1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 if (in_compat_syscall()) {
91 struct compat_sock_fprog f32;
92
93 if (len != sizeof(f32))
94 return -EINVAL;
95 if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 return -EFAULT;
97 memset(dst, 0, sizeof(*dst));
98 dst->len = f32.len;
99 dst->filter = compat_ptr(f32.filter);
100 } else {
101 if (len != sizeof(*dst))
102 return -EINVAL;
103 if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 return -EFAULT;
105 }
106
107 return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110
111 /**
112 * sk_filter_trim_cap - run a packet through a socket filter
113 * @sk: sock associated with &sk_buff
114 * @skb: buffer to filter
115 * @cap: limit on how short the eBPF program may trim the packet
116 *
117 * Run the eBPF program and then cut skb->data to correct size returned by
118 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119 * than pkt_len we keep whole skb->data. This is the socket level
120 * wrapper to bpf_prog_run. It returns 0 if the packet should
121 * be accepted or -EPERM if the packet should be tossed.
122 *
123 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 int err;
127 struct sk_filter *filter;
128
129 /*
130 * If the skb was allocated from pfmemalloc reserves, only
131 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 * helping free memory
133 */
134 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 return -ENOMEM;
137 }
138 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 if (err)
140 return err;
141
142 err = security_sock_rcv_skb(sk, skb);
143 if (err)
144 return err;
145
146 rcu_read_lock();
147 filter = rcu_dereference(sk->sk_filter);
148 if (filter) {
149 struct sock *save_sk = skb->sk;
150 unsigned int pkt_len;
151
152 skb->sk = sk;
153 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 skb->sk = save_sk;
155 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 }
157 rcu_read_unlock();
158
159 return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 return skb_get_poff(skb);
166 }
167
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 struct nlattr *nla;
171
172 if (skb_is_nonlinear(skb))
173 return 0;
174
175 if (skb->len < sizeof(struct nlattr))
176 return 0;
177
178 if (a > skb->len - sizeof(struct nlattr))
179 return 0;
180
181 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 if (nla)
183 return (void *) nla - (void *) skb->data;
184
185 return 0;
186 }
187
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 struct nlattr *nla;
191
192 if (skb_is_nonlinear(skb))
193 return 0;
194
195 if (skb->len < sizeof(struct nlattr))
196 return 0;
197
198 if (a > skb->len - sizeof(struct nlattr))
199 return 0;
200
201 nla = (struct nlattr *) &skb->data[a];
202 if (nla->nla_len > skb->len - a)
203 return 0;
204
205 nla = nla_find_nested(nla, x);
206 if (nla)
207 return (void *) nla - (void *) skb->data;
208
209 return 0;
210 }
211
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 data, int, headlen, int, offset)
214 {
215 u8 tmp, *ptr;
216 const int len = sizeof(tmp);
217
218 if (offset >= 0) {
219 if (headlen - offset >= len)
220 return *(u8 *)(data + offset);
221 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 return tmp;
223 } else {
224 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 if (likely(ptr))
226 return *(u8 *)ptr;
227 }
228
229 return -EFAULT;
230 }
231
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 int, offset)
234 {
235 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 offset);
237 }
238
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 data, int, headlen, int, offset)
241 {
242 __be16 tmp, *ptr;
243 const int len = sizeof(tmp);
244
245 if (offset >= 0) {
246 if (headlen - offset >= len)
247 return get_unaligned_be16(data + offset);
248 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 return be16_to_cpu(tmp);
250 } else {
251 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 if (likely(ptr))
253 return get_unaligned_be16(ptr);
254 }
255
256 return -EFAULT;
257 }
258
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 int, offset)
261 {
262 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 offset);
264 }
265
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 data, int, headlen, int, offset)
268 {
269 __be32 tmp, *ptr;
270 const int len = sizeof(tmp);
271
272 if (likely(offset >= 0)) {
273 if (headlen - offset >= len)
274 return get_unaligned_be32(data + offset);
275 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 return be32_to_cpu(tmp);
277 } else {
278 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 if (likely(ptr))
280 return get_unaligned_be32(ptr);
281 }
282
283 return -EFAULT;
284 }
285
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 int, offset)
288 {
289 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 offset);
291 }
292
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 struct bpf_insn *insn_buf)
295 {
296 struct bpf_insn *insn = insn_buf;
297
298 switch (skb_field) {
299 case SKF_AD_MARK:
300 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301
302 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 offsetof(struct sk_buff, mark));
304 break;
305
306 case SKF_AD_PKTTYPE:
307 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 break;
313
314 case SKF_AD_QUEUE:
315 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316
317 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 offsetof(struct sk_buff, queue_mapping));
319 break;
320
321 case SKF_AD_VLAN_TAG:
322 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323
324 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 offsetof(struct sk_buff, vlan_tci));
327 break;
328 case SKF_AD_VLAN_TAG_PRESENT:
329 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
330 if (PKT_VLAN_PRESENT_BIT)
331 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
332 if (PKT_VLAN_PRESENT_BIT < 7)
333 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
334 break;
335 }
336
337 return insn - insn_buf;
338 }
339
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 struct bpf_insn **insnp)
342 {
343 struct bpf_insn *insn = *insnp;
344 u32 cnt;
345
346 switch (fp->k) {
347 case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349
350 /* A = *(u16 *) (CTX + offsetof(protocol)) */
351 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 offsetof(struct sk_buff, protocol));
353 /* A = ntohs(A) [emitting a nop or swap16] */
354 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 break;
356
357 case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 insn += cnt - 1;
360 break;
361
362 case SKF_AD_OFF + SKF_AD_IFINDEX:
363 case SKF_AD_OFF + SKF_AD_HATYPE:
364 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366
367 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 BPF_REG_TMP, BPF_REG_CTX,
369 offsetof(struct sk_buff, dev));
370 /* if (tmp != 0) goto pc + 1 */
371 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 *insn++ = BPF_EXIT_INSN();
373 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 offsetof(struct net_device, ifindex));
376 else
377 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 offsetof(struct net_device, type));
379 break;
380
381 case SKF_AD_OFF + SKF_AD_MARK:
382 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 insn += cnt - 1;
384 break;
385
386 case SKF_AD_OFF + SKF_AD_RXHASH:
387 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388
389 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 offsetof(struct sk_buff, hash));
391 break;
392
393 case SKF_AD_OFF + SKF_AD_QUEUE:
394 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 insn += cnt - 1;
396 break;
397
398 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 BPF_REG_A, BPF_REG_CTX, insn);
401 insn += cnt - 1;
402 break;
403
404 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 BPF_REG_A, BPF_REG_CTX, insn);
407 insn += cnt - 1;
408 break;
409
410 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412
413 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 offsetof(struct sk_buff, vlan_proto));
416 /* A = ntohs(A) [emitting a nop or swap16] */
417 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 break;
419
420 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 case SKF_AD_OFF + SKF_AD_NLATTR:
422 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 case SKF_AD_OFF + SKF_AD_CPU:
424 case SKF_AD_OFF + SKF_AD_RANDOM:
425 /* arg1 = CTX */
426 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 /* arg2 = A */
428 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 /* arg3 = X */
430 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 switch (fp->k) {
433 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 break;
436 case SKF_AD_OFF + SKF_AD_NLATTR:
437 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 break;
439 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 break;
442 case SKF_AD_OFF + SKF_AD_CPU:
443 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 break;
445 case SKF_AD_OFF + SKF_AD_RANDOM:
446 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 bpf_user_rnd_init_once();
448 break;
449 }
450 break;
451
452 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 /* A ^= X */
454 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 break;
456
457 default:
458 /* This is just a dummy call to avoid letting the compiler
459 * evict __bpf_call_base() as an optimization. Placed here
460 * where no-one bothers.
461 */
462 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 return false;
464 }
465
466 *insnp = insn;
467 return true;
468 }
469
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 BPF_SIZE(fp->code) == BPF_W;
476 bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 const int ip_align = NET_IP_ALIGN;
478 struct bpf_insn *insn = *insnp;
479 int offset = fp->k;
480
481 if (!indirect &&
482 ((unaligned_ok && offset >= 0) ||
483 (!unaligned_ok && offset >= 0 &&
484 offset + ip_align >= 0 &&
485 offset + ip_align % size == 0))) {
486 bool ldx_off_ok = offset <= S16_MAX;
487
488 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 if (offset)
490 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 size, 2 + endian + (!ldx_off_ok * 2));
493 if (ldx_off_ok) {
494 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 BPF_REG_D, offset);
496 } else {
497 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 BPF_REG_TMP, 0);
501 }
502 if (endian)
503 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 *insn++ = BPF_JMP_A(8);
505 }
506
507 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 if (!indirect) {
511 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 } else {
513 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 if (fp->k)
515 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 }
517
518 switch (BPF_SIZE(fp->code)) {
519 case BPF_B:
520 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 break;
522 case BPF_H:
523 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 break;
525 case BPF_W:
526 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 break;
528 default:
529 return false;
530 }
531
532 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 *insn = BPF_EXIT_INSN();
535
536 *insnp = insn;
537 return true;
538 }
539
540 /**
541 * bpf_convert_filter - convert filter program
542 * @prog: the user passed filter program
543 * @len: the length of the user passed filter program
544 * @new_prog: allocated 'struct bpf_prog' or NULL
545 * @new_len: pointer to store length of converted program
546 * @seen_ld_abs: bool whether we've seen ld_abs/ind
547 *
548 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549 * style extended BPF (eBPF).
550 * Conversion workflow:
551 *
552 * 1) First pass for calculating the new program length:
553 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554 *
555 * 2) 2nd pass to remap in two passes: 1st pass finds new
556 * jump offsets, 2nd pass remapping:
557 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 struct bpf_prog *new_prog, int *new_len,
561 bool *seen_ld_abs)
562 {
563 int new_flen = 0, pass = 0, target, i, stack_off;
564 struct bpf_insn *new_insn, *first_insn = NULL;
565 struct sock_filter *fp;
566 int *addrs = NULL;
567 u8 bpf_src;
568
569 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571
572 if (len <= 0 || len > BPF_MAXINSNS)
573 return -EINVAL;
574
575 if (new_prog) {
576 first_insn = new_prog->insnsi;
577 addrs = kcalloc(len, sizeof(*addrs),
578 GFP_KERNEL | __GFP_NOWARN);
579 if (!addrs)
580 return -ENOMEM;
581 }
582
583 do_pass:
584 new_insn = first_insn;
585 fp = prog;
586
587 /* Classic BPF related prologue emission. */
588 if (new_prog) {
589 /* Classic BPF expects A and X to be reset first. These need
590 * to be guaranteed to be the first two instructions.
591 */
592 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594
595 /* All programs must keep CTX in callee saved BPF_REG_CTX.
596 * In eBPF case it's done by the compiler, here we need to
597 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 */
599 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 if (*seen_ld_abs) {
601 /* For packet access in classic BPF, cache skb->data
602 * in callee-saved BPF R8 and skb->len - skb->data_len
603 * (headlen) in BPF R9. Since classic BPF is read-only
604 * on CTX, we only need to cache it once.
605 */
606 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 BPF_REG_D, BPF_REG_CTX,
608 offsetof(struct sk_buff, data));
609 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 offsetof(struct sk_buff, len));
611 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 offsetof(struct sk_buff, data_len));
613 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 }
615 } else {
616 new_insn += 3;
617 }
618
619 for (i = 0; i < len; fp++, i++) {
620 struct bpf_insn tmp_insns[32] = { };
621 struct bpf_insn *insn = tmp_insns;
622
623 if (addrs)
624 addrs[i] = new_insn - first_insn;
625
626 switch (fp->code) {
627 /* All arithmetic insns and skb loads map as-is. */
628 case BPF_ALU | BPF_ADD | BPF_X:
629 case BPF_ALU | BPF_ADD | BPF_K:
630 case BPF_ALU | BPF_SUB | BPF_X:
631 case BPF_ALU | BPF_SUB | BPF_K:
632 case BPF_ALU | BPF_AND | BPF_X:
633 case BPF_ALU | BPF_AND | BPF_K:
634 case BPF_ALU | BPF_OR | BPF_X:
635 case BPF_ALU | BPF_OR | BPF_K:
636 case BPF_ALU | BPF_LSH | BPF_X:
637 case BPF_ALU | BPF_LSH | BPF_K:
638 case BPF_ALU | BPF_RSH | BPF_X:
639 case BPF_ALU | BPF_RSH | BPF_K:
640 case BPF_ALU | BPF_XOR | BPF_X:
641 case BPF_ALU | BPF_XOR | BPF_K:
642 case BPF_ALU | BPF_MUL | BPF_X:
643 case BPF_ALU | BPF_MUL | BPF_K:
644 case BPF_ALU | BPF_DIV | BPF_X:
645 case BPF_ALU | BPF_DIV | BPF_K:
646 case BPF_ALU | BPF_MOD | BPF_X:
647 case BPF_ALU | BPF_MOD | BPF_K:
648 case BPF_ALU | BPF_NEG:
649 case BPF_LD | BPF_ABS | BPF_W:
650 case BPF_LD | BPF_ABS | BPF_H:
651 case BPF_LD | BPF_ABS | BPF_B:
652 case BPF_LD | BPF_IND | BPF_W:
653 case BPF_LD | BPF_IND | BPF_H:
654 case BPF_LD | BPF_IND | BPF_B:
655 /* Check for overloaded BPF extension and
656 * directly convert it if found, otherwise
657 * just move on with mapping.
658 */
659 if (BPF_CLASS(fp->code) == BPF_LD &&
660 BPF_MODE(fp->code) == BPF_ABS &&
661 convert_bpf_extensions(fp, &insn))
662 break;
663 if (BPF_CLASS(fp->code) == BPF_LD &&
664 convert_bpf_ld_abs(fp, &insn)) {
665 *seen_ld_abs = true;
666 break;
667 }
668
669 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 /* Error with exception code on div/mod by 0.
673 * For cBPF programs, this was always return 0.
674 */
675 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 *insn++ = BPF_EXIT_INSN();
678 }
679
680 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 break;
682
683 /* Jump transformation cannot use BPF block macros
684 * everywhere as offset calculation and target updates
685 * require a bit more work than the rest, i.e. jump
686 * opcodes map as-is, but offsets need adjustment.
687 */
688
689 #define BPF_EMIT_JMP \
690 do { \
691 const s32 off_min = S16_MIN, off_max = S16_MAX; \
692 s32 off; \
693 \
694 if (target >= len || target < 0) \
695 goto err; \
696 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
697 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
698 off -= insn - tmp_insns; \
699 /* Reject anything not fitting into insn->off. */ \
700 if (off < off_min || off > off_max) \
701 goto err; \
702 insn->off = off; \
703 } while (0)
704
705 case BPF_JMP | BPF_JA:
706 target = i + fp->k + 1;
707 insn->code = fp->code;
708 BPF_EMIT_JMP;
709 break;
710
711 case BPF_JMP | BPF_JEQ | BPF_K:
712 case BPF_JMP | BPF_JEQ | BPF_X:
713 case BPF_JMP | BPF_JSET | BPF_K:
714 case BPF_JMP | BPF_JSET | BPF_X:
715 case BPF_JMP | BPF_JGT | BPF_K:
716 case BPF_JMP | BPF_JGT | BPF_X:
717 case BPF_JMP | BPF_JGE | BPF_K:
718 case BPF_JMP | BPF_JGE | BPF_X:
719 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 /* BPF immediates are signed, zero extend
721 * immediate into tmp register and use it
722 * in compare insn.
723 */
724 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725
726 insn->dst_reg = BPF_REG_A;
727 insn->src_reg = BPF_REG_TMP;
728 bpf_src = BPF_X;
729 } else {
730 insn->dst_reg = BPF_REG_A;
731 insn->imm = fp->k;
732 bpf_src = BPF_SRC(fp->code);
733 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 }
735
736 /* Common case where 'jump_false' is next insn. */
737 if (fp->jf == 0) {
738 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 target = i + fp->jt + 1;
740 BPF_EMIT_JMP;
741 break;
742 }
743
744 /* Convert some jumps when 'jump_true' is next insn. */
745 if (fp->jt == 0) {
746 switch (BPF_OP(fp->code)) {
747 case BPF_JEQ:
748 insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 break;
750 case BPF_JGT:
751 insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 break;
753 case BPF_JGE:
754 insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 break;
756 default:
757 goto jmp_rest;
758 }
759
760 target = i + fp->jf + 1;
761 BPF_EMIT_JMP;
762 break;
763 }
764 jmp_rest:
765 /* Other jumps are mapped into two insns: Jxx and JA. */
766 target = i + fp->jt + 1;
767 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 BPF_EMIT_JMP;
769 insn++;
770
771 insn->code = BPF_JMP | BPF_JA;
772 target = i + fp->jf + 1;
773 BPF_EMIT_JMP;
774 break;
775
776 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 case BPF_LDX | BPF_MSH | BPF_B: {
778 struct sock_filter tmp = {
779 .code = BPF_LD | BPF_ABS | BPF_B,
780 .k = fp->k,
781 };
782
783 *seen_ld_abs = true;
784
785 /* X = A */
786 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 convert_bpf_ld_abs(&tmp, &insn);
789 insn++;
790 /* A &= 0xf */
791 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 /* A <<= 2 */
793 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 /* tmp = X */
795 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 /* X = A */
797 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 /* A = tmp */
799 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 break;
801 }
802 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 */
805 case BPF_RET | BPF_A:
806 case BPF_RET | BPF_K:
807 if (BPF_RVAL(fp->code) == BPF_K)
808 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 0, fp->k);
810 *insn = BPF_EXIT_INSN();
811 break;
812
813 /* Store to stack. */
814 case BPF_ST:
815 case BPF_STX:
816 stack_off = fp->k * 4 + 4;
817 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 BPF_ST ? BPF_REG_A : BPF_REG_X,
819 -stack_off);
820 /* check_load_and_stores() verifies that classic BPF can
821 * load from stack only after write, so tracking
822 * stack_depth for ST|STX insns is enough
823 */
824 if (new_prog && new_prog->aux->stack_depth < stack_off)
825 new_prog->aux->stack_depth = stack_off;
826 break;
827
828 /* Load from stack. */
829 case BPF_LD | BPF_MEM:
830 case BPF_LDX | BPF_MEM:
831 stack_off = fp->k * 4 + 4;
832 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 -stack_off);
835 break;
836
837 /* A = K or X = K */
838 case BPF_LD | BPF_IMM:
839 case BPF_LDX | BPF_IMM:
840 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 BPF_REG_A : BPF_REG_X, fp->k);
842 break;
843
844 /* X = A */
845 case BPF_MISC | BPF_TAX:
846 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 break;
848
849 /* A = X */
850 case BPF_MISC | BPF_TXA:
851 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 break;
853
854 /* A = skb->len or X = skb->len */
855 case BPF_LD | BPF_W | BPF_LEN:
856 case BPF_LDX | BPF_W | BPF_LEN:
857 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 offsetof(struct sk_buff, len));
860 break;
861
862 /* Access seccomp_data fields. */
863 case BPF_LDX | BPF_ABS | BPF_W:
864 /* A = *(u32 *) (ctx + K) */
865 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 break;
867
868 /* Unknown instruction. */
869 default:
870 goto err;
871 }
872
873 insn++;
874 if (new_prog)
875 memcpy(new_insn, tmp_insns,
876 sizeof(*insn) * (insn - tmp_insns));
877 new_insn += insn - tmp_insns;
878 }
879
880 if (!new_prog) {
881 /* Only calculating new length. */
882 *new_len = new_insn - first_insn;
883 if (*seen_ld_abs)
884 *new_len += 4; /* Prologue bits. */
885 return 0;
886 }
887
888 pass++;
889 if (new_flen != new_insn - first_insn) {
890 new_flen = new_insn - first_insn;
891 if (pass > 2)
892 goto err;
893 goto do_pass;
894 }
895
896 kfree(addrs);
897 BUG_ON(*new_len != new_flen);
898 return 0;
899 err:
900 kfree(addrs);
901 return -EINVAL;
902 }
903
904 /* Security:
905 *
906 * As we dont want to clear mem[] array for each packet going through
907 * __bpf_prog_run(), we check that filter loaded by user never try to read
908 * a cell if not previously written, and we check all branches to be sure
909 * a malicious user doesn't try to abuse us.
910 */
check_load_and_stores(const struct sock_filter * filter,int flen)911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 int pc, ret = 0;
915
916 BUILD_BUG_ON(BPF_MEMWORDS > 16);
917
918 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 if (!masks)
920 return -ENOMEM;
921
922 memset(masks, 0xff, flen * sizeof(*masks));
923
924 for (pc = 0; pc < flen; pc++) {
925 memvalid &= masks[pc];
926
927 switch (filter[pc].code) {
928 case BPF_ST:
929 case BPF_STX:
930 memvalid |= (1 << filter[pc].k);
931 break;
932 case BPF_LD | BPF_MEM:
933 case BPF_LDX | BPF_MEM:
934 if (!(memvalid & (1 << filter[pc].k))) {
935 ret = -EINVAL;
936 goto error;
937 }
938 break;
939 case BPF_JMP | BPF_JA:
940 /* A jump must set masks on target */
941 masks[pc + 1 + filter[pc].k] &= memvalid;
942 memvalid = ~0;
943 break;
944 case BPF_JMP | BPF_JEQ | BPF_K:
945 case BPF_JMP | BPF_JEQ | BPF_X:
946 case BPF_JMP | BPF_JGE | BPF_K:
947 case BPF_JMP | BPF_JGE | BPF_X:
948 case BPF_JMP | BPF_JGT | BPF_K:
949 case BPF_JMP | BPF_JGT | BPF_X:
950 case BPF_JMP | BPF_JSET | BPF_K:
951 case BPF_JMP | BPF_JSET | BPF_X:
952 /* A jump must set masks on targets */
953 masks[pc + 1 + filter[pc].jt] &= memvalid;
954 masks[pc + 1 + filter[pc].jf] &= memvalid;
955 memvalid = ~0;
956 break;
957 }
958 }
959 error:
960 kfree(masks);
961 return ret;
962 }
963
chk_code_allowed(u16 code_to_probe)964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 static const bool codes[] = {
967 /* 32 bit ALU operations */
968 [BPF_ALU | BPF_ADD | BPF_K] = true,
969 [BPF_ALU | BPF_ADD | BPF_X] = true,
970 [BPF_ALU | BPF_SUB | BPF_K] = true,
971 [BPF_ALU | BPF_SUB | BPF_X] = true,
972 [BPF_ALU | BPF_MUL | BPF_K] = true,
973 [BPF_ALU | BPF_MUL | BPF_X] = true,
974 [BPF_ALU | BPF_DIV | BPF_K] = true,
975 [BPF_ALU | BPF_DIV | BPF_X] = true,
976 [BPF_ALU | BPF_MOD | BPF_K] = true,
977 [BPF_ALU | BPF_MOD | BPF_X] = true,
978 [BPF_ALU | BPF_AND | BPF_K] = true,
979 [BPF_ALU | BPF_AND | BPF_X] = true,
980 [BPF_ALU | BPF_OR | BPF_K] = true,
981 [BPF_ALU | BPF_OR | BPF_X] = true,
982 [BPF_ALU | BPF_XOR | BPF_K] = true,
983 [BPF_ALU | BPF_XOR | BPF_X] = true,
984 [BPF_ALU | BPF_LSH | BPF_K] = true,
985 [BPF_ALU | BPF_LSH | BPF_X] = true,
986 [BPF_ALU | BPF_RSH | BPF_K] = true,
987 [BPF_ALU | BPF_RSH | BPF_X] = true,
988 [BPF_ALU | BPF_NEG] = true,
989 /* Load instructions */
990 [BPF_LD | BPF_W | BPF_ABS] = true,
991 [BPF_LD | BPF_H | BPF_ABS] = true,
992 [BPF_LD | BPF_B | BPF_ABS] = true,
993 [BPF_LD | BPF_W | BPF_LEN] = true,
994 [BPF_LD | BPF_W | BPF_IND] = true,
995 [BPF_LD | BPF_H | BPF_IND] = true,
996 [BPF_LD | BPF_B | BPF_IND] = true,
997 [BPF_LD | BPF_IMM] = true,
998 [BPF_LD | BPF_MEM] = true,
999 [BPF_LDX | BPF_W | BPF_LEN] = true,
1000 [BPF_LDX | BPF_B | BPF_MSH] = true,
1001 [BPF_LDX | BPF_IMM] = true,
1002 [BPF_LDX | BPF_MEM] = true,
1003 /* Store instructions */
1004 [BPF_ST] = true,
1005 [BPF_STX] = true,
1006 /* Misc instructions */
1007 [BPF_MISC | BPF_TAX] = true,
1008 [BPF_MISC | BPF_TXA] = true,
1009 /* Return instructions */
1010 [BPF_RET | BPF_K] = true,
1011 [BPF_RET | BPF_A] = true,
1012 /* Jump instructions */
1013 [BPF_JMP | BPF_JA] = true,
1014 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 [BPF_JMP | BPF_JGE | BPF_K] = true,
1017 [BPF_JMP | BPF_JGE | BPF_X] = true,
1018 [BPF_JMP | BPF_JGT | BPF_K] = true,
1019 [BPF_JMP | BPF_JGT | BPF_X] = true,
1020 [BPF_JMP | BPF_JSET | BPF_K] = true,
1021 [BPF_JMP | BPF_JSET | BPF_X] = true,
1022 };
1023
1024 if (code_to_probe >= ARRAY_SIZE(codes))
1025 return false;
1026
1027 return codes[code_to_probe];
1028 }
1029
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 unsigned int flen)
1032 {
1033 if (filter == NULL)
1034 return false;
1035 if (flen == 0 || flen > BPF_MAXINSNS)
1036 return false;
1037
1038 return true;
1039 }
1040
1041 /**
1042 * bpf_check_classic - verify socket filter code
1043 * @filter: filter to verify
1044 * @flen: length of filter
1045 *
1046 * Check the user's filter code. If we let some ugly
1047 * filter code slip through kaboom! The filter must contain
1048 * no references or jumps that are out of range, no illegal
1049 * instructions, and must end with a RET instruction.
