs to be flushed before Device TLB to
2573 	 * prevent device TLB refill from IOMMU TLB
2574 	 */
2575 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2576 		if (domain->dev_iommu[i] == 0)
2577 			continue;
2578 
2579 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2580 		if (ret != 0)
2581 			goto out;
2582 	}
2583 
2584 	/* Wait until IOMMU TLB flushes are complete */
2585 	amd_iommu_domain_flush_complete(domain);
2586 
2587 	/* Now flush device TLBs */
2588 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2589 		struct amd_iommu *iommu;
2590 		int qdep;
2591 
2592 		/*
2593 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2594 		 * domain.
2595 		 */
2596 		if (!dev_data->ats.enabled)
2597 			continue;
2598 
2599 		qdep  = dev_data->ats.qdep;
2600 		iommu = rlookup_amd_iommu(dev_data->dev);
2601 		if (!iommu)
2602 			continue;
2603 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2604 				      qdep, address, size);
2605 
2606 		ret = iommu_queue_command(iommu, &cmd);
2607 		if (ret != 0)
2608 			goto out;
2609 	}
2610 
2611 	/* Wait until all device TLBs are flushed */
2612 	amd_iommu_domain_flush_complete(domain);
2613 
2614 	ret = 0;
2615 
2616 out:
2617 
2618 	return ret;
2619 }
2620 
__amd_iommu_flush_page(struct protection_domain * domain,u32 pasid,u64 address)2621 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2622 				  u64 address)
2623 {
2624 	return __flush_pasid(domain, pasid, address, false);
2625 }
2626 
amd_iommu_flush_page(struct iommu_domain * dom,u32 pasid,u64 address)2627 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2628 			 u64 address)
2629 {
2630 	struct protection_domain *domain = to_pdomain(dom);
2631 	unsigned long flags;
2632 	int ret;
2633 
2634 	spin_lock_irqsave(&domain->lock, flags);
2635 	ret = __amd_iommu_flush_page(domain, pasid, address);
2636 	spin_unlock_irqrestore(&domain->lock, flags);
2637 
2638 	return ret;
2639 }
2640 EXPORT_SYMBOL(amd_iommu_flush_page);
2641 
__amd_iommu_flush_tlb(struct protection_domain * domain,u32 pasid)2642 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2643 {
2644 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2645 			     true);
2646 }
2647 
amd_iommu_flush_tlb(struct iommu_domain * dom,u32 pasid)2648 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2649 {
2650 	struct protection_domain *domain = to_pdomain(dom);
2651 	unsigned long flags;
2652 	int ret;
2653 
2654 	spin_lock_irqsave(&domain->lock, flags);
2655 	ret = __amd_iommu_flush_tlb(domain, pasid);
2656 	spin_unlock_irqrestore(&domain->lock, flags);
2657 
2658 	return ret;
2659 }
2660 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2661 
__get_gcr3_pte(u64 * root,int level,u32 pasid,bool alloc)2662 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2663 {
2664 	int index;
2665 	u64 *pte;
2666 
2667 	while (true) {
2668 
2669 		index = (pasid >> (9 * level)) & 0x1ff;
2670 		pte   = &root[index];
2671 
2672 		if (level == 0)
2673 			break;
2674 
2675 		if (!(*pte & GCR3_VALID)) {
2676 			if (!alloc)
2677 				return NULL;
2678 
2679 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2680 			if (root == NULL)
2681 				return NULL;
2682 
2683 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2684 		}
2685 
2686 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2687 
2688 		level -= 1;
2689 	}
2690 
2691 	return pte;
2692 }
2693 
__set_gcr3(struct protection_domain * domain,u32 pasid,unsigned long cr3)2694 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2695 		      unsigned long cr3)
2696 {
2697 	u64 *pte;
2698 
2699 	if (domain->iop.mode != PAGE_MODE_NONE)
2700 		return -EINVAL;
2701 
2702 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2703 	if (pte == NULL)
2704 		return -ENOMEM;
2705 
2706 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2707 
2708 	return __amd_iommu_flush_tlb(domain, pasid);
2709 }
2710 
__clear_gcr3(struct protection_domain * domain,u32 pasid)2711 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2712 {
2713 	u64 *pte;
2714 
2715 	if (domain->iop.mode != PAGE_MODE_NONE)
2716 		return -EINVAL;
2717 
2718 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2719 	if (pte == NULL)
2720 		return 0;
2721 
2722 	*pte = 0;
2723 
2724 	return __amd_iommu_flush_tlb(domain, pasid);
2725 }
2726 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,u32 pasid,unsigned long cr3)2727 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2728 			      unsigned long cr3)
2729 {
2730 	struct protection_domain *domain = to_pdomain(dom);
2731 	unsigned long flags;
2732 	int ret;
2733 
2734 	spin_lock_irqsave(&domain->lock, flags);
2735 	ret = __set_gcr3(domain, pasid, cr3);
2736 	spin_unlock_irqrestore(&domain->lock, flags);
2737 
2738 	return ret;
