1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Broadcom Starfighter 2 DSA switch CFP support
4 *
5 * Copyright (C) 2016, Broadcom
6 */
7
8 #include <linux/list.h>
9 #include <linux/ethtool.h>
10 #include <linux/if_ether.h>
11 #include <linux/in.h>
12 #include <linux/netdevice.h>
13 #include <net/dsa.h>
14 #include <linux/bitmap.h>
15 #include <net/flow_offload.h>
16 #include <net/switchdev.h>
17 #include <uapi/linux/if_bridge.h>
18
19 #include "bcm_sf2.h"
20 #include "bcm_sf2_regs.h"
21
22 struct cfp_rule {
23 int port;
24 struct ethtool_rx_flow_spec fs;
25 struct list_head next;
26 };
27
28 struct cfp_udf_slice_layout {
29 u8 slices[UDFS_PER_SLICE];
30 u32 mask_value;
31 u32 base_offset;
32 };
33
34 struct cfp_udf_layout {
35 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
36 };
37
38 static const u8 zero_slice[UDFS_PER_SLICE] = { };
39
40 /* UDF slices layout for a TCPv4/UDPv4 specification */
41 static const struct cfp_udf_layout udf_tcpip4_layout = {
42 .udfs = {
43 [1] = {
44 .slices = {
45 /* End of L2, byte offset 12, src IP[0:15] */
46 CFG_UDF_EOL2 | 6,
47 /* End of L2, byte offset 14, src IP[16:31] */
48 CFG_UDF_EOL2 | 7,
49 /* End of L2, byte offset 16, dst IP[0:15] */
50 CFG_UDF_EOL2 | 8,
51 /* End of L2, byte offset 18, dst IP[16:31] */
52 CFG_UDF_EOL2 | 9,
53 /* End of L3, byte offset 0, src port */
54 CFG_UDF_EOL3 | 0,
55 /* End of L3, byte offset 2, dst port */
56 CFG_UDF_EOL3 | 1,
57 0, 0, 0
58 },
59 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
60 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
61 },
62 },
63 };
64
65 /* UDF slices layout for a TCPv6/UDPv6 specification */
66 static const struct cfp_udf_layout udf_tcpip6_layout = {
67 .udfs = {
68 [0] = {
69 .slices = {
70 /* End of L2, byte offset 8, src IP[0:15] */
71 CFG_UDF_EOL2 | 4,
72 /* End of L2, byte offset 10, src IP[16:31] */
73 CFG_UDF_EOL2 | 5,
74 /* End of L2, byte offset 12, src IP[32:47] */
75 CFG_UDF_EOL2 | 6,
76 /* End of L2, byte offset 14, src IP[48:63] */
77 CFG_UDF_EOL2 | 7,
78 /* End of L2, byte offset 16, src IP[64:79] */
79 CFG_UDF_EOL2 | 8,
80 /* End of L2, byte offset 18, src IP[80:95] */
81 CFG_UDF_EOL2 | 9,
82 /* End of L2, byte offset 20, src IP[96:111] */
83 CFG_UDF_EOL2 | 10,
84 /* End of L2, byte offset 22, src IP[112:127] */
85 CFG_UDF_EOL2 | 11,
86 /* End of L3, byte offset 0, src port */
87 CFG_UDF_EOL3 | 0,
88 },
89 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
90 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
91 },
92 [3] = {
93 .slices = {
94 /* End of L2, byte offset 24, dst IP[0:15] */
95 CFG_UDF_EOL2 | 12,
96 /* End of L2, byte offset 26, dst IP[16:31] */
97 CFG_UDF_EOL2 | 13,
98 /* End of L2, byte offset 28, dst IP[32:47] */
99 CFG_UDF_EOL2 | 14,
100 /* End of L2, byte offset 30, dst IP[48:63] */
101 CFG_UDF_EOL2 | 15,
102 /* End of L2, byte offset 32, dst IP[64:79] */
103 CFG_UDF_EOL2 | 16,
104 /* End of L2, byte offset 34, dst IP[80:95] */
105 CFG_UDF_EOL2 | 17,
106 /* End of L2, byte offset 36, dst IP[96:111] */
107 CFG_UDF_EOL2 | 18,
108 /* End of L2, byte offset 38, dst IP[112:127] */
109 CFG_UDF_EOL2 | 19,
110 /* End of L3, byte offset 2, dst port */
111 CFG_UDF_EOL3 | 1,
112 },
113 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
114 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
115 },
116 },
117 };
118
bcm_sf2_get_num_udf_slices(const u8 * layout)119 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
120 {
121 unsigned int i, count = 0;
122
123 for (i = 0; i < UDFS_PER_SLICE; i++) {
124 if (layout[i] != 0)
125 count++;
126 }
127
128 return count;
129 }
130
udf_upper_bits(int num_udf)131 static inline u32 udf_upper_bits(int num_udf)
132 {
133 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
134 }
135
udf_lower_bits(int num_udf)136 static inline u32 udf_lower_bits(int num_udf)
137 {
138 return (u8)GENMASK(num_udf - 1, 0);
139 }
140
bcm_sf2_get_slice_number(const struct cfp_udf_layout * l,unsigned int start)141 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
142 unsigned int start)
143 {
144 const struct cfp_udf_slice_layout *slice_layout;
145 unsigned int slice_idx;
146
147 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
148 slice_layout = &l->udfs[slice_idx];
149 if (memcmp(slice_layout->slices, zero_slice,
150 sizeof(zero_slice)))
151 break;
152 }
153
154 return slice_idx;
155 }
156
bcm_sf2_cfp_udf_set(struct bcm_sf2_priv * priv,const struct cfp_udf_layout * layout,unsigned int slice_num)157 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
158 const struct cfp_udf_layout *layout,
159 unsigned int slice_num)
160 {
161 u32 offset = layout->udfs[slice_num].base_offset;
162 unsigned int i;
163
164 for (i = 0; i < UDFS_PER_SLICE; i++)
165 core_writel(priv, layout->udfs[slice_num].slices[i],
166 offset + i * 4);
167 }
168
bcm_sf2_cfp_op(struct bcm_sf2_priv * priv,unsigned int op)169 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
170 {
171 unsigned int timeout = 1000;
172 u32 reg;
173
174 reg = core_readl(priv, CORE_CFP_ACC);
175 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