1050 *
1051 * All jumps are forward as they are not signed.
1052 *
1053 * Returns 0 if the rule set is legal or -EINVAL if not.
1054 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 unsigned int flen)
1057 {
1058 bool anc_found;
1059 int pc;
1060
1061 /* Check the filter code now */
1062 for (pc = 0; pc < flen; pc++) {
1063 const struct sock_filter *ftest = &filter[pc];
1064
1065 /* May we actually operate on this code? */
1066 if (!chk_code_allowed(ftest->code))
1067 return -EINVAL;
1068
1069 /* Some instructions need special checks */
1070 switch (ftest->code) {
1071 case BPF_ALU | BPF_DIV | BPF_K:
1072 case BPF_ALU | BPF_MOD | BPF_K:
1073 /* Check for division by zero */
1074 if (ftest->k == 0)
1075 return -EINVAL;
1076 break;
1077 case BPF_ALU | BPF_LSH | BPF_K:
1078 case BPF_ALU | BPF_RSH | BPF_K:
1079 if (ftest->k >= 32)
1080 return -EINVAL;
1081 break;
1082 case BPF_LD | BPF_MEM:
1083 case BPF_LDX | BPF_MEM:
1084 case BPF_ST:
1085 case BPF_STX:
1086 /* Check for invalid memory addresses */
1087 if (ftest->k >= BPF_MEMWORDS)
1088 return -EINVAL;
1089 break;
1090 case BPF_JMP | BPF_JA:
1091 /* Note, the large ftest->k might cause loops.
1092 * Compare this with conditional jumps below,
1093 * where offsets are limited. --ANK (981016)
1094 */
1095 if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 return -EINVAL;
1097 break;
1098 case BPF_JMP | BPF_JEQ | BPF_K:
1099 case BPF_JMP | BPF_JEQ | BPF_X:
1100 case BPF_JMP | BPF_JGE | BPF_K:
1101 case BPF_JMP | BPF_JGE | BPF_X:
1102 case BPF_JMP | BPF_JGT | BPF_K:
1103 case BPF_JMP | BPF_JGT | BPF_X:
1104 case BPF_JMP | BPF_JSET | BPF_K:
1105 case BPF_JMP | BPF_JSET | BPF_X:
1106 /* Both conditionals must be safe */
1107 if (pc + ftest->jt + 1 >= flen ||
1108 pc + ftest->jf + 1 >= flen)
1109 return -EINVAL;
1110 break;
1111 case BPF_LD | BPF_W | BPF_ABS:
1112 case BPF_LD | BPF_H | BPF_ABS:
1113 case BPF_LD | BPF_B | BPF_ABS:
1114 anc_found = false;
1115 if (bpf_anc_helper(ftest) & BPF_ANC)
1116 anc_found = true;
1117 /* Ancillary operation unknown or unsupported */
1118 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 return -EINVAL;
1120 }
1121 }
1122
1123 /* Last instruction must be a RET code */
1124 switch (filter[flen - 1].code) {
1125 case BPF_RET | BPF_K:
1126 case BPF_RET | BPF_A:
1127 return check_load_and_stores(filter, flen);
1128 }
1129
1130 return -EINVAL;
1131 }
1132
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 const struct sock_fprog *fprog)
1135 {
1136 unsigned int fsize = bpf_classic_proglen(fprog);
1137 struct sock_fprog_kern *fkprog;
1138
1139 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 if (!fp->orig_prog)
1141 return -ENOMEM;
1142
1143 fkprog = fp->orig_prog;
1144 fkprog->len = fprog->len;
1145
1146 fkprog->filter = kmemdup(fp->insns, fsize,
1147 GFP_KERNEL | __GFP_NOWARN);
1148 if (!fkprog->filter) {
1149 kfree(fp->orig_prog);
1150 return -ENOMEM;
1151 }
1152
1153 return 0;
1154 }
1155
bpf_release_orig_filter(struct bpf_prog * fp)1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 struct sock_fprog_kern *fprog = fp->orig_prog;
1159
1160 if (fprog) {
1161 kfree(fprog->filter);
1162 kfree(fprog);
1163 }
1164 }
1165
__bpf_prog_release(struct bpf_prog * prog)1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 bpf_prog_put(prog);
1170 } else {
1171 bpf_release_orig_filter(prog);
1172 bpf_prog_free(prog);
1173 }
1174 }
1175
__sk_filter_release(struct sk_filter * fp)1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 __bpf_prog_release(fp->prog);
1179 kfree(fp);
1180 }
1181
1182 /**
1183 * sk_filter_release_rcu - Release a socket filter by rcu_head
1184 * @rcu: rcu_head that contains the sk_filter to free
1185 */
sk_filter_release_rcu(struct rcu_head * rcu)1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189
1190 __sk_filter_release(fp);
1191 }
1192
1193 /**
1194 * sk_filter_release - release a socket filter
1195 * @fp: filter to remove
1196 *
1197 * Remove a filter from a socket and release its resources.
1198 */
sk_filter_release(struct sk_filter * fp)1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 if (refcount_dec_and_test(&fp->refcnt))
1202 call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 u32 filter_size = bpf_prog_size(fp->prog->len);
1208
1209 atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 sk_filter_release(fp);
1211 }
1212
1213 /* try to charge the socket memory if there is space available
1214 * return true on success
1215 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 u32 filter_size = bpf_prog_size(fp->prog->len);
1219 int optmem_max = READ_ONCE(sysctl_optmem_max);
1220
1221 /* same check as in sock_kmalloc() */
1222 if (filter_size <= optmem_max &&
1223 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 atomic_add(filter_size, &sk->sk_omem_alloc);
1225 return true;
1226 }
1227 return false;
1228 }
1229
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 if (!refcount_inc_not_zero(&fp->refcnt))
1233 return false;
1234
1235 if (!__sk_filter_charge(sk, fp)) {
1236 sk_filter_release(fp);
1237 return false;
1238 }
1239 return true;
1240 }
1241
bpf_migrate_filter(struct bpf_prog * fp)1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 struct sock_filter *old_prog;
1245 struct bpf_prog *old_fp;
1246 int err, new_len, old_len = fp->len;
1247 bool seen_ld_abs = false;
1248
1249 /* We are free to overwrite insns et al right here as it won't be used at
1250 * this point in time anymore internally after the migration to the eBPF
1251 * instruction representation.
1252 */
1253 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 sizeof(struct bpf_insn));
1255
1256 /* Conversion cannot happen on overlapping memory areas,
1257 * so we need to keep the user BPF around until the 2nd
1258 * pass. At this time, the user BPF is stored in fp->insns.
1259 */
1260 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 GFP_KERNEL | __GFP_NOWARN);
1262 if (!old_prog) {
1263 err = -ENOMEM;
1264 goto out_err;
1265 }
1266
1267 /* 1st pass: calculate the new program length. */
1268 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 &seen_ld_abs);
1270 if (err)
1271 goto out_err_free;
1272
1273 /* Expand fp for appending the new filter representation. */
1274 old_fp = fp;
1275 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 if (!fp) {
1277 /* The old_fp is still around in case we couldn't
1278 * allocate new memory, so uncharge on that one.
1279 */
1280 fp = old_fp;
1281 err = -ENOMEM;
1282 goto out_err_free;
1283 }
1284
1285 fp->len = new_len;
1286
1287 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 &seen_ld_abs);
1290 if (err)
1291 /* 2nd bpf_convert_filter() can fail only if it fails
1292 * to allocate memory, remapping must succeed. Note,
1293 * that at this time old_fp has already been released
1294 * by krealloc().
1295 */
1296 goto out_err_free;
1297
1298 fp = bpf_prog_select_runtime(fp, &err);
1299 if (err)
1300 goto out_err_free;
1301
1302 kfree(old_prog);
1303 return fp;
1304
1305 out_err_free:
1306 kfree(old_prog);
1307 out_err:
1308 __bpf_prog_release(fp);
1309 return ERR_PTR(err);
1310 }
1311
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 bpf_aux_classic_check_t trans)
1314 {
1315 int err;
1316
1317 fp->bpf_func = NULL;
1318 fp->jited = 0;
1319
1320 err = bpf_check_classic(fp->insns, fp->len);
1321 if (err) {
1322 __bpf_prog_release(fp);
1323 return ERR_PTR(err);
1324 }
1325
1326 /* There might be additional checks and transformations
1327 * needed on classic filters, f.e. in case of seccomp.
1328 */
1329 if (trans) {
1330 err = trans(fp->insns, fp->len);
1331 if (err) {
1332 __bpf_prog_release(fp);
1333 return ERR_PTR(err);
1334 }
1335 }
1336
1337 /* Probe if we can JIT compile the filter and if so, do
1338 * the compilation of the filter.
1339 */
1340 bpf_jit_compile(fp);
1341
1342 /* JIT compiler couldn't process this filter, so do the eBPF translation
1343 * for the optimized interpreter.
1344 */
1345 if (!fp->jited)
1346 fp = bpf_migrate_filter(fp);
1347
1348 return fp;
1349 }
1350
1351 /**
1352 * bpf_prog_create - create an unattached filter
1353 * @pfp: the unattached filter that is created
1354 * @fprog: the filter program
1355 *
1356 * Create a filter independent of any socket. We first run some
1357 * sanity checks on it to make sure it does not explode on us later.
1358 * If an error occurs or there is insufficient memory for the filter
1359 * a negative errno code is returned. On success the return is zero.
1360 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 unsigned int fsize = bpf_classic_proglen(fprog);
1364 struct bpf_prog *fp;
1365
1366 /* Make sure new filter is there and in the right amounts. */
1367 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 return -EINVAL;
1369
1370 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 if (!fp)
1372 return -ENOMEM;
1373
1374 memcpy(fp->insns, fprog->filter, fsize);
1375
1376 fp->len = fprog->len;
1377 /* Since unattached filters are not copied back to user
1378 * space through sk_get_filter(), we do not need to hold
1379 * a copy here, and can spare us the work.
1380 */
1381 fp->orig_prog = NULL;
1382
1383 /* bpf_prepare_filter() already takes care of freeing
1384 * memory in case something goes wrong.
1385 */
1386 fp = bpf_prepare_filter(fp, NULL);
1387 if (IS_ERR(fp))
1388 return PTR_ERR(fp);
1389
1390 *pfp = fp;
1391 return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394
1395 /**
1396 * bpf_prog_create_from_user - create an unattached filter from user buffer
1397 * @pfp: the unattached filter that is created
1398 * @fprog: the filter program
1399 * @trans: post-classic verifier transformation handler
1400 * @save_orig: save classic BPF program
1401 *
1402 * This function effectively does the same as bpf_prog_create(), only
1403 * that it builds up its insns buffer from user space provided buffer.
1404 * It also allows for passing a bpf_aux_classic_check_t handler.
1405 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 unsigned int fsize = bpf_classic_proglen(fprog);
1410 struct bpf_prog *fp;
1411 int err;
1412
1413 /* Make sure new filter is there and in the right amounts. */
1414 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 return -EINVAL;
1416
1417 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 if (!fp)
1419 return -ENOMEM;
1420
1421 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 __bpf_prog_free(fp);
1423 return -EFAULT;
1424 }
1425
1426 fp->len = fprog->len;
1427 fp->orig_prog = NULL;
1428
1429 if (save_orig) {
1430 err = bpf_prog_store_orig_filter(fp, fprog);
1431 if (err) {
1432 __bpf_prog_free(fp);
1433 return -ENOMEM;
1434 }
1435 }
1436
1437 /* bpf_prepare_filter() already takes care of freeing
1438 * memory in case something goes wrong.
1439 */
1440 fp = bpf_prepare_filter(fp, trans);
1441 if (IS_ERR(fp))
1442 return PTR_ERR(fp);
1443
1444 *pfp = fp;
1445 return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448
bpf_prog_destroy(struct bpf_prog * fp)1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 __bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 struct sk_filter *fp, *old_fp;
1458
1459 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 if (!fp)
1461 return -ENOMEM;
1462
1463 fp->prog = prog;
1464
1465 if (!__sk_filter_charge(sk, fp)) {
1466 kfree(fp);
1467 return -ENOMEM;
1468 }
1469 refcount_set(&fp->refcnt, 1);
1470
1471 old_fp = rcu_dereference_protected(sk->sk_filter,
1472 lockdep_sock_is_held(sk));
1473 rcu_assign_pointer(sk->sk_filter, fp);
1474
1475 if (old_fp)
1476 sk_filter_uncharge(sk, old_fp);
1477
1478 return 0;
1479 }
1480
1481 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 unsigned int fsize = bpf_classic_proglen(fprog);
1485 struct bpf_prog *prog;
1486 int err;
1487
1488 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 return ERR_PTR(-EPERM);
1490
1491 /* Make sure new filter is there and in the right amounts. */
1492 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 return ERR_PTR(-EINVAL);
1494
1495 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 if (!prog)
1497 return ERR_PTR(-ENOMEM);
1498
1499 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 __bpf_prog_free(prog);
1501 return ERR_PTR(-EFAULT);
1502 }
1503
1504 prog->len = fprog->len;
1505
1506 err = bpf_prog_store_orig_filter(prog, fprog);
1507 if (err) {
1508 __bpf_prog_free(prog);
1509 return ERR_PTR(-ENOMEM);
1510 }
1511
1512 /* bpf_prepare_filter() already takes care of freeing
1513 * memory in case something goes wrong.
1514 */
1515 return bpf_prepare_filter(prog, NULL);
1516 }
1517
1518 /**
1519 * sk_attach_filter - attach a socket filter
1520 * @fprog: the filter program
1521 * @sk: the socket to use
1522 *
1523 * Attach the user's filter code. We first run some sanity checks on
1524 * it to make sure it does not explode on us later. If an error
1525 * occurs or there is insufficient memory for the filter a negative
1526 * errno code is returned. On success the return is zero.
1527 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 struct bpf_prog *prog = __get_filter(fprog, sk);
1531 int err;
1532
1533 if (IS_ERR(prog))
1534 return PTR_ERR(prog);
1535
1536 err = __sk_attach_prog(prog, sk);
1537 if (err < 0) {
1538 __bpf_prog_release(prog);
1539 return err;
1540 }
1541
1542 return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 struct bpf_prog *prog = __get_filter(fprog, sk);
1549 int err;
1550
1551 if (IS_ERR(prog))
1552 return PTR_ERR(prog);
1553
1554 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 err = -ENOMEM;
1556 else
1557 err = reuseport_attach_prog(sk, prog);
1558
1559 if (err)
1560 __bpf_prog_release(prog);
1561
1562 return err;
1563 }
1564
__get_bpf(u32 ufd,struct sock * sk)1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 return ERR_PTR(-EPERM);
1569
1570 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572
sk_attach_bpf(u32 ufd,struct sock * sk)1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 int err;
1577
1578 if (IS_ERR(prog))
1579 return PTR_ERR(prog);
1580
1581 err = __sk_attach_prog(prog, sk);
1582 if (err < 0) {
1583 bpf_prog_put(prog);
1584 return err;
1585 }
1586
1587 return 0;
1588 }
1589
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 struct bpf_prog *prog;
1593 int err;
1594
1595 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 return -EPERM;
1597
1598 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 if (PTR_ERR(prog) == -EINVAL)
1600 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 if (IS_ERR(prog))
1602 return PTR_ERR(prog);
1603
1604 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 * bpf prog (e.g. sockmap). It depends on the
1607 * limitation imposed by bpf_prog_load().
1608 * Hence, sysctl_optmem_max is not checked.
1609 */
1610 if ((sk->sk_type != SOCK_STREAM &&
1611 sk->sk_type != SOCK_DGRAM) ||
1612 (sk->sk_protocol != IPPROTO_UDP &&
1613 sk->sk_protocol != IPPROTO_TCP) ||
1614 (sk->sk_family != AF_INET &&
1615 sk->sk_family != AF_INET6)) {
1616 err = -ENOTSUPP;
1617 goto err_prog_put;
1618 }
1619 } else {
1620 /* BPF_PROG_TYPE_SOCKET_FILTER */
1621 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 err = -ENOMEM;
1623 goto err_prog_put;
1624 }
1625 }
1626
1627 err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 if (err)
1630 bpf_prog_put(prog);
1631
1632 return err;
1633 }
1634
sk_reuseport_prog_free(struct bpf_prog * prog)1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 if (!prog)
1638 return;
1639
1640 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 bpf_prog_put(prog);
1642 else
1643 bpf_prog_destroy(prog);
1644 }
1645
1646 struct bpf_scratchpad {
1647 union {
1648 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 u8 buff[MAX_BPF_STACK];
1650 };
1651 };
1652
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 unsigned int write_len)
1657 {
1658 return skb_ensure_writable(skb, write_len);
1659 }
1660
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 unsigned int write_len)
1663 {
1664 int err = __bpf_try_make_writable(skb, write_len);
1665
1666 bpf_compute_data_pointers(skb);
1667 return err;
1668 }
1669
bpf_try_make_head_writable(struct sk_buff * skb)1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674
bpf_push_mac_rcsum(struct sk_buff * skb)1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 if (skb_at_tc_ingress(skb))
1678 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680
bpf_pull_mac_rcsum(struct sk_buff * skb)1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 if (skb_at_tc_ingress(skb))
1684 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 const void *, from, u32, len, u64, flags)
1689 {
1690 void *ptr;
1691
1692 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 return -EINVAL;
1694 if (unlikely(offset > INT_MAX))
1695 return -EFAULT;
1696 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 return -EFAULT;
1698
1699 ptr = skb->data + offset;
1700 if (flags & BPF_F_RECOMPUTE_CSUM)
1701 __skb_postpull_rcsum(skb, ptr, len, offset);
1702
1703 memcpy(ptr, from, len);
1704
1705 if (flags & BPF_F_RECOMPUTE_CSUM)
1706 __skb_postpush_rcsum(skb, ptr, len, offset);
1707 if (flags & BPF_F_INVALIDATE_HASH)
1708 skb_clear_hash(skb);
1709
1710 return 0;
1711 }
1712
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 .func = bpf_skb_store_bytes,
1715 .gpl_only = false,
1716 .ret_type = RET_INTEGER,
1717 .arg1_type = ARG_PTR_TO_CTX,
1718 .arg2_type = ARG_ANYTHING,
1719 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1720 .arg4_type = ARG_CONST_SIZE,
1721 .arg5_type = ARG_ANYTHING,
1722 };
1723
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725 void *, to, u32, len)
1726 {
1727 void *ptr;
1728
1729 if (unlikely(offset > INT_MAX))
1730 goto err_clear;
1731
1732 ptr = skb_header_pointer(skb, offset, len, to);
1733 if (unlikely(!ptr))
1734 goto err_clear;
1735 if (ptr != to)
1736 memcpy(to, ptr, len);
1737
1738 return 0;
1739 err_clear:
1740 memset(to, 0, len);
1741 return -EFAULT;
1742 }
1743
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745 .func = bpf_skb_load_bytes,
1746 .gpl_only = false,
1747 .ret_type = RET_INTEGER,
1748 .arg1_type = ARG_PTR_TO_CTX,
1749 .arg2_type = ARG_ANYTHING,
1750 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1751 .arg4_type = ARG_CONST_SIZE,
1752 };
1753
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755 const struct bpf_flow_dissector *, ctx, u32, offset,
1756 void *, to, u32, len)
1757 {
1758 void *ptr;
1759
1760 if (unlikely(offset > 0xffff))
1761 goto err_clear;
1762
1763 if (unlikely(!ctx->skb))
1764 goto err_clear;
1765
1766 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767 if (unlikely(!ptr))
1768 goto err_clear;
1769 if (ptr != to)
1770 memcpy(to, ptr, len);
1771
1772 return 0;
1773 err_clear:
1774 memset(to, 0, len);
1775 return -EFAULT;
1776 }
1777
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779 .func = bpf_flow_dissector_load_bytes,
1780 .gpl_only = false,
1781 .ret_type = RET_INTEGER,
1782 .arg1_type = ARG_PTR_TO_CTX,
1783 .arg2_type = ARG_ANYTHING,
1784 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1785 .arg4_type = ARG_CONST_SIZE,
1786 };
1787
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789 u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791 u8 *end = skb_tail_pointer(skb);
1792 u8 *start, *ptr;
1793
1794 if (unlikely(offset > 0xffff))
1795 goto err_clear;
1796
1797 switch (start_header) {
1798 case BPF_HDR_START_MAC:
1799 if (unlikely(!skb_mac_header_was_set(skb)))
1800 goto err_clear;
1801 start = skb_mac_header(skb);
1802 break;
1803 case BPF_HDR_START_NET:
1804 start = skb_network_header(skb);
1805 break;
1806 default:
1807 goto err_clear;
1808 }
1809
1810 ptr = start + offset;
1811
1812 if (likely(ptr + len <= end)) {
1813 memcpy(to, ptr, len);
1814 return 0;
1815 }
1816
1817 err_clear:
1818 memset(to, 0, len);
1819 return -EFAULT;
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823 .func = bpf_skb_load_bytes_relative,
1824 .gpl_only = false,
1825 .ret_type = RET_INTEGER,
1826 .arg1_type = ARG_PTR_TO_CTX,
1827 .arg2_type = ARG_ANYTHING,
1828 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1829 .arg4_type = ARG_CONST_SIZE,
1830 .arg5_type = ARG_ANYTHING,
1831 };
1832
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835 /* Idea is the following: should the needed direct read/write
1836 * test fail during runtime, we can pull in more data and redo
1837 * again, since implicitly, we invalidate previous checks here.
1838 *
1839 * Or, since we know how much we need to make read/writeable,
1840 * this can be done once at the program beginning for direct
1841 * access case. By this we overcome limitations of only current
1842 * headroom being accessible.
1843 */
1844 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848 .func = bpf_skb_pull_data,
1849 .gpl_only = false,
1850 .ret_type = RET_INTEGER,
1851 .arg1_type = ARG_PTR_TO_CTX,
1852 .arg2_type = ARG_ANYTHING,
1853 };
1854
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861 .func = bpf_sk_fullsock,
1862 .gpl_only = false,
1863 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1864 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1865 };
1866
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868 unsigned int write_len)
1869 {
1870 return __bpf_try_make_writable(skb, write_len);
1871 }
1872
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875 /* Idea is the following: should the needed direct read/write
1876 * test fail during runtime, we can pull in more data and redo
1877 * again, since implicitly, we invalidate previous checks here.
1878 *
1879 * Or, since we know how much we need to make read/writeable,
1880 * this can be done once at the program beginning for direct
1881 * access case. By this we overcome limitations of only current
1882 * headroom being accessible.
1883 */
1884 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888 .func = sk_skb_pull_data,
1889 .gpl_only = false,
1890 .ret_type = RET_INTEGER,
1891 .arg1_type = ARG_PTR_TO_CTX,
1892 .arg2_type = ARG_ANYTHING,
1893 };
1894
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896 u64, from, u64, to, u64, flags)
1897 {
1898 __sum16 *ptr;
1899
1900 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901 return -EINVAL;
1902 if (unlikely(offset > 0xffff || offset & 1))
1903 return -EFAULT;
1904 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905 return -EFAULT;
1906
1907 ptr = (__sum16 *)(skb->data + offset);
1908 switch (flags & BPF_F_HDR_FIELD_MASK) {
1909 case 0:
1910 if (unlikely(from != 0))
1911 return -EINVAL;
1912
1913 csum_replace_by_diff(ptr, to);
1914 break;
1915 case 2:
1916 csum_replace2(ptr, from, to);
1917 break;
1918 case 4:
1919 csum_replace4(ptr, from, to);
1920 break;
1921 default:
1922 return -EINVAL;
1923 }
1924
1925 return 0;
1926 }
1927
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929 .func = bpf_l3_csum_replace,
1930 .gpl_only = false,
1931 .ret_type = RET_INTEGER,
1932 .arg1_type = ARG_PTR_TO_CTX,
1933 .arg2_type = ARG_ANYTHING,
1934 .arg3_type = ARG_ANYTHING,
1935 .arg4_type = ARG_ANYTHING,
1936 .arg5_type = ARG_ANYTHING,
1937 };
1938
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940 u64, from, u64, to, u64, flags)
1941 {
1942 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945 __sum16 *ptr;
1946
1947 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949 return -EINVAL;
1950 if (unlikely(offset > 0xffff || offset & 1))
1951 return -EFAULT;
1952 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953 return -EFAULT;
1954
1955 ptr = (__sum16 *)(skb->data + offset);
1956 if (is_mmzero && !do_mforce && !*ptr)
1957 return 0;
1958
1959 switch (flags & BPF_F_HDR_FIELD_MASK) {
1960 case 0:
1961 if (unlikely(from != 0))
1962 return -EINVAL;
1963
1964 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965 break;
1966 case 2:
1967 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968 break;
1969 case 4:
1970 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971 break;
1972 default:
1973 return -EINVAL;
1974 }
1975
1976 if (is_mmzero && !*ptr)
1977 *ptr = CSUM_MANGLED_0;
1978 return 0;
1979 }
1980
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982 .func = bpf_l4_csum_replace,
1983 .gpl_only = false,
1984 .ret_type = RET_INTEGER,
1985 .arg1_type = ARG_PTR_TO_CTX,
1986 .arg2_type = ARG_ANYTHING,
1987 .arg3_type = ARG_ANYTHING,
1988 .arg4_type = ARG_ANYTHING,
1989 .arg5_type = ARG_ANYTHING,
1990 };
1991
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993 __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996 u32 diff_size = from_size + to_size;
1997 int i, j = 0;
1998
1999 /* This is quite flexible, some examples:
2000 *
2001 * from_size == 0, to_size > 0, seed := csum --> pushing data
2002 * from_size > 0, to_size == 0, seed := csum --> pulling data
2003 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2004 *
2005 * Even for diffing, from_size and to_size don't need to be equal.
