1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
96
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 static struct workqueue_struct *btree_io_wq;
103
104 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105
106
write_block(struct btree * b)107 static inline struct bset *write_block(struct btree *b)
108 {
109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111
bch_btree_init_next(struct btree * b)112 static void bch_btree_init_next(struct btree *b)
113 {
114 /* If not a leaf node, always sort */
115 if (b->level && b->keys.nsets)
116 bch_btree_sort(&b->keys, &b->c->sort);
117 else
118 bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120 if (b->written < btree_blocks(b))
121 bch_bset_init_next(&b->keys, write_block(b),
122 bset_magic(&b->c->cache->sb));
123
124 }
125
126 /* Btree key manipulation */
127
bkey_put(struct cache_set * c,struct bkey * k)128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130 unsigned int i;
131
132 for (i = 0; i < KEY_PTRS(k); i++)
133 if (ptr_available(c, k, i))
134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136
137 /* Btree IO */
138
btree_csum_set(struct btree * b,struct bset * i)139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141 uint64_t crc = b->key.ptr[0];
142 void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144 crc = crc64_be(crc, data, end - data);
145 return crc ^ 0xffffffffffffffffULL;
146 }
147
bch_btree_node_read_done(struct btree * b)148 void bch_btree_node_read_done(struct btree *b)
149 {
150 const char *err = "bad btree header";
151 struct bset *i = btree_bset_first(b);
152 struct btree_iter *iter;
153
154 /*
155 * c->fill_iter can allocate an iterator with more memory space
156 * than static MAX_BSETS.
157 * See the comment arount cache_set->fill_iter.
158 */
159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 iter->used = 0;
162
163 #ifdef CONFIG_BCACHE_DEBUG
164 iter->b = &b->keys;
165 #endif
166
167 if (!i->seq)
168 goto err;
169
170 for (;
171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 i = write_block(b)) {
173 err = "unsupported bset version";
174 if (i->version > BCACHE_BSET_VERSION)
175 goto err;
176
177 err = "bad btree header";
178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 btree_blocks(b))
180 goto err;
181
182 err = "bad magic";
183 if (i->magic != bset_magic(&b->c->cache->sb))
184 goto err;
185
186 err = "bad checksum";
187 switch (i->version) {
188 case 0:
189 if (i->csum != csum_set(i))
190 goto err;
191 break;
192 case BCACHE_BSET_VERSION:
193 if (i->csum != btree_csum_set(b, i))
194 goto err;
195 break;
196 }
197
198 err = "empty set";
199 if (i != b->keys.set[0].data && !i->keys)
200 goto err;
201
202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204 b->written += set_blocks(i, block_bytes(b->c->cache));
205 }
206
207 err = "corrupted btree";
208 for (i = write_block(b);
209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 i = ((void *) i) + block_bytes(b->c->cache))
211 if (i->seq == b->keys.set[0].data->seq)
212 goto err;
213
214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216 i = b->keys.set[0].data;
217 err = "short btree key";
218 if (b->keys.set[0].size &&
219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 goto err;
221
222 if (b->written < btree_blocks(b))
223 bch_bset_init_next(&b->keys, write_block(b),
224 bset_magic(&b->c->cache->sb));
225 out:
226 mempool_free(iter, &b->c->fill_iter);
227 return;
228 err:
229 set_btree_node_io_error(b);
230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 bset_block_offset(b, i), i->keys);
233 goto out;
234 }
235
btree_node_read_endio(struct bio * bio)236 static void btree_node_read_endio(struct bio *bio)
237 {
238 struct closure *cl = bio->bi_private;
239
240 closure_put(cl);
241 }
242
bch_btree_node_read(struct btree * b)243 static void bch_btree_node_read(struct btree *b)
244 {
245 uint64_t start_time = local_clock();
246 struct closure cl;
247 struct bio *bio;
248
249 trace_bcache_btree_read(b);
250
251 closure_init_stack(&cl);
252
253 bio = bch_bbio_alloc(b->c);
254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 bio->bi_end_io = btree_node_read_endio;
256 bio->bi_private = &cl;
257 bio->bi_opf = REQ_OP_READ | REQ_META;
258
259 bch_bio_map(bio, b->keys.set[0].data);
260
261 bch_submit_bbio(bio, b->c, &b->key, 0);
262 closure_sync(&cl);
263
264 if (bio->bi_status)
265 set_btree_node_io_error(b);
266
267 bch_bbio_free(bio, b->c);
268
269 if (btree_node_io_error(b))
270 goto err;
271
272 bch_btree_node_read_done(b);
273 bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275 return;
276 err:
277 bch_cache_set_error(b->c, "io error reading bucket %zu",
278 PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280
btree_complete_write(struct btree * b,struct btree_write * w)281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283 if (w->prio_blocked &&
284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 wake_up_allocators(b->c);
286
287 if (w->journal) {
288 atomic_dec_bug(w->journal);
289 __closure_wake_up(&b->c->journal.wait);
290 }
291
292 w->prio_blocked = 0;
293 w->journal = NULL;
294 }
295
btree_node_write_unlock(struct closure * cl)296 static void btree_node_write_unlock(struct closure *cl)
297 {
298 struct btree *b = container_of(cl, struct btree, io);
299
300 up(&b->io_mutex);
301 }
302
__btree_node_write_done(struct closure * cl)303 static void __btree_node_write_done(struct closure *cl)
304 {
305 struct btree *b = container_of(cl, struct btree, io);
306 struct btree_write *w = btree_prev_write(b);
307
308 bch_bbio_free(b->bio, b->c);
309 b->bio = NULL;
310 btree_complete_write(b, w);
311
312 if (btree_node_dirty(b))
313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315 closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317
btree_node_write_done(struct closure * cl)318 static void btree_node_write_done(struct closure *cl)
319 {
320 struct btree *b = container_of(cl, struct btree, io);
321
322 bio_free_pages(b->bio);
323 __btree_node_write_done(cl);
324 }
325
btree_node_write_endio(struct bio * bio)326 static void btree_node_write_endio(struct bio *bio)
327 {
328 struct closure *cl = bio->bi_private;
329 struct btree *b = container_of(cl, struct btree, io);
330
331 if (bio->bi_status)
332 set_btree_node_io_error(b);
333
334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 closure_put(cl);
336 }
337
do_btree_node_write(struct btree * b)338 static void do_btree_node_write(struct btree *b)
339 {
340 struct closure *cl = &b->io;
341 struct bset *i = btree_bset_last(b);
342 BKEY_PADDED(key) k;
343
344 i->version = BCACHE_BSET_VERSION;
345 i->csum = btree_csum_set(b, i);
346
347 BUG_ON(b->bio);
348 b->bio = bch_bbio_alloc(b->c);
349
350 b->bio->bi_end_io = btree_node_write_endio;
351 b->bio->bi_private = cl;
352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
354 bch_bio_map(b->bio, i);
355
356 /*
357 * If we're appending to a leaf node, we don't technically need FUA -
358 * this write just needs to be persisted before the next journal write,
359 * which will be marked FLUSH|FUA.
360 *
361 * Similarly if we're writing a new btree root - the pointer is going to
362 * be in the next journal entry.
363 *
364 * But if we're writing a new btree node (that isn't a root) or
365 * appending to a non leaf btree node, we need either FUA or a flush
366 * when we write the parent with the new pointer. FUA is cheaper than a
367 * flush, and writes appending to leaf nodes aren't blocking anything so
368 * just make all btree node writes FUA to keep things sane.
369 */
370
371 bkey_copy(&k.key, &b->key);
372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 bset_sector_offset(&b->keys, i));
374
375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 struct bio_vec *bv;
377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 struct bvec_iter_all iter_all;
379
380 bio_for_each_segment_all(bv, b->bio, iter_all) {
381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 addr += PAGE_SIZE;
383 }
384
385 bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387 continue_at(cl, btree_node_write_done, NULL);
388 } else {
389 /*
390 * No problem for multipage bvec since the bio is
391 * just allocated
392 */
393 b->bio->bi_vcnt = 0;
394 bch_bio_map(b->bio, i);
395
396 bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398 closure_sync(cl);
399 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 }
401 }
402
__bch_btree_node_write(struct btree * b,struct closure * parent)403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405 struct bset *i = btree_bset_last(b);
406
407 lockdep_assert_held(&b->write_lock);
408
409 trace_bcache_btree_write(b);
410
411 BUG_ON(current->bio_list);
412 BUG_ON(b->written >= btree_blocks(b));
413 BUG_ON(b->written && !i->keys);
414 BUG_ON(btree_bset_first(b)->seq != i->seq);
415 bch_check_keys(&b->keys, "writing");
416
417 cancel_delayed_work(&b->work);
418
419 /* If caller isn't waiting for write, parent refcount is cache set */
420 down(&b->io_mutex);
421 closure_init(&b->io, parent ?: &b->c->cl);
422
423 clear_bit(BTREE_NODE_dirty, &b->flags);
424 change_bit(BTREE_NODE_write_idx, &b->flags);
425
426 do_btree_node_write(b);
427
428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 &b->c->cache->btree_sectors_written);
430
431 b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433
bch_btree_node_write(struct btree * b,struct closure * parent)434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436 unsigned int nsets = b->keys.nsets;
437
438 lockdep_assert_held(&b->lock);
439
440 __bch_btree_node_write(b, parent);
441
442 /*
443 * do verify if there was more than one set initially (i.e. we did a
444 * sort) and we sorted down to a single set:
445 */
446 if (nsets && !b->keys.nsets)
447 bch_btree_verify(b);
448
449 bch_btree_init_next(b);
450 }
451
bch_btree_node_write_sync(struct btree * b)452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454 struct closure cl;
455
456 closure_init_stack(&cl);
457
458 mutex_lock(&b->write_lock);
459 bch_btree_node_write(b, &cl);
460 mutex_unlock(&b->write_lock);
461
462 closure_sync(&cl);
463 }
464
btree_node_write_work(struct work_struct * w)465 static void btree_node_write_work(struct work_struct *w)
466 {
467 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469 mutex_lock(&b->write_lock);
470 if (btree_node_dirty(b))
471 __bch_btree_node_write(b, NULL);
472 mutex_unlock(&b->write_lock);
473 }
474
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477 struct bset *i = btree_bset_last(b);
478 struct btree_write *w = btree_current_write(b);
479
480 lockdep_assert_held(&b->write_lock);
481
482 BUG_ON(!b->written);
483 BUG_ON(!i->keys);
484
485 if (!btree_node_dirty(b))
486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488 set_btree_node_dirty(b);
489
490 /*
491 * w->journal is always the oldest journal pin of all bkeys
492 * in the leaf node, to make sure the oldest jset seq won't
493 * be increased before this btree node is flushed.