176 reg |= OP_STR_DONE | op;
177 core_writel(priv, reg, CORE_CFP_ACC);
178
179 do {
180 reg = core_readl(priv, CORE_CFP_ACC);
181 if (!(reg & OP_STR_DONE))
182 break;
183
184 cpu_relax();
185 } while (timeout--);
186
187 if (!timeout)
188 return -ETIMEDOUT;
189
190 return 0;
191 }
192
bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv * priv,unsigned int addr)193 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
194 unsigned int addr)
195 {
196 u32 reg;
197
198 WARN_ON(addr >= priv->num_cfp_rules);
199
200 reg = core_readl(priv, CORE_CFP_ACC);
201 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
202 reg |= addr << XCESS_ADDR_SHIFT;
203 core_writel(priv, reg, CORE_CFP_ACC);
204 }
205
bcm_sf2_cfp_rule_size(struct bcm_sf2_priv * priv)206 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
207 {
208 /* Entry #0 is reserved */
209 return priv->num_cfp_rules - 1;
210 }
211
bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv * priv,unsigned int rule_index,int src_port,unsigned int port_num,unsigned int queue_num,bool fwd_map_change)212 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
213 unsigned int rule_index,
214 int src_port,
215 unsigned int port_num,
216 unsigned int queue_num,
217 bool fwd_map_change)
218 {
219 int ret;
220 u32 reg;
221
222 /* Replace ARL derived destination with DST_MAP derived, define
223 * which port and queue this should be forwarded to.
224 */
225 if (fwd_map_change)
226 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
227 BIT(port_num + DST_MAP_IB_SHIFT) |
228 CHANGE_TC | queue_num << NEW_TC_SHIFT;
229 else
230 reg = 0;
231
232 /* Enable looping back to the original port */
233 if (src_port == port_num)
234 reg |= LOOP_BK_EN;
235
236 core_writel(priv, reg, CORE_ACT_POL_DATA0);
237
238 /* Set classification ID that needs to be put in Broadcom tag */
239 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
240
241 core_writel(priv, 0, CORE_ACT_POL_DATA2);
242
243 /* Configure policer RAM now */
244 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
245 if (ret) {
246 pr_err("Policer entry at %d failed\n", rule_index);
247 return ret;
248 }
249
250 /* Disable the policer */
251 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
252
253 /* Now the rate meter */
254 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
255 if (ret) {
256 pr_err("Meter entry at %d failed\n", rule_index);
257 return ret;
258 }
259
260 return 0;
261 }
262
bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv * priv,struct flow_dissector_key_ipv4_addrs * addrs,struct flow_dissector_key_ports * ports,const __be16 vlan_tci,unsigned int slice_num,u8 num_udf,bool mask)263 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
264 struct flow_dissector_key_ipv4_addrs *addrs,
265 struct flow_dissector_key_ports *ports,
266 const __be16 vlan_tci,
267 unsigned int slice_num, u8 num_udf,
268 bool mask)
269 {
270 u32 reg, offset;
271
272 /* UDF_Valid[7:0] [31:24]
273 * S-Tag [23:8]
274 * C-Tag [7:0]
275 */
276 reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8;
277 if (mask)
278 core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
279 else
280 core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
281
282 /* C-Tag [31:24]
283 * UDF_n_A8 [23:8]
284 * UDF_n_A7 [7:0]
285 */
286 reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
287 if (mask)
288 offset = CORE_CFP_MASK_PORT(4);
289 else
290 offset = CORE_CFP_DATA_PORT(4);
291 core_writel(priv, reg, offset);
292
293 /* UDF_n_A7 [31:24]
294 * UDF_n_A6 [23:8]
295 * UDF_n_A5 [7:0]
296 */
297 reg = be16_to_cpu(ports->dst) >> 8;
298 if (mask)
299 offset = CORE_CFP_MASK_PORT(3);
300 else
301 offset = CORE_CFP_DATA_PORT(3);
302 core_writel(priv, reg, offset);
303
304 /* UDF_n_A5 [31:24]
305 * UDF_n_A4 [23:8]
306 * UDF_n_A3 [7:0]
307 */
308 reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
309 (u32)be16_to_cpu(ports->src) << 8 |
310 (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
311 if (mask)
312 offset = CORE_CFP_MASK_PORT(2);
313 else
314 offset = CORE_CFP_DATA_PORT(2);
315 core_writel(priv, reg, offset);
316
317 /* UDF_n_A3 [31:24]
318 * UDF_n_A2 [23:8]
319 * UDF_n_A1 [7:0]
320 */
321 reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
322 (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
323 (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
324 if (mask)
325 offset = CORE_CFP_MASK_PORT(1);
326 else
327 offset = CORE_CFP_DATA_PORT(1);
328 core_writel(priv, reg, offset);
329
330 /* UDF_n_A1 [31:24]
331 * UDF_n_A0 [23:8]
332 * Reserved [7:4]
333 * Slice ID [3:2]
334 * Slice valid [1:0]
335 */
336 reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
337 (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
338 SLICE_NUM(slice_num) | SLICE_VALID;
339 if (mask)
340 offset = CORE_CFP_MASK_PORT(0);
341 else
342 offset = CORE_CFP_DATA_PORT(0);
343 core_writel(priv, reg, offset);
344 }
345
bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv * priv,int port,unsigned int port_num,unsigned int queue_num,struct ethtool_rx_flow_spec * fs)346 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