2006 */
2007 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008 diff_size > sizeof(sp->diff)))
2009 return -EINVAL;
2010
2011 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012 sp->diff[j] = ~from[i];
2013 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
2014 sp->diff[j] = to[i];
2015
2016 return csum_partial(sp->diff, diff_size, seed);
2017 }
2018
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020 .func = bpf_csum_diff,
2021 .gpl_only = false,
2022 .pkt_access = true,
2023 .ret_type = RET_INTEGER,
2024 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2026 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2028 .arg5_type = ARG_ANYTHING,
2029 };
2030
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033 /* The interface is to be used in combination with bpf_csum_diff()
2034 * for direct packet writes. csum rotation for alignment as well
2035 * as emulating csum_sub() can be done from the eBPF program.
2036 */
2037 if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 return (skb->csum = csum_add(skb->csum, csum));
2039
2040 return -ENOTSUPP;
2041 }
2042
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044 .func = bpf_csum_update,
2045 .gpl_only = false,
2046 .ret_type = RET_INTEGER,
2047 .arg1_type = ARG_PTR_TO_CTX,
2048 .arg2_type = ARG_ANYTHING,
2049 };
2050
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053 /* The interface is to be used in combination with bpf_skb_adjust_room()
2054 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055 * is passed as flags, for example.
2056 */
2057 switch (level) {
2058 case BPF_CSUM_LEVEL_INC:
2059 __skb_incr_checksum_unnecessary(skb);
2060 break;
2061 case BPF_CSUM_LEVEL_DEC:
2062 __skb_decr_checksum_unnecessary(skb);
2063 break;
2064 case BPF_CSUM_LEVEL_RESET:
2065 __skb_reset_checksum_unnecessary(skb);
2066 break;
2067 case BPF_CSUM_LEVEL_QUERY:
2068 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069 skb->csum_level : -EACCES;
2070 default:
2071 return -EINVAL;
2072 }
2073
2074 return 0;
2075 }
2076
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078 .func = bpf_csum_level,
2079 .gpl_only = false,
2080 .ret_type = RET_INTEGER,
2081 .arg1_type = ARG_PTR_TO_CTX,
2082 .arg2_type = ARG_ANYTHING,
2083 };
2084
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087 return dev_forward_skb_nomtu(dev, skb);
2088 }
2089
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091 struct sk_buff *skb)
2092 {
2093 int ret = ____dev_forward_skb(dev, skb, false);
2094
2095 if (likely(!ret)) {
2096 skb->dev = dev;
2097 ret = netif_rx(skb);
2098 }
2099
2100 return ret;
2101 }
2102
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 int ret;
2106
2107 if (dev_xmit_recursion()) {
2108 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109 kfree_skb(skb);
2110 return -ENETDOWN;
2111 }
2112
2113 skb->dev = dev;
2114 skb_clear_tstamp(skb);
2115
2116 dev_xmit_recursion_inc();
2117 ret = dev_queue_xmit(skb);
2118 dev_xmit_recursion_dec();
2119
2120 return ret;
2121 }
2122
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124 u32 flags)
2125 {
2126 unsigned int mlen = skb_network_offset(skb);
2127
2128 if (unlikely(skb->len <= mlen)) {
2129 kfree_skb(skb);
2130 return -ERANGE;
2131 }
2132
2133 if (mlen) {
2134 __skb_pull(skb, mlen);
2135 if (unlikely(!skb->len)) {
2136 kfree_skb(skb);
2137 return -ERANGE;
2138 }
2139
2140 /* At ingress, the mac header has already been pulled once.
2141 * At egress, skb_pospull_rcsum has to be done in case that
2142 * the skb is originated from ingress (i.e. a forwarded skb)
2143 * to ensure that rcsum starts at net header.
2144 */
2145 if (!skb_at_tc_ingress(skb))
2146 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2147 }
2148 skb_pop_mac_header(skb);
2149 skb_reset_mac_len(skb);
2150 return flags & BPF_F_INGRESS ?
2151 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2154 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2155 u32 flags)
2156 {
2157 /* Verify that a link layer header is carried */
2158 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2159 kfree_skb(skb);
2160 return -ERANGE;
2161 }
2162
2163 bpf_push_mac_rcsum(skb);
2164 return flags & BPF_F_INGRESS ?
2165 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2166 }
2167
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2168 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2169 u32 flags)
2170 {
2171 if (dev_is_mac_header_xmit(dev))
2172 return __bpf_redirect_common(skb, dev, flags);
2173 else
2174 return __bpf_redirect_no_mac(skb, dev, flags);
2175 }
2176
2177 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2178 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2179 struct net_device *dev, struct bpf_nh_params *nh)
2180 {
2181 u32 hh_len = LL_RESERVED_SPACE(dev);
2182 const struct in6_addr *nexthop;
2183 struct dst_entry *dst = NULL;
2184 struct neighbour *neigh;
2185
2186 if (dev_xmit_recursion()) {
2187 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2188 goto out_drop;
2189 }
2190
2191 skb->dev = dev;
2192 skb_clear_tstamp(skb);
2193
2194 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2195 skb = skb_expand_head(skb, hh_len);
2196 if (!skb)
2197 return -ENOMEM;
2198 }
2199
2200 rcu_read_lock();
2201 if (!nh) {
2202 dst = skb_dst(skb);
2203 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2204 &ipv6_hdr(skb)->daddr);
2205 } else {
2206 nexthop = &nh->ipv6_nh;
2207 }
2208 neigh = ip_neigh_gw6(dev, nexthop);
2209 if (likely(!IS_ERR(neigh))) {
2210 int ret;
2211
2212 sock_confirm_neigh(skb, neigh);
2213 local_bh_disable();
2214 dev_xmit_recursion_inc();
2215 ret = neigh_output(neigh, skb, false);
2216 dev_xmit_recursion_dec();
2217 local_bh_enable();
2218 rcu_read_unlock();
2219 return ret;
2220 }
2221 rcu_read_unlock_bh();
2222 if (dst)
2223 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2224 out_drop:
2225 kfree_skb(skb);
2226 return -ENETDOWN;
2227 }
2228
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2229 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2230 struct bpf_nh_params *nh)
2231 {
2232 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2233 struct net *net = dev_net(dev);
2234 int err, ret = NET_XMIT_DROP;
2235
2236 if (!nh) {
2237 struct dst_entry *dst;
2238 struct flowi6 fl6 = {
2239 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2240 .flowi6_mark = skb->mark,
2241 .flowlabel = ip6_flowinfo(ip6h),
2242 .flowi6_oif = dev->ifindex,
2243 .flowi6_proto = ip6h->nexthdr,
2244 .daddr = ip6h->daddr,
2245 .saddr = ip6h->saddr,
2246 };
2247
2248 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2249 if (IS_ERR(dst))
2250 goto out_drop;
2251
2252 skb_dst_set(skb, dst);
2253 } else if (nh->nh_family != AF_INET6) {
2254 goto out_drop;
2255 }
2256
2257 err = bpf_out_neigh_v6(net, skb, dev, nh);
2258 if (unlikely(net_xmit_eval(err)))
2259 dev->stats.tx_errors++;
2260 else
2261 ret = NET_XMIT_SUCCESS;
2262 goto out_xmit;
2263 out_drop:
2264 dev->stats.tx_errors++;
2265 kfree_skb(skb);
2266 out_xmit:
2267 return ret;
2268 }
2269 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2270 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2271 struct bpf_nh_params *nh)
2272 {
2273 kfree_skb(skb);
2274 return NET_XMIT_DROP;
2275 }
2276 #endif /* CONFIG_IPV6 */
2277
2278 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2279 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2280 struct net_device *dev, struct bpf_nh_params *nh)
2281 {
2282 u32 hh_len = LL_RESERVED_SPACE(dev);
2283 struct neighbour *neigh;
2284 bool is_v6gw = false;
2285
2286 if (dev_xmit_recursion()) {
2287 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2288 goto out_drop;
2289 }
2290
2291 skb->dev = dev;
2292 skb_clear_tstamp(skb);
2293
2294 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2295 skb = skb_expand_head(skb, hh_len);
2296 if (!skb)
2297 return -ENOMEM;
2298 }
2299
2300 rcu_read_lock();
2301 if (!nh) {
2302 struct dst_entry *dst = skb_dst(skb);
2303 struct rtable *rt = container_of(dst, struct rtable, dst);
2304
2305 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2306 } else if (nh->nh_family == AF_INET6) {
2307 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2308 is_v6gw = true;
2309 } else if (nh->nh_family == AF_INET) {
2310 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2311 } else {
2312 rcu_read_unlock();
2313 goto out_drop;
2314 }
2315
2316 if (likely(!IS_ERR(neigh))) {
2317 int ret;
2318
2319 sock_confirm_neigh(skb, neigh);
2320 local_bh_disable();
2321 dev_xmit_recursion_inc();
2322 ret = neigh_output(neigh, skb, is_v6gw);
2323 dev_xmit_recursion_dec();
2324 local_bh_enable();
2325 rcu_read_unlock();
2326 return ret;
2327 }
2328 rcu_read_unlock();
2329 out_drop:
2330 kfree_skb(skb);
2331 return -ENETDOWN;
2332 }
2333
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2334 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2335 struct bpf_nh_params *nh)
2336 {
2337 const struct iphdr *ip4h = ip_hdr(skb);
2338 struct net *net = dev_net(dev);
2339 int err, ret = NET_XMIT_DROP;
2340
2341 if (!nh) {
2342 struct flowi4 fl4 = {
2343 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2344 .flowi4_mark = skb->mark,
2345 .flowi4_tos = RT_TOS(ip4h->tos),
2346 .flowi4_oif = dev->ifindex,
2347 .flowi4_proto = ip4h->protocol,
2348 .daddr = ip4h->daddr,
2349 .saddr = ip4h->saddr,
2350 };
2351 struct rtable *rt;
2352
2353 rt = ip_route_output_flow(net, &fl4, NULL);
2354 if (IS_ERR(rt))
2355 goto out_drop;
2356 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2357 ip_rt_put(rt);
2358 goto out_drop;
2359 }
2360
2361 skb_dst_set(skb, &rt->dst);
2362 }
2363
2364 err = bpf_out_neigh_v4(net, skb, dev, nh);
2365 if (unlikely(net_xmit_eval(err)))
2366 dev->stats.tx_errors++;
2367 else
2368 ret = NET_XMIT_SUCCESS;
2369 goto out_xmit;
2370 out_drop:
2371 dev->stats.tx_errors++;
2372 kfree_skb(skb);
2373 out_xmit:
2374 return ret;
2375 }
2376 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2377 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2378 struct bpf_nh_params *nh)
2379 {
2380 kfree_skb(skb);
2381 return NET_XMIT_DROP;
2382 }
2383 #endif /* CONFIG_INET */
2384
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2385 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2386 struct bpf_nh_params *nh)
2387 {
2388 struct ethhdr *ethh = eth_hdr(skb);
2389
2390 if (unlikely(skb->mac_header >= skb->network_header))
2391 goto out;
2392 bpf_push_mac_rcsum(skb);
2393 if (is_multicast_ether_addr(ethh->h_dest))
2394 goto out;
2395
2396 skb_pull(skb, sizeof(*ethh));
2397 skb_unset_mac_header(skb);
2398 skb_reset_network_header(skb);
2399
2400 if (skb->protocol == htons(ETH_P_IP))
2401 return __bpf_redirect_neigh_v4(skb, dev, nh);
2402 else if (skb->protocol == htons(ETH_P_IPV6))
2403 return __bpf_redirect_neigh_v6(skb, dev, nh);
2404 out:
2405 kfree_skb(skb);
2406 return -ENOTSUPP;
2407 }
2408
2409 /* Internal, non-exposed redirect flags. */
2410 enum {
2411 BPF_F_NEIGH = (1ULL << 1),
2412 BPF_F_PEER = (1ULL << 2),
2413 BPF_F_NEXTHOP = (1ULL << 3),
2414 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2415 };
2416
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2417 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2418 {
2419 struct net_device *dev;
2420 struct sk_buff *clone;
2421 int ret;
2422
2423 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2424 return -EINVAL;
2425
2426 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2427 if (unlikely(!dev))
2428 return -EINVAL;
2429
2430 clone = skb_clone(skb, GFP_ATOMIC);
2431 if (unlikely(!clone))
2432 return -ENOMEM;
2433
2434 /* For direct write, we need to keep the invariant that the skbs
2435 * we're dealing with need to be uncloned. Should uncloning fail
2436 * here, we need to free the just generated clone to unclone once
2437 * again.
2438 */
2439 ret = bpf_try_make_head_writable(skb);
2440 if (unlikely(ret)) {
2441 kfree_skb(clone);
2442 return -ENOMEM;
2443 }
2444
2445 return __bpf_redirect(clone, dev, flags);
2446 }
2447
2448 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2449 .func = bpf_clone_redirect,
2450 .gpl_only = false,
2451 .ret_type = RET_INTEGER,
2452 .arg1_type = ARG_PTR_TO_CTX,
2453 .arg2_type = ARG_ANYTHING,
2454 .arg3_type = ARG_ANYTHING,
2455 };
2456
2457 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2458 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2459
skb_do_redirect(struct sk_buff * skb)2460 int skb_do_redirect(struct sk_buff *skb)
2461 {
2462 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2463 struct net *net = dev_net(skb->dev);
2464 struct net_device *dev;
2465 u32 flags = ri->flags;
2466
2467 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2468 ri->tgt_index = 0;
2469 ri->flags = 0;
2470 if (unlikely(!dev))
2471 goto out_drop;
2472 if (flags & BPF_F_PEER) {
2473 const struct net_device_ops *ops = dev->netdev_ops;
2474
2475 if (unlikely(!ops->ndo_get_peer_dev ||
2476 !skb_at_tc_ingress(skb)))
2477 goto out_drop;
2478 dev = ops->ndo_get_peer_dev(dev);
2479 if (unlikely(!dev ||
2480 !(dev->flags & IFF_UP) ||
2481 net_eq(net, dev_net(dev))))
2482 goto out_drop;
2483 skb->dev = dev;
2484 return -EAGAIN;
2485 }
2486 return flags & BPF_F_NEIGH ?
2487 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2488 &ri->nh : NULL) :
2489 __bpf_redirect(skb, dev, flags);
2490 out_drop:
2491 kfree_skb(skb);
2492 return -EINVAL;
2493 }
2494
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2495 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2496 {
2497 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2498
2499 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2500 return TC_ACT_SHOT;
2501
2502 ri->flags = flags;
2503 ri->tgt_index = ifindex;
2504
2505 return TC_ACT_REDIRECT;
2506 }
2507
2508 static const struct bpf_func_proto bpf_redirect_proto = {
2509 .func = bpf_redirect,
2510 .gpl_only = false,
2511 .ret_type = RET_INTEGER,
2512 .arg1_type = ARG_ANYTHING,
2513 .arg2_type = ARG_ANYTHING,
2514 };
2515
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2516 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2517 {
2518 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2519
2520 if (unlikely(flags))
2521 return TC_ACT_SHOT;
2522
2523 ri->flags = BPF_F_PEER;
2524 ri->tgt_index = ifindex;
2525
2526 return TC_ACT_REDIRECT;
2527 }
2528
2529 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2530 .func = bpf_redirect_peer,
2531 .gpl_only = false,
2532 .ret_type = RET_INTEGER,
2533 .arg1_type = ARG_ANYTHING,
2534 .arg2_type = ARG_ANYTHING,
2535 };
2536
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2537 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2538 int, plen, u64, flags)
2539 {
2540 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2541
2542 if (unlikely((plen && plen < sizeof(*params)) || flags))
2543 return TC_ACT_SHOT;
2544
2545 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2546 ri->tgt_index = ifindex;
2547
2548 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2549 if (plen)
2550 memcpy(&ri->nh, params, sizeof(ri->nh));
2551
2552 return TC_ACT_REDIRECT;
2553 }
2554
2555 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2556 .func = bpf_redirect_neigh,
2557 .gpl_only = false,
2558 .ret_type = RET_INTEGER,
2559 .arg1_type = ARG_ANYTHING,
2560 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2561 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2562 .arg4_type = ARG_ANYTHING,
2563 };
2564
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2565 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2566 {
2567 msg->apply_bytes = bytes;
2568 return 0;
2569 }
2570
2571 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2572 .func = bpf_msg_apply_bytes,
2573 .gpl_only = false,
2574 .ret_type = RET_INTEGER,
2575 .arg1_type = ARG_PTR_TO_CTX,
2576 .arg2_type = ARG_ANYTHING,
2577 };
2578
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2579 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2580 {
2581 msg->cork_bytes = bytes;
2582 return 0;
2583 }
2584
sk_msg_reset_curr(struct sk_msg * msg)2585 static void sk_msg_reset_curr(struct sk_msg *msg)
2586 {
2587 u32 i = msg->sg.start;
2588 u32 len = 0;
2589
2590 do {
2591 len += sk_msg_elem(msg, i)->length;
2592 sk_msg_iter_var_next(i);
2593 if (len >= msg->sg.size)
2594 break;
2595 } while (i != msg->sg.end);
2596
2597 msg->sg.curr = i;
2598 msg->sg.copybreak = 0;
2599 }
2600
2601 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2602 .func = bpf_msg_cork_bytes,
2603 .gpl_only = false,
2604 .ret_type = RET_INTEGER,
2605 .arg1_type = ARG_PTR_TO_CTX,
2606 .arg2_type = ARG_ANYTHING,
2607 };
2608
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2609 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2610 u32, end, u64, flags)
2611 {
2612 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2613 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2614 struct scatterlist *sge;
2615 u8 *raw, *to, *from;
2616 struct page *page;
2617
2618 if (unlikely(flags || end <= start))
2619 return -EINVAL;
2620
2621 /* First find the starting scatterlist element */
2622 i = msg->sg.start;
2623 do {
2624 offset += len;
2625 len = sk_msg_elem(msg, i)->length;
2626 if (start < offset + len)
2627 break;
2628 sk_msg_iter_var_next(i);
2629 } while (i != msg->sg.end);
2630
2631 if (unlikely(start >= offset + len))
2632 return -EINVAL;
2633
2634 first_sge = i;
2635 /* The start may point into the sg element so we need to also
2636 * account for the headroom.
2637 */
2638 bytes_sg_total = start - offset + bytes;
2639 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2640 goto out;
2641
2642 /* At this point we need to linearize multiple scatterlist
2643 * elements or a single shared page. Either way we need to
2644 * copy into a linear buffer exclusively owned by BPF. Then
2645 * place the buffer in the scatterlist and fixup the original
2646 * entries by removing the entries now in the linear buffer
2647 * and shifting the remaining entries. For now we do not try
2648 * to copy partial entries to avoid complexity of running out
2649 * of sg_entry slots. The downside is reading a single byte
2650 * will copy the entire sg entry.
2651 */
2652 do {
2653 copy += sk_msg_elem(msg, i)->length;
2654 sk_msg_iter_var_next(i);
2655 if (bytes_sg_total <= copy)
2656 break;
2657 } while (i != msg->sg.end);
2658 last_sge = i;
2659
2660 if (unlikely(bytes_sg_total > copy))
2661 return -EINVAL;
2662
2663 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2664 get_order(copy));
2665 if (unlikely(!page))
2666 return -ENOMEM;
2667
2668 raw = page_address(page);
2669 i = first_sge;
2670 do {
2671 sge = sk_msg_elem(msg, i);
2672 from = sg_virt(sge);
2673 len = sge->length;
2674 to = raw + poffset;
2675
2676 memcpy(to, from, len);
2677 poffset += len;
2678 sge->length = 0;
2679 put_page(sg_page(sge));
2680
2681 sk_msg_iter_var_next(i);
2682 } while (i != last_sge);
2683
2684 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2685
2686 /* To repair sg ring we need to shift entries. If we only
2687 * had a single entry though we can just replace it and
2688 * be done. Otherwise walk the ring and shift the entries.
2689 */
2690 WARN_ON_ONCE(last_sge == first_sge);
2691 shift = last_sge > first_sge ?
2692 last_sge - first_sge - 1 :
2693 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2694 if (!shift)
2695 goto out;
2696
2697 i = first_sge;
2698 sk_msg_iter_var_next(i);
2699 do {
2700 u32 move_from;
2701
2702 if (i + shift >= NR_MSG_FRAG_IDS)
2703 move_from = i + shift - NR_MSG_FRAG_IDS;
2704 else
2705 move_from = i + shift;
2706 if (move_from == msg->sg.end)
2707 break;
2708
2709 msg->sg.data[i] = msg->sg.data[move_from];
2710 msg->sg.data[move_from].length = 0;
2711 msg->sg.data[move_from].page_link = 0;
2712 msg->sg.data[move_from].offset = 0;
2713 sk_msg_iter_var_next(i);
2714 } while (1);
2715
2716 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2717 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2718 msg->sg.end - shift;
2719 out:
2720 sk_msg_reset_curr(msg);
2721 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2722 msg->data_end = msg->data + bytes;
2723 return 0;
2724 }
2725
2726 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2727 .func = bpf_msg_pull_data,
2728 .gpl_only = false,
2729 .ret_type = RET_INTEGER,
2730 .arg1_type = ARG_PTR_TO_CTX,
2731 .arg2_type = ARG_ANYTHING,
2732 .arg3_type = ARG_ANYTHING,
2733 .arg4_type = ARG_ANYTHING,
2734 };
2735
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2736 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2737 u32, len, u64, flags)
2738 {
2739 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2740 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2741 u8 *raw, *to, *from;
2742 struct page *page;
2743
2744 if (unlikely(flags))
2745 return -EINVAL;
2746
2747 if (unlikely(len == 0))
2748 return 0;
2749
2750 /* First find the starting scatterlist element */
2751 i = msg->sg.start;
2752 do {
2753 offset += l;
2754 l = sk_msg_elem(msg, i)->length;
2755
2756 if (start < offset + l)
2757 break;
2758 sk_msg_iter_var_next(i);
2759 } while (i != msg->sg.end);
2760
2761 if (start >= offset + l)
2762 return -EINVAL;
2763
2764 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2765
2766 /* If no space available will fallback to copy, we need at
2767 * least one scatterlist elem available to push data into
2768 * when start aligns to the beginning of an element or two
2769 * when it falls inside an element. We handle the start equals
2770 * offset case because its the common case for inserting a
2771 * header.
2772 */
2773 if (!space || (space == 1 && start != offset))
2774 copy = msg->sg.data[i].length;
2775
2776 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2777 get_order(copy + len));
2778 if (unlikely(!page))
2779 return -ENOMEM;
2780
2781 if (copy) {
2782 int front, back;
2783
2784 raw = page_address(page);
2785
2786 psge = sk_msg_elem(msg, i);
2787 front = start - offset;
2788 back = psge->length - front;
2789 from = sg_virt(psge);
2790
2791 if (front)
2792 memcpy(raw, from, front);
2793
2794 if (back) {
2795 from += front;
2796 to = raw + front + len;
2797
2798 memcpy(to, from, back);
2799 }
2800
2801 put_page(sg_page(psge));
2802 } else if (start - offset) {
2803 psge = sk_msg_elem(msg, i);
2804 rsge = sk_msg_elem_cpy(msg, i);
2805
2806 psge->length = start - offset;
2807 rsge.length -= psge->length;
2808 rsge.offset += start;
2809
2810 sk_msg_iter_var_next(i);
2811 sg_unmark_end(psge);
2812 sg_unmark_end(&rsge);
2813 sk_msg_iter_next(msg, end);
2814 }
2815
2816 /* Slot(s) to place newly allocated data */
2817 new = i;
2818
2819 /* Shift one or two slots as needed */
2820 if (!copy) {
2821 sge = sk_msg_elem_cpy(msg, i);
2822
2823 sk_msg_iter_var_next(i);
2824 sg_unmark_end(&sge);
2825 sk_msg_iter_next(msg, end);
2826
2827 nsge = sk_msg_elem_cpy(msg, i);
2828 if (rsge.length) {
2829 sk_msg_iter_var_next(i);
2830 nnsge = sk_msg_elem_cpy(msg, i);
2831 }
2832
2833 while (i != msg->sg.end) {
2834 msg->sg.data[i] = sge;
2835 sge = nsge;
2836 sk_msg_iter_var_next(i);
2837 if (rsge.length) {
2838 nsge = nnsge;
2839 nnsge = sk_msg_elem_cpy(msg, i);
2840 } else {
2841 nsge = sk_msg_elem_cpy(msg, i);
2842 }
2843 }
2844 }
2845
2846 /* Place newly allocated data buffer */
2847 sk_mem_charge(msg->sk, len);
2848 msg->sg.size += len;
2849 __clear_bit(new, msg->sg.copy);
2850 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2851 if (rsge.length) {
2852 get_page(sg_page(&rsge));
2853 sk_msg_iter_var_next(new);
2854 msg->sg.data[new] = rsge;
2855 }
2856
2857 sk_msg_reset_curr(msg);
2858 sk_msg_compute_data_pointers(msg);
2859 return 0;
2860 }
2861
2862 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2863 .func = bpf_msg_push_data,
2864 .gpl_only = false,
2865 .ret_type = RET_INTEGER,
2866 .arg1_type = ARG_PTR_TO_CTX,
2867 .arg2_type = ARG_ANYTHING,
2868 .arg3_type = ARG_ANYTHING,
2869 .arg4_type = ARG_ANYTHING,
2870 };
2871
sk_msg_shift_left(struct sk_msg * msg,int i)2872 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2873 {
2874 int prev;
2875
2876 do {
2877 prev = i;
2878 sk_msg_iter_var_next(i);
2879 msg->sg.data[prev] = msg->sg.data[i];
2880 } while (i != msg->sg.end);
2881
2882 sk_msg_iter_prev(msg, end);
2883 }
2884
sk_msg_shift_right(struct sk_msg * msg,int i)2885 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2886 {
2887 struct scatterlist tmp, sge;
2888
2889 sk_msg_iter_next(msg, end);
2890 sge = sk_msg_elem_cpy(msg, i);
2891 sk_msg_iter_var_next(i);
2892 tmp = sk_msg_elem_cpy(msg, i);
2893
2894 while (i != msg->sg.end) {
2895 msg->sg.data[i] = sge;
2896 sk_msg_iter_var_next(i);
2897 sge = tmp;
2898 tmp = sk_msg_elem_cpy(msg, i);
2899 }
2900 }
2901
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2902 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2903 u32, len, u64, flags)
2904 {
2905 u32 i = 0, l = 0, space, offset = 0;
2906 u64 last = start + len;
2907 int pop;
2908
2909 if (unlikely(flags))
2910 return -EINVAL;
2911
2912 /* First find the starting scatterlist element */
2913 i = msg->sg.start;
2914 do {
2915 offset += l;
2916 l = sk_msg_elem(msg, i)->length;
2917
2918 if (start < offset + l)
2919 break;
2920 sk_msg_iter_var_next(i);
2921 } while (i != msg->sg.end);
2922
2923 /* Bounds checks: start and pop must be inside message */
2924 if (start >= offset + l || last >= msg->sg.size)
2925 return -EINVAL;
2926
2927 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2928
2929 pop = len;
2930 /* --------------| offset
2931 * -| start |-------- len -------|
2932 *
2933 * |----- a ----|-------- pop -------|----- b ----|
2934 * |______________________________________________| length
2935 *
2936 *
2937 * a: region at front of scatter element to save
2938 * b: region at back of scatter element to save when length > A + pop
2939 * pop: region to pop from element, same as input 'pop' here will be
2940 * decremented below per iteration.