494 */
495 if (journal_ref) {
496 if (w->journal &&
497 journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 atomic_dec_bug(w->journal);
499 w->journal = NULL;
500 }
501
502 if (!w->journal) {
503 w->journal = journal_ref;
504 atomic_inc(w->journal);
505 }
506 }
507
508 /* Force write if set is too big */
509 if (set_bytes(i) > PAGE_SIZE - 48 &&
510 !current->bio_list)
511 bch_btree_node_write(b, NULL);
512 }
513
514 /*
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
517 */
518
519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c) \
522 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
mca_data_free(struct btree * b)524 static void mca_data_free(struct btree *b)
525 {
526 BUG_ON(b->io_mutex.count != 1);
527
528 bch_btree_keys_free(&b->keys);
529
530 b->c->btree_cache_used--;
531 list_move(&b->list, &b->c->btree_cache_freed);
532 }
533
mca_bucket_free(struct btree * b)534 static void mca_bucket_free(struct btree *b)
535 {
536 BUG_ON(btree_node_dirty(b));
537
538 b->key.ptr[0] = 0;
539 hlist_del_init_rcu(&b->hash);
540 list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542
btree_order(struct bkey * k)543 static unsigned int btree_order(struct bkey *k)
544 {
545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550 if (!bch_btree_keys_alloc(&b->keys,
551 max_t(unsigned int,
552 ilog2(b->c->btree_pages),
553 btree_order(k)),
554 gfp)) {
555 b->c->btree_cache_used++;
556 list_move(&b->list, &b->c->btree_cache);
557 } else {
558 list_move(&b->list, &b->c->btree_cache_freed);
559 }
560 }
561
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)562 static struct btree *mca_bucket_alloc(struct cache_set *c,
563 struct bkey *k, gfp_t gfp)
564 {
565 /*
566 * kzalloc() is necessary here for initialization,
567 * see code comments in bch_btree_keys_init().
568 */
569 struct btree *b = kzalloc(sizeof(struct btree), gfp);
570
571 if (!b)
572 return NULL;
573
574 init_rwsem(&b->lock);
575 lockdep_set_novalidate_class(&b->lock);
576 mutex_init(&b->write_lock);
577 lockdep_set_novalidate_class(&b->write_lock);
578 INIT_LIST_HEAD(&b->list);
579 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
580 b->c = c;
581 sema_init(&b->io_mutex, 1);
582
583 mca_data_alloc(b, k, gfp);
584 return b;
585 }
586
mca_reap(struct btree * b,unsigned int min_order,bool flush)587 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
588 {
589 struct closure cl;
590
591 closure_init_stack(&cl);
592 lockdep_assert_held(&b->c->bucket_lock);
593
594 if (!down_write_trylock(&b->lock))
595 return -ENOMEM;
596
597 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
598
599 if (b->keys.page_order < min_order)
600 goto out_unlock;
601
602 if (!flush) {
603 if (btree_node_dirty(b))
604 goto out_unlock;
605
606 if (down_trylock(&b->io_mutex))
607 goto out_unlock;
608 up(&b->io_mutex);
609 }
610
611 retry:
612 /*
613 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
614 * __bch_btree_node_write(). To avoid an extra flush, acquire
615 * b->write_lock before checking BTREE_NODE_dirty bit.
616 */
617 mutex_lock(&b->write_lock);
618 /*
619 * If this btree node is selected in btree_flush_write() by journal
620 * code, delay and retry until the node is flushed by journal code
621 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
622 */
623 if (btree_node_journal_flush(b)) {
624 pr_debug("bnode %p is flushing by journal, retry\n", b);
625 mutex_unlock(&b->write_lock);
626 udelay(1);
627 goto retry;
628 }
629
630 if (btree_node_dirty(b))
631 __bch_btree_node_write(b, &cl);
632 mutex_unlock(&b->write_lock);
633
634 closure_sync(&cl);
635
636 /* wait for any in flight btree write */
637 down(&b->io_mutex);
638 up(&b->io_mutex);
639
640 return 0;
641 out_unlock:
642 rw_unlock(true, b);
643 return -ENOMEM;
644 }
645
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)646 static unsigned long bch_mca_scan(struct shrinker *shrink,
647 struct shrink_control *sc)
648 {
649 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
650 struct btree *b, *t;
651 unsigned long i, nr = sc->nr_to_scan;
652 unsigned long freed = 0;
653 unsigned int btree_cache_used;
654
655 if (c->shrinker_disabled)
656 return SHRINK_STOP;
657
658 if (c->btree_cache_alloc_lock)
659 return SHRINK_STOP;
660
661 /* Return -1 if we can't do anything right now */
662 if (sc->gfp_mask & __GFP_IO)
663 mutex_lock(&c->bucket_lock);
664 else if (!mutex_trylock(&c->bucket_lock))
665 return -1;
666
667 /*
668 * It's _really_ critical that we don't free too many btree nodes - we
669 * have to always leave ourselves a reserve. The reserve is how we
670 * guarantee that allocating memory for a new btree node can always
671 * succeed, so that inserting keys into the btree can always succeed and
672 * IO can always make forward progress:
673 */
674 nr /= c->btree_pages;
675 if (nr == 0)
676 nr = 1;
677 nr = min_t(unsigned long, nr, mca_can_free(c));
678
679 i = 0;
680 btree_cache_used = c->btree_cache_used;
681 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
682 if (nr <= 0)
683 goto out;
684
685 if (!mca_reap(b, 0, false)) {
686 mca_data_free(b);
687 rw_unlock(true, b);
688 freed++;
689 }
690 nr--;
691 i++;
692 }
693
694 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
695 if (nr <= 0 || i >= btree_cache_used)
696 goto out;
697
698 if (!mca_reap(b, 0, false)) {
699 mca_bucket_free(b);
700 mca_data_free(b);
701 rw_unlock(true, b);
702 freed++;
703 }
704
705 nr--;
706 i++;
707 }
708 out:
709 mutex_unlock(&c->bucket_lock);
710 return freed * c->btree_pages;
711 }
712
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)713 static unsigned long bch_mca_count(struct shrinker *shrink,
714 struct shrink_control *sc)
715 {
716 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
717
718 if (c->shrinker_disabled)
719 return 0;
720
721 if (c->btree_cache_alloc_lock)
722 return 0;
723
724 return mca_can_free(c) * c->btree_pages;
725 }
726
bch_btree_cache_free(struct cache_set * c)727 void bch_btree_cache_free(struct cache_set *c)
728 {
729 struct btree *b;
730 struct closure cl;
731
732 closure_init_stack(&cl);
733
734 if (c->shrink.list.next)
735 unregister_shrinker(&c->shrink);
736
737 mutex_lock(&c->bucket_lock);
738
739 #ifdef CONFIG_BCACHE_DEBUG
740 if (c->verify_data)
741 list_move(&c->verify_data->list, &c->btree_cache);
742
743 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
744 #endif
745
746 list_splice(&c->btree_cache_freeable,
747 &c->btree_cache);
748
749 while (!list_empty(&c->btree_cache)) {
750 b = list_first_entry(&c->btree_cache, struct btree, list);
751
752 /*
753 * This function is called by cache_set_free(), no I/O
754 * request on cache now, it is unnecessary to acquire
755 * b->write_lock before clearing BTREE_NODE_dirty anymore.
756 */
757 if (btree_node_dirty(b)) {
758 btree_complete_write(b, btree_current_write(b));
759 clear_bit(BTREE_NODE_dirty, &b->flags);
760 }
761 mca_data_free(b);
762 }
763
764 while (!list_empty(&c->btree_cache_freed)) {
765 b = list_first_entry(&c->btree_cache_freed,
766 struct btree, list);
767 list_del(&b->list);
768 cancel_delayed_work_sync(&b->work);
769 kfree(b);
770 }
771
772 mutex_unlock(&c->bucket_lock);
773 }
774
bch_btree_cache_alloc(struct cache_set * c)775 int bch_btree_cache_alloc(struct cache_set *c)
776 {
777 unsigned int i;
778
779 for (i = 0; i < mca_reserve(c); i++)
780 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
781 return -ENOMEM;
782
783 list_splice_init(&c->btree_cache,
784 &c->btree_cache_freeable);
785
786 #ifdef CONFIG_BCACHE_DEBUG
787 mutex_init(&c->verify_lock);
788
789 c->verify_ondisk = (void *)
790 __get_free_pages(GFP_KERNEL|__GFP_COMP,
791 ilog2(meta_bucket_pages(&c->cache->sb)));
792 if (!c->verify_ondisk) {
793 /*
794 * Don't worry about the mca_rereserve buckets
795 * allocated in previous for-loop, they will be
796 * handled properly in bch_cache_set_unregister().