2739 }
2740 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2741 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,u32 pasid)2742 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2743 {
2744 	struct protection_domain *domain = to_pdomain(dom);
2745 	unsigned long flags;
2746 	int ret;
2747 
2748 	spin_lock_irqsave(&domain->lock, flags);
2749 	ret = __clear_gcr3(domain, pasid);
2750 	spin_unlock_irqrestore(&domain->lock, flags);
2751 
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2755 
amd_iommu_complete_ppr(struct pci_dev * pdev,u32 pasid,int status,int tag)2756 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2757 			   int status, int tag)
2758 {
2759 	struct iommu_dev_data *dev_data;
2760 	struct amd_iommu *iommu;
2761 	struct iommu_cmd cmd;
2762 
2763 	dev_data = dev_iommu_priv_get(&pdev->dev);
2764 	iommu    = rlookup_amd_iommu(&pdev->dev);
2765 	if (!iommu)
2766 		return -ENODEV;
2767 
2768 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2769 			   tag, dev_data->pri_tlp);
2770 
2771 	return iommu_queue_command(iommu, &cmd);
2772 }
2773 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2774 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)2775 int amd_iommu_device_info(struct pci_dev *pdev,
2776                           struct amd_iommu_device_info *info)
2777 {
2778 	int max_pasids;
2779 	int pos;
2780 
2781 	if (pdev == NULL || info == NULL)
2782 		return -EINVAL;
2783 
2784 	if (!amd_iommu_v2_supported())
2785 		return -EINVAL;
2786 
2787 	memset(info, 0, sizeof(*info));
2788 
2789 	if (pci_ats_supported(pdev))
2790 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2791 
2792 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2793 	if (pos)
2794 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2795 
2796 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2797 	if (pos) {
2798 		int features;
2799 
2800 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2801 		max_pasids = min(max_pasids, (1 << 20));
2802 
2803 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2804 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2805 
2806 		features = pci_pasid_features(pdev);
2807 		if (features & PCI_PASID_CAP_EXEC)
2808 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2809 		if (features & PCI_PASID_CAP_PRIV)
2810 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2811 	}
2812 
2813 	return 0;
2814 }
2815 EXPORT_SYMBOL(amd_iommu_device_info);
2816 
2817 #ifdef CONFIG_IRQ_REMAP
2818 
2819 /*****************************************************************************
2820  *
2821  * Interrupt Remapping Implementation
2822  *
2823  *****************************************************************************/
2824 
2825 static struct irq_chip amd_ir_chip;
2826 static DEFINE_SPINLOCK(iommu_table_lock);
2827 
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2828 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2829 			      struct irq_remap_table *table)
2830 {
2831 	u64 dte;
2832 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2833 
2834 	dte	= dev_table[devid].data[2];
2835 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2836 	dte	|= iommu_virt_to_phys(table->table);
2837 	dte	|= DTE_IRQ_REMAP_INTCTL;
2838 	dte	|= DTE_INTTABLEN;
2839 	dte	|= DTE_IRQ_REMAP_ENABLE;
2840 
2841 	dev_table[devid].data[2] = dte;
2842 }
2843 
get_irq_table(struct amd_iommu * iommu,u16 devid)2844 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2845 {
2846 	struct irq_remap_table *table;
2847 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2848 
2849 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2850 		      "%s: no iommu for devid %x:%x\n",
2851 		      __func__, pci_seg->id, devid))
2852 		return NULL;
2853 
2854 	table = pci_seg->irq_lookup_table[devid];
2855 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2856 		      __func__, pci_seg->id, devid))
2857 		return NULL;
2858 
2859 	return table;
2860 }
2861 
__alloc_irq_table(void)2862 static struct irq_remap_table *__alloc_irq_table(void)
2863 {
2864 	struct irq_remap_table *table;
2865 
2866 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2867 	if (!table)
2868 		return NULL;
2869 
2870 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2871 	if (!table->table) {
2872 		kfree(table);
2873 		return NULL;
2874 	}
2875 	raw_spin_lock_init(&table->lock);
2876 
2877 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2878 		memset(table->table, 0,
2879 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2880 	else
2881 		memset(table->table, 0,
2882 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2883 	return table;
2884 }
2885 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2886 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2887 				  struct irq_remap_table *table)
