1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned int xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags_on;
100 u16 lflags_off;
101 };
102
103 struct ata_force_ent {
104 int port;
105 int device;
106 struct ata_force_param param;
107 };
108
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162
ata_dev_print_info(struct ata_device * dev)163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 struct ata_eh_context *ehc = &dev->link->eh_context;
166
167 return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169
ata_sstatus_online(u32 sstatus)170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 return (sstatus & 0xf) == 0x3;
173 }
174
175 /**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189 {
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 fallthrough;
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 fallthrough;
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 fallthrough;
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234
235 /**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249 {
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288
289 /**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
ata_dev_phys_link(struct ata_device * dev)303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312 }
313
314 #ifdef CONFIG_ATA_FORCE
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
ata_force_cbl(struct ata_port * ap)328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
ata_force_link_limits(struct ata_link * link)363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags_on) {
391 link->flags |= fe->param.lflags_on;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags_on, link->flags);
395 }
396 if (fe->param.lflags_off) {
397 link->flags &= ~fe->param.lflags_off;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x cleared -> 0x%x\n",
400 fe->param.lflags_off, link->flags);
401 }
402 }
403 }
404
405 /**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
ata_force_xfermask(struct ata_device * dev)416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned int pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457 }
458
459 /**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
ata_force_horkage(struct ata_device * dev)470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500 }
501 #else
ata_force_link_limits(struct ata_link * link)502 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)503 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506
507 /**
508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 * @opcode: SCSI opcode
510 *
511 * Determine ATAPI command type from @opcode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
atapi_cmd_type(u8 opcode)519 int atapi_cmd_type(u8 opcode)
520 {
521 switch (opcode) {
522 case GPCMD_READ_10:
523 case GPCMD_READ_12:
524 return ATAPI_READ;
525
526 case GPCMD_WRITE_10:
527 case GPCMD_WRITE_12:
528 case GPCMD_WRITE_AND_VERIFY_10:
529 return ATAPI_WRITE;
530
531 case GPCMD_READ_CD:
532 case GPCMD_READ_CD_MSF:
533 return ATAPI_READ_CD;
534
535 case ATA_16:
536 case ATA_12:
537 if (atapi_passthru16)
538 return ATAPI_PASS_THRU;
539 fallthrough;
540 default:
541 return ATAPI_MISC;
542 }
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546 static const u8 ata_rw_cmds[] = {
547 /* pio multi */
548 ATA_CMD_READ_MULTI,
549 ATA_CMD_WRITE_MULTI,
550 ATA_CMD_READ_MULTI_EXT,
551 ATA_CMD_WRITE_MULTI_EXT,
552 0,
553 0,
554 0,
555 ATA_CMD_WRITE_MULTI_FUA_EXT,
556 /* pio */
557 ATA_CMD_PIO_READ,
558 ATA_CMD_PIO_WRITE,
559 ATA_CMD_PIO_READ_EXT,
560 ATA_CMD_PIO_WRITE_EXT,
561 0,
562 0,
563 0,
564 0,
565 /* dma */
566 ATA_CMD_READ,
567 ATA_CMD_WRITE,
568 ATA_CMD_READ_EXT,
569 ATA_CMD_WRITE_EXT,
570 0,
571 0,
572 0,
573 ATA_CMD_WRITE_FUA_EXT
574 };
575
576 /**
577 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
578 * @tf: command to examine and configure
579 * @dev: device tf belongs to
580 *
581 * Examine the device configuration and tf->flags to calculate
582 * the proper read/write commands and protocol to use.
583 *
584 * LOCKING:
585 * caller.
586 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)587 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
588 {
589 u8 cmd;
590
591 int index, fua, lba48, write;
592
593 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
596
597 if (dev->flags & ATA_DFLAG_PIO) {
598 tf->protocol = ATA_PROT_PIO;
599 index = dev->multi_count ? 0 : 8;
600 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
601 /* Unable to use DMA due to host limitation */
602 tf->protocol = ATA_PROT_PIO;
603 index = dev->multi_count ? 0 : 8;
604 } else {
605 tf->protocol = ATA_PROT_DMA;
606 index = 16;
607 }
608
609 cmd = ata_rw_cmds[index + fua + lba48 + write];
610 if (cmd) {
611 tf->command = cmd;
612 return 0;
613 }
614 return -1;
615 }
616
617 /**
618 * ata_tf_read_block - Read block address from ATA taskfile
619 * @tf: ATA taskfile of interest
620 * @dev: ATA device @tf belongs to
621 *
622 * LOCKING:
623 * None.
624 *
625 * Read block address from @tf. This function can handle all
626 * three address formats - LBA, LBA48 and CHS. tf->protocol and
627 * flags select the address format to use.
628 *
629 * RETURNS:
630 * Block address read from @tf.
631 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)632 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
633 {
634 u64 block = 0;
635
636 if (tf->flags & ATA_TFLAG_LBA) {
637 if (tf->flags & ATA_TFLAG_LBA48) {
638 block |= (u64)tf->hob_lbah << 40;
639 block |= (u64)tf->hob_lbam << 32;
640 block |= (u64)tf->hob_lbal << 24;
641 } else
642 block |= (tf->device & 0xf) << 24;
643
644 block |= tf->lbah << 16;
645 block |= tf->lbam << 8;
646 block |= tf->lbal;
647 } else {
648 u32 cyl, head, sect;
649
650 cyl = tf->lbam | (tf->lbah << 8);
651 head = tf->device & 0xf;
652 sect = tf->lbal;
653
654 if (!sect) {
655 ata_dev_warn(dev,
656 "device reported invalid CHS sector 0\n");
657 return U64_MAX;
658 }
659
660 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
661 }
662
663 return block;
664 }
665
666 /**
667 * ata_build_rw_tf - Build ATA taskfile for given read/write request
668 * @qc: Metadata associated with the taskfile to build
669 * @block: Block address
670 * @n_block: Number of blocks
671 * @tf_flags: RW/FUA etc...
672 * @class: IO priority class
673 *
674 * LOCKING:
675 * None.
676 *
677 * Build ATA taskfile for the command @qc for read/write request described
678 * by @block, @n_block, @tf_flags and @class.
679 *
680 * RETURNS:
681 *
682 * 0 on success, -ERANGE if the request is too large for @dev,
683 * -EINVAL if the request is invalid.
684 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int class)685 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
686 unsigned int tf_flags, int class)
687 {
688 struct ata_taskfile *tf = &qc->tf;
689 struct ata_device *dev = qc->dev;
690
691 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
692 tf->flags |= tf_flags;
693
694 if (ata_ncq_enabled(dev)) {
695 /* yay, NCQ */
696 if (!lba_48_ok(block, n_block))
697 return -ERANGE;
698
699 tf->protocol = ATA_PROT_NCQ;
700 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
701
702 if (tf->flags & ATA_TFLAG_WRITE)
703 tf->command = ATA_CMD_FPDMA_WRITE;
704 else
705 tf->command = ATA_CMD_FPDMA_READ;
706
707 tf->nsect = qc->hw_tag << 3;
708 tf->hob_feature = (n_block >> 8) & 0xff;
709 tf->feature = n_block & 0xff;
710
711 tf->hob_lbah = (block >> 40) & 0xff;
712 tf->hob_lbam = (block >> 32) & 0xff;
713 tf->hob_lbal = (block >> 24) & 0xff;
714 tf->lbah = (block >> 16) & 0xff;
715 tf->lbam = (block >> 8) & 0xff;
716 tf->lbal = block & 0xff;
717
718 tf->device = ATA_LBA;
719 if (tf->flags & ATA_TFLAG_FUA)
720 tf->device |= 1 << 7;
721
722 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
723 class == IOPRIO_CLASS_RT)
724 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
725 } else if (dev->flags & ATA_DFLAG_LBA) {
726 tf->flags |= ATA_TFLAG_LBA;
727
728 if (lba_28_ok(block, n_block)) {
729 /* use LBA28 */
730 tf->device |= (block >> 24) & 0xf;
731 } else if (lba_48_ok(block, n_block)) {
732 if (!(dev->flags & ATA_DFLAG_LBA48))
733 return -ERANGE;
734
735 /* use LBA48 */
736 tf->flags |= ATA_TFLAG_LBA48;
737
738 tf->hob_nsect = (n_block >> 8) & 0xff;
739
740 tf->hob_lbah = (block >> 40) & 0xff;
741 tf->hob_lbam = (block >> 32) & 0xff;
742 tf->hob_lbal = (block >> 24) & 0xff;
743 } else
744 /* request too large even for LBA48 */
745 return -ERANGE;
746
747 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
748 return -EINVAL;
749
750 tf->nsect = n_block & 0xff;
751
752 tf->lbah = (block >> 16) & 0xff;
753 tf->lbam = (block >> 8) & 0xff;
754 tf->lbal = block & 0xff;
755
756 tf->device |= ATA_LBA;
757 } else {
758 /* CHS */
759 u32 sect, head, cyl, track;
760
761 /* The request -may- be too large for CHS addressing. */
762 if (!lba_28_ok(block, n_block))
763 return -ERANGE;
764
765 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
766 return -EINVAL;
767
768 /* Convert LBA to CHS */
769 track = (u32)block / dev->sectors;
770 cyl = track / dev->heads;
771 head = track % dev->heads;
772 sect = (u32)block % dev->sectors + 1;
773
774 /* Check whether the converted CHS can fit.
775 Cylinder: 0-65535
776 Head: 0-15
777 Sector: 1-255*/
778 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
779 return -ERANGE;
780
781 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
782 tf->lbal = sect;
783 tf->lbam = cyl;
784 tf->lbah = cyl >> 8;
785 tf->device |= head;
786 }
787
788 return 0;
789 }
790
791 /**
792 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
793 * @pio_mask: pio_mask
794 * @mwdma_mask: mwdma_mask
795 * @udma_mask: udma_mask
796 *
797 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
798 * unsigned int xfer_mask.
799 *
800 * LOCKING:
801 * None.
802 *
803 * RETURNS:
804 * Packed xfer_mask.
805 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)806 unsigned int ata_pack_xfermask(unsigned int pio_mask,
807 unsigned int mwdma_mask,
808 unsigned int udma_mask)
809 {
810 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
811 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
812 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
813 }
814 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
815
816 /**
817 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
818 * @xfer_mask: xfer_mask to unpack
819 * @pio_mask: resulting pio_mask
820 * @mwdma_mask: resulting mwdma_mask
821 * @udma_mask: resulting udma_mask
822 *
823 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
824 * Any NULL destination masks will be ignored.
825 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)826 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
827 unsigned int *mwdma_mask, unsigned int *udma_mask)
828 {
829 if (pio_mask)
830 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
831 if (mwdma_mask)
832 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
833 if (udma_mask)
834 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
835 }
836
837 static const struct ata_xfer_ent {
838 int shift, bits;
839 u8 base;
840 } ata_xfer_tbl[] = {
841 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
842 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
843 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
844 { -1, },
845 };
846
847 /**
848 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
849 * @xfer_mask: xfer_mask of interest
850 *
851 * Return matching XFER_* value for @xfer_mask. Only the highest
852 * bit of @xfer_mask is considered.
853 *
854 * LOCKING:
855 * None.
856 *
857 * RETURNS:
858 * Matching XFER_* value, 0xff if no match found.
859 */
ata_xfer_mask2mode(unsigned int xfer_mask)860 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
861 {
862 int highbit = fls(xfer_mask) - 1;
863 const struct ata_xfer_ent *ent;
864
865 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
866 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
867 return ent->base + highbit - ent->shift;
868 return 0xff;
869 }
870 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
871
872 /**
873 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
874 * @xfer_mode: XFER_* of interest
875 *
876 * Return matching xfer_mask for @xfer_mode.
877 *
878 * LOCKING:
879 * None.
880 *
881 * RETURNS:
882 * Matching xfer_mask, 0 if no match found.
883 */
ata_xfer_mode2mask(u8 xfer_mode)884 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
885 {
886 const struct ata_xfer_ent *ent;
887
888 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
889 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
890 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
891 & ~((1 << ent->shift) - 1);
892 return 0;
893 }
894 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
895
896 /**
897 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
898 * @xfer_mode: XFER_* of interest
899 *
900 * Return matching xfer_shift for @xfer_mode.
901 *
902 * LOCKING:
903 * None.
904 *
905 * RETURNS:
906 * Matching xfer_shift, -1 if no match found.
907 */
ata_xfer_mode2shift(u8 xfer_mode)908 int ata_xfer_mode2shift(u8 xfer_mode)
909 {
910 const struct ata_xfer_ent *ent;
911
912 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
913 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
914 return ent->shift;
915 return -1;
916 }
917 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
918
919 /**
920 * ata_mode_string - convert xfer_mask to string
921 * @xfer_mask: mask of bits supported; only highest bit counts.
922 *
923 * Determine string which represents the highest speed
924 * (highest bit in @modemask).
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Constant C string representing highest speed listed in
931 * @mode_mask, or the constant C string "<n/a>".
932 */
ata_mode_string(unsigned int xfer_mask)933 const char *ata_mode_string(unsigned int xfer_mask)
934 {
935 static const char * const xfer_mode_str[] = {
936 "PIO0",
937 "PIO1",
938 "PIO2",
939 "PIO3",
940 "PIO4",
941 "PIO5",
942 "PIO6",
943 "MWDMA0",
944 "MWDMA1",
945 "MWDMA2",
946 "MWDMA3",
947 "MWDMA4",
948 "UDMA/16",
949 "UDMA/25",
950 "UDMA/33",
951 "UDMA/44",
952 "UDMA/66",
953 "UDMA/100",
954 "UDMA/133",
955 "UDMA7",
956 };
957 int highbit;
958
959 highbit = fls(xfer_mask) - 1;
960 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
961 return xfer_mode_str[highbit];
962 return "<n/a>";
963 }
964 EXPORT_SYMBOL_GPL(ata_mode_string);
965
sata_spd_string(unsigned int spd)966 const char *sata_spd_string(unsigned int spd)
967 {
968 static const char * const spd_str[] = {
969 "1.5 Gbps",
970 "3.0 Gbps",
971 "6.0 Gbps",
972 };
973
974 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
975 return "<unknown>";
976 return spd_str[spd - 1];
977 }
978
979 /**
980 * ata_dev_classify - determine device type based on ATA-spec signature
981 * @tf: ATA taskfile register set for device to be identified
982 *
983 * Determine from taskfile register contents whether a device is
984 * ATA or ATAPI, as per "Signature and persistence" section
985 * of ATA/PI spec (volume 1, sect 5.14).
986 *
987 * LOCKING:
988 * None.
989 *
990 * RETURNS:
991 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
992 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
993 */
ata_dev_classify(const struct ata_taskfile * tf)994 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
995 {
996 /* Apple's open source Darwin code hints that some devices only
997 * put a proper signature into the LBA mid/high registers,
998 * So, we only check those. It's sufficient for uniqueness.
999 *
1000 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1001 * signatures for ATA and ATAPI devices attached on SerialATA,
1002 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1003 * spec has never mentioned about using different signatures
1004 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1005 * Multiplier specification began to use 0x69/0x96 to identify
1006 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1007 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1008 * 0x69/0x96 shortly and described them as reserved for
1009 * SerialATA.
1010 *
1011 * We follow the current spec and consider that 0x69/0x96
1012 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1013 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1014 * SEMB signature. This is worked around in
1015 * ata_dev_read_id().
1016 */
1017 if (tf->lbam == 0 && tf->lbah == 0)
1018 return ATA_DEV_ATA;
1019
1020 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1021 return ATA_DEV_ATAPI;
1022
1023 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1024 return ATA_DEV_PMP;
1025
1026 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1027 return ATA_DEV_SEMB;
1028
1029 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1030 return ATA_DEV_ZAC;
1031
1032 return ATA_DEV_UNKNOWN;
1033 }
1034 EXPORT_SYMBOL_GPL(ata_dev_classify);
1035
1036 /**
1037 * ata_id_string - Convert IDENTIFY DEVICE page into string
1038 * @id: IDENTIFY DEVICE results we will examine
1039 * @s: string into which data is output
1040 * @ofs: offset into identify device page
1041 * @len: length of string to return. must be an even number.
1042 *
1043 * The strings in the IDENTIFY DEVICE page are broken up into
1044 * 16-bit chunks. Run through the string, and output each
1045 * 8-bit chunk linearly, regardless of platform.
1046 *
1047 * LOCKING:
1048 * caller.
1049 */
1050
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1051 void ata_id_string(const u16 *id, unsigned char *s,
1052 unsigned int ofs, unsigned int len)
1053 {
1054 unsigned int c;
1055
1056 BUG_ON(len & 1);
1057
1058 while (len > 0) {
1059 c = id[ofs] >> 8;
1060 *s = c;
1061 s++;
1062
1063 c = id[ofs] & 0xff;
1064 *s = c;
1065 s++;
1066
1067 ofs++;
1068 len -= 2;
1069 }
1070 }
1071 EXPORT_SYMBOL_GPL(ata_id_string);
1072
1073 /**
1074 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1075 * @id: IDENTIFY DEVICE results we will examine
1076 * @s: string into which data is output
1077 * @ofs: offset into identify device page
1078 * @len: length of string to return. must be an odd number.
1079 *
1080 * This function is identical to ata_id_string except that it
1081 * trims trailing spaces and terminates the resulting string with
1082 * null. @len must be actual maximum length (even number) + 1.
1083 *
1084 * LOCKING:
1085 * caller.
1086 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1087 void ata_id_c_string(const u16 *id, unsigned char *s,
1088 unsigned int ofs, unsigned int len)
1089 {
1090 unsigned char *p;
1091
1092 ata_id_string(id, s, ofs, len - 1);
1093
1094 p = s + strnlen(s, len - 1);
1095 while (p > s && p[-1] == ' ')
1096 p--;
1097 *p = '\0';
1098 }
1099 EXPORT_SYMBOL_GPL(ata_id_c_string);
1100
ata_id_n_sectors(const u16 * id)1101 static u64 ata_id_n_sectors(const u16 *id)
1102 {
1103 if (ata_id_has_lba(id)) {
1104 if (ata_id_has_lba48(id))
1105 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1106
1107 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1108 }
1109
1110 if (ata_id_current_chs_valid(id))
1111 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1112 (u32)id[ATA_ID_CUR_SECTORS];
1113
1114 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1115 (u32)id[ATA_ID_SECTORS];
1116 }
1117
ata_tf_to_lba48(const struct ata_taskfile * tf)1118 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1119 {
1120 u64 sectors = 0;
1121
1122 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1123 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1124 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1125 sectors |= (tf->lbah & 0xff) << 16;
1126 sectors |= (tf->lbam & 0xff) << 8;
1127 sectors |= (tf->lbal & 0xff);
1128
1129 return sectors;
1130 }
1131
ata_tf_to_lba(const struct ata_taskfile * tf)1132 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1133 {
1134 u64 sectors = 0;
1135
1136 sectors |= (tf->device & 0x0f) << 24;
1137 sectors |= (tf->lbah & 0xff) << 16;
1138 sectors |= (tf->lbam & 0xff) << 8;
1139 sectors |= (tf->lbal & 0xff);
1140
1141 return sectors;
1142 }
1143
1144 /**
1145 * ata_read_native_max_address - Read native max address
1146 * @dev: target device
1147 * @max_sectors: out parameter for the result native max address
1148 *
1149 * Perform an LBA48 or LBA28 native size query upon the device in
1150 * question.
1151 *
1152 * RETURNS:
1153 * 0 on success, -EACCES if command is aborted by the drive.
1154 * -EIO on other errors.
1155 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1156 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1157 {
1158 unsigned int err_mask;
1159 struct ata_taskfile tf;
1160 int lba48 = ata_id_has_lba48(dev->id);
1161
1162 ata_tf_init(dev, &tf);
1163
1164 /* always clear all address registers */
1165 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1166
1167 if (lba48) {
1168 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1169 tf.flags |= ATA_TFLAG_LBA48;
1170 } else
1171 tf.command = ATA_CMD_READ_NATIVE_MAX;
1172
1173 tf.protocol = ATA_PROT_NODATA;
1174 tf.device |= ATA_LBA;
1175
1176 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1177 if (err_mask) {
1178 ata_dev_warn(dev,
1179 "failed to read native max address (err_mask=0x%x)\n",
1180 err_mask);
1181 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1182 return -EACCES;
1183 return -EIO;
1184 }
1185
1186 if (lba48)
1187 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1188 else
1189 *max_sectors = ata_tf_to_lba(&tf) + 1;
1190 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1191 (*max_sectors)--;
1192 return 0;
1193 }
1194
1195 /**
1196 * ata_set_max_sectors - Set max sectors
1197 * @dev: target device
1198 * @new_sectors: new max sectors value to set for the device
1199 *
1200 * Set max sectors of @dev to @new_sectors.
1201 *
1202 * RETURNS:
1203 * 0 on success, -EACCES if command is aborted or denied (due to
1204 * previous non-volatile SET_MAX) by the drive. -EIO on other
1205 * errors.
1206 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1207 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1208 {
1209 unsigned int err_mask;
1210 struct ata_taskfile tf;
1211 int lba48 = ata_id_has_lba48(dev->id);
1212
1213 new_sectors--;
1214
1215 ata_tf_init(dev, &tf);
1216
1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219 if (lba48) {
1220 tf.command = ATA_CMD_SET_MAX_EXT;
1221 tf.flags |= ATA_TFLAG_LBA48;
1222
1223 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1224 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1225 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1226 } else {
1227 tf.command = ATA_CMD_SET_MAX;
1228
1229 tf.device |= (new_sectors >> 24) & 0xf;
1230 }
1231
1232 tf.protocol = ATA_PROT_NODATA;
1233 tf.device |= ATA_LBA;
1234
1235 tf.lbal = (new_sectors >> 0) & 0xff;
1236 tf.lbam = (new_sectors >> 8) & 0xff;
1237 tf.lbah = (new_sectors >> 16) & 0xff;
1238
1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 if (err_mask) {
1241 ata_dev_warn(dev,
1242 "failed to set max address (err_mask=0x%x)\n",
1243 err_mask);
1244 if (err_mask == AC_ERR_DEV &&
1245 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1246 return -EACCES;
1247 return -EIO;
1248 }
1249
1250 return 0;
1251 }
1252
1253 /**
1254 * ata_hpa_resize - Resize a device with an HPA set
1255 * @dev: Device to resize
1256 *
1257 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1258 * it if required to the full size of the media. The caller must check
1259 * the drive has the HPA feature set enabled.
1260 *
1261 * RETURNS:
1262 * 0 on success, -errno on failure.
1263 */
ata_hpa_resize(struct ata_device * dev)1264 static int ata_hpa_resize(struct ata_device *dev)
1265 {
1266 bool print_info = ata_dev_print_info(dev);
1267 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1268 u64 sectors = ata_id_n_sectors(dev->id);
1269 u64 native_sectors;
1270 int rc;
1271
1272 /* do we need to do it? */
1273 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1274 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1275 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1276 return 0;
1277
1278 /* read native max address */
1279 rc = ata_read_native_max_address(dev, &native_sectors);
1280 if (rc) {
1281 /* If device aborted the command or HPA isn't going to
1282 * be unlocked, skip HPA resizing.