797 */
798 return -ENOMEM;
799 }
800
801 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
802
803 if (c->verify_data &&
804 c->verify_data->keys.set->data)
805 list_del_init(&c->verify_data->list);
806 else
807 c->verify_data = NULL;
808 #endif
809
810 c->shrink.count_objects = bch_mca_count;
811 c->shrink.scan_objects = bch_mca_scan;
812 c->shrink.seeks = 4;
813 c->shrink.batch = c->btree_pages * 2;
814
815 if (register_shrinker(&c->shrink, "md-bcache:%pU", c->set_uuid))
816 pr_warn("bcache: %s: could not register shrinker\n",
817 __func__);
818
819 return 0;
820 }
821
822 /* Btree in memory cache - hash table */
823
mca_hash(struct cache_set * c,struct bkey * k)824 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
825 {
826 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
827 }
828
mca_find(struct cache_set * c,struct bkey * k)829 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
830 {
831 struct btree *b;
832
833 rcu_read_lock();
834 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
835 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
836 goto out;
837 b = NULL;
838 out:
839 rcu_read_unlock();
840 return b;
841 }
842
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)843 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
844 {
845 spin_lock(&c->btree_cannibalize_lock);
846 if (likely(c->btree_cache_alloc_lock == NULL)) {
847 c->btree_cache_alloc_lock = current;
848 } else if (c->btree_cache_alloc_lock != current) {
849 if (op)
850 prepare_to_wait(&c->btree_cache_wait, &op->wait,
851 TASK_UNINTERRUPTIBLE);
852 spin_unlock(&c->btree_cannibalize_lock);
853 return -EINTR;
854 }
855 spin_unlock(&c->btree_cannibalize_lock);
856
857 return 0;
858 }
859
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)860 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
861 struct bkey *k)
862 {
863 struct btree *b;
864
865 trace_bcache_btree_cache_cannibalize(c);
866
867 if (mca_cannibalize_lock(c, op))
868 return ERR_PTR(-EINTR);
869
870 list_for_each_entry_reverse(b, &c->btree_cache, list)
871 if (!mca_reap(b, btree_order(k), false))
872 return b;
873
874 list_for_each_entry_reverse(b, &c->btree_cache, list)
875 if (!mca_reap(b, btree_order(k), true))
876 return b;
877
878 WARN(1, "btree cache cannibalize failed\n");
879 return ERR_PTR(-ENOMEM);
880 }
881
882 /*
883 * We can only have one thread cannibalizing other cached btree nodes at a time,
884 * or we'll deadlock. We use an open coded mutex to ensure that, which a
885 * cannibalize_bucket() will take. This means every time we unlock the root of
886 * the btree, we need to release this lock if we have it held.
887 */
bch_cannibalize_unlock(struct cache_set * c)888 void bch_cannibalize_unlock(struct cache_set *c)
889 {
890 spin_lock(&c->btree_cannibalize_lock);
891 if (c->btree_cache_alloc_lock == current) {
892 c->btree_cache_alloc_lock = NULL;
893 wake_up(&c->btree_cache_wait);
894 }
895 spin_unlock(&c->btree_cannibalize_lock);
896 }
897
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)898 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
899 struct bkey *k, int level)
900 {
901 struct btree *b;
902
903 BUG_ON(current->bio_list);
904
905 lockdep_assert_held(&c->bucket_lock);
906
907 if (mca_find(c, k))
908 return NULL;
909
910 /* btree_free() doesn't free memory; it sticks the node on the end of
911 * the list. Check if there's any freed nodes there:
912 */
913 list_for_each_entry(b, &c->btree_cache_freeable, list)
914 if (!mca_reap(b, btree_order(k), false))
915 goto out;
916
917 /* We never free struct btree itself, just the memory that holds the on
918 * disk node. Check the freed list before allocating a new one:
919 */
920 list_for_each_entry(b, &c->btree_cache_freed, list)
921 if (!mca_reap(b, 0, false)) {
922 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
923 if (!b->keys.set[0].data)
924 goto err;
925 else
926 goto out;
927 }
928
929 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
930 if (!b)
931 goto err;
932
933 BUG_ON(!down_write_trylock(&b->lock));
934 if (!b->keys.set->data)
935 goto err;
936 out:
937 BUG_ON(b->io_mutex.count != 1);
938
939 bkey_copy(&b->key, k);
940 list_move(&b->list, &c->btree_cache);
941 hlist_del_init_rcu(&b->hash);
942 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
943
944 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
945 b->parent = (void *) ~0UL;
946 b->flags = 0;
947 b->written = 0;
948 b->level = level;
949
950 if (!b->level)
951 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
952 &b->c->expensive_debug_checks);
953 else
954 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
955 &b->c->expensive_debug_checks);
956
957 return b;
958 err:
959 if (b)
960 rw_unlock(true, b);
961
962 b = mca_cannibalize(c, op, k);
963 if (!IS_ERR(b))
964 goto out;
965
966 return b;
967 }
968
969 /*
970 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
971 * in from disk if necessary.
972 *
973 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
974 *
975 * The btree node will have either a read or a write lock held, depending on
976 * level and op->lock.
977 *
978 * Note: Only error code or btree pointer will be returned, it is unncessary
979 * for callers to check NULL pointer.
980 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)981 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
982 struct bkey *k, int level, bool write,
983 struct btree *parent)
984 {
985 int i = 0;
986 struct btree *b;
987
988 BUG_ON(level < 0);
989 retry:
990 b = mca_find(c, k);
991
992 if (!b) {
993 if (current->bio_list)
994 return ERR_PTR(-EAGAIN);
995
996 mutex_lock(&c->bucket_lock);
997 b = mca_alloc(c, op, k, level);
998 mutex_unlock(&c->bucket_lock);
999
1000 if (!b)
1001 goto retry;
1002 if (IS_ERR(b))
1003 return b;
1004
1005 bch_btree_node_read(b);
1006
1007 if (!write)
1008 downgrade_write(&b->lock);
1009 } else {
1010 rw_lock(write, b, level);
1011 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1012 rw_unlock(write, b);
1013 goto retry;
1014 }
1015 BUG_ON(b->level != level);
1016 }
1017
1018 if (btree_node_io_error(b)) {
1019 rw_unlock(write, b);
1020 return ERR_PTR(-EIO);
1021 }
1022
1023 BUG_ON(!b->written);
1024
1025 b->parent = parent;
1026
1027 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1028 prefetch(b->keys.set[i].tree);
1029 prefetch(b->keys.set[i].data);
1030 }
1031
1032 for (; i <= b->keys.nsets; i++)
1033 prefetch(b->keys.set[i].data);
1034
1035 return b;
1036 }
1037
btree_node_prefetch(struct btree * parent,struct bkey * k)1038 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1039 {
1040 struct btree *b;
1041
1042 mutex_lock(&parent->c->bucket_lock);
1043 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1044 mutex_unlock(&parent->c->bucket_lock);
1045
1046 if (!IS_ERR_OR_NULL(b)) {
1047 b->parent = parent;
1048 bch_btree_node_read(b);
1049 rw_unlock(true, b);
1050 }
1051 }
1052
1053 /* Btree alloc */
1054
btree_node_free(struct btree * b)1055 static void btree_node_free(struct btree *b)
1056 {
1057 trace_bcache_btree_node_free(b);
1058
1059 BUG_ON(b == b->c->root);
1060
1061 retry:
1062 mutex_lock(&b->write_lock);
1063 /*
1064 * If the btree node is selected and flushing in btree_flush_write(),
1065 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1066 * then it is safe to free the btree node here. Otherwise this btree
1067 * node will be in race condition.
1068 */
1069 if (btree_node_journal_flush(b)) {
1070 mutex_unlock(&b->write_lock);
1071 pr_debug("bnode %p journal_flush set, retry\n", b);
1072 udelay(1);
1073 goto retry;
1074 }
1075
1076 if (btree_node_dirty(b)) {
1077 btree_complete_write(b, btree_current_write(b));
1078 clear_bit(BTREE_NODE_dirty, &b->flags);
1079 }
1080
1081 mutex_unlock(&b->write_lock);
1082
1083 cancel_delayed_work(&b->work);
1084
1085 mutex_lock(&b->c->bucket_lock);
1086 bch_bucket_free(b->c, &b->key);
1087 mca_bucket_free(b);
1088 mutex_unlock(&b->c->bucket_lock);
1089 }
1090
1091 /*
1092 * Only error code or btree pointer will be returned, it is unncessary for
1093 * callers to check NULL pointer.