2888 {
2889 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2890 
2891 	pci_seg->irq_lookup_table[devid] = table;
2892 	set_dte_irq_entry(iommu, devid, table);
2893 	iommu_flush_dte(iommu, devid);
2894 }
2895 
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)2896 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2897 				       void *data)
2898 {
2899 	struct irq_remap_table *table = data;
2900 	struct amd_iommu_pci_seg *pci_seg;
2901 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2902 
2903 	if (!iommu)
2904 		return -EINVAL;
2905 
2906 	pci_seg = iommu->pci_seg;
2907 	pci_seg->irq_lookup_table[alias] = table;
2908 	set_dte_irq_entry(iommu, alias, table);
2909 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2910 
2911 	return 0;
2912 }
2913 
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev)2914 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2915 					       u16 devid, struct pci_dev *pdev)
2916 {
2917 	struct irq_remap_table *table = NULL;
2918 	struct irq_remap_table *new_table = NULL;
2919 	struct amd_iommu_pci_seg *pci_seg;
2920 	unsigned long flags;
2921 	u16 alias;
2922 
2923 	spin_lock_irqsave(&iommu_table_lock, flags);
2924 
2925 	pci_seg = iommu->pci_seg;
2926 	table = pci_seg->irq_lookup_table[devid];
2927 	if (table)
2928 		goto out_unlock;
2929 
2930 	alias = pci_seg->alias_table[devid];
2931 	table = pci_seg->irq_lookup_table[alias];
2932 	if (table) {
2933 		set_remap_table_entry(iommu, devid, table);
2934 		goto out_wait;
2935 	}
2936 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2937 
2938 	/* Nothing there yet, allocate new irq remapping table */
2939 	new_table = __alloc_irq_table();
2940 	if (!new_table)
2941 		return NULL;
2942 
2943 	spin_lock_irqsave(&iommu_table_lock, flags);
2944 
2945 	table = pci_seg->irq_lookup_table[devid];
2946 	if (table)
2947 		goto out_unlock;
2948 
2949 	table = pci_seg->irq_lookup_table[alias];
2950 	if (table) {
2951 		set_remap_table_entry(iommu, devid, table);
2952 		goto out_wait;
2953 	}
2954 
2955 	table = new_table;
2956 	new_table = NULL;
2957 
2958 	if (pdev)
2959 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2960 				       table);
2961 	else
2962 		set_remap_table_entry(iommu, devid, table);
2963 
2964 	if (devid != alias)
2965 		set_remap_table_entry(iommu, alias, table);
2966 
2967 out_wait:
2968 	iommu_completion_wait(iommu);
2969 
2970 out_unlock:
2971 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2972 
2973 	if (new_table) {
2974 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2975 		kfree(new_table);
2976 	}
2977 	return table;
2978 }
2979 
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev)2980 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
2981 			   bool align, struct pci_dev *pdev)
2982 {
2983 	struct irq_remap_table *table;
2984 	int index, c, alignment = 1;
2985 	unsigned long flags;
2986 
2987 	table = alloc_irq_table(iommu, devid, pdev);
2988 	if (!table)
2989 		return -ENODEV;
2990 
2991 	if (align)
2992 		alignment = roundup_pow_of_two(count);
2993 
2994 	raw_spin_lock_irqsave(&table->lock, flags);
2995 
2996 	/* Scan table for free entries */
2997 	for (index = ALIGN(table->min_index, alignment), c = 0;
2998 	     index < MAX_IRQS_PER_TABLE;) {
2999 		if (!iommu->irte_ops->is_allocated(table, index)) {
3000 			c += 1;
3001 		} else {
3002 			c     = 0;
3003 			index = ALIGN(index + 1, alignment);
3004 			continue;
3005 		}
3006 
3007 		if (c == count)	{
3008 			for (; c != 0; --c)
3009 				iommu->irte_ops->set_allocated(table, index - c + 1);
3010 
3011 			index -= count - 1;
3012 			goto out;
3013 		}
3014 
3015 		index++;
3016 	}
3017 
3018 	index = -ENOSPC;
3019 
3020 out:
3021 	raw_spin_unlock_irqrestore(&table->lock, flags);
3022 
3023 	return index;
3024 }
3025 
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)3026 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3027 			  struct irte_ga *irte, struct amd_ir_data *data)
3028 {
3029 	bool ret;
3030 	struct irq_remap_table *table;
3031 	unsigned long flags;
3032 	struct irte_ga *entry;
3033 
3034 	table = get_irq_table(iommu, devid);
3035 	if (!table)
3036 		return -ENOMEM;
3037 
3038 	raw_spin_lock_irqsave(&table->lock, flags);
3039 
3040 	entry = (struct irte_ga *)table->table;
3041 	entry = &entry[index];
3042 
3043 	ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3044 			     entry->lo.val, entry->hi.val,
3045 			     irte->lo.val, irte->hi.val);
3046 	/*
3047 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3048 	 * and it cannot be updated by the hardware or other processors
3049 	 * behind us, so the return value of cmpxchg16 should be the
3050 	 * same as the old value.