347 unsigned int port_num,
348 unsigned int queue_num,
349 struct ethtool_rx_flow_spec *fs)
350 {
351 __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
352 struct ethtool_rx_flow_spec_input input = {};
353 const struct cfp_udf_layout *layout;
354 unsigned int slice_num, rule_index;
355 struct ethtool_rx_flow_rule *flow;
356 struct flow_match_ipv4_addrs ipv4;
357 struct flow_match_ports ports;
358 struct flow_match_ip ip;
359 u8 ip_proto, ip_frag;
360 u8 num_udf;
361 u32 reg;
362 int ret;
363
364 switch (fs->flow_type & ~FLOW_EXT) {
365 case TCP_V4_FLOW:
366 ip_proto = IPPROTO_TCP;
367 break;
368 case UDP_V4_FLOW:
369 ip_proto = IPPROTO_UDP;
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
376
377 /* Extract VLAN TCI */
378 if (fs->flow_type & FLOW_EXT) {
379 vlan_tci = fs->h_ext.vlan_tci;
380 vlan_m_tci = fs->m_ext.vlan_tci;
381 }
382
383 /* Locate the first rule available */
384 if (fs->location == RX_CLS_LOC_ANY)
385 rule_index = find_first_zero_bit(priv->cfp.used,
386 priv->num_cfp_rules);
387 else
388 rule_index = fs->location;
389
390 if (rule_index > bcm_sf2_cfp_rule_size(priv))
391 return -ENOSPC;
392
393 input.fs = fs;
394 flow = ethtool_rx_flow_rule_create(&input);
395 if (IS_ERR(flow))
396 return PTR_ERR(flow);
397
398 flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
399 flow_rule_match_ports(flow->rule, &ports);
400 flow_rule_match_ip(flow->rule, &ip);
401
402 layout = &udf_tcpip4_layout;
403 /* We only use one UDF slice for now */
404 slice_num = bcm_sf2_get_slice_number(layout, 0);
405 if (slice_num == UDF_NUM_SLICES) {
406 ret = -EINVAL;
407 goto out_err_flow_rule;
408 }
409
410 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
411
412 /* Apply the UDF layout for this filter */
413 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
414
415 /* Apply to all packets received through this port */
416 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
417
418 /* Source port map match */
419 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
420
421 /* S-Tag status [31:30]
422 * C-Tag status [29:28]
423 * L2 framing [27:26]
424 * L3 framing [25:24]
425 * IP ToS [23:16]
426 * IP proto [15:08]
427 * IP Fragm [7]
428 * Non 1st frag [6]
429 * IP Authen [5]
430 * TTL range [4:3]
431 * PPPoE session [2]
432 * Reserved [1]
433 * UDF_Valid[8] [0]
434 */
435 core_writel(priv, ip.key->tos << IPTOS_SHIFT |
436 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
437 udf_upper_bits(num_udf),
438 CORE_CFP_DATA_PORT(6));
439
440 /* Mask with the specific layout for IPv4 packets */
441 core_writel(priv, layout->udfs[slice_num].mask_value |
442 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
443
444 /* Program the match and the mask */
445 bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci,
446 slice_num, num_udf, false);
447 bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci,
448 SLICE_NUM_MASK, num_udf, true);
449
450 /* Insert into TCAM now */
451 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
452
453 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
454 if (ret) {
455 pr_err("TCAM entry at addr %d failed\n", rule_index);
456 goto out_err_flow_rule;
457 }
458
459 /* Insert into Action and policer RAMs now */
460 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
461 queue_num, true);
462 if (ret)
463 goto out_err_flow_rule;
464
465 /* Turn on CFP for this rule now */
466 reg = core_readl(priv, CORE_CFP_CTL_REG);
467 reg |= BIT(port);
468 core_writel(priv, reg, CORE_CFP_CTL_REG);
469
470 /* Flag the rule as being used and return it */
471 set_bit(rule_index, priv->cfp.used);
472 set_bit(rule_index, priv->cfp.unique);
473 fs->location = rule_index;
474
475 return 0;
476
477 out_err_flow_rule:
478 ethtool_rx_flow_rule_destroy(flow);
479 return ret;
480 }
481
bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv * priv,const __be32 * ip6_addr,const __be16 port,const __be16 vlan_tci,unsigned int slice_num,u32 udf_bits,bool mask)482 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
483 const __be32 *ip6_addr, const __be16 port,
484 const __be16 vlan_tci,
485 unsigned int slice_num, u32 udf_bits,
486 bool mask)
487 {
488 u32 reg, tmp, val, offset;
489
490 /* UDF_Valid[7:0] [31:24]
491 * S-Tag [23:8]
492 * C-Tag [7:0]
493 */
494 reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8;
495 if (mask)
496 core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
497 else
498 core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
499
500 /* C-Tag [31:24]
501 * UDF_n_B8 [23:8] (port)
502 * UDF_n_B7 (upper) [7:0] (addr[15:8])
503 */
504 reg = be32_to_cpu(ip6_addr[3]);
505 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
506 val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
507 if (mask)
508 offset = CORE_CFP_MASK_PORT(4);
509 else
510 offset = CORE_CFP_DATA_PORT(4);
511 core_writel(priv, val, offset);
512
513 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
514 * UDF_n_B6 [23:8] (addr[31:16])