2941 *
2942 * Two top-level cases to handle when start != offset, first B is non
2943 * zero and second B is zero corresponding to when a pop includes more
2944 * than one element.
2945 *
2946 * Then if B is non-zero AND there is no space allocate space and
2947 * compact A, B regions into page. If there is space shift ring to
2948 * the rigth free'ing the next element in ring to place B, leaving
2949 * A untouched except to reduce length.
2950 */
2951 if (start != offset) {
2952 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2953 int a = start;
2954 int b = sge->length - pop - a;
2955
2956 sk_msg_iter_var_next(i);
2957
2958 if (pop < sge->length - a) {
2959 if (space) {
2960 sge->length = a;
2961 sk_msg_shift_right(msg, i);
2962 nsge = sk_msg_elem(msg, i);
2963 get_page(sg_page(sge));
2964 sg_set_page(nsge,
2965 sg_page(sge),
2966 b, sge->offset + pop + a);
2967 } else {
2968 struct page *page, *orig;
2969 u8 *to, *from;
2970
2971 page = alloc_pages(__GFP_NOWARN |
2972 __GFP_COMP | GFP_ATOMIC,
2973 get_order(a + b));
2974 if (unlikely(!page))
2975 return -ENOMEM;
2976
2977 sge->length = a;
2978 orig = sg_page(sge);
2979 from = sg_virt(sge);
2980 to = page_address(page);
2981 memcpy(to, from, a);
2982 memcpy(to + a, from + a + pop, b);
2983 sg_set_page(sge, page, a + b, 0);
2984 put_page(orig);
2985 }
2986 pop = 0;
2987 } else if (pop >= sge->length - a) {
2988 pop -= (sge->length - a);
2989 sge->length = a;
2990 }
2991 }
2992
2993 /* From above the current layout _must_ be as follows,
2994 *
2995 * -| offset
2996 * -| start
2997 *
2998 * |---- pop ---|---------------- b ------------|
2999 * |____________________________________________| length
3000 *
3001 * Offset and start of the current msg elem are equal because in the
3002 * previous case we handled offset != start and either consumed the
3003 * entire element and advanced to the next element OR pop == 0.
3004 *
3005 * Two cases to handle here are first pop is less than the length
3006 * leaving some remainder b above. Simply adjust the element's layout
3007 * in this case. Or pop >= length of the element so that b = 0. In this
3008 * case advance to next element decrementing pop.
3009 */
3010 while (pop) {
3011 struct scatterlist *sge = sk_msg_elem(msg, i);
3012
3013 if (pop < sge->length) {
3014 sge->length -= pop;
3015 sge->offset += pop;
3016 pop = 0;
3017 } else {
3018 pop -= sge->length;
3019 sk_msg_shift_left(msg, i);
3020 }
3021 sk_msg_iter_var_next(i);
3022 }
3023
3024 sk_mem_uncharge(msg->sk, len - pop);
3025 msg->sg.size -= (len - pop);
3026 sk_msg_reset_curr(msg);
3027 sk_msg_compute_data_pointers(msg);
3028 return 0;
3029 }
3030
3031 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3032 .func = bpf_msg_pop_data,
3033 .gpl_only = false,
3034 .ret_type = RET_INTEGER,
3035 .arg1_type = ARG_PTR_TO_CTX,
3036 .arg2_type = ARG_ANYTHING,
3037 .arg3_type = ARG_ANYTHING,
3038 .arg4_type = ARG_ANYTHING,
3039 };
3040
3041 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3042 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3043 {
3044 return __task_get_classid(current);
3045 }
3046
3047 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3048 .func = bpf_get_cgroup_classid_curr,
3049 .gpl_only = false,
3050 .ret_type = RET_INTEGER,
3051 };
3052
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3053 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3054 {
3055 struct sock *sk = skb_to_full_sk(skb);
3056
3057 if (!sk || !sk_fullsock(sk))
3058 return 0;
3059
3060 return sock_cgroup_classid(&sk->sk_cgrp_data);
3061 }
3062
3063 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3064 .func = bpf_skb_cgroup_classid,
3065 .gpl_only = false,
3066 .ret_type = RET_INTEGER,
3067 .arg1_type = ARG_PTR_TO_CTX,
3068 };
3069 #endif
3070
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3071 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3072 {
3073 return task_get_classid(skb);
3074 }
3075
3076 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3077 .func = bpf_get_cgroup_classid,
3078 .gpl_only = false,
3079 .ret_type = RET_INTEGER,
3080 .arg1_type = ARG_PTR_TO_CTX,
3081 };
3082
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3083 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3084 {
3085 return dst_tclassid(skb);
3086 }
3087
3088 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3089 .func = bpf_get_route_realm,
3090 .gpl_only = false,
3091 .ret_type = RET_INTEGER,
3092 .arg1_type = ARG_PTR_TO_CTX,
3093 };
3094
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3095 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3096 {
3097 /* If skb_clear_hash() was called due to mangling, we can
3098 * trigger SW recalculation here. Later access to hash
3099 * can then use the inline skb->hash via context directly
3100 * instead of calling this helper again.
3101 */
3102 return skb_get_hash(skb);
3103 }
3104
3105 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3106 .func = bpf_get_hash_recalc,
3107 .gpl_only = false,
3108 .ret_type = RET_INTEGER,
3109 .arg1_type = ARG_PTR_TO_CTX,
3110 };
3111
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3112 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3113 {
3114 /* After all direct packet write, this can be used once for
3115 * triggering a lazy recalc on next skb_get_hash() invocation.
3116 */
3117 skb_clear_hash(skb);
3118 return 0;
3119 }
3120
3121 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3122 .func = bpf_set_hash_invalid,
3123 .gpl_only = false,
3124 .ret_type = RET_INTEGER,
3125 .arg1_type = ARG_PTR_TO_CTX,
3126 };
3127
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3128 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3129 {
3130 /* Set user specified hash as L4(+), so that it gets returned
3131 * on skb_get_hash() call unless BPF prog later on triggers a
3132 * skb_clear_hash().
3133 */
3134 __skb_set_sw_hash(skb, hash, true);
3135 return 0;
3136 }
3137
3138 static const struct bpf_func_proto bpf_set_hash_proto = {
3139 .func = bpf_set_hash,
3140 .gpl_only = false,
3141 .ret_type = RET_INTEGER,
3142 .arg1_type = ARG_PTR_TO_CTX,
3143 .arg2_type = ARG_ANYTHING,
3144 };
3145
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3146 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3147 u16, vlan_tci)
3148 {
3149 int ret;
3150
3151 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3152 vlan_proto != htons(ETH_P_8021AD)))
3153 vlan_proto = htons(ETH_P_8021Q);
3154
3155 bpf_push_mac_rcsum(skb);
3156 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3157 bpf_pull_mac_rcsum(skb);
3158
3159 bpf_compute_data_pointers(skb);
3160 return ret;
3161 }
3162
3163 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3164 .func = bpf_skb_vlan_push,
3165 .gpl_only = false,
3166 .ret_type = RET_INTEGER,
3167 .arg1_type = ARG_PTR_TO_CTX,
3168 .arg2_type = ARG_ANYTHING,
3169 .arg3_type = ARG_ANYTHING,
3170 };
3171
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3172 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3173 {
3174 int ret;
3175
3176 bpf_push_mac_rcsum(skb);
3177 ret = skb_vlan_pop(skb);
3178 bpf_pull_mac_rcsum(skb);
3179
3180 bpf_compute_data_pointers(skb);
3181 return ret;
3182 }
3183
3184 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3185 .func = bpf_skb_vlan_pop,
3186 .gpl_only = false,
3187 .ret_type = RET_INTEGER,
3188 .arg1_type = ARG_PTR_TO_CTX,
3189 };
3190
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3191 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3192 {
3193 /* Caller already did skb_cow() with len as headroom,
3194 * so no need to do it here.
3195 */
3196 skb_push(skb, len);
3197 memmove(skb->data, skb->data + len, off);
3198 memset(skb->data + off, 0, len);
3199
3200 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3201 * needed here as it does not change the skb->csum
3202 * result for checksum complete when summing over
3203 * zeroed blocks.
3204 */
3205 return 0;
3206 }
3207
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3208 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210 void *old_data;
3211
3212 /* skb_ensure_writable() is not needed here, as we're
3213 * already working on an uncloned skb.
3214 */
3215 if (unlikely(!pskb_may_pull(skb, off + len)))
3216 return -ENOMEM;
3217
3218 old_data = skb->data;
3219 __skb_pull(skb, len);
3220 skb_postpull_rcsum(skb, old_data + off, len);
3221 memmove(skb->data, old_data, off);
3222
3223 return 0;
3224 }
3225
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3226 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3227 {
3228 bool trans_same = skb->transport_header == skb->network_header;
3229 int ret;
3230
3231 /* There's no need for __skb_push()/__skb_pull() pair to
3232 * get to the start of the mac header as we're guaranteed
3233 * to always start from here under eBPF.
3234 */
3235 ret = bpf_skb_generic_push(skb, off, len);
3236 if (likely(!ret)) {
3237 skb->mac_header -= len;
3238 skb->network_header -= len;
3239 if (trans_same)
3240 skb->transport_header = skb->network_header;
3241 }
3242
3243 return ret;
3244 }
3245
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3246 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3247 {
3248 bool trans_same = skb->transport_header == skb->network_header;
3249 int ret;
3250
3251 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3252 ret = bpf_skb_generic_pop(skb, off, len);
3253 if (likely(!ret)) {
3254 skb->mac_header += len;
3255 skb->network_header += len;
3256 if (trans_same)
3257 skb->transport_header = skb->network_header;
3258 }
3259
3260 return ret;
3261 }
3262
bpf_skb_proto_4_to_6(struct sk_buff * skb)3263 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3264 {
3265 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3266 u32 off = skb_mac_header_len(skb);
3267 int ret;
3268
3269 ret = skb_cow(skb, len_diff);
3270 if (unlikely(ret < 0))
3271 return ret;
3272
3273 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3274 if (unlikely(ret < 0))
3275 return ret;
3276
3277 if (skb_is_gso(skb)) {
3278 struct skb_shared_info *shinfo = skb_shinfo(skb);
3279
3280 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3281 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3282 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3283 shinfo->gso_type |= SKB_GSO_TCPV6;
3284 }
3285 }
3286
3287 skb->protocol = htons(ETH_P_IPV6);
3288 skb_clear_hash(skb);
3289
3290 return 0;
3291 }
3292
bpf_skb_proto_6_to_4(struct sk_buff * skb)3293 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3294 {
3295 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3296 u32 off = skb_mac_header_len(skb);
3297 int ret;
3298
3299 ret = skb_unclone(skb, GFP_ATOMIC);
3300 if (unlikely(ret < 0))
3301 return ret;
3302
3303 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3304 if (unlikely(ret < 0))
3305 return ret;
3306
3307 if (skb_is_gso(skb)) {
3308 struct skb_shared_info *shinfo = skb_shinfo(skb);
3309
3310 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3311 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3312 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3313 shinfo->gso_type |= SKB_GSO_TCPV4;
3314 }
3315 }
3316
3317 skb->protocol = htons(ETH_P_IP);
3318 skb_clear_hash(skb);
3319
3320 return 0;
3321 }
3322
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3323 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324 {
3325 __be16 from_proto = skb->protocol;
3326
3327 if (from_proto == htons(ETH_P_IP) &&
3328 to_proto == htons(ETH_P_IPV6))
3329 return bpf_skb_proto_4_to_6(skb);
3330
3331 if (from_proto == htons(ETH_P_IPV6) &&
3332 to_proto == htons(ETH_P_IP))
3333 return bpf_skb_proto_6_to_4(skb);
3334
3335 return -ENOTSUPP;
3336 }
3337
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3338 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339 u64, flags)
3340 {
3341 int ret;
3342
3343 if (unlikely(flags))
3344 return -EINVAL;
3345
3346 /* General idea is that this helper does the basic groundwork
3347 * needed for changing the protocol, and eBPF program fills the
3348 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349 * and other helpers, rather than passing a raw buffer here.
3350 *
3351 * The rationale is to keep this minimal and without a need to
3352 * deal with raw packet data. F.e. even if we would pass buffers
3353 * here, the program still needs to call the bpf_lX_csum_replace()
3354 * helpers anyway. Plus, this way we keep also separation of
3355 * concerns, since f.e. bpf_skb_store_bytes() should only take
3356 * care of stores.
3357 *
3358 * Currently, additional options and extension header space are
3359 * not supported, but flags register is reserved so we can adapt
3360 * that. For offloads, we mark packet as dodgy, so that headers
3361 * need to be verified first.
3362 */
3363 ret = bpf_skb_proto_xlat(skb, proto);
3364 bpf_compute_data_pointers(skb);
3365 return ret;
3366 }
3367
3368 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369 .func = bpf_skb_change_proto,
3370 .gpl_only = false,
3371 .ret_type = RET_INTEGER,
3372 .arg1_type = ARG_PTR_TO_CTX,
3373 .arg2_type = ARG_ANYTHING,
3374 .arg3_type = ARG_ANYTHING,
3375 };
3376
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3377 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378 {
3379 /* We only allow a restricted subset to be changed for now. */
3380 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381 !skb_pkt_type_ok(pkt_type)))
3382 return -EINVAL;
3383
3384 skb->pkt_type = pkt_type;
3385 return 0;
3386 }
3387
3388 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389 .func = bpf_skb_change_type,
3390 .gpl_only = false,
3391 .ret_type = RET_INTEGER,
3392 .arg1_type = ARG_PTR_TO_CTX,
3393 .arg2_type = ARG_ANYTHING,
3394 };
3395
bpf_skb_net_base_len(const struct sk_buff * skb)3396 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397 {
3398 switch (skb->protocol) {
3399 case htons(ETH_P_IP):
3400 return sizeof(struct iphdr);
3401 case htons(ETH_P_IPV6):
3402 return sizeof(struct ipv6hdr);
3403 default:
3404 return ~0U;
3405 }
3406 }
3407
3408 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410
3411 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3412 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3416 BPF_F_ADJ_ROOM_ENCAP_L2( \
3417 BPF_ADJ_ROOM_ENCAP_L2_MASK))
3418
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3419 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3420 u64 flags)
3421 {
3422 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3423 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3424 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3425 unsigned int gso_type = SKB_GSO_DODGY;
3426 int ret;
3427
3428 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3429 /* udp gso_size delineates datagrams, only allow if fixed */
3430 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3431 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3432 return -ENOTSUPP;
3433 }
3434
3435 ret = skb_cow_head(skb, len_diff);
3436 if (unlikely(ret < 0))
3437 return ret;
3438
3439 if (encap) {
3440 if (skb->protocol != htons(ETH_P_IP) &&
3441 skb->protocol != htons(ETH_P_IPV6))
3442 return -ENOTSUPP;
3443
3444 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3445 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3446 return -EINVAL;
3447
3448 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3449 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3450 return -EINVAL;
3451
3452 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3453 inner_mac_len < ETH_HLEN)
3454 return -EINVAL;
3455
3456 if (skb->encapsulation)
3457 return -EALREADY;
3458
3459 mac_len = skb->network_header - skb->mac_header;
3460 inner_net = skb->network_header;
3461 if (inner_mac_len > len_diff)
3462 return -EINVAL;
3463 inner_trans = skb->transport_header;
3464 }
3465
3466 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3467 if (unlikely(ret < 0))
3468 return ret;
3469
3470 if (encap) {
3471 skb->inner_mac_header = inner_net - inner_mac_len;
3472 skb->inner_network_header = inner_net;
3473 skb->inner_transport_header = inner_trans;
3474
3475 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3476 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3477 else
3478 skb_set_inner_protocol(skb, skb->protocol);
3479
3480 skb->encapsulation = 1;
3481 skb_set_network_header(skb, mac_len);
3482
3483 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3484 gso_type |= SKB_GSO_UDP_TUNNEL;
3485 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3486 gso_type |= SKB_GSO_GRE;
3487 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3488 gso_type |= SKB_GSO_IPXIP6;
3489 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3490 gso_type |= SKB_GSO_IPXIP4;
3491
3492 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3493 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3494 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3495 sizeof(struct ipv6hdr) :
3496 sizeof(struct iphdr);
3497
3498 skb_set_transport_header(skb, mac_len + nh_len);
3499 }
3500
3501 /* Match skb->protocol to new outer l3 protocol */
3502 if (skb->protocol == htons(ETH_P_IP) &&
3503 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3504 skb->protocol = htons(ETH_P_IPV6);
3505 else if (skb->protocol == htons(ETH_P_IPV6) &&
3506 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3507 skb->protocol = htons(ETH_P_IP);
3508 }
3509
3510 if (skb_is_gso(skb)) {
3511 struct skb_shared_info *shinfo = skb_shinfo(skb);
3512
3513 /* Due to header grow, MSS needs to be downgraded. */
3514 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3515 skb_decrease_gso_size(shinfo, len_diff);
3516
3517 /* Header must be checked, and gso_segs recomputed. */
3518 shinfo->gso_type |= gso_type;
3519 shinfo->gso_segs = 0;
3520 }
3521
3522 return 0;
3523 }
3524
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3525 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3526 u64 flags)
3527 {
3528 int ret;
3529
3530 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3531 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3532 return -EINVAL;
3533
3534 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3535 /* udp gso_size delineates datagrams, only allow if fixed */
3536 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3537 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3538 return -ENOTSUPP;
3539 }
3540
3541 ret = skb_unclone(skb, GFP_ATOMIC);
3542 if (unlikely(ret < 0))
3543 return ret;
3544
3545 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3546 if (unlikely(ret < 0))
3547 return ret;
3548
3549 if (skb_is_gso(skb)) {
3550 struct skb_shared_info *shinfo = skb_shinfo(skb);
3551
3552 /* Due to header shrink, MSS can be upgraded. */
3553 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3554 skb_increase_gso_size(shinfo, len_diff);
3555
3556 /* Header must be checked, and gso_segs recomputed. */
3557 shinfo->gso_type |= SKB_GSO_DODGY;
3558 shinfo->gso_segs = 0;
3559 }
3560
3561 return 0;
3562 }
3563
3564 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3565
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3566 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3567 u32, mode, u64, flags)
3568 {
3569 u32 len_diff_abs = abs(len_diff);
3570 bool shrink = len_diff < 0;
3571 int ret = 0;
3572
3573 if (unlikely(flags || mode))
3574 return -EINVAL;
3575 if (unlikely(len_diff_abs > 0xfffU))
3576 return -EFAULT;
3577
3578 if (!shrink) {
3579 ret = skb_cow(skb, len_diff);
3580 if (unlikely(ret < 0))
3581 return ret;
3582 __skb_push(skb, len_diff_abs);
3583 memset(skb->data, 0, len_diff_abs);
3584 } else {
3585 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3586 return -ENOMEM;
3587 __skb_pull(skb, len_diff_abs);
3588 }
3589 if (tls_sw_has_ctx_rx(skb->sk)) {
3590 struct strp_msg *rxm = strp_msg(skb);
3591
3592 rxm->full_len += len_diff;
3593 }
3594 return ret;
3595 }
3596
3597 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3598 .func = sk_skb_adjust_room,
3599 .gpl_only = false,
3600 .ret_type = RET_INTEGER,
3601 .arg1_type = ARG_PTR_TO_CTX,
3602 .arg2_type = ARG_ANYTHING,
3603 .arg3_type = ARG_ANYTHING,
3604 .arg4_type = ARG_ANYTHING,
3605 };
3606
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3607 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3608 u32, mode, u64, flags)
3609 {
3610 u32 len_cur, len_diff_abs = abs(len_diff);
3611 u32 len_min = bpf_skb_net_base_len(skb);
3612 u32 len_max = BPF_SKB_MAX_LEN;
3613 __be16 proto = skb->protocol;
3614 bool shrink = len_diff < 0;
3615 u32 off;
3616 int ret;
3617
3618 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3619 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3620 return -EINVAL;
3621 if (unlikely(len_diff_abs > 0xfffU))
3622 return -EFAULT;
3623 if (unlikely(proto != htons(ETH_P_IP) &&
3624 proto != htons(ETH_P_IPV6)))
3625 return -ENOTSUPP;
3626
3627 off = skb_mac_header_len(skb);
3628 switch (mode) {
3629 case BPF_ADJ_ROOM_NET:
3630 off += bpf_skb_net_base_len(skb);
3631 break;
3632 case BPF_ADJ_ROOM_MAC:
3633 break;
3634 default:
3635 return -ENOTSUPP;
3636 }
3637
3638 len_cur = skb->len - skb_network_offset(skb);
3639 if ((shrink && (len_diff_abs >= len_cur ||
3640 len_cur - len_diff_abs < len_min)) ||
3641 (!shrink && (skb->len + len_diff_abs > len_max &&
3642 !skb_is_gso(skb))))
3643 return -ENOTSUPP;
3644
3645 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3646 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3647 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3648 __skb_reset_checksum_unnecessary(skb);
3649
3650 bpf_compute_data_pointers(skb);
3651 return ret;
3652 }
3653
3654 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3655 .func = bpf_skb_adjust_room,
3656 .gpl_only = false,
3657 .ret_type = RET_INTEGER,
3658 .arg1_type = ARG_PTR_TO_CTX,
3659 .arg2_type = ARG_ANYTHING,
3660 .arg3_type = ARG_ANYTHING,
3661 .arg4_type = ARG_ANYTHING,
3662 };
3663
__bpf_skb_min_len(const struct sk_buff * skb)3664 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3665 {
3666 u32 min_len = skb_network_offset(skb);
3667
3668 if (skb_transport_header_was_set(skb))
3669 min_len = skb_transport_offset(skb);
3670 if (skb->ip_summed == CHECKSUM_PARTIAL)
3671 min_len = skb_checksum_start_offset(skb) +
3672 skb->csum_offset + sizeof(__sum16);
3673 return min_len;
3674 }
3675
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3676 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3677 {
3678 unsigned int old_len = skb->len;
3679 int ret;
3680
3681 ret = __skb_grow_rcsum(skb, new_len);
3682 if (!ret)
3683 memset(skb->data + old_len, 0, new_len - old_len);
3684 return ret;
3685 }
3686
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3687 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3688 {
3689 return __skb_trim_rcsum(skb, new_len);
3690 }
3691
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3692 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3693 u64 flags)
3694 {
3695 u32 max_len = BPF_SKB_MAX_LEN;
3696 u32 min_len = __bpf_skb_min_len(skb);
3697 int ret;
3698
3699 if (unlikely(flags || new_len > max_len || new_len < min_len))
3700 return -EINVAL;
3701 if (skb->encapsulation)
3702 return -ENOTSUPP;
3703
3704 /* The basic idea of this helper is that it's performing the
3705 * needed work to either grow or trim an skb, and eBPF program
3706 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3707 * bpf_lX_csum_replace() and others rather than passing a raw
3708 * buffer here. This one is a slow path helper and intended
3709 * for replies with control messages.
3710 *
3711 * Like in bpf_skb_change_proto(), we want to keep this rather
3712 * minimal and without protocol specifics so that we are able
3713 * to separate concerns as in bpf_skb_store_bytes() should only
3714 * be the one responsible for writing buffers.
3715 *
3716 * It's really expected to be a slow path operation here for
3717 * control message replies, so we're implicitly linearizing,
3718 * uncloning and drop offloads from the skb by this.
3719 */
3720 ret = __bpf_try_make_writable(skb, skb->len);
3721 if (!ret) {
3722 if (new_len > skb->len)
3723 ret = bpf_skb_grow_rcsum(skb, new_len);
3724 else if (new_len < skb->len)
3725 ret = bpf_skb_trim_rcsum(skb, new_len);
3726 if (!ret && skb_is_gso(skb))
3727 skb_gso_reset(skb);
3728 }
3729 return ret;
3730 }
3731
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3732 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3733 u64, flags)
3734 {
3735 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3736
3737 bpf_compute_data_pointers(skb);
3738 return ret;
3739 }
3740
3741 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3742 .func = bpf_skb_change_tail,
3743 .gpl_only = false,
3744 .ret_type = RET_INTEGER,
3745 .arg1_type = ARG_PTR_TO_CTX,
3746 .arg2_type = ARG_ANYTHING,
3747 .arg3_type = ARG_ANYTHING,
3748 };
3749
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3750 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3751 u64, flags)
3752 {
3753 return __bpf_skb_change_tail(skb, new_len, flags);
3754 }
3755
3756 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3757 .func = sk_skb_change_tail,
3758 .gpl_only = false,
3759 .ret_type = RET_INTEGER,
3760 .arg1_type = ARG_PTR_TO_CTX,
3761 .arg2_type = ARG_ANYTHING,
3762 .arg3_type = ARG_ANYTHING,
3763 };
3764
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3765 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3766 u64 flags)
3767 {
3768 u32 max_len = BPF_SKB_MAX_LEN;
3769 u32 new_len = skb->len + head_room;
3770 int ret;
3771
3772 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3773 new_len < skb->len))
3774 return -EINVAL;
3775
3776 ret = skb_cow(skb, head_room);
3777 if (likely(!ret)) {
3778 /* Idea for this helper is that we currently only
3779 * allow to expand on mac header. This means that
3780 * skb->protocol network header, etc, stay as is.