3051 	 */
3052 	WARN_ON(!ret);
3053 
3054 	if (data)
3055 		data->ref = entry;
3056 
3057 	raw_spin_unlock_irqrestore(&table->lock, flags);
3058 
3059 	iommu_flush_irt(iommu, devid);
3060 	iommu_completion_wait(iommu);
3061 
3062 	return 0;
3063 }
3064 
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3065 static int modify_irte(struct amd_iommu *iommu,
3066 		       u16 devid, int index, union irte *irte)
3067 {
3068 	struct irq_remap_table *table;
3069 	unsigned long flags;
3070 
3071 	table = get_irq_table(iommu, devid);
3072 	if (!table)
3073 		return -ENOMEM;
3074 
3075 	raw_spin_lock_irqsave(&table->lock, flags);
3076 	table->table[index] = irte->val;
3077 	raw_spin_unlock_irqrestore(&table->lock, flags);
3078 
3079 	iommu_flush_irt(iommu, devid);
3080 	iommu_completion_wait(iommu);
3081 
3082 	return 0;
3083 }
3084 
free_irte(struct amd_iommu * iommu,u16 devid,int index)3085 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3086 {
3087 	struct irq_remap_table *table;
3088 	unsigned long flags;
3089 
3090 	table = get_irq_table(iommu, devid);
3091 	if (!table)
3092 		return;
3093 
3094 	raw_spin_lock_irqsave(&table->lock, flags);
3095 	iommu->irte_ops->clear_allocated(table, index);
3096 	raw_spin_unlock_irqrestore(&table->lock, flags);
3097 
3098 	iommu_flush_irt(iommu, devid);
3099 	iommu_completion_wait(iommu);
3100 }
3101 
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3102 static void irte_prepare(void *entry,
3103 			 u32 delivery_mode, bool dest_mode,
3104 			 u8 vector, u32 dest_apicid, int devid)
3105 {
3106 	union irte *irte = (union irte *) entry;
3107 
3108 	irte->val                = 0;
3109 	irte->fields.vector      = vector;
3110 	irte->fields.int_type    = delivery_mode;
3111 	irte->fields.destination = dest_apicid;
3112 	irte->fields.dm          = dest_mode;
3113 	irte->fields.valid       = 1;
3114 }
3115 
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3116 static void irte_ga_prepare(void *entry,
3117 			    u32 delivery_mode, bool dest_mode,
3118 			    u8 vector, u32 dest_apicid, int devid)
3119 {
3120 	struct irte_ga *irte = (struct irte_ga *) entry;
3121 
3122 	irte->lo.val                      = 0;
3123 	irte->hi.val                      = 0;
3124 	irte->lo.fields_remap.int_type    = delivery_mode;
3125 	irte->lo.fields_remap.dm          = dest_mode;
3126 	irte->hi.fields.vector            = vector;
3127 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3128 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3129 	irte->lo.fields_remap.valid       = 1;
3130 }
3131 
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3132 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3133 {
3134 	union irte *irte = (union irte *) entry;
3135 
3136 	irte->fields.valid = 1;
3137 	modify_irte(iommu, devid, index, irte);
3138 }
3139 
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3140 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3141 {
3142 	struct irte_ga *irte = (struct irte_ga *) entry;
3143 
3144 	irte->lo.fields_remap.valid = 1;
3145 	modify_irte_ga(iommu, devid, index, irte, NULL);
3146 }
3147 
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3148 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3149 {
3150 	union irte *irte = (union irte *) entry;
3151 
3152 	irte->fields.valid = 0;
3153 	modify_irte(iommu, devid, index, irte);
3154 }
3155 
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3156 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3157 {
3158 	struct irte_ga *irte = (struct irte_ga *) entry;
3159 
3160 	irte->lo.fields_remap.valid = 0;
3161 	modify_irte_ga(iommu, devid, index, irte, NULL);
3162 }
3163 
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3164 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3165 			      u8 vector, u32 dest_apicid)
3166 {
3167 	union irte *irte = (union irte *) entry;
3168 
3169 	irte->fields.vector = vector;
3170 	irte->fields.destination = dest_apicid;
3171 	modify_irte(iommu, devid, index, irte);
3172 }
3173 
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3174 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3175 				 u8 vector, u32 dest_apicid)
3176 {
3177 	struct irte_ga *irte = (struct irte_ga *) entry;
3178 
3179 	if (!irte->lo.fields_remap.guest_mode) {
3180 		irte->hi.fields.vector = vector;
3181 		irte->lo.fields_remap.destination =
3182 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3183 		irte->hi.fields.destination =
3184 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3185 		modify_irte_ga(iommu, devid, index, irte, NULL);
3186 	}
3187 }
3188 
3189 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3190 static void irte_set_allocated(struct irq_remap_table *table, int index)
3191 {
3192 	table->table[index] = IRTE_ALLOCATED;
3193 }
3194 
irte_ga_set_allocated(struct irq_remap_table * table,int index)3195 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3196 {