1283 */
1284 if (rc == -EACCES || !unlock_hpa) {
1285 ata_dev_warn(dev,
1286 "HPA support seems broken, skipping HPA handling\n");
1287 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1288
1289 /* we can continue if device aborted the command */
1290 if (rc == -EACCES)
1291 rc = 0;
1292 }
1293
1294 return rc;
1295 }
1296 dev->n_native_sectors = native_sectors;
1297
1298 /* nothing to do? */
1299 if (native_sectors <= sectors || !unlock_hpa) {
1300 if (!print_info || native_sectors == sectors)
1301 return 0;
1302
1303 if (native_sectors > sectors)
1304 ata_dev_info(dev,
1305 "HPA detected: current %llu, native %llu\n",
1306 (unsigned long long)sectors,
1307 (unsigned long long)native_sectors);
1308 else if (native_sectors < sectors)
1309 ata_dev_warn(dev,
1310 "native sectors (%llu) is smaller than sectors (%llu)\n",
1311 (unsigned long long)native_sectors,
1312 (unsigned long long)sectors);
1313 return 0;
1314 }
1315
1316 /* let's unlock HPA */
1317 rc = ata_set_max_sectors(dev, native_sectors);
1318 if (rc == -EACCES) {
1319 /* if device aborted the command, skip HPA resizing */
1320 ata_dev_warn(dev,
1321 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1322 (unsigned long long)sectors,
1323 (unsigned long long)native_sectors);
1324 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1325 return 0;
1326 } else if (rc)
1327 return rc;
1328
1329 /* re-read IDENTIFY data */
1330 rc = ata_dev_reread_id(dev, 0);
1331 if (rc) {
1332 ata_dev_err(dev,
1333 "failed to re-read IDENTIFY data after HPA resizing\n");
1334 return rc;
1335 }
1336
1337 if (print_info) {
1338 u64 new_sectors = ata_id_n_sectors(dev->id);
1339 ata_dev_info(dev,
1340 "HPA unlocked: %llu -> %llu, native %llu\n",
1341 (unsigned long long)sectors,
1342 (unsigned long long)new_sectors,
1343 (unsigned long long)native_sectors);
1344 }
1345
1346 return 0;
1347 }
1348
1349 /**
1350 * ata_dump_id - IDENTIFY DEVICE info debugging output
1351 * @dev: device from which the information is fetched
1352 * @id: IDENTIFY DEVICE page to dump
1353 *
1354 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1355 * page.
1356 *
1357 * LOCKING:
1358 * caller.
1359 */
1360
ata_dump_id(struct ata_device * dev,const u16 * id)1361 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1362 {
1363 ata_dev_dbg(dev,
1364 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1365 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1366 "88==0x%04x 93==0x%04x\n",
1367 id[49], id[53], id[63], id[64], id[75], id[80],
1368 id[81], id[82], id[83], id[84], id[88], id[93]);
1369 }
1370
1371 /**
1372 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1373 * @id: IDENTIFY data to compute xfer mask from
1374 *
1375 * Compute the xfermask for this device. This is not as trivial
1376 * as it seems if we must consider early devices correctly.
1377 *
1378 * FIXME: pre IDE drive timing (do we care ?).
1379 *
1380 * LOCKING:
1381 * None.
1382 *
1383 * RETURNS:
1384 * Computed xfermask
1385 */
ata_id_xfermask(const u16 * id)1386 unsigned int ata_id_xfermask(const u16 *id)
1387 {
1388 unsigned int pio_mask, mwdma_mask, udma_mask;
1389
1390 /* Usual case. Word 53 indicates word 64 is valid */
1391 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1392 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1393 pio_mask <<= 3;
1394 pio_mask |= 0x7;
1395 } else {
1396 /* If word 64 isn't valid then Word 51 high byte holds
1397 * the PIO timing number for the maximum. Turn it into
1398 * a mask.
1399 */
1400 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1401 if (mode < 5) /* Valid PIO range */
1402 pio_mask = (2 << mode) - 1;
1403 else
1404 pio_mask = 1;
1405
1406 /* But wait.. there's more. Design your standards by
1407 * committee and you too can get a free iordy field to
1408 * process. However it is the speeds not the modes that
1409 * are supported... Note drivers using the timing API
1410 * will get this right anyway
1411 */
1412 }
1413
1414 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1415
1416 if (ata_id_is_cfa(id)) {
1417 /*
1418 * Process compact flash extended modes
1419 */
1420 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1421 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1422
1423 if (pio)
1424 pio_mask |= (1 << 5);
1425 if (pio > 1)
1426 pio_mask |= (1 << 6);
1427 if (dma)
1428 mwdma_mask |= (1 << 3);
1429 if (dma > 1)
1430 mwdma_mask |= (1 << 4);
1431 }
1432
1433 udma_mask = 0;
1434 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1435 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1436
1437 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1438 }
1439 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1440
ata_qc_complete_internal(struct ata_queued_cmd * qc)1441 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1442 {
1443 struct completion *waiting = qc->private_data;
1444
1445 complete(waiting);
1446 }
1447
1448 /**
1449 * ata_exec_internal_sg - execute libata internal command
1450 * @dev: Device to which the command is sent
1451 * @tf: Taskfile registers for the command and the result
1452 * @cdb: CDB for packet command
1453 * @dma_dir: Data transfer direction of the command
1454 * @sgl: sg list for the data buffer of the command
1455 * @n_elem: Number of sg entries
1456 * @timeout: Timeout in msecs (0 for default)
1457 *
1458 * Executes libata internal command with timeout. @tf contains
1459 * command on entry and result on return. Timeout and error
1460 * conditions are reported via return value. No recovery action
1461 * is taken after a command times out. It's caller's duty to
1462 * clean up after timeout.
1463 *
1464 * LOCKING:
1465 * None. Should be called with kernel context, might sleep.
1466 *
1467 * RETURNS:
1468 * Zero on success, AC_ERR_* mask on failure
1469 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned int timeout)1470 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1471 struct ata_taskfile *tf, const u8 *cdb,
1472 int dma_dir, struct scatterlist *sgl,
1473 unsigned int n_elem, unsigned int timeout)
1474 {
1475 struct ata_link *link = dev->link;
1476 struct ata_port *ap = link->ap;
1477 u8 command = tf->command;
1478 int auto_timeout = 0;
1479 struct ata_queued_cmd *qc;
1480 unsigned int preempted_tag;
1481 u32 preempted_sactive;
1482 u64 preempted_qc_active;
1483 int preempted_nr_active_links;
1484 DECLARE_COMPLETION_ONSTACK(wait);
1485 unsigned long flags;
1486 unsigned int err_mask;
1487 int rc;
1488
1489 spin_lock_irqsave(ap->lock, flags);
1490
1491 /* no internal command while frozen */
1492 if (ap->pflags & ATA_PFLAG_FROZEN) {
1493 spin_unlock_irqrestore(ap->lock, flags);
1494 return AC_ERR_SYSTEM;
1495 }
1496
1497 /* initialize internal qc */
1498 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1499
1500 qc->tag = ATA_TAG_INTERNAL;
1501 qc->hw_tag = 0;
1502 qc->scsicmd = NULL;
1503 qc->ap = ap;
1504 qc->dev = dev;
1505 ata_qc_reinit(qc);
1506
1507 preempted_tag = link->active_tag;
1508 preempted_sactive = link->sactive;
1509 preempted_qc_active = ap->qc_active;
1510 preempted_nr_active_links = ap->nr_active_links;
1511 link->active_tag = ATA_TAG_POISON;
1512 link->sactive = 0;
1513 ap->qc_active = 0;
1514 ap->nr_active_links = 0;
1515
1516 /* prepare & issue qc */
1517 qc->tf = *tf;
1518 if (cdb)
1519 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1520
1521 /* some SATA bridges need us to indicate data xfer direction */
1522 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1523 dma_dir == DMA_FROM_DEVICE)
1524 qc->tf.feature |= ATAPI_DMADIR;
1525
1526 qc->flags |= ATA_QCFLAG_RESULT_TF;
1527 qc->dma_dir = dma_dir;
1528 if (dma_dir != DMA_NONE) {
1529 unsigned int i, buflen = 0;
1530 struct scatterlist *sg;
1531
1532 for_each_sg(sgl, sg, n_elem, i)
1533 buflen += sg->length;
1534
1535 ata_sg_init(qc, sgl, n_elem);
1536 qc->nbytes = buflen;
1537 }
1538
1539 qc->private_data = &wait;
1540 qc->complete_fn = ata_qc_complete_internal;
1541
1542 ata_qc_issue(qc);
1543
1544 spin_unlock_irqrestore(ap->lock, flags);
1545
1546 if (!timeout) {
1547 if (ata_probe_timeout)
1548 timeout = ata_probe_timeout * 1000;
1549 else {
1550 timeout = ata_internal_cmd_timeout(dev, command);
1551 auto_timeout = 1;
1552 }
1553 }
1554
1555 if (ap->ops->error_handler)
1556 ata_eh_release(ap);
1557
1558 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1559
1560 if (ap->ops->error_handler)
1561 ata_eh_acquire(ap);
1562
1563 ata_sff_flush_pio_task(ap);
1564
1565 if (!rc) {
1566 spin_lock_irqsave(ap->lock, flags);
1567
1568 /* We're racing with irq here. If we lose, the
1569 * following test prevents us from completing the qc
1570 * twice. If we win, the port is frozen and will be
1571 * cleaned up by ->post_internal_cmd().
1572 */
1573 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1574 qc->err_mask |= AC_ERR_TIMEOUT;
1575
1576 if (ap->ops->error_handler)
1577 ata_port_freeze(ap);
1578 else
1579 ata_qc_complete(qc);
1580
1581 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1582 timeout, command);
1583 }
1584
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 }
1587
1588 /* do post_internal_cmd */
1589 if (ap->ops->post_internal_cmd)
1590 ap->ops->post_internal_cmd(qc);
1591
1592 /* perform minimal error analysis */
1593 if (qc->flags & ATA_QCFLAG_FAILED) {
1594 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1595 qc->err_mask |= AC_ERR_DEV;
1596
1597 if (!qc->err_mask)
1598 qc->err_mask |= AC_ERR_OTHER;
1599
1600 if (qc->err_mask & ~AC_ERR_OTHER)
1601 qc->err_mask &= ~AC_ERR_OTHER;
1602 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1603 qc->result_tf.status |= ATA_SENSE;
1604 }
1605
1606 /* finish up */
1607 spin_lock_irqsave(ap->lock, flags);
1608
1609 *tf = qc->result_tf;
1610 err_mask = qc->err_mask;
1611
1612 ata_qc_free(qc);
1613 link->active_tag = preempted_tag;
1614 link->sactive = preempted_sactive;
1615 ap->qc_active = preempted_qc_active;
1616 ap->nr_active_links = preempted_nr_active_links;
1617
1618 spin_unlock_irqrestore(ap->lock, flags);
1619
1620 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1621 ata_internal_cmd_timed_out(dev, command);
1622
1623 return err_mask;
1624 }
1625
1626 /**
1627 * ata_exec_internal - execute libata internal command
1628 * @dev: Device to which the command is sent
1629 * @tf: Taskfile registers for the command and the result
1630 * @cdb: CDB for packet command
1631 * @dma_dir: Data transfer direction of the command
1632 * @buf: Data buffer of the command
1633 * @buflen: Length of data buffer
1634 * @timeout: Timeout in msecs (0 for default)
1635 *
1636 * Wrapper around ata_exec_internal_sg() which takes simple
1637 * buffer instead of sg list.
1638 *
1639 * LOCKING:
1640 * None. Should be called with kernel context, might sleep.
1641 *
1642 * RETURNS:
1643 * Zero on success, AC_ERR_* mask on failure
1644 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1645 unsigned ata_exec_internal(struct ata_device *dev,
1646 struct ata_taskfile *tf, const u8 *cdb,
1647 int dma_dir, void *buf, unsigned int buflen,
1648 unsigned int timeout)
1649 {
1650 struct scatterlist *psg = NULL, sg;
1651 unsigned int n_elem = 0;
1652
1653 if (dma_dir != DMA_NONE) {
1654 WARN_ON(!buf);
1655 sg_init_one(&sg, buf, buflen);
1656 psg = &sg;
1657 n_elem++;
1658 }
1659
1660 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1661 timeout);
1662 }
1663
1664 /**
1665 * ata_pio_need_iordy - check if iordy needed
1666 * @adev: ATA device
1667 *
1668 * Check if the current speed of the device requires IORDY. Used
1669 * by various controllers for chip configuration.
1670 */
ata_pio_need_iordy(const struct ata_device * adev)1671 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1672 {
1673 /* Don't set IORDY if we're preparing for reset. IORDY may
1674 * lead to controller lock up on certain controllers if the
1675 * port is not occupied. See bko#11703 for details.
1676 */
1677 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1678 return 0;
1679 /* Controller doesn't support IORDY. Probably a pointless
1680 * check as the caller should know this.
1681 */
1682 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1683 return 0;
1684 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1685 if (ata_id_is_cfa(adev->id)
1686 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1687 return 0;
1688 /* PIO3 and higher it is mandatory */
1689 if (adev->pio_mode > XFER_PIO_2)
1690 return 1;
1691 /* We turn it on when possible */
1692 if (ata_id_has_iordy(adev->id))
1693 return 1;
1694 return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1697
1698 /**
1699 * ata_pio_mask_no_iordy - Return the non IORDY mask
1700 * @adev: ATA device
1701 *
1702 * Compute the highest mode possible if we are not using iordy. Return
1703 * -1 if no iordy mode is available.
1704 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1705 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1706 {
1707 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1708 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1709 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1710 /* Is the speed faster than the drive allows non IORDY ? */
1711 if (pio) {
1712 /* This is cycle times not frequency - watch the logic! */
1713 if (pio > 240) /* PIO2 is 240nS per cycle */
1714 return 3 << ATA_SHIFT_PIO;
1715 return 7 << ATA_SHIFT_PIO;
1716 }
1717 }
1718 return 3 << ATA_SHIFT_PIO;
1719 }
1720
1721 /**
1722 * ata_do_dev_read_id - default ID read method
1723 * @dev: device
1724 * @tf: proposed taskfile
1725 * @id: data buffer
1726 *
1727 * Issue the identify taskfile and hand back the buffer containing
1728 * identify data. For some RAID controllers and for pre ATA devices
1729 * this function is wrapped or replaced by the driver
1730 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1731 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1732 struct ata_taskfile *tf, __le16 *id)
1733 {
1734 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1735 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1736 }
1737 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1738
1739 /**
1740 * ata_dev_read_id - Read ID data from the specified device
1741 * @dev: target device
1742 * @p_class: pointer to class of the target device (may be changed)
1743 * @flags: ATA_READID_* flags
1744 * @id: buffer to read IDENTIFY data into
1745 *
1746 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1747 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1748 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1749 * for pre-ATA4 drives.
1750 *
1751 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1752 * now we abort if we hit that case.
1753 *
1754 * LOCKING:
1755 * Kernel thread context (may sleep)
1756 *
1757 * RETURNS:
1758 * 0 on success, -errno otherwise.
1759 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1760 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1761 unsigned int flags, u16 *id)
1762 {
1763 struct ata_port *ap = dev->link->ap;
1764 unsigned int class = *p_class;
1765 struct ata_taskfile tf;
1766 unsigned int err_mask = 0;
1767 const char *reason;
1768 bool is_semb = class == ATA_DEV_SEMB;
1769 int may_fallback = 1, tried_spinup = 0;
1770 int rc;
1771
1772 retry:
1773 ata_tf_init(dev, &tf);
1774
1775 switch (class) {
1776 case ATA_DEV_SEMB:
1777 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1778 fallthrough;
1779 case ATA_DEV_ATA:
1780 case ATA_DEV_ZAC:
1781 tf.command = ATA_CMD_ID_ATA;
1782 break;
1783 case ATA_DEV_ATAPI:
1784 tf.command = ATA_CMD_ID_ATAPI;
1785 break;
1786 default:
1787 rc = -ENODEV;
1788 reason = "unsupported class";
1789 goto err_out;
1790 }
1791
1792 tf.protocol = ATA_PROT_PIO;
1793
1794 /* Some devices choke if TF registers contain garbage. Make
1795 * sure those are properly initialized.
1796 */
1797 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1798
1799 /* Device presence detection is unreliable on some
1800 * controllers. Always poll IDENTIFY if available.
1801 */
1802 tf.flags |= ATA_TFLAG_POLLING;
1803
1804 if (ap->ops->read_id)
1805 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1806 else
1807 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1808
1809 if (err_mask) {
1810 if (err_mask & AC_ERR_NODEV_HINT) {
1811 ata_dev_dbg(dev, "NODEV after polling detection\n");
1812 return -ENOENT;
1813 }
1814
1815 if (is_semb) {
1816 ata_dev_info(dev,
1817 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1818 /* SEMB is not supported yet */
1819 *p_class = ATA_DEV_SEMB_UNSUP;
1820 return 0;
1821 }
1822
1823 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1824 /* Device or controller might have reported
1825 * the wrong device class. Give a shot at the
1826 * other IDENTIFY if the current one is
1827 * aborted by the device.
1828 */
1829 if (may_fallback) {
1830 may_fallback = 0;
1831
1832 if (class == ATA_DEV_ATA)
1833 class = ATA_DEV_ATAPI;
1834 else
1835 class = ATA_DEV_ATA;
1836 goto retry;
1837 }
1838
1839 /* Control reaches here iff the device aborted
1840 * both flavors of IDENTIFYs which happens
1841 * sometimes with phantom devices.
1842 */
1843 ata_dev_dbg(dev,
1844 "both IDENTIFYs aborted, assuming NODEV\n");
1845 return -ENOENT;
1846 }
1847
1848 rc = -EIO;
1849 reason = "I/O error";
1850 goto err_out;
1851 }
1852
1853 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1854 ata_dev_info(dev, "dumping IDENTIFY data, "
1855 "class=%d may_fallback=%d tried_spinup=%d\n",
1856 class, may_fallback, tried_spinup);
1857 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1858 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1859 }
1860
1861 /* Falling back doesn't make sense if ID data was read
1862 * successfully at least once.
1863 */
1864 may_fallback = 0;
1865
1866 swap_buf_le16(id, ATA_ID_WORDS);
1867
1868 /* sanity check */
1869 rc = -EINVAL;
1870 reason = "device reports invalid type";
1871
1872 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1873 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1874 goto err_out;
1875 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1876 ata_id_is_ata(id)) {
1877 ata_dev_dbg(dev,
1878 "host indicates ignore ATA devices, ignored\n");
1879 return -ENOENT;
1880 }
1881 } else {
1882 if (ata_id_is_ata(id))
1883 goto err_out;
1884 }
1885
1886 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1887 tried_spinup = 1;
1888 /*
1889 * Drive powered-up in standby mode, and requires a specific
1890 * SET_FEATURES spin-up subcommand before it will accept
1891 * anything other than the original IDENTIFY command.
1892 */
1893 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1894 if (err_mask && id[2] != 0x738c) {
1895 rc = -EIO;
1896 reason = "SPINUP failed";
1897 goto err_out;
1898 }
1899 /*
1900 * If the drive initially returned incomplete IDENTIFY info,
1901 * we now must reissue the IDENTIFY command.
1902 */
1903 if (id[2] == 0x37c8)
1904 goto retry;
1905 }
1906
1907 if ((flags & ATA_READID_POSTRESET) &&
1908 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1909 /*
1910 * The exact sequence expected by certain pre-ATA4 drives is:
1911 * SRST RESET
1912 * IDENTIFY (optional in early ATA)
1913 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1914 * anything else..
1915 * Some drives were very specific about that exact sequence.
1916 *
1917 * Note that ATA4 says lba is mandatory so the second check
1918 * should never trigger.
1919 */
1920 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1921 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1922 if (err_mask) {
1923 rc = -EIO;
1924 reason = "INIT_DEV_PARAMS failed";
1925 goto err_out;
1926 }
1927
1928 /* current CHS translation info (id[53-58]) might be
1929 * changed. reread the identify device info.
1930 */
1931 flags &= ~ATA_READID_POSTRESET;
1932 goto retry;
1933 }
1934 }
1935
1936 *p_class = class;
1937
1938 return 0;
1939
1940 err_out:
1941 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1942 reason, err_mask);
1943 return rc;
1944 }
1945
1946 /**
1947 * ata_dev_power_set_standby - Set a device power mode to standby
1948 * @dev: target device
1949 *
1950 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1951 * For an HDD device, this spins down the disks.
1952 *
1953 * LOCKING:
1954 * Kernel thread context (may sleep).
1955 */
ata_dev_power_set_standby(struct ata_device * dev)1956 void ata_dev_power_set_standby(struct ata_device *dev)
1957 {
1958 unsigned long ap_flags = dev->link->ap->flags;
1959 struct ata_taskfile tf;
1960 unsigned int err_mask;
1961
1962 /* Issue STANDBY IMMEDIATE command only if supported by the device */
1963 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1964 return;
1965
1966 /*
1967 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1968 * causing some drives to spin up and down again. For these, do nothing
1969 * if we are being called on shutdown.
1970 */
1971 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
1972 system_state == SYSTEM_POWER_OFF)
1973 return;
1974
1975 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
1976 system_entering_hibernation())
1977 return;
1978
1979 ata_tf_init(dev, &tf);
1980 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1981 tf.protocol = ATA_PROT_NODATA;
1982 tf.command = ATA_CMD_STANDBYNOW1;
1983
1984 ata_dev_notice(dev, "Entering standby power mode\n");
1985
1986 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1987 if (err_mask)
1988 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
1989 err_mask);
1990 }
1991
1992 /**
1993 * ata_dev_power_set_active - Set a device power mode to active
1994 * @dev: target device
1995 *
1996 * Issue a VERIFY command to enter to ensure that the device is in the
1997 * active power mode. For a spun-down HDD (standby or idle power mode),
1998 * the VERIFY command will complete after the disk spins up.
1999 *
2000 * LOCKING:
2001 * Kernel thread context (may sleep).
2002 */
ata_dev_power_set_active(struct ata_device * dev)2003 void ata_dev_power_set_active(struct ata_device *dev)
2004 {
2005 struct ata_taskfile tf;
2006 unsigned int err_mask;
2007
2008 /* If the device is already sleeping, do nothing. */
2009 if (dev->flags & ATA_DFLAG_SLEEPING)
2010 return;
2011
2012 /*
2013 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2014 * if supported by the device.
2015 */
2016 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
2017 return;
2018
2019 ata_tf_init(dev, &tf);
2020 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2021 tf.protocol = ATA_PROT_NODATA;
2022 tf.command = ATA_CMD_VERIFY;
2023 tf.nsect = 1;
2024 if (dev->flags & ATA_DFLAG_LBA) {
2025 tf.flags |= ATA_TFLAG_LBA;
2026 tf.device |= ATA_LBA;
2027 } else {
2028 /* CHS */
2029 tf.lbal = 0x1; /* sect */
2030 }
2031
2032 ata_dev_notice(dev, "Entering active power mode\n");
2033
2034 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2035 if (err_mask)
2036 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2037 err_mask);
2038 }
2039
2040 /**
2041 * ata_read_log_page - read a specific log page
2042 * @dev: target device
2043 * @log: log to read
2044 * @page: page to read
2045 * @buf: buffer to store read page
2046 * @sectors: number of sectors to read
2047 *
2048 * Read log page using READ_LOG_EXT command.