1094 */
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1095 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1096 int level, bool wait,
1097 struct btree *parent)
1098 {
1099 BKEY_PADDED(key) k;
1100 struct btree *b;
1101
1102 mutex_lock(&c->bucket_lock);
1103 retry:
1104 /* return ERR_PTR(-EAGAIN) when it fails */
1105 b = ERR_PTR(-EAGAIN);
1106 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1107 goto err;
1108
1109 bkey_put(c, &k.key);
1110 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1111
1112 b = mca_alloc(c, op, &k.key, level);
1113 if (IS_ERR(b))
1114 goto err_free;
1115
1116 if (!b) {
1117 cache_bug(c,
1118 "Tried to allocate bucket that was in btree cache");
1119 goto retry;
1120 }
1121
1122 b->parent = parent;
1123 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1124
1125 mutex_unlock(&c->bucket_lock);
1126
1127 trace_bcache_btree_node_alloc(b);
1128 return b;
1129 err_free:
1130 bch_bucket_free(c, &k.key);
1131 err:
1132 mutex_unlock(&c->bucket_lock);
1133
1134 trace_bcache_btree_node_alloc_fail(c);
1135 return b;
1136 }
1137
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1138 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1139 struct btree_op *op, int level,
1140 struct btree *parent)
1141 {
1142 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1143 }
1144
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1145 static struct btree *btree_node_alloc_replacement(struct btree *b,
1146 struct btree_op *op)
1147 {
1148 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1149
1150 if (!IS_ERR(n)) {
1151 mutex_lock(&n->write_lock);
1152 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1153 bkey_copy_key(&n->key, &b->key);
1154 mutex_unlock(&n->write_lock);
1155 }
1156
1157 return n;
1158 }
1159
make_btree_freeing_key(struct btree * b,struct bkey * k)1160 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1161 {
1162 unsigned int i;
1163
1164 mutex_lock(&b->c->bucket_lock);
1165
1166 atomic_inc(&b->c->prio_blocked);
1167
1168 bkey_copy(k, &b->key);
1169 bkey_copy_key(k, &ZERO_KEY);
1170
1171 for (i = 0; i < KEY_PTRS(k); i++)
1172 SET_PTR_GEN(k, i,
1173 bch_inc_gen(b->c->cache,
1174 PTR_BUCKET(b->c, &b->key, i)));
1175
1176 mutex_unlock(&b->c->bucket_lock);
1177 }
1178
btree_check_reserve(struct btree * b,struct btree_op * op)1179 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1180 {
1181 struct cache_set *c = b->c;
1182 struct cache *ca = c->cache;
1183 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1184
1185 mutex_lock(&c->bucket_lock);
1186
1187 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1188 if (op)
1189 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1190 TASK_UNINTERRUPTIBLE);
1191 mutex_unlock(&c->bucket_lock);
1192 return -EINTR;
1193 }
1194
1195 mutex_unlock(&c->bucket_lock);
1196
1197 return mca_cannibalize_lock(b->c, op);
1198 }
1199
1200 /* Garbage collection */
1201
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1202 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1203 struct bkey *k)
1204 {
1205 uint8_t stale = 0;
1206 unsigned int i;
1207 struct bucket *g;
1208
1209 /*
1210 * ptr_invalid() can't return true for the keys that mark btree nodes as
1211 * freed, but since ptr_bad() returns true we'll never actually use them
1212 * for anything and thus we don't want mark their pointers here
1213 */
1214 if (!bkey_cmp(k, &ZERO_KEY))
1215 return stale;
1216
1217 for (i = 0; i < KEY_PTRS(k); i++) {
1218 if (!ptr_available(c, k, i))
1219 continue;
1220
1221 g = PTR_BUCKET(c, k, i);
1222
1223 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1224 g->last_gc = PTR_GEN(k, i);
1225
1226 if (ptr_stale(c, k, i)) {
1227 stale = max(stale, ptr_stale(c, k, i));
1228 continue;
1229 }
1230
1231 cache_bug_on(GC_MARK(g) &&
1232 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1233 c, "inconsistent ptrs: mark = %llu, level = %i",
1234 GC_MARK(g), level);
1235
1236 if (level)
1237 SET_GC_MARK(g, GC_MARK_METADATA);
1238 else if (KEY_DIRTY(k))
1239 SET_GC_MARK(g, GC_MARK_DIRTY);
1240 else if (!GC_MARK(g))
1241 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1242
1243 /* guard against overflow */
1244 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1245 GC_SECTORS_USED(g) + KEY_SIZE(k),
1246 MAX_GC_SECTORS_USED));
1247
1248 BUG_ON(!GC_SECTORS_USED(g));
1249 }
1250
1251 return stale;
1252 }
1253
1254 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1255
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1256 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1257 {
1258 unsigned int i;
1259
1260 for (i = 0; i < KEY_PTRS(k); i++)
1261 if (ptr_available(c, k, i) &&
1262 !ptr_stale(c, k, i)) {
1263 struct bucket *b = PTR_BUCKET(c, k, i);
1264
1265 b->gen = PTR_GEN(k, i);
1266
1267 if (level && bkey_cmp(k, &ZERO_KEY))
1268 b->prio = BTREE_PRIO;
1269 else if (!level && b->prio == BTREE_PRIO)
1270 b->prio = INITIAL_PRIO;
1271 }
1272
1273 __bch_btree_mark_key(c, level, k);
1274 }
1275
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1276 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1277 {
1278 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1279 }
1280
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1281 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1282 {
1283 uint8_t stale = 0;
1284 unsigned int keys = 0, good_keys = 0;
1285 struct bkey *k;
1286 struct btree_iter iter;
1287 struct bset_tree *t;
1288
1289 gc->nodes++;
1290
1291 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1292 stale = max(stale, btree_mark_key(b, k));
1293 keys++;
1294
1295 if (bch_ptr_bad(&b->keys, k))
1296 continue;
1297
1298 gc->key_bytes += bkey_u64s(k);
1299 gc->nkeys++;
1300 good_keys++;
1301
1302 gc->data += KEY_SIZE(k);
1303 }
1304
1305 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1306 btree_bug_on(t->size &&
1307 bset_written(&b->keys, t) &&
1308 bkey_cmp(&b->key, &t->end) < 0,
1309 b, "found short btree key in gc");
1310
1311 if (b->c->gc_always_rewrite)
1312 return true;
1313
1314 if (stale > 10)
1315 return true;
1316
1317 if ((keys - good_keys) * 2 > keys)
1318 return true;
1319
1320 return false;
1321 }
1322
1323 #define GC_MERGE_NODES 4U
1324
1325 struct gc_merge_info {
1326 struct btree *b;
1327 unsigned int keys;
1328 };
1329
1330 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1331 struct keylist *insert_keys,
1332 atomic_t *journal_ref,
1333 struct bkey *replace_key);
1334
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1335 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1336 struct gc_stat *gc, struct gc_merge_info *r)
1337 {
1338 unsigned int i, nodes = 0, keys = 0, blocks;
1339 struct btree *new_nodes[GC_MERGE_NODES];
1340 struct keylist keylist;
1341 struct closure cl;
1342 struct bkey *k;
1343
1344 bch_keylist_init(&keylist);
1345
1346 if (btree_check_reserve(b, NULL))
1347 return 0;
1348
1349 memset(new_nodes, 0, sizeof(new_nodes));
1350 closure_init_stack(&cl);
1351
1352 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1353 keys += r[nodes++].keys;
1354
1355 blocks = btree_default_blocks(b->c) * 2 / 3;
1356
1357 if (nodes < 2 ||
1358 __set_blocks(b->keys.set[0].data, keys,
1359 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1360 return 0;
1361
1362 for (i = 0; i < nodes; i++) {
1363 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1364 if (IS_ERR(new_nodes[i]))
1365 goto out_nocoalesce;
1366 }
1367
1368 /*
1369 * We have to check the reserve here, after we've allocated our new
1370 * nodes, to make sure the insert below will succeed - we also check
1371 * before as an optimization to potentially avoid a bunch of expensive
1372 * allocs/sorts
1373 */
1374 if (btree_check_reserve(b, NULL))
1375 goto out_nocoalesce;
1376
1377 for (i = 0; i < nodes; i++)
1378 mutex_lock(&new_nodes[i]->write_lock);
1379
1380 for (i = nodes - 1; i > 0; --i) {
1381 struct bset *n1 = btree_bset_first(new_nodes[i]);
1382 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1383 struct bkey *k, *last = NULL;
1384
1385 keys = 0;
1386
1387 if (i > 1) {
1388 for (k = n2->start;
1389 k < bset_bkey_last(n2);
1390 k = bkey_next(k)) {
1391 if (__set_blocks(n1, n1->keys + keys +
1392 bkey_u64s(k),
1393 block_bytes(b->c->cache)) > blocks)
1394 break;
1395
1396 last = k;
1397 keys += bkey_u64s(k);
1398 }
1399 } else {
1400 /*
1401 * Last node we're not getting rid of - we're getting
1402 * rid of the node at r[0]. Have to try and fit all of
1403 * the remaining keys into this node; we can't ensure
1404 * they will always fit due to rounding and variable
1405 * length keys (shouldn't be possible in practice,
1406 * though)
1407 */
1408 if (__set_blocks(n1, n1->keys + n2->keys,
1409 block_bytes(b->c->cache)) >
1410 btree_blocks(new_nodes[i]))
1411 goto out_unlock_nocoalesce;
1412
1413 keys = n2->keys;
1414 /* Take the key of the node we're getting rid of */
1415 last = &r->b->key;
1416 }
1417
1418 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1419 btree_blocks(new_nodes[i]));
1420
1421 if (last)
1422 bkey_copy_key(&new_nodes[i]->key, last);
1423
1424 memcpy(bset_bkey_last(n1),