3781 * Compared to bpf_skb_change_tail(), we're more
3782 * flexible due to not needing to linearize or
3783 * reset GSO. Intention for this helper is to be
3784 * used by an L3 skb that needs to push mac header
3785 * for redirection into L2 device.
3786 */
3787 __skb_push(skb, head_room);
3788 memset(skb->data, 0, head_room);
3789 skb_reset_mac_header(skb);
3790 skb_reset_mac_len(skb);
3791 }
3792
3793 return ret;
3794 }
3795
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3796 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3797 u64, flags)
3798 {
3799 int ret = __bpf_skb_change_head(skb, head_room, flags);
3800
3801 bpf_compute_data_pointers(skb);
3802 return ret;
3803 }
3804
3805 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3806 .func = bpf_skb_change_head,
3807 .gpl_only = false,
3808 .ret_type = RET_INTEGER,
3809 .arg1_type = ARG_PTR_TO_CTX,
3810 .arg2_type = ARG_ANYTHING,
3811 .arg3_type = ARG_ANYTHING,
3812 };
3813
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3814 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3815 u64, flags)
3816 {
3817 return __bpf_skb_change_head(skb, head_room, flags);
3818 }
3819
3820 static const struct bpf_func_proto sk_skb_change_head_proto = {
3821 .func = sk_skb_change_head,
3822 .gpl_only = false,
3823 .ret_type = RET_INTEGER,
3824 .arg1_type = ARG_PTR_TO_CTX,
3825 .arg2_type = ARG_ANYTHING,
3826 .arg3_type = ARG_ANYTHING,
3827 };
3828
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3829 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3830 {
3831 return xdp_get_buff_len(xdp);
3832 }
3833
3834 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3835 .func = bpf_xdp_get_buff_len,
3836 .gpl_only = false,
3837 .ret_type = RET_INTEGER,
3838 .arg1_type = ARG_PTR_TO_CTX,
3839 };
3840
3841 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3842
3843 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3844 .func = bpf_xdp_get_buff_len,
3845 .gpl_only = false,
3846 .arg1_type = ARG_PTR_TO_BTF_ID,
3847 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3848 };
3849
xdp_get_metalen(const struct xdp_buff * xdp)3850 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3851 {
3852 return xdp_data_meta_unsupported(xdp) ? 0 :
3853 xdp->data - xdp->data_meta;
3854 }
3855
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3856 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3857 {
3858 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3859 unsigned long metalen = xdp_get_metalen(xdp);
3860 void *data_start = xdp_frame_end + metalen;
3861 void *data = xdp->data + offset;
3862
3863 if (unlikely(data < data_start ||
3864 data > xdp->data_end - ETH_HLEN))
3865 return -EINVAL;
3866
3867 if (metalen)
3868 memmove(xdp->data_meta + offset,
3869 xdp->data_meta, metalen);
3870 xdp->data_meta += offset;
3871 xdp->data = data;
3872
3873 return 0;
3874 }
3875
3876 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3877 .func = bpf_xdp_adjust_head,
3878 .gpl_only = false,
3879 .ret_type = RET_INTEGER,
3880 .arg1_type = ARG_PTR_TO_CTX,
3881 .arg2_type = ARG_ANYTHING,
3882 };
3883
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3884 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3885 void *buf, unsigned long len, bool flush)
3886 {
3887 unsigned long ptr_len, ptr_off = 0;
3888 skb_frag_t *next_frag, *end_frag;
3889 struct skb_shared_info *sinfo;
3890 void *src, *dst;
3891 u8 *ptr_buf;
3892
3893 if (likely(xdp->data_end - xdp->data >= off + len)) {
3894 src = flush ? buf : xdp->data + off;
3895 dst = flush ? xdp->data + off : buf;
3896 memcpy(dst, src, len);
3897 return;
3898 }
3899
3900 sinfo = xdp_get_shared_info_from_buff(xdp);
3901 end_frag = &sinfo->frags[sinfo->nr_frags];
3902 next_frag = &sinfo->frags[0];
3903
3904 ptr_len = xdp->data_end - xdp->data;
3905 ptr_buf = xdp->data;
3906
3907 while (true) {
3908 if (off < ptr_off + ptr_len) {
3909 unsigned long copy_off = off - ptr_off;
3910 unsigned long copy_len = min(len, ptr_len - copy_off);
3911
3912 src = flush ? buf : ptr_buf + copy_off;
3913 dst = flush ? ptr_buf + copy_off : buf;
3914 memcpy(dst, src, copy_len);
3915
3916 off += copy_len;
3917 len -= copy_len;
3918 buf += copy_len;
3919 }
3920
3921 if (!len || next_frag == end_frag)
3922 break;
3923
3924 ptr_off += ptr_len;
3925 ptr_buf = skb_frag_address(next_frag);
3926 ptr_len = skb_frag_size(next_frag);
3927 next_frag++;
3928 }
3929 }
3930
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)3931 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3932 {
3933 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3934 u32 size = xdp->data_end - xdp->data;
3935 void *addr = xdp->data;
3936 int i;
3937
3938 if (unlikely(offset > 0xffff || len > 0xffff))
3939 return ERR_PTR(-EFAULT);
3940
3941 if (offset + len > xdp_get_buff_len(xdp))
3942 return ERR_PTR(-EINVAL);
3943
3944 if (offset < size) /* linear area */
3945 goto out;
3946
3947 offset -= size;
3948 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3949 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3950
3951 if (offset < frag_size) {
3952 addr = skb_frag_address(&sinfo->frags[i]);
3953 size = frag_size;
3954 break;
3955 }
3956 offset -= frag_size;
3957 }
3958 out:
3959 return offset + len <= size ? addr + offset : NULL;
3960 }
3961
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)3962 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3963 void *, buf, u32, len)
3964 {
3965 void *ptr;
3966
3967 ptr = bpf_xdp_pointer(xdp, offset, len);
3968 if (IS_ERR(ptr))
3969 return PTR_ERR(ptr);
3970
3971 if (!ptr)
3972 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3973 else
3974 memcpy(buf, ptr, len);
3975
3976 return 0;
3977 }
3978
3979 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3980 .func = bpf_xdp_load_bytes,
3981 .gpl_only = false,
3982 .ret_type = RET_INTEGER,
3983 .arg1_type = ARG_PTR_TO_CTX,
3984 .arg2_type = ARG_ANYTHING,
3985 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
3986 .arg4_type = ARG_CONST_SIZE,
3987 };
3988
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)3989 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3990 void *, buf, u32, len)
3991 {
3992 void *ptr;
3993
3994 ptr = bpf_xdp_pointer(xdp, offset, len);
3995 if (IS_ERR(ptr))
3996 return PTR_ERR(ptr);
3997
3998 if (!ptr)
3999 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4000 else
4001 memcpy(ptr, buf, len);
4002
4003 return 0;
4004 }
4005
4006 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4007 .func = bpf_xdp_store_bytes,
4008 .gpl_only = false,
4009 .ret_type = RET_INTEGER,
4010 .arg1_type = ARG_PTR_TO_CTX,
4011 .arg2_type = ARG_ANYTHING,
4012 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4013 .arg4_type = ARG_CONST_SIZE,
4014 };
4015
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4016 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4017 {
4018 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4019 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4020 struct xdp_rxq_info *rxq = xdp->rxq;
4021 unsigned int tailroom;
4022
4023 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4024 return -EOPNOTSUPP;
4025
4026 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4027 if (unlikely(offset > tailroom))
4028 return -EINVAL;
4029
4030 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4031 skb_frag_size_add(frag, offset);
4032 sinfo->xdp_frags_size += offset;
4033
4034 return 0;
4035 }
4036
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4037 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4038 {
4039 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4040 int i, n_frags_free = 0, len_free = 0;
4041
4042 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4043 return -EINVAL;
4044
4045 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4046 skb_frag_t *frag = &sinfo->frags[i];
4047 int shrink = min_t(int, offset, skb_frag_size(frag));
4048
4049 len_free += shrink;
4050 offset -= shrink;
4051
4052 if (skb_frag_size(frag) == shrink) {
4053 struct page *page = skb_frag_page(frag);
4054
4055 __xdp_return(page_address(page), &xdp->rxq->mem,
4056 false, NULL);
4057 n_frags_free++;
4058 } else {
4059 skb_frag_size_sub(frag, shrink);
4060 break;
4061 }
4062 }
4063 sinfo->nr_frags -= n_frags_free;
4064 sinfo->xdp_frags_size -= len_free;
4065
4066 if (unlikely(!sinfo->nr_frags)) {
4067 xdp_buff_clear_frags_flag(xdp);
4068 xdp->data_end -= offset;
4069 }
4070
4071 return 0;
4072 }
4073
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4074 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4075 {
4076 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4077 void *data_end = xdp->data_end + offset;
4078
4079 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4080 if (offset < 0)
4081 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4082
4083 return bpf_xdp_frags_increase_tail(xdp, offset);
4084 }
4085
4086 /* Notice that xdp_data_hard_end have reserved some tailroom */
4087 if (unlikely(data_end > data_hard_end))
4088 return -EINVAL;
4089
4090 if (unlikely(data_end < xdp->data + ETH_HLEN))
4091 return -EINVAL;
4092
4093 /* Clear memory area on grow, can contain uninit kernel memory */
4094 if (offset > 0)
4095 memset(xdp->data_end, 0, offset);
4096
4097 xdp->data_end = data_end;
4098
4099 return 0;
4100 }
4101
4102 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4103 .func = bpf_xdp_adjust_tail,
4104 .gpl_only = false,
4105 .ret_type = RET_INTEGER,
4106 .arg1_type = ARG_PTR_TO_CTX,
4107 .arg2_type = ARG_ANYTHING,
4108 };
4109
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4110 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4111 {
4112 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4113 void *meta = xdp->data_meta + offset;
4114 unsigned long metalen = xdp->data - meta;
4115
4116 if (xdp_data_meta_unsupported(xdp))
4117 return -ENOTSUPP;
4118 if (unlikely(meta < xdp_frame_end ||
4119 meta > xdp->data))
4120 return -EINVAL;
4121 if (unlikely(xdp_metalen_invalid(metalen)))
4122 return -EACCES;
4123
4124 xdp->data_meta = meta;
4125
4126 return 0;
4127 }
4128
4129 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4130 .func = bpf_xdp_adjust_meta,
4131 .gpl_only = false,
4132 .ret_type = RET_INTEGER,
4133 .arg1_type = ARG_PTR_TO_CTX,
4134 .arg2_type = ARG_ANYTHING,
4135 };
4136
4137 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4138 * below:
4139 *
4140 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4141 * of the redirect and store it (along with some other metadata) in a per-CPU
4142 * struct bpf_redirect_info.
4143 *
4144 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4145 * call xdp_do_redirect() which will use the information in struct
4146 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4147 * bulk queue structure.
4148 *
4149 * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4150 * which will flush all the different bulk queues, thus completing the
4151 * redirect.
4152 *
4153 * Pointers to the map entries will be kept around for this whole sequence of
4154 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4155 * the core code; instead, the RCU protection relies on everything happening
4156 * inside a single NAPI poll sequence, which means it's between a pair of calls
4157 * to local_bh_disable()/local_bh_enable().
4158 *
4159 * The map entries are marked as __rcu and the map code makes sure to
4160 * dereference those pointers with rcu_dereference_check() in a way that works
4161 * for both sections that to hold an rcu_read_lock() and sections that are
4162 * called from NAPI without a separate rcu_read_lock(). The code below does not
4163 * use RCU annotations, but relies on those in the map code.
4164 */
xdp_do_flush(void)4165 void xdp_do_flush(void)
4166 {
4167 __dev_flush();
4168 __cpu_map_flush();
4169 __xsk_map_flush();
4170 }
4171 EXPORT_SYMBOL_GPL(xdp_do_flush);
4172
bpf_clear_redirect_map(struct bpf_map * map)4173 void bpf_clear_redirect_map(struct bpf_map *map)
4174 {
4175 struct bpf_redirect_info *ri;
4176 int cpu;
4177
4178 for_each_possible_cpu(cpu) {
4179 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4180 /* Avoid polluting remote cacheline due to writes if
4181 * not needed. Once we pass this test, we need the
4182 * cmpxchg() to make sure it hasn't been changed in
4183 * the meantime by remote CPU.
4184 */
4185 if (unlikely(READ_ONCE(ri->map) == map))
4186 cmpxchg(&ri->map, map, NULL);
4187 }
4188 }
4189
4190 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4191 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4192
xdp_master_redirect(struct xdp_buff * xdp)4193 u32 xdp_master_redirect(struct xdp_buff *xdp)
4194 {
4195 struct net_device *master, *slave;
4196 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4197
4198 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4199 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4200 if (slave && slave != xdp->rxq->dev) {
4201 /* The target device is different from the receiving device, so
4202 * redirect it to the new device.
4203 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4204 * drivers to unmap the packet from their rx ring.
4205 */
4206 ri->tgt_index = slave->ifindex;
4207 ri->map_id = INT_MAX;
4208 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4209 return XDP_REDIRECT;
4210 }
4211 return XDP_TX;
4212 }
4213 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4214
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4215 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4216 struct net_device *dev,
4217 struct xdp_buff *xdp,
4218 struct bpf_prog *xdp_prog)
4219 {
4220 enum bpf_map_type map_type = ri->map_type;
4221 void *fwd = ri->tgt_value;
4222 u32 map_id = ri->map_id;
4223 int err;
4224
4225 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4226 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4227
4228 err = __xsk_map_redirect(fwd, xdp);
4229 if (unlikely(err))
4230 goto err;
4231
4232 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4233 return 0;
4234 err:
4235 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4236 return err;
4237 }
4238
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4239 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4240 struct net_device *dev,
4241 struct xdp_frame *xdpf,
4242 struct bpf_prog *xdp_prog)
4243 {
4244 enum bpf_map_type map_type = ri->map_type;
4245 void *fwd = ri->tgt_value;
4246 u32 map_id = ri->map_id;
4247 struct bpf_map *map;
4248 int err;
4249
4250 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4251 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4252
4253 if (unlikely(!xdpf)) {
4254 err = -EOVERFLOW;
4255 goto err;
4256 }
4257
4258 switch (map_type) {
4259 case BPF_MAP_TYPE_DEVMAP:
4260 fallthrough;
4261 case BPF_MAP_TYPE_DEVMAP_HASH:
4262 map = READ_ONCE(ri->map);
4263 if (unlikely(map)) {
4264 WRITE_ONCE(ri->map, NULL);
4265 err = dev_map_enqueue_multi(xdpf, dev, map,
4266 ri->flags & BPF_F_EXCLUDE_INGRESS);
4267 } else {
4268 err = dev_map_enqueue(fwd, xdpf, dev);
4269 }
4270 break;
4271 case BPF_MAP_TYPE_CPUMAP:
4272 err = cpu_map_enqueue(fwd, xdpf, dev);
4273 break;
4274 case BPF_MAP_TYPE_UNSPEC:
4275 if (map_id == INT_MAX) {
4276 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4277 if (unlikely(!fwd)) {
4278 err = -EINVAL;
4279 break;
4280 }
4281 err = dev_xdp_enqueue(fwd, xdpf, dev);
4282 break;
4283 }
4284 fallthrough;
4285 default:
4286 err = -EBADRQC;
4287 }
4288
4289 if (unlikely(err))
4290 goto err;
4291
4292 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4293 return 0;
4294 err:
4295 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4296 return err;
4297 }
4298
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4299 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4300 struct bpf_prog *xdp_prog)
4301 {
4302 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4303 enum bpf_map_type map_type = ri->map_type;
4304
4305 /* XDP_REDIRECT is not fully supported yet for xdp frags since
4306 * not all XDP capable drivers can map non-linear xdp_frame in
4307 * ndo_xdp_xmit.
4308 */
4309 if (unlikely(xdp_buff_has_frags(xdp) &&
4310 map_type != BPF_MAP_TYPE_CPUMAP))
4311 return -EOPNOTSUPP;
4312
4313 if (map_type == BPF_MAP_TYPE_XSKMAP)
4314 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4315
4316 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4317 xdp_prog);
4318 }
4319 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4320
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4321 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4322 struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4323 {
4324 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4325 enum bpf_map_type map_type = ri->map_type;
4326
4327 if (map_type == BPF_MAP_TYPE_XSKMAP)
4328 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4329
4330 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4331 }
4332 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4333
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id)4334 static int xdp_do_generic_redirect_map(struct net_device *dev,
4335 struct sk_buff *skb,
4336 struct xdp_buff *xdp,
4337 struct bpf_prog *xdp_prog,
4338 void *fwd,
4339 enum bpf_map_type map_type, u32 map_id)
4340 {
4341 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4342 struct bpf_map *map;
4343 int err;
4344
4345 switch (map_type) {
4346 case BPF_MAP_TYPE_DEVMAP:
4347 fallthrough;
4348 case BPF_MAP_TYPE_DEVMAP_HASH:
4349 map = READ_ONCE(ri->map);
4350 if (unlikely(map)) {
4351 WRITE_ONCE(ri->map, NULL);
4352 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4353 ri->flags & BPF_F_EXCLUDE_INGRESS);
4354 } else {
4355 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4356 }
4357 if (unlikely(err))
4358 goto err;
4359 break;
4360 case BPF_MAP_TYPE_XSKMAP:
4361 err = xsk_generic_rcv(fwd, xdp);
4362 if (err)
4363 goto err;
4364 consume_skb(skb);
4365 break;
4366 case BPF_MAP_TYPE_CPUMAP:
4367 err = cpu_map_generic_redirect(fwd, skb);
4368 if (unlikely(err))
4369 goto err;
4370 break;
4371 default:
4372 err = -EBADRQC;
4373 goto err;
4374 }
4375
4376 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4377 return 0;
4378 err:
4379 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4380 return err;
4381 }
4382
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4383 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4384 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4385 {
4386 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4387 enum bpf_map_type map_type = ri->map_type;
4388 void *fwd = ri->tgt_value;
4389 u32 map_id = ri->map_id;
4390 int err;
4391
4392 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4393 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4394
4395 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4396 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4397 if (unlikely(!fwd)) {
4398 err = -EINVAL;
4399 goto err;
4400 }
4401
4402 err = xdp_ok_fwd_dev(fwd, skb->len);
4403 if (unlikely(err))
4404 goto err;
4405
4406 skb->dev = fwd;
4407 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4408 generic_xdp_tx(skb, xdp_prog);
4409 return 0;
4410 }
4411
4412 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4413 err:
4414 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4415 return err;
4416 }
4417
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4418 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4419 {
4420 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4421
4422 if (unlikely(flags))
4423 return XDP_ABORTED;
4424
4425 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4426 * by map_idr) is used for ifindex based XDP redirect.
4427 */
4428 ri->tgt_index = ifindex;
4429 ri->map_id = INT_MAX;
4430 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4431
4432 return XDP_REDIRECT;
4433 }
4434
4435 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4436 .func = bpf_xdp_redirect,
4437 .gpl_only = false,
4438 .ret_type = RET_INTEGER,
4439 .arg1_type = ARG_ANYTHING,
4440 .arg2_type = ARG_ANYTHING,
4441 };
4442
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4443 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4444 u64, flags)
4445 {
4446 return map->ops->map_redirect(map, ifindex, flags);
4447 }
4448
4449 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4450 .func = bpf_xdp_redirect_map,
4451 .gpl_only = false,
4452 .ret_type = RET_INTEGER,
4453 .arg1_type = ARG_CONST_MAP_PTR,
4454 .arg2_type = ARG_ANYTHING,
4455 .arg3_type = ARG_ANYTHING,
4456 };
4457
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4458 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4459 unsigned long off, unsigned long len)
4460 {
4461 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4462
4463 if (unlikely(!ptr))
4464 return len;
4465 if (ptr != dst_buff)
4466 memcpy(dst_buff, ptr, len);
4467
4468 return 0;
4469 }
4470
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4471 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4472 u64, flags, void *, meta, u64, meta_size)
4473 {
4474 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4475
4476 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4477 return -EINVAL;
4478 if (unlikely(!skb || skb_size > skb->len))
4479 return -EFAULT;
4480
4481 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4482 bpf_skb_copy);
4483 }
4484
4485 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4486 .func = bpf_skb_event_output,
4487 .gpl_only = true,
4488 .ret_type = RET_INTEGER,
4489 .arg1_type = ARG_PTR_TO_CTX,
4490 .arg2_type = ARG_CONST_MAP_PTR,
4491 .arg3_type = ARG_ANYTHING,
4492 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4493 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4494 };
4495
4496 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4497
4498 const struct bpf_func_proto bpf_skb_output_proto = {
4499 .func = bpf_skb_event_output,
4500 .gpl_only = true,
4501 .ret_type = RET_INTEGER,
4502 .arg1_type = ARG_PTR_TO_BTF_ID,
4503 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4504 .arg2_type = ARG_CONST_MAP_PTR,
4505 .arg3_type = ARG_ANYTHING,
4506 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4507 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4508 };
4509
bpf_tunnel_key_af(u64 flags)4510 static unsigned short bpf_tunnel_key_af(u64 flags)
4511 {
4512 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4513 }
4514
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4515 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4516 u32, size, u64, flags)
4517 {
4518 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4519 u8 compat[sizeof(struct bpf_tunnel_key)];
4520 void *to_orig = to;
4521 int err;
4522
4523 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4524 BPF_F_TUNINFO_FLAGS)))) {
4525 err = -EINVAL;
4526 goto err_clear;
4527 }
4528 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4529 err = -EPROTO;
4530 goto err_clear;
4531 }
4532 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4533 err = -EINVAL;
4534 switch (size) {
4535 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4536 case offsetof(struct bpf_tunnel_key, tunnel_label):
4537 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4538 goto set_compat;
4539 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4540 /* Fixup deprecated structure layouts here, so we have
4541 * a common path later on.
4542 */
4543 if (ip_tunnel_info_af(info) != AF_INET)
4544 goto err_clear;
4545 set_compat:
4546 to = (struct bpf_tunnel_key *)compat;
4547 break;
4548 default:
4549 goto err_clear;
4550 }
4551 }
4552
4553 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4554 to->tunnel_tos = info->key.tos;
4555 to->tunnel_ttl = info->key.ttl;
4556 if (flags & BPF_F_TUNINFO_FLAGS)
4557 to->tunnel_flags = info->key.tun_flags;
4558 else
4559 to->tunnel_ext = 0;
4560
4561 if (flags & BPF_F_TUNINFO_IPV6) {
4562 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4563 sizeof(to->remote_ipv6));
4564 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4565 sizeof(to->local_ipv6));
4566 to->tunnel_label = be32_to_cpu(info->key.label);
4567 } else {
4568 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4569 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4570 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4571 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4572 to->tunnel_label = 0;
4573 }
4574
4575 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4576 memcpy(to_orig, to, size);
4577
4578 return 0;
4579 err_clear:
4580 memset(to_orig, 0, size);
4581 return err;
4582 }
4583
4584 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4585 .func = bpf_skb_get_tunnel_key,
4586 .gpl_only = false,
4587 .ret_type = RET_INTEGER,
4588 .arg1_type = ARG_PTR_TO_CTX,
4589 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4590 .arg3_type = ARG_CONST_SIZE,
4591 .arg4_type = ARG_ANYTHING,
4592 };
4593
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4594 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4595 {
4596 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4597 int err;
4598
4599 if (unlikely(!info ||
4600 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4601 err = -ENOENT;
4602 goto err_clear;
4603 }
4604 if (unlikely(size < info->options_len)) {
4605 err = -ENOMEM;
4606 goto err_clear;
4607 }
4608
4609 ip_tunnel_info_opts_get(to, info);
4610 if (size > info->options_len)
4611 memset(to + info->options_len, 0, size - info->options_len);
4612
4613 return info->options_len;
4614 err_clear:
4615 memset(to, 0, size);
4616 return err;
4617 }
4618
4619 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4620 .func = bpf_skb_get_tunnel_opt,
4621 .gpl_only = false,
4622 .ret_type = RET_INTEGER,
4623 .arg1_type = ARG_PTR_TO_CTX,
4624 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4625 .arg3_type = ARG_CONST_SIZE,
4626 };
4627
4628 static struct metadata_dst __percpu *md_dst;
4629
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4630 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4631 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4632 {
4633 struct metadata_dst *md = this_cpu_ptr(md_dst);
4634 u8 compat[sizeof(struct bpf_tunnel_key)];
4635 struct ip_tunnel_info *info;
4636
4637 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4638 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4639 return -EINVAL;
4640 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4641 switch (size) {
4642 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4643 case offsetof(struct bpf_tunnel_key, tunnel_label):
4644 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4645 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4646 /* Fixup deprecated structure layouts here, so we have
4647 * a common path later on.