2049 *
2050 * LOCKING:
2051 * Kernel thread context (may sleep).
2052 *
2053 * RETURNS:
2054 * 0 on success, AC_ERR_* mask otherwise.
2055 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2056 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2057 u8 page, void *buf, unsigned int sectors)
2058 {
2059 unsigned long ap_flags = dev->link->ap->flags;
2060 struct ata_taskfile tf;
2061 unsigned int err_mask;
2062 bool dma = false;
2063
2064 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2065
2066 /*
2067 * Return error without actually issuing the command on controllers
2068 * which e.g. lockup on a read log page.
2069 */
2070 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2071 return AC_ERR_DEV;
2072
2073 retry:
2074 ata_tf_init(dev, &tf);
2075 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2076 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2077 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2078 tf.protocol = ATA_PROT_DMA;
2079 dma = true;
2080 } else {
2081 tf.command = ATA_CMD_READ_LOG_EXT;
2082 tf.protocol = ATA_PROT_PIO;
2083 dma = false;
2084 }
2085 tf.lbal = log;
2086 tf.lbam = page;
2087 tf.nsect = sectors;
2088 tf.hob_nsect = sectors >> 8;
2089 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2090
2091 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2092 buf, sectors * ATA_SECT_SIZE, 0);
2093
2094 if (err_mask) {
2095 if (dma) {
2096 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2097 goto retry;
2098 }
2099 ata_dev_err(dev,
2100 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2101 (unsigned int)log, (unsigned int)page, err_mask);
2102 }
2103
2104 return err_mask;
2105 }
2106
ata_log_supported(struct ata_device * dev,u8 log)2107 static int ata_log_supported(struct ata_device *dev, u8 log)
2108 {
2109 struct ata_port *ap = dev->link->ap;
2110
2111 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2112 return 0;
2113
2114 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2115 return 0;
2116 return get_unaligned_le16(&ap->sector_buf[log * 2]);
2117 }
2118
ata_identify_page_supported(struct ata_device * dev,u8 page)2119 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2120 {
2121 struct ata_port *ap = dev->link->ap;
2122 unsigned int err, i;
2123
2124 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2125 return false;
2126
2127 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2128 /*
2129 * IDENTIFY DEVICE data log is defined as mandatory starting
2130 * with ACS-3 (ATA version 10). Warn about the missing log
2131 * for drives which implement this ATA level or above.
2132 */
2133 if (ata_id_major_version(dev->id) >= 10)
2134 ata_dev_warn(dev,
2135 "ATA Identify Device Log not supported\n");
2136 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2137 return false;
2138 }
2139
2140 /*
2141 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2142 * supported.
2143 */
2144 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2145 1);
2146 if (err)
2147 return false;
2148
2149 for (i = 0; i < ap->sector_buf[8]; i++) {
2150 if (ap->sector_buf[9 + i] == page)
2151 return true;
2152 }
2153
2154 return false;
2155 }
2156
ata_do_link_spd_horkage(struct ata_device * dev)2157 static int ata_do_link_spd_horkage(struct ata_device *dev)
2158 {
2159 struct ata_link *plink = ata_dev_phys_link(dev);
2160 u32 target, target_limit;
2161
2162 if (!sata_scr_valid(plink))
2163 return 0;
2164
2165 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2166 target = 1;
2167 else
2168 return 0;
2169
2170 target_limit = (1 << target) - 1;
2171
2172 /* if already on stricter limit, no need to push further */
2173 if (plink->sata_spd_limit <= target_limit)
2174 return 0;
2175
2176 plink->sata_spd_limit = target_limit;
2177
2178 /* Request another EH round by returning -EAGAIN if link is
2179 * going faster than the target speed. Forward progress is
2180 * guaranteed by setting sata_spd_limit to target_limit above.
2181 */
2182 if (plink->sata_spd > target) {
2183 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2184 sata_spd_string(target));
2185 return -EAGAIN;
2186 }
2187 return 0;
2188 }
2189
ata_dev_knobble(struct ata_device * dev)2190 static inline u8 ata_dev_knobble(struct ata_device *dev)
2191 {
2192 struct ata_port *ap = dev->link->ap;
2193
2194 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2195 return 0;
2196
2197 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2198 }
2199
ata_dev_config_ncq_send_recv(struct ata_device * dev)2200 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2201 {
2202 struct ata_port *ap = dev->link->ap;
2203 unsigned int err_mask;
2204
2205 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2206 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2207 return;
2208 }
2209 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2210 0, ap->sector_buf, 1);
2211 if (!err_mask) {
2212 u8 *cmds = dev->ncq_send_recv_cmds;
2213
2214 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2215 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2216
2217 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2218 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2219 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2220 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2221 }
2222 }
2223 }
2224
ata_dev_config_ncq_non_data(struct ata_device * dev)2225 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2226 {
2227 struct ata_port *ap = dev->link->ap;
2228 unsigned int err_mask;
2229
2230 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2231 ata_dev_warn(dev,
2232 "NCQ Send/Recv Log not supported\n");
2233 return;
2234 }
2235 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2236 0, ap->sector_buf, 1);
2237 if (!err_mask) {
2238 u8 *cmds = dev->ncq_non_data_cmds;
2239
2240 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2241 }
2242 }
2243
ata_dev_config_ncq_prio(struct ata_device * dev)2244 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2245 {
2246 struct ata_port *ap = dev->link->ap;
2247 unsigned int err_mask;
2248
2249 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2250 return;
2251
2252 err_mask = ata_read_log_page(dev,
2253 ATA_LOG_IDENTIFY_DEVICE,
2254 ATA_LOG_SATA_SETTINGS,
2255 ap->sector_buf,
2256 1);
2257 if (err_mask)
2258 goto not_supported;
2259
2260 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2261 goto not_supported;
2262
2263 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2264
2265 return;
2266
2267 not_supported:
2268 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2269 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2270 }
2271
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2272 static bool ata_dev_check_adapter(struct ata_device *dev,
2273 unsigned short vendor_id)
2274 {
2275 struct pci_dev *pcidev = NULL;
2276 struct device *parent_dev = NULL;
2277
2278 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2279 parent_dev = parent_dev->parent) {
2280 if (dev_is_pci(parent_dev)) {
2281 pcidev = to_pci_dev(parent_dev);
2282 if (pcidev->vendor == vendor_id)
2283 return true;
2284 break;
2285 }
2286 }
2287
2288 return false;
2289 }
2290
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2291 static int ata_dev_config_ncq(struct ata_device *dev,
2292 char *desc, size_t desc_sz)
2293 {
2294 struct ata_port *ap = dev->link->ap;
2295 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2296 unsigned int err_mask;
2297 char *aa_desc = "";
2298
2299 if (!ata_id_has_ncq(dev->id)) {
2300 desc[0] = '\0';
2301 return 0;
2302 }
2303 if (!IS_ENABLED(CONFIG_SATA_HOST))
2304 return 0;
2305 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2306 snprintf(desc, desc_sz, "NCQ (not used)");
2307 return 0;
2308 }
2309
2310 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2311 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2312 snprintf(desc, desc_sz, "NCQ (not used)");
2313 return 0;
2314 }
2315
2316 if (ap->flags & ATA_FLAG_NCQ) {
2317 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2318 dev->flags |= ATA_DFLAG_NCQ;
2319 }
2320
2321 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2322 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2323 ata_id_has_fpdma_aa(dev->id)) {
2324 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2325 SATA_FPDMA_AA);
2326 if (err_mask) {
2327 ata_dev_err(dev,
2328 "failed to enable AA (error_mask=0x%x)\n",
2329 err_mask);
2330 if (err_mask != AC_ERR_DEV) {
2331 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2332 return -EIO;
2333 }
2334 } else
2335 aa_desc = ", AA";
2336 }
2337
2338 if (hdepth >= ddepth)
2339 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2340 else
2341 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2342 ddepth, aa_desc);
2343
2344 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2345 if (ata_id_has_ncq_send_and_recv(dev->id))
2346 ata_dev_config_ncq_send_recv(dev);
2347 if (ata_id_has_ncq_non_data(dev->id))
2348 ata_dev_config_ncq_non_data(dev);
2349 if (ata_id_has_ncq_prio(dev->id))
2350 ata_dev_config_ncq_prio(dev);
2351 }
2352
2353 return 0;
2354 }
2355
ata_dev_config_sense_reporting(struct ata_device * dev)2356 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2357 {
2358 unsigned int err_mask;
2359
2360 if (!ata_id_has_sense_reporting(dev->id))
2361 return;
2362
2363 if (ata_id_sense_reporting_enabled(dev->id))
2364 return;
2365
2366 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2367 if (err_mask) {
2368 ata_dev_dbg(dev,
2369 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2370 err_mask);
2371 }
2372 }
2373
ata_dev_config_zac(struct ata_device * dev)2374 static void ata_dev_config_zac(struct ata_device *dev)
2375 {
2376 struct ata_port *ap = dev->link->ap;
2377 unsigned int err_mask;
2378 u8 *identify_buf = ap->sector_buf;
2379
2380 dev->zac_zones_optimal_open = U32_MAX;
2381 dev->zac_zones_optimal_nonseq = U32_MAX;
2382 dev->zac_zones_max_open = U32_MAX;
2383
2384 /*
2385 * Always set the 'ZAC' flag for Host-managed devices.
2386 */
2387 if (dev->class == ATA_DEV_ZAC)
2388 dev->flags |= ATA_DFLAG_ZAC;
2389 else if (ata_id_zoned_cap(dev->id) == 0x01)
2390 /*
2391 * Check for host-aware devices.
2392 */
2393 dev->flags |= ATA_DFLAG_ZAC;
2394
2395 if (!(dev->flags & ATA_DFLAG_ZAC))
2396 return;
2397
2398 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2399 ata_dev_warn(dev,
2400 "ATA Zoned Information Log not supported\n");
2401 return;
2402 }
2403
2404 /*
2405 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2406 */
2407 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2408 ATA_LOG_ZONED_INFORMATION,
2409 identify_buf, 1);
2410 if (!err_mask) {
2411 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2412
2413 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2414 if ((zoned_cap >> 63))
2415 dev->zac_zoned_cap = (zoned_cap & 1);
2416 opt_open = get_unaligned_le64(&identify_buf[24]);
2417 if ((opt_open >> 63))
2418 dev->zac_zones_optimal_open = (u32)opt_open;
2419 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2420 if ((opt_nonseq >> 63))
2421 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2422 max_open = get_unaligned_le64(&identify_buf[40]);
2423 if ((max_open >> 63))
2424 dev->zac_zones_max_open = (u32)max_open;
2425 }
2426 }
2427
ata_dev_config_trusted(struct ata_device * dev)2428 static void ata_dev_config_trusted(struct ata_device *dev)
2429 {
2430 struct ata_port *ap = dev->link->ap;
2431 u64 trusted_cap;
2432 unsigned int err;
2433
2434 if (!ata_id_has_trusted(dev->id))
2435 return;
2436
2437 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2438 ata_dev_warn(dev,
2439 "Security Log not supported\n");
2440 return;
2441 }
2442
2443 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2444 ap->sector_buf, 1);
2445 if (err)
2446 return;
2447
2448 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2449 if (!(trusted_cap & (1ULL << 63))) {
2450 ata_dev_dbg(dev,
2451 "Trusted Computing capability qword not valid!\n");
2452 return;
2453 }
2454
2455 if (trusted_cap & (1 << 0))
2456 dev->flags |= ATA_DFLAG_TRUSTED;
2457 }
2458
ata_dev_config_lba(struct ata_device * dev)2459 static int ata_dev_config_lba(struct ata_device *dev)
2460 {
2461 const u16 *id = dev->id;
2462 const char *lba_desc;
2463 char ncq_desc[32];
2464 int ret;
2465
2466 dev->flags |= ATA_DFLAG_LBA;
2467
2468 if (ata_id_has_lba48(id)) {
2469 lba_desc = "LBA48";
2470 dev->flags |= ATA_DFLAG_LBA48;
2471 if (dev->n_sectors >= (1UL << 28) &&
2472 ata_id_has_flush_ext(id))
2473 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2474 } else {
2475 lba_desc = "LBA";
2476 }
2477
2478 /* config NCQ */
2479 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2480
2481 /* print device info to dmesg */
2482 if (ata_dev_print_info(dev))
2483 ata_dev_info(dev,
2484 "%llu sectors, multi %u: %s %s\n",
2485 (unsigned long long)dev->n_sectors,
2486 dev->multi_count, lba_desc, ncq_desc);
2487
2488 return ret;
2489 }
2490
ata_dev_config_chs(struct ata_device * dev)2491 static void ata_dev_config_chs(struct ata_device *dev)
2492 {
2493 const u16 *id = dev->id;
2494
2495 if (ata_id_current_chs_valid(id)) {
2496 /* Current CHS translation is valid. */
2497 dev->cylinders = id[54];
2498 dev->heads = id[55];
2499 dev->sectors = id[56];
2500 } else {
2501 /* Default translation */
2502 dev->cylinders = id[1];
2503 dev->heads = id[3];
2504 dev->sectors = id[6];
2505 }
2506
2507 /* print device info to dmesg */
2508 if (ata_dev_print_info(dev))
2509 ata_dev_info(dev,
2510 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2511 (unsigned long long)dev->n_sectors,
2512 dev->multi_count, dev->cylinders,
2513 dev->heads, dev->sectors);
2514 }
2515
ata_dev_config_devslp(struct ata_device * dev)2516 static void ata_dev_config_devslp(struct ata_device *dev)
2517 {
2518 u8 *sata_setting = dev->link->ap->sector_buf;
2519 unsigned int err_mask;
2520 int i, j;
2521
2522 /*
2523 * Check device sleep capability. Get DevSlp timing variables
2524 * from SATA Settings page of Identify Device Data Log.
2525 */
2526 if (!ata_id_has_devslp(dev->id) ||
2527 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2528 return;
2529
2530 err_mask = ata_read_log_page(dev,
2531 ATA_LOG_IDENTIFY_DEVICE,
2532 ATA_LOG_SATA_SETTINGS,
2533 sata_setting, 1);
2534 if (err_mask)
2535 return;
2536
2537 dev->flags |= ATA_DFLAG_DEVSLP;
2538 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2539 j = ATA_LOG_DEVSLP_OFFSET + i;
2540 dev->devslp_timing[i] = sata_setting[j];
2541 }
2542 }
2543
ata_dev_config_cpr(struct ata_device * dev)2544 static void ata_dev_config_cpr(struct ata_device *dev)
2545 {
2546 unsigned int err_mask;
2547 size_t buf_len;
2548 int i, nr_cpr = 0;
2549 struct ata_cpr_log *cpr_log = NULL;
2550 u8 *desc, *buf = NULL;
2551
2552 if (ata_id_major_version(dev->id) < 11)
2553 goto out;
2554
2555 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2556 if (buf_len == 0)
2557 goto out;
2558
2559 /*
2560 * Read the concurrent positioning ranges log (0x47). We can have at
2561 * most 255 32B range descriptors plus a 64B header. This log varies in
2562 * size, so use the size reported in the GPL directory. Reading beyond
2563 * the supported length will result in an error.
2564 */
2565 buf_len <<= 9;
2566 buf = kzalloc(buf_len, GFP_KERNEL);
2567 if (!buf)
2568 goto out;
2569
2570 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2571 0, buf, buf_len >> 9);
2572 if (err_mask)
2573 goto out;
2574
2575 nr_cpr = buf[0];
2576 if (!nr_cpr)
2577 goto out;
2578
2579 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2580 if (!cpr_log)
2581 goto out;
2582
2583 cpr_log->nr_cpr = nr_cpr;
2584 desc = &buf[64];
2585 for (i = 0; i < nr_cpr; i++, desc += 32) {
2586 cpr_log->cpr[i].num = desc[0];
2587 cpr_log->cpr[i].num_storage_elements = desc[1];
2588 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2589 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2590 }
2591
2592 out:
2593 swap(dev->cpr_log, cpr_log);
2594 kfree(cpr_log);
2595 kfree(buf);
2596 }
2597
ata_dev_print_features(struct ata_device * dev)2598 static void ata_dev_print_features(struct ata_device *dev)
2599 {
2600 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2601 return;
2602
2603 ata_dev_info(dev,
2604 "Features:%s%s%s%s%s%s\n",
2605 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2606 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2607 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2608 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2609 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2610 dev->cpr_log ? " CPR" : "");
2611 }
2612
2613 /**
2614 * ata_dev_configure - Configure the specified ATA/ATAPI device
2615 * @dev: Target device to configure
2616 *
2617 * Configure @dev according to @dev->id. Generic and low-level
2618 * driver specific fixups are also applied.
2619 *
2620 * LOCKING:
2621 * Kernel thread context (may sleep)
2622 *
2623 * RETURNS:
2624 * 0 on success, -errno otherwise
2625 */
ata_dev_configure(struct ata_device * dev)2626 int ata_dev_configure(struct ata_device *dev)
2627 {
2628 struct ata_port *ap = dev->link->ap;
2629 bool print_info = ata_dev_print_info(dev);
2630 const u16 *id = dev->id;
2631 unsigned int xfer_mask;
2632 unsigned int err_mask;
2633 char revbuf[7]; /* XYZ-99\0 */
2634 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2635 char modelbuf[ATA_ID_PROD_LEN+1];
2636 int rc;
2637
2638 if (!ata_dev_enabled(dev)) {
2639 ata_dev_dbg(dev, "no device\n");
2640 return 0;
2641 }
2642
2643 /* set horkage */
2644 dev->horkage |= ata_dev_blacklisted(dev);
2645 ata_force_horkage(dev);
2646
2647 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2648 ata_dev_info(dev, "unsupported device, disabling\n");
2649 ata_dev_disable(dev);
2650 return 0;
2651 }
2652
2653 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2654 dev->class == ATA_DEV_ATAPI) {
2655 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2656 atapi_enabled ? "not supported with this driver"
2657 : "disabled");
2658 ata_dev_disable(dev);
2659 return 0;
2660 }
2661
2662 rc = ata_do_link_spd_horkage(dev);
2663 if (rc)
2664 return rc;
2665
2666 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2667 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2668 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2669 dev->horkage |= ATA_HORKAGE_NOLPM;
2670
2671 if (ap->flags & ATA_FLAG_NO_LPM)
2672 dev->horkage |= ATA_HORKAGE_NOLPM;
2673
2674 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2675 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2676 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2677 }
2678
2679 /* let ACPI work its magic */
2680 rc = ata_acpi_on_devcfg(dev);
2681 if (rc)
2682 return rc;
2683
2684 /* massage HPA, do it early as it might change IDENTIFY data */
2685 rc = ata_hpa_resize(dev);
2686 if (rc)
2687 return rc;
2688
2689 /* print device capabilities */
2690 ata_dev_dbg(dev,
2691 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2692 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2693 __func__,
2694 id[49], id[82], id[83], id[84],
2695 id[85], id[86], id[87], id[88]);
2696
2697 /* initialize to-be-configured parameters */
2698 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2699 dev->max_sectors = 0;
2700 dev->cdb_len = 0;
2701 dev->n_sectors = 0;
2702 dev->cylinders = 0;
2703 dev->heads = 0;
2704 dev->sectors = 0;
2705 dev->multi_count = 0;
2706
2707 /*
2708 * common ATA, ATAPI feature tests
2709 */
2710
2711 /* find max transfer mode; for printk only */
2712 xfer_mask = ata_id_xfermask(id);
2713
2714 ata_dump_id(dev, id);
2715
2716 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2717 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2718 sizeof(fwrevbuf));
2719
2720 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2721 sizeof(modelbuf));
2722
2723 /* ATA-specific feature tests */
2724 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2725 if (ata_id_is_cfa(id)) {
2726 /* CPRM may make this media unusable */
2727 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2728 ata_dev_warn(dev,
2729 "supports DRM functions and may not be fully accessible\n");
2730 snprintf(revbuf, 7, "CFA");
2731 } else {
2732 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2733 /* Warn the user if the device has TPM extensions */
2734 if (ata_id_has_tpm(id))
2735 ata_dev_warn(dev,
2736 "supports DRM functions and may not be fully accessible\n");
2737 }
2738
2739 dev->n_sectors = ata_id_n_sectors(id);
2740
2741 /* get current R/W Multiple count setting */
2742 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2743 unsigned int max = dev->id[47] & 0xff;
2744 unsigned int cnt = dev->id[59] & 0xff;
2745 /* only recognize/allow powers of two here */
2746 if (is_power_of_2(max) && is_power_of_2(cnt))
2747 if (cnt <= max)
2748 dev->multi_count = cnt;
2749 }
2750
2751 /* print device info to dmesg */
2752 if (print_info)
2753 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2754 revbuf, modelbuf, fwrevbuf,
2755 ata_mode_string(xfer_mask));
2756
2757 if (ata_id_has_lba(id)) {
2758 rc = ata_dev_config_lba(dev);
2759 if (rc)
2760 return rc;
2761 } else {
2762 ata_dev_config_chs(dev);
2763 }
2764
2765 ata_dev_config_devslp(dev);
2766 ata_dev_config_sense_reporting(dev);
2767 ata_dev_config_zac(dev);
2768 ata_dev_config_trusted(dev);
2769 ata_dev_config_cpr(dev);
2770 dev->cdb_len = 32;
2771
2772 if (print_info)
2773 ata_dev_print_features(dev);
2774 }
2775
2776 /* ATAPI-specific feature tests */
2777 else if (dev->class == ATA_DEV_ATAPI) {
2778 const char *cdb_intr_string = "";
2779 const char *atapi_an_string = "";
2780 const char *dma_dir_string = "";
2781 u32 sntf;
2782
2783 rc = atapi_cdb_len(id);
2784 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2785 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2786 rc = -EINVAL;
2787 goto err_out_nosup;
2788 }
2789 dev->cdb_len = (unsigned int) rc;
2790
2791 /* Enable ATAPI AN if both the host and device have
2792 * the support. If PMP is attached, SNTF is required
2793 * to enable ATAPI AN to discern between PHY status
2794 * changed notifications and ATAPI ANs.