515 * UDF_n_B5 (upper) [7:0] (addr[47:40])
516 */
517 tmp = be32_to_cpu(ip6_addr[2]);
518 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
519 ((tmp >> 8) & 0xff);
520 if (mask)
521 offset = CORE_CFP_MASK_PORT(3);
522 else
523 offset = CORE_CFP_DATA_PORT(3);
524 core_writel(priv, val, offset);
525
526 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
527 * UDF_n_B4 [23:8] (addr[63:48])
528 * UDF_n_B3 (upper) [7:0] (addr[79:72])
529 */
530 reg = be32_to_cpu(ip6_addr[1]);
531 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
532 ((reg >> 8) & 0xff);
533 if (mask)
534 offset = CORE_CFP_MASK_PORT(2);
535 else
536 offset = CORE_CFP_DATA_PORT(2);
537 core_writel(priv, val, offset);
538
539 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
540 * UDF_n_B2 [23:8] (addr[95:80])
541 * UDF_n_B1 (upper) [7:0] (addr[111:104])
542 */
543 tmp = be32_to_cpu(ip6_addr[0]);
544 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
545 ((tmp >> 8) & 0xff);
546 if (mask)
547 offset = CORE_CFP_MASK_PORT(1);
548 else
549 offset = CORE_CFP_DATA_PORT(1);
550 core_writel(priv, val, offset);
551
552 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
553 * UDF_n_B0 [23:8] (addr[127:112])
554 * Reserved [7:4]
555 * Slice ID [3:2]
556 * Slice valid [1:0]
557 */
558 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
559 SLICE_NUM(slice_num) | SLICE_VALID;
560 if (mask)
561 offset = CORE_CFP_MASK_PORT(0);
562 else
563 offset = CORE_CFP_DATA_PORT(0);
564 core_writel(priv, reg, offset);
565 }
566
bcm_sf2_cfp_rule_find(struct bcm_sf2_priv * priv,int port,u32 location)567 static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
568 int port, u32 location)
569 {
570 struct cfp_rule *rule;
571
572 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
573 if (rule->port == port && rule->fs.location == location)
574 return rule;
575 }
576
577 return NULL;
578 }
579
bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv * priv,int port,struct ethtool_rx_flow_spec * fs)580 static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
581 struct ethtool_rx_flow_spec *fs)
582 {
583 struct cfp_rule *rule = NULL;
584 size_t fs_size = 0;
585 int ret = 1;
586
587 if (list_empty(&priv->cfp.rules_list))
588 return ret;
589
590 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
591 ret = 1;
592 if (rule->port != port)
593 continue;
594
595 if (rule->fs.flow_type != fs->flow_type ||
596 rule->fs.ring_cookie != fs->ring_cookie ||
597 rule->fs.h_ext.data[0] != fs->h_ext.data[0])
598 continue;
599
600 switch (fs->flow_type & ~FLOW_EXT) {
601 case TCP_V6_FLOW:
602 case UDP_V6_FLOW:
603 fs_size = sizeof(struct ethtool_tcpip6_spec);
604 break;
605 case TCP_V4_FLOW:
606 case UDP_V4_FLOW:
607 fs_size = sizeof(struct ethtool_tcpip4_spec);
608 break;
609 default:
610 continue;
611 }
612
613 ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
614 ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
615 /* Compare VLAN TCI values as well */
616 if (rule->fs.flow_type & FLOW_EXT) {
617 ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci;
618 ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci;
619 }
620 if (ret == 0)
621 break;
622 }
623
624 return ret;
625 }
626
bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv * priv,int port,unsigned int port_num,unsigned int queue_num,struct ethtool_rx_flow_spec * fs)627 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
628 unsigned int port_num,
629 unsigned int queue_num,
630 struct ethtool_rx_flow_spec *fs)
631 {
632 __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
633 struct ethtool_rx_flow_spec_input input = {};
634 unsigned int slice_num, rule_index[2];
635 const struct cfp_udf_layout *layout;
636 struct ethtool_rx_flow_rule *flow;
637 struct flow_match_ipv6_addrs ipv6;
638 struct flow_match_ports ports;
639 u8 ip_proto, ip_frag;
640 int ret = 0;
641 u8 num_udf;
642 u32 reg;
643
644 switch (fs->flow_type & ~FLOW_EXT) {
645 case TCP_V6_FLOW:
646 ip_proto = IPPROTO_TCP;
647 break;
648 case UDP_V6_FLOW:
649 ip_proto = IPPROTO_UDP;
650 break;
651 default:
652 return -EINVAL;
653 }
654
655 ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
656
657 /* Extract VLAN TCI */
658 if (fs->flow_type & FLOW_EXT) {
659 vlan_tci = fs->h_ext.vlan_tci;
660 vlan_m_tci = fs->m_ext.vlan_tci;
661 }
662
663 layout = &udf_tcpip6_layout;
664 slice_num = bcm_sf2_get_slice_number(layout, 0);
665 if (slice_num == UDF_NUM_SLICES)
666 return -EINVAL;
667
668 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
669
670 /* Negotiate two indexes, one for the second half which we are chained
671 * from, which is what we will return to user-space, and a second one
672 * which is used to store its first half. That first half does not
673 * allow any choice of placement, so it just needs to find the next
674 * available bit. We return the second half as fs->location because
675 * that helps with the rule lookup later on since the second half is
676 * chained from its first half, we can easily identify IPv6 CFP rules
677 * by looking whether they carry a CHAIN_ID.