4648 */
4649 memcpy(compat, from, size);
4650 memset(compat + size, 0, sizeof(compat) - size);
4651 from = (const struct bpf_tunnel_key *) compat;
4652 break;
4653 default:
4654 return -EINVAL;
4655 }
4656 }
4657 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4658 from->tunnel_ext))
4659 return -EINVAL;
4660
4661 skb_dst_drop(skb);
4662 dst_hold((struct dst_entry *) md);
4663 skb_dst_set(skb, (struct dst_entry *) md);
4664
4665 info = &md->u.tun_info;
4666 memset(info, 0, sizeof(*info));
4667 info->mode = IP_TUNNEL_INFO_TX;
4668
4669 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4670 if (flags & BPF_F_DONT_FRAGMENT)
4671 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4672 if (flags & BPF_F_ZERO_CSUM_TX)
4673 info->key.tun_flags &= ~TUNNEL_CSUM;
4674 if (flags & BPF_F_SEQ_NUMBER)
4675 info->key.tun_flags |= TUNNEL_SEQ;
4676
4677 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4678 info->key.tos = from->tunnel_tos;
4679 info->key.ttl = from->tunnel_ttl;
4680
4681 if (flags & BPF_F_TUNINFO_IPV6) {
4682 info->mode |= IP_TUNNEL_INFO_IPV6;
4683 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4684 sizeof(from->remote_ipv6));
4685 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4686 sizeof(from->local_ipv6));
4687 info->key.label = cpu_to_be32(from->tunnel_label) &
4688 IPV6_FLOWLABEL_MASK;
4689 } else {
4690 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4691 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4692 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4693 }
4694
4695 return 0;
4696 }
4697
4698 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4699 .func = bpf_skb_set_tunnel_key,
4700 .gpl_only = false,
4701 .ret_type = RET_INTEGER,
4702 .arg1_type = ARG_PTR_TO_CTX,
4703 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4704 .arg3_type = ARG_CONST_SIZE,
4705 .arg4_type = ARG_ANYTHING,
4706 };
4707
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4708 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4709 const u8 *, from, u32, size)
4710 {
4711 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4712 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4713
4714 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4715 return -EINVAL;
4716 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4717 return -ENOMEM;
4718
4719 ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4720
4721 return 0;
4722 }
4723
4724 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4725 .func = bpf_skb_set_tunnel_opt,
4726 .gpl_only = false,
4727 .ret_type = RET_INTEGER,
4728 .arg1_type = ARG_PTR_TO_CTX,
4729 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4730 .arg3_type = ARG_CONST_SIZE,
4731 };
4732
4733 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4734 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4735 {
4736 if (!md_dst) {
4737 struct metadata_dst __percpu *tmp;
4738
4739 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4740 METADATA_IP_TUNNEL,
4741 GFP_KERNEL);
4742 if (!tmp)
4743 return NULL;
4744 if (cmpxchg(&md_dst, NULL, tmp))
4745 metadata_dst_free_percpu(tmp);
4746 }
4747
4748 switch (which) {
4749 case BPF_FUNC_skb_set_tunnel_key:
4750 return &bpf_skb_set_tunnel_key_proto;
4751 case BPF_FUNC_skb_set_tunnel_opt:
4752 return &bpf_skb_set_tunnel_opt_proto;
4753 default:
4754 return NULL;
4755 }
4756 }
4757
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4758 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4759 u32, idx)
4760 {
4761 struct bpf_array *array = container_of(map, struct bpf_array, map);
4762 struct cgroup *cgrp;
4763 struct sock *sk;
4764
4765 sk = skb_to_full_sk(skb);
4766 if (!sk || !sk_fullsock(sk))
4767 return -ENOENT;
4768 if (unlikely(idx >= array->map.max_entries))
4769 return -E2BIG;
4770
4771 cgrp = READ_ONCE(array->ptrs[idx]);
4772 if (unlikely(!cgrp))
4773 return -EAGAIN;
4774
4775 return sk_under_cgroup_hierarchy(sk, cgrp);
4776 }
4777
4778 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4779 .func = bpf_skb_under_cgroup,
4780 .gpl_only = false,
4781 .ret_type = RET_INTEGER,
4782 .arg1_type = ARG_PTR_TO_CTX,
4783 .arg2_type = ARG_CONST_MAP_PTR,
4784 .arg3_type = ARG_ANYTHING,
4785 };
4786
4787 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4788 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4789 {
4790 struct cgroup *cgrp;
4791
4792 sk = sk_to_full_sk(sk);
4793 if (!sk || !sk_fullsock(sk))
4794 return 0;
4795
4796 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4797 return cgroup_id(cgrp);
4798 }
4799
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4800 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4801 {
4802 return __bpf_sk_cgroup_id(skb->sk);
4803 }
4804
4805 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4806 .func = bpf_skb_cgroup_id,
4807 .gpl_only = false,
4808 .ret_type = RET_INTEGER,
4809 .arg1_type = ARG_PTR_TO_CTX,
4810 };
4811
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4812 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4813 int ancestor_level)
4814 {
4815 struct cgroup *ancestor;
4816 struct cgroup *cgrp;
4817
4818 sk = sk_to_full_sk(sk);
4819 if (!sk || !sk_fullsock(sk))
4820 return 0;
4821
4822 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4823 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4824 if (!ancestor)
4825 return 0;
4826
4827 return cgroup_id(ancestor);
4828 }
4829
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4830 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4831 ancestor_level)
4832 {
4833 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4834 }
4835
4836 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4837 .func = bpf_skb_ancestor_cgroup_id,
4838 .gpl_only = false,
4839 .ret_type = RET_INTEGER,
4840 .arg1_type = ARG_PTR_TO_CTX,
4841 .arg2_type = ARG_ANYTHING,
4842 };
4843
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4844 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4845 {
4846 return __bpf_sk_cgroup_id(sk);
4847 }
4848
4849 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4850 .func = bpf_sk_cgroup_id,
4851 .gpl_only = false,
4852 .ret_type = RET_INTEGER,
4853 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4854 };
4855
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4856 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4857 {
4858 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4859 }
4860
4861 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4862 .func = bpf_sk_ancestor_cgroup_id,
4863 .gpl_only = false,
4864 .ret_type = RET_INTEGER,
4865 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4866 .arg2_type = ARG_ANYTHING,
4867 };
4868 #endif
4869
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)4870 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4871 unsigned long off, unsigned long len)
4872 {
4873 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4874
4875 bpf_xdp_copy_buf(xdp, off, dst, len, false);
4876 return 0;
4877 }
4878
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4879 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4880 u64, flags, void *, meta, u64, meta_size)
4881 {
4882 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4883
4884 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4885 return -EINVAL;
4886
4887 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4888 return -EFAULT;
4889
4890 return bpf_event_output(map, flags, meta, meta_size, xdp,
4891 xdp_size, bpf_xdp_copy);
4892 }
4893
4894 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4895 .func = bpf_xdp_event_output,
4896 .gpl_only = true,
4897 .ret_type = RET_INTEGER,
4898 .arg1_type = ARG_PTR_TO_CTX,
4899 .arg2_type = ARG_CONST_MAP_PTR,
4900 .arg3_type = ARG_ANYTHING,
4901 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4902 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4903 };
4904
4905 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4906
4907 const struct bpf_func_proto bpf_xdp_output_proto = {
4908 .func = bpf_xdp_event_output,
4909 .gpl_only = true,
4910 .ret_type = RET_INTEGER,
4911 .arg1_type = ARG_PTR_TO_BTF_ID,
4912 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
4913 .arg2_type = ARG_CONST_MAP_PTR,
4914 .arg3_type = ARG_ANYTHING,
4915 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4916 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4917 };
4918
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4919 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4920 {
4921 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4922 }
4923
4924 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4925 .func = bpf_get_socket_cookie,
4926 .gpl_only = false,
4927 .ret_type = RET_INTEGER,
4928 .arg1_type = ARG_PTR_TO_CTX,
4929 };
4930
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4931 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4932 {
4933 return __sock_gen_cookie(ctx->sk);
4934 }
4935
4936 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4937 .func = bpf_get_socket_cookie_sock_addr,
4938 .gpl_only = false,
4939 .ret_type = RET_INTEGER,
4940 .arg1_type = ARG_PTR_TO_CTX,
4941 };
4942
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4943 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4944 {
4945 return __sock_gen_cookie(ctx);
4946 }
4947
4948 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4949 .func = bpf_get_socket_cookie_sock,
4950 .gpl_only = false,
4951 .ret_type = RET_INTEGER,
4952 .arg1_type = ARG_PTR_TO_CTX,
4953 };
4954
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)4955 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4956 {
4957 return sk ? sock_gen_cookie(sk) : 0;
4958 }
4959
4960 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4961 .func = bpf_get_socket_ptr_cookie,
4962 .gpl_only = false,
4963 .ret_type = RET_INTEGER,
4964 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4965 };
4966
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4967 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4968 {
4969 return __sock_gen_cookie(ctx->sk);
4970 }
4971
4972 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4973 .func = bpf_get_socket_cookie_sock_ops,
4974 .gpl_only = false,
4975 .ret_type = RET_INTEGER,
4976 .arg1_type = ARG_PTR_TO_CTX,
4977 };
4978
__bpf_get_netns_cookie(struct sock * sk)4979 static u64 __bpf_get_netns_cookie(struct sock *sk)
4980 {
4981 const struct net *net = sk ? sock_net(sk) : &init_net;
4982
4983 return net->net_cookie;
4984 }
4985
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4986 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4987 {
4988 return __bpf_get_netns_cookie(ctx);
4989 }
4990
4991 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4992 .func = bpf_get_netns_cookie_sock,
4993 .gpl_only = false,
4994 .ret_type = RET_INTEGER,
4995 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
4996 };
4997
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4998 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4999 {
5000 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5001 }
5002
5003 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5004 .func = bpf_get_netns_cookie_sock_addr,
5005 .gpl_only = false,
5006 .ret_type = RET_INTEGER,
5007 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5008 };
5009
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5010 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5011 {
5012 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5013 }
5014
5015 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5016 .func = bpf_get_netns_cookie_sock_ops,
5017 .gpl_only = false,
5018 .ret_type = RET_INTEGER,
5019 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5020 };
5021
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5022 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5023 {
5024 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5025 }
5026
5027 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5028 .func = bpf_get_netns_cookie_sk_msg,
5029 .gpl_only = false,
5030 .ret_type = RET_INTEGER,
5031 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5032 };
5033
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5034 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5035 {
5036 struct sock *sk = sk_to_full_sk(skb->sk);
5037 kuid_t kuid;
5038
5039 if (!sk || !sk_fullsock(sk))
5040 return overflowuid;
5041 kuid = sock_net_uid(sock_net(sk), sk);
5042 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5043 }
5044
5045 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5046 .func = bpf_get_socket_uid,
5047 .gpl_only = false,
5048 .ret_type = RET_INTEGER,
5049 .arg1_type = ARG_PTR_TO_CTX,
5050 };
5051
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5052 static int sol_socket_sockopt(struct sock *sk, int optname,
5053 char *optval, int *optlen,
5054 bool getopt)
5055 {
5056 switch (optname) {
5057 case SO_REUSEADDR:
5058 case SO_SNDBUF:
5059 case SO_RCVBUF:
5060 case SO_KEEPALIVE:
5061 case SO_PRIORITY:
5062 case SO_REUSEPORT:
5063 case SO_RCVLOWAT:
5064 case SO_MARK:
5065 case SO_MAX_PACING_RATE:
5066 case SO_BINDTOIFINDEX:
5067 case SO_TXREHASH:
5068 if (*optlen != sizeof(int))
5069 return -EINVAL;
5070 break;
5071 case SO_BINDTODEVICE:
5072 break;
5073 default:
5074 return -EINVAL;
5075 }
5076
5077 if (getopt) {
5078 if (optname == SO_BINDTODEVICE)
5079 return -EINVAL;
5080 return sk_getsockopt(sk, SOL_SOCKET, optname,
5081 KERNEL_SOCKPTR(optval),
5082 KERNEL_SOCKPTR(optlen));
5083 }
5084
5085 return sk_setsockopt(sk, SOL_SOCKET, optname,
5086 KERNEL_SOCKPTR(optval), *optlen);
5087 }
5088
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5089 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5090 char *optval, int optlen)
5091 {
5092 struct tcp_sock *tp = tcp_sk(sk);
5093 unsigned long timeout;
5094 int val;
5095
5096 if (optlen != sizeof(int))
5097 return -EINVAL;
5098
5099 val = *(int *)optval;
5100
5101 /* Only some options are supported */
5102 switch (optname) {
5103 case TCP_BPF_IW:
5104 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5105 return -EINVAL;
5106 tcp_snd_cwnd_set(tp, val);
5107 break;
5108 case TCP_BPF_SNDCWND_CLAMP:
5109 if (val <= 0)
5110 return -EINVAL;
5111 tp->snd_cwnd_clamp = val;
5112 tp->snd_ssthresh = val;
5113 break;
5114 case TCP_BPF_DELACK_MAX:
5115 timeout = usecs_to_jiffies(val);
5116 if (timeout > TCP_DELACK_MAX ||
5117 timeout < TCP_TIMEOUT_MIN)
5118 return -EINVAL;
5119 inet_csk(sk)->icsk_delack_max = timeout;
5120 break;
5121 case TCP_BPF_RTO_MIN:
5122 timeout = usecs_to_jiffies(val);
5123 if (timeout > TCP_RTO_MIN ||
5124 timeout < TCP_TIMEOUT_MIN)
5125 return -EINVAL;
5126 inet_csk(sk)->icsk_rto_min = timeout;
5127 break;
5128 default:
5129 return -EINVAL;
5130 }
5131
5132 return 0;
5133 }
5134
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5135 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5136 int *optlen, bool getopt)
5137 {
5138 struct tcp_sock *tp;
5139 int ret;
5140
5141 if (*optlen < 2)
5142 return -EINVAL;
5143
5144 if (getopt) {
5145 if (!inet_csk(sk)->icsk_ca_ops)
5146 return -EINVAL;
5147 /* BPF expects NULL-terminated tcp-cc string */
5148 optval[--(*optlen)] = '\0';
5149 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5150 KERNEL_SOCKPTR(optval),
5151 KERNEL_SOCKPTR(optlen));
5152 }
5153
5154 /* "cdg" is the only cc that alloc a ptr
5155 * in inet_csk_ca area. The bpf-tcp-cc may
5156 * overwrite this ptr after switching to cdg.
5157 */
5158 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5159 return -ENOTSUPP;
5160
5161 /* It stops this looping
5162 *
5163 * .init => bpf_setsockopt(tcp_cc) => .init =>
5164 * bpf_setsockopt(tcp_cc)" => .init => ....
5165 *
5166 * The second bpf_setsockopt(tcp_cc) is not allowed
5167 * in order to break the loop when both .init
5168 * are the same bpf prog.
5169 *
5170 * This applies even the second bpf_setsockopt(tcp_cc)
5171 * does not cause a loop. This limits only the first
5172 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5173 * pick a fallback cc (eg. peer does not support ECN)
5174 * and the second '.init' cannot fallback to
5175 * another.
5176 */
5177 tp = tcp_sk(sk);
5178 if (tp->bpf_chg_cc_inprogress)
5179 return -EBUSY;
5180
5181 tp->bpf_chg_cc_inprogress = 1;
5182 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5183 KERNEL_SOCKPTR(optval), *optlen);
5184 tp->bpf_chg_cc_inprogress = 0;
5185 return ret;
5186 }
5187
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5188 static int sol_tcp_sockopt(struct sock *sk, int optname,
5189 char *optval, int *optlen,
5190 bool getopt)
5191 {
5192 if (sk->sk_prot->setsockopt != tcp_setsockopt)
5193 return -EINVAL;
5194
5195 switch (optname) {
5196 case TCP_NODELAY:
5197 case TCP_MAXSEG:
5198 case TCP_KEEPIDLE:
5199 case TCP_KEEPINTVL:
5200 case TCP_KEEPCNT:
5201 case TCP_SYNCNT:
5202 case TCP_WINDOW_CLAMP:
5203 case TCP_THIN_LINEAR_TIMEOUTS:
5204 case TCP_USER_TIMEOUT:
5205 case TCP_NOTSENT_LOWAT:
5206 case TCP_SAVE_SYN:
5207 if (*optlen != sizeof(int))
5208 return -EINVAL;
5209 break;
5210 case TCP_CONGESTION:
5211 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5212 case TCP_SAVED_SYN:
5213 if (*optlen < 1)
5214 return -EINVAL;
5215 break;
5216 default:
5217 if (getopt)
5218 return -EINVAL;
5219 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5220 }
5221
5222 if (getopt) {
5223 if (optname == TCP_SAVED_SYN) {
5224 struct tcp_sock *tp = tcp_sk(sk);
5225
5226 if (!tp->saved_syn ||
5227 *optlen > tcp_saved_syn_len(tp->saved_syn))
5228 return -EINVAL;
5229 memcpy(optval, tp->saved_syn->data, *optlen);
5230 /* It cannot free tp->saved_syn here because it
5231 * does not know if the user space still needs it.
5232 */
5233 return 0;
5234 }
5235
5236 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5237 KERNEL_SOCKPTR(optval),
5238 KERNEL_SOCKPTR(optlen));
5239 }
5240
5241 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5242 KERNEL_SOCKPTR(optval), *optlen);
5243 }
5244
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5245 static int sol_ip_sockopt(struct sock *sk, int optname,
5246 char *optval, int *optlen,
5247 bool getopt)
5248 {
5249 if (sk->sk_family != AF_INET)
5250 return -EINVAL;
5251
5252 switch (optname) {
5253 case IP_TOS:
5254 if (*optlen != sizeof(int))
5255 return -EINVAL;
5256 break;
5257 default:
5258 return -EINVAL;
5259 }
5260
5261 if (getopt)
5262 return do_ip_getsockopt(sk, SOL_IP, optname,
5263 KERNEL_SOCKPTR(optval),
5264 KERNEL_SOCKPTR(optlen));
5265
5266 return do_ip_setsockopt(sk, SOL_IP, optname,
5267 KERNEL_SOCKPTR(optval), *optlen);
5268 }
5269
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5270 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5271 char *optval, int *optlen,
5272 bool getopt)
5273 {
5274 if (sk->sk_family != AF_INET6)
5275 return -EINVAL;
5276
5277 switch (optname) {
5278 case IPV6_TCLASS:
5279 case IPV6_AUTOFLOWLABEL:
5280 if (*optlen != sizeof(int))
5281 return -EINVAL;
5282 break;
5283 default:
5284 return -EINVAL;
5285 }
5286
5287 if (getopt)
5288 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5289 KERNEL_SOCKPTR(optval),
5290 KERNEL_SOCKPTR(optlen));
5291
5292 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5293 KERNEL_SOCKPTR(optval), *optlen);
5294 }
5295
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5296 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5297 char *optval, int optlen)
5298 {
5299 if (!sk_fullsock(sk))
5300 return -EINVAL;
5301
5302 if (level == SOL_SOCKET)
5303 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5304 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5305 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5306 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5307 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5308 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5309 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5310
5311 return -EINVAL;
5312 }
5313
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5314 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5315 char *optval, int optlen)
5316 {
5317 if (sk_fullsock(sk))
5318 sock_owned_by_me(sk);
5319 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5320 }
5321
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5322 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5323 char *optval, int optlen)
5324 {
5325 int err, saved_optlen = optlen;
5326
5327 if (!sk_fullsock(sk)) {
5328 err = -EINVAL;
5329 goto done;
5330 }
5331
5332 if (level == SOL_SOCKET)
5333 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5334 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5335 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5336 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5337 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5338 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5339 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5340 else
5341 err = -EINVAL;
5342
5343 done:
5344 if (err)
5345 optlen = 0;
5346 if (optlen < saved_optlen)
5347 memset(optval + optlen, 0, saved_optlen - optlen);
5348 return err;
5349 }
5350
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5351 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5352 char *optval, int optlen)
5353 {
5354 if (sk_fullsock(sk))
5355 sock_owned_by_me(sk);
5356 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5357 }
5358
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5359 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5360 int, optname, char *, optval, int, optlen)
5361 {
5362 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5363 }
5364
5365 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5366 .func = bpf_sk_setsockopt,
5367 .gpl_only = false,
5368 .ret_type = RET_INTEGER,
5369 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5370 .arg2_type = ARG_ANYTHING,
5371 .arg3_type = ARG_ANYTHING,
5372 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5373 .arg5_type = ARG_CONST_SIZE,
5374 };
5375
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5376 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5377 int, optname, char *, optval, int, optlen)
5378 {
5379 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5380 }
5381
5382 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5383 .func = bpf_sk_getsockopt,
5384 .gpl_only = false,
5385 .ret_type = RET_INTEGER,
5386 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5387 .arg2_type = ARG_ANYTHING,
5388 .arg3_type = ARG_ANYTHING,
5389 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5390 .arg5_type = ARG_CONST_SIZE,
5391 };
5392
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5393 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5394 int, optname, char *, optval, int, optlen)
5395 {
5396 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5397 }
5398
5399 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5400 .func = bpf_unlocked_sk_setsockopt,
5401 .gpl_only = false,
5402 .ret_type = RET_INTEGER,
5403 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5404 .arg2_type = ARG_ANYTHING,
5405 .arg3_type = ARG_ANYTHING,
5406 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5407 .arg5_type = ARG_CONST_SIZE,
5408 };
5409
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5410 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5411 int, optname, char *, optval, int, optlen)
5412 {
5413 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5414 }
5415
5416 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5417 .func = bpf_unlocked_sk_getsockopt,
5418 .gpl_only = false,
5419 .ret_type = RET_INTEGER,
5420 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5421 .arg2_type = ARG_ANYTHING,
5422 .arg3_type = ARG_ANYTHING,
5423 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5424 .arg5_type = ARG_CONST_SIZE,
5425 };
5426
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5427 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5428 int, level, int, optname, char *, optval, int, optlen)
5429 {
5430 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5431 }
5432
5433 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5434 .func = bpf_sock_addr_setsockopt,
5435 .gpl_only = false,
5436 .ret_type = RET_INTEGER,
5437 .arg1_type = ARG_PTR_TO_CTX,
5438 .arg2_type = ARG_ANYTHING,
5439 .arg3_type = ARG_ANYTHING,
5440 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5441 .arg5_type = ARG_CONST_SIZE,
5442 };
5443
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5444 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5445 int, level, int, optname, char *, optval, int, optlen)
5446 {
5447 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5448 }
5449
5450 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5451 .func = bpf_sock_addr_getsockopt,
5452 .gpl_only = false,
5453 .ret_type = RET_INTEGER,
5454 .arg1_type = ARG_PTR_TO_CTX,
5455 .arg2_type = ARG_ANYTHING,
5456 .arg3_type = ARG_ANYTHING,
5457 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5458 .arg5_type = ARG_CONST_SIZE,
5459 };
5460
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5461 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5462 int, level, int, optname, char *, optval, int, optlen)
5463 {
5464 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5465 }
5466
5467 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5468 .func = bpf_sock_ops_setsockopt,
5469 .gpl_only = false,
5470 .ret_type = RET_INTEGER,
5471 .arg1_type = ARG_PTR_TO_CTX,
5472 .arg2_type = ARG_ANYTHING,
5473 .arg3_type = ARG_ANYTHING,
5474 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5475 .arg5_type = ARG_CONST_SIZE,
5476 };
5477
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5478 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5479 int optname, const u8 **start)
5480 {
5481 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5482 const u8 *hdr_start;
5483 int ret;
5484
5485 if (syn_skb) {
5486 /* sk is a request_sock here */
5487
5488 if (optname == TCP_BPF_SYN) {
5489 hdr_start = syn_skb->data;
5490 ret = tcp_hdrlen(syn_skb);
5491 } else if (optname == TCP_BPF_SYN_IP) {
5492 hdr_start = skb_network_header(syn_skb);
5493 ret = skb_network_header_len(syn_skb) +
5494 tcp_hdrlen(syn_skb);
5495 } else {
5496 /* optname == TCP_BPF_SYN_MAC */
5497 hdr_start = skb_mac_header(syn_skb);
5498 ret = skb_mac_header_len(syn_skb) +
5499 skb_network_header_len(syn_skb) +
5500 tcp_hdrlen(syn_skb);
5501 }
5502 } else {
5503 struct sock *sk = bpf_sock->sk;
5504 struct saved_syn *saved_syn;
5505
5506 if (sk->sk_state == TCP_NEW_SYN_RECV)
5507 /* synack retransmit. bpf_sock->syn_skb will
5508 * not be available. It has to resort to
5509 * saved_syn (if it is saved).