1425 n2->start,
1426 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1427
1428 n1->keys += keys;
1429 r[i].keys = n1->keys;
1430
1431 memmove(n2->start,
1432 bset_bkey_idx(n2, keys),
1433 (void *) bset_bkey_last(n2) -
1434 (void *) bset_bkey_idx(n2, keys));
1435
1436 n2->keys -= keys;
1437
1438 if (__bch_keylist_realloc(&keylist,
1439 bkey_u64s(&new_nodes[i]->key)))
1440 goto out_unlock_nocoalesce;
1441
1442 bch_btree_node_write(new_nodes[i], &cl);
1443 bch_keylist_add(&keylist, &new_nodes[i]->key);
1444 }
1445
1446 for (i = 0; i < nodes; i++)
1447 mutex_unlock(&new_nodes[i]->write_lock);
1448
1449 closure_sync(&cl);
1450
1451 /* We emptied out this node */
1452 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1453 btree_node_free(new_nodes[0]);
1454 rw_unlock(true, new_nodes[0]);
1455 new_nodes[0] = NULL;
1456
1457 for (i = 0; i < nodes; i++) {
1458 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1459 goto out_nocoalesce;
1460
1461 make_btree_freeing_key(r[i].b, keylist.top);
1462 bch_keylist_push(&keylist);
1463 }
1464
1465 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1466 BUG_ON(!bch_keylist_empty(&keylist));
1467
1468 for (i = 0; i < nodes; i++) {
1469 btree_node_free(r[i].b);
1470 rw_unlock(true, r[i].b);
1471
1472 r[i].b = new_nodes[i];
1473 }
1474
1475 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1476 r[nodes - 1].b = ERR_PTR(-EINTR);
1477
1478 trace_bcache_btree_gc_coalesce(nodes);
1479 gc->nodes--;
1480
1481 bch_keylist_free(&keylist);
1482
1483 /* Invalidated our iterator */
1484 return -EINTR;
1485
1486 out_unlock_nocoalesce:
1487 for (i = 0; i < nodes; i++)
1488 mutex_unlock(&new_nodes[i]->write_lock);
1489
1490 out_nocoalesce:
1491 closure_sync(&cl);
1492
1493 while ((k = bch_keylist_pop(&keylist)))
1494 if (!bkey_cmp(k, &ZERO_KEY))
1495 atomic_dec(&b->c->prio_blocked);
1496 bch_keylist_free(&keylist);
1497
1498 for (i = 0; i < nodes; i++)
1499 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1500 btree_node_free(new_nodes[i]);
1501 rw_unlock(true, new_nodes[i]);
1502 }
1503 return 0;
1504 }
1505
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1506 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1507 struct btree *replace)
1508 {
1509 struct keylist keys;
1510 struct btree *n;
1511
1512 if (btree_check_reserve(b, NULL))
1513 return 0;
1514
1515 n = btree_node_alloc_replacement(replace, NULL);
1516 if (IS_ERR(n))
1517 return 0;
1518
1519 /* recheck reserve after allocating replacement node */
1520 if (btree_check_reserve(b, NULL)) {
1521 btree_node_free(n);
1522 rw_unlock(true, n);
1523 return 0;
1524 }
1525
1526 bch_btree_node_write_sync(n);
1527
1528 bch_keylist_init(&keys);
1529 bch_keylist_add(&keys, &n->key);
1530
1531 make_btree_freeing_key(replace, keys.top);
1532 bch_keylist_push(&keys);
1533
1534 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1535 BUG_ON(!bch_keylist_empty(&keys));
1536
1537 btree_node_free(replace);
1538 rw_unlock(true, n);
1539
1540 /* Invalidated our iterator */
1541 return -EINTR;
1542 }
1543
btree_gc_count_keys(struct btree * b)1544 static unsigned int btree_gc_count_keys(struct btree *b)
1545 {
1546 struct bkey *k;
1547 struct btree_iter iter;
1548 unsigned int ret = 0;
1549
1550 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1551 ret += bkey_u64s(k);
1552
1553 return ret;
1554 }
1555
btree_gc_min_nodes(struct cache_set * c)1556 static size_t btree_gc_min_nodes(struct cache_set *c)
1557 {
1558 size_t min_nodes;
1559
1560 /*
1561 * Since incremental GC would stop 100ms when front
1562 * side I/O comes, so when there are many btree nodes,
1563 * if GC only processes constant (100) nodes each time,
1564 * GC would last a long time, and the front side I/Os
1565 * would run out of the buckets (since no new bucket
1566 * can be allocated during GC), and be blocked again.
1567 * So GC should not process constant nodes, but varied
1568 * nodes according to the number of btree nodes, which
1569 * realized by dividing GC into constant(100) times,
1570 * so when there are many btree nodes, GC can process
1571 * more nodes each time, otherwise, GC will process less
1572 * nodes each time (but no less than MIN_GC_NODES)
1573 */
1574 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1575 if (min_nodes < MIN_GC_NODES)
1576 min_nodes = MIN_GC_NODES;
1577
1578 return min_nodes;
1579 }
1580
1581
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1582 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1583 struct closure *writes, struct gc_stat *gc)
1584 {
1585 int ret = 0;
1586 bool should_rewrite;
1587 struct bkey *k;
1588 struct btree_iter iter;
1589 struct gc_merge_info r[GC_MERGE_NODES];
1590 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1591
1592 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1593
1594 for (i = r; i < r + ARRAY_SIZE(r); i++)
1595 i->b = ERR_PTR(-EINTR);
1596
1597 while (1) {
1598 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1599 if (k) {
1600 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1601 true, b);
1602 if (IS_ERR(r->b)) {
1603 ret = PTR_ERR(r->b);
1604 break;
1605 }
1606
1607 r->keys = btree_gc_count_keys(r->b);
1608
1609 ret = btree_gc_coalesce(b, op, gc, r);
1610 if (ret)
1611 break;
1612 }
1613
1614 if (!last->b)
1615 break;
1616
1617 if (!IS_ERR(last->b)) {
1618 should_rewrite = btree_gc_mark_node(last->b, gc);
1619 if (should_rewrite) {
1620 ret = btree_gc_rewrite_node(b, op, last->b);
1621 if (ret)
1622 break;
1623 }
1624
1625 if (last->b->level) {
1626 ret = btree_gc_recurse(last->b, op, writes, gc);
1627 if (ret)
1628 break;
1629 }
1630
1631 bkey_copy_key(&b->c->gc_done, &last->b->key);
1632
1633 /*
1634 * Must flush leaf nodes before gc ends, since replace
1635 * operations aren't journalled
1636 */
1637 mutex_lock(&last->b->write_lock);
1638 if (btree_node_dirty(last->b))
1639 bch_btree_node_write(last->b, writes);
1640 mutex_unlock(&last->b->write_lock);
1641 rw_unlock(true, last->b);
1642 }
1643
1644 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1645 r->b = NULL;
1646
1647 if (atomic_read(&b->c->search_inflight) &&
1648 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1649 gc->nodes_pre = gc->nodes;
1650 ret = -EAGAIN;
1651 break;
1652 }
1653
1654 if (need_resched()) {
1655 ret = -EAGAIN;
1656 break;
1657 }
1658 }
1659
1660 for (i = r; i < r + ARRAY_SIZE(r); i++)
1661 if (!IS_ERR_OR_NULL(i->b)) {
1662 mutex_lock(&i->b->write_lock);
1663 if (btree_node_dirty(i->b))
1664 bch_btree_node_write(i->b, writes);
1665 mutex_unlock(&i->b->write_lock);
1666 rw_unlock(true, i->b);
1667 }
1668
1669 return ret;
1670 }
1671
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1672 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1673 struct closure *writes, struct gc_stat *gc)
1674 {
1675 struct btree *n = NULL;
1676 int ret = 0;
1677 bool should_rewrite;
1678
1679 should_rewrite = btree_gc_mark_node(b, gc);
1680 if (should_rewrite) {
1681 n = btree_node_alloc_replacement(b, NULL);
1682
1683 if (!IS_ERR(n)) {
1684 bch_btree_node_write_sync(n);
1685
1686 bch_btree_set_root(n);
1687 btree_node_free(b);
1688 rw_unlock(true, n);
1689
1690 return -EINTR;
1691 }
1692 }
1693
1694 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1695
1696 if (b->level) {
1697 ret = btree_gc_recurse(b, op, writes, gc);
1698 if (ret)
1699 return ret;
1700 }
1701
1702 bkey_copy_key(&b->c->gc_done, &b->key);
1703
1704 return ret;
1705 }
1706
btree_gc_start(struct cache_set * c)1707 static void btree_gc_start(struct cache_set *c)
1708 {
1709 struct cache *ca;
1710 struct bucket *b;
1711
1712 if (!c->gc_mark_valid)
1713 return;
1714
1715 mutex_lock(&c->bucket_lock);
1716
1717 c->gc_mark_valid = 0;
1718 c->gc_done = ZERO_KEY;
1719
1720 ca = c->cache;
1721 for_each_bucket(b, ca) {
1722 b->last_gc = b->gen;
1723 if (!atomic_read(&b->pin)) {
1724 SET_GC_MARK(b, 0);
1725 SET_GC_SECTORS_USED(b, 0);
1726 }
1727 }
1728
1729 mutex_unlock(&c->bucket_lock);
1730 }
1731
bch_btree_gc_finish(struct cache_set * c)1732 static void bch_btree_gc_finish(struct cache_set *c)
1733 {
1734 struct bucket *b;
1735 struct cache *ca;
1736 unsigned int i, j;
1737 uint64_t *k;
1738
1739 mutex_lock(&c->bucket_lock);
1740
1741 set_gc_sectors(c);
1742 c->gc_mark_valid = 1;
1743 c->need_gc = 0;
1744
1745 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1746 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1747 GC_MARK_METADATA);
1748
1749 /* don't reclaim buckets to which writeback keys point */
1750 rcu_read_lock();
1751 for (i = 0; i < c->devices_max_used; i++) {
1752 struct bcache_device *d = c->devices[i];
1753 struct cached_dev *dc;
1754 struct keybuf_key *w, *n;
1755
1756 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1757 continue;
1758 dc = container_of(d, struct cached_dev, disk);
1759
1760 spin_lock(&dc->writeback_keys.lock);
1761 rbtree_postorder_for_each_entry_safe(w, n,
1762 &dc->writeback_keys.keys, node)
1763 for (j = 0; j < KEY_PTRS(&w->key); j++)
1764 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1765 GC_MARK_DIRTY);
1766 spin_unlock(&dc->writeback_keys.lock);
1767 }
1768 rcu_read_unlock();