3197 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3198 	struct irte_ga *irte = &ptr[index];
3199 
3200 	memset(&irte->lo.val, 0, sizeof(u64));
3201 	memset(&irte->hi.val, 0, sizeof(u64));
3202 	irte->hi.fields.vector = 0xff;
3203 }
3204 
irte_is_allocated(struct irq_remap_table * table,int index)3205 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3206 {
3207 	union irte *ptr = (union irte *)table->table;
3208 	union irte *irte = &ptr[index];
3209 
3210 	return irte->val != 0;
3211 }
3212 
irte_ga_is_allocated(struct irq_remap_table * table,int index)3213 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3214 {
3215 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3216 	struct irte_ga *irte = &ptr[index];
3217 
3218 	return irte->hi.fields.vector != 0;
3219 }
3220 
irte_clear_allocated(struct irq_remap_table * table,int index)3221 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3222 {
3223 	table->table[index] = 0;
3224 }
3225 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3226 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3227 {
3228 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3229 	struct irte_ga *irte = &ptr[index];
3230 
3231 	memset(&irte->lo.val, 0, sizeof(u64));
3232 	memset(&irte->hi.val, 0, sizeof(u64));
3233 }
3234 
get_devid(struct irq_alloc_info * info)3235 static int get_devid(struct irq_alloc_info *info)
3236 {
3237 	switch (info->type) {
3238 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3239 		return get_ioapic_devid(info->devid);
3240 	case X86_IRQ_ALLOC_TYPE_HPET:
3241 		return get_hpet_devid(info->devid);
3242 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3243 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3244 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3245 	default:
3246 		WARN_ON_ONCE(1);
3247 		return -1;
3248 	}
3249 }
3250 
3251 struct irq_remap_ops amd_iommu_irq_ops = {
3252 	.prepare		= amd_iommu_prepare,
3253 	.enable			= amd_iommu_enable,
3254 	.disable		= amd_iommu_disable,
3255 	.reenable		= amd_iommu_reenable,
3256 	.enable_faulting	= amd_iommu_enable_faulting,
3257 };
3258 
fill_msi_msg(struct msi_msg * msg,u32 index)3259 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3260 {
3261 	msg->data = index;
3262 	msg->address_lo = 0;
3263 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3264 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3265 }
3266 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3267 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3268 				       struct irq_cfg *irq_cfg,
3269 				       struct irq_alloc_info *info,
3270 				       int devid, int index, int sub_handle)
3271 {
3272 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3273 	struct amd_iommu *iommu = data->iommu;
3274 
3275 	if (!iommu)
3276 		return;
3277 
3278 	data->irq_2_irte.devid = devid;
3279 	data->irq_2_irte.index = index + sub_handle;
3280 	iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3281 				 apic->dest_mode_logical, irq_cfg->vector,
3282 				 irq_cfg->dest_apicid, devid);
3283 
3284 	switch (info->type) {
3285 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3286 	case X86_IRQ_ALLOC_TYPE_HPET:
3287 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3288 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3289 		fill_msi_msg(&data->msi_entry, irte_info->index);
3290 		break;
3291 
3292 	default:
3293 		BUG_ON(1);
3294 		break;
3295 	}
3296 }
3297 
3298 struct amd_irte_ops irte_32_ops = {
3299 	.prepare = irte_prepare,
3300 	.activate = irte_activate,
3301 	.deactivate = irte_deactivate,
3302 	.set_affinity = irte_set_affinity,
3303 	.set_allocated = irte_set_allocated,
3304 	.is_allocated = irte_is_allocated,
3305 	.clear_allocated = irte_clear_allocated,
3306 };
3307 
3308 struct amd_irte_ops irte_128_ops = {
3309 	.prepare = irte_ga_prepare,
3310 	.activate = irte_ga_activate,
3311 	.deactivate = irte_ga_deactivate,
3312 	.set_affinity = irte_ga_set_affinity,
3313 	.set_allocated = irte_ga_set_allocated,
3314 	.is_allocated = irte_ga_is_allocated,
3315 	.clear_allocated = irte_ga_clear_allocated,
3316 };
3317 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3318 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3319 			       unsigned int nr_irqs, void *arg)
3320 {
3321 	struct irq_alloc_info *info = arg;
3322 	struct irq_data *irq_data;
3323 	struct amd_ir_data *data = NULL;
3324 	struct amd_iommu *iommu;
3325 	struct irq_cfg *cfg;
3326 	int i, ret, devid, seg, sbdf;
3327 	int index;
3328 
3329 	if (!info)
3330 		return -EINVAL;
3331 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3332 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3333 		return -EINVAL;
3334 
3335 	/*
3336 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3337 	 * to support multiple MSI interrupts.