678 *
679 * We also want the second half to have a lower rule_index than its
680 * first half because the HW search is by incrementing addresses.
681 */
682 if (fs->location == RX_CLS_LOC_ANY)
683 rule_index[1] = find_first_zero_bit(priv->cfp.used,
684 priv->num_cfp_rules);
685 else
686 rule_index[1] = fs->location;
687 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
688 return -ENOSPC;
689
690 /* Flag it as used (cleared on error path) such that we can immediately
691 * obtain a second one to chain from.
692 */
693 set_bit(rule_index[1], priv->cfp.used);
694
695 rule_index[0] = find_first_zero_bit(priv->cfp.used,
696 priv->num_cfp_rules);
697 if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
698 ret = -ENOSPC;
699 goto out_err;
700 }
701
702 input.fs = fs;
703 flow = ethtool_rx_flow_rule_create(&input);
704 if (IS_ERR(flow)) {
705 ret = PTR_ERR(flow);
706 goto out_err;
707 }
708 flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
709 flow_rule_match_ports(flow->rule, &ports);
710
711 /* Apply the UDF layout for this filter */
712 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
713
714 /* Apply to all packets received through this port */
715 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
716
717 /* Source port map match */
718 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
719
720 /* S-Tag status [31:30]
721 * C-Tag status [29:28]
722 * L2 framing [27:26]
723 * L3 framing [25:24]
724 * IP ToS [23:16]
725 * IP proto [15:08]
726 * IP Fragm [7]
727 * Non 1st frag [6]
728 * IP Authen [5]
729 * TTL range [4:3]
730 * PPPoE session [2]
731 * Reserved [1]
732 * UDF_Valid[8] [0]
733 */
734 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
735 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
736 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
737
738 /* Mask with the specific layout for IPv6 packets including
739 * UDF_Valid[8]
740 */
741 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
742 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
743
744 /* Slice the IPv6 source address and port */
745 bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
746 ports.key->src, vlan_tci, slice_num,
747 udf_lower_bits(num_udf), false);
748 bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
749 ports.mask->src, vlan_m_tci, SLICE_NUM_MASK,
750 udf_lower_bits(num_udf), true);
751
752 /* Insert into TCAM now because we need to insert a second rule */
753 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
754
755 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
756 if (ret) {
757 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
758 goto out_err_flow_rule;
759 }
760
761 /* Insert into Action and policer RAMs now */
762 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
763 queue_num, false);
764 if (ret)
765 goto out_err_flow_rule;
766
767 /* Now deal with the second slice to chain this rule */
768 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
769 if (slice_num == UDF_NUM_SLICES) {
770 ret = -EINVAL;
771 goto out_err_flow_rule;
772 }
773
774 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
775
776 /* Apply the UDF layout for this filter */
777 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
778
779 /* Chained rule, source port match is coming from the rule we are
780 * chained from.
