• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/gro.h>
29 #include <net/ipv6.h>
30 #include <net/ip6_checksum.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35 
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40 
bnx2x_add_all_napi_cnic(struct bnx2x * bp)41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 	int i;
44 
45 	/* Add NAPI objects */
46 	for_each_rx_queue_cnic(bp, i) {
47 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll);
48 	}
49 }
50 
bnx2x_add_all_napi(struct bnx2x * bp)51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll);
58 	}
59 }
60 
bnx2x_calc_num_queues(struct bnx2x * bp)61 static int bnx2x_calc_num_queues(struct bnx2x *bp)
62 {
63 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
64 
65 	/* Reduce memory usage in kdump environment by using only one queue */
66 	if (is_kdump_kernel())
67 		nq = 1;
68 
69 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
70 	return nq;
71 }
72 
73 /**
74  * bnx2x_move_fp - move content of the fastpath structure.
75  *
76  * @bp:		driver handle
77  * @from:	source FP index
78  * @to:		destination FP index
79  *
80  * Makes sure the contents of the bp->fp[to].napi is kept
81  * intact. This is done by first copying the napi struct from
82  * the target to the source, and then mem copying the entire
83  * source onto the target. Update txdata pointers and related
84  * content.
85  */
bnx2x_move_fp(struct bnx2x * bp,int from,int to)86 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
87 {
88 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
89 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
90 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
91 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
92 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
93 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
94 	int old_max_eth_txqs, new_max_eth_txqs;
95 	int old_txdata_index = 0, new_txdata_index = 0;
96 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
97 
98 	/* Copy the NAPI object as it has been already initialized */
99 	from_fp->napi = to_fp->napi;
100 
101 	/* Move bnx2x_fastpath contents */
102 	memcpy(to_fp, from_fp, sizeof(*to_fp));
103 	to_fp->index = to;
104 
105 	/* Retain the tpa_info of the original `to' version as we don't want
106 	 * 2 FPs to contain the same tpa_info pointer.
107 	 */
108 	to_fp->tpa_info = old_tpa_info;
109 
110 	/* move sp_objs contents as well, as their indices match fp ones */
111 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
112 
113 	/* move fp_stats contents as well, as their indices match fp ones */
114 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
115 
116 	/* Update txdata pointers in fp and move txdata content accordingly:
117 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
118 	 * decremented by max_cos x delta.
119 	 */
120 
121 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
122 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
123 				(bp)->max_cos;
124 	if (from == FCOE_IDX(bp)) {
125 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
126 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 	}
128 
129 	memcpy(&bp->bnx2x_txq[new_txdata_index],
130 	       &bp->bnx2x_txq[old_txdata_index],
131 	       sizeof(struct bnx2x_fp_txdata));
132 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
133 }
134 
135 /**
136  * bnx2x_fill_fw_str - Fill buffer with FW version string.
137  *
138  * @bp:        driver handle
139  * @buf:       character buffer to fill with the fw name
140  * @buf_len:   length of the above buffer
141  *
142  */
bnx2x_fill_fw_str(struct bnx2x * bp,char * buf,size_t buf_len)143 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
144 {
145 	if (IS_PF(bp)) {
146 		u8 phy_fw_ver[PHY_FW_VER_LEN];
147 
148 		phy_fw_ver[0] = '\0';
149 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
150 					     phy_fw_ver, PHY_FW_VER_LEN);
151 		strscpy(buf, bp->fw_ver, buf_len);
152 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
153 			 "bc %d.%d.%d%s%s",
154 			 (bp->common.bc_ver & 0xff0000) >> 16,
155 			 (bp->common.bc_ver & 0xff00) >> 8,
156 			 (bp->common.bc_ver & 0xff),
157 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
158 	} else {
159 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
160 	}
161 }
162 
163 /**
164  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
165  *
166  * @bp:	driver handle
167  * @delta:	number of eth queues which were not allocated
168  */
bnx2x_shrink_eth_fp(struct bnx2x * bp,int delta)169 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
170 {
171 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
172 
173 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
174 	 * backward along the array could cause memory to be overridden
175 	 */
176 	for (cos = 1; cos < bp->max_cos; cos++) {
177 		for (i = 0; i < old_eth_num - delta; i++) {
178 			struct bnx2x_fastpath *fp = &bp->fp[i];
179 			int new_idx = cos * (old_eth_num - delta) + i;
180 
181 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
182 			       sizeof(struct bnx2x_fp_txdata));
183 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
184 		}
185 	}
186 }
187 
188 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
189 
190 /* free skb in the packet ring at pos idx
191  * return idx of last bd freed
192  */
bnx2x_free_tx_pkt(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,u16 idx,unsigned int * pkts_compl,unsigned int * bytes_compl)193 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
194 			     u16 idx, unsigned int *pkts_compl,
195 			     unsigned int *bytes_compl)
196 {
197 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
198 	struct eth_tx_start_bd *tx_start_bd;
199 	struct eth_tx_bd *tx_data_bd;
200 	struct sk_buff *skb = tx_buf->skb;
201 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
202 	int nbd;
203 	u16 split_bd_len = 0;
204 
205 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
206 	prefetch(&skb->end);
207 
208 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
209 	   txdata->txq_index, idx, tx_buf, skb);
210 
211 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
212 
213 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
214 #ifdef BNX2X_STOP_ON_ERROR
215 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
216 		BNX2X_ERR("BAD nbd!\n");
217 		bnx2x_panic();
218 	}
219 #endif
220 	new_cons = nbd + tx_buf->first_bd;
221 
222 	/* Get the next bd */
223 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
224 
225 	/* Skip a parse bd... */
226 	--nbd;
227 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
228 
229 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
230 		/* Skip second parse bd... */
231 		--nbd;
232 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
233 	}
234 
235 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
236 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
237 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
238 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
239 		--nbd;
240 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
241 	}
242 
243 	/* unmap first bd */
244 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
245 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
246 			 DMA_TO_DEVICE);
247 
248 	/* now free frags */
249 	while (nbd > 0) {
250 
251 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
252 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
253 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
254 		if (--nbd)
255 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
256 	}
257 
258 	/* release skb */
259 	WARN_ON(!skb);
260 	if (likely(skb)) {
261 		(*pkts_compl)++;
262 		(*bytes_compl) += skb->len;
263 		dev_kfree_skb_any(skb);
264 	}
265 
266 	tx_buf->first_bd = 0;
267 	tx_buf->skb = NULL;
268 
269 	return new_cons;
270 }
271 
bnx2x_tx_int(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata)272 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
273 {
274 	struct netdev_queue *txq;
275 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
276 	unsigned int pkts_compl = 0, bytes_compl = 0;
277 
278 #ifdef BNX2X_STOP_ON_ERROR
279 	if (unlikely(bp->panic))
280 		return -1;
281 #endif
282 
283 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
284 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
285 	sw_cons = txdata->tx_pkt_cons;
286 
287 	/* Ensure subsequent loads occur after hw_cons */
288 	smp_rmb();
289 
290 	while (sw_cons != hw_cons) {
291 		u16 pkt_cons;
292 
293 		pkt_cons = TX_BD(sw_cons);
294 
295 		DP(NETIF_MSG_TX_DONE,
296 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
297 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
298 
299 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
300 					    &pkts_compl, &bytes_compl);
301 
302 		sw_cons++;
303 	}
304 
305 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
306 
307 	txdata->tx_pkt_cons = sw_cons;
308 	txdata->tx_bd_cons = bd_cons;
309 
310 	/* Need to make the tx_bd_cons update visible to start_xmit()
311 	 * before checking for netif_tx_queue_stopped().  Without the
312 	 * memory barrier, there is a small possibility that
313 	 * start_xmit() will miss it and cause the queue to be stopped
314 	 * forever.
315 	 * On the other hand we need an rmb() here to ensure the proper
316 	 * ordering of bit testing in the following
317 	 * netif_tx_queue_stopped(txq) call.
318 	 */
319 	smp_mb();
320 
321 	if (unlikely(netif_tx_queue_stopped(txq))) {
322 		/* Taking tx_lock() is needed to prevent re-enabling the queue
323 		 * while it's empty. This could have happen if rx_action() gets
324 		 * suspended in bnx2x_tx_int() after the condition before
325 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
326 		 *
327 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
328 		 * sends some packets consuming the whole queue again->
329 		 * stops the queue
330 		 */
331 
332 		__netif_tx_lock(txq, smp_processor_id());
333 
334 		if ((netif_tx_queue_stopped(txq)) &&
335 		    (bp->state == BNX2X_STATE_OPEN) &&
336 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
337 			netif_tx_wake_queue(txq);
338 
339 		__netif_tx_unlock(txq);
340 	}
341 	return 0;
342 }
343 
bnx2x_update_last_max_sge(struct bnx2x_fastpath * fp,u16 idx)344 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
345 					     u16 idx)
346 {
347 	u16 last_max = fp->last_max_sge;
348 
349 	if (SUB_S16(idx, last_max) > 0)
350 		fp->last_max_sge = idx;
351 }
352 
bnx2x_update_sge_prod(struct bnx2x_fastpath * fp,u16 sge_len,struct eth_end_agg_rx_cqe * cqe)353 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
354 					 u16 sge_len,
355 					 struct eth_end_agg_rx_cqe *cqe)
356 {
357 	struct bnx2x *bp = fp->bp;
358 	u16 last_max, last_elem, first_elem;
359 	u16 delta = 0;
360 	u16 i;
361 
362 	if (!sge_len)
363 		return;
364 
365 	/* First mark all used pages */
366 	for (i = 0; i < sge_len; i++)
367 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
368 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
369 
370 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
371 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
372 
373 	/* Here we assume that the last SGE index is the biggest */
374 	prefetch((void *)(fp->sge_mask));
375 	bnx2x_update_last_max_sge(fp,
376 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
377 
378 	last_max = RX_SGE(fp->last_max_sge);
379 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
380 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
381 
382 	/* If ring is not full */
383 	if (last_elem + 1 != first_elem)
384 		last_elem++;
385 
386 	/* Now update the prod */
387 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
388 		if (likely(fp->sge_mask[i]))
389 			break;
390 
391 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
392 		delta += BIT_VEC64_ELEM_SZ;
393 	}
394 
395 	if (delta > 0) {
396 		fp->rx_sge_prod += delta;
397 		/* clear page-end entries */
398 		bnx2x_clear_sge_mask_next_elems(fp);
399 	}
400 
401 	DP(NETIF_MSG_RX_STATUS,
402 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
403 	   fp->last_max_sge, fp->rx_sge_prod);
404 }
405 
406 /* Get Toeplitz hash value in the skb using the value from the
407  * CQE (calculated by HW).
408  */
bnx2x_get_rxhash(const struct bnx2x * bp,const struct eth_fast_path_rx_cqe * cqe,enum pkt_hash_types * rxhash_type)409 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
410 			    const struct eth_fast_path_rx_cqe *cqe,
411 			    enum pkt_hash_types *rxhash_type)
412 {
413 	/* Get Toeplitz hash from CQE */
414 	if ((bp->dev->features & NETIF_F_RXHASH) &&
415 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
416 		enum eth_rss_hash_type htype;
417 
418 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
419 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
420 				(htype == TCP_IPV6_HASH_TYPE)) ?
421 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
422 
423 		return le32_to_cpu(cqe->rss_hash_result);
424 	}
425 	*rxhash_type = PKT_HASH_TYPE_NONE;
426 	return 0;
427 }
428 
bnx2x_tpa_start(struct bnx2x_fastpath * fp,u16 queue,u16 cons,u16 prod,struct eth_fast_path_rx_cqe * cqe)429 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
430 			    u16 cons, u16 prod,
431 			    struct eth_fast_path_rx_cqe *cqe)
432 {
433 	struct bnx2x *bp = fp->bp;
434 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
435 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
436 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
437 	dma_addr_t mapping;
438 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
439 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
440 
441 	/* print error if current state != stop */
442 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
443 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
444 
445 	/* Try to map an empty data buffer from the aggregation info  */
446 	mapping = dma_map_single(&bp->pdev->dev,
447 				 first_buf->data + NET_SKB_PAD,
448 				 fp->rx_buf_size, DMA_FROM_DEVICE);
449 	/*
450 	 *  ...if it fails - move the skb from the consumer to the producer
451 	 *  and set the current aggregation state as ERROR to drop it
452 	 *  when TPA_STOP arrives.
453 	 */
454 
455 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
456 		/* Move the BD from the consumer to the producer */
457 		bnx2x_reuse_rx_data(fp, cons, prod);
458 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
459 		return;
460 	}
461 
462 	/* move empty data from pool to prod */
463 	prod_rx_buf->data = first_buf->data;
464 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
465 	/* point prod_bd to new data */
466 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
467 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
468 
469 	/* move partial skb from cons to pool (don't unmap yet) */
470 	*first_buf = *cons_rx_buf;
471 
472 	/* mark bin state as START */
473 	tpa_info->parsing_flags =
474 		le16_to_cpu(cqe->pars_flags.flags);
475 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
476 	tpa_info->tpa_state = BNX2X_TPA_START;
477 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
478 	tpa_info->placement_offset = cqe->placement_offset;
479 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
480 	if (fp->mode == TPA_MODE_GRO) {
481 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
482 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
483 		tpa_info->gro_size = gro_size;
484 	}
485 
486 #ifdef BNX2X_STOP_ON_ERROR
487 	fp->tpa_queue_used |= (1 << queue);
488 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
489 	   fp->tpa_queue_used);
490 #endif
491 }
492 
493 /* Timestamp option length allowed for TPA aggregation:
494  *
495  *		nop nop kind length echo val
496  */
497 #define TPA_TSTAMP_OPT_LEN	12
498 /**
499  * bnx2x_set_gro_params - compute GRO values
500  *
501  * @skb:		packet skb
502  * @parsing_flags:	parsing flags from the START CQE
503  * @len_on_bd:		total length of the first packet for the
504  *			aggregation.
505  * @pkt_len:		length of all segments
506  * @num_of_coalesced_segs: count of segments
507  *
508  * Approximate value of the MSS for this aggregation calculated using
509  * the first packet of it.
510  * Compute number of aggregated segments, and gso_type.
511  */
bnx2x_set_gro_params(struct sk_buff * skb,u16 parsing_flags,u16 len_on_bd,unsigned int pkt_len,u16 num_of_coalesced_segs)512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
513 				 u16 len_on_bd, unsigned int pkt_len,
514 				 u16 num_of_coalesced_segs)
515 {
516 	/* TPA aggregation won't have either IP options or TCP options
517 	 * other than timestamp or IPv6 extension headers.
518 	 */
519 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
520 
521 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
522 	    PRS_FLAG_OVERETH_IPV6) {
523 		hdrs_len += sizeof(struct ipv6hdr);
524 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
525 	} else {
526 		hdrs_len += sizeof(struct iphdr);
527 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 	}
529 
530 	/* Check if there was a TCP timestamp, if there is it's will
531 	 * always be 12 bytes length: nop nop kind length echo val.
532 	 *
533 	 * Otherwise FW would close the aggregation.
534 	 */
535 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
536 		hdrs_len += TPA_TSTAMP_OPT_LEN;
537 
538 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
539 
540 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 	 * to skb_shinfo(skb)->gso_segs
542 	 */
543 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 }
545 
bnx2x_alloc_rx_sge(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
547 			      u16 index, gfp_t gfp_mask)
548 {
549 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
550 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
551 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
552 	dma_addr_t mapping;
553 
554 	if (!pool->page) {
555 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
556 		if (unlikely(!pool->page))
557 			return -ENOMEM;
558 
559 		pool->offset = 0;
560 	}
561 
562 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
563 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
564 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
565 		BNX2X_ERR("Can't map sge\n");
566 		return -ENOMEM;
567 	}
568 
569 	sw_buf->page = pool->page;
570 	sw_buf->offset = pool->offset;
571 
572 	dma_unmap_addr_set(sw_buf, mapping, mapping);
573 
574 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
575 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
576 
577 	pool->offset += SGE_PAGE_SIZE;
578 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
579 		get_page(pool->page);
580 	else
581 		pool->page = NULL;
582 	return 0;
583 }
584 
bnx2x_fill_frag_skb(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct sk_buff * skb,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)585 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
586 			       struct bnx2x_agg_info *tpa_info,
587 			       u16 pages,
588 			       struct sk_buff *skb,
589 			       struct eth_end_agg_rx_cqe *cqe,
590 			       u16 cqe_idx)
591 {
592 	struct sw_rx_page *rx_pg, old_rx_pg;
593 	u32 i, frag_len, frag_size;
594 	int err, j, frag_id = 0;
595 	u16 len_on_bd = tpa_info->len_on_bd;
596 	u16 full_page = 0, gro_size = 0;
597 
598 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
599 
600 	if (fp->mode == TPA_MODE_GRO) {
601 		gro_size = tpa_info->gro_size;
602 		full_page = tpa_info->full_page;
603 	}
604 
605 	/* This is needed in order to enable forwarding support */
606 	if (frag_size)
607 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
608 				     le16_to_cpu(cqe->pkt_len),
609 				     le16_to_cpu(cqe->num_of_coalesced_segs));
610 
611 #ifdef BNX2X_STOP_ON_ERROR
612 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
613 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
614 			  pages, cqe_idx);
615 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
616 		bnx2x_panic();
617 		return -EINVAL;
618 	}
619 #endif
620 
621 	/* Run through the SGL and compose the fragmented skb */
622 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
623 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
624 
625 		/* FW gives the indices of the SGE as if the ring is an array
626 		   (meaning that "next" element will consume 2 indices) */
627 		if (fp->mode == TPA_MODE_GRO)
628 			frag_len = min_t(u32, frag_size, (u32)full_page);
629 		else /* LRO */
630 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
631 
632 		rx_pg = &fp->rx_page_ring[sge_idx];
633 		old_rx_pg = *rx_pg;
634 
635 		/* If we fail to allocate a substitute page, we simply stop
636 		   where we are and drop the whole packet */
637 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
638 		if (unlikely(err)) {
639 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
640 			return err;
641 		}
642 
643 		dma_unmap_page(&bp->pdev->dev,
644 			       dma_unmap_addr(&old_rx_pg, mapping),
645 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
646 		/* Add one frag and update the appropriate fields in the skb */
647 		if (fp->mode == TPA_MODE_LRO)
648 			skb_fill_page_desc(skb, j, old_rx_pg.page,
649 					   old_rx_pg.offset, frag_len);
650 		else { /* GRO */
651 			int rem;
652 			int offset = 0;
653 			for (rem = frag_len; rem > 0; rem -= gro_size) {
654 				int len = rem > gro_size ? gro_size : rem;
655 				skb_fill_page_desc(skb, frag_id++,
656 						   old_rx_pg.page,
657 						   old_rx_pg.offset + offset,
658 						   len);
659 				if (offset)
660 					get_page(old_rx_pg.page);
661 				offset += len;
662 			}
663 		}
664 
665 		skb->data_len += frag_len;
666 		skb->truesize += SGE_PAGES;
667 		skb->len += frag_len;
668 
669 		frag_size -= frag_len;
670 	}
671 
672 	return 0;
673 }
674 
bnx2x_frag_free(const struct bnx2x_fastpath * fp,void * data)675 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
676 {
677 	if (fp->rx_frag_size)
678 		skb_free_frag(data);
679 	else
680 		kfree(data);
681 }
682 
bnx2x_frag_alloc(const struct bnx2x_fastpath * fp,gfp_t gfp_mask)683 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
684 {
685 	if (fp->rx_frag_size) {
686 		/* GFP_KERNEL allocations are used only during initialization */
687 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
688 			return (void *)__get_free_page(gfp_mask);
689 
690 		return napi_alloc_frag(fp->rx_frag_size);
691 	}
692 
693 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
694 }
695 
696 #ifdef CONFIG_INET
bnx2x_gro_ip_csum(struct bnx2x * bp,struct sk_buff * skb)697 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
698 {
699 	const struct iphdr *iph = ip_hdr(skb);
700 	struct tcphdr *th;
701 
702 	skb_set_transport_header(skb, sizeof(struct iphdr));
703 	th = tcp_hdr(skb);
704 
705 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
706 				  iph->saddr, iph->daddr, 0);
707 }
708 
bnx2x_gro_ipv6_csum(struct bnx2x * bp,struct sk_buff * skb)709 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
710 {
711 	struct ipv6hdr *iph = ipv6_hdr(skb);
712 	struct tcphdr *th;
713 
714 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
715 	th = tcp_hdr(skb);
716 
717 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
718 				  &iph->saddr, &iph->daddr, 0);
719 }
720 
bnx2x_gro_csum(struct bnx2x * bp,struct sk_buff * skb,void (* gro_func)(struct bnx2x *,struct sk_buff *))721 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
722 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
723 {
724 	skb_reset_network_header(skb);
725 	gro_func(bp, skb);
726 	tcp_gro_complete(skb);
727 }
728 #endif
729 
bnx2x_gro_receive(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct sk_buff * skb)730 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
731 			       struct sk_buff *skb)
732 {
733 #ifdef CONFIG_INET
734 	if (skb_shinfo(skb)->gso_size) {
735 		switch (be16_to_cpu(skb->protocol)) {
736 		case ETH_P_IP:
737 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
738 			break;
739 		case ETH_P_IPV6:
740 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
741 			break;
742 		default:
743 			netdev_WARN_ONCE(bp->dev,
744 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
745 					 be16_to_cpu(skb->protocol));
746 		}
747 	}
748 #endif
749 	skb_record_rx_queue(skb, fp->rx_queue);
750 	napi_gro_receive(&fp->napi, skb);
751 }
752 
bnx2x_tpa_stop(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_agg_info * tpa_info,u16 pages,struct eth_end_agg_rx_cqe * cqe,u16 cqe_idx)753 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
754 			   struct bnx2x_agg_info *tpa_info,
755 			   u16 pages,
756 			   struct eth_end_agg_rx_cqe *cqe,
757 			   u16 cqe_idx)
758 {
759 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
760 	u8 pad = tpa_info->placement_offset;
761 	u16 len = tpa_info->len_on_bd;
762 	struct sk_buff *skb = NULL;
763 	u8 *new_data, *data = rx_buf->data;
764 	u8 old_tpa_state = tpa_info->tpa_state;
765 
766 	tpa_info->tpa_state = BNX2X_TPA_STOP;
767 
768 	/* If we there was an error during the handling of the TPA_START -
769 	 * drop this aggregation.