3338 	 */
3339 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3340 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3341 
3342 	sbdf = get_devid(info);
3343 	if (sbdf < 0)
3344 		return -EINVAL;
3345 
3346 	seg = PCI_SBDF_TO_SEGID(sbdf);
3347 	devid = PCI_SBDF_TO_DEVID(sbdf);
3348 	iommu = __rlookup_amd_iommu(seg, devid);
3349 	if (!iommu)
3350 		return -EINVAL;
3351 
3352 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3353 	if (ret < 0)
3354 		return ret;
3355 
3356 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3357 		struct irq_remap_table *table;
3358 
3359 		table = alloc_irq_table(iommu, devid, NULL);
3360 		if (table) {
3361 			if (!table->min_index) {
3362 				/*
3363 				 * Keep the first 32 indexes free for IOAPIC
3364 				 * interrupts.
3365 				 */
3366 				table->min_index = 32;
3367 				for (i = 0; i < 32; ++i)
3368 					iommu->irte_ops->set_allocated(table, i);
3369 			}
3370 			WARN_ON(table->min_index != 32);
3371 			index = info->ioapic.pin;
3372 		} else {
3373 			index = -ENOMEM;
3374 		}
3375 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3376 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3377 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3378 
3379 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3380 					msi_desc_to_pci_dev(info->desc));
3381 	} else {
3382 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3383 	}
3384 
3385 	if (index < 0) {
3386 		pr_warn("Failed to allocate IRTE\n");
3387 		ret = index;
3388 		goto out_free_parent;
3389 	}
3390 
3391 	for (i = 0; i < nr_irqs; i++) {
3392 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3393 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3394 		if (!cfg) {
3395 			ret = -EINVAL;
3396 			goto out_free_data;
3397 		}
3398 
3399 		ret = -ENOMEM;
3400 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3401 		if (!data)
3402 			goto out_free_data;
3403 
3404 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3405 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3406 		else
3407 			data->entry = kzalloc(sizeof(struct irte_ga),
3408 						     GFP_KERNEL);
3409 		if (!data->entry) {
3410 			kfree(data);
3411 			goto out_free_data;
3412 		}
3413 
3414 		data->iommu = iommu;
3415 		irq_data->hwirq = (devid << 16) + i;
3416 		irq_data->chip_data = data;
3417 		irq_data->chip = &amd_ir_chip;
3418 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3419 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3420 	}
3421 
3422 	return 0;
3423 
3424 out_free_data:
3425 	for (i--; i >= 0; i--) {
3426 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3427 		if (irq_data)
3428 			kfree(irq_data->chip_data);
3429 	}
3430 	for (i = 0; i < nr_irqs; i++)
3431 		free_irte(iommu, devid, index + i);
3432 out_free_parent:
3433 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3434 	return ret;
3435 }
3436 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3437 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3438 			       unsigned int nr_irqs)
3439 {
3440 	struct irq_2_irte *irte_info;
3441 	struct irq_data *irq_data;
3442 	struct amd_ir_data *data;
3443 	int i;
3444 
3445 	for (i = 0; i < nr_irqs; i++) {
3446 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3447 		if (irq_data && irq_data->chip_data) {
3448 			data = irq_data->chip_data;
3449 			irte_info = &data->irq_2_irte;
3450 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3451 			kfree(data->entry);
3452 			kfree(data);
3453 		}
3454 	}
3455 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3456 }
3457 
3458 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3459 			       struct amd_ir_data *ir_data,
3460 			       struct irq_2_irte *irte_info,
3461 			       struct irq_cfg *cfg);
3462 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3463 static int irq_remapping_activate(struct irq_domain *domain,
3464 				  struct irq_data *irq_data, bool reserve)
3465 {
3466 	struct amd_ir_data *data = irq_data->chip_data;
3467 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3468 	struct amd_iommu *iommu = data->iommu;
3469 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3470 
3471 	if (!iommu)
3472 		return 0;
3473 
3474 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3475 				  irte_info->index);
3476 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3477 	return 0;
3478 }