2795 */
2796 if (atapi_an &&
2797 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2798 (!sata_pmp_attached(ap) ||
2799 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2800 /* issue SET feature command to turn this on */
2801 err_mask = ata_dev_set_feature(dev,
2802 SETFEATURES_SATA_ENABLE, SATA_AN);
2803 if (err_mask)
2804 ata_dev_err(dev,
2805 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2806 err_mask);
2807 else {
2808 dev->flags |= ATA_DFLAG_AN;
2809 atapi_an_string = ", ATAPI AN";
2810 }
2811 }
2812
2813 if (ata_id_cdb_intr(dev->id)) {
2814 dev->flags |= ATA_DFLAG_CDB_INTR;
2815 cdb_intr_string = ", CDB intr";
2816 }
2817
2818 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2819 dev->flags |= ATA_DFLAG_DMADIR;
2820 dma_dir_string = ", DMADIR";
2821 }
2822
2823 if (ata_id_has_da(dev->id)) {
2824 dev->flags |= ATA_DFLAG_DA;
2825 zpodd_init(dev);
2826 }
2827
2828 /* print device info to dmesg */
2829 if (print_info)
2830 ata_dev_info(dev,
2831 "ATAPI: %s, %s, max %s%s%s%s\n",
2832 modelbuf, fwrevbuf,
2833 ata_mode_string(xfer_mask),
2834 cdb_intr_string, atapi_an_string,
2835 dma_dir_string);
2836 }
2837
2838 /* determine max_sectors */
2839 dev->max_sectors = ATA_MAX_SECTORS;
2840 if (dev->flags & ATA_DFLAG_LBA48)
2841 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2842
2843 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2844 200 sectors */
2845 if (ata_dev_knobble(dev)) {
2846 if (print_info)
2847 ata_dev_info(dev, "applying bridge limits\n");
2848 dev->udma_mask &= ATA_UDMA5;
2849 dev->max_sectors = ATA_MAX_SECTORS;
2850 }
2851
2852 if ((dev->class == ATA_DEV_ATAPI) &&
2853 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2854 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2855 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2856 }
2857
2858 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2859 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2860 dev->max_sectors);
2861
2862 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2863 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2864 dev->max_sectors);
2865
2866 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2867 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2868
2869 if (ap->ops->dev_config)
2870 ap->ops->dev_config(dev);
2871
2872 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2873 /* Let the user know. We don't want to disallow opens for
2874 rescue purposes, or in case the vendor is just a blithering
2875 idiot. Do this after the dev_config call as some controllers
2876 with buggy firmware may want to avoid reporting false device
2877 bugs */
2878
2879 if (print_info) {
2880 ata_dev_warn(dev,
2881 "Drive reports diagnostics failure. This may indicate a drive\n");
2882 ata_dev_warn(dev,
2883 "fault or invalid emulation. Contact drive vendor for information.\n");
2884 }
2885 }
2886
2887 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2888 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2889 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2890 }
2891
2892 return 0;
2893
2894 err_out_nosup:
2895 return rc;
2896 }
2897
2898 /**
2899 * ata_cable_40wire - return 40 wire cable type
2900 * @ap: port
2901 *
2902 * Helper method for drivers which want to hardwire 40 wire cable
2903 * detection.
2904 */
2905
ata_cable_40wire(struct ata_port * ap)2906 int ata_cable_40wire(struct ata_port *ap)
2907 {
2908 return ATA_CBL_PATA40;
2909 }
2910 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2911
2912 /**
2913 * ata_cable_80wire - return 80 wire cable type
2914 * @ap: port
2915 *
2916 * Helper method for drivers which want to hardwire 80 wire cable
2917 * detection.
2918 */
2919
ata_cable_80wire(struct ata_port * ap)2920 int ata_cable_80wire(struct ata_port *ap)
2921 {
2922 return ATA_CBL_PATA80;
2923 }
2924 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2925
2926 /**
2927 * ata_cable_unknown - return unknown PATA cable.
2928 * @ap: port
2929 *
2930 * Helper method for drivers which have no PATA cable detection.
2931 */
2932
ata_cable_unknown(struct ata_port * ap)2933 int ata_cable_unknown(struct ata_port *ap)
2934 {
2935 return ATA_CBL_PATA_UNK;
2936 }
2937 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2938
2939 /**
2940 * ata_cable_ignore - return ignored PATA cable.
2941 * @ap: port
2942 *
2943 * Helper method for drivers which don't use cable type to limit
2944 * transfer mode.
2945 */
ata_cable_ignore(struct ata_port * ap)2946 int ata_cable_ignore(struct ata_port *ap)
2947 {
2948 return ATA_CBL_PATA_IGN;
2949 }
2950 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2951
2952 /**
2953 * ata_cable_sata - return SATA cable type
2954 * @ap: port
2955 *
2956 * Helper method for drivers which have SATA cables
2957 */
2958
ata_cable_sata(struct ata_port * ap)2959 int ata_cable_sata(struct ata_port *ap)
2960 {
2961 return ATA_CBL_SATA;
2962 }
2963 EXPORT_SYMBOL_GPL(ata_cable_sata);
2964
2965 /**
2966 * ata_bus_probe - Reset and probe ATA bus
2967 * @ap: Bus to probe
2968 *
2969 * Master ATA bus probing function. Initiates a hardware-dependent
2970 * bus reset, then attempts to identify any devices found on
2971 * the bus.
2972 *
2973 * LOCKING:
2974 * PCI/etc. bus probe sem.
2975 *
2976 * RETURNS:
2977 * Zero on success, negative errno otherwise.
2978 */
2979
ata_bus_probe(struct ata_port * ap)2980 int ata_bus_probe(struct ata_port *ap)
2981 {
2982 unsigned int classes[ATA_MAX_DEVICES];
2983 int tries[ATA_MAX_DEVICES];
2984 int rc;
2985 struct ata_device *dev;
2986
2987 ata_for_each_dev(dev, &ap->link, ALL)
2988 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2989
2990 retry:
2991 ata_for_each_dev(dev, &ap->link, ALL) {
2992 /* If we issue an SRST then an ATA drive (not ATAPI)
2993 * may change configuration and be in PIO0 timing. If
2994 * we do a hard reset (or are coming from power on)
2995 * this is true for ATA or ATAPI. Until we've set a
2996 * suitable controller mode we should not touch the
2997 * bus as we may be talking too fast.
2998 */
2999 dev->pio_mode = XFER_PIO_0;
3000 dev->dma_mode = 0xff;
3001
3002 /* If the controller has a pio mode setup function
3003 * then use it to set the chipset to rights. Don't
3004 * touch the DMA setup as that will be dealt with when
3005 * configuring devices.
3006 */
3007 if (ap->ops->set_piomode)
3008 ap->ops->set_piomode(ap, dev);
3009 }
3010
3011 /* reset and determine device classes */
3012 ap->ops->phy_reset(ap);
3013
3014 ata_for_each_dev(dev, &ap->link, ALL) {
3015 if (dev->class != ATA_DEV_UNKNOWN)
3016 classes[dev->devno] = dev->class;
3017 else
3018 classes[dev->devno] = ATA_DEV_NONE;
3019
3020 dev->class = ATA_DEV_UNKNOWN;
3021 }
3022
3023 /* read IDENTIFY page and configure devices. We have to do the identify
3024 specific sequence bass-ackwards so that PDIAG- is released by
3025 the slave device */
3026
3027 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
3028 if (tries[dev->devno])
3029 dev->class = classes[dev->devno];
3030
3031 if (!ata_dev_enabled(dev))
3032 continue;
3033
3034 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
3035 dev->id);
3036 if (rc)
3037 goto fail;
3038 }
3039
3040 /* Now ask for the cable type as PDIAG- should have been released */
3041 if (ap->ops->cable_detect)
3042 ap->cbl = ap->ops->cable_detect(ap);
3043
3044 /* We may have SATA bridge glue hiding here irrespective of
3045 * the reported cable types and sensed types. When SATA
3046 * drives indicate we have a bridge, we don't know which end
3047 * of the link the bridge is which is a problem.
3048 */
3049 ata_for_each_dev(dev, &ap->link, ENABLED)
3050 if (ata_id_is_sata(dev->id))
3051 ap->cbl = ATA_CBL_SATA;
3052
3053 /* After the identify sequence we can now set up the devices. We do
3054 this in the normal order so that the user doesn't get confused */
3055
3056 ata_for_each_dev(dev, &ap->link, ENABLED) {
3057 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
3058 rc = ata_dev_configure(dev);
3059 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
3060 if (rc)
3061 goto fail;
3062 }
3063
3064 /* configure transfer mode */
3065 rc = ata_set_mode(&ap->link, &dev);
3066 if (rc)
3067 goto fail;
3068
3069 ata_for_each_dev(dev, &ap->link, ENABLED)
3070 return 0;
3071
3072 return -ENODEV;
3073
3074 fail:
3075 tries[dev->devno]--;
3076
3077 switch (rc) {
3078 case -EINVAL:
3079 /* eeek, something went very wrong, give up */
3080 tries[dev->devno] = 0;
3081 break;
3082
3083 case -ENODEV:
3084 /* give it just one more chance */
3085 tries[dev->devno] = min(tries[dev->devno], 1);
3086 fallthrough;
3087 case -EIO:
3088 if (tries[dev->devno] == 1) {
3089 /* This is the last chance, better to slow
3090 * down than lose it.
3091 */
3092 sata_down_spd_limit(&ap->link, 0);
3093 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3094 }
3095 }
3096
3097 if (!tries[dev->devno])
3098 ata_dev_disable(dev);
3099
3100 goto retry;
3101 }
3102
3103 /**
3104 * sata_print_link_status - Print SATA link status
3105 * @link: SATA link to printk link status about
3106 *
3107 * This function prints link speed and status of a SATA link.
3108 *
3109 * LOCKING:
3110 * None.
3111 */
sata_print_link_status(struct ata_link * link)3112 static void sata_print_link_status(struct ata_link *link)
3113 {
3114 u32 sstatus, scontrol, tmp;
3115
3116 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3117 return;
3118 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3119 return;
3120
3121 if (ata_phys_link_online(link)) {
3122 tmp = (sstatus >> 4) & 0xf;
3123 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3124 sata_spd_string(tmp), sstatus, scontrol);
3125 } else {
3126 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3127 sstatus, scontrol);
3128 }
3129 }
3130
3131 /**
3132 * ata_dev_pair - return other device on cable
3133 * @adev: device
3134 *
3135 * Obtain the other device on the same cable, or if none is
3136 * present NULL is returned
3137 */
3138
ata_dev_pair(struct ata_device * adev)3139 struct ata_device *ata_dev_pair(struct ata_device *adev)
3140 {
3141 struct ata_link *link = adev->link;
3142 struct ata_device *pair = &link->device[1 - adev->devno];
3143 if (!ata_dev_enabled(pair))
3144 return NULL;
3145 return pair;
3146 }
3147 EXPORT_SYMBOL_GPL(ata_dev_pair);
3148
3149 /**
3150 * sata_down_spd_limit - adjust SATA spd limit downward
3151 * @link: Link to adjust SATA spd limit for
3152 * @spd_limit: Additional limit
3153 *
3154 * Adjust SATA spd limit of @link downward. Note that this
3155 * function only adjusts the limit. The change must be applied
3156 * using sata_set_spd().
3157 *
3158 * If @spd_limit is non-zero, the speed is limited to equal to or
3159 * lower than @spd_limit if such speed is supported. If
3160 * @spd_limit is slower than any supported speed, only the lowest
3161 * supported speed is allowed.
3162 *
3163 * LOCKING:
3164 * Inherited from caller.
3165 *
3166 * RETURNS:
3167 * 0 on success, negative errno on failure
3168 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3169 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3170 {
3171 u32 sstatus, spd, mask;
3172 int rc, bit;
3173
3174 if (!sata_scr_valid(link))
3175 return -EOPNOTSUPP;
3176
3177 /* If SCR can be read, use it to determine the current SPD.
3178 * If not, use cached value in link->sata_spd.
3179 */
3180 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3181 if (rc == 0 && ata_sstatus_online(sstatus))
3182 spd = (sstatus >> 4) & 0xf;
3183 else
3184 spd = link->sata_spd;
3185
3186 mask = link->sata_spd_limit;
3187 if (mask <= 1)
3188 return -EINVAL;
3189
3190 /* unconditionally mask off the highest bit */
3191 bit = fls(mask) - 1;
3192 mask &= ~(1 << bit);
3193
3194 /*
3195 * Mask off all speeds higher than or equal to the current one. At
3196 * this point, if current SPD is not available and we previously
3197 * recorded the link speed from SStatus, the driver has already
3198 * masked off the highest bit so mask should already be 1 or 0.
3199 * Otherwise, we should not force 1.5Gbps on a link where we have
3200 * not previously recorded speed from SStatus. Just return in this
3201 * case.
3202 */
3203 if (spd > 1)
3204 mask &= (1 << (spd - 1)) - 1;
3205 else if (link->sata_spd)
3206 return -EINVAL;
3207
3208 /* were we already at the bottom? */
3209 if (!mask)
3210 return -EINVAL;
3211
3212 if (spd_limit) {
3213 if (mask & ((1 << spd_limit) - 1))
3214 mask &= (1 << spd_limit) - 1;
3215 else {
3216 bit = ffs(mask) - 1;
3217 mask = 1 << bit;
3218 }
3219 }
3220
3221 link->sata_spd_limit = mask;
3222
3223 ata_link_warn(link, "limiting SATA link speed to %s\n",
3224 sata_spd_string(fls(mask)));
3225
3226 return 0;
3227 }
3228
3229 #ifdef CONFIG_ATA_ACPI
3230 /**
3231 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3232 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3233 * @cycle: cycle duration in ns
3234 *
3235 * Return matching xfer mode for @cycle. The returned mode is of
3236 * the transfer type specified by @xfer_shift. If @cycle is too
3237 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3238 * than the fastest known mode, the fasted mode is returned.
3239 *
3240 * LOCKING:
3241 * None.
3242 *
3243 * RETURNS:
3244 * Matching xfer_mode, 0xff if no match found.
3245 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3246 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3247 {
3248 u8 base_mode = 0xff, last_mode = 0xff;
3249 const struct ata_xfer_ent *ent;
3250 const struct ata_timing *t;
3251
3252 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3253 if (ent->shift == xfer_shift)
3254 base_mode = ent->base;
3255
3256 for (t = ata_timing_find_mode(base_mode);
3257 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3258 unsigned short this_cycle;
3259
3260 switch (xfer_shift) {
3261 case ATA_SHIFT_PIO:
3262 case ATA_SHIFT_MWDMA:
3263 this_cycle = t->cycle;
3264 break;
3265 case ATA_SHIFT_UDMA:
3266 this_cycle = t->udma;
3267 break;
3268 default:
3269 return 0xff;
3270 }
3271
3272 if (cycle > this_cycle)
3273 break;
3274
3275 last_mode = t->mode;
3276 }
3277
3278 return last_mode;
3279 }
3280 #endif
3281
3282 /**
3283 * ata_down_xfermask_limit - adjust dev xfer masks downward
3284 * @dev: Device to adjust xfer masks
3285 * @sel: ATA_DNXFER_* selector
3286 *
3287 * Adjust xfer masks of @dev downward. Note that this function
3288 * does not apply the change. Invoking ata_set_mode() afterwards
3289 * will apply the limit.
3290 *
3291 * LOCKING:
3292 * Inherited from caller.
3293 *
3294 * RETURNS:
3295 * 0 on success, negative errno on failure
3296 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3297 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3298 {
3299 char buf[32];
3300 unsigned int orig_mask, xfer_mask;
3301 unsigned int pio_mask, mwdma_mask, udma_mask;
3302 int quiet, highbit;
3303
3304 quiet = !!(sel & ATA_DNXFER_QUIET);
3305 sel &= ~ATA_DNXFER_QUIET;
3306
3307 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3308 dev->mwdma_mask,
3309 dev->udma_mask);
3310 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3311
3312 switch (sel) {
3313 case ATA_DNXFER_PIO:
3314 highbit = fls(pio_mask) - 1;
3315 pio_mask &= ~(1 << highbit);
3316 break;
3317
3318 case ATA_DNXFER_DMA:
3319 if (udma_mask) {
3320 highbit = fls(udma_mask) - 1;
3321 udma_mask &= ~(1 << highbit);
3322 if (!udma_mask)
3323 return -ENOENT;
3324 } else if (mwdma_mask) {
3325 highbit = fls(mwdma_mask) - 1;
3326 mwdma_mask &= ~(1 << highbit);
3327 if (!mwdma_mask)
3328 return -ENOENT;
3329 }
3330 break;
3331
3332 case ATA_DNXFER_40C:
3333 udma_mask &= ATA_UDMA_MASK_40C;
3334 break;
3335
3336 case ATA_DNXFER_FORCE_PIO0:
3337 pio_mask &= 1;
3338 fallthrough;
3339 case ATA_DNXFER_FORCE_PIO:
3340 mwdma_mask = 0;
3341 udma_mask = 0;
3342 break;
3343
3344 default:
3345 BUG();
3346 }
3347
3348 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3349
3350 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3351 return -ENOENT;
3352
3353 if (!quiet) {
3354 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3355 snprintf(buf, sizeof(buf), "%s:%s",
3356 ata_mode_string(xfer_mask),
3357 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3358 else
3359 snprintf(buf, sizeof(buf), "%s",
3360 ata_mode_string(xfer_mask));
3361
3362 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3363 }
3364
3365 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3366 &dev->udma_mask);
3367
3368 return 0;
3369 }
3370
ata_dev_set_mode(struct ata_device * dev)3371 static int ata_dev_set_mode(struct ata_device *dev)
3372 {
3373 struct ata_port *ap = dev->link->ap;
3374 struct ata_eh_context *ehc = &dev->link->eh_context;
3375 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3376 const char *dev_err_whine = "";
3377 int ign_dev_err = 0;
3378 unsigned int err_mask = 0;
3379 int rc;
3380
3381 dev->flags &= ~ATA_DFLAG_PIO;
3382 if (dev->xfer_shift == ATA_SHIFT_PIO)
3383 dev->flags |= ATA_DFLAG_PIO;
3384
3385 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3386 dev_err_whine = " (SET_XFERMODE skipped)";
3387 else {
3388 if (nosetxfer)
3389 ata_dev_warn(dev,
3390 "NOSETXFER but PATA detected - can't "
3391 "skip SETXFER, might malfunction\n");
3392 err_mask = ata_dev_set_xfermode(dev);
3393 }
3394
3395 if (err_mask & ~AC_ERR_DEV)
3396 goto fail;
3397
3398 /* revalidate */
3399 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3400 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3401 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3402 if (rc)
3403 return rc;
3404
3405 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3406 /* Old CFA may refuse this command, which is just fine */
3407 if (ata_id_is_cfa(dev->id))
3408 ign_dev_err = 1;
3409 /* Catch several broken garbage emulations plus some pre
3410 ATA devices */
3411 if (ata_id_major_version(dev->id) == 0 &&
3412 dev->pio_mode <= XFER_PIO_2)
3413 ign_dev_err = 1;
3414 /* Some very old devices and some bad newer ones fail
3415 any kind of SET_XFERMODE request but support PIO0-2
3416 timings and no IORDY */
3417 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3418 ign_dev_err = 1;
3419 }
3420 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3421 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3422 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3423 dev->dma_mode == XFER_MW_DMA_0 &&
3424 (dev->id[63] >> 8) & 1)
3425 ign_dev_err = 1;
3426
3427 /* if the device is actually configured correctly, ignore dev err */
3428 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3429 ign_dev_err = 1;
3430
3431 if (err_mask & AC_ERR_DEV) {
3432 if (!ign_dev_err)
3433 goto fail;
3434 else
3435 dev_err_whine = " (device error ignored)";
3436 }
3437
3438 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3439 dev->xfer_shift, (int)dev->xfer_mode);
3440
3441 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3442 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3443 ata_dev_info(dev, "configured for %s%s\n",
3444 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3445 dev_err_whine);
3446
3447 return 0;
3448
3449 fail:
3450 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3451 return -EIO;
3452 }
3453
3454 /**
3455 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3456 * @link: link on which timings will be programmed
3457 * @r_failed_dev: out parameter for failed device
3458 *
3459 * Standard implementation of the function used to tune and set
3460 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3461 * ata_dev_set_mode() fails, pointer to the failing device is
3462 * returned in @r_failed_dev.
3463 *
3464 * LOCKING:
3465 * PCI/etc. bus probe sem.
3466 *
3467 * RETURNS:
3468 * 0 on success, negative errno otherwise
3469 */
3470
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3471 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3472 {
3473 struct ata_port *ap = link->ap;
3474 struct ata_device *dev;
3475 int rc = 0, used_dma = 0, found = 0;
3476
3477 /* step 1: calculate xfer_mask */
3478 ata_for_each_dev(dev, link, ENABLED) {
3479 unsigned int pio_mask, dma_mask;
3480 unsigned int mode_mask;
3481
3482 mode_mask = ATA_DMA_MASK_ATA;
3483 if (dev->class == ATA_DEV_ATAPI)
3484 mode_mask = ATA_DMA_MASK_ATAPI;
3485 else if (ata_id_is_cfa(dev->id))
3486 mode_mask = ATA_DMA_MASK_CFA;
3487
3488 ata_dev_xfermask(dev);
3489 ata_force_xfermask(dev);
3490
3491 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3492
3493 if (libata_dma_mask & mode_mask)
3494 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3495 dev->udma_mask);
3496 else
3497 dma_mask = 0;
3498
3499 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3500 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3501
3502 found = 1;
3503 if (ata_dma_enabled(dev))
3504 used_dma = 1;
3505 }
3506 if (!found)
3507 goto out;
3508
3509 /* step 2: always set host PIO timings */
3510 ata_for_each_dev(dev, link, ENABLED) {
3511 if (dev->pio_mode == 0xff) {
3512 ata_dev_warn(dev, "no PIO support\n");
3513 rc = -EINVAL;
3514 goto out;
3515 }
3516
3517 dev->xfer_mode = dev->pio_mode;
3518 dev->xfer_shift = ATA_SHIFT_PIO;
3519 if (ap->ops->set_piomode)
3520 ap->ops->set_piomode(ap, dev);
3521 }
3522
3523 /* step 3: set host DMA timings */
3524 ata_for_each_dev(dev, link, ENABLED) {
3525 if (!ata_dma_enabled(dev))
3526 continue;
3527
3528 dev->xfer_mode = dev->dma_mode;
3529 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3530 if (ap->ops->set_dmamode)
3531 ap->ops->set_dmamode(ap, dev);
3532 }
3533
3534 /* step 4: update devices' xfer mode */
3535 ata_for_each_dev(dev, link, ENABLED) {
3536 rc = ata_dev_set_mode(dev);
3537 if (rc)
3538 goto out;
3539 }
3540
3541 /* Record simplex status. If we selected DMA then the other
3542 * host channels are not permitted to do so.
3543 */
3544 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3545 ap->host->simplex_claimed = ap;
3546
3547 out:
3548 if (rc)
3549 *r_failed_dev = dev;
3550 return rc;
3551 }
3552 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3553
3554 /**
3555 * ata_wait_ready - wait for link to become ready
3556 * @link: link to be waited on
3557 * @deadline: deadline jiffies for the operation
3558 * @check_ready: callback to check link readiness
3559 *
3560 * Wait for @link to become ready. @check_ready should return
3561 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3562 * link doesn't seem to be occupied, other errno for other error
3563 * conditions.
3564 *
3565 * Transient -ENODEV conditions are allowed for
3566 * ATA_TMOUT_FF_WAIT.
3567 *
3568 * LOCKING:
3569 * EH context.
3570 *
3571 * RETURNS:
3572 * 0 if @link is ready before @deadline; otherwise, -errno.