770 	 */
771 	if (old_tpa_state == BNX2X_TPA_ERROR)
772 		goto drop;
773 
774 	/* Try to allocate the new data */
775 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
776 	/* Unmap skb in the pool anyway, as we are going to change
777 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
778 	   fails. */
779 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
780 			 fp->rx_buf_size, DMA_FROM_DEVICE);
781 	if (likely(new_data))
782 		skb = build_skb(data, fp->rx_frag_size);
783 
784 	if (likely(skb)) {
785 #ifdef BNX2X_STOP_ON_ERROR
786 		if (pad + len > fp->rx_buf_size) {
787 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
788 				  pad, len, fp->rx_buf_size);
789 			bnx2x_panic();
790 			bnx2x_frag_free(fp, new_data);
791 			return;
792 		}
793 #endif
794 
795 		skb_reserve(skb, pad + NET_SKB_PAD);
796 		skb_put(skb, len);
797 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
798 
799 		skb->protocol = eth_type_trans(skb, bp->dev);
800 		skb->ip_summed = CHECKSUM_UNNECESSARY;
801 
802 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
803 					 skb, cqe, cqe_idx)) {
804 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
805 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
806 			bnx2x_gro_receive(bp, fp, skb);
807 		} else {
808 			DP(NETIF_MSG_RX_STATUS,
809 			   "Failed to allocate new pages - dropping packet!\n");
810 			dev_kfree_skb_any(skb);
811 		}
812 
813 		/* put new data in bin */
814 		rx_buf->data = new_data;
815 
816 		return;
817 	}
818 	if (new_data)
819 		bnx2x_frag_free(fp, new_data);
820 drop:
821 	/* drop the packet and keep the buffer in the bin */
822 	DP(NETIF_MSG_RX_STATUS,
823 	   "Failed to allocate or map a new skb - dropping packet!\n");
824 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
825 }
826 
bnx2x_alloc_rx_data(struct bnx2x * bp,struct bnx2x_fastpath * fp,u16 index,gfp_t gfp_mask)827 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
828 			       u16 index, gfp_t gfp_mask)
829 {
830 	u8 *data;
831 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
832 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
833 	dma_addr_t mapping;
834 
835 	data = bnx2x_frag_alloc(fp, gfp_mask);
836 	if (unlikely(data == NULL))
837 		return -ENOMEM;
838 
839 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
840 				 fp->rx_buf_size,
841 				 DMA_FROM_DEVICE);
842 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
843 		bnx2x_frag_free(fp, data);
844 		BNX2X_ERR("Can't map rx data\n");
845 		return -ENOMEM;
846 	}
847 
848 	rx_buf->data = data;
849 	dma_unmap_addr_set(rx_buf, mapping, mapping);
850 
851 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
852 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
853 
854 	return 0;
855 }
856 
857 static
bnx2x_csum_validate(struct sk_buff * skb,union eth_rx_cqe * cqe,struct bnx2x_fastpath * fp,struct bnx2x_eth_q_stats * qstats)858 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
859 				 struct bnx2x_fastpath *fp,
860 				 struct bnx2x_eth_q_stats *qstats)
861 {
862 	/* Do nothing if no L4 csum validation was done.
863 	 * We do not check whether IP csum was validated. For IPv4 we assume
864 	 * that if the card got as far as validating the L4 csum, it also
865 	 * validated the IP csum. IPv6 has no IP csum.
866 	 */
867 	if (cqe->fast_path_cqe.status_flags &
868 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
869 		return;
870 
871 	/* If L4 validation was done, check if an error was found. */
872 
873 	if (cqe->fast_path_cqe.type_error_flags &
874 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
875 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
876 		qstats->hw_csum_err++;
877 	else
878 		skb->ip_summed = CHECKSUM_UNNECESSARY;
879 }
880 
bnx2x_rx_int(struct bnx2x_fastpath * fp,int budget)881 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
882 {
883 	struct bnx2x *bp = fp->bp;
884 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
885 	u16 sw_comp_cons, sw_comp_prod;
886 	int rx_pkt = 0;
887 	union eth_rx_cqe *cqe;
888 	struct eth_fast_path_rx_cqe *cqe_fp;
889 
890 #ifdef BNX2X_STOP_ON_ERROR
891 	if (unlikely(bp->panic))
892 		return 0;
893 #endif
894 	if (budget <= 0)
895 		return rx_pkt;
896 
897 	bd_cons = fp->rx_bd_cons;
898 	bd_prod = fp->rx_bd_prod;
899 	bd_prod_fw = bd_prod;
900 	sw_comp_cons = fp->rx_comp_cons;
901 	sw_comp_prod = fp->rx_comp_prod;
902 
903 	comp_ring_cons = RCQ_BD(sw_comp_cons);
904 	cqe = &fp->rx_comp_ring[comp_ring_cons];
905 	cqe_fp = &cqe->fast_path_cqe;
906 
907 	DP(NETIF_MSG_RX_STATUS,
908 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
909 
910 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
911 		struct sw_rx_bd *rx_buf = NULL;
912 		struct sk_buff *skb;
913 		u8 cqe_fp_flags;
914 		enum eth_rx_cqe_type cqe_fp_type;
915 		u16 len, pad, queue;
916 		u8 *data;
917 		u32 rxhash;
918 		enum pkt_hash_types rxhash_type;
919 
920 #ifdef BNX2X_STOP_ON_ERROR
921 		if (unlikely(bp->panic))
922 			return 0;
923 #endif
924 
925 		bd_prod = RX_BD(bd_prod);
926 		bd_cons = RX_BD(bd_cons);
927 
928 		/* A rmb() is required to ensure that the CQE is not read
929 		 * before it is written by the adapter DMA.  PCI ordering
930 		 * rules will make sure the other fields are written before
931 		 * the marker at the end of struct eth_fast_path_rx_cqe
932 		 * but without rmb() a weakly ordered processor can process
933 		 * stale data.  Without the barrier TPA state-machine might
934 		 * enter inconsistent state and kernel stack might be
935 		 * provided with incorrect packet description - these lead
936 		 * to various kernel crashed.
937 		 */
938 		rmb();
939 
940 		cqe_fp_flags = cqe_fp->type_error_flags;
941 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
942 
943 		DP(NETIF_MSG_RX_STATUS,
944 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
945 		   CQE_TYPE(cqe_fp_flags),
946 		   cqe_fp_flags, cqe_fp->status_flags,
947 		   le32_to_cpu(cqe_fp->rss_hash_result),
948 		   le16_to_cpu(cqe_fp->vlan_tag),
949 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
950 
951 		/* is this a slowpath msg? */
952 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
953 			bnx2x_sp_event(fp, cqe);
954 			goto next_cqe;
955 		}
956 
957 		rx_buf = &fp->rx_buf_ring[bd_cons];
958 		data = rx_buf->data;
959 
960 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
961 			struct bnx2x_agg_info *tpa_info;
962 			u16 frag_size, pages;
963 #ifdef BNX2X_STOP_ON_ERROR
964 			/* sanity check */
965 			if (fp->mode == TPA_MODE_DISABLED &&
966 			    (CQE_TYPE_START(cqe_fp_type) ||
967 			     CQE_TYPE_STOP(cqe_fp_type)))
968 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
969 					  CQE_TYPE(cqe_fp_type));
970 #endif
971 
972 			if (CQE_TYPE_START(cqe_fp_type)) {
973 				u16 queue = cqe_fp->queue_index;
974 				DP(NETIF_MSG_RX_STATUS,
975 				   "calling tpa_start on queue %d\n",
976 				   queue);
977 
978 				bnx2x_tpa_start(fp, queue,
979 						bd_cons, bd_prod,
980 						cqe_fp);
981 
982 				goto next_rx;
983 			}
984 			queue = cqe->end_agg_cqe.queue_index;
985 			tpa_info = &fp->tpa_info[queue];
986 			DP(NETIF_MSG_RX_STATUS,
987 			   "calling tpa_stop on queue %d\n",
988 			   queue);
989 
990 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
991 				    tpa_info->len_on_bd;
992 
993 			if (fp->mode == TPA_MODE_GRO)
994 				pages = (frag_size + tpa_info->full_page - 1) /
995 					 tpa_info->full_page;
996 			else
997 				pages = SGE_PAGE_ALIGN(frag_size) >>
998 					SGE_PAGE_SHIFT;
999 
1000 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1001 				       &cqe->end_agg_cqe, comp_ring_cons);
1002 #ifdef BNX2X_STOP_ON_ERROR
1003 			if (bp->panic)
1004 				return 0;
1005 #endif
1006 
1007 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1008 			goto next_cqe;
1009 		}
1010 		/* non TPA */
1011 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1012 		pad = cqe_fp->placement_offset;
1013 		dma_sync_single_for_cpu(&bp->pdev->dev,
1014 					dma_unmap_addr(rx_buf, mapping),
1015 					pad + RX_COPY_THRESH,
1016 					DMA_FROM_DEVICE);
1017 		pad += NET_SKB_PAD;
1018 		prefetch(data + pad); /* speedup eth_type_trans() */
1019 		/* is this an error packet? */
1020 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1021 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1022 			   "ERROR  flags %x  rx packet %u\n",
1023 			   cqe_fp_flags, sw_comp_cons);
1024 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1025 			goto reuse_rx;
1026 		}
1027 
1028 		/* Since we don't have a jumbo ring
1029 		 * copy small packets if mtu > 1500
1030 		 */
1031 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1032 		    (len <= RX_COPY_THRESH)) {
1033 			skb = napi_alloc_skb(&fp->napi, len);
1034 			if (skb == NULL) {
1035 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1036 				   "ERROR  packet dropped because of alloc failure\n");
1037 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1038 				goto reuse_rx;
1039 			}
1040 			memcpy(skb->data, data + pad, len);
1041 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1042 		} else {
1043 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1044 						       GFP_ATOMIC) == 0)) {
1045 				dma_unmap_single(&bp->pdev->dev,
1046 						 dma_unmap_addr(rx_buf, mapping),
1047 						 fp->rx_buf_size,
1048 						 DMA_FROM_DEVICE);
1049 				skb = build_skb(data, fp->rx_frag_size);
1050 				if (unlikely(!skb)) {
1051 					bnx2x_frag_free(fp, data);
1052 					bnx2x_fp_qstats(bp, fp)->
1053 							rx_skb_alloc_failed++;
1054 					goto next_rx;
1055 				}
1056 				skb_reserve(skb, pad);
1057 			} else {
1058 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1059 				   "ERROR  packet dropped because of alloc failure\n");
1060 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1061 reuse_rx:
1062 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1063 				goto next_rx;
1064 			}
1065 		}
1066 
1067 		skb_put(skb, len);
1068 		skb->protocol = eth_type_trans(skb, bp->dev);
1069 
1070 		/* Set Toeplitz hash for a none-LRO skb */
1071 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1072 		skb_set_hash(skb, rxhash, rxhash_type);
1073 
1074 		skb_checksum_none_assert(skb);
1075 
1076 		if (bp->dev->features & NETIF_F_RXCSUM)
1077 			bnx2x_csum_validate(skb, cqe, fp,
1078 					    bnx2x_fp_qstats(bp, fp));
1079 
1080 		skb_record_rx_queue(skb, fp->rx_queue);
1081 
1082 		/* Check if this packet was timestamped */
1083 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1084 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1085 			bnx2x_set_rx_ts(bp, skb);
1086 
1087 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1088 		    PARSING_FLAGS_VLAN)
1089 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1090 					       le16_to_cpu(cqe_fp->vlan_tag));
1091 
1092 		napi_gro_receive(&fp->napi, skb);
1093 next_rx:
1094 		rx_buf->data = NULL;
1095 
1096 		bd_cons = NEXT_RX_IDX(bd_cons);
1097 		bd_prod = NEXT_RX_IDX(bd_prod);
1098 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1099 		rx_pkt++;
1100 next_cqe:
1101 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1102 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1103 
1104 		/* mark CQE as free */
1105 		BNX2X_SEED_CQE(cqe_fp);
1106 
1107 		if (rx_pkt == budget)
1108 			break;
1109 
1110 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1111 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1112 		cqe_fp = &cqe->fast_path_cqe;
1113 	} /* while */
1114 
1115 	fp->rx_bd_cons = bd_cons;
1116 	fp->rx_bd_prod = bd_prod_fw;
1117 	fp->rx_comp_cons = sw_comp_cons;
1118 	fp->rx_comp_prod = sw_comp_prod;
1119 
1120 	/* Update producers */
1121 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1122 			     fp->rx_sge_prod);
1123 
1124 	return rx_pkt;
1125 }
1126 
bnx2x_msix_fp_int(int irq,void * fp_cookie)1127 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1128 {
1129 	struct bnx2x_fastpath *fp = fp_cookie;
1130 	struct bnx2x *bp = fp->bp;
1131 	u8 cos;
1132 
1133 	DP(NETIF_MSG_INTR,
1134 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1135 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1136 
1137 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1138 
1139 #ifdef BNX2X_STOP_ON_ERROR
1140 	if (unlikely(bp->panic))
1141 		return IRQ_HANDLED;
1142 #endif
1143 
1144 	/* Handle Rx and Tx according to MSI-X vector */
1145 	for_each_cos_in_tx_queue(fp, cos)
1146 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1147 
1148 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1149 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1150 
1151 	return IRQ_HANDLED;
1152 }
1153 
1154 /* HW Lock for shared dual port PHYs */
bnx2x_acquire_phy_lock(struct bnx2x * bp)1155 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1156 {
1157 	mutex_lock(&bp->port.phy_mutex);
1158 
1159 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1160 }
1161 
bnx2x_release_phy_lock(struct bnx2x * bp)1162 void bnx2x_release_phy_lock(struct bnx2x *bp)
1163 {
1164 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1165 
1166 	mutex_unlock(&bp->port.phy_mutex);
1167 }
1168 
1169 /* calculates MF speed according to current linespeed and MF configuration */
bnx2x_get_mf_speed(struct bnx2x * bp)1170 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1171 {
1172 	u16 line_speed = bp->link_vars.line_speed;
1173 	if (IS_MF(bp)) {
1174 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1175 						   bp->mf_config[BP_VN(bp)]);
1176 
1177 		/* Calculate the current MAX line speed limit for the MF
1178 		 * devices
1179 		 */
1180 		if (IS_MF_PERCENT_BW(bp))
1181 			line_speed = (line_speed * maxCfg) / 100;
1182 		else { /* SD mode */
1183 			u16 vn_max_rate = maxCfg * 100;
1184 
1185 			if (vn_max_rate < line_speed)
1186 				line_speed = vn_max_rate;
1187 		}
1188 	}
1189 
1190 	return line_speed;
1191 }
1192 
1193 /**
1194  * bnx2x_fill_report_data - fill link report data to report
1195  *
1196  * @bp:		driver handle
1197  * @data:	link state to update
1198  *
1199  * It uses a none-atomic bit operations because is called under the mutex.
1200  */
bnx2x_fill_report_data(struct bnx2x * bp,struct bnx2x_link_report_data * data)1201 static void bnx2x_fill_report_data(struct bnx2x *bp,
1202 				   struct bnx2x_link_report_data *data)
1203 {
1204 	memset(data, 0, sizeof(*data));
1205 
1206 	if (IS_PF(bp)) {
1207 		/* Fill the report data: effective line speed */
1208 		data->line_speed = bnx2x_get_mf_speed(bp);
1209 
1210 		/* Link is down */
1211 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1212 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 				  &data->link_report_flags);
1214 
1215 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1216 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1217 				  &data->link_report_flags);
1218 
1219 		/* Full DUPLEX */
1220 		if (bp->link_vars.duplex == DUPLEX_FULL)
1221 			__set_bit(BNX2X_LINK_REPORT_FD,
1222 				  &data->link_report_flags);
1223 
1224 		/* Rx Flow Control is ON */
1225 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1226 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1227 				  &data->link_report_flags);
1228 
1229 		/* Tx Flow Control is ON */
1230 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1231 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1232 				  &data->link_report_flags);
1233 	} else { /* VF */
1234 		*data = bp->vf_link_vars;
1235 	}
1236 }
1237 
1238 /**
1239  * bnx2x_link_report - report link status to OS.
1240  *
1241  * @bp:		driver handle
1242  *
1243  * Calls the __bnx2x_link_report() under the same locking scheme
1244  * as a link/PHY state managing code to ensure a consistent link
1245  * reporting.
1246  */
1247 
bnx2x_link_report(struct bnx2x * bp)1248 void bnx2x_link_report(struct bnx2x *bp)
1249 {
1250 	bnx2x_acquire_phy_lock(bp);
1251 	__bnx2x_link_report(bp);
1252 	bnx2x_release_phy_lock(bp);
1253 }
1254 
1255 /**
1256  * __bnx2x_link_report - report link status to OS.
1257  *
1258  * @bp:		driver handle
1259  *
1260  * None atomic implementation.
1261  * Should be called under the phy_lock.
1262  */
__bnx2x_link_report(struct bnx2x * bp)1263 void __bnx2x_link_report(struct bnx2x *bp)
1264 {
1265 	struct bnx2x_link_report_data cur_data;
1266 
1267 	if (bp->force_link_down) {
1268 		bp->link_vars.link_up = 0;
1269 		return;
1270 	}
1271 
1272 	/* reread mf_cfg */
1273 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1274 		bnx2x_read_mf_cfg(bp);
1275 
1276 	/* Read the current link report info */
1277 	bnx2x_fill_report_data(bp, &cur_data);
1278 
1279 	/* Don't report link down or exactly the same link status twice */
1280 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1281 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1282 		      &bp->last_reported_link.link_report_flags) &&
1283 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1284 		      &cur_data.link_report_flags)))
1285 		return;
1286 
1287 	bp->link_cnt++;
1288 
1289 	/* We are going to report a new link parameters now -
1290 	 * remember the current data for the next time.