781 */
782 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
783 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
784
785 /*
786 * CHAIN ID [31:24] chain to previous slice
787 * Reserved [23:20]
788 * UDF_Valid[11:8] [19:16]
789 * UDF_Valid[7:0] [15:8]
790 * UDF_n_D11 [7:0]
791 */
792 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
793 udf_lower_bits(num_udf) << 8;
794 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
795
796 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
797 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
798 udf_lower_bits(num_udf) << 8;
799 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
800
801 bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
802 ports.key->dst, 0, slice_num,
803 0, false);
804 bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
805 ports.key->dst, 0, SLICE_NUM_MASK,
806 0, true);
807
808 /* Insert into TCAM now */
809 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
810
811 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
812 if (ret) {
813 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
814 goto out_err_flow_rule;
815 }
816
817 /* Insert into Action and policer RAMs now, set chain ID to
818 * the one we are chained to
819 */
820 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
821 queue_num, true);
822 if (ret)
823 goto out_err_flow_rule;
824
825 /* Turn on CFP for this rule now */
826 reg = core_readl(priv, CORE_CFP_CTL_REG);
827 reg |= BIT(port);
828 core_writel(priv, reg, CORE_CFP_CTL_REG);
829
830 /* Flag the second half rule as being used now, return it as the
831 * location, and flag it as unique while dumping rules
832 */
833 set_bit(rule_index[0], priv->cfp.used);
834 set_bit(rule_index[1], priv->cfp.unique);
835 fs->location = rule_index[1];
836
837 return ret;
838
839 out_err_flow_rule:
840 ethtool_rx_flow_rule_destroy(flow);
841 out_err:
842 clear_bit(rule_index[1], priv->cfp.used);
843 return ret;
844 }
845
bcm_sf2_cfp_rule_insert(struct dsa_switch * ds,int port,struct ethtool_rx_flow_spec * fs)846 static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
847 struct ethtool_rx_flow_spec *fs)
848 {
849 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
850 s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
851 __u64 ring_cookie = fs->ring_cookie;
852 struct switchdev_obj_port_vlan vlan;
853 unsigned int queue_num, port_num;
854 u16 vid;
855 int ret;
856
857 /* This rule is a Wake-on-LAN filter and we must specifically
858 * target the CPU port in order for it to be working.
859 */
860 if (ring_cookie == RX_CLS_FLOW_WAKE)
861 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
862
863 /* We do not support discarding packets, check that the
864 * destination port is enabled and that we are within the
865 * number of ports supported by the switch
866 */
867 port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
868
869 if (ring_cookie == RX_CLS_FLOW_DISC ||
870 !(dsa_is_user_port(ds, port_num) ||
871 dsa_is_cpu_port(ds, port_num)) ||
872 port_num >= priv->hw_params.num_ports)
873 return -EINVAL;
874
875 /* If the rule is matching a particular VLAN, make sure that we honor
876 * the matching and have it tagged or untagged on the destination port,
877 * we do this on egress with a VLAN entry. The egress tagging attribute
878 * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged,
879 * a 0 means tagged.
880 */
881 if (fs->flow_type & FLOW_EXT) {
882 /* We cannot support matching multiple VLAN IDs yet */
883 if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) !=
884 VLAN_VID_MASK)
885 return -EINVAL;
886
887 vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK;
888 vlan.vid = vid;
889 if (be32_to_cpu(fs->h_ext.data[1]) & 1)
890 vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED;
891 else
892 vlan.flags = 0;
893
894 ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL);
895 if (ret)
896 return ret;
897 }
898
899 /*
900 * We have a small oddity where Port 6 just does not have a
901 * valid bit here (so we substract by one).
902 */
903 queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
904 if (port_num >= 7)
905 port_num -= 1;
906
907 switch (fs->flow_type & ~FLOW_EXT) {
908 case TCP_V4_FLOW:
909 case UDP_V4_FLOW:
910 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
911 queue_num, fs);
912 break;
913 case TCP_V6_FLOW:
914 case UDP_V6_FLOW:
915 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
916 queue_num, fs);
917 break;
918 default:
919 ret = -EINVAL;
920 break;
921 }
922
923 return ret;
924 }
925
bcm_sf2_cfp_rule_set(struct dsa_switch * ds,int port,struct ethtool_rx_flow_spec * fs)926 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
927 struct ethtool_rx_flow_spec *fs)
928 {
929 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
930 struct cfp_rule *rule = NULL;
931 int ret = -EINVAL;
932
933 /* Check for unsupported extensions */
934 if (fs->flow_type & FLOW_MAC_EXT)
935 return -EINVAL;
936
937 if (fs->location != RX_CLS_LOC_ANY &&
938 fs->location > bcm_sf2_cfp_rule_size(priv))
939 return -EINVAL;
940
941 if ((fs->flow_type & FLOW_EXT) &&
942 !(ds->ops->port_vlan_add || ds->ops->port_vlan_del))
943 return -EOPNOTSUPP;
944
945 if (fs->location != RX_CLS_LOC_ANY &&
946 test_bit(fs->location, priv->cfp.used))
947 return -EBUSY;
948
949 ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
950 if (ret == 0)
951 return -EEXIST;
952
953 rule = kzalloc(sizeof(*rule), GFP_KERNEL);
954 if (!rule)
955 return -ENOMEM;
956
957 ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
958 if (ret) {
959 kfree(rule);
960 return ret;
961 }
962
963 rule->port = port;
964 memcpy(&rule->fs, fs, sizeof(*fs));
965 list_add_tail(&rule->next, &priv->cfp.rules_list);
966
967 return ret;
968 }
969
bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv * priv,int port,u32 loc,u32 * next_loc)970 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
971 u32 loc, u32 *next_loc)
972 {
973 int ret;
974 u32 reg;
975
976 /* Indicate which rule we want to read */
977 bcm_sf2_cfp_rule_addr_set(priv, loc);
978
979 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
980 if (ret)
981 return ret;
982
983 /* Check if this is possibly an IPv6 rule that would
984 * indicate we need to delete its companion rule
985 * as well
986 */
987 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
988 if (next_loc)
989 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
990
991 /* Clear its valid bits */
992 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
993 reg &= ~SLICE_VALID;
994 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
995
996 /* Write back this entry into the TCAM now */
997 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
998 if (ret)
999 return ret;
1000
1001 clear_bit(loc, priv->cfp.used);
1002 clear_bit(loc, priv->cfp.unique);
1003
1004 return 0;
1005 }
1006
bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv * priv,int port,u32 loc)1007 static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
1008 u32 loc)
1009 {
1010 u32 next_loc = 0;
1011 int ret;
1012
1013 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
1014 if (ret)
1015 return ret;
1016
1017 /* If this was an IPv6 rule, delete is companion rule too */
1018 if (next_loc)
1019 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
1020
1021 return ret;
1022 }
1023
bcm_sf2_cfp_rule_del(struct bcm_sf2_priv * priv,int port,u32 loc)1024 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
1025 {
1026 struct cfp_rule *rule;
1027 int ret;
1028
1029 if (loc > bcm_sf2_cfp_rule_size(priv))
1030 return -EINVAL;
1031
1032 /* Refuse deleting unused rules, and those that are not unique since
1033 * that could leave IPv6 rules with one of the chained rule in the
1034 * table.