5510 */
5511 saved_syn = inet_reqsk(sk)->saved_syn;
5512 else
5513 saved_syn = tcp_sk(sk)->saved_syn;
5514
5515 if (!saved_syn)
5516 return -ENOENT;
5517
5518 if (optname == TCP_BPF_SYN) {
5519 hdr_start = saved_syn->data +
5520 saved_syn->mac_hdrlen +
5521 saved_syn->network_hdrlen;
5522 ret = saved_syn->tcp_hdrlen;
5523 } else if (optname == TCP_BPF_SYN_IP) {
5524 hdr_start = saved_syn->data +
5525 saved_syn->mac_hdrlen;
5526 ret = saved_syn->network_hdrlen +
5527 saved_syn->tcp_hdrlen;
5528 } else {
5529 /* optname == TCP_BPF_SYN_MAC */
5530
5531 /* TCP_SAVE_SYN may not have saved the mac hdr */
5532 if (!saved_syn->mac_hdrlen)
5533 return -ENOENT;
5534
5535 hdr_start = saved_syn->data;
5536 ret = saved_syn->mac_hdrlen +
5537 saved_syn->network_hdrlen +
5538 saved_syn->tcp_hdrlen;
5539 }
5540 }
5541
5542 *start = hdr_start;
5543 return ret;
5544 }
5545
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5546 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5547 int, level, int, optname, char *, optval, int, optlen)
5548 {
5549 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5550 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5551 int ret, copy_len = 0;
5552 const u8 *start;
5553
5554 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5555 if (ret > 0) {
5556 copy_len = ret;
5557 if (optlen < copy_len) {
5558 copy_len = optlen;
5559 ret = -ENOSPC;
5560 }
5561
5562 memcpy(optval, start, copy_len);
5563 }
5564
5565 /* Zero out unused buffer at the end */
5566 memset(optval + copy_len, 0, optlen - copy_len);
5567
5568 return ret;
5569 }
5570
5571 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5572 }
5573
5574 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5575 .func = bpf_sock_ops_getsockopt,
5576 .gpl_only = false,
5577 .ret_type = RET_INTEGER,
5578 .arg1_type = ARG_PTR_TO_CTX,
5579 .arg2_type = ARG_ANYTHING,
5580 .arg3_type = ARG_ANYTHING,
5581 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5582 .arg5_type = ARG_CONST_SIZE,
5583 };
5584
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5585 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5586 int, argval)
5587 {
5588 struct sock *sk = bpf_sock->sk;
5589 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5590
5591 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5592 return -EINVAL;
5593
5594 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5595
5596 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5597 }
5598
5599 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5600 .func = bpf_sock_ops_cb_flags_set,
5601 .gpl_only = false,
5602 .ret_type = RET_INTEGER,
5603 .arg1_type = ARG_PTR_TO_CTX,
5604 .arg2_type = ARG_ANYTHING,
5605 };
5606
5607 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5608 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5609
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5610 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5611 int, addr_len)
5612 {
5613 #ifdef CONFIG_INET
5614 struct sock *sk = ctx->sk;
5615 u32 flags = BIND_FROM_BPF;
5616 int err;
5617
5618 err = -EINVAL;
5619 if (addr_len < offsetofend(struct sockaddr, sa_family))
5620 return err;
5621 if (addr->sa_family == AF_INET) {
5622 if (addr_len < sizeof(struct sockaddr_in))
5623 return err;
5624 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5625 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5626 return __inet_bind(sk, addr, addr_len, flags);
5627 #if IS_ENABLED(CONFIG_IPV6)
5628 } else if (addr->sa_family == AF_INET6) {
5629 if (addr_len < SIN6_LEN_RFC2133)
5630 return err;
5631 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5632 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5633 /* ipv6_bpf_stub cannot be NULL, since it's called from
5634 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5635 */
5636 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5637 #endif /* CONFIG_IPV6 */
5638 }
5639 #endif /* CONFIG_INET */
5640
5641 return -EAFNOSUPPORT;
5642 }
5643
5644 static const struct bpf_func_proto bpf_bind_proto = {
5645 .func = bpf_bind,
5646 .gpl_only = false,
5647 .ret_type = RET_INTEGER,
5648 .arg1_type = ARG_PTR_TO_CTX,
5649 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5650 .arg3_type = ARG_CONST_SIZE,
5651 };
5652
5653 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5654 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5655 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5656 {
5657 const struct sec_path *sp = skb_sec_path(skb);
5658 const struct xfrm_state *x;
5659
5660 if (!sp || unlikely(index >= sp->len || flags))
5661 goto err_clear;
5662
5663 x = sp->xvec[index];
5664
5665 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5666 goto err_clear;
5667
5668 to->reqid = x->props.reqid;
5669 to->spi = x->id.spi;
5670 to->family = x->props.family;
5671 to->ext = 0;
5672
5673 if (to->family == AF_INET6) {
5674 memcpy(to->remote_ipv6, x->props.saddr.a6,
5675 sizeof(to->remote_ipv6));
5676 } else {
5677 to->remote_ipv4 = x->props.saddr.a4;
5678 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5679 }
5680
5681 return 0;
5682 err_clear:
5683 memset(to, 0, size);
5684 return -EINVAL;
5685 }
5686
5687 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5688 .func = bpf_skb_get_xfrm_state,
5689 .gpl_only = false,
5690 .ret_type = RET_INTEGER,
5691 .arg1_type = ARG_PTR_TO_CTX,
5692 .arg2_type = ARG_ANYTHING,
5693 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5694 .arg4_type = ARG_CONST_SIZE,
5695 .arg5_type = ARG_ANYTHING,
5696 };
5697 #endif
5698
5699 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5700 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5701 {
5702 params->h_vlan_TCI = 0;
5703 params->h_vlan_proto = 0;
5704 if (mtu)
5705 params->mtu_result = mtu; /* union with tot_len */
5706
5707 return 0;
5708 }
5709 #endif
5710
5711 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5712 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5713 u32 flags, bool check_mtu)
5714 {
5715 struct fib_nh_common *nhc;
5716 struct in_device *in_dev;
5717 struct neighbour *neigh;
5718 struct net_device *dev;
5719 struct fib_result res;
5720 struct flowi4 fl4;
5721 u32 mtu = 0;
5722 int err;
5723
5724 dev = dev_get_by_index_rcu(net, params->ifindex);
5725 if (unlikely(!dev))
5726 return -ENODEV;
5727
5728 /* verify forwarding is enabled on this interface */
5729 in_dev = __in_dev_get_rcu(dev);
5730 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5731 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5732
5733 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5734 fl4.flowi4_iif = 1;
5735 fl4.flowi4_oif = params->ifindex;
5736 } else {
5737 fl4.flowi4_iif = params->ifindex;
5738 fl4.flowi4_oif = 0;
5739 }
5740 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5741 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5742 fl4.flowi4_flags = 0;
5743
5744 fl4.flowi4_proto = params->l4_protocol;
5745 fl4.daddr = params->ipv4_dst;
5746 fl4.saddr = params->ipv4_src;
5747 fl4.fl4_sport = params->sport;
5748 fl4.fl4_dport = params->dport;
5749 fl4.flowi4_multipath_hash = 0;
5750
5751 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5752 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5753 struct fib_table *tb;
5754
5755 tb = fib_get_table(net, tbid);
5756 if (unlikely(!tb))
5757 return BPF_FIB_LKUP_RET_NOT_FWDED;
5758
5759 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5760 } else {
5761 fl4.flowi4_mark = 0;
5762 fl4.flowi4_secid = 0;
5763 fl4.flowi4_tun_key.tun_id = 0;
5764 fl4.flowi4_uid = sock_net_uid(net, NULL);
5765
5766 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5767 }
5768
5769 if (err) {
5770 /* map fib lookup errors to RTN_ type */
5771 if (err == -EINVAL)
5772 return BPF_FIB_LKUP_RET_BLACKHOLE;
5773 if (err == -EHOSTUNREACH)
5774 return BPF_FIB_LKUP_RET_UNREACHABLE;
5775 if (err == -EACCES)
5776 return BPF_FIB_LKUP_RET_PROHIBIT;
5777
5778 return BPF_FIB_LKUP_RET_NOT_FWDED;
5779 }
5780
5781 if (res.type != RTN_UNICAST)
5782 return BPF_FIB_LKUP_RET_NOT_FWDED;
5783
5784 if (fib_info_num_path(res.fi) > 1)
5785 fib_select_path(net, &res, &fl4, NULL);
5786
5787 if (check_mtu) {
5788 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5789 if (params->tot_len > mtu) {
5790 params->mtu_result = mtu; /* union with tot_len */
5791 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5792 }
5793 }
5794
5795 nhc = res.nhc;
5796
5797 /* do not handle lwt encaps right now */
5798 if (nhc->nhc_lwtstate)
5799 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5800
5801 dev = nhc->nhc_dev;
5802
5803 params->rt_metric = res.fi->fib_priority;
5804 params->ifindex = dev->ifindex;
5805
5806 /* xdp and cls_bpf programs are run in RCU-bh so
5807 * rcu_read_lock_bh is not needed here
5808 */
5809 if (likely(nhc->nhc_gw_family != AF_INET6)) {
5810 if (nhc->nhc_gw_family)
5811 params->ipv4_dst = nhc->nhc_gw.ipv4;
5812 } else {
5813 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5814
5815 params->family = AF_INET6;
5816 *dst = nhc->nhc_gw.ipv6;
5817 }
5818
5819 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5820 goto set_fwd_params;
5821
5822 if (likely(nhc->nhc_gw_family != AF_INET6))
5823 neigh = __ipv4_neigh_lookup_noref(dev,
5824 (__force u32)params->ipv4_dst);
5825 else
5826 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5827
5828 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5829 return BPF_FIB_LKUP_RET_NO_NEIGH;
5830 memcpy(params->dmac, neigh->ha, ETH_ALEN);
5831 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5832
5833 set_fwd_params:
5834 return bpf_fib_set_fwd_params(params, mtu);
5835 }
5836 #endif
5837
5838 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5839 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5840 u32 flags, bool check_mtu)
5841 {
5842 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5843 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5844 struct fib6_result res = {};
5845 struct neighbour *neigh;
5846 struct net_device *dev;
5847 struct inet6_dev *idev;
5848 struct flowi6 fl6;
5849 int strict = 0;
5850 int oif, err;
5851 u32 mtu = 0;
5852
5853 /* link local addresses are never forwarded */
5854 if (rt6_need_strict(dst) || rt6_need_strict(src))
5855 return BPF_FIB_LKUP_RET_NOT_FWDED;
5856
5857 dev = dev_get_by_index_rcu(net, params->ifindex);
5858 if (unlikely(!dev))
5859 return -ENODEV;
5860
5861 idev = __in6_dev_get_safely(dev);
5862 if (unlikely(!idev || !idev->cnf.forwarding))
5863 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5864
5865 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5866 fl6.flowi6_iif = 1;
5867 oif = fl6.flowi6_oif = params->ifindex;
5868 } else {
5869 oif = fl6.flowi6_iif = params->ifindex;
5870 fl6.flowi6_oif = 0;
5871 strict = RT6_LOOKUP_F_HAS_SADDR;
5872 }
5873 fl6.flowlabel = params->flowinfo;
5874 fl6.flowi6_scope = 0;
5875 fl6.flowi6_flags = 0;
5876 fl6.mp_hash = 0;
5877
5878 fl6.flowi6_proto = params->l4_protocol;
5879 fl6.daddr = *dst;
5880 fl6.saddr = *src;
5881 fl6.fl6_sport = params->sport;
5882 fl6.fl6_dport = params->dport;
5883
5884 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5885 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5886 struct fib6_table *tb;
5887
5888 tb = ipv6_stub->fib6_get_table(net, tbid);
5889 if (unlikely(!tb))
5890 return BPF_FIB_LKUP_RET_NOT_FWDED;
5891
5892 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5893 strict);
5894 } else {
5895 fl6.flowi6_mark = 0;
5896 fl6.flowi6_secid = 0;
5897 fl6.flowi6_tun_key.tun_id = 0;
5898 fl6.flowi6_uid = sock_net_uid(net, NULL);
5899
5900 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5901 }
5902
5903 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5904 res.f6i == net->ipv6.fib6_null_entry))
5905 return BPF_FIB_LKUP_RET_NOT_FWDED;
5906
5907 switch (res.fib6_type) {
5908 /* only unicast is forwarded */
5909 case RTN_UNICAST:
5910 break;
5911 case RTN_BLACKHOLE:
5912 return BPF_FIB_LKUP_RET_BLACKHOLE;
5913 case RTN_UNREACHABLE:
5914 return BPF_FIB_LKUP_RET_UNREACHABLE;
5915 case RTN_PROHIBIT:
5916 return BPF_FIB_LKUP_RET_PROHIBIT;
5917 default:
5918 return BPF_FIB_LKUP_RET_NOT_FWDED;
5919 }
5920
5921 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5922 fl6.flowi6_oif != 0, NULL, strict);
5923
5924 if (check_mtu) {
5925 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5926 if (params->tot_len > mtu) {
5927 params->mtu_result = mtu; /* union with tot_len */
5928 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5929 }
5930 }
5931
5932 if (res.nh->fib_nh_lws)
5933 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5934
5935 if (res.nh->fib_nh_gw_family)
5936 *dst = res.nh->fib_nh_gw6;
5937
5938 dev = res.nh->fib_nh_dev;
5939 params->rt_metric = res.f6i->fib6_metric;
5940 params->ifindex = dev->ifindex;
5941
5942 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5943 goto set_fwd_params;
5944
5945 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5946 * not needed here.
5947 */
5948 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5949 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5950 return BPF_FIB_LKUP_RET_NO_NEIGH;
5951 memcpy(params->dmac, neigh->ha, ETH_ALEN);
5952 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5953
5954 set_fwd_params:
5955 return bpf_fib_set_fwd_params(params, mtu);
5956 }
5957 #endif
5958
5959 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
5960 BPF_FIB_LOOKUP_SKIP_NEIGH)
5961
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5962 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5963 struct bpf_fib_lookup *, params, int, plen, u32, flags)
5964 {
5965 if (plen < sizeof(*params))
5966 return -EINVAL;
5967
5968 if (flags & ~BPF_FIB_LOOKUP_MASK)
5969 return -EINVAL;
5970
5971 switch (params->family) {
5972 #if IS_ENABLED(CONFIG_INET)
5973 case AF_INET:
5974 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5975 flags, true);
5976 #endif
5977 #if IS_ENABLED(CONFIG_IPV6)
5978 case AF_INET6:
5979 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5980 flags, true);
5981 #endif
5982 }
5983 return -EAFNOSUPPORT;
5984 }
5985
5986 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5987 .func = bpf_xdp_fib_lookup,
5988 .gpl_only = true,
5989 .ret_type = RET_INTEGER,
5990 .arg1_type = ARG_PTR_TO_CTX,
5991 .arg2_type = ARG_PTR_TO_MEM,
5992 .arg3_type = ARG_CONST_SIZE,
5993 .arg4_type = ARG_ANYTHING,
5994 };
5995
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5996 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5997 struct bpf_fib_lookup *, params, int, plen, u32, flags)
5998 {
5999 struct net *net = dev_net(skb->dev);
6000 int rc = -EAFNOSUPPORT;
6001 bool check_mtu = false;
6002
6003 if (plen < sizeof(*params))
6004 return -EINVAL;
6005
6006 if (flags & ~BPF_FIB_LOOKUP_MASK)
6007 return -EINVAL;
6008
6009 if (params->tot_len)
6010 check_mtu = true;
6011
6012 switch (params->family) {
6013 #if IS_ENABLED(CONFIG_INET)
6014 case AF_INET:
6015 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6016 break;
6017 #endif
6018 #if IS_ENABLED(CONFIG_IPV6)
6019 case AF_INET6:
6020 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6021 break;
6022 #endif
6023 }
6024
6025 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6026 struct net_device *dev;
6027
6028 /* When tot_len isn't provided by user, check skb
6029 * against MTU of FIB lookup resulting net_device
6030 */
6031 dev = dev_get_by_index_rcu(net, params->ifindex);
6032 if (!is_skb_forwardable(dev, skb))
6033 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6034
6035 params->mtu_result = dev->mtu; /* union with tot_len */
6036 }
6037
6038 return rc;
6039 }
6040
6041 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6042 .func = bpf_skb_fib_lookup,
6043 .gpl_only = true,
6044 .ret_type = RET_INTEGER,
6045 .arg1_type = ARG_PTR_TO_CTX,
6046 .arg2_type = ARG_PTR_TO_MEM,
6047 .arg3_type = ARG_CONST_SIZE,
6048 .arg4_type = ARG_ANYTHING,
6049 };
6050
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6051 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6052 u32 ifindex)
6053 {
6054 struct net *netns = dev_net(dev_curr);
6055
6056 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6057 if (ifindex == 0)
6058 return dev_curr;
6059
6060 return dev_get_by_index_rcu(netns, ifindex);
6061 }
6062
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6063 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6064 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6065 {
6066 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6067 struct net_device *dev = skb->dev;
6068 int skb_len, dev_len;
6069 int mtu;
6070
6071 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6072 return -EINVAL;
6073
6074 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6075 return -EINVAL;
6076
6077 dev = __dev_via_ifindex(dev, ifindex);
6078 if (unlikely(!dev))
6079 return -ENODEV;
6080
6081 mtu = READ_ONCE(dev->mtu);
6082
6083 dev_len = mtu + dev->hard_header_len;
6084
6085 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6086 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6087
6088 skb_len += len_diff; /* minus result pass check */
6089 if (skb_len <= dev_len) {
6090 ret = BPF_MTU_CHK_RET_SUCCESS;
6091 goto out;
6092 }
6093 /* At this point, skb->len exceed MTU, but as it include length of all
6094 * segments, it can still be below MTU. The SKB can possibly get
6095 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6096 * must choose if segs are to be MTU checked.
6097 */
6098 if (skb_is_gso(skb)) {
6099 ret = BPF_MTU_CHK_RET_SUCCESS;
6100
6101 if (flags & BPF_MTU_CHK_SEGS &&
6102 !skb_gso_validate_network_len(skb, mtu))
6103 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6104 }
6105 out:
6106 /* BPF verifier guarantees valid pointer */
6107 *mtu_len = mtu;
6108
6109 return ret;
6110 }
6111
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6112 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6113 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6114 {
6115 struct net_device *dev = xdp->rxq->dev;
6116 int xdp_len = xdp->data_end - xdp->data;
6117 int ret = BPF_MTU_CHK_RET_SUCCESS;
6118 int mtu, dev_len;
6119
6120 /* XDP variant doesn't support multi-buffer segment check (yet) */
6121 if (unlikely(flags))
6122 return -EINVAL;
6123
6124 dev = __dev_via_ifindex(dev, ifindex);
6125 if (unlikely(!dev))
6126 return -ENODEV;
6127
6128 mtu = READ_ONCE(dev->mtu);
6129
6130 /* Add L2-header as dev MTU is L3 size */
6131 dev_len = mtu + dev->hard_header_len;
6132
6133 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6134 if (*mtu_len)
6135 xdp_len = *mtu_len + dev->hard_header_len;
6136
6137 xdp_len += len_diff; /* minus result pass check */
6138 if (xdp_len > dev_len)
6139 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6140
6141 /* BPF verifier guarantees valid pointer */
6142 *mtu_len = mtu;
6143
6144 return ret;
6145 }
6146
6147 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6148 .func = bpf_skb_check_mtu,
6149 .gpl_only = true,
6150 .ret_type = RET_INTEGER,
6151 .arg1_type = ARG_PTR_TO_CTX,
6152 .arg2_type = ARG_ANYTHING,
6153 .arg3_type = ARG_PTR_TO_INT,
6154 .arg4_type = ARG_ANYTHING,
6155 .arg5_type = ARG_ANYTHING,
6156 };
6157
6158 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6159 .func = bpf_xdp_check_mtu,
6160 .gpl_only = true,
6161 .ret_type = RET_INTEGER,
6162 .arg1_type = ARG_PTR_TO_CTX,
6163 .arg2_type = ARG_ANYTHING,
6164 .arg3_type = ARG_PTR_TO_INT,
6165 .arg4_type = ARG_ANYTHING,
6166 .arg5_type = ARG_ANYTHING,
6167 };
6168
6169 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6170 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6171 {
6172 int err;
6173 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6174
6175 if (!seg6_validate_srh(srh, len, false))
6176 return -EINVAL;
6177
6178 switch (type) {
6179 case BPF_LWT_ENCAP_SEG6_INLINE:
6180 if (skb->protocol != htons(ETH_P_IPV6))
6181 return -EBADMSG;
6182
6183 err = seg6_do_srh_inline(skb, srh);
6184 break;
6185 case BPF_LWT_ENCAP_SEG6:
6186 skb_reset_inner_headers(skb);
6187 skb->encapsulation = 1;
6188 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6189 break;
6190 default:
6191 return -EINVAL;
6192 }
6193
6194 bpf_compute_data_pointers(skb);
6195 if (err)
6196 return err;
6197
6198 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6199
6200 return seg6_lookup_nexthop(skb, NULL, 0);
6201 }
6202 #endif /* CONFIG_IPV6_SEG6_BPF */
6203
6204 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6205 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6206 bool ingress)
6207 {
6208 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6209 }
6210 #endif
6211
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6212 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6213 u32, len)
6214 {
6215 switch (type) {
6216 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6217 case BPF_LWT_ENCAP_SEG6:
6218 case BPF_LWT_ENCAP_SEG6_INLINE:
6219 return bpf_push_seg6_encap(skb, type, hdr, len);
6220 #endif
6221 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6222 case BPF_LWT_ENCAP_IP:
6223 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6224 #endif
6225 default:
6226 return -EINVAL;
6227 }
6228 }
6229
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6230 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6231 void *, hdr, u32, len)
6232 {
6233 switch (type) {
6234 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6235 case BPF_LWT_ENCAP_IP:
6236 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6237 #endif
6238 default:
6239 return -EINVAL;
6240 }
6241 }
6242
6243 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6244 .func = bpf_lwt_in_push_encap,
6245 .gpl_only = false,
6246 .ret_type = RET_INTEGER,
6247 .arg1_type = ARG_PTR_TO_CTX,
6248 .arg2_type = ARG_ANYTHING,
6249 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6250 .arg4_type = ARG_CONST_SIZE
6251 };
6252
6253 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6254 .func = bpf_lwt_xmit_push_encap,
6255 .gpl_only = false,
6256 .ret_type = RET_INTEGER,
6257 .arg1_type = ARG_PTR_TO_CTX,
6258 .arg2_type = ARG_ANYTHING,
6259 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6260 .arg4_type = ARG_CONST_SIZE
6261 };
6262
6263 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6264 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6265 const void *, from, u32, len)
6266 {
6267 struct seg6_bpf_srh_state *srh_state =
6268 this_cpu_ptr(&seg6_bpf_srh_states);
6269 struct ipv6_sr_hdr *srh = srh_state->srh;
6270 void *srh_tlvs, *srh_end, *ptr;
6271 int srhoff = 0;
6272
6273 if (srh == NULL)
6274 return -EINVAL;
6275
6276 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6277 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6278
6279 ptr = skb->data + offset;
6280 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6281 srh_state->valid = false;
6282 else if (ptr < (void *)&srh->flags ||
6283 ptr + len > (void *)&srh->segments)
6284 return -EFAULT;
6285
6286 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6287 return -EFAULT;
6288 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6289 return -EINVAL;
6290 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6291
6292 memcpy(skb->data + offset, from, len);
6293 return 0;
6294 }
6295
6296 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6297 .func = bpf_lwt_seg6_store_bytes,
6298 .gpl_only = false,
6299 .ret_type = RET_INTEGER,
6300 .arg1_type = ARG_PTR_TO_CTX,
6301 .arg2_type = ARG_ANYTHING,
6302 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6303 .arg4_type = ARG_CONST_SIZE
6304 };
6305
bpf_update_srh_state(struct sk_buff * skb)6306 static void bpf_update_srh_state(struct sk_buff *skb)
6307 {
6308 struct seg6_bpf_srh_state *srh_state =
6309 this_cpu_ptr(&seg6_bpf_srh_states);
6310 int srhoff = 0;
6311
6312 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6313 srh_state->srh = NULL;
6314 } else {
6315 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6316 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6317 srh_state->valid = true;
6318 }
6319 }
6320
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6321 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6322 u32, action, void *, param, u32, param_len)
6323 {
6324 struct seg6_bpf_srh_state *srh_state =
6325 this_cpu_ptr(&seg6_bpf_srh_states);
6326 int hdroff = 0;
6327 int err;
6328
6329 switch (action) {
6330 case SEG6_LOCAL_ACTION_END_X:
6331 if (!seg6_bpf_has_valid_srh(skb))
6332 return -EBADMSG;
6333 if (param_len != sizeof(struct in6_addr))
6334 return -EINVAL;
6335 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6336 case SEG6_LOCAL_ACTION_END_T:
6337 if (!seg6_bpf_has_valid_srh(skb))
6338 return -EBADMSG;
6339 if (param_len != sizeof(int))
6340 return -EINVAL;
6341 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6342 case SEG6_LOCAL_ACTION_END_DT6:
6343 if (!seg6_bpf_has_valid_srh(skb))
6344 return -EBADMSG;
6345 if (param_len != sizeof(int))
6346 return -EINVAL;
6347
6348 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6349 return -EBADMSG;
6350 if (!pskb_pull(skb, hdroff))
6351 return -EBADMSG;
6352
6353 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6354 skb_reset_network_header(skb);
6355 skb_reset_transport_header(skb);
6356 skb->encapsulation = 0;
6357
6358 bpf_compute_data_pointers(skb);
6359 bpf_update_srh_state(skb);
6360 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6361 case SEG6_LOCAL_ACTION_END_B6:
6362 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6363 return -EBADMSG;
6364 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6365 param, param_len);
6366 if (!err)
6367 bpf_update_srh_state(skb);
6368
6369 return err;
6370 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6371 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6372 return -EBADMSG;
6373 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6374 param, param_len);
6375 if (!err)
6376 bpf_update_srh_state(skb);
6377
6378 return err;
6379 default:
6380 return -EINVAL;
6381 }
6382 }
6383
6384 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6385 .func = bpf_lwt_seg6_action,
6386 .gpl_only = false,
6387 .ret_type = RET_INTEGER,
6388 .arg1_type = ARG_PTR_TO_CTX,
6389 .arg2_type = ARG_ANYTHING,
6390 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6391 .arg4_type = ARG_CONST_SIZE
6392 };
6393
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6394 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6395 s32, len)
6396 {
6397 struct seg6_bpf_srh_state *srh_state =
6398 this_cpu_ptr(&seg6_bpf_srh_states);
6399 struct ipv6_sr_hdr *srh = srh_state->srh;
6400 void *srh_end, *srh_tlvs, *ptr;
6401 struct ipv6hdr *hdr;
6402 int srhoff = 0;
6403 int ret;
6404
6405 if (unlikely(srh == NULL))
6406 return -EINVAL;
6407
6408 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6409 ((srh->first_segment + 1) << 4));
6410 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6411 srh_state->hdrlen);
6412 ptr = skb->data + offset;
6413
6414 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6415 return -EFAULT;
6416 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6417 return -EFAULT;
6418
6419 if (len > 0) {
6420 ret = skb_cow_head(skb, len);
6421 if (unlikely(ret < 0))
6422 return ret;
6423
6424 ret = bpf_skb_net_hdr_push(skb, offset, len);
6425 } else {
6426 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6427 }
6428
6429 bpf_compute_data_pointers(skb);
6430 if (unlikely(ret < 0))
6431 return ret;
6432
6433 hdr = (struct ipv6hdr *)skb->data;
6434 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6435
6436 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6437 return -EINVAL;
6438 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6439 srh_state->hdrlen += len;
6440 srh_state->valid = false;
6441 return 0;
6442 }
6443
6444 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6445 .func = bpf_lwt_seg6_adjust_srh,
6446 .gpl_only = false,
6447 .ret_type = RET_INTEGER,
6448 .arg1_type = ARG_PTR_TO_CTX,
6449 .arg2_type = ARG_ANYTHING,
6450 .arg3_type = ARG_ANYTHING,
6451 };
6452 #endif /* CONFIG_IPV6_SEG6_BPF */
6453
6454 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6455 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6456 int dif, int sdif, u8 family, u8 proto)
6457 {
6458 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6459 bool refcounted = false;
6460 struct sock *sk = NULL;
6461
6462 if (family == AF_INET) {
6463 __be32 src4 = tuple->ipv4.saddr;
6464 __be32 dst4 = tuple->ipv4.daddr;
6465
6466 if (proto == IPPROTO_TCP)
6467 sk = __inet_lookup(net, hinfo, NULL, 0,
6468 src4, tuple->ipv4.sport,
6469 dst4, tuple->ipv4.dport,
6470 dif, sdif, &refcounted);
6471 else
6472 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6473 dst4, tuple->ipv4.dport,
6474 dif, sdif, &udp_table, NULL);
6475 #if IS_ENABLED(CONFIG_IPV6)
6476 } else {
6477 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6478 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6479
6480 if (proto == IPPROTO_TCP)
6481 sk = __inet6_lookup(net, hinfo, NULL, 0,
6482 src6, tuple->ipv6.sport,
6483 dst6, ntohs(tuple->ipv6.dport),
6484 dif, sdif, &refcounted);
6485 else if (likely(ipv6_bpf_stub))
6486 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6487 src6, tuple->ipv6.sport,
6488 dst6, tuple->ipv6.dport,
6489 dif, sdif,
6490 &udp_table, NULL);
6491 #endif
6492 }
6493
6494 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6495 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6496 sk = NULL;
6497 }
6498 return sk;
6499 }
6500
6501 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6502 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6503 */
6504 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6505 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6506 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6507 u64 flags, int sdif)
6508 {
6509 struct sock *sk = NULL;
6510 struct net *net;
6511 u8 family;
6512
6513 if (len == sizeof(tuple->ipv4))
6514 family = AF_INET;
6515 else if (len == sizeof(tuple->ipv6))
6516 family = AF_INET6;
6517 else
6518 return NULL;
6519
6520 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6521 goto out;
6522
6523 if (sdif < 0) {
6524 if (family == AF_INET)
6525 sdif = inet_sdif(skb);
6526 else
6527 sdif = inet6_sdif(skb);
6528 }
6529
6530 if ((s32)netns_id < 0) {
6531 net = caller_net;
6532 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6533 } else {
6534 net = get_net_ns_by_id(caller_net, netns_id);
6535 if (unlikely(!net))
6536 goto out;
6537 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6538 put_net(net);
6539 }
6540
6541 out:
6542 return sk;
6543 }
6544
6545 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6546 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6547 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6548 u64 flags, int sdif)
6549 {
6550 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6551 ifindex, proto, netns_id, flags,
6552 sdif);
6553
6554 if (sk) {
6555 struct sock *sk2 = sk_to_full_sk(sk);
6556
6557 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6558 * sock refcnt is decremented to prevent a request_sock leak.