1291 	 */
1292 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1293 
1294 	/* propagate status to VFs */
1295 	if (IS_PF(bp))
1296 		bnx2x_iov_link_update(bp);
1297 
1298 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1299 		     &cur_data.link_report_flags)) {
1300 		netif_carrier_off(bp->dev);
1301 		netdev_err(bp->dev, "NIC Link is Down\n");
1302 		return;
1303 	} else {
1304 		const char *duplex;
1305 		const char *flow;
1306 
1307 		netif_carrier_on(bp->dev);
1308 
1309 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1310 				       &cur_data.link_report_flags))
1311 			duplex = "full";
1312 		else
1313 			duplex = "half";
1314 
1315 		/* Handle the FC at the end so that only these flags would be
1316 		 * possibly set. This way we may easily check if there is no FC
1317 		 * enabled.
1318 		 */
1319 		if (cur_data.link_report_flags) {
1320 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1321 				     &cur_data.link_report_flags)) {
1322 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1323 				     &cur_data.link_report_flags))
1324 					flow = "ON - receive & transmit";
1325 				else
1326 					flow = "ON - receive";
1327 			} else {
1328 				flow = "ON - transmit";
1329 			}
1330 		} else {
1331 			flow = "none";
1332 		}
1333 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1334 			    cur_data.line_speed, duplex, flow);
1335 	}
1336 }
1337 
bnx2x_set_next_page_sgl(struct bnx2x_fastpath * fp)1338 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1339 {
1340 	int i;
1341 
1342 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1343 		struct eth_rx_sge *sge;
1344 
1345 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1346 		sge->addr_hi =
1347 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1348 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1349 
1350 		sge->addr_lo =
1351 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1352 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1353 	}
1354 }
1355 
bnx2x_free_tpa_pool(struct bnx2x * bp,struct bnx2x_fastpath * fp,int last)1356 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1357 				struct bnx2x_fastpath *fp, int last)
1358 {
1359 	int i;
1360 
1361 	for (i = 0; i < last; i++) {
1362 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1363 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1364 		u8 *data = first_buf->data;
1365 
1366 		if (data == NULL) {
1367 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1368 			continue;
1369 		}
1370 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1371 			dma_unmap_single(&bp->pdev->dev,
1372 					 dma_unmap_addr(first_buf, mapping),
1373 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1374 		bnx2x_frag_free(fp, data);
1375 		first_buf->data = NULL;
1376 	}
1377 }
1378 
bnx2x_init_rx_rings_cnic(struct bnx2x * bp)1379 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1380 {
1381 	int j;
1382 
1383 	for_each_rx_queue_cnic(bp, j) {
1384 		struct bnx2x_fastpath *fp = &bp->fp[j];
1385 
1386 		fp->rx_bd_cons = 0;
1387 
1388 		/* Activate BD ring */
1389 		/* Warning!
1390 		 * this will generate an interrupt (to the TSTORM)
1391 		 * must only be done after chip is initialized
1392 		 */
1393 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1394 				     fp->rx_sge_prod);
1395 	}
1396 }
1397 
bnx2x_init_rx_rings(struct bnx2x * bp)1398 void bnx2x_init_rx_rings(struct bnx2x *bp)
1399 {
1400 	int func = BP_FUNC(bp);
1401 	u16 ring_prod;
1402 	int i, j;
1403 
1404 	/* Allocate TPA resources */
1405 	for_each_eth_queue(bp, j) {
1406 		struct bnx2x_fastpath *fp = &bp->fp[j];
1407 
1408 		DP(NETIF_MSG_IFUP,
1409 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1410 
1411 		if (fp->mode != TPA_MODE_DISABLED) {
1412 			/* Fill the per-aggregation pool */
1413 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1414 				struct bnx2x_agg_info *tpa_info =
1415 					&fp->tpa_info[i];
1416 				struct sw_rx_bd *first_buf =
1417 					&tpa_info->first_buf;
1418 
1419 				first_buf->data =
1420 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1421 				if (!first_buf->data) {
1422 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1423 						  j);
1424 					bnx2x_free_tpa_pool(bp, fp, i);
1425 					fp->mode = TPA_MODE_DISABLED;
1426 					break;
1427 				}
1428 				dma_unmap_addr_set(first_buf, mapping, 0);
1429 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1430 			}
1431 
1432 			/* "next page" elements initialization */
1433 			bnx2x_set_next_page_sgl(fp);
1434 
1435 			/* set SGEs bit mask */
1436 			bnx2x_init_sge_ring_bit_mask(fp);
1437 
1438 			/* Allocate SGEs and initialize the ring elements */
1439 			for (i = 0, ring_prod = 0;
1440 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1441 
1442 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1443 						       GFP_KERNEL) < 0) {
1444 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1445 						  i);
1446 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1447 						  j);
1448 					/* Cleanup already allocated elements */
1449 					bnx2x_free_rx_sge_range(bp, fp,
1450 								ring_prod);
1451 					bnx2x_free_tpa_pool(bp, fp,
1452 							    MAX_AGG_QS(bp));
1453 					fp->mode = TPA_MODE_DISABLED;
1454 					ring_prod = 0;
1455 					break;
1456 				}
1457 				ring_prod = NEXT_SGE_IDX(ring_prod);
1458 			}
1459 
1460 			fp->rx_sge_prod = ring_prod;
1461 		}
1462 	}
1463 
1464 	for_each_eth_queue(bp, j) {
1465 		struct bnx2x_fastpath *fp = &bp->fp[j];
1466 
1467 		fp->rx_bd_cons = 0;
1468 
1469 		/* Activate BD ring */
1470 		/* Warning!
1471 		 * this will generate an interrupt (to the TSTORM)
1472 		 * must only be done after chip is initialized
1473 		 */
1474 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1475 				     fp->rx_sge_prod);
1476 
1477 		if (j != 0)
1478 			continue;
1479 
1480 		if (CHIP_IS_E1(bp)) {
1481 			REG_WR(bp, BAR_USTRORM_INTMEM +
1482 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1483 			       U64_LO(fp->rx_comp_mapping));
1484 			REG_WR(bp, BAR_USTRORM_INTMEM +
1485 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1486 			       U64_HI(fp->rx_comp_mapping));
1487 		}
1488 	}
1489 }
1490 
bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath * fp)1491 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1492 {
1493 	u8 cos;
1494 	struct bnx2x *bp = fp->bp;
1495 
1496 	for_each_cos_in_tx_queue(fp, cos) {
1497 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1498 		unsigned pkts_compl = 0, bytes_compl = 0;
1499 
1500 		u16 sw_prod = txdata->tx_pkt_prod;
1501 		u16 sw_cons = txdata->tx_pkt_cons;
1502 
1503 		while (sw_cons != sw_prod) {
1504 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1505 					  &pkts_compl, &bytes_compl);
1506 			sw_cons++;
1507 		}
1508 
1509 		netdev_tx_reset_queue(
1510 			netdev_get_tx_queue(bp->dev,
1511 					    txdata->txq_index));
1512 	}
1513 }
1514 
bnx2x_free_tx_skbs_cnic(struct bnx2x * bp)1515 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1516 {
1517 	int i;
1518 
1519 	for_each_tx_queue_cnic(bp, i) {
1520 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1521 	}
1522 }
1523 
bnx2x_free_tx_skbs(struct bnx2x * bp)1524 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1525 {
1526 	int i;
1527 
1528 	for_each_eth_queue(bp, i) {
1529 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1530 	}
1531 }
1532 
bnx2x_free_rx_bds(struct bnx2x_fastpath * fp)1533 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1534 {
1535 	struct bnx2x *bp = fp->bp;
1536 	int i;
1537 
1538 	/* ring wasn't allocated */
1539 	if (fp->rx_buf_ring == NULL)
1540 		return;
1541 
1542 	for (i = 0; i < NUM_RX_BD; i++) {
1543 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1544 		u8 *data = rx_buf->data;
1545 
1546 		if (data == NULL)
1547 			continue;
1548 		dma_unmap_single(&bp->pdev->dev,
1549 				 dma_unmap_addr(rx_buf, mapping),
1550 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1551 
1552 		rx_buf->data = NULL;
1553 		bnx2x_frag_free(fp, data);
1554 	}
1555 }
1556 
bnx2x_free_rx_skbs_cnic(struct bnx2x * bp)1557 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1558 {
1559 	int j;
1560 
1561 	for_each_rx_queue_cnic(bp, j) {
1562 		bnx2x_free_rx_bds(&bp->fp[j]);
1563 	}
1564 }
1565 
bnx2x_free_rx_skbs(struct bnx2x * bp)1566 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1567 {
1568 	int j;
1569 
1570 	for_each_eth_queue(bp, j) {
1571 		struct bnx2x_fastpath *fp = &bp->fp[j];
1572 
1573 		bnx2x_free_rx_bds(fp);
1574 
1575 		if (fp->mode != TPA_MODE_DISABLED)
1576 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1577 	}
1578 }
1579 
bnx2x_free_skbs_cnic(struct bnx2x * bp)1580 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1581 {
1582 	bnx2x_free_tx_skbs_cnic(bp);
1583 	bnx2x_free_rx_skbs_cnic(bp);
1584 }
1585 
bnx2x_free_skbs(struct bnx2x * bp)1586 void bnx2x_free_skbs(struct bnx2x *bp)
1587 {
1588 	bnx2x_free_tx_skbs(bp);
1589 	bnx2x_free_rx_skbs(bp);
1590 }
1591 
bnx2x_update_max_mf_config(struct bnx2x * bp,u32 value)1592 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1593 {
1594 	/* load old values */
1595 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1596 
1597 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1598 		/* leave all but MAX value */
1599 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1600 
1601 		/* set new MAX value */
1602 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1603 				& FUNC_MF_CFG_MAX_BW_MASK;
1604 
1605 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1606 	}
1607 }
1608 
1609 /**
1610  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1611  *
1612  * @bp:		driver handle
1613  * @nvecs:	number of vectors to be released
1614  */
bnx2x_free_msix_irqs(struct bnx2x * bp,int nvecs)1615 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1616 {
1617 	int i, offset = 0;
1618 
1619 	if (nvecs == offset)
1620 		return;
1621 
1622 	/* VFs don't have a default SB */
1623 	if (IS_PF(bp)) {
1624 		free_irq(bp->msix_table[offset].vector, bp->dev);
1625 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1626 		   bp->msix_table[offset].vector);
1627 		offset++;
1628 	}
1629 
1630 	if (CNIC_SUPPORT(bp)) {
1631 		if (nvecs == offset)
1632 			return;
1633 		offset++;
1634 	}
1635 
1636 	for_each_eth_queue(bp, i) {
1637 		if (nvecs == offset)
1638 			return;
1639 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1640 		   i, bp->msix_table[offset].vector);
1641 
1642 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1643 	}
1644 }
1645 
bnx2x_free_irq(struct bnx2x * bp)1646 void bnx2x_free_irq(struct bnx2x *bp)
1647 {
1648 	if (bp->flags & USING_MSIX_FLAG &&
1649 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1650 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1651 
1652 		/* vfs don't have a default status block */
1653 		if (IS_PF(bp))
1654 			nvecs++;
1655 
1656 		bnx2x_free_msix_irqs(bp, nvecs);
1657 	} else {
1658 		free_irq(bp->dev->irq, bp->dev);
1659 	}
1660 }
1661 
bnx2x_enable_msix(struct bnx2x * bp)1662 int bnx2x_enable_msix(struct bnx2x *bp)
1663 {
1664 	int msix_vec = 0, i, rc;
1665 
1666 	/* VFs don't have a default status block */
1667 	if (IS_PF(bp)) {
1668 		bp->msix_table[msix_vec].entry = msix_vec;
1669 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1670 			       bp->msix_table[0].entry);
1671 		msix_vec++;
1672 	}
1673 
1674 	/* Cnic requires an msix vector for itself */
1675 	if (CNIC_SUPPORT(bp)) {
1676 		bp->msix_table[msix_vec].entry = msix_vec;
1677 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1678 			       msix_vec, bp->msix_table[msix_vec].entry);
1679 		msix_vec++;
1680 	}
1681 
1682 	/* We need separate vectors for ETH queues only (not FCoE) */
1683 	for_each_eth_queue(bp, i) {
1684 		bp->msix_table[msix_vec].entry = msix_vec;
1685 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1686 			       msix_vec, msix_vec, i);
1687 		msix_vec++;
1688 	}
1689 
1690 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1691 	   msix_vec);
1692 
1693 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1694 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1695 	/*
1696 	 * reconfigure number of tx/rx queues according to available
1697 	 * MSI-X vectors
1698 	 */
1699 	if (rc == -ENOSPC) {
1700 		/* Get by with single vector */
1701 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1702 		if (rc < 0) {
1703 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1704 				       rc);
1705 			goto no_msix;
1706 		}
1707 
1708 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1709 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1710 
1711 		BNX2X_DEV_INFO("set number of queues to 1\n");
1712 		bp->num_ethernet_queues = 1;
1713 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1714 	} else if (rc < 0) {
1715 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1716 		goto no_msix;
1717 	} else if (rc < msix_vec) {
1718 		/* how less vectors we will have? */
1719 		int diff = msix_vec - rc;
1720 
1721 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1722 
1723 		/*
1724 		 * decrease number of queues by number of unallocated entries
1725 		 */
1726 		bp->num_ethernet_queues -= diff;
1727 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1728 
1729 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1730 			       bp->num_queues);
1731 	}
1732 
1733 	bp->flags |= USING_MSIX_FLAG;
1734 
1735 	return 0;
1736 
1737 no_msix:
1738 	/* fall to INTx if not enough memory */
1739 	if (rc == -ENOMEM)
1740 		bp->flags |= DISABLE_MSI_FLAG;
1741 
1742 	return rc;
1743 }
1744 
bnx2x_req_msix_irqs(struct bnx2x * bp)1745 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1746 {
1747 	int i, rc, offset = 0;
1748 
1749 	/* no default status block for vf */
1750 	if (IS_PF(bp)) {
1751 		rc = request_irq(bp->msix_table[offset++].vector,
1752 				 bnx2x_msix_sp_int, 0,
1753 				 bp->dev->name, bp->dev);
1754 		if (rc) {
1755 			BNX2X_ERR("request sp irq failed\n");
1756 			return -EBUSY;
1757 		}
1758 	}
1759 
1760 	if (CNIC_SUPPORT(bp))
1761 		offset++;
1762 
1763 	for_each_eth_queue(bp, i) {
1764 		struct bnx2x_fastpath *fp = &bp->fp[i];
1765 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1766 			 bp->dev->name, i);
1767 
1768 		rc = request_irq(bp->msix_table[offset].vector,
1769 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1770 		if (rc) {
1771 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1772 			      bp->msix_table[offset].vector, rc);
1773 			bnx2x_free_msix_irqs(bp, offset);
1774 			return -EBUSY;
1775 		}
1776 
1777 		offset++;
1778 	}
1779 
1780 	i = BNX2X_NUM_ETH_QUEUES(bp);
1781 	if (IS_PF(bp)) {
1782 		offset = 1 + CNIC_SUPPORT(bp);
1783 		netdev_info(bp->dev,
1784 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1785 			    bp->msix_table[0].vector,
1786 			    0, bp->msix_table[offset].vector,
1787 			    i - 1, bp->msix_table[offset + i - 1].vector);
1788 	} else {
1789 		offset = CNIC_SUPPORT(bp);
1790 		netdev_info(bp->dev,
1791 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1792 			    0, bp->msix_table[offset].vector,
1793 			    i - 1, bp->msix_table[offset + i - 1].vector);
1794 	}
1795 	return 0;
1796 }
1797 
bnx2x_enable_msi(struct bnx2x * bp)1798 int bnx2x_enable_msi(struct bnx2x *bp)
1799 {
1800 	int rc;
1801 
1802 	rc = pci_enable_msi(bp->pdev);
1803 	if (rc) {
1804 		BNX2X_DEV_INFO("MSI is not attainable\n");
1805 		return -1;
1806 	}
1807 	bp->flags |= USING_MSI_FLAG;
1808 
1809 	return 0;
1810 }
1811 
bnx2x_req_irq(struct bnx2x * bp)1812 static int bnx2x_req_irq(struct bnx2x *bp)
1813 {
1814 	unsigned long flags;
1815 	unsigned int irq;
1816 
1817 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1818 		flags = 0;
1819 	else
1820 		flags = IRQF_SHARED;
1821 
1822 	if (bp->flags & USING_MSIX_FLAG)
1823 		irq = bp->msix_table[0].vector;
1824 	else
1825 		irq = bp->pdev->irq;
1826 
1827 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1828 }
1829 
bnx2x_setup_irqs(struct bnx2x * bp)1830 static int bnx2x_setup_irqs(struct bnx2x *bp)
1831 {
1832 	int rc = 0;
1833 	if (bp->flags & USING_MSIX_FLAG &&
1834 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1835 		rc = bnx2x_req_msix_irqs(bp);
1836 		if (rc)
1837 			return rc;
1838 	} else {
1839 		rc = bnx2x_req_irq(bp);
1840 		if (rc) {
1841 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1842 			return rc;
1843 		}
1844 		if (bp->flags & USING_MSI_FLAG) {
1845 			bp->dev->irq = bp->pdev->irq;
1846 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1847 				    bp->dev->irq);
1848 		}
1849 		if (bp->flags & USING_MSIX_FLAG) {
1850 			bp->dev->irq = bp->msix_table[0].vector;
1851 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1852 				    bp->dev->irq);
1853 		}
1854 	}
1855 
1856 	return 0;
1857 }
1858 
bnx2x_napi_enable_cnic(struct bnx2x * bp)1859 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1860 {
1861 	int i;
1862 
1863 	for_each_rx_queue_cnic(bp, i) {
1864 		napi_enable(&bnx2x_fp(bp, i, napi));
1865 	}
1866 }
1867 
bnx2x_napi_enable(struct bnx2x * bp)1868 static void bnx2x_napi_enable(struct bnx2x *bp)
1869 {
1870 	int i;
1871 
1872 	for_each_eth_queue(bp, i) {
1873 		napi_enable(&bnx2x_fp(bp, i, napi));
1874 	}
1875 }
1876 
bnx2x_napi_disable_cnic(struct bnx2x * bp)1877 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1878 {
1879 	int i;
1880 
1881 	for_each_rx_queue_cnic(bp, i) {
1882 		napi_disable(&bnx2x_fp(bp, i, napi));
1883 	}
1884 }
1885 
bnx2x_napi_disable(struct bnx2x * bp)1886 static void bnx2x_napi_disable(struct bnx2x *bp)
1887 {
1888 	int i;
1889 
1890 	for_each_eth_queue(bp, i) {
1891 		napi_disable(&bnx2x_fp(bp, i, napi));
1892 	}
1893 }
1894 
bnx2x_netif_start(struct bnx2x * bp)1895 void bnx2x_netif_start(struct bnx2x *bp)
1896 {
1897 	if (netif_running(bp->dev)) {
1898 		bnx2x_napi_enable(bp);
1899 		if (CNIC_LOADED(bp))
1900 			bnx2x_napi_enable_cnic(bp);
1901 		bnx2x_int_enable(bp);
1902 		if (bp->state == BNX2X_STATE_OPEN)
1903 			netif_tx_wake_all_queues(bp->dev);
1904 	}
1905 }
1906 
bnx2x_netif_stop(struct bnx2x * bp,int disable_hw)1907 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1908 {
1909 	bnx2x_int_disable_sync(bp, disable_hw);
1910 	bnx2x_napi_disable(bp);
1911 	if (CNIC_LOADED(bp))
1912 		bnx2x_napi_disable_cnic(bp);
1913 }
1914 
bnx2x_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1915 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1916 		       struct net_device *sb_dev)
1917 {
1918 	struct bnx2x *bp = netdev_priv(dev);
1919 
1920 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1921 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1922 		u16 ether_type = ntohs(hdr->h_proto);
1923 
1924 		/* Skip VLAN tag if present */
1925 		if (ether_type == ETH_P_8021Q) {
1926 			struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
1927 
1928 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1929 		}
1930 
1931 		/* If ethertype is FCoE or FIP - use FCoE ring */
1932 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1933 			return bnx2x_fcoe_tx(bp, txq_index);
1934 	}
1935 
1936 	/* select a non-FCoE queue */
1937 	return netdev_pick_tx(dev, skb, NULL) %
1938 			(BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1939 }
1940 
bnx2x_set_num_queues(struct bnx2x * bp)1941 void bnx2x_set_num_queues(struct bnx2x *bp)
1942 {
1943 	/* RSS queues */
1944 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1945 
1946 	/* override in STORAGE SD modes */
1947 	if (IS_MF_STORAGE_ONLY(bp))
1948 		bp->num_ethernet_queues = 1;
1949 
1950 	/* Add special queues */
1951 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1952 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1953 
1954 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1955 }
1956 
1957 /**
1958  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1959  *
1960  * @bp:		Driver handle
1961  * @include_cnic: handle cnic case
1962  *
1963  * We currently support for at most 16 Tx queues for each CoS thus we will
1964  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1965  * bp->max_cos.