1769
1770 c->avail_nbuckets = 0;
1771
1772 ca = c->cache;
1773 ca->invalidate_needs_gc = 0;
1774
1775 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1776 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1777
1778 for (k = ca->prio_buckets;
1779 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1780 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1781
1782 for_each_bucket(b, ca) {
1783 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1784
1785 if (atomic_read(&b->pin))
1786 continue;
1787
1788 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1789
1790 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1791 c->avail_nbuckets++;
1792 }
1793
1794 mutex_unlock(&c->bucket_lock);
1795 }
1796
bch_btree_gc(struct cache_set * c)1797 static void bch_btree_gc(struct cache_set *c)
1798 {
1799 int ret;
1800 struct gc_stat stats;
1801 struct closure writes;
1802 struct btree_op op;
1803 uint64_t start_time = local_clock();
1804
1805 trace_bcache_gc_start(c);
1806
1807 memset(&stats, 0, sizeof(struct gc_stat));
1808 closure_init_stack(&writes);
1809 bch_btree_op_init(&op, SHRT_MAX);
1810
1811 btree_gc_start(c);
1812
1813 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1814 do {
1815 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1816 closure_sync(&writes);
1817 cond_resched();
1818
1819 if (ret == -EAGAIN)
1820 schedule_timeout_interruptible(msecs_to_jiffies
1821 (GC_SLEEP_MS));
1822 else if (ret)
1823 pr_warn("gc failed!\n");
1824 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1825
1826 bch_btree_gc_finish(c);
1827 wake_up_allocators(c);
1828
1829 bch_time_stats_update(&c->btree_gc_time, start_time);
1830
1831 stats.key_bytes *= sizeof(uint64_t);
1832 stats.data <<= 9;
1833 bch_update_bucket_in_use(c, &stats);
1834 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1835
1836 trace_bcache_gc_end(c);
1837
1838 bch_moving_gc(c);
1839 }
1840
gc_should_run(struct cache_set * c)1841 static bool gc_should_run(struct cache_set *c)
1842 {
1843 struct cache *ca = c->cache;
1844
1845 if (ca->invalidate_needs_gc)
1846 return true;
1847
1848 if (atomic_read(&c->sectors_to_gc) < 0)
1849 return true;
1850
1851 return false;
1852 }
1853
bch_gc_thread(void * arg)1854 static int bch_gc_thread(void *arg)
1855 {
1856 struct cache_set *c = arg;
1857
1858 while (1) {
1859 wait_event_interruptible(c->gc_wait,
1860 kthread_should_stop() ||
1861 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1862 gc_should_run(c));
1863
1864 if (kthread_should_stop() ||
1865 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1866 break;
1867
1868 set_gc_sectors(c);
1869 bch_btree_gc(c);
1870 }
1871
1872 wait_for_kthread_stop();
1873 return 0;
1874 }
1875
bch_gc_thread_start(struct cache_set * c)1876 int bch_gc_thread_start(struct cache_set *c)
1877 {
1878 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1879 return PTR_ERR_OR_ZERO(c->gc_thread);
1880 }
1881
1882 /* Initial partial gc */
1883
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1884 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1885 {
1886 int ret = 0;
1887 struct bkey *k, *p = NULL;
1888 struct btree_iter iter;
1889
1890 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1891 bch_initial_mark_key(b->c, b->level, k);
1892
1893 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1894
1895 if (b->level) {
1896 bch_btree_iter_init(&b->keys, &iter, NULL);
1897
1898 do {
1899 k = bch_btree_iter_next_filter(&iter, &b->keys,
1900 bch_ptr_bad);
1901 if (k) {
1902 btree_node_prefetch(b, k);
1903 /*
1904 * initiallize c->gc_stats.nodes
1905 * for incremental GC
1906 */
1907 b->c->gc_stats.nodes++;
1908 }
1909
1910 if (p)
1911 ret = bcache_btree(check_recurse, p, b, op);
1912
1913 p = k;
1914 } while (p && !ret);
1915 }
1916
1917 return ret;
1918 }
1919
1920
bch_btree_check_thread(void * arg)1921 static int bch_btree_check_thread(void *arg)
1922 {
1923 int ret;
1924 struct btree_check_info *info = arg;
1925 struct btree_check_state *check_state = info->state;
1926 struct cache_set *c = check_state->c;
1927 struct btree_iter iter;
1928 struct bkey *k, *p;
1929 int cur_idx, prev_idx, skip_nr;
1930
1931 k = p = NULL;
1932 cur_idx = prev_idx = 0;
1933 ret = 0;
1934
1935 /* root node keys are checked before thread created */
1936 bch_btree_iter_init(&c->root->keys, &iter, NULL);
1937 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1938 BUG_ON(!k);
1939
1940 p = k;
1941 while (k) {
1942 /*
1943 * Fetch a root node key index, skip the keys which
1944 * should be fetched by other threads, then check the
1945 * sub-tree indexed by the fetched key.
1946 */
1947 spin_lock(&check_state->idx_lock);
1948 cur_idx = check_state->key_idx;
1949 check_state->key_idx++;
1950 spin_unlock(&check_state->idx_lock);
1951
1952 skip_nr = cur_idx - prev_idx;
1953
1954 while (skip_nr) {
1955 k = bch_btree_iter_next_filter(&iter,
1956 &c->root->keys,
1957 bch_ptr_bad);
1958 if (k)
1959 p = k;
1960 else {
1961 /*
1962 * No more keys to check in root node,
1963 * current checking threads are enough,
1964 * stop creating more.
1965 */
1966 atomic_set(&check_state->enough, 1);
1967 /* Update check_state->enough earlier */
1968 smp_mb__after_atomic();
1969 goto out;
1970 }
1971 skip_nr--;
1972 cond_resched();
1973 }
1974
1975 if (p) {
1976 struct btree_op op;
1977
1978 btree_node_prefetch(c->root, p);
1979 c->gc_stats.nodes++;
1980 bch_btree_op_init(&op, 0);
1981 ret = bcache_btree(check_recurse, p, c->root, &op);
1982 /*
1983 * The op may be added to cache_set's btree_cache_wait
1984 * in mca_cannibalize(), must ensure it is removed from
1985 * the list and release btree_cache_alloc_lock before
1986 * free op memory.
1987 * Otherwise, the btree_cache_wait will be damaged.
1988 */
1989 bch_cannibalize_unlock(c);
1990 finish_wait(&c->btree_cache_wait, &(&op)->wait);
1991 if (ret)
1992 goto out;
1993 }
1994 p = NULL;
1995 prev_idx = cur_idx;
1996 cond_resched();
1997 }
1998
1999 out:
2000 info->result = ret;
2001 /* update check_state->started among all CPUs */
2002 smp_mb__before_atomic();
2003 if (atomic_dec_and_test(&check_state->started))
2004 wake_up(&check_state->wait);
2005
2006 return ret;
2007 }
2008
2009
2010
bch_btree_chkthread_nr(void)2011 static int bch_btree_chkthread_nr(void)
2012 {
2013 int n = num_online_cpus()/2;
2014
2015 if (n == 0)
2016 n = 1;
2017 else if (n > BCH_BTR_CHKTHREAD_MAX)
2018 n = BCH_BTR_CHKTHREAD_MAX;
2019
2020 return n;
2021 }
2022
bch_btree_check(struct cache_set * c)2023 int bch_btree_check(struct cache_set *c)
2024 {
2025 int ret = 0;
2026 int i;
2027 struct bkey *k = NULL;
2028 struct btree_iter iter;
2029 struct btree_check_state check_state;
2030
2031 /* check and mark root node keys */
2032 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2033 bch_initial_mark_key(c, c->root->level, k);
2034
2035 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2036
2037 if (c->root->level == 0)
2038 return 0;
2039
2040 memset(&check_state, 0, sizeof(struct btree_check_state));
2041 check_state.c = c;
2042 check_state.total_threads = bch_btree_chkthread_nr();
2043 check_state.key_idx = 0;
2044 spin_lock_init(&check_state.idx_lock);
2045 atomic_set(&check_state.started, 0);
2046 atomic_set(&check_state.enough, 0);
2047 init_waitqueue_head(&check_state.wait);
2048
2049 rw_lock(0, c->root, c->root->level);
2050 /*
2051 * Run multiple threads to check btree nodes in parallel,
2052 * if check_state.enough is non-zero, it means current
2053 * running check threads are enough, unncessary to create
2054 * more.
2055 */
2056 for (i = 0; i < check_state.total_threads; i++) {
2057 /* fetch latest check_state.enough earlier */
2058 smp_mb__before_atomic();
2059 if (atomic_read(&check_state.enough))
2060 break;
2061
2062 check_state.infos[i].result = 0;
2063 check_state.infos[i].state = &check_state;
2064
2065 check_state.infos[i].thread =
2066 kthread_run(bch_btree_check_thread,
2067 &check_state.infos[i],
2068 "bch_btrchk[%d]", i);
2069 if (IS_ERR(check_state.infos[i].thread)) {
2070 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2071 for (--i; i >= 0; i--)
2072 kthread_stop(check_state.infos[i].thread);
2073 ret = -ENOMEM;
2074 goto out;
2075 }
2076 atomic_inc(&check_state.started);
2077 }
2078
2079 /*
2080 * Must wait for all threads to stop.
2081 */
2082 wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2083
2084 for (i = 0; i < check_state.total_threads; i++) {
2085 if (check_state.infos[i].result) {
2086 ret = check_state.infos[i].result;
2087 goto out;
2088 }
2089 }
2090
2091 out:
2092 rw_unlock(0, c->root);
2093 return ret;
2094 }
2095
bch_initial_gc_finish(struct cache_set * c)2096 void bch_initial_gc_finish(struct cache_set *c)
2097 {
2098 struct cache *ca = c->cache;
2099 struct bucket *b;
2100
2101 bch_btree_gc_finish(c);
2102
2103 mutex_lock(&c->bucket_lock);
2104
2105 /*
2106 * We need to put some unused buckets directly on the prio freelist in
2107 * order to get the allocator thread started - it needs freed buckets in
2108 * order to rewrite the prios and gens, and it needs to rewrite prios
2109 * and gens in order to free buckets.