1035 */
1036 if (!test_bit(loc, priv->cfp.unique) || loc == 0)
1037 return -EINVAL;
1038
1039 rule = bcm_sf2_cfp_rule_find(priv, port, loc);
1040 if (!rule)
1041 return -EINVAL;
1042
1043 ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
1044
1045 list_del(&rule->next);
1046 kfree(rule);
1047
1048 return ret;
1049 }
1050
bcm_sf2_invert_masks(struct ethtool_rx_flow_spec * flow)1051 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
1052 {
1053 unsigned int i;
1054
1055 for (i = 0; i < sizeof(flow->m_u); i++)
1056 flow->m_u.hdata[i] ^= 0xff;
1057
1058 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1059 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1060 flow->m_ext.data[0] ^= cpu_to_be32(~0);
1061 flow->m_ext.data[1] ^= cpu_to_be32(~0);
1062 }
1063
bcm_sf2_cfp_rule_get(struct bcm_sf2_priv * priv,int port,struct ethtool_rxnfc * nfc)1064 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1065 struct ethtool_rxnfc *nfc)
1066 {
1067 struct cfp_rule *rule;
1068
1069 rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1070 if (!rule)
1071 return -EINVAL;
1072
1073 memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1074
1075 bcm_sf2_invert_masks(&nfc->fs);
1076
1077 /* Put the TCAM size here */
1078 nfc->data = bcm_sf2_cfp_rule_size(priv);
1079
1080 return 0;
1081 }
1082
1083 /* We implement the search doing a TCAM search operation */
bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv * priv,int port,struct ethtool_rxnfc * nfc,u32 * rule_locs)1084 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1085 int port, struct ethtool_rxnfc *nfc,
1086 u32 *rule_locs)
1087 {
1088 unsigned int index = 1, rules_cnt = 0;
1089
1090 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1091 rule_locs[rules_cnt] = index;
1092 rules_cnt++;
1093 }
1094
1095 /* Put the TCAM size here */
1096 nfc->data = bcm_sf2_cfp_rule_size(priv);
1097 nfc->rule_cnt = rules_cnt;
1098
1099 return 0;
1100 }
1101
bcm_sf2_get_rxnfc(struct dsa_switch * ds,int port,struct ethtool_rxnfc * nfc,u32 * rule_locs)1102 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1103 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1104 {
1105 struct net_device *p = dsa_port_to_master(dsa_to_port(ds, port));
1106 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1107 int ret = 0;
1108
1109 mutex_lock(&priv->cfp.lock);
1110
1111 switch (nfc->cmd) {
1112 case ETHTOOL_GRXCLSRLCNT:
1113 /* Subtract the default, unusable rule */
1114 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1115 priv->num_cfp_rules) - 1;
1116 /* We support specifying rule locations */
1117 nfc->data |= RX_CLS_LOC_SPECIAL;
1118 break;
1119 case ETHTOOL_GRXCLSRULE:
1120 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1121 break;
1122 case ETHTOOL_GRXCLSRLALL:
1123 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1124 break;
1125 default:
1126 ret = -EOPNOTSUPP;
1127 break;
1128 }
1129
1130 mutex_unlock(&priv->cfp.lock);
1131
1132 if (ret)
1133 return ret;
1134
1135 /* Pass up the commands to the attached master network device */
1136 if (p->ethtool_ops->get_rxnfc) {
1137 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1138 if (ret == -EOPNOTSUPP)
1139 ret = 0;
1140 }
1141
1142 return ret;
1143 }
1144
bcm_sf2_set_rxnfc(struct dsa_switch * ds,int port,struct ethtool_rxnfc * nfc)1145 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1146 struct ethtool_rxnfc *nfc)
1147 {
1148 struct net_device *p = dsa_port_to_master(dsa_to_port(ds, port));
1149 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1150 int ret = 0;
1151
1152 mutex_lock(&priv->cfp.lock);
1153
1154 switch (nfc->cmd) {
1155 case ETHTOOL_SRXCLSRLINS:
1156 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1157 break;
1158
1159 case ETHTOOL_SRXCLSRLDEL:
1160 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1161 break;
1162 default:
1163 ret = -EOPNOTSUPP;
1164 break;
1165 }
1166
1167 mutex_unlock(&priv->cfp.lock);
1168
1169 if (ret)
1170 return ret;
1171
1172 /* Pass up the commands to the attached master network device.