1966  *
1967  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1968  * index after all ETH L2 indices.
1969  *
1970  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1971  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1972  * 16..31,...) with indices that are not coupled with any real Tx queue.
1973  *
1974  * The proper configuration of skb->queue_mapping is handled by
1975  * bnx2x_select_queue() and __skb_tx_hash().
1976  *
1977  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1978  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1979  */
bnx2x_set_real_num_queues(struct bnx2x * bp,int include_cnic)1980 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1981 {
1982 	int rc, tx, rx;
1983 
1984 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1985 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1986 
1987 /* account for fcoe queue */
1988 	if (include_cnic && !NO_FCOE(bp)) {
1989 		rx++;
1990 		tx++;
1991 	}
1992 
1993 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1994 	if (rc) {
1995 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1996 		return rc;
1997 	}
1998 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1999 	if (rc) {
2000 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2001 		return rc;
2002 	}
2003 
2004 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2005 			  tx, rx);
2006 
2007 	return rc;
2008 }
2009 
bnx2x_set_rx_buf_size(struct bnx2x * bp)2010 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2011 {
2012 	int i;
2013 
2014 	for_each_queue(bp, i) {
2015 		struct bnx2x_fastpath *fp = &bp->fp[i];
2016 		u32 mtu;
2017 
2018 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2019 		if (IS_FCOE_IDX(i))
2020 			/*
2021 			 * Although there are no IP frames expected to arrive to
2022 			 * this ring we still want to add an
2023 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2024 			 * overrun attack.
2025 			 */
2026 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2027 		else
2028 			mtu = bp->dev->mtu;
2029 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2030 				  IP_HEADER_ALIGNMENT_PADDING +
2031 				  ETH_OVERHEAD +
2032 				  mtu +
2033 				  BNX2X_FW_RX_ALIGN_END;
2034 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2035 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2036 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2037 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2038 		else
2039 			fp->rx_frag_size = 0;
2040 	}
2041 }
2042 
bnx2x_init_rss(struct bnx2x * bp)2043 static int bnx2x_init_rss(struct bnx2x *bp)
2044 {
2045 	int i;
2046 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2047 
2048 	/* Prepare the initial contents for the indirection table if RSS is
2049 	 * enabled
2050 	 */
2051 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2052 		bp->rss_conf_obj.ind_table[i] =
2053 			bp->fp->cl_id +
2054 			ethtool_rxfh_indir_default(i, num_eth_queues);
2055 
2056 	/*
2057 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2058 	 * per-port, so if explicit configuration is needed , do it only
2059 	 * for a PMF.
2060 	 *
2061 	 * For 57712 and newer on the other hand it's a per-function
2062 	 * configuration.
2063 	 */
2064 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2065 }
2066 
bnx2x_rss(struct bnx2x * bp,struct bnx2x_rss_config_obj * rss_obj,bool config_hash,bool enable)2067 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2068 	      bool config_hash, bool enable)
2069 {
2070 	struct bnx2x_config_rss_params params = {NULL};
2071 
2072 	/* Although RSS is meaningless when there is a single HW queue we
2073 	 * still need it enabled in order to have HW Rx hash generated.
2074 	 *
2075 	 * if (!is_eth_multi(bp))
2076 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2077 	 */
2078 
2079 	params.rss_obj = rss_obj;
2080 
2081 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2082 
2083 	if (enable) {
2084 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2085 
2086 		/* RSS configuration */
2087 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2088 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2089 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2090 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2091 		if (rss_obj->udp_rss_v4)
2092 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2093 		if (rss_obj->udp_rss_v6)
2094 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2095 
2096 		if (!CHIP_IS_E1x(bp)) {
2097 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2098 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2099 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2100 
2101 			/* valid only for TUNN_MODE_GRE tunnel mode */
2102 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2103 		}
2104 	} else {
2105 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2106 	}
2107 
2108 	/* Hash bits */
2109 	params.rss_result_mask = MULTI_MASK;
2110 
2111 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2112 
2113 	if (config_hash) {
2114 		/* RSS keys */
2115 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2116 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2117 	}
2118 
2119 	if (IS_PF(bp))
2120 		return bnx2x_config_rss(bp, &params);
2121 	else
2122 		return bnx2x_vfpf_config_rss(bp, &params);
2123 }
2124 
bnx2x_init_hw(struct bnx2x * bp,u32 load_code)2125 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2126 {
2127 	struct bnx2x_func_state_params func_params = {NULL};
2128 
2129 	/* Prepare parameters for function state transitions */
2130 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2131 
2132 	func_params.f_obj = &bp->func_obj;
2133 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2134 
2135 	func_params.params.hw_init.load_phase = load_code;
2136 
2137 	return bnx2x_func_state_change(bp, &func_params);
2138 }
2139 
2140 /*
2141  * Cleans the object that have internal lists without sending
2142  * ramrods. Should be run when interrupts are disabled.
2143  */
bnx2x_squeeze_objects(struct bnx2x * bp)2144 void bnx2x_squeeze_objects(struct bnx2x *bp)
2145 {
2146 	int rc;
2147 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2148 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2149 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2150 
2151 	/***************** Cleanup MACs' object first *************************/
2152 
2153 	/* Wait for completion of requested */
2154 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2155 	/* Perform a dry cleanup */
2156 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2157 
2158 	/* Clean ETH primary MAC */
2159 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2160 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2161 				 &ramrod_flags);
2162 	if (rc != 0)
2163 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2164 
2165 	/* Cleanup UC list */
2166 	vlan_mac_flags = 0;
2167 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2168 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2169 				 &ramrod_flags);
2170 	if (rc != 0)
2171 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2172 
2173 	/***************** Now clean mcast object *****************************/
2174 	rparam.mcast_obj = &bp->mcast_obj;
2175 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2176 
2177 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2178 	 * we take a lock surrounding both the initial send and the CONTs,
2179 	 * as we don't want a true completion to disrupt us in the middle.
2180 	 */
2181 	netif_addr_lock_bh(bp->dev);
2182 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2183 	if (rc < 0)
2184 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2185 			  rc);
2186 
2187 	/* ...and wait until all pending commands are cleared */
2188 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2189 	while (rc != 0) {
2190 		if (rc < 0) {
2191 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2192 				  rc);
2193 			netif_addr_unlock_bh(bp->dev);
2194 			return;
2195 		}
2196 
2197 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2198 	}
2199 	netif_addr_unlock_bh(bp->dev);
2200 }
2201 
2202 #ifndef BNX2X_STOP_ON_ERROR
2203 #define LOAD_ERROR_EXIT(bp, label) \
2204 	do { \
2205 		(bp)->state = BNX2X_STATE_ERROR; \
2206 		goto label; \
2207 	} while (0)
2208 
2209 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2210 	do { \
2211 		bp->cnic_loaded = false; \
2212 		goto label; \
2213 	} while (0)
2214 #else /*BNX2X_STOP_ON_ERROR*/
2215 #define LOAD_ERROR_EXIT(bp, label) \
2216 	do { \
2217 		(bp)->state = BNX2X_STATE_ERROR; \
2218 		(bp)->panic = 1; \
2219 		return -EBUSY; \
2220 	} while (0)
2221 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2222 	do { \
2223 		bp->cnic_loaded = false; \
2224 		(bp)->panic = 1; \
2225 		return -EBUSY; \
2226 	} while (0)
2227 #endif /*BNX2X_STOP_ON_ERROR*/
2228 
bnx2x_free_fw_stats_mem(struct bnx2x * bp)2229 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2230 {
2231 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2232 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2233 	return;
2234 }
2235 
bnx2x_alloc_fw_stats_mem(struct bnx2x * bp)2236 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2237 {
2238 	int num_groups, vf_headroom = 0;
2239 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2240 
2241 	/* number of queues for statistics is number of eth queues + FCoE */
2242 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2243 
2244 	/* Total number of FW statistics requests =
2245 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2246 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2247 	 * for fcoe l2 queue if applicable)
2248 	 */
2249 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2250 
2251 	/* vf stats appear in the request list, but their data is allocated by
2252 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2253 	 * it is used to determine where to place the vf stats queries in the
2254 	 * request struct
2255 	 */
2256 	if (IS_SRIOV(bp))
2257 		vf_headroom = bnx2x_vf_headroom(bp);
2258 
2259 	/* Request is built from stats_query_header and an array of
2260 	 * stats_query_cmd_group each of which contains
2261 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2262 	 * configured in the stats_query_header.
2263 	 */
2264 	num_groups =
2265 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2266 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2267 		 1 : 0));
2268 
2269 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2270 	   bp->fw_stats_num, vf_headroom, num_groups);
2271 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2272 		num_groups * sizeof(struct stats_query_cmd_group);
2273 
2274 	/* Data for statistics requests + stats_counter
2275 	 * stats_counter holds per-STORM counters that are incremented
2276 	 * when STORM has finished with the current request.
2277 	 * memory for FCoE offloaded statistics are counted anyway,
2278 	 * even if they will not be sent.
2279 	 * VF stats are not accounted for here as the data of VF stats is stored
2280 	 * in memory allocated by the VF, not here.
2281 	 */
2282 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2283 		sizeof(struct per_pf_stats) +
2284 		sizeof(struct fcoe_statistics_params) +
2285 		sizeof(struct per_queue_stats) * num_queue_stats +
2286 		sizeof(struct stats_counter);
2287 
2288 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2289 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2290 	if (!bp->fw_stats)
2291 		goto alloc_mem_err;
2292 
2293 	/* Set shortcuts */
2294 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2295 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2296 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2297 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2298 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2299 		bp->fw_stats_req_sz;
2300 
2301 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2302 	   U64_HI(bp->fw_stats_req_mapping),
2303 	   U64_LO(bp->fw_stats_req_mapping));
2304 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2305 	   U64_HI(bp->fw_stats_data_mapping),
2306 	   U64_LO(bp->fw_stats_data_mapping));
2307 	return 0;
2308 
2309 alloc_mem_err:
2310 	bnx2x_free_fw_stats_mem(bp);
2311 	BNX2X_ERR("Can't allocate FW stats memory\n");
2312 	return -ENOMEM;
2313 }
2314 
2315 /* send load request to mcp and analyze response */
bnx2x_nic_load_request(struct bnx2x * bp,u32 * load_code)2316 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2317 {
2318 	u32 param;
2319 
2320 	/* init fw_seq */
2321 	bp->fw_seq =
2322 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2323 		 DRV_MSG_SEQ_NUMBER_MASK);
2324 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2325 
2326 	/* Get current FW pulse sequence */
2327 	bp->fw_drv_pulse_wr_seq =
2328 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2329 		 DRV_PULSE_SEQ_MASK);
2330 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2331 
2332 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2333 
2334 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2335 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2336 
2337 	/* load request */
2338 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2339 
2340 	/* if mcp fails to respond we must abort */
2341 	if (!(*load_code)) {
2342 		BNX2X_ERR("MCP response failure, aborting\n");
2343 		return -EBUSY;
2344 	}
2345 
2346 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2347 	 * must abort
2348 	 */
2349 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2350 		BNX2X_ERR("MCP refused load request, aborting\n");
2351 		return -EBUSY;
2352 	}
2353 	return 0;
2354 }
2355 
2356 /* check whether another PF has already loaded FW to chip. In
2357  * virtualized environments a pf from another VM may have already
2358  * initialized the device including loading FW
2359  */
bnx2x_compare_fw_ver(struct bnx2x * bp,u32 load_code,bool print_err)2360 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2361 {
2362 	/* is another pf loaded on this engine? */
2363 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2364 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2365 		u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng;
2366 		u32 loaded_fw;
2367 
2368 		/* read loaded FW from chip */
2369 		loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2370 
2371 		loaded_fw_major = loaded_fw & 0xff;
2372 		loaded_fw_minor = (loaded_fw >> 8) & 0xff;
2373 		loaded_fw_rev = (loaded_fw >> 16) & 0xff;
2374 		loaded_fw_eng = (loaded_fw >> 24) & 0xff;
2375 
2376 		DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n",
2377 		   loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng);
2378 
2379 		/* abort nic load if version mismatch */
2380 		if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION ||
2381 		    loaded_fw_minor != BCM_5710_FW_MINOR_VERSION ||
2382 		    loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION ||
2383 		    loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) {
2384 			if (print_err)
2385 				BNX2X_ERR("loaded FW incompatible. Aborting\n");
2386 			else
2387 				BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n");
2388 
2389 			return -EBUSY;
2390 		}
2391 	}
2392 	return 0;
2393 }
2394 
2395 /* returns the "mcp load_code" according to global load_count array */
bnx2x_nic_load_no_mcp(struct bnx2x * bp,int port)2396 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2397 {
2398 	int path = BP_PATH(bp);
2399 
2400 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2401 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2402 	   bnx2x_load_count[path][2]);
2403 	bnx2x_load_count[path][0]++;
2404 	bnx2x_load_count[path][1 + port]++;
2405 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2406 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2407 	   bnx2x_load_count[path][2]);
2408 	if (bnx2x_load_count[path][0] == 1)
2409 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2410 	else if (bnx2x_load_count[path][1 + port] == 1)
2411 		return FW_MSG_CODE_DRV_LOAD_PORT;
2412 	else
2413 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2414 }
2415 
2416 /* mark PMF if applicable */
bnx2x_nic_load_pmf(struct bnx2x * bp,u32 load_code)2417 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2418 {
2419 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2420 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2421 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2422 		bp->port.pmf = 1;
2423 		/* We need the barrier to ensure the ordering between the
2424 		 * writing to bp->port.pmf here and reading it from the
2425 		 * bnx2x_periodic_task().
2426 		 */
2427 		smp_mb();
2428 	} else {
2429 		bp->port.pmf = 0;
2430 	}
2431 
2432 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2433 }
2434 
bnx2x_nic_load_afex_dcc(struct bnx2x * bp,int load_code)2435 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2436 {
2437 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2438 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2439 	    (bp->common.shmem2_base)) {
2440 		if (SHMEM2_HAS(bp, dcc_support))
2441 			SHMEM2_WR(bp, dcc_support,
2442 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2443 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2444 		if (SHMEM2_HAS(bp, afex_driver_support))
2445 			SHMEM2_WR(bp, afex_driver_support,
2446 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2447 	}
2448 
2449 	/* Set AFEX default VLAN tag to an invalid value */
2450 	bp->afex_def_vlan_tag = -1;
2451 }
2452 
2453 /**
2454  * bnx2x_bz_fp - zero content of the fastpath structure.
2455  *
2456  * @bp:		driver handle
2457  * @index:	fastpath index to be zeroed
2458  *
2459  * Makes sure the contents of the bp->fp[index].napi is kept
2460  * intact.
2461  */
bnx2x_bz_fp(struct bnx2x * bp,int index)2462 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2463 {
2464 	struct bnx2x_fastpath *fp = &bp->fp[index];
2465 	int cos;
2466 	struct napi_struct orig_napi = fp->napi;
2467 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2468 
2469 	/* bzero bnx2x_fastpath contents */
2470 	if (fp->tpa_info)
2471 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2472 		       sizeof(struct bnx2x_agg_info));
2473 	memset(fp, 0, sizeof(*fp));
2474 
2475 	/* Restore the NAPI object as it has been already initialized */
2476 	fp->napi = orig_napi;
2477 	fp->tpa_info = orig_tpa_info;
2478 	fp->bp = bp;
2479 	fp->index = index;
2480 	if (IS_ETH_FP(fp))
2481 		fp->max_cos = bp->max_cos;
2482 	else
2483 		/* Special queues support only one CoS */
2484 		fp->max_cos = 1;
2485 
2486 	/* Init txdata pointers */
2487 	if (IS_FCOE_FP(fp))
2488 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2489 	if (IS_ETH_FP(fp))
2490 		for_each_cos_in_tx_queue(fp, cos)
2491 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2492 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2493 
2494 	/* set the tpa flag for each queue. The tpa flag determines the queue
2495 	 * minimal size so it must be set prior to queue memory allocation
2496 	 */
2497 	if (bp->dev->features & NETIF_F_LRO)
2498 		fp->mode = TPA_MODE_LRO;
2499 	else if (bp->dev->features & NETIF_F_GRO_HW)
2500 		fp->mode = TPA_MODE_GRO;
2501 	else
2502 		fp->mode = TPA_MODE_DISABLED;
2503 
2504 	/* We don't want TPA if it's disabled in bp
2505 	 * or if this is an FCoE L2 ring.
2506 	 */
2507 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2508 		fp->mode = TPA_MODE_DISABLED;
2509 }
2510 
bnx2x_set_os_driver_state(struct bnx2x * bp,u32 state)2511 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2512 {
2513 	u32 cur;
2514 
2515 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2516 		return;
2517 
2518 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2519 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2520 	   cur, state);
2521 
2522 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2523 }
2524 
bnx2x_load_cnic(struct bnx2x * bp)2525 int bnx2x_load_cnic(struct bnx2x *bp)
2526 {
2527 	int i, rc, port = BP_PORT(bp);
2528 
2529 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2530 
2531 	mutex_init(&bp->cnic_mutex);
2532 
2533 	if (IS_PF(bp)) {
2534 		rc = bnx2x_alloc_mem_cnic(bp);
2535 		if (rc) {
2536 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2537 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2538 		}
2539 	}
2540 
2541 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2542 	if (rc) {
2543 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2544 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2545 	}
2546 
2547 	/* Update the number of queues with the cnic queues */
2548 	rc = bnx2x_set_real_num_queues(bp, 1);
2549 	if (rc) {
2550 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2551 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2552 	}
2553 
2554 	/* Add all CNIC NAPI objects */
2555 	bnx2x_add_all_napi_cnic(bp);
2556 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2557 	bnx2x_napi_enable_cnic(bp);
2558 
2559 	rc = bnx2x_init_hw_func_cnic(bp);
2560 	if (rc)
2561 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2562 
2563 	bnx2x_nic_init_cnic(bp);
2564 
2565 	if (IS_PF(bp)) {
2566 		/* Enable Timer scan */
2567 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2568 
2569 		/* setup cnic queues */
2570 		for_each_cnic_queue(bp, i) {
2571 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2572 			if (rc) {
2573 				BNX2X_ERR("Queue setup failed\n");
2574 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2575 			}
2576 		}
2577 	}
2578 
2579 	/* Initialize Rx filter. */
2580 	bnx2x_set_rx_mode_inner(bp);
2581 
2582 	/* re-read iscsi info */
2583 	bnx2x_get_iscsi_info(bp);
2584 	bnx2x_setup_cnic_irq_info(bp);
2585 	bnx2x_setup_cnic_info(bp);
2586 	bp->cnic_loaded = true;
2587 	if (bp->state == BNX2X_STATE_OPEN)
2588 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2589 
2590 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2591 
2592 	return 0;
2593 
2594 #ifndef BNX2X_STOP_ON_ERROR
2595 load_error_cnic2:
2596 	/* Disable Timer scan */
2597 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2598 
2599 load_error_cnic1:
2600 	bnx2x_napi_disable_cnic(bp);
2601 	/* Update the number of queues without the cnic queues */
2602 	if (bnx2x_set_real_num_queues(bp, 0))
2603 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2604 load_error_cnic0:
2605 	BNX2X_ERR("CNIC-related load failed\n");
2606 	bnx2x_free_fp_mem_cnic(bp);
2607 	bnx2x_free_mem_cnic(bp);
2608 	return rc;
2609 #endif /* ! BNX2X_STOP_ON_ERROR */
2610 }
2611 
2612 /* must be called with rtnl_lock */
bnx2x_nic_load(struct bnx2x * bp,int load_mode)2613 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2614 {
2615 	int port = BP_PORT(bp);
2616 	int i, rc = 0, load_code = 0;
2617 
2618 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2619 	DP(NETIF_MSG_IFUP,
2620 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2621 
2622 #ifdef BNX2X_STOP_ON_ERROR
2623 	if (unlikely(bp->panic)) {
2624 		BNX2X_ERR("Can't load NIC when there is panic\n");
2625 		return -EPERM;
2626 	}
2627 #endif
2628 
2629 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2630 
2631 	/* zero the structure w/o any lock, before SP handler is initialized */
2632 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2633 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2634 		&bp->last_reported_link.link_report_flags);
2635 
2636 	if (IS_PF(bp))
2637 		/* must be called before memory allocation and HW init */
2638 		bnx2x_ilt_set_info(bp);
2639 
2640 	/*
2641 	 * Zero fastpath structures preserving invariants like napi, which are
2642 	 * allocated only once, fp index, max_cos, bp pointer.