3479 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3480 static void irq_remapping_deactivate(struct irq_domain *domain,
3481 				     struct irq_data *irq_data)
3482 {
3483 	struct amd_ir_data *data = irq_data->chip_data;
3484 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3485 	struct amd_iommu *iommu = data->iommu;
3486 
3487 	if (iommu)
3488 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3489 					    irte_info->index);
3490 }
3491 
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3492 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3493 				enum irq_domain_bus_token bus_token)
3494 {
3495 	struct amd_iommu *iommu;
3496 	int devid = -1;
3497 
3498 	if (!amd_iommu_irq_remap)
3499 		return 0;
3500 
3501 	if (x86_fwspec_is_ioapic(fwspec))
3502 		devid = get_ioapic_devid(fwspec->param[0]);
3503 	else if (x86_fwspec_is_hpet(fwspec))
3504 		devid = get_hpet_devid(fwspec->param[0]);
3505 
3506 	if (devid < 0)
3507 		return 0;
3508 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3509 
3510 	return iommu && iommu->ir_domain == d;
3511 }
3512 
3513 static const struct irq_domain_ops amd_ir_domain_ops = {
3514 	.select = irq_remapping_select,
3515 	.alloc = irq_remapping_alloc,
3516 	.free = irq_remapping_free,
3517 	.activate = irq_remapping_activate,
3518 	.deactivate = irq_remapping_deactivate,
3519 };
3520 
amd_iommu_activate_guest_mode(void * data)3521 int amd_iommu_activate_guest_mode(void *data)
3522 {
3523 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3524 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3525 	u64 valid;
3526 
3527 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3528 		return 0;
3529 
3530 	valid = entry->lo.fields_vapic.valid;
3531 
3532 	entry->lo.val = 0;
3533 	entry->hi.val = 0;
3534 
3535 	entry->lo.fields_vapic.valid       = valid;
3536 	entry->lo.fields_vapic.guest_mode  = 1;
3537 	entry->lo.fields_vapic.ga_log_intr = 1;
3538 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3539 	entry->hi.fields.vector            = ir_data->ga_vector;
3540 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3541 
3542 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3543 			      ir_data->irq_2_irte.index, entry, ir_data);
3544 }
3545 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3546 
amd_iommu_deactivate_guest_mode(void * data)3547 int amd_iommu_deactivate_guest_mode(void *data)
3548 {
3549 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3550 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3551 	struct irq_cfg *cfg = ir_data->cfg;
3552 	u64 valid;
3553 
3554 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3555 	    !entry || !entry->lo.fields_vapic.guest_mode)
3556 		return 0;
3557 
3558 	valid = entry->lo.fields_remap.valid;
3559 
3560 	entry->lo.val = 0;
3561 	entry->hi.val = 0;
3562 
3563 	entry->lo.fields_remap.valid       = valid;
3564 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3565 	entry->lo.fields_remap.int_type    = apic->delivery_mode;
3566 	entry->hi.fields.vector            = cfg->vector;
3567 	entry->lo.fields_remap.destination =
3568 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3569 	entry->hi.fields.destination =
3570 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3571 
3572 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3573 			      ir_data->irq_2_irte.index, entry, ir_data);
3574 }
3575 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3576 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3577 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3578 {
3579 	int ret;
3580 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3581 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3582 	struct amd_ir_data *ir_data = data->chip_data;
3583 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3584 	struct iommu_dev_data *dev_data;
3585 
3586 	if (ir_data->iommu == NULL)
3587 		return -EINVAL;
3588 
3589 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3590 
3591 	/* Note:
3592 	 * This device has never been set up for guest mode.
3593 	 * we should not modify the IRTE
3594 	 */
3595 	if (!dev_data || !dev_data->use_vapic)
3596 		return 0;
3597 
3598 	ir_data->cfg = irqd_cfg(data);
3599 	pi_data->ir_data = ir_data;
3600 
3601 	/* Note:
3602 	 * SVM tries to set up for VAPIC mode, but we are in
3603 	 * legacy mode. So, we force legacy mode instead.