1173 * This can fail, so rollback the operation if we need to.
1174 */
1175 if (p->ethtool_ops->set_rxnfc) {
1176 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1177 if (ret && ret != -EOPNOTSUPP) {
1178 mutex_lock(&priv->cfp.lock);
1179 bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1180 mutex_unlock(&priv->cfp.lock);
1181 } else {
1182 ret = 0;
1183 }
1184 }
1185
1186 return ret;
1187 }
1188
bcm_sf2_cfp_rst(struct bcm_sf2_priv * priv)1189 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1190 {
1191 unsigned int timeout = 1000;
1192 u32 reg;
1193
1194 reg = core_readl(priv, CORE_CFP_ACC);
1195 reg |= TCAM_RESET;
1196 core_writel(priv, reg, CORE_CFP_ACC);
1197
1198 do {
1199 reg = core_readl(priv, CORE_CFP_ACC);
1200 if (!(reg & TCAM_RESET))
1201 break;
1202
1203 cpu_relax();
1204 } while (timeout--);
1205
1206 if (!timeout)
1207 return -ETIMEDOUT;
1208
1209 return 0;
1210 }
1211
bcm_sf2_cfp_exit(struct dsa_switch * ds)1212 void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1213 {
1214 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215 struct cfp_rule *rule, *n;
1216
1217 if (list_empty(&priv->cfp.rules_list))
1218 return;
1219
1220 list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1221 bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1222 }
1223
bcm_sf2_cfp_resume(struct dsa_switch * ds)1224 int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1225 {
1226 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1227 struct cfp_rule *rule;
1228 int ret = 0;
1229 u32 reg;
1230
1231 if (list_empty(&priv->cfp.rules_list))
1232 return ret;
1233
1234 reg = core_readl(priv, CORE_CFP_CTL_REG);
1235 reg &= ~CFP_EN_MAP_MASK;
1236 core_writel(priv, reg, CORE_CFP_CTL_REG);
1237
1238 ret = bcm_sf2_cfp_rst(priv);
1239 if (ret)
1240 return ret;
1241
1242 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1243 ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1244 rule->fs.location);
1245 if (ret) {
1246 dev_err(ds->dev, "failed to remove rule\n");
1247 return ret;
1248 }
1249
1250 ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1251 if (ret) {
1252 dev_err(ds->dev, "failed to restore rule\n");
1253 return ret;
1254 }
1255 }
1256
1257 return ret;
1258 }
1259
1260 static const struct bcm_sf2_cfp_stat {
1261 unsigned int offset;
1262 unsigned int ram_loc;
1263 const char *name;
1264 } bcm_sf2_cfp_stats[] = {
1265 {
1266 .offset = CORE_STAT_GREEN_CNTR,
1267 .ram_loc = GREEN_STAT_RAM,
1268 .name = "Green"
1269 },
1270 {
1271 .offset = CORE_STAT_YELLOW_CNTR,
1272 .ram_loc = YELLOW_STAT_RAM,
1273 .name = "Yellow"
1274 },
1275 {
1276 .offset = CORE_STAT_RED_CNTR,
1277 .ram_loc = RED_STAT_RAM,
1278 .name = "Red"
1279 },
1280 };
1281
bcm_sf2_cfp_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1282 void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1283 u32 stringset, uint8_t *data)
1284 {
1285 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1286 unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1287 char buf[ETH_GSTRING_LEN];
1288 unsigned int i, j, iter;
1289
1290 if (stringset != ETH_SS_STATS)
1291 return;
1292
1293 for (i = 1; i < priv->num_cfp_rules; i++) {
1294 for (j = 0; j < s; j++) {
1295 snprintf(buf, sizeof(buf),
1296 "CFP%03d_%sCntr",
1297 i, bcm_sf2_cfp_stats[j].name);
1298 iter = (i - 1) * s + j;
1299 strscpy(data + iter * ETH_GSTRING_LEN,
1300 buf, ETH_GSTRING_LEN);
1301 }
1302 }
1303 }
1304
bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1305 void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1306 uint64_t *data)
1307 {
1308 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1309 unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1310 const struct bcm_sf2_cfp_stat *stat;
1311 unsigned int i, j, iter;
1312 struct cfp_rule *rule;
1313 int ret;
1314
1315 mutex_lock(&priv->cfp.lock);
1316 for (i = 1; i < priv->num_cfp_rules; i++) {
1317 rule = bcm_sf2_cfp_rule_find(priv, port, i);
1318 if (!rule)
1319 continue;
1320
1321 for (j = 0; j < s; j++) {
1322 stat = &bcm_sf2_cfp_stats[j];
1323
1324 bcm_sf2_cfp_rule_addr_set(priv, i);
1325 ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1326 if (ret)
1327 continue;
1328
1329 iter = (i - 1) * s + j;
1330 data[iter] = core_readl(priv, stat->offset);
1331 }
1332
1333 }
1334 mutex_unlock(&priv->cfp.lock);
1335 }
1336
bcm_sf2_cfp_get_sset_count(struct dsa_switch * ds,int port,int sset)1337 int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1338 {
1339 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1340
1341 if (sset != ETH_SS_STATS)
1342 return 0;
1343
1344 /* 3 counters per CFP rules */
1345 return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1346 }
1347