3573 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3574 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3575 int (*check_ready)(struct ata_link *link))
3576 {
3577 unsigned long start = jiffies;
3578 unsigned long nodev_deadline;
3579 int warned = 0;
3580
3581 /* choose which 0xff timeout to use, read comment in libata.h */
3582 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3583 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3584 else
3585 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3586
3587 /* Slave readiness can't be tested separately from master. On
3588 * M/S emulation configuration, this function should be called
3589 * only on the master and it will handle both master and slave.
3590 */
3591 WARN_ON(link == link->ap->slave_link);
3592
3593 if (time_after(nodev_deadline, deadline))
3594 nodev_deadline = deadline;
3595
3596 while (1) {
3597 unsigned long now = jiffies;
3598 int ready, tmp;
3599
3600 ready = tmp = check_ready(link);
3601 if (ready > 0)
3602 return 0;
3603
3604 /*
3605 * -ENODEV could be transient. Ignore -ENODEV if link
3606 * is online. Also, some SATA devices take a long
3607 * time to clear 0xff after reset. Wait for
3608 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3609 * offline.
3610 *
3611 * Note that some PATA controllers (pata_ali) explode
3612 * if status register is read more than once when
3613 * there's no device attached.
3614 */
3615 if (ready == -ENODEV) {
3616 if (ata_link_online(link))
3617 ready = 0;
3618 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3619 !ata_link_offline(link) &&
3620 time_before(now, nodev_deadline))
3621 ready = 0;
3622 }
3623
3624 if (ready)
3625 return ready;
3626 if (time_after(now, deadline))
3627 return -EBUSY;
3628
3629 if (!warned && time_after(now, start + 5 * HZ) &&
3630 (deadline - now > 3 * HZ)) {
3631 ata_link_warn(link,
3632 "link is slow to respond, please be patient "
3633 "(ready=%d)\n", tmp);
3634 warned = 1;
3635 }
3636
3637 ata_msleep(link->ap, 50);
3638 }
3639 }
3640
3641 /**
3642 * ata_wait_after_reset - wait for link to become ready after reset
3643 * @link: link to be waited on
3644 * @deadline: deadline jiffies for the operation
3645 * @check_ready: callback to check link readiness
3646 *
3647 * Wait for @link to become ready after reset.
3648 *
3649 * LOCKING:
3650 * EH context.
3651 *
3652 * RETURNS:
3653 * 0 if @link is ready before @deadline; otherwise, -errno.
3654 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3655 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3656 int (*check_ready)(struct ata_link *link))
3657 {
3658 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3659
3660 return ata_wait_ready(link, deadline, check_ready);
3661 }
3662 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3663
3664 /**
3665 * ata_std_prereset - prepare for reset
3666 * @link: ATA link to be reset
3667 * @deadline: deadline jiffies for the operation
3668 *
3669 * @link is about to be reset. Initialize it. Failure from
3670 * prereset makes libata abort whole reset sequence and give up
3671 * that port, so prereset should be best-effort. It does its
3672 * best to prepare for reset sequence but if things go wrong, it
3673 * should just whine, not fail.
3674 *
3675 * LOCKING:
3676 * Kernel thread context (may sleep)
3677 *
3678 * RETURNS:
3679 * Always 0.
3680 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3681 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3682 {
3683 struct ata_port *ap = link->ap;
3684 struct ata_eh_context *ehc = &link->eh_context;
3685 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3686 int rc;
3687
3688 /* if we're about to do hardreset, nothing more to do */
3689 if (ehc->i.action & ATA_EH_HARDRESET)
3690 return 0;
3691
3692 /* if SATA, resume link */
3693 if (ap->flags & ATA_FLAG_SATA) {
3694 rc = sata_link_resume(link, timing, deadline);
3695 /* whine about phy resume failure but proceed */
3696 if (rc && rc != -EOPNOTSUPP)
3697 ata_link_warn(link,
3698 "failed to resume link for reset (errno=%d)\n",
3699 rc);
3700 }
3701
3702 /* no point in trying softreset on offline link */
3703 if (ata_phys_link_offline(link))
3704 ehc->i.action &= ~ATA_EH_SOFTRESET;
3705
3706 return 0;
3707 }
3708 EXPORT_SYMBOL_GPL(ata_std_prereset);
3709
3710 /**
3711 * sata_std_hardreset - COMRESET w/o waiting or classification
3712 * @link: link to reset
3713 * @class: resulting class of attached device
3714 * @deadline: deadline jiffies for the operation
3715 *
3716 * Standard SATA COMRESET w/o waiting or classification.
3717 *
3718 * LOCKING:
3719 * Kernel thread context (may sleep)
3720 *
3721 * RETURNS:
3722 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3723 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3724 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3725 unsigned long deadline)
3726 {
3727 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3728 bool online;
3729 int rc;
3730
3731 /* do hardreset */
3732 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3733 return online ? -EAGAIN : rc;
3734 }
3735 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3736
3737 /**
3738 * ata_std_postreset - standard postreset callback
3739 * @link: the target ata_link
3740 * @classes: classes of attached devices
3741 *
3742 * This function is invoked after a successful reset. Note that
3743 * the device might have been reset more than once using
3744 * different reset methods before postreset is invoked.
3745 *
3746 * LOCKING:
3747 * Kernel thread context (may sleep)
3748 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3749 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3750 {
3751 u32 serror;
3752
3753 /* reset complete, clear SError */
3754 if (!sata_scr_read(link, SCR_ERROR, &serror))
3755 sata_scr_write(link, SCR_ERROR, serror);
3756
3757 /* print link status */
3758 sata_print_link_status(link);
3759 }
3760 EXPORT_SYMBOL_GPL(ata_std_postreset);
3761
3762 /**
3763 * ata_dev_same_device - Determine whether new ID matches configured device
3764 * @dev: device to compare against
3765 * @new_class: class of the new device
3766 * @new_id: IDENTIFY page of the new device
3767 *
3768 * Compare @new_class and @new_id against @dev and determine
3769 * whether @dev is the device indicated by @new_class and
3770 * @new_id.
3771 *
3772 * LOCKING:
3773 * None.
3774 *
3775 * RETURNS:
3776 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3777 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3778 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3779 const u16 *new_id)
3780 {
3781 const u16 *old_id = dev->id;
3782 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3783 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3784
3785 if (dev->class != new_class) {
3786 ata_dev_info(dev, "class mismatch %d != %d\n",
3787 dev->class, new_class);
3788 return 0;
3789 }
3790
3791 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3792 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3793 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3794 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3795
3796 if (strcmp(model[0], model[1])) {
3797 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3798 model[0], model[1]);
3799 return 0;
3800 }
3801
3802 if (strcmp(serial[0], serial[1])) {
3803 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3804 serial[0], serial[1]);
3805 return 0;
3806 }
3807
3808 return 1;
3809 }
3810
3811 /**
3812 * ata_dev_reread_id - Re-read IDENTIFY data
3813 * @dev: target ATA device
3814 * @readid_flags: read ID flags
3815 *
3816 * Re-read IDENTIFY page and make sure @dev is still attached to
3817 * the port.
3818 *
3819 * LOCKING:
3820 * Kernel thread context (may sleep)
3821 *
3822 * RETURNS:
3823 * 0 on success, negative errno otherwise
3824 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3825 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3826 {
3827 unsigned int class = dev->class;
3828 u16 *id = (void *)dev->link->ap->sector_buf;
3829 int rc;
3830
3831 /* read ID data */
3832 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3833 if (rc)
3834 return rc;
3835
3836 /* is the device still there? */
3837 if (!ata_dev_same_device(dev, class, id))
3838 return -ENODEV;
3839
3840 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3841 return 0;
3842 }
3843
3844 /**
3845 * ata_dev_revalidate - Revalidate ATA device
3846 * @dev: device to revalidate
3847 * @new_class: new class code
3848 * @readid_flags: read ID flags
3849 *
3850 * Re-read IDENTIFY page, make sure @dev is still attached to the
3851 * port and reconfigure it according to the new IDENTIFY page.
3852 *
3853 * LOCKING:
3854 * Kernel thread context (may sleep)
3855 *
3856 * RETURNS:
3857 * 0 on success, negative errno otherwise
3858 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3859 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3860 unsigned int readid_flags)
3861 {
3862 u64 n_sectors = dev->n_sectors;
3863 u64 n_native_sectors = dev->n_native_sectors;
3864 int rc;
3865
3866 if (!ata_dev_enabled(dev))
3867 return -ENODEV;
3868
3869 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3870 if (ata_class_enabled(new_class) &&
3871 new_class != ATA_DEV_ATA &&
3872 new_class != ATA_DEV_ATAPI &&
3873 new_class != ATA_DEV_ZAC &&
3874 new_class != ATA_DEV_SEMB) {
3875 ata_dev_info(dev, "class mismatch %u != %u\n",
3876 dev->class, new_class);
3877 rc = -ENODEV;
3878 goto fail;
3879 }
3880
3881 /* re-read ID */
3882 rc = ata_dev_reread_id(dev, readid_flags);
3883 if (rc)
3884 goto fail;
3885
3886 /* configure device according to the new ID */
3887 rc = ata_dev_configure(dev);
3888 if (rc)
3889 goto fail;
3890
3891 /* verify n_sectors hasn't changed */
3892 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3893 dev->n_sectors == n_sectors)
3894 return 0;
3895
3896 /* n_sectors has changed */
3897 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3898 (unsigned long long)n_sectors,
3899 (unsigned long long)dev->n_sectors);
3900
3901 /*
3902 * Something could have caused HPA to be unlocked
3903 * involuntarily. If n_native_sectors hasn't changed and the
3904 * new size matches it, keep the device.
3905 */
3906 if (dev->n_native_sectors == n_native_sectors &&
3907 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3908 ata_dev_warn(dev,
3909 "new n_sectors matches native, probably "
3910 "late HPA unlock, n_sectors updated\n");
3911 /* use the larger n_sectors */
3912 return 0;
3913 }
3914
3915 /*
3916 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3917 * unlocking HPA in those cases.
3918 *
3919 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3920 */
3921 if (dev->n_native_sectors == n_native_sectors &&
3922 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3923 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3924 ata_dev_warn(dev,
3925 "old n_sectors matches native, probably "
3926 "late HPA lock, will try to unlock HPA\n");
3927 /* try unlocking HPA */
3928 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3929 rc = -EIO;
3930 } else
3931 rc = -ENODEV;
3932
3933 /* restore original n_[native_]sectors and fail */
3934 dev->n_native_sectors = n_native_sectors;
3935 dev->n_sectors = n_sectors;
3936 fail:
3937 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3938 return rc;
3939 }
3940
3941 struct ata_blacklist_entry {
3942 const char *model_num;
3943 const char *model_rev;
3944 unsigned long horkage;
3945 };
3946
3947 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3948 /* Devices with DMA related problems under Linux */
3949 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3950 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3951 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3952 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3953 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3954 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3955 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3956 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3957 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3958 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3959 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3960 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3961 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3962 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3963 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3964 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3965 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3966 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3967 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3968 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3969 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3970 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3971 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3972 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3973 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3974 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3975 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3976 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3977 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3978 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3979 /* Odd clown on sil3726/4726 PMPs */
3980 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3981 /* Similar story with ASMedia 1092 */
3982 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
3983
3984 /* Weird ATAPI devices */
3985 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3986 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3987 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3988 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3989
3990 /*
3991 * Causes silent data corruption with higher max sects.
3992 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3993 */
3994 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3995
3996 /*
3997 * These devices time out with higher max sects.
3998 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3999 */
4000 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4001 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4002
4003 /* Devices we expect to fail diagnostics */
4004
4005 /* Devices where NCQ should be avoided */
4006 /* NCQ is slow */
4007 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4008 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ },
4009 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4010 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4011 /* NCQ is broken */
4012 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4013 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4014 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4015 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4016 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4017
4018 /* Seagate NCQ + FLUSH CACHE firmware bug */
4019 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4020 ATA_HORKAGE_FIRMWARE_WARN },
4021
4022 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4023 ATA_HORKAGE_FIRMWARE_WARN },
4024
4025 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4026 ATA_HORKAGE_FIRMWARE_WARN },
4027
4028 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4029 ATA_HORKAGE_FIRMWARE_WARN },
4030
4031 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4032 the ST disks also have LPM issues */
4033 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
4034 ATA_HORKAGE_NOLPM },
4035 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4036
4037 /* Blacklist entries taken from Silicon Image 3124/3132
4038 Windows driver .inf file - also several Linux problem reports */
4039 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ },
4040 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ },
4041 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ },
4042
4043 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4044 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ },
4045
4046 /* Sandisk SD7/8/9s lock up hard on large trims */
4047 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M },
4048
4049 /* devices which puke on READ_NATIVE_MAX */
4050 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA },
4051 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4052 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4053 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4054
4055 /* this one allows HPA unlocking but fails IOs on the area */
4056 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4057
4058 /* Devices which report 1 sector over size HPA */
4059 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE },
4060 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE },
4061 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE },
4062
4063 /* Devices which get the IVB wrong */
4064 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4065 /* Maybe we should just blacklist TSSTcorp... */
4066 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB },
4067
4068 /* Devices that do not need bridging limits applied */
4069 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK },
4070 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK },
4071
4072 /* Devices which aren't very happy with higher link speeds */
4073 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS },
4074 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS },
4075
4076 /*
4077 * Devices which choke on SETXFER. Applies only if both the
4078 * device and controller are SATA.
4079 */
4080 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4081 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4082 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4083 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4084 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4085
4086 /* These specific Pioneer models have LPM issues */
4087 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
4088 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
4089
4090 /* Crucial BX100 SSD 500GB has broken LPM support */
4091 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4092
4093 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4094 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4095 ATA_HORKAGE_ZERO_AFTER_TRIM |
4096 ATA_HORKAGE_NOLPM },
4097 /* 512GB MX100 with newer firmware has only LPM issues */
4098 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4099 ATA_HORKAGE_NOLPM },
4100
4101 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4102 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4103 ATA_HORKAGE_ZERO_AFTER_TRIM |
4104 ATA_HORKAGE_NOLPM },
4105 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4106 ATA_HORKAGE_ZERO_AFTER_TRIM |
4107 ATA_HORKAGE_NOLPM },
4108
4109 /* These specific Samsung models/firmware-revs do not handle LPM well */
4110 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4111 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM },
4112 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM },
4113 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4114
4115 /* devices that don't properly handle queued TRIM commands */
4116 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4117 ATA_HORKAGE_ZERO_AFTER_TRIM },
4118 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4119 ATA_HORKAGE_ZERO_AFTER_TRIM },
4120 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4121 ATA_HORKAGE_ZERO_AFTER_TRIM },
4122 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4123 ATA_HORKAGE_ZERO_AFTER_TRIM },
4124 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4125 ATA_HORKAGE_ZERO_AFTER_TRIM },
4126 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4127 ATA_HORKAGE_ZERO_AFTER_TRIM },
4128 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4129 ATA_HORKAGE_NO_DMA_LOG |
4130 ATA_HORKAGE_ZERO_AFTER_TRIM },
4131 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4132 ATA_HORKAGE_ZERO_AFTER_TRIM },
4133 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4134 ATA_HORKAGE_ZERO_AFTER_TRIM },
4135 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4136 ATA_HORKAGE_ZERO_AFTER_TRIM |
4137 ATA_HORKAGE_NO_NCQ_ON_ATI },
4138 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4139 ATA_HORKAGE_ZERO_AFTER_TRIM |
4140 ATA_HORKAGE_NO_NCQ_ON_ATI },
4141 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4142 ATA_HORKAGE_ZERO_AFTER_TRIM |
4143 ATA_HORKAGE_NO_NCQ_ON_ATI, },
4144 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4145 ATA_HORKAGE_ZERO_AFTER_TRIM },
4146
4147 /* devices that don't properly handle TRIM commands */
4148 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM },
4149 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM },
4150
4151 /*
4152 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4153 * (Return Zero After Trim) flags in the ATA Command Set are
4154 * unreliable in the sense that they only define what happens if
4155 * the device successfully executed the DSM TRIM command. TRIM
4156 * is only advisory, however, and the device is free to silently
4157 * ignore all or parts of the request.
4158 *
4159 * Whitelist drives that are known to reliably return zeroes
4160 * after TRIM.
4161 */
4162
4163 /*
4164 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4165 * that model before whitelisting all other intel SSDs.
4166 */
4167 { "INTEL*SSDSC2MH*", NULL, 0 },
4168
4169 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4170 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4171 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4172 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4173 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4174 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4175 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4176 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4177
4178 /*
4179 * Some WD SATA-I drives spin up and down erratically when the link
4180 * is put into the slumber mode. We don't have full list of the
4181 * affected devices. Disable LPM if the device matches one of the
4182 * known prefixes and is SATA-1. As a side effect LPM partial is
4183 * lost too.
4184 *
4185 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4186 */
4187 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4188 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4189 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4190 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4191 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4192 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4193 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4194
4195 /*
4196 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4197 * log page is accessed. Ensure we never ask for this log page with
4198 * these devices.
4199 */
4200 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR },
4201
4202 /* End Marker */
4203 { }
4204 };
4205
ata_dev_blacklisted(const struct ata_device * dev)4206 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4207 {
4208 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4209 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4210 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4211
4212 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4213 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4214
4215 while (ad->model_num) {
4216 if (glob_match(ad->model_num, model_num)) {
4217 if (ad->model_rev == NULL)
4218 return ad->horkage;
4219 if (glob_match(ad->model_rev, model_rev))
4220 return ad->horkage;
4221 }
4222 ad++;
4223 }
4224 return 0;
4225 }
4226
ata_dma_blacklisted(const struct ata_device * dev)4227 static int ata_dma_blacklisted(const struct ata_device *dev)
4228 {
4229 /* We don't support polling DMA.
4230 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4231 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4232 */
4233 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4234 (dev->flags & ATA_DFLAG_CDB_INTR))
4235 return 1;
4236 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4237 }
4238
4239 /**
4240 * ata_is_40wire - check drive side detection
4241 * @dev: device
4242 *
4243 * Perform drive side detection decoding, allowing for device vendors
4244 * who can't follow the documentation.
4245 */
4246
ata_is_40wire(struct ata_device * dev)4247 static int ata_is_40wire(struct ata_device *dev)
4248 {
4249 if (dev->horkage & ATA_HORKAGE_IVB)
4250 return ata_drive_40wire_relaxed(dev->id);
4251 return ata_drive_40wire(dev->id);
4252 }
4253
4254 /**
4255 * cable_is_40wire - 40/80/SATA decider
4256 * @ap: port to consider
4257 *
4258 * This function encapsulates the policy for speed management
4259 * in one place. At the moment we don't cache the result but
4260 * there is a good case for setting ap->cbl to the result when
4261 * we are called with unknown cables (and figuring out if it
4262 * impacts hotplug at all).
4263 *
4264 * Return 1 if the cable appears to be 40 wire.
4265 */
4266
cable_is_40wire(struct ata_port * ap)4267 static int cable_is_40wire(struct ata_port *ap)
4268 {
4269 struct ata_link *link;
4270 struct ata_device *dev;
4271
4272 /* If the controller thinks we are 40 wire, we are. */
4273 if (ap->cbl == ATA_CBL_PATA40)
4274 return 1;
4275
4276 /* If the controller thinks we are 80 wire, we are. */
4277 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4278 return 0;
4279
4280 /* If the system is known to be 40 wire short cable (eg
4281 * laptop), then we allow 80 wire modes even if the drive
4282 * isn't sure.
4283 */
4284 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4285 return 0;
4286
4287 /* If the controller doesn't know, we scan.
4288 *
4289 * Note: We look for all 40 wire detects at this point. Any
4290 * 80 wire detect is taken to be 80 wire cable because
4291 * - in many setups only the one drive (slave if present) will
4292 * give a valid detect
4293 * - if you have a non detect capable drive you don't want it
4294 * to colour the choice
4295 */
4296 ata_for_each_link(link, ap, EDGE) {
4297 ata_for_each_dev(dev, link, ENABLED) {
4298 if (!ata_is_40wire(dev))
4299 return 0;
4300 }
4301 }
4302 return 1;
4303 }
4304
4305 /**
4306 * ata_dev_xfermask - Compute supported xfermask of the given device
4307 * @dev: Device to compute xfermask for
4308 *
4309 * Compute supported xfermask of @dev and store it in
4310 * dev->*_mask. This function is responsible for applying all
4311 * known limits including host controller limits, device
4312 * blacklist, etc...
4313 *
4314 * LOCKING:
4315 * None.
4316 */
ata_dev_xfermask(struct ata_device * dev)4317 static void ata_dev_xfermask(struct ata_device *dev)
4318 {
4319 struct ata_link *link = dev->link;
4320 struct ata_port *ap = link->ap;
4321 struct ata_host *host = ap->host;
4322 unsigned int xfer_mask;
4323
4324 /* controller modes available */
4325 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4326 ap->mwdma_mask, ap->udma_mask);
4327
4328 /* drive modes available */
4329 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4330 dev->mwdma_mask, dev->udma_mask);
4331 xfer_mask &= ata_id_xfermask(dev->id);
4332
4333 /*
4334 * CFA Advanced TrueIDE timings are not allowed on a shared
4335 * cable
4336 */
4337 if (ata_dev_pair(dev)) {
4338 /* No PIO5 or PIO6 */
4339 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4340 /* No MWDMA3 or MWDMA 4 */
4341 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4342 }
4343
4344 if (ata_dma_blacklisted(dev)) {
4345 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4346 ata_dev_warn(dev,
4347 "device is on DMA blacklist, disabling DMA\n");
4348 }
4349
4350 if ((host->flags & ATA_HOST_SIMPLEX) &&
4351 host->simplex_claimed && host->simplex_claimed != ap) {
4352 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4353 ata_dev_warn(dev,
4354 "simplex DMA is claimed by other device, disabling DMA\n");
4355 }
4356
4357 if (ap->flags & ATA_FLAG_NO_IORDY)
4358 xfer_mask &= ata_pio_mask_no_iordy(dev);
4359
4360 if (ap->ops->mode_filter)
4361 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4362
4363 /* Apply cable rule here. Don't apply it early because when
4364 * we handle hot plug the cable type can itself change.
4365 * Check this last so that we know if the transfer rate was
4366 * solely limited by the cable.
4367 * Unknown or 80 wire cables reported host side are checked
4368 * drive side as well. Cases where we know a 40wire cable
4369 * is used safely for 80 are not checked here.
4370 */
4371 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4372 /* UDMA/44 or higher would be available */
4373 if (cable_is_40wire(ap)) {
4374 ata_dev_warn(dev,
4375 "limited to UDMA/33 due to 40-wire cable\n");
4376 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4377 }
4378
4379 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4380 &dev->mwdma_mask, &dev->udma_mask);
4381 }
4382
4383 /**
4384 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4385 * @dev: Device to which command will be sent
4386 *
4387 * Issue SET FEATURES - XFER MODE command to device @dev
4388 * on port @ap.
4389 *
4390 * LOCKING:
4391 * PCI/etc. bus probe sem.
4392 *
4393 * RETURNS:
4394 * 0 on success, AC_ERR_* mask otherwise.