2643 	 * Also set fp->mode and txdata_ptr.
2644 	 */
2645 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2646 	for_each_queue(bp, i)
2647 		bnx2x_bz_fp(bp, i);
2648 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2649 				  bp->num_cnic_queues) *
2650 				  sizeof(struct bnx2x_fp_txdata));
2651 
2652 	bp->fcoe_init = false;
2653 
2654 	/* Set the receive queues buffer size */
2655 	bnx2x_set_rx_buf_size(bp);
2656 
2657 	if (IS_PF(bp)) {
2658 		rc = bnx2x_alloc_mem(bp);
2659 		if (rc) {
2660 			BNX2X_ERR("Unable to allocate bp memory\n");
2661 			return rc;
2662 		}
2663 	}
2664 
2665 	/* need to be done after alloc mem, since it's self adjusting to amount
2666 	 * of memory available for RSS queues
2667 	 */
2668 	rc = bnx2x_alloc_fp_mem(bp);
2669 	if (rc) {
2670 		BNX2X_ERR("Unable to allocate memory for fps\n");
2671 		LOAD_ERROR_EXIT(bp, load_error0);
2672 	}
2673 
2674 	/* Allocated memory for FW statistics  */
2675 	rc = bnx2x_alloc_fw_stats_mem(bp);
2676 	if (rc)
2677 		LOAD_ERROR_EXIT(bp, load_error0);
2678 
2679 	/* request pf to initialize status blocks */
2680 	if (IS_VF(bp)) {
2681 		rc = bnx2x_vfpf_init(bp);
2682 		if (rc)
2683 			LOAD_ERROR_EXIT(bp, load_error0);
2684 	}
2685 
2686 	/* As long as bnx2x_alloc_mem() may possibly update
2687 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2688 	 * come after it. At this stage cnic queues are not counted.
2689 	 */
2690 	rc = bnx2x_set_real_num_queues(bp, 0);
2691 	if (rc) {
2692 		BNX2X_ERR("Unable to set real_num_queues\n");
2693 		LOAD_ERROR_EXIT(bp, load_error0);
2694 	}
2695 
2696 	/* configure multi cos mappings in kernel.
2697 	 * this configuration may be overridden by a multi class queue
2698 	 * discipline or by a dcbx negotiation result.
2699 	 */
2700 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2701 
2702 	/* Add all NAPI objects */
2703 	bnx2x_add_all_napi(bp);
2704 	DP(NETIF_MSG_IFUP, "napi added\n");
2705 	bnx2x_napi_enable(bp);
2706 
2707 	if (IS_PF(bp)) {
2708 		/* set pf load just before approaching the MCP */
2709 		bnx2x_set_pf_load(bp);
2710 
2711 		/* if mcp exists send load request and analyze response */
2712 		if (!BP_NOMCP(bp)) {
2713 			/* attempt to load pf */
2714 			rc = bnx2x_nic_load_request(bp, &load_code);
2715 			if (rc)
2716 				LOAD_ERROR_EXIT(bp, load_error1);
2717 
2718 			/* what did mcp say? */
2719 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2720 			if (rc) {
2721 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2722 				LOAD_ERROR_EXIT(bp, load_error2);
2723 			}
2724 		} else {
2725 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2726 		}
2727 
2728 		/* mark pmf if applicable */
2729 		bnx2x_nic_load_pmf(bp, load_code);
2730 
2731 		/* Init Function state controlling object */
2732 		bnx2x__init_func_obj(bp);
2733 
2734 		/* Initialize HW */
2735 		rc = bnx2x_init_hw(bp, load_code);
2736 		if (rc) {
2737 			BNX2X_ERR("HW init failed, aborting\n");
2738 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2739 			LOAD_ERROR_EXIT(bp, load_error2);
2740 		}
2741 	}
2742 
2743 	bnx2x_pre_irq_nic_init(bp);
2744 
2745 	/* Connect to IRQs */
2746 	rc = bnx2x_setup_irqs(bp);
2747 	if (rc) {
2748 		BNX2X_ERR("setup irqs failed\n");
2749 		if (IS_PF(bp))
2750 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2751 		LOAD_ERROR_EXIT(bp, load_error2);
2752 	}
2753 
2754 	/* Init per-function objects */
2755 	if (IS_PF(bp)) {
2756 		/* Setup NIC internals and enable interrupts */
2757 		bnx2x_post_irq_nic_init(bp, load_code);
2758 
2759 		bnx2x_init_bp_objs(bp);
2760 		bnx2x_iov_nic_init(bp);
2761 
2762 		/* Set AFEX default VLAN tag to an invalid value */
2763 		bp->afex_def_vlan_tag = -1;
2764 		bnx2x_nic_load_afex_dcc(bp, load_code);
2765 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2766 		rc = bnx2x_func_start(bp);
2767 		if (rc) {
2768 			BNX2X_ERR("Function start failed!\n");
2769 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2770 
2771 			LOAD_ERROR_EXIT(bp, load_error3);
2772 		}
2773 
2774 		/* Send LOAD_DONE command to MCP */
2775 		if (!BP_NOMCP(bp)) {
2776 			load_code = bnx2x_fw_command(bp,
2777 						     DRV_MSG_CODE_LOAD_DONE, 0);
2778 			if (!load_code) {
2779 				BNX2X_ERR("MCP response failure, aborting\n");
2780 				rc = -EBUSY;
2781 				LOAD_ERROR_EXIT(bp, load_error3);
2782 			}
2783 		}
2784 
2785 		/* initialize FW coalescing state machines in RAM */
2786 		bnx2x_update_coalesce(bp);
2787 	}
2788 
2789 	/* setup the leading queue */
2790 	rc = bnx2x_setup_leading(bp);
2791 	if (rc) {
2792 		BNX2X_ERR("Setup leading failed!\n");
2793 		LOAD_ERROR_EXIT(bp, load_error3);
2794 	}
2795 
2796 	/* set up the rest of the queues */
2797 	for_each_nondefault_eth_queue(bp, i) {
2798 		if (IS_PF(bp))
2799 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2800 		else /* VF */
2801 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2802 		if (rc) {
2803 			BNX2X_ERR("Queue %d setup failed\n", i);
2804 			LOAD_ERROR_EXIT(bp, load_error3);
2805 		}
2806 	}
2807 
2808 	/* setup rss */
2809 	rc = bnx2x_init_rss(bp);
2810 	if (rc) {
2811 		BNX2X_ERR("PF RSS init failed\n");
2812 		LOAD_ERROR_EXIT(bp, load_error3);
2813 	}
2814 
2815 	/* Now when Clients are configured we are ready to work */
2816 	bp->state = BNX2X_STATE_OPEN;
2817 
2818 	/* Configure a ucast MAC */
2819 	if (IS_PF(bp))
2820 		rc = bnx2x_set_eth_mac(bp, true);
2821 	else /* vf */
2822 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2823 					   true);
2824 	if (rc) {
2825 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2826 		LOAD_ERROR_EXIT(bp, load_error3);
2827 	}
2828 
2829 	if (IS_PF(bp) && bp->pending_max) {
2830 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2831 		bp->pending_max = 0;
2832 	}
2833 
2834 	bp->force_link_down = false;
2835 	if (bp->port.pmf) {
2836 		rc = bnx2x_initial_phy_init(bp, load_mode);
2837 		if (rc)
2838 			LOAD_ERROR_EXIT(bp, load_error3);
2839 	}
2840 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2841 
2842 	/* Start fast path */
2843 
2844 	/* Re-configure vlan filters */
2845 	rc = bnx2x_vlan_reconfigure_vid(bp);
2846 	if (rc)
2847 		LOAD_ERROR_EXIT(bp, load_error3);
2848 
2849 	/* Initialize Rx filter. */
2850 	bnx2x_set_rx_mode_inner(bp);
2851 
2852 	if (bp->flags & PTP_SUPPORTED) {
2853 		bnx2x_register_phc(bp);
2854 		bnx2x_init_ptp(bp);
2855 		bnx2x_configure_ptp_filters(bp);
2856 	}
2857 	/* Start Tx */
2858 	switch (load_mode) {
2859 	case LOAD_NORMAL:
2860 		/* Tx queue should be only re-enabled */
2861 		netif_tx_wake_all_queues(bp->dev);
2862 		break;
2863 
2864 	case LOAD_OPEN:
2865 		netif_tx_start_all_queues(bp->dev);
2866 		smp_mb__after_atomic();
2867 		break;
2868 
2869 	case LOAD_DIAG:
2870 	case LOAD_LOOPBACK_EXT:
2871 		bp->state = BNX2X_STATE_DIAG;
2872 		break;
2873 
2874 	default:
2875 		break;
2876 	}
2877 
2878 	if (bp->port.pmf)
2879 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2880 	else
2881 		bnx2x__link_status_update(bp);
2882 
2883 	/* start the timer */
2884 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2885 
2886 	if (CNIC_ENABLED(bp))
2887 		bnx2x_load_cnic(bp);
2888 
2889 	if (IS_PF(bp))
2890 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2891 
2892 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2893 		/* mark driver is loaded in shmem2 */
2894 		u32 val;
2895 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2896 		val &= ~DRV_FLAGS_MTU_MASK;
2897 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2898 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2899 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2900 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2901 	}
2902 
2903 	/* Wait for all pending SP commands to complete */
2904 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2905 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2906 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2907 		return -EBUSY;
2908 	}
2909 
2910 	/* Update driver data for On-Chip MFW dump. */
2911 	if (IS_PF(bp))
2912 		bnx2x_update_mfw_dump(bp);
2913 
2914 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2915 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2916 		bnx2x_dcbx_init(bp, false);
2917 
2918 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2919 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2920 
2921 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2922 
2923 	return 0;
2924 
2925 #ifndef BNX2X_STOP_ON_ERROR
2926 load_error3:
2927 	if (IS_PF(bp)) {
2928 		bnx2x_int_disable_sync(bp, 1);
2929 
2930 		/* Clean queueable objects */
2931 		bnx2x_squeeze_objects(bp);
2932 	}
2933 
2934 	/* Free SKBs, SGEs, TPA pool and driver internals */
2935 	bnx2x_free_skbs(bp);
2936 	for_each_rx_queue(bp, i)
2937 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2938 
2939 	/* Release IRQs */
2940 	bnx2x_free_irq(bp);
2941 load_error2:
2942 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2943 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2944 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2945 	}
2946 
2947 	bp->port.pmf = 0;
2948 load_error1:
2949 	bnx2x_napi_disable(bp);
2950 	bnx2x_del_all_napi(bp);
2951 
2952 	/* clear pf_load status, as it was already set */
2953 	if (IS_PF(bp))
2954 		bnx2x_clear_pf_load(bp);
2955 load_error0:
2956 	bnx2x_free_fw_stats_mem(bp);
2957 	bnx2x_free_fp_mem(bp);
2958 	bnx2x_free_mem(bp);
2959 
2960 	return rc;
2961 #endif /* ! BNX2X_STOP_ON_ERROR */
2962 }
2963 
bnx2x_drain_tx_queues(struct bnx2x * bp)2964 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2965 {
2966 	u8 rc = 0, cos, i;
2967 
2968 	/* Wait until tx fastpath tasks complete */
2969 	for_each_tx_queue(bp, i) {
2970 		struct bnx2x_fastpath *fp = &bp->fp[i];
2971 
2972 		for_each_cos_in_tx_queue(fp, cos)
2973 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2974 		if (rc)
2975 			return rc;
2976 	}
2977 	return 0;
2978 }
2979 
2980 /* must be called with rtnl_lock */
bnx2x_nic_unload(struct bnx2x * bp,int unload_mode,bool keep_link)2981 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2982 {
2983 	int i;
2984 	bool global = false;
2985 
2986 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2987 
2988 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2989 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2990 
2991 	/* mark driver is unloaded in shmem2 */
2992 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2993 		u32 val;
2994 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2995 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2996 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2997 	}
2998 
2999 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
3000 	    (bp->state == BNX2X_STATE_CLOSED ||
3001 	     bp->state == BNX2X_STATE_ERROR)) {
3002 		/* We can get here if the driver has been unloaded
3003 		 * during parity error recovery and is either waiting for a
3004 		 * leader to complete or for other functions to unload and
3005 		 * then ifdown has been issued. In this case we want to
3006 		 * unload and let other functions to complete a recovery
3007 		 * process.
3008 		 */
3009 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3010 		bp->is_leader = 0;
3011 		bnx2x_release_leader_lock(bp);
3012 		smp_mb();
3013 
3014 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3015 		BNX2X_ERR("Can't unload in closed or error state\n");
3016 		return -EINVAL;
3017 	}
3018 
3019 	/* Nothing to do during unload if previous bnx2x_nic_load()
3020 	 * have not completed successfully - all resources are released.
3021 	 *
3022 	 * we can get here only after unsuccessful ndo_* callback, during which
3023 	 * dev->IFF_UP flag is still on.
3024 	 */
3025 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3026 		return 0;
3027 
3028 	/* It's important to set the bp->state to the value different from
3029 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3030 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3031 	 */
3032 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3033 	smp_mb();
3034 
3035 	/* indicate to VFs that the PF is going down */
3036 	bnx2x_iov_channel_down(bp);
3037 
3038 	if (CNIC_LOADED(bp))
3039 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3040 
3041 	/* Stop Tx */
3042 	bnx2x_tx_disable(bp);
3043 	netdev_reset_tc(bp->dev);
3044 
3045 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3046 
3047 	del_timer_sync(&bp->timer);
3048 
3049 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3050 		/* Set ALWAYS_ALIVE bit in shmem */
3051 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3052 		bnx2x_drv_pulse(bp);
3053 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3054 		bnx2x_save_statistics(bp);
3055 	}
3056 
3057 	/* wait till consumers catch up with producers in all queues.
3058 	 * If we're recovering, FW can't write to host so no reason
3059 	 * to wait for the queues to complete all Tx.
3060 	 */
3061 	if (unload_mode != UNLOAD_RECOVERY)
3062 		bnx2x_drain_tx_queues(bp);
3063 
3064 	/* if VF indicate to PF this function is going down (PF will delete sp
3065 	 * elements and clear initializations
3066 	 */
3067 	if (IS_VF(bp)) {
3068 		bnx2x_clear_vlan_info(bp);
3069 		bnx2x_vfpf_close_vf(bp);
3070 	} else if (unload_mode != UNLOAD_RECOVERY) {
3071 		/* if this is a normal/close unload need to clean up chip*/
3072 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3073 	} else {
3074 		/* Send the UNLOAD_REQUEST to the MCP */
3075 		bnx2x_send_unload_req(bp, unload_mode);
3076 
3077 		/* Prevent transactions to host from the functions on the
3078 		 * engine that doesn't reset global blocks in case of global
3079 		 * attention once global blocks are reset and gates are opened
3080 		 * (the engine which leader will perform the recovery
3081 		 * last).
3082 		 */
3083 		if (!CHIP_IS_E1x(bp))
3084 			bnx2x_pf_disable(bp);
3085 
3086 		/* Disable HW interrupts, NAPI */
3087 		bnx2x_netif_stop(bp, 1);
3088 		/* Delete all NAPI objects */
3089 		bnx2x_del_all_napi(bp);
3090 		if (CNIC_LOADED(bp))
3091 			bnx2x_del_all_napi_cnic(bp);
3092 		/* Release IRQs */
3093 		bnx2x_free_irq(bp);
3094 
3095 		/* Report UNLOAD_DONE to MCP */
3096 		bnx2x_send_unload_done(bp, false);
3097 	}
3098 
3099 	/*
3100 	 * At this stage no more interrupts will arrive so we may safely clean
3101 	 * the queueable objects here in case they failed to get cleaned so far.
3102 	 */
3103 	if (IS_PF(bp))
3104 		bnx2x_squeeze_objects(bp);
3105 
3106 	/* There should be no more pending SP commands at this stage */
3107 	bp->sp_state = 0;
3108 
3109 	bp->port.pmf = 0;
3110 
3111 	/* clear pending work in rtnl task */
3112 	bp->sp_rtnl_state = 0;
3113 	smp_mb();
3114 
3115 	/* Free SKBs, SGEs, TPA pool and driver internals */
3116 	bnx2x_free_skbs(bp);
3117 	if (CNIC_LOADED(bp))
3118 		bnx2x_free_skbs_cnic(bp);
3119 	for_each_rx_queue(bp, i)
3120 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3121 
3122 	bnx2x_free_fp_mem(bp);
3123 	if (CNIC_LOADED(bp))
3124 		bnx2x_free_fp_mem_cnic(bp);
3125 
3126 	if (IS_PF(bp)) {
3127 		if (CNIC_LOADED(bp))
3128 			bnx2x_free_mem_cnic(bp);
3129 	}
3130 	bnx2x_free_mem(bp);
3131 
3132 	bp->state = BNX2X_STATE_CLOSED;
3133 	bp->cnic_loaded = false;
3134 
3135 	/* Clear driver version indication in shmem */
3136 	if (IS_PF(bp) && !BP_NOMCP(bp))
3137 		bnx2x_update_mng_version(bp);
3138 
3139 	/* Check if there are pending parity attentions. If there are - set
3140 	 * RECOVERY_IN_PROGRESS.
3141 	 */
3142 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3143 		bnx2x_set_reset_in_progress(bp);
3144 
3145 		/* Set RESET_IS_GLOBAL if needed */
3146 		if (global)
3147 			bnx2x_set_reset_global(bp);
3148 	}
3149 
3150 	/* The last driver must disable a "close the gate" if there is no
3151 	 * parity attention or "process kill" pending.
3152 	 */
3153 	if (IS_PF(bp) &&
3154 	    !bnx2x_clear_pf_load(bp) &&
3155 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3156 		bnx2x_disable_close_the_gate(bp);
3157 
3158 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3159 
3160 	return 0;
3161 }
3162 
bnx2x_set_power_state(struct bnx2x * bp,pci_power_t state)3163 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3164 {
3165 	u16 pmcsr;
3166 
3167 	/* If there is no power capability, silently succeed */
3168 	if (!bp->pdev->pm_cap) {
3169 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3170 		return 0;
3171 	}
3172 
3173 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3174 
3175 	switch (state) {
3176 	case PCI_D0:
3177 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3178 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3179 				       PCI_PM_CTRL_PME_STATUS));
3180 
3181 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3182 			/* delay required during transition out of D3hot */
3183 			msleep(20);
3184 		break;
3185 
3186 	case PCI_D3hot:
3187 		/* If there are other clients above don't
3188 		   shut down the power */
3189 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3190 			return 0;
3191 		/* Don't shut down the power for emulation and FPGA */
3192 		if (CHIP_REV_IS_SLOW(bp))
3193 			return 0;
3194 
3195 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3196 		pmcsr |= 3;
3197 
3198 		if (bp->wol)
3199 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3200 
3201 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3202 				      pmcsr);
3203 
3204 		/* No more memory access after this point until
3205 		* device is brought back to D0.