2110 *
2111 * This is only safe for buckets that have no live data in them, which
2112 * there should always be some of.
2113 */
2114 for_each_bucket(b, ca) {
2115 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2116 fifo_full(&ca->free[RESERVE_BTREE]))
2117 break;
2118
2119 if (bch_can_invalidate_bucket(ca, b) &&
2120 !GC_MARK(b)) {
2121 __bch_invalidate_one_bucket(ca, b);
2122 if (!fifo_push(&ca->free[RESERVE_PRIO],
2123 b - ca->buckets))
2124 fifo_push(&ca->free[RESERVE_BTREE],
2125 b - ca->buckets);
2126 }
2127 }
2128
2129 mutex_unlock(&c->bucket_lock);
2130 }
2131
2132 /* Btree insertion */
2133
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)2134 static bool btree_insert_key(struct btree *b, struct bkey *k,
2135 struct bkey *replace_key)
2136 {
2137 unsigned int status;
2138
2139 BUG_ON(bkey_cmp(k, &b->key) > 0);
2140
2141 status = bch_btree_insert_key(&b->keys, k, replace_key);
2142 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2143 bch_check_keys(&b->keys, "%u for %s", status,
2144 replace_key ? "replace" : "insert");
2145
2146 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2147 status);
2148 return true;
2149 } else
2150 return false;
2151 }
2152
insert_u64s_remaining(struct btree * b)2153 static size_t insert_u64s_remaining(struct btree *b)
2154 {
2155 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2156
2157 /*
2158 * Might land in the middle of an existing extent and have to split it
2159 */
2160 if (b->keys.ops->is_extents)
2161 ret -= KEY_MAX_U64S;
2162
2163 return max(ret, 0L);
2164 }
2165
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2166 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2167 struct keylist *insert_keys,
2168 struct bkey *replace_key)
2169 {
2170 bool ret = false;
2171 int oldsize = bch_count_data(&b->keys);
2172
2173 while (!bch_keylist_empty(insert_keys)) {
2174 struct bkey *k = insert_keys->keys;
2175
2176 if (bkey_u64s(k) > insert_u64s_remaining(b))
2177 break;
2178
2179 if (bkey_cmp(k, &b->key) <= 0) {
2180 if (!b->level)
2181 bkey_put(b->c, k);
2182
2183 ret |= btree_insert_key(b, k, replace_key);
2184 bch_keylist_pop_front(insert_keys);
2185 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2186 BKEY_PADDED(key) temp;
2187 bkey_copy(&temp.key, insert_keys->keys);
2188
2189 bch_cut_back(&b->key, &temp.key);
2190 bch_cut_front(&b->key, insert_keys->keys);
2191
2192 ret |= btree_insert_key(b, &temp.key, replace_key);
2193 break;
2194 } else {
2195 break;
2196 }
2197 }
2198
2199 if (!ret)
2200 op->insert_collision = true;
2201
2202 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2203
2204 BUG_ON(bch_count_data(&b->keys) < oldsize);
2205 return ret;
2206 }
2207
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2208 static int btree_split(struct btree *b, struct btree_op *op,
2209 struct keylist *insert_keys,
2210 struct bkey *replace_key)
2211 {
2212 bool split;
2213 struct btree *n1, *n2 = NULL, *n3 = NULL;
2214 uint64_t start_time = local_clock();
2215 struct closure cl;
2216 struct keylist parent_keys;
2217
2218 closure_init_stack(&cl);
2219 bch_keylist_init(&parent_keys);
2220
2221 if (btree_check_reserve(b, op)) {
2222 if (!b->level)
2223 return -EINTR;
2224 else
2225 WARN(1, "insufficient reserve for split\n");
2226 }
2227
2228 n1 = btree_node_alloc_replacement(b, op);
2229 if (IS_ERR(n1))
2230 goto err;
2231
2232 split = set_blocks(btree_bset_first(n1),
2233 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2234
2235 if (split) {
2236 unsigned int keys = 0;
2237
2238 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2239
2240 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2241 if (IS_ERR(n2))
2242 goto err_free1;
2243
2244 if (!b->parent) {
2245 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2246 if (IS_ERR(n3))
2247 goto err_free2;
2248 }
2249
2250 mutex_lock(&n1->write_lock);
2251 mutex_lock(&n2->write_lock);
2252
2253 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2254
2255 /*
2256 * Has to be a linear search because we don't have an auxiliary
2257 * search tree yet
2258 */
2259
2260 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2261 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2262 keys));
2263
2264 bkey_copy_key(&n1->key,
2265 bset_bkey_idx(btree_bset_first(n1), keys));
2266 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2267
2268 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2269 btree_bset_first(n1)->keys = keys;
2270
2271 memcpy(btree_bset_first(n2)->start,
2272 bset_bkey_last(btree_bset_first(n1)),
2273 btree_bset_first(n2)->keys * sizeof(uint64_t));
2274
2275 bkey_copy_key(&n2->key, &b->key);
2276
2277 bch_keylist_add(&parent_keys, &n2->key);
2278 bch_btree_node_write(n2, &cl);
2279 mutex_unlock(&n2->write_lock);
2280 rw_unlock(true, n2);
2281 } else {
2282 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2283
2284 mutex_lock(&n1->write_lock);
2285 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2286 }
2287
2288 bch_keylist_add(&parent_keys, &n1->key);
2289 bch_btree_node_write(n1, &cl);
2290 mutex_unlock(&n1->write_lock);
2291
2292 if (n3) {
2293 /* Depth increases, make a new root */
2294 mutex_lock(&n3->write_lock);
2295 bkey_copy_key(&n3->key, &MAX_KEY);
2296 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2297 bch_btree_node_write(n3, &cl);
2298 mutex_unlock(&n3->write_lock);
2299
2300 closure_sync(&cl);
2301 bch_btree_set_root(n3);
2302 rw_unlock(true, n3);
2303 } else if (!b->parent) {
2304 /* Root filled up but didn't need to be split */
2305 closure_sync(&cl);
2306 bch_btree_set_root(n1);
2307 } else {
2308 /* Split a non root node */
2309 closure_sync(&cl);
2310 make_btree_freeing_key(b, parent_keys.top);
2311 bch_keylist_push(&parent_keys);
2312
2313 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2314 BUG_ON(!bch_keylist_empty(&parent_keys));
2315 }
2316
2317 btree_node_free(b);
2318 rw_unlock(true, n1);
2319
2320 bch_time_stats_update(&b->c->btree_split_time, start_time);
2321
2322 return 0;
2323 err_free2:
2324 bkey_put(b->c, &n2->key);
2325 btree_node_free(n2);
2326 rw_unlock(true, n2);
2327 err_free1:
2328 bkey_put(b->c, &n1->key);
2329 btree_node_free(n1);
2330 rw_unlock(true, n1);
2331 err:
2332 WARN(1, "bcache: btree split failed (level %u)", b->level);
2333
2334 if (n3 == ERR_PTR(-EAGAIN) ||
2335 n2 == ERR_PTR(-EAGAIN) ||
2336 n1 == ERR_PTR(-EAGAIN))
2337 return -EAGAIN;
2338
2339 return -ENOMEM;
2340 }
2341
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2342 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2343 struct keylist *insert_keys,
2344 atomic_t *journal_ref,
2345 struct bkey *replace_key)
2346 {
2347 struct closure cl;
2348
2349 BUG_ON(b->level && replace_key);
2350
2351 closure_init_stack(&cl);
2352
2353 mutex_lock(&b->write_lock);
2354
2355 if (write_block(b) != btree_bset_last(b) &&
2356 b->keys.last_set_unwritten)
2357 bch_btree_init_next(b); /* just wrote a set */
2358
2359 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2360 mutex_unlock(&b->write_lock);
2361 goto split;
2362 }
2363
2364 BUG_ON(write_block(b) != btree_bset_last(b));
2365
2366 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2367 if (!b->level)
2368 bch_btree_leaf_dirty(b, journal_ref);
2369 else
2370 bch_btree_node_write(b, &cl);
2371 }
2372
2373 mutex_unlock(&b->write_lock);
2374
2375 /* wait for btree node write if necessary, after unlock */
2376 closure_sync(&cl);
2377
2378 return 0;
2379 split:
2380 if (current->bio_list) {
2381 op->lock = b->c->root->level + 1;
2382 return -EAGAIN;
2383 } else if (op->lock <= b->c->root->level) {
2384 op->lock = b->c->root->level + 1;
2385 return -EINTR;
2386 } else {
2387 /* Invalidated all iterators */
2388 int ret = btree_split(b, op, insert_keys, replace_key);
2389
2390 if (bch_keylist_empty(insert_keys))
2391 return 0;
2392 else if (!ret)
2393 return -EINTR;
2394 return ret;
2395 }
2396 }
2397
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2398 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2399 struct bkey *check_key)
2400 {
2401 int ret = -EINTR;
2402 uint64_t btree_ptr = b->key.ptr[0];
2403 unsigned long seq = b->seq;
2404 struct keylist insert;
2405 bool upgrade = op->lock == -1;
2406
2407 bch_keylist_init(&insert);
2408
2409 if (upgrade) {
2410 rw_unlock(false, b);
2411 rw_lock(true, b, b->level);
2412
2413 if (b->key.ptr[0] != btree_ptr ||
2414 b->seq != seq + 1) {
2415 op->lock = b->level;
2416 goto out;
2417 }
2418 }
2419
2420 SET_KEY_PTRS(check_key, 1);
2421 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2422
2423 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2424
2425 bch_keylist_add(&insert, check_key);
2426
2427 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2428
2429 BUG_ON(!ret && !bch_keylist_empty(&insert));
2430 out:
2431 if (upgrade)
2432 downgrade_write(&b->lock);
2433 return ret;
2434 }
2435
2436 struct btree_insert_op {
2437 struct btree_op op;
2438 struct keylist *keys;
2439 atomic_t *journal_ref;
2440 struct bkey *replace_key;
2441 };
2442
btree_insert_fn(struct btree_op * b_op,struct btree * b)2443 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2444 {