4395 */
4396
ata_dev_set_xfermode(struct ata_device * dev)4397 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4398 {
4399 struct ata_taskfile tf;
4400
4401 /* set up set-features taskfile */
4402 ata_dev_dbg(dev, "set features - xfer mode\n");
4403
4404 /* Some controllers and ATAPI devices show flaky interrupt
4405 * behavior after setting xfer mode. Use polling instead.
4406 */
4407 ata_tf_init(dev, &tf);
4408 tf.command = ATA_CMD_SET_FEATURES;
4409 tf.feature = SETFEATURES_XFER;
4410 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4411 tf.protocol = ATA_PROT_NODATA;
4412 /* If we are using IORDY we must send the mode setting command */
4413 if (ata_pio_need_iordy(dev))
4414 tf.nsect = dev->xfer_mode;
4415 /* If the device has IORDY and the controller does not - turn it off */
4416 else if (ata_id_has_iordy(dev->id))
4417 tf.nsect = 0x01;
4418 else /* In the ancient relic department - skip all of this */
4419 return 0;
4420
4421 /*
4422 * On some disks, this command causes spin-up, so we need longer
4423 * timeout.
4424 */
4425 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4426 }
4427
4428 /**
4429 * ata_dev_set_feature - Issue SET FEATURES
4430 * @dev: Device to which command will be sent
4431 * @subcmd: The SET FEATURES subcommand to be sent
4432 * @action: The sector count represents a subcommand specific action
4433 *
4434 * Issue SET FEATURES command to device @dev on port @ap with sector count
4435 *
4436 * LOCKING:
4437 * PCI/etc. bus probe sem.
4438 *
4439 * RETURNS:
4440 * 0 on success, AC_ERR_* mask otherwise.
4441 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4442 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4443 {
4444 struct ata_taskfile tf;
4445 unsigned int timeout = 0;
4446
4447 /* set up set-features taskfile */
4448 ata_dev_dbg(dev, "set features\n");
4449
4450 ata_tf_init(dev, &tf);
4451 tf.command = ATA_CMD_SET_FEATURES;
4452 tf.feature = subcmd;
4453 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4454 tf.protocol = ATA_PROT_NODATA;
4455 tf.nsect = action;
4456
4457 if (subcmd == SETFEATURES_SPINUP)
4458 timeout = ata_probe_timeout ?
4459 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4460
4461 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4462 }
4463 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4464
4465 /**
4466 * ata_dev_init_params - Issue INIT DEV PARAMS command
4467 * @dev: Device to which command will be sent
4468 * @heads: Number of heads (taskfile parameter)
4469 * @sectors: Number of sectors (taskfile parameter)
4470 *
4471 * LOCKING:
4472 * Kernel thread context (may sleep)
4473 *
4474 * RETURNS:
4475 * 0 on success, AC_ERR_* mask otherwise.
4476 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4477 static unsigned int ata_dev_init_params(struct ata_device *dev,
4478 u16 heads, u16 sectors)
4479 {
4480 struct ata_taskfile tf;
4481 unsigned int err_mask;
4482
4483 /* Number of sectors per track 1-255. Number of heads 1-16 */
4484 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4485 return AC_ERR_INVALID;
4486
4487 /* set up init dev params taskfile */
4488 ata_dev_dbg(dev, "init dev params \n");
4489
4490 ata_tf_init(dev, &tf);
4491 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4492 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4493 tf.protocol = ATA_PROT_NODATA;
4494 tf.nsect = sectors;
4495 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4496
4497 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4498 /* A clean abort indicates an original or just out of spec drive
4499 and we should continue as we issue the setup based on the
4500 drive reported working geometry */
4501 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4502 err_mask = 0;
4503
4504 return err_mask;
4505 }
4506
4507 /**
4508 * atapi_check_dma - Check whether ATAPI DMA can be supported
4509 * @qc: Metadata associated with taskfile to check
4510 *
4511 * Allow low-level driver to filter ATA PACKET commands, returning
4512 * a status indicating whether or not it is OK to use DMA for the
4513 * supplied PACKET command.
4514 *
4515 * LOCKING:
4516 * spin_lock_irqsave(host lock)
4517 *
4518 * RETURNS: 0 when ATAPI DMA can be used
4519 * nonzero otherwise
4520 */
atapi_check_dma(struct ata_queued_cmd * qc)4521 int atapi_check_dma(struct ata_queued_cmd *qc)
4522 {
4523 struct ata_port *ap = qc->ap;
4524
4525 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4526 * few ATAPI devices choke on such DMA requests.
4527 */
4528 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4529 unlikely(qc->nbytes & 15))
4530 return 1;
4531
4532 if (ap->ops->check_atapi_dma)
4533 return ap->ops->check_atapi_dma(qc);
4534
4535 return 0;
4536 }
4537
4538 /**
4539 * ata_std_qc_defer - Check whether a qc needs to be deferred
4540 * @qc: ATA command in question
4541 *
4542 * Non-NCQ commands cannot run with any other command, NCQ or
4543 * not. As upper layer only knows the queue depth, we are
4544 * responsible for maintaining exclusion. This function checks
4545 * whether a new command @qc can be issued.
4546 *
4547 * LOCKING:
4548 * spin_lock_irqsave(host lock)
4549 *
4550 * RETURNS:
4551 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4552 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4553 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4554 {
4555 struct ata_link *link = qc->dev->link;
4556
4557 if (ata_is_ncq(qc->tf.protocol)) {
4558 if (!ata_tag_valid(link->active_tag))
4559 return 0;
4560 } else {
4561 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4562 return 0;
4563 }
4564
4565 return ATA_DEFER_LINK;
4566 }
4567 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4568
ata_noop_qc_prep(struct ata_queued_cmd * qc)4569 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4570 {
4571 return AC_ERR_OK;
4572 }
4573 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4574
4575 /**
4576 * ata_sg_init - Associate command with scatter-gather table.
4577 * @qc: Command to be associated
4578 * @sg: Scatter-gather table.
4579 * @n_elem: Number of elements in s/g table.
4580 *
4581 * Initialize the data-related elements of queued_cmd @qc
4582 * to point to a scatter-gather table @sg, containing @n_elem
4583 * elements.
4584 *
4585 * LOCKING:
4586 * spin_lock_irqsave(host lock)
4587 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4588 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4589 unsigned int n_elem)
4590 {
4591 qc->sg = sg;
4592 qc->n_elem = n_elem;
4593 qc->cursg = qc->sg;
4594 }
4595
4596 #ifdef CONFIG_HAS_DMA
4597
4598 /**
4599 * ata_sg_clean - Unmap DMA memory associated with command
4600 * @qc: Command containing DMA memory to be released
4601 *
4602 * Unmap all mapped DMA memory associated with this command.
4603 *
4604 * LOCKING:
4605 * spin_lock_irqsave(host lock)
4606 */
ata_sg_clean(struct ata_queued_cmd * qc)4607 static void ata_sg_clean(struct ata_queued_cmd *qc)
4608 {
4609 struct ata_port *ap = qc->ap;
4610 struct scatterlist *sg = qc->sg;
4611 int dir = qc->dma_dir;
4612
4613 WARN_ON_ONCE(sg == NULL);
4614
4615 if (qc->n_elem)
4616 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4617
4618 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4619 qc->sg = NULL;
4620 }
4621
4622 /**
4623 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4624 * @qc: Command with scatter-gather table to be mapped.
4625 *
4626 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4627 *
4628 * LOCKING:
4629 * spin_lock_irqsave(host lock)
4630 *
4631 * RETURNS:
4632 * Zero on success, negative on error.
4633 *
4634 */
ata_sg_setup(struct ata_queued_cmd * qc)4635 static int ata_sg_setup(struct ata_queued_cmd *qc)
4636 {
4637 struct ata_port *ap = qc->ap;
4638 unsigned int n_elem;
4639
4640 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4641 if (n_elem < 1)
4642 return -1;
4643
4644 qc->orig_n_elem = qc->n_elem;
4645 qc->n_elem = n_elem;
4646 qc->flags |= ATA_QCFLAG_DMAMAP;
4647
4648 return 0;
4649 }
4650
4651 #else /* !CONFIG_HAS_DMA */
4652
ata_sg_clean(struct ata_queued_cmd * qc)4653 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4654 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4655
4656 #endif /* !CONFIG_HAS_DMA */
4657
4658 /**
4659 * swap_buf_le16 - swap halves of 16-bit words in place
4660 * @buf: Buffer to swap
4661 * @buf_words: Number of 16-bit words in buffer.
4662 *
4663 * Swap halves of 16-bit words if needed to convert from
4664 * little-endian byte order to native cpu byte order, or
4665 * vice-versa.
4666 *
4667 * LOCKING:
4668 * Inherited from caller.
4669 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4670 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4671 {
4672 #ifdef __BIG_ENDIAN
4673 unsigned int i;
4674
4675 for (i = 0; i < buf_words; i++)
4676 buf[i] = le16_to_cpu(buf[i]);
4677 #endif /* __BIG_ENDIAN */
4678 }
4679
4680 /**
4681 * ata_qc_free - free unused ata_queued_cmd
4682 * @qc: Command to complete
4683 *
4684 * Designed to free unused ata_queued_cmd object
4685 * in case something prevents using it.
4686 *
4687 * LOCKING:
4688 * spin_lock_irqsave(host lock)
4689 */
ata_qc_free(struct ata_queued_cmd * qc)4690 void ata_qc_free(struct ata_queued_cmd *qc)
4691 {
4692 qc->flags = 0;
4693 if (ata_tag_valid(qc->tag))
4694 qc->tag = ATA_TAG_POISON;
4695 }
4696
__ata_qc_complete(struct ata_queued_cmd * qc)4697 void __ata_qc_complete(struct ata_queued_cmd *qc)
4698 {
4699 struct ata_port *ap;
4700 struct ata_link *link;
4701
4702 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4703 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4704 ap = qc->ap;
4705 link = qc->dev->link;
4706
4707 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4708 ata_sg_clean(qc);
4709
4710 /* command should be marked inactive atomically with qc completion */
4711 if (ata_is_ncq(qc->tf.protocol)) {
4712 link->sactive &= ~(1 << qc->hw_tag);
4713 if (!link->sactive)
4714 ap->nr_active_links--;
4715 } else {
4716 link->active_tag = ATA_TAG_POISON;
4717 ap->nr_active_links--;
4718 }
4719
4720 /* clear exclusive status */
4721 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4722 ap->excl_link == link))
4723 ap->excl_link = NULL;
4724
4725 /* atapi: mark qc as inactive to prevent the interrupt handler
4726 * from completing the command twice later, before the error handler
4727 * is called. (when rc != 0 and atapi request sense is needed)
4728 */
4729 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4730 ap->qc_active &= ~(1ULL << qc->tag);
4731
4732 /* call completion callback */
4733 qc->complete_fn(qc);
4734 }
4735
fill_result_tf(struct ata_queued_cmd * qc)4736 static void fill_result_tf(struct ata_queued_cmd *qc)
4737 {
4738 struct ata_port *ap = qc->ap;
4739
4740 qc->result_tf.flags = qc->tf.flags;
4741 ap->ops->qc_fill_rtf(qc);
4742 }
4743
ata_verify_xfer(struct ata_queued_cmd * qc)4744 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4745 {
4746 struct ata_device *dev = qc->dev;
4747
4748 if (!ata_is_data(qc->tf.protocol))
4749 return;
4750
4751 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4752 return;
4753
4754 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4755 }
4756
4757 /**
4758 * ata_qc_complete - Complete an active ATA command
4759 * @qc: Command to complete
4760 *
4761 * Indicate to the mid and upper layers that an ATA command has
4762 * completed, with either an ok or not-ok status.
4763 *
4764 * Refrain from calling this function multiple times when
4765 * successfully completing multiple NCQ commands.
4766 * ata_qc_complete_multiple() should be used instead, which will
4767 * properly update IRQ expect state.
4768 *
4769 * LOCKING:
4770 * spin_lock_irqsave(host lock)
4771 */
ata_qc_complete(struct ata_queued_cmd * qc)4772 void ata_qc_complete(struct ata_queued_cmd *qc)
4773 {
4774 struct ata_port *ap = qc->ap;
4775
4776 /* Trigger the LED (if available) */
4777 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4778
4779 /* XXX: New EH and old EH use different mechanisms to
4780 * synchronize EH with regular execution path.
4781 *
4782 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4783 * Normal execution path is responsible for not accessing a
4784 * failed qc. libata core enforces the rule by returning NULL
4785 * from ata_qc_from_tag() for failed qcs.
4786 *
4787 * Old EH depends on ata_qc_complete() nullifying completion
4788 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4789 * not synchronize with interrupt handler. Only PIO task is
4790 * taken care of.
4791 */
4792 if (ap->ops->error_handler) {
4793 struct ata_device *dev = qc->dev;
4794 struct ata_eh_info *ehi = &dev->link->eh_info;
4795
4796 if (unlikely(qc->err_mask))
4797 qc->flags |= ATA_QCFLAG_FAILED;
4798
4799 /*
4800 * Finish internal commands without any further processing
4801 * and always with the result TF filled.
4802 */
4803 if (unlikely(ata_tag_internal(qc->tag))) {
4804 fill_result_tf(qc);
4805 trace_ata_qc_complete_internal(qc);
4806 __ata_qc_complete(qc);
4807 return;
4808 }
4809
4810 /*
4811 * Non-internal qc has failed. Fill the result TF and
4812 * summon EH.
4813 */
4814 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4815 fill_result_tf(qc);
4816 trace_ata_qc_complete_failed(qc);
4817 ata_qc_schedule_eh(qc);
4818 return;
4819 }
4820
4821 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4822
4823 /* read result TF if requested */
4824 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4825 fill_result_tf(qc);
4826
4827 trace_ata_qc_complete_done(qc);
4828 /* Some commands need post-processing after successful
4829 * completion.
4830 */
4831 switch (qc->tf.command) {
4832 case ATA_CMD_SET_FEATURES:
4833 if (qc->tf.feature != SETFEATURES_WC_ON &&
4834 qc->tf.feature != SETFEATURES_WC_OFF &&
4835 qc->tf.feature != SETFEATURES_RA_ON &&
4836 qc->tf.feature != SETFEATURES_RA_OFF)
4837 break;
4838 fallthrough;
4839 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4840 case ATA_CMD_SET_MULTI: /* multi_count changed */
4841 /* revalidate device */
4842 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4843 ata_port_schedule_eh(ap);
4844 break;
4845
4846 case ATA_CMD_SLEEP:
4847 dev->flags |= ATA_DFLAG_SLEEPING;
4848 break;
4849 }
4850
4851 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4852 ata_verify_xfer(qc);
4853
4854 __ata_qc_complete(qc);
4855 } else {
4856 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4857 return;
4858
4859 /* read result TF if failed or requested */
4860 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4861 fill_result_tf(qc);
4862
4863 __ata_qc_complete(qc);
4864 }
4865 }
4866 EXPORT_SYMBOL_GPL(ata_qc_complete);
4867
4868 /**
4869 * ata_qc_get_active - get bitmask of active qcs
4870 * @ap: port in question
4871 *
4872 * LOCKING:
4873 * spin_lock_irqsave(host lock)
4874 *
4875 * RETURNS:
4876 * Bitmask of active qcs
4877 */
ata_qc_get_active(struct ata_port * ap)4878 u64 ata_qc_get_active(struct ata_port *ap)
4879 {
4880 u64 qc_active = ap->qc_active;
4881
4882 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4883 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4884 qc_active |= (1 << 0);
4885 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4886 }
4887
4888 return qc_active;
4889 }
4890 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4891
4892 /**
4893 * ata_qc_issue - issue taskfile to device
4894 * @qc: command to issue to device
4895 *
4896 * Prepare an ATA command to submission to device.
4897 * This includes mapping the data into a DMA-able
4898 * area, filling in the S/G table, and finally
4899 * writing the taskfile to hardware, starting the command.
4900 *
4901 * LOCKING:
4902 * spin_lock_irqsave(host lock)
4903 */
ata_qc_issue(struct ata_queued_cmd * qc)4904 void ata_qc_issue(struct ata_queued_cmd *qc)
4905 {
4906 struct ata_port *ap = qc->ap;
4907 struct ata_link *link = qc->dev->link;
4908 u8 prot = qc->tf.protocol;
4909
4910 /* Make sure only one non-NCQ command is outstanding. The
4911 * check is skipped for old EH because it reuses active qc to
4912 * request ATAPI sense.
4913 */
4914 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4915
4916 if (ata_is_ncq(prot)) {
4917 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4918
4919 if (!link->sactive)
4920 ap->nr_active_links++;
4921 link->sactive |= 1 << qc->hw_tag;
4922 } else {
4923 WARN_ON_ONCE(link->sactive);
4924
4925 ap->nr_active_links++;
4926 link->active_tag = qc->tag;
4927 }
4928
4929 qc->flags |= ATA_QCFLAG_ACTIVE;
4930 ap->qc_active |= 1ULL << qc->tag;
4931
4932 /*
4933 * We guarantee to LLDs that they will have at least one
4934 * non-zero sg if the command is a data command.
4935 */
4936 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4937 goto sys_err;
4938
4939 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4940 (ap->flags & ATA_FLAG_PIO_DMA)))
4941 if (ata_sg_setup(qc))
4942 goto sys_err;
4943
4944 /* if device is sleeping, schedule reset and abort the link */
4945 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4946 link->eh_info.action |= ATA_EH_RESET;
4947 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4948 ata_link_abort(link);
4949 return;
4950 }
4951
4952 trace_ata_qc_prep(qc);
4953 qc->err_mask |= ap->ops->qc_prep(qc);
4954 if (unlikely(qc->err_mask))
4955 goto err;
4956 trace_ata_qc_issue(qc);
4957 qc->err_mask |= ap->ops->qc_issue(qc);
4958 if (unlikely(qc->err_mask))
4959 goto err;
4960 return;
4961
4962 sys_err:
4963 qc->err_mask |= AC_ERR_SYSTEM;
4964 err:
4965 ata_qc_complete(qc);
4966 }
4967
4968 /**
4969 * ata_phys_link_online - test whether the given link is online
4970 * @link: ATA link to test
4971 *
4972 * Test whether @link is online. Note that this function returns
4973 * 0 if online status of @link cannot be obtained, so
4974 * ata_link_online(link) != !ata_link_offline(link).
4975 *
4976 * LOCKING:
4977 * None.
4978 *
4979 * RETURNS:
4980 * True if the port online status is available and online.
4981 */
ata_phys_link_online(struct ata_link * link)4982 bool ata_phys_link_online(struct ata_link *link)
4983 {
4984 u32 sstatus;
4985
4986 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4987 ata_sstatus_online(sstatus))
4988 return true;
4989 return false;
4990 }
4991
4992 /**
4993 * ata_phys_link_offline - test whether the given link is offline
4994 * @link: ATA link to test
4995 *
4996 * Test whether @link is offline. Note that this function
4997 * returns 0 if offline status of @link cannot be obtained, so
4998 * ata_link_online(link) != !ata_link_offline(link).
4999 *
5000 * LOCKING:
5001 * None.
5002 *
5003 * RETURNS:
5004 * True if the port offline status is available and offline.
5005 */
ata_phys_link_offline(struct ata_link * link)5006 bool ata_phys_link_offline(struct ata_link *link)
5007 {
5008 u32 sstatus;
5009
5010 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5011 !ata_sstatus_online(sstatus))
5012 return true;
5013 return false;
5014 }
5015
5016 /**
5017 * ata_link_online - test whether the given link is online
5018 * @link: ATA link to test
5019 *
5020 * Test whether @link is online. This is identical to
5021 * ata_phys_link_online() when there's no slave link. When
5022 * there's a slave link, this function should only be called on
5023 * the master link and will return true if any of M/S links is
5024 * online.
5025 *
5026 * LOCKING:
5027 * None.
5028 *
5029 * RETURNS:
5030 * True if the port online status is available and online.
5031 */
ata_link_online(struct ata_link * link)5032 bool ata_link_online(struct ata_link *link)
5033 {
5034 struct ata_link *slave = link->ap->slave_link;
5035
5036 WARN_ON(link == slave); /* shouldn't be called on slave link */
5037
5038 return ata_phys_link_online(link) ||
5039 (slave && ata_phys_link_online(slave));
5040 }
5041 EXPORT_SYMBOL_GPL(ata_link_online);
5042
5043 /**
5044 * ata_link_offline - test whether the given link is offline
5045 * @link: ATA link to test
5046 *
5047 * Test whether @link is offline. This is identical to
5048 * ata_phys_link_offline() when there's no slave link. When
5049 * there's a slave link, this function should only be called on
5050 * the master link and will return true if both M/S links are
5051 * offline.
5052 *
5053 * LOCKING:
5054 * None.
5055 *
5056 * RETURNS:
5057 * True if the port offline status is available and offline.
5058 */
ata_link_offline(struct ata_link * link)5059 bool ata_link_offline(struct ata_link *link)
5060 {
5061 struct ata_link *slave = link->ap->slave_link;
5062
5063 WARN_ON(link == slave); /* shouldn't be called on slave link */
5064
5065 return ata_phys_link_offline(link) &&
5066 (!slave || ata_phys_link_offline(slave));
5067 }
5068 EXPORT_SYMBOL_GPL(ata_link_offline);
5069
5070 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5071 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5072 unsigned int action, unsigned int ehi_flags,
5073 bool async)
5074 {
5075 struct ata_link *link;
5076 unsigned long flags;
5077
5078 spin_lock_irqsave(ap->lock, flags);
5079
5080 /*
5081 * A previous PM operation might still be in progress. Wait for
5082 * ATA_PFLAG_PM_PENDING to clear.
5083 */
5084 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5085 spin_unlock_irqrestore(ap->lock, flags);
5086 ata_port_wait_eh(ap);
5087 spin_lock_irqsave(ap->lock, flags);
5088 }
5089
5090 /* Request PM operation to EH */
5091 ap->pm_mesg = mesg;
5092 ap->pflags |= ATA_PFLAG_PM_PENDING;
5093 ata_for_each_link(link, ap, HOST_FIRST) {
5094 link->eh_info.action |= action;
5095 link->eh_info.flags |= ehi_flags;
5096 }
5097
5098 ata_port_schedule_eh(ap);
5099
5100 spin_unlock_irqrestore(ap->lock, flags);
5101
5102 if (!async)
5103 ata_port_wait_eh(ap);
5104 }
5105
5106 /*
5107 * On some hardware, device fails to respond after spun down for suspend. As
5108 * the device won't be used before being resumed, we don't need to touch the
5109 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5110 *
5111 * http://thread.gmane.org/gmane.linux.ide/46764
5112 */
5113 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5114 | ATA_EHI_NO_AUTOPSY
5115 | ATA_EHI_NO_RECOVERY;
5116
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5117 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5118 {
5119 /*
5120 * We are about to suspend the port, so we do not care about
5121 * scsi_rescan_device() calls scheduled by previous resume operations.
5122 * The next resume will schedule the rescan again. So cancel any rescan
5123 * that is not done yet.