3206 		*/
3207 		break;
3208 
3209 	default:
3210 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3211 		return -EINVAL;
3212 	}
3213 	return 0;
3214 }
3215 
3216 /*
3217  * net_device service functions
3218  */
bnx2x_poll(struct napi_struct * napi,int budget)3219 static int bnx2x_poll(struct napi_struct *napi, int budget)
3220 {
3221 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3222 						 napi);
3223 	struct bnx2x *bp = fp->bp;
3224 	int rx_work_done;
3225 	u8 cos;
3226 
3227 #ifdef BNX2X_STOP_ON_ERROR
3228 	if (unlikely(bp->panic)) {
3229 		napi_complete(napi);
3230 		return 0;
3231 	}
3232 #endif
3233 	for_each_cos_in_tx_queue(fp, cos)
3234 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3235 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3236 
3237 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3238 
3239 	if (rx_work_done < budget) {
3240 		/* No need to update SB for FCoE L2 ring as long as
3241 		 * it's connected to the default SB and the SB
3242 		 * has been updated when NAPI was scheduled.
3243 		 */
3244 		if (IS_FCOE_FP(fp)) {
3245 			napi_complete_done(napi, rx_work_done);
3246 		} else {
3247 			bnx2x_update_fpsb_idx(fp);
3248 			/* bnx2x_has_rx_work() reads the status block,
3249 			 * thus we need to ensure that status block indices
3250 			 * have been actually read (bnx2x_update_fpsb_idx)
3251 			 * prior to this check (bnx2x_has_rx_work) so that
3252 			 * we won't write the "newer" value of the status block
3253 			 * to IGU (if there was a DMA right after
3254 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3255 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3256 			 * to right before bnx2x_ack_sb). In this case there
3257 			 * will never be another interrupt until there is
3258 			 * another update of the status block, while there
3259 			 * is still unhandled work.
3260 			 */
3261 			rmb();
3262 
3263 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3264 				if (napi_complete_done(napi, rx_work_done)) {
3265 					/* Re-enable interrupts */
3266 					DP(NETIF_MSG_RX_STATUS,
3267 					   "Update index to %d\n", fp->fp_hc_idx);
3268 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3269 						     le16_to_cpu(fp->fp_hc_idx),
3270 						     IGU_INT_ENABLE, 1);
3271 				}
3272 			} else {
3273 				rx_work_done = budget;
3274 			}
3275 		}
3276 	}
3277 
3278 	return rx_work_done;
3279 }
3280 
3281 /* we split the first BD into headers and data BDs
3282  * to ease the pain of our fellow microcode engineers
3283  * we use one mapping for both BDs
3284  */
bnx2x_tx_split(struct bnx2x * bp,struct bnx2x_fp_txdata * txdata,struct sw_tx_bd * tx_buf,struct eth_tx_start_bd ** tx_bd,u16 hlen,u16 bd_prod)3285 static u16 bnx2x_tx_split(struct bnx2x *bp,
3286 			  struct bnx2x_fp_txdata *txdata,
3287 			  struct sw_tx_bd *tx_buf,
3288 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3289 			  u16 bd_prod)
3290 {
3291 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3292 	struct eth_tx_bd *d_tx_bd;
3293 	dma_addr_t mapping;
3294 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3295 
3296 	/* first fix first BD */
3297 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3298 
3299 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3300 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3301 
3302 	/* now get a new data BD
3303 	 * (after the pbd) and fill it */
3304 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3305 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3306 
3307 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3308 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3309 
3310 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3311 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3312 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3313 
3314 	/* this marks the BD as one that has no individual mapping */
3315 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3316 
3317 	DP(NETIF_MSG_TX_QUEUED,
3318 	   "TSO split data size is %d (%x:%x)\n",
3319 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3320 
3321 	/* update tx_bd */
3322 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3323 
3324 	return bd_prod;
3325 }
3326 
3327 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3328 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
bnx2x_csum_fix(unsigned char * t_header,u16 csum,s8 fix)3329 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3330 {
3331 	__sum16 tsum = (__force __sum16) csum;
3332 
3333 	if (fix > 0)
3334 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3335 				  csum_partial(t_header - fix, fix, 0)));
3336 
3337 	else if (fix < 0)
3338 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3339 				  csum_partial(t_header, -fix, 0)));
3340 
3341 	return bswab16(tsum);
3342 }
3343 
bnx2x_xmit_type(struct bnx2x * bp,struct sk_buff * skb)3344 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3345 {
3346 	u32 rc;
3347 	__u8 prot = 0;
3348 	__be16 protocol;
3349 
3350 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3351 		return XMIT_PLAIN;
3352 
3353 	protocol = vlan_get_protocol(skb);
3354 	if (protocol == htons(ETH_P_IPV6)) {
3355 		rc = XMIT_CSUM_V6;
3356 		prot = ipv6_hdr(skb)->nexthdr;
3357 	} else {
3358 		rc = XMIT_CSUM_V4;
3359 		prot = ip_hdr(skb)->protocol;
3360 	}
3361 
3362 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3363 		if (inner_ip_hdr(skb)->version == 6) {
3364 			rc |= XMIT_CSUM_ENC_V6;
3365 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3366 				rc |= XMIT_CSUM_TCP;
3367 		} else {
3368 			rc |= XMIT_CSUM_ENC_V4;
3369 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3370 				rc |= XMIT_CSUM_TCP;
3371 		}
3372 	}
3373 	if (prot == IPPROTO_TCP)
3374 		rc |= XMIT_CSUM_TCP;
3375 
3376 	if (skb_is_gso(skb)) {
3377 		if (skb_is_gso_v6(skb)) {
3378 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3379 			if (rc & XMIT_CSUM_ENC)
3380 				rc |= XMIT_GSO_ENC_V6;
3381 		} else {
3382 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3383 			if (rc & XMIT_CSUM_ENC)
3384 				rc |= XMIT_GSO_ENC_V4;
3385 		}
3386 	}
3387 
3388 	return rc;
3389 }
3390 
3391 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3392 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3393 
3394 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3395 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3396 
3397 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3398 /* check if packet requires linearization (packet is too fragmented)
3399    no need to check fragmentation if page size > 8K (there will be no
3400    violation to FW restrictions) */
bnx2x_pkt_req_lin(struct bnx2x * bp,struct sk_buff * skb,u32 xmit_type)3401 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3402 			     u32 xmit_type)
3403 {
3404 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3405 	int to_copy = 0, hlen = 0;
3406 
3407 	if (xmit_type & XMIT_GSO_ENC)
3408 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3409 
3410 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3411 		if (xmit_type & XMIT_GSO) {
3412 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3413 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3414 			/* Number of windows to check */
3415 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3416 			int wnd_idx = 0;
3417 			int frag_idx = 0;
3418 			u32 wnd_sum = 0;
3419 
3420 			/* Headers length */
3421 			if (xmit_type & XMIT_GSO_ENC)
3422 				hlen = skb_inner_tcp_all_headers(skb);
3423 			else
3424 				hlen = skb_tcp_all_headers(skb);
3425 
3426 			/* Amount of data (w/o headers) on linear part of SKB*/
3427 			first_bd_sz = skb_headlen(skb) - hlen;
3428 
3429 			wnd_sum  = first_bd_sz;
3430 
3431 			/* Calculate the first sum - it's special */
3432 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3433 				wnd_sum +=
3434 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3435 
3436 			/* If there was data on linear skb data - check it */
3437 			if (first_bd_sz > 0) {
3438 				if (unlikely(wnd_sum < lso_mss)) {
3439 					to_copy = 1;
3440 					goto exit_lbl;
3441 				}
3442 
3443 				wnd_sum -= first_bd_sz;
3444 			}
3445 
3446 			/* Others are easier: run through the frag list and
3447 			   check all windows */
3448 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3449 				wnd_sum +=
3450 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3451 
3452 				if (unlikely(wnd_sum < lso_mss)) {
3453 					to_copy = 1;
3454 					break;
3455 				}
3456 				wnd_sum -=
3457 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3458 			}
3459 		} else {
3460 			/* in non-LSO too fragmented packet should always
3461 			   be linearized */
3462 			to_copy = 1;
3463 		}
3464 	}
3465 
3466 exit_lbl:
3467 	if (unlikely(to_copy))
3468 		DP(NETIF_MSG_TX_QUEUED,
3469 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3470 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3471 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3472 
3473 	return to_copy;
3474 }
3475 #endif
3476 
3477 /**
3478  * bnx2x_set_pbd_gso - update PBD in GSO case.
3479  *
3480  * @skb:	packet skb
3481  * @pbd:	parse BD
3482  * @xmit_type:	xmit flags
3483  */
bnx2x_set_pbd_gso(struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3484 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3485 			      struct eth_tx_parse_bd_e1x *pbd,
3486 			      u32 xmit_type)
3487 {
3488 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3489 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3490 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3491 
3492 	if (xmit_type & XMIT_GSO_V4) {
3493 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3494 		pbd->tcp_pseudo_csum =
3495 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3496 						   ip_hdr(skb)->daddr,
3497 						   0, IPPROTO_TCP, 0));
3498 	} else {
3499 		pbd->tcp_pseudo_csum =
3500 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3501 						 &ipv6_hdr(skb)->daddr,
3502 						 0, IPPROTO_TCP, 0));
3503 	}
3504 
3505 	pbd->global_data |=
3506 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3507 }
3508 
3509 /**
3510  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3511  *
3512  * @bp:			driver handle
3513  * @skb:		packet skb
3514  * @parsing_data:	data to be updated
3515  * @xmit_type:		xmit flags
3516  *
3517  * 57712/578xx related, when skb has encapsulation
3518  */
bnx2x_set_pbd_csum_enc(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3519 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3520 				 u32 *parsing_data, u32 xmit_type)
3521 {
3522 	*parsing_data |=
3523 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3524 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3525 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3526 
3527 	if (xmit_type & XMIT_CSUM_TCP) {
3528 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3529 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3530 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3531 
3532 		return skb_inner_tcp_all_headers(skb);
3533 	}
3534 
3535 	/* We support checksum offload for TCP and UDP only.
3536 	 * No need to pass the UDP header length - it's a constant.
3537 	 */
3538 	return skb_inner_transport_offset(skb) + sizeof(struct udphdr);
3539 }
3540 
3541 /**
3542  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3543  *
3544  * @bp:			driver handle
3545  * @skb:		packet skb
3546  * @parsing_data:	data to be updated
3547  * @xmit_type:		xmit flags
3548  *
3549  * 57712/578xx related
3550  */
bnx2x_set_pbd_csum_e2(struct bnx2x * bp,struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3551 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3552 				u32 *parsing_data, u32 xmit_type)
3553 {
3554 	*parsing_data |=
3555 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3556 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3557 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3558 
3559 	if (xmit_type & XMIT_CSUM_TCP) {
3560 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3561 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3562 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3563 
3564 		return skb_tcp_all_headers(skb);
3565 	}
3566 	/* We support checksum offload for TCP and UDP only.
3567 	 * No need to pass the UDP header length - it's a constant.
3568 	 */
3569 	return skb_transport_offset(skb) + sizeof(struct udphdr);
3570 }
3571 
3572 /* set FW indication according to inner or outer protocols if tunneled */
bnx2x_set_sbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_start_bd * tx_start_bd,u32 xmit_type)3573 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3574 			       struct eth_tx_start_bd *tx_start_bd,
3575 			       u32 xmit_type)
3576 {
3577 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3578 
3579 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3580 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3581 
3582 	if (!(xmit_type & XMIT_CSUM_TCP))
3583 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3584 }
3585 
3586 /**
3587  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3588  *
3589  * @bp:		driver handle
3590  * @skb:	packet skb
3591  * @pbd:	parse BD to be updated
3592  * @xmit_type:	xmit flags
3593  */
bnx2x_set_pbd_csum(struct bnx2x * bp,struct sk_buff * skb,struct eth_tx_parse_bd_e1x * pbd,u32 xmit_type)3594 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3595 			     struct eth_tx_parse_bd_e1x *pbd,
3596 			     u32 xmit_type)
3597 {
3598 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3599 
3600 	/* for now NS flag is not used in Linux */
3601 	pbd->global_data =
3602 		cpu_to_le16(hlen |
3603 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3604 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3605 
3606 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3607 			skb_network_header(skb)) >> 1;
3608 
3609 	hlen += pbd->ip_hlen_w;
3610 
3611 	/* We support checksum offload for TCP and UDP only */
3612 	if (xmit_type & XMIT_CSUM_TCP)
3613 		hlen += tcp_hdrlen(skb) / 2;
3614 	else
3615 		hlen += sizeof(struct udphdr) / 2;
3616 
3617 	pbd->total_hlen_w = cpu_to_le16(hlen);
3618 	hlen = hlen*2;
3619 
3620 	if (xmit_type & XMIT_CSUM_TCP) {
3621 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3622 
3623 	} else {
3624 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3625 
3626 		DP(NETIF_MSG_TX_QUEUED,
3627 		   "hlen %d  fix %d  csum before fix %x\n",
3628 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3629 
3630 		/* HW bug: fixup the CSUM */
3631 		pbd->tcp_pseudo_csum =
3632 			bnx2x_csum_fix(skb_transport_header(skb),
3633 				       SKB_CS(skb), fix);
3634 
3635 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3636 		   pbd->tcp_pseudo_csum);
3637 	}
3638 
3639 	return hlen;
3640 }
3641 
bnx2x_update_pbds_gso_enc(struct sk_buff * skb,struct eth_tx_parse_bd_e2 * pbd_e2,struct eth_tx_parse_2nd_bd * pbd2,u16 * global_data,u32 xmit_type)3642 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3643 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3644 				      struct eth_tx_parse_2nd_bd *pbd2,
3645 				      u16 *global_data,
3646 				      u32 xmit_type)
3647 {
3648 	u16 hlen_w = 0;
3649 	u8 outerip_off, outerip_len = 0;
3650 
3651 	/* from outer IP to transport */
3652 	hlen_w = (skb_inner_transport_header(skb) -
3653 		  skb_network_header(skb)) >> 1;
3654 
3655 	/* transport len */
3656 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3657 
3658 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3659 
3660 	/* outer IP header info */
3661 	if (xmit_type & XMIT_CSUM_V4) {
3662 		struct iphdr *iph = ip_hdr(skb);
3663 		u32 csum = (__force u32)(~iph->check) -
3664 			   (__force u32)iph->tot_len -
3665 			   (__force u32)iph->frag_off;
3666 
3667 		outerip_len = iph->ihl << 1;
3668 
3669 		pbd2->fw_ip_csum_wo_len_flags_frag =
3670 			bswab16(csum_fold((__force __wsum)csum));
3671 	} else {
3672 		pbd2->fw_ip_hdr_to_payload_w =
3673 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3674 		pbd_e2->data.tunnel_data.flags |=
3675 			ETH_TUNNEL_DATA_IPV6_OUTER;
3676 	}
3677 
3678 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3679 
3680 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3681 
3682 	/* inner IP header info */
3683 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3684 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3685 
3686 		pbd_e2->data.tunnel_data.pseudo_csum =
3687 			bswab16(~csum_tcpudp_magic(
3688 					inner_ip_hdr(skb)->saddr,
3689 					inner_ip_hdr(skb)->daddr,
3690 					0, IPPROTO_TCP, 0));
3691 	} else {
3692 		pbd_e2->data.tunnel_data.pseudo_csum =
3693 			bswab16(~csum_ipv6_magic(
3694 					&inner_ipv6_hdr(skb)->saddr,
3695 					&inner_ipv6_hdr(skb)->daddr,
3696 					0, IPPROTO_TCP, 0));
3697 	}
3698 
3699 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3700 
3701 	*global_data |=
3702 		outerip_off |
3703 		(outerip_len <<
3704 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3705 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3706 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3707 
3708 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3709 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3710 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3711 	}
3712 }
3713 
bnx2x_set_ipv6_ext_e2(struct sk_buff * skb,u32 * parsing_data,u32 xmit_type)3714 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3715 					 u32 xmit_type)
3716 {
3717 	struct ipv6hdr *ipv6;
3718 
3719 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3720 		return;
3721 
3722 	if (xmit_type & XMIT_GSO_ENC_V6)
3723 		ipv6 = inner_ipv6_hdr(skb);
3724 	else /* XMIT_GSO_V6 */
3725 		ipv6 = ipv6_hdr(skb);
3726 
3727 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3728 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3729 }
3730 
3731 /* called with netif_tx_lock
3732  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3733  * netif_wake_queue()
3734  */
bnx2x_start_xmit(struct sk_buff * skb,struct net_device * dev)3735 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3736 {
3737 	struct bnx2x *bp = netdev_priv(dev);
3738 
3739 	struct netdev_queue *txq;
3740 	struct bnx2x_fp_txdata *txdata;
3741 	struct sw_tx_bd *tx_buf;
3742 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3743 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3744 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3745 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3746 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3747 	u32 pbd_e2_parsing_data = 0;
3748 	u16 pkt_prod, bd_prod;
3749 	int nbd, txq_index;
3750 	dma_addr_t mapping;
3751 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3752 	int i;
3753 	u8 hlen = 0;
3754 	__le16 pkt_size = 0;
3755 	struct ethhdr *eth;
3756 	u8 mac_type = UNICAST_ADDRESS;
3757 
3758 #ifdef BNX2X_STOP_ON_ERROR
3759 	if (unlikely(bp->panic))
3760 		return NETDEV_TX_BUSY;
3761 #endif
3762 
3763 	txq_index = skb_get_queue_mapping(skb);
3764 	txq = netdev_get_tx_queue(dev, txq_index);
3765 
3766 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3767 
3768 	txdata = &bp->bnx2x_txq[txq_index];
3769 
3770 	/* enable this debug print to view the transmission queue being used
3771 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3772 	   txq_index, fp_index, txdata_index); */
3773 
3774 	/* enable this debug print to view the transmission details
3775 	DP(NETIF_MSG_TX_QUEUED,
3776 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3777 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3778 
3779 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3780 			skb_shinfo(skb)->nr_frags +
3781 			BDS_PER_TX_PKT +
3782 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3783 		/* Handle special storage cases separately */
3784 		if (txdata->tx_ring_size == 0) {
3785 			struct bnx2x_eth_q_stats *q_stats =
3786 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3787 			q_stats->driver_filtered_tx_pkt++;
3788 			dev_kfree_skb(skb);
3789 			return NETDEV_TX_OK;
3790 		}
3791 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3792 		netif_tx_stop_queue(txq);
3793 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3794 
3795 		return NETDEV_TX_BUSY;
3796 	}
3797 
3798 	DP(NETIF_MSG_TX_QUEUED,
3799 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3800 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3801 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3802 	   skb->len);
3803 
3804 	eth = (struct ethhdr *)skb->data;
3805 
3806 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3807 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3808 		if (is_broadcast_ether_addr(eth->h_dest))
3809 			mac_type = BROADCAST_ADDRESS;
3810 		else
3811 			mac_type = MULTICAST_ADDRESS;
3812 	}
3813 
3814 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3815 	/* First, check if we need to linearize the skb (due to FW
3816 	   restrictions). No need to check fragmentation if page size > 8K
3817 	   (there will be no violation to FW restrictions) */
3818 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3819 		/* Statistics of linearization */
3820 		bp->lin_cnt++;
3821 		if (skb_linearize(skb) != 0) {
3822 			DP(NETIF_MSG_TX_QUEUED,
3823 			   "SKB linearization failed - silently dropping this SKB\n");
3824 			dev_kfree_skb_any(skb);
3825 			return NETDEV_TX_OK;
3826 		}
3827 	}
3828 #endif
3829 	/* Map skb linear data for DMA */
3830 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3831 				 skb_headlen(skb), DMA_TO_DEVICE);
3832 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3833 		DP(NETIF_MSG_TX_QUEUED,
3834 		   "SKB mapping failed - silently dropping this SKB\n");
3835 		dev_kfree_skb_any(skb);
3836 		return NETDEV_TX_OK;
3837 	}
3838 	/*
3839 	Please read carefully. First we use one BD which we mark as start,
3840 	then we have a parsing info BD (used for TSO or xsum),
3841 	and only then we have the rest of the TSO BDs.
3842 	(don't forget to mark the last one as last,
3843 	and to unmap only AFTER you write to the BD ...)