2445 struct btree_insert_op *op = container_of(b_op,
2446 struct btree_insert_op, op);
2447
2448 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2449 op->journal_ref, op->replace_key);
2450 if (ret && !bch_keylist_empty(op->keys))
2451 return ret;
2452 else
2453 return MAP_DONE;
2454 }
2455
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2456 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2457 atomic_t *journal_ref, struct bkey *replace_key)
2458 {
2459 struct btree_insert_op op;
2460 int ret = 0;
2461
2462 BUG_ON(current->bio_list);
2463 BUG_ON(bch_keylist_empty(keys));
2464
2465 bch_btree_op_init(&op.op, 0);
2466 op.keys = keys;
2467 op.journal_ref = journal_ref;
2468 op.replace_key = replace_key;
2469
2470 while (!ret && !bch_keylist_empty(keys)) {
2471 op.op.lock = 0;
2472 ret = bch_btree_map_leaf_nodes(&op.op, c,
2473 &START_KEY(keys->keys),
2474 btree_insert_fn);
2475 }
2476
2477 if (ret) {
2478 struct bkey *k;
2479
2480 pr_err("error %i\n", ret);
2481
2482 while ((k = bch_keylist_pop(keys)))
2483 bkey_put(c, k);
2484 } else if (op.op.insert_collision)
2485 ret = -ESRCH;
2486
2487 return ret;
2488 }
2489
bch_btree_set_root(struct btree * b)2490 void bch_btree_set_root(struct btree *b)
2491 {
2492 unsigned int i;
2493 struct closure cl;
2494
2495 closure_init_stack(&cl);
2496
2497 trace_bcache_btree_set_root(b);
2498
2499 BUG_ON(!b->written);
2500
2501 for (i = 0; i < KEY_PTRS(&b->key); i++)
2502 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2503
2504 mutex_lock(&b->c->bucket_lock);
2505 list_del_init(&b->list);
2506 mutex_unlock(&b->c->bucket_lock);
2507
2508 b->c->root = b;
2509
2510 bch_journal_meta(b->c, &cl);
2511 closure_sync(&cl);
2512 }
2513
2514 /* Map across nodes or keys */
2515
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2516 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2517 struct bkey *from,
2518 btree_map_nodes_fn *fn, int flags)
2519 {
2520 int ret = MAP_CONTINUE;
2521
2522 if (b->level) {
2523 struct bkey *k;
2524 struct btree_iter iter;
2525
2526 bch_btree_iter_init(&b->keys, &iter, from);
2527
2528 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2529 bch_ptr_bad))) {
2530 ret = bcache_btree(map_nodes_recurse, k, b,
2531 op, from, fn, flags);
2532 from = NULL;
2533
2534 if (ret != MAP_CONTINUE)
2535 return ret;
2536 }
2537 }
2538
2539 if (!b->level || flags == MAP_ALL_NODES)
2540 ret = fn(op, b);
2541
2542 return ret;
2543 }
2544
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2545 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2546 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2547 {
2548 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2549 }
2550
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2551 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2552 struct bkey *from, btree_map_keys_fn *fn,
2553 int flags)
2554 {
2555 int ret = MAP_CONTINUE;
2556 struct bkey *k;
2557 struct btree_iter iter;
2558
2559 bch_btree_iter_init(&b->keys, &iter, from);
2560
2561 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2562 ret = !b->level
2563 ? fn(op, b, k)
2564 : bcache_btree(map_keys_recurse, k,
2565 b, op, from, fn, flags);
2566 from = NULL;
2567
2568 if (ret != MAP_CONTINUE)
2569 return ret;
2570 }
2571
2572 if (!b->level && (flags & MAP_END_KEY))
2573 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2574 KEY_OFFSET(&b->key), 0));
2575
2576 return ret;
2577 }
2578
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2579 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2580 struct bkey *from, btree_map_keys_fn *fn, int flags)
2581 {
2582 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2583 }
2584
2585 /* Keybuf code */
2586
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2587 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2588 {
2589 /* Overlapping keys compare equal */
2590 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2591 return -1;
2592 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2593 return 1;
2594 return 0;
2595 }
2596
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2597 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2598 struct keybuf_key *r)
2599 {
2600 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2601 }
2602
2603 struct refill {
2604 struct btree_op op;
2605 unsigned int nr_found;
2606 struct keybuf *buf;
2607 struct bkey *end;
2608 keybuf_pred_fn *pred;
2609 };
2610
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2611 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2612 struct bkey *k)
2613 {
2614 struct refill *refill = container_of(op, struct refill, op);
2615 struct keybuf *buf = refill->buf;
2616 int ret = MAP_CONTINUE;
2617
2618 if (bkey_cmp(k, refill->end) > 0) {
2619 ret = MAP_DONE;
2620 goto out;
2621 }
2622
2623 if (!KEY_SIZE(k)) /* end key */
2624 goto out;
2625
2626 if (refill->pred(buf, k)) {
2627 struct keybuf_key *w;
2628
2629 spin_lock(&buf->lock);
2630
2631 w = array_alloc(&buf->freelist);
2632 if (!w) {
2633 spin_unlock(&buf->lock);
2634 return MAP_DONE;
2635 }
2636
2637 w->private = NULL;
2638 bkey_copy(&w->key, k);
2639
2640 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2641 array_free(&buf->freelist, w);
2642 else
2643 refill->nr_found++;
2644
2645 if (array_freelist_empty(&buf->freelist))
2646 ret = MAP_DONE;
2647
2648 spin_unlock(&buf->lock);
2649 }
2650 out:
2651 buf->last_scanned = *k;
2652 return ret;
2653 }
2654
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2655 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2656 struct bkey *end, keybuf_pred_fn *pred)
2657 {
2658 struct bkey start = buf->last_scanned;
2659 struct refill refill;
2660
2661 cond_resched();
2662
2663 bch_btree_op_init(&refill.op, -1);
2664 refill.nr_found = 0;
2665 refill.buf = buf;
2666 refill.end = end;
2667 refill.pred = pred;
2668
2669 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2670 refill_keybuf_fn, MAP_END_KEY);
2671
2672 trace_bcache_keyscan(refill.nr_found,
2673 KEY_INODE(&start), KEY_OFFSET(&start),
2674 KEY_INODE(&buf->last_scanned),
2675 KEY_OFFSET(&buf->last_scanned));
2676
2677 spin_lock(&buf->lock);
2678
2679 if (!RB_EMPTY_ROOT(&buf->keys)) {
2680 struct keybuf_key *w;
2681
2682 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2683 buf->start = START_KEY(&w->key);
2684
2685 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2686 buf->end = w->key;
2687 } else {
2688 buf->start = MAX_KEY;
2689 buf->end = MAX_KEY;
2690 }
2691
2692 spin_unlock(&buf->lock);
2693 }
2694
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2695 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2696 {
2697 rb_erase(&w->node, &buf->keys);
2698 array_free(&buf->freelist, w);
2699 }
2700
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2701 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2702 {
2703 spin_lock(&buf->lock);
2704 __bch_keybuf_del(buf, w);
2705 spin_unlock(&buf->lock);
2706 }
2707
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2708 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2709 struct bkey *end)
2710 {
2711 bool ret = false;
2712 struct keybuf_key *p, *w, s;
2713
2714 s.key = *start;
2715
2716 if (bkey_cmp(end, &buf->start) <= 0 ||
2717 bkey_cmp(start, &buf->end) >= 0)
2718 return false;
2719
2720 spin_lock(&buf->lock);
2721 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2722
2723 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2724 p = w;
2725 w = RB_NEXT(w, node);
2726
2727 if (p->private)
2728 ret = true;
2729 else
2730 __bch_keybuf_del(buf, p);
2731 }
2732
2733 spin_unlock(&buf->lock);
2734 return ret;
2735 }
2736
bch_keybuf_next(struct keybuf * buf)2737 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2738 {
2739 struct keybuf_key *w;
2740
2741 spin_lock(&buf->lock);
2742
2743 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2744
2745 while (w && w->private)
2746 w = RB_NEXT(w, node);
2747
2748 if (w)
2749 w->private = ERR_PTR(-EINTR);
2750
2751 spin_unlock(&buf->lock);
2752 return w;
2753 }
2754
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2755 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2756 struct keybuf *buf,
2757 struct bkey *end,
2758 keybuf_pred_fn *pred)
2759 {
2760 struct keybuf_key *ret;
2761
2762 while (1) {
2763 ret = bch_keybuf_next(buf);
2764 if (ret)
2765 break;
2766
2767 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2768 pr_debug("scan finished\n");
2769 break;
2770 }
2771
2772 bch_refill_keybuf(c, buf, end, pred);
2773 }
2774
2775 return ret;
2776 }
2777
bch_keybuf_init(struct keybuf * buf)2778 void bch_keybuf_init(struct keybuf *buf)
2779 {
2780 buf->last_scanned = MAX_KEY;
2781 buf->keys = RB_ROOT;
2782
2783 spin_lock_init(&buf->lock);
2784 array_allocator_init(&buf->freelist);
2785 }
2786
bch_btree_exit(void)2787 void bch_btree_exit(void)
2788 {
2789 if (btree_io_wq)
2790 destroy_workqueue(btree_io_wq);
2791 }
2792
bch_btree_init(void)2793 int __init bch_btree_init(void)
2794 {
2795 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2796 if (!btree_io_wq)
2797 return -ENOMEM;
2798
2799 return 0;
2800 }
2801