5124 */
5125 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5126
5127 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5128 }
5129
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5130 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5131 {
5132 /*
5133 * We are about to suspend the port, so we do not care about
5134 * scsi_rescan_device() calls scheduled by previous resume operations.
5135 * The next resume will schedule the rescan again. So cancel any rescan
5136 * that is not done yet.
5137 */
5138 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5139
5140 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5141 }
5142
ata_port_pm_suspend(struct device * dev)5143 static int ata_port_pm_suspend(struct device *dev)
5144 {
5145 struct ata_port *ap = to_ata_port(dev);
5146
5147 if (pm_runtime_suspended(dev))
5148 return 0;
5149
5150 ata_port_suspend(ap, PMSG_SUSPEND);
5151 return 0;
5152 }
5153
ata_port_pm_freeze(struct device * dev)5154 static int ata_port_pm_freeze(struct device *dev)
5155 {
5156 struct ata_port *ap = to_ata_port(dev);
5157
5158 if (pm_runtime_suspended(dev))
5159 return 0;
5160
5161 ata_port_suspend(ap, PMSG_FREEZE);
5162 return 0;
5163 }
5164
ata_port_pm_poweroff(struct device * dev)5165 static int ata_port_pm_poweroff(struct device *dev)
5166 {
5167 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5168 return 0;
5169 }
5170
5171 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5172 | ATA_EHI_QUIET;
5173
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5174 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5175 {
5176 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5177 }
5178
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5179 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5180 {
5181 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5182 }
5183
ata_port_pm_resume(struct device * dev)5184 static int ata_port_pm_resume(struct device *dev)
5185 {
5186 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5187 pm_runtime_disable(dev);
5188 pm_runtime_set_active(dev);
5189 pm_runtime_enable(dev);
5190 return 0;
5191 }
5192
5193 /*
5194 * For ODDs, the upper layer will poll for media change every few seconds,
5195 * which will make it enter and leave suspend state every few seconds. And
5196 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5197 * is very little and the ODD may malfunction after constantly being reset.
5198 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5199 * ODD is attached to the port.
5200 */
ata_port_runtime_idle(struct device * dev)5201 static int ata_port_runtime_idle(struct device *dev)
5202 {
5203 struct ata_port *ap = to_ata_port(dev);
5204 struct ata_link *link;
5205 struct ata_device *adev;
5206
5207 ata_for_each_link(link, ap, HOST_FIRST) {
5208 ata_for_each_dev(adev, link, ENABLED)
5209 if (adev->class == ATA_DEV_ATAPI &&
5210 !zpodd_dev_enabled(adev))
5211 return -EBUSY;
5212 }
5213
5214 return 0;
5215 }
5216
ata_port_runtime_suspend(struct device * dev)5217 static int ata_port_runtime_suspend(struct device *dev)
5218 {
5219 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5220 return 0;
5221 }
5222
ata_port_runtime_resume(struct device * dev)5223 static int ata_port_runtime_resume(struct device *dev)
5224 {
5225 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5226 return 0;
5227 }
5228
5229 static const struct dev_pm_ops ata_port_pm_ops = {
5230 .suspend = ata_port_pm_suspend,
5231 .resume = ata_port_pm_resume,
5232 .freeze = ata_port_pm_freeze,
5233 .thaw = ata_port_pm_resume,
5234 .poweroff = ata_port_pm_poweroff,
5235 .restore = ata_port_pm_resume,
5236
5237 .runtime_suspend = ata_port_runtime_suspend,
5238 .runtime_resume = ata_port_runtime_resume,
5239 .runtime_idle = ata_port_runtime_idle,
5240 };
5241
5242 /* sas ports don't participate in pm runtime management of ata_ports,
5243 * and need to resume ata devices at the domain level, not the per-port
5244 * level. sas suspend/resume is async to allow parallel port recovery
5245 * since sas has multiple ata_port instances per Scsi_Host.
5246 */
ata_sas_port_suspend(struct ata_port * ap)5247 void ata_sas_port_suspend(struct ata_port *ap)
5248 {
5249 ata_port_suspend_async(ap, PMSG_SUSPEND);
5250 }
5251 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5252
ata_sas_port_resume(struct ata_port * ap)5253 void ata_sas_port_resume(struct ata_port *ap)
5254 {
5255 ata_port_resume_async(ap, PMSG_RESUME);
5256 }
5257 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5258
5259 /**
5260 * ata_host_suspend - suspend host
5261 * @host: host to suspend
5262 * @mesg: PM message
5263 *
5264 * Suspend @host. Actual operation is performed by port suspend.
5265 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5266 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5267 {
5268 host->dev->power.power_state = mesg;
5269 }
5270 EXPORT_SYMBOL_GPL(ata_host_suspend);
5271
5272 /**
5273 * ata_host_resume - resume host
5274 * @host: host to resume
5275 *
5276 * Resume @host. Actual operation is performed by port resume.
5277 */
ata_host_resume(struct ata_host * host)5278 void ata_host_resume(struct ata_host *host)
5279 {
5280 host->dev->power.power_state = PMSG_ON;
5281 }
5282 EXPORT_SYMBOL_GPL(ata_host_resume);
5283 #endif
5284
5285 const struct device_type ata_port_type = {
5286 .name = ATA_PORT_TYPE_NAME,
5287 #ifdef CONFIG_PM
5288 .pm = &ata_port_pm_ops,
5289 #endif
5290 };
5291
5292 /**
5293 * ata_dev_init - Initialize an ata_device structure
5294 * @dev: Device structure to initialize
5295 *
5296 * Initialize @dev in preparation for probing.
5297 *
5298 * LOCKING:
5299 * Inherited from caller.
5300 */
ata_dev_init(struct ata_device * dev)5301 void ata_dev_init(struct ata_device *dev)
5302 {
5303 struct ata_link *link = ata_dev_phys_link(dev);
5304 struct ata_port *ap = link->ap;
5305 unsigned long flags;
5306
5307 /* SATA spd limit is bound to the attached device, reset together */
5308 link->sata_spd_limit = link->hw_sata_spd_limit;
5309 link->sata_spd = 0;
5310
5311 /* High bits of dev->flags are used to record warm plug
5312 * requests which occur asynchronously. Synchronize using
5313 * host lock.
5314 */
5315 spin_lock_irqsave(ap->lock, flags);
5316 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5317 dev->horkage = 0;
5318 spin_unlock_irqrestore(ap->lock, flags);
5319
5320 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5321 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5322 dev->pio_mask = UINT_MAX;
5323 dev->mwdma_mask = UINT_MAX;
5324 dev->udma_mask = UINT_MAX;
5325 }
5326
5327 /**
5328 * ata_link_init - Initialize an ata_link structure
5329 * @ap: ATA port link is attached to
5330 * @link: Link structure to initialize
5331 * @pmp: Port multiplier port number
5332 *
5333 * Initialize @link.
5334 *
5335 * LOCKING:
5336 * Kernel thread context (may sleep)
5337 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5338 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5339 {
5340 int i;
5341
5342 /* clear everything except for devices */
5343 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5344 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5345
5346 link->ap = ap;
5347 link->pmp = pmp;
5348 link->active_tag = ATA_TAG_POISON;
5349 link->hw_sata_spd_limit = UINT_MAX;
5350
5351 /* can't use iterator, ap isn't initialized yet */
5352 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5353 struct ata_device *dev = &link->device[i];
5354
5355 dev->link = link;
5356 dev->devno = dev - link->device;
5357 #ifdef CONFIG_ATA_ACPI
5358 dev->gtf_filter = ata_acpi_gtf_filter;
5359 #endif
5360 ata_dev_init(dev);
5361 }
5362 }
5363
5364 /**
5365 * sata_link_init_spd - Initialize link->sata_spd_limit
5366 * @link: Link to configure sata_spd_limit for
5367 *
5368 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5369 * configured value.
5370 *
5371 * LOCKING:
5372 * Kernel thread context (may sleep).
5373 *
5374 * RETURNS:
5375 * 0 on success, -errno on failure.
5376 */
sata_link_init_spd(struct ata_link * link)5377 int sata_link_init_spd(struct ata_link *link)
5378 {
5379 u8 spd;
5380 int rc;
5381
5382 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5383 if (rc)
5384 return rc;
5385
5386 spd = (link->saved_scontrol >> 4) & 0xf;
5387 if (spd)
5388 link->hw_sata_spd_limit &= (1 << spd) - 1;
5389
5390 ata_force_link_limits(link);
5391
5392 link->sata_spd_limit = link->hw_sata_spd_limit;
5393
5394 return 0;
5395 }
5396
5397 /**
5398 * ata_port_alloc - allocate and initialize basic ATA port resources
5399 * @host: ATA host this allocated port belongs to
5400 *
5401 * Allocate and initialize basic ATA port resources.
5402 *
5403 * RETURNS:
5404 * Allocate ATA port on success, NULL on failure.
5405 *
5406 * LOCKING:
5407 * Inherited from calling layer (may sleep).
5408 */
ata_port_alloc(struct ata_host * host)5409 struct ata_port *ata_port_alloc(struct ata_host *host)
5410 {
5411 struct ata_port *ap;
5412
5413 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5414 if (!ap)
5415 return NULL;
5416
5417 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5418 ap->lock = &host->lock;
5419 ap->print_id = -1;
5420 ap->local_port_no = -1;
5421 ap->host = host;
5422 ap->dev = host->dev;
5423
5424 mutex_init(&ap->scsi_scan_mutex);
5425 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5426 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5427 INIT_LIST_HEAD(&ap->eh_done_q);
5428 init_waitqueue_head(&ap->eh_wait_q);
5429 init_completion(&ap->park_req_pending);
5430 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5431 TIMER_DEFERRABLE);
5432
5433 ap->cbl = ATA_CBL_NONE;
5434
5435 ata_link_init(ap, &ap->link, 0);
5436
5437 #ifdef ATA_IRQ_TRAP
5438 ap->stats.unhandled_irq = 1;
5439 ap->stats.idle_irq = 1;
5440 #endif
5441 ata_sff_port_init(ap);
5442
5443 return ap;
5444 }
5445
ata_devres_release(struct device * gendev,void * res)5446 static void ata_devres_release(struct device *gendev, void *res)
5447 {
5448 struct ata_host *host = dev_get_drvdata(gendev);
5449 int i;
5450
5451 for (i = 0; i < host->n_ports; i++) {
5452 struct ata_port *ap = host->ports[i];
5453
5454 if (!ap)
5455 continue;
5456
5457 if (ap->scsi_host)
5458 scsi_host_put(ap->scsi_host);
5459
5460 }
5461
5462 dev_set_drvdata(gendev, NULL);
5463 ata_host_put(host);
5464 }
5465
ata_host_release(struct kref * kref)5466 static void ata_host_release(struct kref *kref)
5467 {
5468 struct ata_host *host = container_of(kref, struct ata_host, kref);
5469 int i;
5470
5471 for (i = 0; i < host->n_ports; i++) {
5472 struct ata_port *ap = host->ports[i];
5473
5474 kfree(ap->pmp_link);
5475 kfree(ap->slave_link);
5476 kfree(ap);
5477 host->ports[i] = NULL;
5478 }
5479 kfree(host);
5480 }
5481
ata_host_get(struct ata_host * host)5482 void ata_host_get(struct ata_host *host)
5483 {
5484 kref_get(&host->kref);
5485 }
5486
ata_host_put(struct ata_host * host)5487 void ata_host_put(struct ata_host *host)
5488 {
5489 kref_put(&host->kref, ata_host_release);
5490 }
5491 EXPORT_SYMBOL_GPL(ata_host_put);
5492
5493 /**
5494 * ata_host_alloc - allocate and init basic ATA host resources
5495 * @dev: generic device this host is associated with
5496 * @max_ports: maximum number of ATA ports associated with this host
5497 *
5498 * Allocate and initialize basic ATA host resources. LLD calls
5499 * this function to allocate a host, initializes it fully and
5500 * attaches it using ata_host_register().
5501 *
5502 * @max_ports ports are allocated and host->n_ports is
5503 * initialized to @max_ports. The caller is allowed to decrease
5504 * host->n_ports before calling ata_host_register(). The unused
5505 * ports will be automatically freed on registration.
5506 *
5507 * RETURNS:
5508 * Allocate ATA host on success, NULL on failure.
5509 *
5510 * LOCKING:
5511 * Inherited from calling layer (may sleep).
5512 */
ata_host_alloc(struct device * dev,int max_ports)5513 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5514 {
5515 struct ata_host *host;
5516 size_t sz;
5517 int i;
5518 void *dr;
5519
5520 /* alloc a container for our list of ATA ports (buses) */
5521 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5522 host = kzalloc(sz, GFP_KERNEL);
5523 if (!host)
5524 return NULL;
5525
5526 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5527 goto err_free;
5528
5529 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5530 if (!dr)
5531 goto err_out;
5532
5533 devres_add(dev, dr);
5534 dev_set_drvdata(dev, host);
5535
5536 spin_lock_init(&host->lock);
5537 mutex_init(&host->eh_mutex);
5538 host->dev = dev;
5539 host->n_ports = max_ports;
5540 kref_init(&host->kref);
5541
5542 /* allocate ports bound to this host */
5543 for (i = 0; i < max_ports; i++) {
5544 struct ata_port *ap;
5545
5546 ap = ata_port_alloc(host);
5547 if (!ap)
5548 goto err_out;
5549
5550 ap->port_no = i;
5551 host->ports[i] = ap;
5552 }
5553
5554 devres_remove_group(dev, NULL);
5555 return host;
5556
5557 err_out:
5558 devres_release_group(dev, NULL);
5559 err_free:
5560 kfree(host);
5561 return NULL;
5562 }
5563 EXPORT_SYMBOL_GPL(ata_host_alloc);
5564
5565 /**
5566 * ata_host_alloc_pinfo - alloc host and init with port_info array
5567 * @dev: generic device this host is associated with
5568 * @ppi: array of ATA port_info to initialize host with
5569 * @n_ports: number of ATA ports attached to this host
5570 *
5571 * Allocate ATA host and initialize with info from @ppi. If NULL
5572 * terminated, @ppi may contain fewer entries than @n_ports. The
5573 * last entry will be used for the remaining ports.
5574 *
5575 * RETURNS:
5576 * Allocate ATA host on success, NULL on failure.
5577 *
5578 * LOCKING:
5579 * Inherited from calling layer (may sleep).
5580 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5581 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5582 const struct ata_port_info * const * ppi,
5583 int n_ports)
5584 {
5585 const struct ata_port_info *pi = &ata_dummy_port_info;
5586 struct ata_host *host;
5587 int i, j;
5588
5589 host = ata_host_alloc(dev, n_ports);
5590 if (!host)
5591 return NULL;
5592
5593 for (i = 0, j = 0; i < host->n_ports; i++) {
5594 struct ata_port *ap = host->ports[i];
5595
5596 if (ppi[j])
5597 pi = ppi[j++];
5598
5599 ap->pio_mask = pi->pio_mask;
5600 ap->mwdma_mask = pi->mwdma_mask;
5601 ap->udma_mask = pi->udma_mask;
5602 ap->flags |= pi->flags;
5603 ap->link.flags |= pi->link_flags;
5604 ap->ops = pi->port_ops;
5605
5606 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5607 host->ops = pi->port_ops;
5608 }
5609
5610 return host;
5611 }
5612 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5613
ata_host_stop(struct device * gendev,void * res)5614 static void ata_host_stop(struct device *gendev, void *res)
5615 {
5616 struct ata_host *host = dev_get_drvdata(gendev);
5617 int i;
5618
5619 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5620
5621 for (i = 0; i < host->n_ports; i++) {
5622 struct ata_port *ap = host->ports[i];
5623
5624 if (ap->ops->port_stop)
5625 ap->ops->port_stop(ap);
5626 }
5627
5628 if (host->ops->host_stop)
5629 host->ops->host_stop(host);
5630 }
5631
5632 /**
5633 * ata_finalize_port_ops - finalize ata_port_operations
5634 * @ops: ata_port_operations to finalize
5635 *
5636 * An ata_port_operations can inherit from another ops and that
5637 * ops can again inherit from another. This can go on as many
5638 * times as necessary as long as there is no loop in the
5639 * inheritance chain.
5640 *
5641 * Ops tables are finalized when the host is started. NULL or
5642 * unspecified entries are inherited from the closet ancestor
5643 * which has the method and the entry is populated with it.
5644 * After finalization, the ops table directly points to all the
5645 * methods and ->inherits is no longer necessary and cleared.
5646 *
5647 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5648 *
5649 * LOCKING:
5650 * None.
5651 */
ata_finalize_port_ops(struct ata_port_operations * ops)5652 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5653 {
5654 static DEFINE_SPINLOCK(lock);
5655 const struct ata_port_operations *cur;
5656 void **begin = (void **)ops;
5657 void **end = (void **)&ops->inherits;
5658 void **pp;
5659
5660 if (!ops || !ops->inherits)
5661 return;
5662
5663 spin_lock(&lock);
5664
5665 for (cur = ops->inherits; cur; cur = cur->inherits) {
5666 void **inherit = (void **)cur;
5667
5668 for (pp = begin; pp < end; pp++, inherit++)
5669 if (!*pp)
5670 *pp = *inherit;
5671 }
5672
5673 for (pp = begin; pp < end; pp++)
5674 if (IS_ERR(*pp))
5675 *pp = NULL;
5676
5677 ops->inherits = NULL;
5678
5679 spin_unlock(&lock);
5680 }
5681
5682 /**
5683 * ata_host_start - start and freeze ports of an ATA host
5684 * @host: ATA host to start ports for
5685 *
5686 * Start and then freeze ports of @host. Started status is
5687 * recorded in host->flags, so this function can be called
5688 * multiple times. Ports are guaranteed to get started only
5689 * once. If host->ops is not initialized yet, it is set to the
5690 * first non-dummy port ops.
5691 *
5692 * LOCKING:
5693 * Inherited from calling layer (may sleep).
5694 *
5695 * RETURNS:
5696 * 0 if all ports are started successfully, -errno otherwise.
5697 */
ata_host_start(struct ata_host * host)5698 int ata_host_start(struct ata_host *host)
5699 {
5700 int have_stop = 0;
5701 void *start_dr = NULL;
5702 int i, rc;
5703
5704 if (host->flags & ATA_HOST_STARTED)
5705 return 0;
5706
5707 ata_finalize_port_ops(host->ops);
5708
5709 for (i = 0; i < host->n_ports; i++) {
5710 struct ata_port *ap = host->ports[i];
5711
5712 ata_finalize_port_ops(ap->ops);
5713
5714 if (!host->ops && !ata_port_is_dummy(ap))
5715 host->ops = ap->ops;
5716
5717 if (ap->ops->port_stop)
5718 have_stop = 1;
5719 }
5720
5721 if (host->ops && host->ops->host_stop)
5722 have_stop = 1;
5723
5724 if (have_stop) {
5725 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5726 if (!start_dr)
5727 return -ENOMEM;
5728 }
5729
5730 for (i = 0; i < host->n_ports; i++) {
5731 struct ata_port *ap = host->ports[i];
5732
5733 if (ap->ops->port_start) {
5734 rc = ap->ops->port_start(ap);
5735 if (rc) {
5736 if (rc != -ENODEV)
5737 dev_err(host->dev,
5738 "failed to start port %d (errno=%d)\n",
5739 i, rc);
5740 goto err_out;
5741 }
5742 }
5743 ata_eh_freeze_port(ap);
5744 }
5745
5746 if (start_dr)
5747 devres_add(host->dev, start_dr);
5748 host->flags |= ATA_HOST_STARTED;
5749 return 0;
5750
5751 err_out:
5752 while (--i >= 0) {
5753 struct ata_port *ap = host->ports[i];
5754
5755 if (ap->ops->port_stop)
5756 ap->ops->port_stop(ap);
5757 }
5758 devres_free(start_dr);
5759 return rc;
5760 }
5761 EXPORT_SYMBOL_GPL(ata_host_start);
5762
5763 /**
5764 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5765 * @host: host to initialize
5766 * @dev: device host is attached to
5767 * @ops: port_ops
5768 *
5769 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5770 void ata_host_init(struct ata_host *host, struct device *dev,
5771 struct ata_port_operations *ops)
5772 {
5773 spin_lock_init(&host->lock);
5774 mutex_init(&host->eh_mutex);
5775 host->n_tags = ATA_MAX_QUEUE;
5776 host->dev = dev;
5777 host->ops = ops;
5778 kref_init(&host->kref);
5779 }
5780 EXPORT_SYMBOL_GPL(ata_host_init);
5781
__ata_port_probe(struct ata_port * ap)5782 void __ata_port_probe(struct ata_port *ap)
5783 {
5784 struct ata_eh_info *ehi = &ap->link.eh_info;
5785 unsigned long flags;
5786
5787 /* kick EH for boot probing */
5788 spin_lock_irqsave(ap->lock, flags);
5789
5790 ehi->probe_mask |= ATA_ALL_DEVICES;
5791 ehi->action |= ATA_EH_RESET;
5792 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5793
5794 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5795 ap->pflags |= ATA_PFLAG_LOADING;
5796 ata_port_schedule_eh(ap);
5797
5798 spin_unlock_irqrestore(ap->lock, flags);
5799 }
5800
ata_port_probe(struct ata_port * ap)5801 int ata_port_probe(struct ata_port *ap)
5802 {
5803 int rc = 0;
5804
5805 if (ap->ops->error_handler) {
5806 __ata_port_probe(ap);
5807 ata_port_wait_eh(ap);
5808 } else {
5809 rc = ata_bus_probe(ap);
5810 }
5811 return rc;
5812 }
5813
5814
async_port_probe(void * data,async_cookie_t cookie)5815 static void async_port_probe(void *data, async_cookie_t cookie)
5816 {
5817 struct ata_port *ap = data;
5818
5819 /*
5820 * If we're not allowed to scan this host in parallel,
5821 * we need to wait until all previous scans have completed
5822 * before going further.
5823 * Jeff Garzik says this is only within a controller, so we
5824 * don't need to wait for port 0, only for later ports.
5825 */
5826 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5827 async_synchronize_cookie(cookie);
5828
5829 (void)ata_port_probe(ap);
5830
5831 /* in order to keep device order, we need to synchronize at this point */
5832 async_synchronize_cookie(cookie);
5833
5834 ata_scsi_scan_host(ap, 1);
5835 }
5836
5837 /**
5838 * ata_host_register - register initialized ATA host
5839 * @host: ATA host to register
5840 * @sht: template for SCSI host
5841 *
5842 * Register initialized ATA host. @host is allocated using
5843 * ata_host_alloc() and fully initialized by LLD. This function
5844 * starts ports, registers @host with ATA and SCSI layers and
5845 * probe registered devices.
5846 *
5847 * LOCKING:
5848 * Inherited from calling layer (may sleep).
5849 *
5850 * RETURNS:
5851 * 0 on success, -errno otherwise.
5852 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)5853 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5854 {
5855 int i, rc;
5856
5857 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5858
5859 /* host must have been started */
5860 if (!(host->flags & ATA_HOST_STARTED)) {
5861 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5862 WARN_ON(1);
5863 return -EINVAL;
5864 }
5865
5866 /* Blow away unused ports. This happens when LLD can't
5867 * determine the exact number of ports to allocate at
5868 * allocation time.