3844 	And above all, all pdb sizes are in words - NOT DWORDS!
3845 	*/
3846 
3847 	/* get current pkt produced now - advance it just before sending packet
3848 	 * since mapping of pages may fail and cause packet to be dropped
3849 	 */
3850 	pkt_prod = txdata->tx_pkt_prod;
3851 	bd_prod = TX_BD(txdata->tx_bd_prod);
3852 
3853 	/* get a tx_buf and first BD
3854 	 * tx_start_bd may be changed during SPLIT,
3855 	 * but first_bd will always stay first
3856 	 */
3857 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3858 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3859 	first_bd = tx_start_bd;
3860 
3861 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3862 
3863 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3864 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3865 			bp->eth_stats.ptp_skip_tx_ts++;
3866 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3867 		} else if (bp->ptp_tx_skb) {
3868 			bp->eth_stats.ptp_skip_tx_ts++;
3869 			netdev_err_once(bp->dev,
3870 					"Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3871 		} else {
3872 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3873 			/* schedule check for Tx timestamp */
3874 			bp->ptp_tx_skb = skb_get(skb);
3875 			bp->ptp_tx_start = jiffies;
3876 			schedule_work(&bp->ptp_task);
3877 		}
3878 	}
3879 
3880 	/* header nbd: indirectly zero other flags! */
3881 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3882 
3883 	/* remember the first BD of the packet */
3884 	tx_buf->first_bd = txdata->tx_bd_prod;
3885 	tx_buf->skb = skb;
3886 	tx_buf->flags = 0;
3887 
3888 	DP(NETIF_MSG_TX_QUEUED,
3889 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3890 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3891 
3892 	if (skb_vlan_tag_present(skb)) {
3893 		tx_start_bd->vlan_or_ethertype =
3894 		    cpu_to_le16(skb_vlan_tag_get(skb));
3895 		tx_start_bd->bd_flags.as_bitfield |=
3896 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3897 	} else {
3898 		/* when transmitting in a vf, start bd must hold the ethertype
3899 		 * for fw to enforce it
3900 		 */
3901 		u16 vlan_tci = 0;
3902 #ifndef BNX2X_STOP_ON_ERROR
3903 		if (IS_VF(bp)) {
3904 #endif
3905 			/* Still need to consider inband vlan for enforced */
3906 			if (__vlan_get_tag(skb, &vlan_tci)) {
3907 				tx_start_bd->vlan_or_ethertype =
3908 					cpu_to_le16(ntohs(eth->h_proto));
3909 			} else {
3910 				tx_start_bd->bd_flags.as_bitfield |=
3911 					(X_ETH_INBAND_VLAN <<
3912 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3913 				tx_start_bd->vlan_or_ethertype =
3914 					cpu_to_le16(vlan_tci);
3915 			}
3916 #ifndef BNX2X_STOP_ON_ERROR
3917 		} else {
3918 			/* used by FW for packet accounting */
3919 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3920 		}
3921 #endif
3922 	}
3923 
3924 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3925 
3926 	/* turn on parsing and get a BD */
3927 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3928 
3929 	if (xmit_type & XMIT_CSUM)
3930 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3931 
3932 	if (!CHIP_IS_E1x(bp)) {
3933 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3934 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3935 
3936 		if (xmit_type & XMIT_CSUM_ENC) {
3937 			u16 global_data = 0;
3938 
3939 			/* Set PBD in enc checksum offload case */
3940 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3941 						      &pbd_e2_parsing_data,
3942 						      xmit_type);
3943 
3944 			/* turn on 2nd parsing and get a BD */
3945 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3946 
3947 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3948 
3949 			memset(pbd2, 0, sizeof(*pbd2));
3950 
3951 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3952 				(skb_inner_network_header(skb) -
3953 				 skb->data) >> 1;
3954 
3955 			if (xmit_type & XMIT_GSO_ENC)
3956 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3957 							  &global_data,
3958 							  xmit_type);
3959 
3960 			pbd2->global_data = cpu_to_le16(global_data);
3961 
3962 			/* add addition parse BD indication to start BD */
3963 			SET_FLAG(tx_start_bd->general_data,
3964 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3965 			/* set encapsulation flag in start BD */
3966 			SET_FLAG(tx_start_bd->general_data,
3967 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3968 
3969 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3970 
3971 			nbd++;
3972 		} else if (xmit_type & XMIT_CSUM) {
3973 			/* Set PBD in checksum offload case w/o encapsulation */
3974 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3975 						     &pbd_e2_parsing_data,
3976 						     xmit_type);
3977 		}
3978 
3979 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3980 		/* Add the macs to the parsing BD if this is a vf or if
3981 		 * Tx Switching is enabled.
3982 		 */
3983 		if (IS_VF(bp)) {
3984 			/* override GRE parameters in BD */
3985 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3986 					      &pbd_e2->data.mac_addr.src_mid,
3987 					      &pbd_e2->data.mac_addr.src_lo,
3988 					      eth->h_source);
3989 
3990 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3991 					      &pbd_e2->data.mac_addr.dst_mid,
3992 					      &pbd_e2->data.mac_addr.dst_lo,
3993 					      eth->h_dest);
3994 		} else {
3995 			if (bp->flags & TX_SWITCHING)
3996 				bnx2x_set_fw_mac_addr(
3997 						&pbd_e2->data.mac_addr.dst_hi,
3998 						&pbd_e2->data.mac_addr.dst_mid,
3999 						&pbd_e2->data.mac_addr.dst_lo,
4000 						eth->h_dest);
4001 #ifdef BNX2X_STOP_ON_ERROR
4002 			/* Enforce security is always set in Stop on Error -
4003 			 * source mac should be present in the parsing BD
4004 			 */
4005 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4006 					      &pbd_e2->data.mac_addr.src_mid,
4007 					      &pbd_e2->data.mac_addr.src_lo,
4008 					      eth->h_source);
4009 #endif
4010 		}
4011 
4012 		SET_FLAG(pbd_e2_parsing_data,
4013 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4014 	} else {
4015 		u16 global_data = 0;
4016 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4017 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4018 		/* Set PBD in checksum offload case */
4019 		if (xmit_type & XMIT_CSUM)
4020 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4021 
4022 		SET_FLAG(global_data,
4023 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4024 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4025 	}
4026 
4027 	/* Setup the data pointer of the first BD of the packet */
4028 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4029 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4030 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4031 	pkt_size = tx_start_bd->nbytes;
4032 
4033 	DP(NETIF_MSG_TX_QUEUED,
4034 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4035 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4036 	   le16_to_cpu(tx_start_bd->nbytes),
4037 	   tx_start_bd->bd_flags.as_bitfield,
4038 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4039 
4040 	if (xmit_type & XMIT_GSO) {
4041 
4042 		DP(NETIF_MSG_TX_QUEUED,
4043 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4044 		   skb->len, hlen, skb_headlen(skb),
4045 		   skb_shinfo(skb)->gso_size);
4046 
4047 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4048 
4049 		if (unlikely(skb_headlen(skb) > hlen)) {
4050 			nbd++;
4051 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4052 						 &tx_start_bd, hlen,
4053 						 bd_prod);
4054 		}
4055 		if (!CHIP_IS_E1x(bp))
4056 			pbd_e2_parsing_data |=
4057 				(skb_shinfo(skb)->gso_size <<
4058 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4059 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4060 		else
4061 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4062 	}
4063 
4064 	/* Set the PBD's parsing_data field if not zero
4065 	 * (for the chips newer than 57711).
4066 	 */
4067 	if (pbd_e2_parsing_data)
4068 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4069 
4070 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4071 
4072 	/* Handle fragmented skb */
4073 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4074 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4075 
4076 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4077 					   skb_frag_size(frag), DMA_TO_DEVICE);
4078 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4079 			unsigned int pkts_compl = 0, bytes_compl = 0;
4080 
4081 			DP(NETIF_MSG_TX_QUEUED,
4082 			   "Unable to map page - dropping packet...\n");
4083 
4084 			/* we need unmap all buffers already mapped
4085 			 * for this SKB;
4086 			 * first_bd->nbd need to be properly updated
4087 			 * before call to bnx2x_free_tx_pkt
4088 			 */
4089 			first_bd->nbd = cpu_to_le16(nbd);
4090 			bnx2x_free_tx_pkt(bp, txdata,
4091 					  TX_BD(txdata->tx_pkt_prod),
4092 					  &pkts_compl, &bytes_compl);
4093 			return NETDEV_TX_OK;
4094 		}
4095 
4096 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4097 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4098 		if (total_pkt_bd == NULL)
4099 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4100 
4101 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4102 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4103 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4104 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4105 		nbd++;
4106 
4107 		DP(NETIF_MSG_TX_QUEUED,
4108 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4109 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4110 		   le16_to_cpu(tx_data_bd->nbytes));
4111 	}
4112 
4113 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4114 
4115 	/* update with actual num BDs */
4116 	first_bd->nbd = cpu_to_le16(nbd);
4117 
4118 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4119 
4120 	/* now send a tx doorbell, counting the next BD
4121 	 * if the packet contains or ends with it
4122 	 */
4123 	if (TX_BD_POFF(bd_prod) < nbd)
4124 		nbd++;
4125 
4126 	/* total_pkt_bytes should be set on the first data BD if
4127 	 * it's not an LSO packet and there is more than one
4128 	 * data BD. In this case pkt_size is limited by an MTU value.
4129 	 * However we prefer to set it for an LSO packet (while we don't
4130 	 * have to) in order to save some CPU cycles in a none-LSO
4131 	 * case, when we much more care about them.
4132 	 */
4133 	if (total_pkt_bd != NULL)
4134 		total_pkt_bd->total_pkt_bytes = pkt_size;
4135 
4136 	if (pbd_e1x)
4137 		DP(NETIF_MSG_TX_QUEUED,
4138 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4139 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4140 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4141 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4142 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4143 	if (pbd_e2)
4144 		DP(NETIF_MSG_TX_QUEUED,
4145 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4146 		   pbd_e2,
4147 		   pbd_e2->data.mac_addr.dst_hi,
4148 		   pbd_e2->data.mac_addr.dst_mid,
4149 		   pbd_e2->data.mac_addr.dst_lo,
4150 		   pbd_e2->data.mac_addr.src_hi,
4151 		   pbd_e2->data.mac_addr.src_mid,
4152 		   pbd_e2->data.mac_addr.src_lo,
4153 		   pbd_e2->parsing_data);
4154 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4155 
4156 	netdev_tx_sent_queue(txq, skb->len);
4157 
4158 	skb_tx_timestamp(skb);
4159 
4160 	txdata->tx_pkt_prod++;
4161 	/*
4162 	 * Make sure that the BD data is updated before updating the producer
4163 	 * since FW might read the BD right after the producer is updated.
4164 	 * This is only applicable for weak-ordered memory model archs such
4165 	 * as IA-64. The following barrier is also mandatory since FW will
4166 	 * assumes packets must have BDs.
4167 	 */
4168 	wmb();
4169 
4170 	txdata->tx_db.data.prod += nbd;
4171 	/* make sure descriptor update is observed by HW */
4172 	wmb();
4173 
4174 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4175 
4176 	txdata->tx_bd_prod += nbd;
4177 
4178 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4179 		netif_tx_stop_queue(txq);
4180 
4181 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4182 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4183 		 * fp->bd_tx_cons */
4184 		smp_mb();
4185 
4186 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4187 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4188 			netif_tx_wake_queue(txq);
4189 	}
4190 	txdata->tx_pkt++;
4191 
4192 	return NETDEV_TX_OK;
4193 }
4194 
bnx2x_get_c2s_mapping(struct bnx2x * bp,u8 * c2s_map,u8 * c2s_default)4195 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4196 {
4197 	int mfw_vn = BP_FW_MB_IDX(bp);
4198 	u32 tmp;
4199 
4200 	/* If the shmem shouldn't affect configuration, reflect */
4201 	if (!IS_MF_BD(bp)) {
4202 		int i;
4203 
4204 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4205 			c2s_map[i] = i;
4206 		*c2s_default = 0;
4207 
4208 		return;
4209 	}
4210 
4211 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4212 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4213 	c2s_map[0] = tmp & 0xff;
4214 	c2s_map[1] = (tmp >> 8) & 0xff;
4215 	c2s_map[2] = (tmp >> 16) & 0xff;
4216 	c2s_map[3] = (tmp >> 24) & 0xff;
4217 
4218 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4219 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4220 	c2s_map[4] = tmp & 0xff;
4221 	c2s_map[5] = (tmp >> 8) & 0xff;
4222 	c2s_map[6] = (tmp >> 16) & 0xff;
4223 	c2s_map[7] = (tmp >> 24) & 0xff;
4224 
4225 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4226 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4227 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4228 }
4229 
4230 /**
4231  * bnx2x_setup_tc - routine to configure net_device for multi tc
4232  *
4233  * @dev: net device to configure
4234  * @num_tc: number of traffic classes to enable
4235  *
4236  * callback connected to the ndo_setup_tc function pointer
4237  */
bnx2x_setup_tc(struct net_device * dev,u8 num_tc)4238 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4239 {
4240 	struct bnx2x *bp = netdev_priv(dev);
4241 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4242 	int cos, prio, count, offset;
4243 
4244 	/* setup tc must be called under rtnl lock */
4245 	ASSERT_RTNL();
4246 
4247 	/* no traffic classes requested. Aborting */
4248 	if (!num_tc) {
4249 		netdev_reset_tc(dev);
4250 		return 0;
4251 	}
4252 
4253 	/* requested to support too many traffic classes */
4254 	if (num_tc > bp->max_cos) {
4255 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4256 			  num_tc, bp->max_cos);
4257 		return -EINVAL;
4258 	}
4259 
4260 	/* declare amount of supported traffic classes */
4261 	if (netdev_set_num_tc(dev, num_tc)) {
4262 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4263 		return -EINVAL;
4264 	}
4265 
4266 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4267 
4268 	/* configure priority to traffic class mapping */
4269 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4270 		int outer_prio = c2s_map[prio];
4271 
4272 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4273 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4274 		   "mapping priority %d to tc %d\n",
4275 		   outer_prio, bp->prio_to_cos[outer_prio]);
4276 	}
4277 
4278 	/* Use this configuration to differentiate tc0 from other COSes
4279 	   This can be used for ets or pfc, and save the effort of setting
4280 	   up a multio class queue disc or negotiating DCBX with a switch
4281 	netdev_set_prio_tc_map(dev, 0, 0);
4282 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4283 	for (prio = 1; prio < 16; prio++) {
4284 		netdev_set_prio_tc_map(dev, prio, 1);
4285 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4286 	} */
4287 
4288 	/* configure traffic class to transmission queue mapping */
4289 	for (cos = 0; cos < bp->max_cos; cos++) {
4290 		count = BNX2X_NUM_ETH_QUEUES(bp);
4291 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4292 		netdev_set_tc_queue(dev, cos, count, offset);
4293 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4294 		   "mapping tc %d to offset %d count %d\n",
4295 		   cos, offset, count);
4296 	}
4297 
4298 	return 0;
4299 }
4300 
__bnx2x_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4301 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4302 		     void *type_data)
4303 {
4304 	struct tc_mqprio_qopt *mqprio = type_data;
4305 
4306 	if (type != TC_SETUP_QDISC_MQPRIO)
4307 		return -EOPNOTSUPP;
4308 
4309 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4310 
4311 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4312 }
4313 
4314 /* called with rtnl_lock */
bnx2x_change_mac_addr(struct net_device * dev,void * p)4315 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4316 {
4317 	struct sockaddr *addr = p;
4318 	struct bnx2x *bp = netdev_priv(dev);
4319 	int rc = 0;
4320 
4321 	if (!is_valid_ether_addr(addr->sa_data)) {
4322 		BNX2X_ERR("Requested MAC address is not valid\n");
4323 		return -EINVAL;
4324 	}
4325 
4326 	if (IS_MF_STORAGE_ONLY(bp)) {
4327 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4328 		return -EINVAL;
4329 	}
4330 
4331 	if (netif_running(dev))  {
4332 		rc = bnx2x_set_eth_mac(bp, false);
4333 		if (rc)
4334 			return rc;
4335 	}
4336 
4337 	eth_hw_addr_set(dev, addr->sa_data);
4338 
4339 	if (netif_running(dev))
4340 		rc = bnx2x_set_eth_mac(bp, true);
4341 
4342 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4343 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4344 
4345 	return rc;
4346 }
4347 
bnx2x_free_fp_mem_at(struct bnx2x * bp,int fp_index)4348 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4349 {
4350 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4351 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4352 	u8 cos;
4353 
4354 	/* Common */
4355 
4356 	if (IS_FCOE_IDX(fp_index)) {
4357 		memset(sb, 0, sizeof(union host_hc_status_block));
4358 		fp->status_blk_mapping = 0;
4359 	} else {
4360 		/* status blocks */
4361 		if (!CHIP_IS_E1x(bp))
4362 			BNX2X_PCI_FREE(sb->e2_sb,
4363 				       bnx2x_fp(bp, fp_index,
4364 						status_blk_mapping),
4365 				       sizeof(struct host_hc_status_block_e2));
4366 		else
4367 			BNX2X_PCI_FREE(sb->e1x_sb,
4368 				       bnx2x_fp(bp, fp_index,
4369 						status_blk_mapping),
4370 				       sizeof(struct host_hc_status_block_e1x));
4371 	}
4372 
4373 	/* Rx */
4374 	if (!skip_rx_queue(bp, fp_index)) {
4375 		bnx2x_free_rx_bds(fp);
4376 
4377 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4378 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4379 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4380 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4381 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4382 
4383 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4384 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4385 			       sizeof(struct eth_fast_path_rx_cqe) *
4386 			       NUM_RCQ_BD);
4387 
4388 		/* SGE ring */
4389 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4390 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4391 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4392 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4393 	}
4394 
4395 	/* Tx */
4396 	if (!skip_tx_queue(bp, fp_index)) {
4397 		/* fastpath tx rings: tx_buf tx_desc */
4398 		for_each_cos_in_tx_queue(fp, cos) {
4399 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4400 
4401 			DP(NETIF_MSG_IFDOWN,
4402 			   "freeing tx memory of fp %d cos %d cid %d\n",
4403 			   fp_index, cos, txdata->cid);
4404 
4405 			BNX2X_FREE(txdata->tx_buf_ring);
4406 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4407 				txdata->tx_desc_mapping,
4408 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4409 		}
4410 	}
4411 	/* end of fastpath */
4412 }
4413 
bnx2x_free_fp_mem_cnic(struct bnx2x * bp)4414 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4415 {
4416 	int i;
4417 	for_each_cnic_queue(bp, i)
4418 		bnx2x_free_fp_mem_at(bp, i);
4419 }
4420 
bnx2x_free_fp_mem(struct bnx2x * bp)4421 void bnx2x_free_fp_mem(struct bnx2x *bp)
4422 {
4423 	int i;
4424 	for_each_eth_queue(bp, i)
4425 		bnx2x_free_fp_mem_at(bp, i);
4426 }
4427 
set_sb_shortcuts(struct bnx2x * bp,int index)4428 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4429 {
4430 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4431 	if (!CHIP_IS_E1x(bp)) {
4432 		bnx2x_fp(bp, index, sb_index_values) =
4433 			(__le16 *)status_blk.e2_sb->sb.index_values;
4434 		bnx2x_fp(bp, index, sb_running_index) =
4435 			(__le16 *)status_blk.e2_sb->sb.running_index;
4436 	} else {
4437 		bnx2x_fp(bp, index, sb_index_values) =
4438 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4439 		bnx2x_fp(bp, index, sb_running_index) =
4440 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4441 	}
4442 }
4443 
4444 /* Returns the number of actually allocated BDs */
bnx2x_alloc_rx_bds(struct bnx2x_fastpath * fp,int rx_ring_size)4445 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4446 			      int rx_ring_size)
4447 {
4448 	struct bnx2x *bp = fp->bp;
4449 	u16 ring_prod, cqe_ring_prod;
4450 	int i, failure_cnt = 0;
4451 
4452 	fp->rx_comp_cons = 0;
4453 	cqe_ring_prod = ring_prod = 0;
4454 
4455 	/* This routine is called only during fo init so
4456 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4457 	 */
4458 	for (i = 0; i < rx_ring_size; i++) {
4459 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4460 			failure_cnt++;
4461 			continue;
4462 		}
4463 		ring_prod = NEXT_RX_IDX(ring_prod);
4464 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4465 		WARN_ON(ring_prod <= (i - failure_cnt));
4466 	}
4467 
4468 	if (failure_cnt)
4469 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4470 			  i - failure_cnt, fp->index);
4471 
4472 	fp->rx_bd_prod = ring_prod;
4473 	/* Limit the CQE producer by the CQE ring size */
4474 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4475 			       cqe_ring_prod);
4476 
4477 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4478 
4479 	return i - failure_cnt;
4480 }
4481 
bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath * fp)4482 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4483 {
4484 	int i;
4485 
4486 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4487 		struct eth_rx_cqe_next_page *nextpg;
4488 
4489 		nextpg = (struct eth_rx_cqe_next_page *)
4490 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4491 		nextpg->addr_hi =
4492 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4493 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4494 		nextpg->addr_lo =
4495 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4496 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4497 	}
4498 }
4499 
bnx2x_alloc_fp_mem_at(struct bnx2x * bp,int index)4500 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4501 {
4502 	union host_hc_status_block *sb;
4503 	struct bnx2x_fastpath *fp = &bp->fp[index];
4504 	int ring_size = 0;
4505 	u8 cos;
4506 	int rx_ring_size = 0;
4507 
4508 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4509 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4510 		bp->rx_ring_size = rx_ring_size;
4511 	} else if (!bp->rx_ring_size) {
4512 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4513 
4514 		if (CHIP_IS_E3(bp)) {
4515 			u32 cfg = SHMEM_RD(bp,
4516 					   dev_info.port_hw_config[BP_PORT(bp)].