3604 	 */
3605 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3606 		pr_debug("%s: Fall back to using intr legacy remap\n",
3607 			 __func__);
3608 		pi_data->is_guest_mode = false;
3609 	}
3610 
3611 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3612 	if (pi_data->is_guest_mode) {
3613 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3614 		ir_data->ga_vector = vcpu_pi_info->vector;
3615 		ir_data->ga_tag = pi_data->ga_tag;
3616 		ret = amd_iommu_activate_guest_mode(ir_data);
3617 		if (!ret)
3618 			ir_data->cached_ga_tag = pi_data->ga_tag;
3619 	} else {
3620 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3621 
3622 		/*
3623 		 * This communicates the ga_tag back to the caller
3624 		 * so that it can do all the necessary clean up.
3625 		 */
3626 		if (!ret)
3627 			ir_data->cached_ga_tag = 0;
3628 	}
3629 
3630 	return ret;
3631 }
3632 
3633 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3634 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3635 			       struct amd_ir_data *ir_data,
3636 			       struct irq_2_irte *irte_info,
3637 			       struct irq_cfg *cfg)
3638 {
3639 
3640 	/*
3641 	 * Atomically updates the IRTE with the new destination, vector
3642 	 * and flushes the interrupt entry cache.
3643 	 */
3644 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3645 				      irte_info->index, cfg->vector,
3646 				      cfg->dest_apicid);
3647 }
3648 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3649 static int amd_ir_set_affinity(struct irq_data *data,
3650 			       const struct cpumask *mask, bool force)
3651 {
3652 	struct amd_ir_data *ir_data = data->chip_data;
3653 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3654 	struct irq_cfg *cfg = irqd_cfg(data);
3655 	struct irq_data *parent = data->parent_data;
3656 	struct amd_iommu *iommu = ir_data->iommu;
3657 	int ret;
3658 
3659 	if (!iommu)
3660 		return -ENODEV;
3661 
3662 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3663 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3664 		return ret;
3665 
3666 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3667 	/*
3668 	 * After this point, all the interrupts will start arriving
3669 	 * at the new destination. So, time to cleanup the previous
3670 	 * vector allocation.
3671 	 */
3672 	send_cleanup_vector(cfg);
3673 
3674 	return IRQ_SET_MASK_OK_DONE;
3675 }
3676 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3677 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3678 {
3679 	struct amd_ir_data *ir_data = irq_data->chip_data;
3680 
3681 	*msg = ir_data->msi_entry;
3682 }
3683 
3684 static struct irq_chip amd_ir_chip = {
3685 	.name			= "AMD-IR",
3686 	.irq_ack		= apic_ack_irq,
3687 	.irq_set_affinity	= amd_ir_set_affinity,
3688 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3689 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3690 };
3691 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3692 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3693 {
3694 	struct fwnode_handle *fn;
3695 
3696 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3697 	if (!fn)
3698 		return -ENOMEM;
3699 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3700 	if (!iommu->ir_domain) {
3701 		irq_domain_free_fwnode(fn);
3702 		return -ENOMEM;
3703 	}
3704 
3705 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
3706 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3707 							     "AMD-IR-MSI",
3708 							     iommu->index);
3709 	return 0;
3710 }
3711 
amd_iommu_update_ga(int cpu,bool is_run,void * data)3712 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3713 {
3714 	unsigned long flags;
3715 	struct amd_iommu *iommu;
3716 	struct irq_remap_table *table;
3717 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3718 	int devid = ir_data->irq_2_irte.devid;
3719 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3720 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3721 
3722 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3723 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3724 		return 0;
3725 
3726 	iommu = ir_data->iommu;
3727 	if (!iommu)
3728 		return -ENODEV;
3729 
3730 	table = get_irq_table(iommu, devid);
3731 	if (!table)
3732 		return -ENODEV;
3733 
3734 	raw_spin_lock_irqsave(&table->lock, flags);
3735 
3736 	if (ref->lo.fields_vapic.guest_mode) {
3737 		if (cpu >= 0) {
3738 			ref->lo.fields_vapic.destination =
3739 						APICID_TO_IRTE_DEST_LO(cpu);
3740 			ref->hi.fields.destination =
3741 						APICID_TO_IRTE_DEST_HI(cpu);
3742 		}
3743 		ref->lo.fields_vapic.is_run = is_run;
3744 		barrier();
3745 	}
3746 
3747 	raw_spin_unlock_irqrestore(&table->lock, flags);
3748 
3749 	iommu_flush_irt(iommu, devid);
3750 	iommu_completion_wait(iommu);
3751 	return 0;
3752 }
3753 EXPORT_SYMBOL(amd_iommu_update_ga);
3754 #endif
3755