5869 */
5870 for (i = host->n_ports; host->ports[i]; i++)
5871 kfree(host->ports[i]);
5872
5873 /* give ports names and add SCSI hosts */
5874 for (i = 0; i < host->n_ports; i++) {
5875 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5876 host->ports[i]->local_port_no = i + 1;
5877 }
5878
5879 /* Create associated sysfs transport objects */
5880 for (i = 0; i < host->n_ports; i++) {
5881 rc = ata_tport_add(host->dev,host->ports[i]);
5882 if (rc) {
5883 goto err_tadd;
5884 }
5885 }
5886
5887 rc = ata_scsi_add_hosts(host, sht);
5888 if (rc)
5889 goto err_tadd;
5890
5891 /* set cable, sata_spd_limit and report */
5892 for (i = 0; i < host->n_ports; i++) {
5893 struct ata_port *ap = host->ports[i];
5894 unsigned int xfer_mask;
5895
5896 /* set SATA cable type if still unset */
5897 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5898 ap->cbl = ATA_CBL_SATA;
5899
5900 /* init sata_spd_limit to the current value */
5901 sata_link_init_spd(&ap->link);
5902 if (ap->slave_link)
5903 sata_link_init_spd(ap->slave_link);
5904
5905 /* print per-port info to dmesg */
5906 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5907 ap->udma_mask);
5908
5909 if (!ata_port_is_dummy(ap)) {
5910 ata_port_info(ap, "%cATA max %s %s\n",
5911 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5912 ata_mode_string(xfer_mask),
5913 ap->link.eh_info.desc);
5914 ata_ehi_clear_desc(&ap->link.eh_info);
5915 } else
5916 ata_port_info(ap, "DUMMY\n");
5917 }
5918
5919 /* perform each probe asynchronously */
5920 for (i = 0; i < host->n_ports; i++) {
5921 struct ata_port *ap = host->ports[i];
5922 ap->cookie = async_schedule(async_port_probe, ap);
5923 }
5924
5925 return 0;
5926
5927 err_tadd:
5928 while (--i >= 0) {
5929 ata_tport_delete(host->ports[i]);
5930 }
5931 return rc;
5932
5933 }
5934 EXPORT_SYMBOL_GPL(ata_host_register);
5935
5936 /**
5937 * ata_host_activate - start host, request IRQ and register it
5938 * @host: target ATA host
5939 * @irq: IRQ to request
5940 * @irq_handler: irq_handler used when requesting IRQ
5941 * @irq_flags: irq_flags used when requesting IRQ
5942 * @sht: scsi_host_template to use when registering the host
5943 *
5944 * After allocating an ATA host and initializing it, most libata
5945 * LLDs perform three steps to activate the host - start host,
5946 * request IRQ and register it. This helper takes necessary
5947 * arguments and performs the three steps in one go.
5948 *
5949 * An invalid IRQ skips the IRQ registration and expects the host to
5950 * have set polling mode on the port. In this case, @irq_handler
5951 * should be NULL.
5952 *
5953 * LOCKING:
5954 * Inherited from calling layer (may sleep).
5955 *
5956 * RETURNS:
5957 * 0 on success, -errno otherwise.
5958 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)5959 int ata_host_activate(struct ata_host *host, int irq,
5960 irq_handler_t irq_handler, unsigned long irq_flags,
5961 struct scsi_host_template *sht)
5962 {
5963 int i, rc;
5964 char *irq_desc;
5965
5966 rc = ata_host_start(host);
5967 if (rc)
5968 return rc;
5969
5970 /* Special case for polling mode */
5971 if (!irq) {
5972 WARN_ON(irq_handler);
5973 return ata_host_register(host, sht);
5974 }
5975
5976 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5977 dev_driver_string(host->dev),
5978 dev_name(host->dev));
5979 if (!irq_desc)
5980 return -ENOMEM;
5981
5982 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5983 irq_desc, host);
5984 if (rc)
5985 return rc;
5986
5987 for (i = 0; i < host->n_ports; i++)
5988 ata_port_desc(host->ports[i], "irq %d", irq);
5989
5990 rc = ata_host_register(host, sht);
5991 /* if failed, just free the IRQ and leave ports alone */
5992 if (rc)
5993 devm_free_irq(host->dev, irq, host);
5994
5995 return rc;
5996 }
5997 EXPORT_SYMBOL_GPL(ata_host_activate);
5998
5999 /**
6000 * ata_port_detach - Detach ATA port in preparation of device removal
6001 * @ap: ATA port to be detached
6002 *
6003 * Detach all ATA devices and the associated SCSI devices of @ap;
6004 * then, remove the associated SCSI host. @ap is guaranteed to
6005 * be quiescent on return from this function.
6006 *
6007 * LOCKING:
6008 * Kernel thread context (may sleep).
6009 */
ata_port_detach(struct ata_port * ap)6010 static void ata_port_detach(struct ata_port *ap)
6011 {
6012 unsigned long flags;
6013 struct ata_link *link;
6014 struct ata_device *dev;
6015
6016 if (!ap->ops->error_handler)
6017 goto skip_eh;
6018
6019 /* Wait for any ongoing EH */
6020 ata_port_wait_eh(ap);
6021
6022 mutex_lock(&ap->scsi_scan_mutex);
6023 spin_lock_irqsave(ap->lock, flags);
6024
6025 /* Remove scsi devices */
6026 ata_for_each_link(link, ap, HOST_FIRST) {
6027 ata_for_each_dev(dev, link, ALL) {
6028 if (dev->sdev) {
6029 spin_unlock_irqrestore(ap->lock, flags);
6030 scsi_remove_device(dev->sdev);
6031 spin_lock_irqsave(ap->lock, flags);
6032 dev->sdev = NULL;
6033 }
6034 }
6035 }
6036
6037 /* Tell EH to disable all devices */
6038 ap->pflags |= ATA_PFLAG_UNLOADING;
6039 ata_port_schedule_eh(ap);
6040
6041 spin_unlock_irqrestore(ap->lock, flags);
6042 mutex_unlock(&ap->scsi_scan_mutex);
6043
6044 /* wait till EH commits suicide */
6045 ata_port_wait_eh(ap);
6046
6047 /* it better be dead now */
6048 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6049
6050 cancel_delayed_work_sync(&ap->hotplug_task);
6051 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6052
6053 skip_eh:
6054 /* clean up zpodd on port removal */
6055 ata_for_each_link(link, ap, HOST_FIRST) {
6056 ata_for_each_dev(dev, link, ALL) {
6057 if (zpodd_dev_enabled(dev))
6058 zpodd_exit(dev);
6059 }
6060 }
6061 if (ap->pmp_link) {
6062 int i;
6063 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6064 ata_tlink_delete(&ap->pmp_link[i]);
6065 }
6066 /* remove the associated SCSI host */
6067 scsi_remove_host(ap->scsi_host);
6068 ata_tport_delete(ap);
6069 }
6070
6071 /**
6072 * ata_host_detach - Detach all ports of an ATA host
6073 * @host: Host to detach
6074 *
6075 * Detach all ports of @host.
6076 *
6077 * LOCKING:
6078 * Kernel thread context (may sleep).
6079 */
ata_host_detach(struct ata_host * host)6080 void ata_host_detach(struct ata_host *host)
6081 {
6082 int i;
6083
6084 for (i = 0; i < host->n_ports; i++) {
6085 /* Ensure ata_port probe has completed */
6086 async_synchronize_cookie(host->ports[i]->cookie + 1);
6087 ata_port_detach(host->ports[i]);
6088 }
6089
6090 /* the host is dead now, dissociate ACPI */
6091 ata_acpi_dissociate(host);
6092 }
6093 EXPORT_SYMBOL_GPL(ata_host_detach);
6094
6095 #ifdef CONFIG_PCI
6096
6097 /**
6098 * ata_pci_remove_one - PCI layer callback for device removal
6099 * @pdev: PCI device that was removed
6100 *
6101 * PCI layer indicates to libata via this hook that hot-unplug or
6102 * module unload event has occurred. Detach all ports. Resource
6103 * release is handled via devres.
6104 *
6105 * LOCKING:
6106 * Inherited from PCI layer (may sleep).
6107 */
ata_pci_remove_one(struct pci_dev * pdev)6108 void ata_pci_remove_one(struct pci_dev *pdev)
6109 {
6110 struct ata_host *host = pci_get_drvdata(pdev);
6111
6112 ata_host_detach(host);
6113 }
6114 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6115
ata_pci_shutdown_one(struct pci_dev * pdev)6116 void ata_pci_shutdown_one(struct pci_dev *pdev)
6117 {
6118 struct ata_host *host = pci_get_drvdata(pdev);
6119 int i;
6120
6121 for (i = 0; i < host->n_ports; i++) {
6122 struct ata_port *ap = host->ports[i];
6123
6124 ap->pflags |= ATA_PFLAG_FROZEN;
6125
6126 /* Disable port interrupts */
6127 if (ap->ops->freeze)
6128 ap->ops->freeze(ap);
6129
6130 /* Stop the port DMA engines */
6131 if (ap->ops->port_stop)
6132 ap->ops->port_stop(ap);
6133 }
6134 }
6135 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6136
6137 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6138 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6139 {
6140 unsigned long tmp = 0;
6141
6142 switch (bits->width) {
6143 case 1: {
6144 u8 tmp8 = 0;
6145 pci_read_config_byte(pdev, bits->reg, &tmp8);
6146 tmp = tmp8;
6147 break;
6148 }
6149 case 2: {
6150 u16 tmp16 = 0;
6151 pci_read_config_word(pdev, bits->reg, &tmp16);
6152 tmp = tmp16;
6153 break;
6154 }
6155 case 4: {
6156 u32 tmp32 = 0;
6157 pci_read_config_dword(pdev, bits->reg, &tmp32);
6158 tmp = tmp32;
6159 break;
6160 }
6161
6162 default:
6163 return -EINVAL;
6164 }
6165
6166 tmp &= bits->mask;
6167
6168 return (tmp == bits->val) ? 1 : 0;
6169 }
6170 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6171
6172 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6173 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6174 {
6175 pci_save_state(pdev);
6176 pci_disable_device(pdev);
6177
6178 if (mesg.event & PM_EVENT_SLEEP)
6179 pci_set_power_state(pdev, PCI_D3hot);
6180 }
6181 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6182
ata_pci_device_do_resume(struct pci_dev * pdev)6183 int ata_pci_device_do_resume(struct pci_dev *pdev)
6184 {
6185 int rc;
6186
6187 pci_set_power_state(pdev, PCI_D0);
6188 pci_restore_state(pdev);
6189
6190 rc = pcim_enable_device(pdev);
6191 if (rc) {
6192 dev_err(&pdev->dev,
6193 "failed to enable device after resume (%d)\n", rc);
6194 return rc;
6195 }
6196
6197 pci_set_master(pdev);
6198 return 0;
6199 }
6200 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6201
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6202 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6203 {
6204 struct ata_host *host = pci_get_drvdata(pdev);
6205
6206 ata_host_suspend(host, mesg);
6207
6208 ata_pci_device_do_suspend(pdev, mesg);
6209
6210 return 0;
6211 }
6212 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6213
ata_pci_device_resume(struct pci_dev * pdev)6214 int ata_pci_device_resume(struct pci_dev *pdev)
6215 {
6216 struct ata_host *host = pci_get_drvdata(pdev);
6217 int rc;
6218
6219 rc = ata_pci_device_do_resume(pdev);
6220 if (rc == 0)
6221 ata_host_resume(host);
6222 return rc;
6223 }
6224 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6225 #endif /* CONFIG_PM */
6226 #endif /* CONFIG_PCI */
6227
6228 /**
6229 * ata_platform_remove_one - Platform layer callback for device removal
6230 * @pdev: Platform device that was removed
6231 *
6232 * Platform layer indicates to libata via this hook that hot-unplug or
6233 * module unload event has occurred. Detach all ports. Resource
6234 * release is handled via devres.
6235 *
6236 * LOCKING:
6237 * Inherited from platform layer (may sleep).
6238 */
ata_platform_remove_one(struct platform_device * pdev)6239 int ata_platform_remove_one(struct platform_device *pdev)
6240 {
6241 struct ata_host *host = platform_get_drvdata(pdev);
6242
6243 ata_host_detach(host);
6244
6245 return 0;
6246 }
6247 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6248
6249 #ifdef CONFIG_ATA_FORCE
6250
6251 #define force_cbl(name, flag) \
6252 { #name, .cbl = (flag) }
6253
6254 #define force_spd_limit(spd, val) \
6255 { #spd, .spd_limit = (val) }
6256
6257 #define force_xfer(mode, shift) \
6258 { #mode, .xfer_mask = (1UL << (shift)) }
6259
6260 #define force_lflag_on(name, flags) \
6261 { #name, .lflags_on = (flags) }
6262
6263 #define force_lflag_onoff(name, flags) \
6264 { "no" #name, .lflags_on = (flags) }, \
6265 { #name, .lflags_off = (flags) }
6266
6267 #define force_horkage_on(name, flag) \
6268 { #name, .horkage_on = (flag) }
6269
6270 #define force_horkage_onoff(name, flag) \
6271 { "no" #name, .horkage_on = (flag) }, \
6272 { #name, .horkage_off = (flag) }
6273
6274 static const struct ata_force_param force_tbl[] __initconst = {
6275 force_cbl(40c, ATA_CBL_PATA40),
6276 force_cbl(80c, ATA_CBL_PATA80),
6277 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6278 force_cbl(unk, ATA_CBL_PATA_UNK),
6279 force_cbl(ign, ATA_CBL_PATA_IGN),
6280 force_cbl(sata, ATA_CBL_SATA),
6281
6282 force_spd_limit(1.5Gbps, 1),
6283 force_spd_limit(3.0Gbps, 2),
6284
6285 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6286 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6287 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6288 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6289 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6290 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6291 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6292 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6293 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6294 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6295 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6296 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6297 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6298 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6299 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6300 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6301 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6302 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6303 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6304 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6305 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6306 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6307 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6308 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6309 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6310 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6311 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6312 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6313 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6314 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6315 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6316 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6317 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6318 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6319
6320 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6321 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6322 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6323 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6324 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6325
6326 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ),
6327 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM),
6328 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI),
6329
6330 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM),
6331 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM),
6332 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6333
6334 force_horkage_onoff(dma, ATA_HORKAGE_NODMA),
6335 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR),
6336 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6337
6338 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG),
6339 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG),
6340 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR),
6341
6342 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128),
6343 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024),
6344 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48),
6345
6346 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM),
6347 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER),
6348 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID),
6349
6350 force_horkage_on(disable, ATA_HORKAGE_DISABLE),
6351 };
6352
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6353 static int __init ata_parse_force_one(char **cur,
6354 struct ata_force_ent *force_ent,
6355 const char **reason)
6356 {
6357 char *start = *cur, *p = *cur;
6358 char *id, *val, *endp;
6359 const struct ata_force_param *match_fp = NULL;
6360 int nr_matches = 0, i;
6361
6362 /* find where this param ends and update *cur */
6363 while (*p != '\0' && *p != ',')
6364 p++;
6365
6366 if (*p == '\0')
6367 *cur = p;
6368 else
6369 *cur = p + 1;
6370
6371 *p = '\0';
6372
6373 /* parse */
6374 p = strchr(start, ':');
6375 if (!p) {
6376 val = strstrip(start);
6377 goto parse_val;
6378 }
6379 *p = '\0';
6380
6381 id = strstrip(start);
6382 val = strstrip(p + 1);
6383
6384 /* parse id */
6385 p = strchr(id, '.');
6386 if (p) {
6387 *p++ = '\0';
6388 force_ent->device = simple_strtoul(p, &endp, 10);
6389 if (p == endp || *endp != '\0') {
6390 *reason = "invalid device";
6391 return -EINVAL;
6392 }
6393 }
6394
6395 force_ent->port = simple_strtoul(id, &endp, 10);
6396 if (id == endp || *endp != '\0') {
6397 *reason = "invalid port/link";
6398 return -EINVAL;
6399 }
6400
6401 parse_val:
6402 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6403 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6404 const struct ata_force_param *fp = &force_tbl[i];
6405
6406 if (strncasecmp(val, fp->name, strlen(val)))
6407 continue;
6408
6409 nr_matches++;
6410 match_fp = fp;
6411
6412 if (strcasecmp(val, fp->name) == 0) {
6413 nr_matches = 1;
6414 break;
6415 }
6416 }
6417
6418 if (!nr_matches) {
6419 *reason = "unknown value";
6420 return -EINVAL;
6421 }
6422 if (nr_matches > 1) {
6423 *reason = "ambiguous value";
6424 return -EINVAL;
6425 }
6426
6427 force_ent->param = *match_fp;
6428
6429 return 0;
6430 }
6431
ata_parse_force_param(void)6432 static void __init ata_parse_force_param(void)
6433 {
6434 int idx = 0, size = 1;
6435 int last_port = -1, last_device = -1;
6436 char *p, *cur, *next;
6437
6438 /* Calculate maximum number of params and allocate ata_force_tbl */
6439 for (p = ata_force_param_buf; *p; p++)
6440 if (*p == ',')
6441 size++;
6442
6443 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6444 if (!ata_force_tbl) {
6445 printk(KERN_WARNING "ata: failed to extend force table, "
6446 "libata.force ignored\n");
6447 return;
6448 }
6449
6450 /* parse and populate the table */
6451 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6452 const char *reason = "";
6453 struct ata_force_ent te = { .port = -1, .device = -1 };
6454
6455 next = cur;
6456 if (ata_parse_force_one(&next, &te, &reason)) {
6457 printk(KERN_WARNING "ata: failed to parse force "
6458 "parameter \"%s\" (%s)\n",
6459 cur, reason);
6460 continue;
6461 }
6462
6463 if (te.port == -1) {
6464 te.port = last_port;
6465 te.device = last_device;
6466 }
6467
6468 ata_force_tbl[idx++] = te;
6469
6470 last_port = te.port;
6471 last_device = te.device;
6472 }
6473
6474 ata_force_tbl_size = idx;
6475 }
6476
ata_free_force_param(void)6477 static void ata_free_force_param(void)
6478 {
6479 kfree(ata_force_tbl);
6480 }
6481 #else
ata_parse_force_param(void)6482 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6483 static inline void ata_free_force_param(void) { }
6484 #endif
6485
ata_init(void)6486 static int __init ata_init(void)
6487 {
6488 int rc;
6489
6490 ata_parse_force_param();
6491
6492 rc = ata_sff_init();
6493 if (rc) {
6494 ata_free_force_param();
6495 return rc;
6496 }
6497
6498 libata_transport_init();
6499 ata_scsi_transport_template = ata_attach_transport();
6500 if (!ata_scsi_transport_template) {
6501 ata_sff_exit();
6502 rc = -ENOMEM;
6503 goto err_out;
6504 }
6505
6506 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6507 return 0;
6508
6509 err_out:
6510 return rc;
6511 }
6512
ata_exit(void)6513 static void __exit ata_exit(void)
6514 {
6515 ata_release_transport(ata_scsi_transport_template);
6516 libata_transport_exit();
6517 ata_sff_exit();
6518 ata_free_force_param();
6519 }
6520
6521 subsys_initcall(ata_init);
6522 module_exit(ata_exit);
6523
6524 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6525
ata_ratelimit(void)6526 int ata_ratelimit(void)
6527 {
6528 return __ratelimit(&ratelimit);
6529 }
6530 EXPORT_SYMBOL_GPL(ata_ratelimit);
6531
6532 /**
6533 * ata_msleep - ATA EH owner aware msleep
6534 * @ap: ATA port to attribute the sleep to
6535 * @msecs: duration to sleep in milliseconds
6536 *
6537 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6538 * ownership is released before going to sleep and reacquired
6539 * after the sleep is complete. IOW, other ports sharing the
6540 * @ap->host will be allowed to own the EH while this task is
6541 * sleeping.
6542 *
6543 * LOCKING:
6544 * Might sleep.
6545 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6546 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6547 {
6548 bool owns_eh = ap && ap->host->eh_owner == current;
6549
6550 if (owns_eh)
6551 ata_eh_release(ap);
6552
6553 if (msecs < 20) {
6554 unsigned long usecs = msecs * USEC_PER_MSEC;
6555 usleep_range(usecs, usecs + 50);
6556 } else {
6557 msleep(msecs);
6558 }
6559
6560 if (owns_eh)
6561 ata_eh_acquire(ap);
6562 }
6563 EXPORT_SYMBOL_GPL(ata_msleep);
6564
6565 /**
6566 * ata_wait_register - wait until register value changes
6567 * @ap: ATA port to wait register for, can be NULL
6568 * @reg: IO-mapped register
6569 * @mask: Mask to apply to read register value
6570 * @val: Wait condition
6571 * @interval: polling interval in milliseconds
6572 * @timeout: timeout in milliseconds
6573 *
6574 * Waiting for some bits of register to change is a common
6575 * operation for ATA controllers. This function reads 32bit LE
6576 * IO-mapped register @reg and tests for the following condition.
6577 *
6578 * (*@reg & mask) != val
6579 *
6580 * If the condition is met, it returns; otherwise, the process is
6581 * repeated after @interval_msec until timeout.
6582 *
6583 * LOCKING:
6584 * Kernel thread context (may sleep)
6585 *
6586 * RETURNS:
6587 * The final register value.
6588 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6589 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6590 unsigned long interval, unsigned long timeout)
6591 {
6592 unsigned long deadline;
6593 u32 tmp;
6594
6595 tmp = ioread32(reg);
6596
6597 /* Calculate timeout _after_ the first read to make sure
6598 * preceding writes reach the controller before starting to
6599 * eat away the timeout.
6600 */
6601 deadline = ata_deadline(jiffies, timeout);
6602
6603 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6604 ata_msleep(ap, interval);
6605 tmp = ioread32(reg);
6606 }
6607
6608 return tmp;
6609 }
6610 EXPORT_SYMBOL_GPL(ata_wait_register);
6611
6612 /*
6613 * Dummy port_ops
6614 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6615 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6616 {
6617 return AC_ERR_SYSTEM;
6618 }
6619
ata_dummy_error_handler(struct ata_port * ap)6620 static void ata_dummy_error_handler(struct ata_port *ap)
6621 {
6622 /* truly dummy */
6623 }
6624
6625 struct ata_port_operations ata_dummy_port_ops = {
6626 .qc_prep = ata_noop_qc_prep,
6627 .qc_issue = ata_dummy_qc_issue,
6628 .error_handler = ata_dummy_error_handler,
6629 .sched_eh = ata_std_sched_eh,
6630 .end_eh = ata_std_end_eh,
6631 };
6632 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6633
6634 const struct ata_port_info ata_dummy_port_info = {
6635 .port_ops = &ata_dummy_port_ops,
6636 };
6637 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6638
ata_print_version(const struct device * dev,const char * version)6639 void ata_print_version(const struct device *dev, const char *version)
6640 {
6641 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6642 }
6643 EXPORT_SYMBOL(ata_print_version);
6644
6645 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6646 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6647 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6648 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6649 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6650