4517 					   default_cfg);
4518 
4519 			/* Decrease ring size for 1G functions */
4520 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4521 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4522 				rx_ring_size /= 10;
4523 		}
4524 
4525 		/* allocate at least number of buffers required by FW */
4526 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4527 				     MIN_RX_SIZE_TPA, rx_ring_size);
4528 
4529 		bp->rx_ring_size = rx_ring_size;
4530 	} else /* if rx_ring_size specified - use it */
4531 		rx_ring_size = bp->rx_ring_size;
4532 
4533 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4534 
4535 	/* Common */
4536 	sb = &bnx2x_fp(bp, index, status_blk);
4537 
4538 	if (!IS_FCOE_IDX(index)) {
4539 		/* status blocks */
4540 		if (!CHIP_IS_E1x(bp)) {
4541 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4542 						    sizeof(struct host_hc_status_block_e2));
4543 			if (!sb->e2_sb)
4544 				goto alloc_mem_err;
4545 		} else {
4546 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4547 						     sizeof(struct host_hc_status_block_e1x));
4548 			if (!sb->e1x_sb)
4549 				goto alloc_mem_err;
4550 		}
4551 	}
4552 
4553 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4554 	 * set shortcuts for it.
4555 	 */
4556 	if (!IS_FCOE_IDX(index))
4557 		set_sb_shortcuts(bp, index);
4558 
4559 	/* Tx */
4560 	if (!skip_tx_queue(bp, index)) {
4561 		/* fastpath tx rings: tx_buf tx_desc */
4562 		for_each_cos_in_tx_queue(fp, cos) {
4563 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4564 
4565 			DP(NETIF_MSG_IFUP,
4566 			   "allocating tx memory of fp %d cos %d\n",
4567 			   index, cos);
4568 
4569 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4570 						      sizeof(struct sw_tx_bd),
4571 						      GFP_KERNEL);
4572 			if (!txdata->tx_buf_ring)
4573 				goto alloc_mem_err;
4574 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4575 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4576 			if (!txdata->tx_desc_ring)
4577 				goto alloc_mem_err;
4578 		}
4579 	}
4580 
4581 	/* Rx */
4582 	if (!skip_rx_queue(bp, index)) {
4583 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4584 		bnx2x_fp(bp, index, rx_buf_ring) =
4585 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4586 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4587 			goto alloc_mem_err;
4588 		bnx2x_fp(bp, index, rx_desc_ring) =
4589 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4590 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4591 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4592 			goto alloc_mem_err;
4593 
4594 		/* Seed all CQEs by 1s */
4595 		bnx2x_fp(bp, index, rx_comp_ring) =
4596 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4597 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4598 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4599 			goto alloc_mem_err;
4600 
4601 		/* SGE ring */
4602 		bnx2x_fp(bp, index, rx_page_ring) =
4603 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4604 				GFP_KERNEL);
4605 		if (!bnx2x_fp(bp, index, rx_page_ring))
4606 			goto alloc_mem_err;
4607 		bnx2x_fp(bp, index, rx_sge_ring) =
4608 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4609 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4610 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4611 			goto alloc_mem_err;
4612 		/* RX BD ring */
4613 		bnx2x_set_next_page_rx_bd(fp);
4614 
4615 		/* CQ ring */
4616 		bnx2x_set_next_page_rx_cq(fp);
4617 
4618 		/* BDs */
4619 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4620 		if (ring_size < rx_ring_size)
4621 			goto alloc_mem_err;
4622 	}
4623 
4624 	return 0;
4625 
4626 /* handles low memory cases */
4627 alloc_mem_err:
4628 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4629 						index, ring_size);
4630 	/* FW will drop all packets if queue is not big enough,
4631 	 * In these cases we disable the queue
4632 	 * Min size is different for OOO, TPA and non-TPA queues
4633 	 */
4634 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4635 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4636 			/* release memory allocated for this queue */
4637 			bnx2x_free_fp_mem_at(bp, index);
4638 			return -ENOMEM;
4639 	}
4640 	return 0;
4641 }
4642 
bnx2x_alloc_fp_mem_cnic(struct bnx2x * bp)4643 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4644 {
4645 	if (!NO_FCOE(bp))
4646 		/* FCoE */
4647 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4648 			/* we will fail load process instead of mark
4649 			 * NO_FCOE_FLAG
4650 			 */
4651 			return -ENOMEM;
4652 
4653 	return 0;
4654 }
4655 
bnx2x_alloc_fp_mem(struct bnx2x * bp)4656 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4657 {
4658 	int i;
4659 
4660 	/* 1. Allocate FP for leading - fatal if error
4661 	 * 2. Allocate RSS - fix number of queues if error
4662 	 */
4663 
4664 	/* leading */
4665 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4666 		return -ENOMEM;
4667 
4668 	/* RSS */
4669 	for_each_nondefault_eth_queue(bp, i)
4670 		if (bnx2x_alloc_fp_mem_at(bp, i))
4671 			break;
4672 
4673 	/* handle memory failures */
4674 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4675 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4676 
4677 		WARN_ON(delta < 0);
4678 		bnx2x_shrink_eth_fp(bp, delta);
4679 		if (CNIC_SUPPORT(bp))
4680 			/* move non eth FPs next to last eth FP
4681 			 * must be done in that order
4682 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4683 			 */
4684 
4685 			/* move FCoE fp even NO_FCOE_FLAG is on */
4686 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4687 		bp->num_ethernet_queues -= delta;
4688 		bp->num_queues = bp->num_ethernet_queues +
4689 				 bp->num_cnic_queues;
4690 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4691 			  bp->num_queues + delta, bp->num_queues);
4692 	}
4693 
4694 	return 0;
4695 }
4696 
bnx2x_free_mem_bp(struct bnx2x * bp)4697 void bnx2x_free_mem_bp(struct bnx2x *bp)
4698 {
4699 	int i;
4700 
4701 	for (i = 0; i < bp->fp_array_size; i++)
4702 		kfree(bp->fp[i].tpa_info);
4703 	kfree(bp->fp);
4704 	kfree(bp->sp_objs);
4705 	kfree(bp->fp_stats);
4706 	kfree(bp->bnx2x_txq);
4707 	kfree(bp->msix_table);
4708 	kfree(bp->ilt);
4709 }
4710 
bnx2x_alloc_mem_bp(struct bnx2x * bp)4711 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4712 {
4713 	struct bnx2x_fastpath *fp;
4714 	struct msix_entry *tbl;
4715 	struct bnx2x_ilt *ilt;
4716 	int msix_table_size = 0;
4717 	int fp_array_size, txq_array_size;
4718 	int i;
4719 
4720 	/*
4721 	 * The biggest MSI-X table we might need is as a maximum number of fast
4722 	 * path IGU SBs plus default SB (for PF only).
4723 	 */
4724 	msix_table_size = bp->igu_sb_cnt;
4725 	if (IS_PF(bp))
4726 		msix_table_size++;
4727 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4728 
4729 	/* fp array: RSS plus CNIC related L2 queues */
4730 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4731 	bp->fp_array_size = fp_array_size;
4732 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4733 
4734 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4735 	if (!fp)
4736 		goto alloc_err;
4737 	for (i = 0; i < bp->fp_array_size; i++) {
4738 		fp[i].tpa_info =
4739 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4740 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4741 		if (!(fp[i].tpa_info))
4742 			goto alloc_err;
4743 	}
4744 
4745 	bp->fp = fp;
4746 
4747 	/* allocate sp objs */
4748 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4749 			      GFP_KERNEL);
4750 	if (!bp->sp_objs)
4751 		goto alloc_err;
4752 
4753 	/* allocate fp_stats */
4754 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4755 			       GFP_KERNEL);
4756 	if (!bp->fp_stats)
4757 		goto alloc_err;
4758 
4759 	/* Allocate memory for the transmission queues array */
4760 	txq_array_size =
4761 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4762 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4763 
4764 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4765 				GFP_KERNEL);
4766 	if (!bp->bnx2x_txq)
4767 		goto alloc_err;
4768 
4769 	/* msix table */
4770 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4771 	if (!tbl)
4772 		goto alloc_err;
4773 	bp->msix_table = tbl;
4774 
4775 	/* ilt */
4776 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4777 	if (!ilt)
4778 		goto alloc_err;
4779 	bp->ilt = ilt;
4780 
4781 	return 0;
4782 alloc_err:
4783 	bnx2x_free_mem_bp(bp);
4784 	return -ENOMEM;
4785 }
4786 
bnx2x_reload_if_running(struct net_device * dev)4787 int bnx2x_reload_if_running(struct net_device *dev)
4788 {
4789 	struct bnx2x *bp = netdev_priv(dev);
4790 
4791 	if (unlikely(!netif_running(dev)))
4792 		return 0;
4793 
4794 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4795 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4796 }
4797 
bnx2x_get_cur_phy_idx(struct bnx2x * bp)4798 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4799 {
4800 	u32 sel_phy_idx = 0;
4801 	if (bp->link_params.num_phys <= 1)
4802 		return INT_PHY;
4803 
4804 	if (bp->link_vars.link_up) {
4805 		sel_phy_idx = EXT_PHY1;
4806 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4807 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4808 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4809 			sel_phy_idx = EXT_PHY2;
4810 	} else {
4811 
4812 		switch (bnx2x_phy_selection(&bp->link_params)) {
4813 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4814 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4815 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4816 		       sel_phy_idx = EXT_PHY1;
4817 		       break;
4818 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4819 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4820 		       sel_phy_idx = EXT_PHY2;
4821 		       break;
4822 		}
4823 	}
4824 
4825 	return sel_phy_idx;
4826 }
bnx2x_get_link_cfg_idx(struct bnx2x * bp)4827 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4828 {
4829 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4830 	/*
4831 	 * The selected activated PHY is always after swapping (in case PHY
4832 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4833 	 * the configuration
4834 	 */
4835 
4836 	if (bp->link_params.multi_phy_config &
4837 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4838 		if (sel_phy_idx == EXT_PHY1)
4839 			sel_phy_idx = EXT_PHY2;
4840 		else if (sel_phy_idx == EXT_PHY2)
4841 			sel_phy_idx = EXT_PHY1;
4842 	}
4843 	return LINK_CONFIG_IDX(sel_phy_idx);
4844 }
4845 
4846 #ifdef NETDEV_FCOE_WWNN
bnx2x_fcoe_get_wwn(struct net_device * dev,u64 * wwn,int type)4847 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4848 {
4849 	struct bnx2x *bp = netdev_priv(dev);
4850 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4851 
4852 	switch (type) {
4853 	case NETDEV_FCOE_WWNN:
4854 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4855 				cp->fcoe_wwn_node_name_lo);
4856 		break;
4857 	case NETDEV_FCOE_WWPN:
4858 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4859 				cp->fcoe_wwn_port_name_lo);
4860 		break;
4861 	default:
4862 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4863 		return -EINVAL;
4864 	}
4865 
4866 	return 0;
4867 }
4868 #endif
4869 
4870 /* called with rtnl_lock */
bnx2x_change_mtu(struct net_device * dev,int new_mtu)4871 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4872 {
4873 	struct bnx2x *bp = netdev_priv(dev);
4874 
4875 	if (pci_num_vf(bp->pdev)) {
4876 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4877 		return -EPERM;
4878 	}
4879 
4880 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4881 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4882 		return -EAGAIN;
4883 	}
4884 
4885 	/* This does not race with packet allocation
4886 	 * because the actual alloc size is
4887 	 * only updated as part of load
4888 	 */
4889 	dev->mtu = new_mtu;
4890 
4891 	if (!bnx2x_mtu_allows_gro(new_mtu))
4892 		dev->features &= ~NETIF_F_GRO_HW;
4893 
4894 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4895 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4896 
4897 	return bnx2x_reload_if_running(dev);
4898 }
4899 
bnx2x_fix_features(struct net_device * dev,netdev_features_t features)4900 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4901 				     netdev_features_t features)
4902 {
4903 	struct bnx2x *bp = netdev_priv(dev);
4904 
4905 	if (pci_num_vf(bp->pdev)) {
4906 		netdev_features_t changed = dev->features ^ features;
4907 
4908 		/* Revert the requested changes in features if they
4909 		 * would require internal reload of PF in bnx2x_set_features().
4910 		 */
4911 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4912 			features &= ~NETIF_F_RXCSUM;
4913 			features |= dev->features & NETIF_F_RXCSUM;
4914 		}
4915 
4916 		if (changed & NETIF_F_LOOPBACK) {
4917 			features &= ~NETIF_F_LOOPBACK;
4918 			features |= dev->features & NETIF_F_LOOPBACK;
4919 		}
4920 	}
4921 
4922 	/* TPA requires Rx CSUM offloading */
4923 	if (!(features & NETIF_F_RXCSUM))
4924 		features &= ~NETIF_F_LRO;
4925 
4926 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4927 		features &= ~NETIF_F_GRO_HW;
4928 	if (features & NETIF_F_GRO_HW)
4929 		features &= ~NETIF_F_LRO;
4930 
4931 	return features;
4932 }
4933 
bnx2x_set_features(struct net_device * dev,netdev_features_t features)4934 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4935 {
4936 	struct bnx2x *bp = netdev_priv(dev);
4937 	netdev_features_t changes = features ^ dev->features;
4938 	bool bnx2x_reload = false;
4939 	int rc;
4940 
4941 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4942 	if (!pci_num_vf(bp->pdev)) {
4943 		if (features & NETIF_F_LOOPBACK) {
4944 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4945 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4946 				bnx2x_reload = true;
4947 			}
4948 		} else {
4949 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4950 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4951 				bnx2x_reload = true;
4952 			}
4953 		}
4954 	}
4955 
4956 	/* Don't care about GRO changes */
4957 	changes &= ~NETIF_F_GRO;
4958 
4959 	if (changes)
4960 		bnx2x_reload = true;
4961 
4962 	if (bnx2x_reload) {
4963 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4964 			dev->features = features;
4965 			rc = bnx2x_reload_if_running(dev);
4966 			return rc ? rc : 1;
4967 		}
4968 		/* else: bnx2x_nic_load() will be called at end of recovery */
4969 	}
4970 
4971 	return 0;
4972 }
4973 
bnx2x_tx_timeout(struct net_device * dev,unsigned int txqueue)4974 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4975 {
4976 	struct bnx2x *bp = netdev_priv(dev);
4977 
4978 	/* We want the information of the dump logged,
4979 	 * but calling bnx2x_panic() would kill all chances of recovery.
4980 	 */
4981 	if (!bp->panic)
4982 #ifndef BNX2X_STOP_ON_ERROR
4983 		bnx2x_panic_dump(bp, false);
4984 #else
4985 		bnx2x_panic();
4986 #endif
4987 
4988 	/* This allows the netif to be shutdown gracefully before resetting */
4989 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4990 }
4991 
bnx2x_suspend(struct device * dev_d)4992 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
4993 {
4994 	struct pci_dev *pdev = to_pci_dev(dev_d);
4995 	struct net_device *dev = pci_get_drvdata(pdev);
4996 	struct bnx2x *bp;
4997 
4998 	if (!dev) {
4999 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5000 		return -ENODEV;
5001 	}
5002 	bp = netdev_priv(dev);
5003 
5004 	rtnl_lock();
5005 
5006 	if (!netif_running(dev)) {
5007 		rtnl_unlock();
5008 		return 0;
5009 	}
5010 
5011 	netif_device_detach(dev);
5012 
5013 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5014 
5015 	rtnl_unlock();
5016 
5017 	return 0;
5018 }
5019 
bnx2x_resume(struct device * dev_d)5020 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5021 {
5022 	struct pci_dev *pdev = to_pci_dev(dev_d);
5023 	struct net_device *dev = pci_get_drvdata(pdev);
5024 	struct bnx2x *bp;
5025 	int rc;
5026 
5027 	if (!dev) {
5028 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5029 		return -ENODEV;
5030 	}
5031 	bp = netdev_priv(dev);
5032 
5033 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5034 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5035 		return -EAGAIN;
5036 	}
5037 
5038 	rtnl_lock();
5039 
5040 	if (!netif_running(dev)) {
5041 		rtnl_unlock();
5042 		return 0;
5043 	}
5044 
5045 	netif_device_attach(dev);
5046 
5047 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5048 
5049 	rtnl_unlock();
5050 
5051 	return rc;
5052 }
5053 
5054 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5055 
bnx2x_set_ctx_validation(struct bnx2x * bp,struct eth_context * cxt,u32 cid)5056 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5057 			      u32 cid)
5058 {
5059 	if (!cxt) {
5060 		BNX2X_ERR("bad context pointer %p\n", cxt);
5061 		return;
5062 	}
5063 
5064 	/* ustorm cxt validation */
5065 	cxt->ustorm_ag_context.cdu_usage =
5066 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5067 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5068 	/* xcontext validation */
5069 	cxt->xstorm_ag_context.cdu_reserved =
5070 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5071 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5072 }
5073 
storm_memset_hc_timeout(struct bnx2x * bp,u8 port,u8 fw_sb_id,u8 sb_index,u8 ticks)5074 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5075 				    u8 fw_sb_id, u8 sb_index,
5076 				    u8 ticks)
5077 {
5078 	u32 addr = BAR_CSTRORM_INTMEM +
5079 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5080 	REG_WR8(bp, addr, ticks);
5081 	DP(NETIF_MSG_IFUP,
5082 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5083 	   port, fw_sb_id, sb_index, ticks);
5084 }
5085 
storm_memset_hc_disable(struct bnx2x * bp,u8 port,u16 fw_sb_id,u8 sb_index,u8 disable)5086 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5087 				    u16 fw_sb_id, u8 sb_index,
5088 				    u8 disable)
5089 {
5090 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5091 	u32 addr = BAR_CSTRORM_INTMEM +
5092 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5093 	u8 flags = REG_RD8(bp, addr);
5094 	/* clear and set */
5095 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5096 	flags |= enable_flag;
5097 	REG_WR8(bp, addr, flags);
5098 	DP(NETIF_MSG_IFUP,
5099 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5100 	   port, fw_sb_id, sb_index, disable);
5101 }
5102 
bnx2x_update_coalesce_sb_index(struct bnx2x * bp,u8 fw_sb_id,u8 sb_index,u8 disable,u16 usec)5103 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5104 				    u8 sb_index, u8 disable, u16 usec)
5105 {
5106 	int port = BP_PORT(bp);
5107 	u8 ticks = usec / BNX2X_BTR;
5108 
5109 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5110 
5111 	disable = disable ? 1 : (usec ? 0 : 1);
5112 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5113 }
5114 
bnx2x_schedule_sp_rtnl(struct bnx2x * bp,enum sp_rtnl_flag flag,u32 verbose)5115 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5116 			    u32 verbose)
5117 {
5118 	smp_mb__before_atomic();
5119 	set_bit(flag, &bp->sp_rtnl_state);
5120 	smp_mb__after_atomic();
5121 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5122 	   flag);
5123 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5124 }
5125