6559 */
6560 if (!sk_fullsock(sk2))
6561 sk2 = NULL;
6562 if (sk2 != sk) {
6563 sock_gen_put(sk);
6564 /* Ensure there is no need to bump sk2 refcnt */
6565 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6566 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6567 return NULL;
6568 }
6569 sk = sk2;
6570 }
6571 }
6572
6573 return sk;
6574 }
6575
6576 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6577 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6578 u8 proto, u64 netns_id, u64 flags)
6579 {
6580 struct net *caller_net;
6581 int ifindex;
6582
6583 if (skb->dev) {
6584 caller_net = dev_net(skb->dev);
6585 ifindex = skb->dev->ifindex;
6586 } else {
6587 caller_net = sock_net(skb->sk);
6588 ifindex = 0;
6589 }
6590
6591 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6592 netns_id, flags, -1);
6593 }
6594
6595 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6596 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6597 u8 proto, u64 netns_id, u64 flags)
6598 {
6599 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6600 flags);
6601
6602 if (sk) {
6603 struct sock *sk2 = sk_to_full_sk(sk);
6604
6605 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6606 * sock refcnt is decremented to prevent a request_sock leak.
6607 */
6608 if (!sk_fullsock(sk2))
6609 sk2 = NULL;
6610 if (sk2 != sk) {
6611 sock_gen_put(sk);
6612 /* Ensure there is no need to bump sk2 refcnt */
6613 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6614 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6615 return NULL;
6616 }
6617 sk = sk2;
6618 }
6619 }
6620
6621 return sk;
6622 }
6623
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6624 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6625 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6626 {
6627 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6628 netns_id, flags);
6629 }
6630
6631 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6632 .func = bpf_skc_lookup_tcp,
6633 .gpl_only = false,
6634 .pkt_access = true,
6635 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6636 .arg1_type = ARG_PTR_TO_CTX,
6637 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6638 .arg3_type = ARG_CONST_SIZE,
6639 .arg4_type = ARG_ANYTHING,
6640 .arg5_type = ARG_ANYTHING,
6641 };
6642
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6643 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6644 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6645 {
6646 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6647 netns_id, flags);
6648 }
6649
6650 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6651 .func = bpf_sk_lookup_tcp,
6652 .gpl_only = false,
6653 .pkt_access = true,
6654 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6655 .arg1_type = ARG_PTR_TO_CTX,
6656 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6657 .arg3_type = ARG_CONST_SIZE,
6658 .arg4_type = ARG_ANYTHING,
6659 .arg5_type = ARG_ANYTHING,
6660 };
6661
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6662 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6663 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6664 {
6665 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6666 netns_id, flags);
6667 }
6668
6669 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6670 .func = bpf_sk_lookup_udp,
6671 .gpl_only = false,
6672 .pkt_access = true,
6673 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6674 .arg1_type = ARG_PTR_TO_CTX,
6675 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6676 .arg3_type = ARG_CONST_SIZE,
6677 .arg4_type = ARG_ANYTHING,
6678 .arg5_type = ARG_ANYTHING,
6679 };
6680
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6681 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6682 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6683 {
6684 struct net_device *dev = skb->dev;
6685 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6686 struct net *caller_net = dev_net(dev);
6687
6688 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6689 ifindex, IPPROTO_TCP, netns_id,
6690 flags, sdif);
6691 }
6692
6693 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6694 .func = bpf_tc_skc_lookup_tcp,
6695 .gpl_only = false,
6696 .pkt_access = true,
6697 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6698 .arg1_type = ARG_PTR_TO_CTX,
6699 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6700 .arg3_type = ARG_CONST_SIZE,
6701 .arg4_type = ARG_ANYTHING,
6702 .arg5_type = ARG_ANYTHING,
6703 };
6704
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6705 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6706 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6707 {
6708 struct net_device *dev = skb->dev;
6709 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6710 struct net *caller_net = dev_net(dev);
6711
6712 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6713 ifindex, IPPROTO_TCP, netns_id,
6714 flags, sdif);
6715 }
6716
6717 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6718 .func = bpf_tc_sk_lookup_tcp,
6719 .gpl_only = false,
6720 .pkt_access = true,
6721 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6722 .arg1_type = ARG_PTR_TO_CTX,
6723 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6724 .arg3_type = ARG_CONST_SIZE,
6725 .arg4_type = ARG_ANYTHING,
6726 .arg5_type = ARG_ANYTHING,
6727 };
6728
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6729 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6730 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6731 {
6732 struct net_device *dev = skb->dev;
6733 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6734 struct net *caller_net = dev_net(dev);
6735
6736 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6737 ifindex, IPPROTO_UDP, netns_id,
6738 flags, sdif);
6739 }
6740
6741 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6742 .func = bpf_tc_sk_lookup_udp,
6743 .gpl_only = false,
6744 .pkt_access = true,
6745 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6746 .arg1_type = ARG_PTR_TO_CTX,
6747 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6748 .arg3_type = ARG_CONST_SIZE,
6749 .arg4_type = ARG_ANYTHING,
6750 .arg5_type = ARG_ANYTHING,
6751 };
6752
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6753 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6754 {
6755 if (sk && sk_is_refcounted(sk))
6756 sock_gen_put(sk);
6757 return 0;
6758 }
6759
6760 static const struct bpf_func_proto bpf_sk_release_proto = {
6761 .func = bpf_sk_release,
6762 .gpl_only = false,
6763 .ret_type = RET_INTEGER,
6764 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6765 };
6766
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6767 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6768 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6769 {
6770 struct net_device *dev = ctx->rxq->dev;
6771 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6772 struct net *caller_net = dev_net(dev);
6773
6774 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6775 ifindex, IPPROTO_UDP, netns_id,
6776 flags, sdif);
6777 }
6778
6779 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6780 .func = bpf_xdp_sk_lookup_udp,
6781 .gpl_only = false,
6782 .pkt_access = true,
6783 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6784 .arg1_type = ARG_PTR_TO_CTX,
6785 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6786 .arg3_type = ARG_CONST_SIZE,
6787 .arg4_type = ARG_ANYTHING,
6788 .arg5_type = ARG_ANYTHING,
6789 };
6790
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6791 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6792 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6793 {
6794 struct net_device *dev = ctx->rxq->dev;
6795 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6796 struct net *caller_net = dev_net(dev);
6797
6798 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6799 ifindex, IPPROTO_TCP, netns_id,
6800 flags, sdif);
6801 }
6802
6803 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6804 .func = bpf_xdp_skc_lookup_tcp,
6805 .gpl_only = false,
6806 .pkt_access = true,
6807 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6808 .arg1_type = ARG_PTR_TO_CTX,
6809 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6810 .arg3_type = ARG_CONST_SIZE,
6811 .arg4_type = ARG_ANYTHING,
6812 .arg5_type = ARG_ANYTHING,
6813 };
6814
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6815 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6816 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6817 {
6818 struct net_device *dev = ctx->rxq->dev;
6819 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6820 struct net *caller_net = dev_net(dev);
6821
6822 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6823 ifindex, IPPROTO_TCP, netns_id,
6824 flags, sdif);
6825 }
6826
6827 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6828 .func = bpf_xdp_sk_lookup_tcp,
6829 .gpl_only = false,
6830 .pkt_access = true,
6831 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6832 .arg1_type = ARG_PTR_TO_CTX,
6833 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6834 .arg3_type = ARG_CONST_SIZE,
6835 .arg4_type = ARG_ANYTHING,
6836 .arg5_type = ARG_ANYTHING,
6837 };
6838
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6839 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6840 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6841 {
6842 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6843 sock_net(ctx->sk), 0,
6844 IPPROTO_TCP, netns_id, flags,
6845 -1);
6846 }
6847
6848 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6849 .func = bpf_sock_addr_skc_lookup_tcp,
6850 .gpl_only = false,
6851 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6852 .arg1_type = ARG_PTR_TO_CTX,
6853 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6854 .arg3_type = ARG_CONST_SIZE,
6855 .arg4_type = ARG_ANYTHING,
6856 .arg5_type = ARG_ANYTHING,
6857 };
6858
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6859 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6860 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6861 {
6862 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6863 sock_net(ctx->sk), 0, IPPROTO_TCP,
6864 netns_id, flags, -1);
6865 }
6866
6867 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6868 .func = bpf_sock_addr_sk_lookup_tcp,
6869 .gpl_only = false,
6870 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6871 .arg1_type = ARG_PTR_TO_CTX,
6872 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6873 .arg3_type = ARG_CONST_SIZE,
6874 .arg4_type = ARG_ANYTHING,
6875 .arg5_type = ARG_ANYTHING,
6876 };
6877
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6878 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6879 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6880 {
6881 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6882 sock_net(ctx->sk), 0, IPPROTO_UDP,
6883 netns_id, flags, -1);
6884 }
6885
6886 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6887 .func = bpf_sock_addr_sk_lookup_udp,
6888 .gpl_only = false,
6889 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6890 .arg1_type = ARG_PTR_TO_CTX,
6891 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6892 .arg3_type = ARG_CONST_SIZE,
6893 .arg4_type = ARG_ANYTHING,
6894 .arg5_type = ARG_ANYTHING,
6895 };
6896
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6897 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6898 struct bpf_insn_access_aux *info)
6899 {
6900 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6901 icsk_retransmits))
6902 return false;
6903
6904 if (off % size != 0)
6905 return false;
6906
6907 switch (off) {
6908 case offsetof(struct bpf_tcp_sock, bytes_received):
6909 case offsetof(struct bpf_tcp_sock, bytes_acked):
6910 return size == sizeof(__u64);
6911 default:
6912 return size == sizeof(__u32);
6913 }
6914 }
6915
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6916 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6917 const struct bpf_insn *si,
6918 struct bpf_insn *insn_buf,
6919 struct bpf_prog *prog, u32 *target_size)
6920 {
6921 struct bpf_insn *insn = insn_buf;
6922
6923 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
6924 do { \
6925 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
6926 sizeof_field(struct bpf_tcp_sock, FIELD)); \
6927 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6928 si->dst_reg, si->src_reg, \
6929 offsetof(struct tcp_sock, FIELD)); \
6930 } while (0)
6931
6932 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
6933 do { \
6934 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
6935 FIELD) > \
6936 sizeof_field(struct bpf_tcp_sock, FIELD)); \
6937 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
6938 struct inet_connection_sock, \
6939 FIELD), \
6940 si->dst_reg, si->src_reg, \
6941 offsetof( \
6942 struct inet_connection_sock, \
6943 FIELD)); \
6944 } while (0)
6945
6946 if (insn > insn_buf)
6947 return insn - insn_buf;
6948
6949 switch (si->off) {
6950 case offsetof(struct bpf_tcp_sock, rtt_min):
6951 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6952 sizeof(struct minmax));
6953 BUILD_BUG_ON(sizeof(struct minmax) <
6954 sizeof(struct minmax_sample));
6955
6956 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6957 offsetof(struct tcp_sock, rtt_min) +
6958 offsetof(struct minmax_sample, v));
6959 break;
6960 case offsetof(struct bpf_tcp_sock, snd_cwnd):
6961 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6962 break;
6963 case offsetof(struct bpf_tcp_sock, srtt_us):
6964 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6965 break;
6966 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6967 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6968 break;
6969 case offsetof(struct bpf_tcp_sock, rcv_nxt):
6970 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6971 break;
6972 case offsetof(struct bpf_tcp_sock, snd_nxt):
6973 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6974 break;
6975 case offsetof(struct bpf_tcp_sock, snd_una):
6976 BPF_TCP_SOCK_GET_COMMON(snd_una);
6977 break;
6978 case offsetof(struct bpf_tcp_sock, mss_cache):
6979 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6980 break;
6981 case offsetof(struct bpf_tcp_sock, ecn_flags):
6982 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6983 break;
6984 case offsetof(struct bpf_tcp_sock, rate_delivered):
6985 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6986 break;
6987 case offsetof(struct bpf_tcp_sock, rate_interval_us):
6988 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6989 break;
6990 case offsetof(struct bpf_tcp_sock, packets_out):
6991 BPF_TCP_SOCK_GET_COMMON(packets_out);
6992 break;
6993 case offsetof(struct bpf_tcp_sock, retrans_out):
6994 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6995 break;
6996 case offsetof(struct bpf_tcp_sock, total_retrans):
6997 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6998 break;
6999 case offsetof(struct bpf_tcp_sock, segs_in):
7000 BPF_TCP_SOCK_GET_COMMON(segs_in);
7001 break;
7002 case offsetof(struct bpf_tcp_sock, data_segs_in):
7003 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7004 break;
7005 case offsetof(struct bpf_tcp_sock, segs_out):
7006 BPF_TCP_SOCK_GET_COMMON(segs_out);
7007 break;
7008 case offsetof(struct bpf_tcp_sock, data_segs_out):
7009 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7010 break;
7011 case offsetof(struct bpf_tcp_sock, lost_out):
7012 BPF_TCP_SOCK_GET_COMMON(lost_out);
7013 break;
7014 case offsetof(struct bpf_tcp_sock, sacked_out):
7015 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7016 break;
7017 case offsetof(struct bpf_tcp_sock, bytes_received):
7018 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7019 break;
7020 case offsetof(struct bpf_tcp_sock, bytes_acked):
7021 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7022 break;
7023 case offsetof(struct bpf_tcp_sock, dsack_dups):
7024 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7025 break;
7026 case offsetof(struct bpf_tcp_sock, delivered):
7027 BPF_TCP_SOCK_GET_COMMON(delivered);
7028 break;
7029 case offsetof(struct bpf_tcp_sock, delivered_ce):
7030 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7031 break;
7032 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7033 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7034 break;
7035 }
7036
7037 return insn - insn_buf;
7038 }
7039
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7040 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7041 {
7042 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7043 return (unsigned long)sk;
7044
7045 return (unsigned long)NULL;
7046 }
7047
7048 const struct bpf_func_proto bpf_tcp_sock_proto = {
7049 .func = bpf_tcp_sock,
7050 .gpl_only = false,
7051 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7052 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7053 };
7054
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7055 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7056 {
7057 sk = sk_to_full_sk(sk);
7058
7059 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7060 return (unsigned long)sk;
7061
7062 return (unsigned long)NULL;
7063 }
7064
7065 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7066 .func = bpf_get_listener_sock,
7067 .gpl_only = false,
7068 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7069 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7070 };
7071
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7072 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7073 {
7074 unsigned int iphdr_len;
7075
7076 switch (skb_protocol(skb, true)) {
7077 case cpu_to_be16(ETH_P_IP):
7078 iphdr_len = sizeof(struct iphdr);
7079 break;
7080 case cpu_to_be16(ETH_P_IPV6):
7081 iphdr_len = sizeof(struct ipv6hdr);
7082 break;
7083 default:
7084 return 0;
7085 }
7086
7087 if (skb_headlen(skb) < iphdr_len)
7088 return 0;
7089
7090 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7091 return 0;
7092
7093 return INET_ECN_set_ce(skb);
7094 }
7095
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7096 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7097 struct bpf_insn_access_aux *info)
7098 {
7099 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7100 return false;
7101
7102 if (off % size != 0)
7103 return false;
7104
7105 switch (off) {
7106 default:
7107 return size == sizeof(__u32);
7108 }
7109 }
7110
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7111 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7112 const struct bpf_insn *si,
7113 struct bpf_insn *insn_buf,
7114 struct bpf_prog *prog, u32 *target_size)
7115 {
7116 struct bpf_insn *insn = insn_buf;
7117
7118 #define BPF_XDP_SOCK_GET(FIELD) \
7119 do { \
7120 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7121 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7122 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7123 si->dst_reg, si->src_reg, \
7124 offsetof(struct xdp_sock, FIELD)); \
7125 } while (0)
7126
7127 switch (si->off) {
7128 case offsetof(struct bpf_xdp_sock, queue_id):
7129 BPF_XDP_SOCK_GET(queue_id);
7130 break;
7131 }
7132
7133 return insn - insn_buf;
7134 }
7135
7136 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7137 .func = bpf_skb_ecn_set_ce,
7138 .gpl_only = false,
7139 .ret_type = RET_INTEGER,
7140 .arg1_type = ARG_PTR_TO_CTX,
7141 };
7142
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7143 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7144 struct tcphdr *, th, u32, th_len)
7145 {
7146 #ifdef CONFIG_SYN_COOKIES
7147 u32 cookie;
7148 int ret;
7149
7150 if (unlikely(!sk || th_len < sizeof(*th)))
7151 return -EINVAL;
7152
7153 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7154 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7155 return -EINVAL;
7156
7157 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7158 return -EINVAL;
7159
7160 if (!th->ack || th->rst || th->syn)
7161 return -ENOENT;
7162
7163 if (unlikely(iph_len < sizeof(struct iphdr)))
7164 return -EINVAL;
7165
7166 if (tcp_synq_no_recent_overflow(sk))
7167 return -ENOENT;
7168
7169 cookie = ntohl(th->ack_seq) - 1;
7170
7171 /* Both struct iphdr and struct ipv6hdr have the version field at the
7172 * same offset so we can cast to the shorter header (struct iphdr).
7173 */
7174 switch (((struct iphdr *)iph)->version) {
7175 case 4:
7176 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7177 return -EINVAL;
7178
7179 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7180 break;
7181
7182 #if IS_BUILTIN(CONFIG_IPV6)
7183 case 6:
7184 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7185 return -EINVAL;
7186
7187 if (sk->sk_family != AF_INET6)
7188 return -EINVAL;
7189
7190 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7191 break;
7192 #endif /* CONFIG_IPV6 */
7193
7194 default:
7195 return -EPROTONOSUPPORT;
7196 }
7197
7198 if (ret > 0)
7199 return 0;
7200
7201 return -ENOENT;
7202 #else
7203 return -ENOTSUPP;
7204 #endif
7205 }
7206
7207 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7208 .func = bpf_tcp_check_syncookie,
7209 .gpl_only = true,
7210 .pkt_access = true,
7211 .ret_type = RET_INTEGER,
7212 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7213 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7214 .arg3_type = ARG_CONST_SIZE,
7215 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7216 .arg5_type = ARG_CONST_SIZE,
7217 };
7218
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7219 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7220 struct tcphdr *, th, u32, th_len)
7221 {
7222 #ifdef CONFIG_SYN_COOKIES
7223 u32 cookie;
7224 u16 mss;
7225
7226 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7227 return -EINVAL;
7228
7229 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7230 return -EINVAL;
7231
7232 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7233 return -ENOENT;
7234
7235 if (!th->syn || th->ack || th->fin || th->rst)
7236 return -EINVAL;
7237
7238 if (unlikely(iph_len < sizeof(struct iphdr)))
7239 return -EINVAL;
7240
7241 /* Both struct iphdr and struct ipv6hdr have the version field at the
7242 * same offset so we can cast to the shorter header (struct iphdr).
7243 */
7244 switch (((struct iphdr *)iph)->version) {
7245 case 4:
7246 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7247 return -EINVAL;
7248
7249 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7250 break;
7251
7252 #if IS_BUILTIN(CONFIG_IPV6)
7253 case 6:
7254 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7255 return -EINVAL;
7256
7257 if (sk->sk_family != AF_INET6)
7258 return -EINVAL;
7259
7260 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7261 break;
7262 #endif /* CONFIG_IPV6 */
7263
7264 default:
7265 return -EPROTONOSUPPORT;
7266 }
7267 if (mss == 0)
7268 return -ENOENT;
7269
7270 return cookie | ((u64)mss << 32);
7271 #else
7272 return -EOPNOTSUPP;
7273 #endif /* CONFIG_SYN_COOKIES */
7274 }
7275
7276 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7277 .func = bpf_tcp_gen_syncookie,
7278 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7279 .pkt_access = true,
7280 .ret_type = RET_INTEGER,
7281 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7282 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7283 .arg3_type = ARG_CONST_SIZE,
7284 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7285 .arg5_type = ARG_CONST_SIZE,
7286 };
7287
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7288 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7289 {
7290 if (!sk || flags != 0)
7291 return -EINVAL;
7292 if (!skb_at_tc_ingress(skb))
7293 return -EOPNOTSUPP;
7294 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7295 return -ENETUNREACH;
7296 if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7297 return -ESOCKTNOSUPPORT;
7298 if (sk_unhashed(sk))
7299 return -EOPNOTSUPP;
7300 if (sk_is_refcounted(sk) &&
7301 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7302 return -ENOENT;
7303
7304 skb_orphan(skb);
7305 skb->sk = sk;
7306 skb->destructor = sock_pfree;
7307
7308 return 0;
7309 }
7310
7311 static const struct bpf_func_proto bpf_sk_assign_proto = {
7312 .func = bpf_sk_assign,
7313 .gpl_only = false,
7314 .ret_type = RET_INTEGER,
7315 .arg1_type = ARG_PTR_TO_CTX,
7316 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7317 .arg3_type = ARG_ANYTHING,
7318 };
7319
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7320 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7321 u8 search_kind, const u8 *magic,
7322 u8 magic_len, bool *eol)
7323 {
7324 u8 kind, kind_len;
7325
7326 *eol = false;
7327
7328 while (op < opend) {
7329 kind = op[0];
7330
7331 if (kind == TCPOPT_EOL) {
7332 *eol = true;
7333 return ERR_PTR(-ENOMSG);
7334 } else if (kind == TCPOPT_NOP) {
7335 op++;
7336 continue;
7337 }
7338
7339 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7340 /* Something is wrong in the received header.
7341 * Follow the TCP stack's tcp_parse_options()
7342 * and just bail here.
7343 */
7344 return ERR_PTR(-EFAULT);
7345
7346 kind_len = op[1];
7347 if (search_kind == kind) {
7348 if (!magic_len)
7349 return op;
7350
7351 if (magic_len > kind_len - 2)
7352 return ERR_PTR(-ENOMSG);
7353
7354 if (!memcmp(&op[2], magic, magic_len))
7355 return op;
7356 }
7357
7358 op += kind_len;
7359 }
7360
7361 return ERR_PTR(-ENOMSG);
7362 }
7363
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7364 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7365 void *, search_res, u32, len, u64, flags)
7366 {
7367 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7368 const u8 *op, *opend, *magic, *search = search_res;
7369 u8 search_kind, search_len, copy_len, magic_len;
7370 int ret;
7371
7372 /* 2 byte is the minimal option len except TCPOPT_NOP and
7373 * TCPOPT_EOL which are useless for the bpf prog to learn
7374 * and this helper disallow loading them also.
7375 */
7376 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7377 return -EINVAL;
7378
7379 search_kind = search[0];
7380 search_len = search[1];
7381
7382 if (search_len > len || search_kind == TCPOPT_NOP ||
7383 search_kind == TCPOPT_EOL)
7384 return -EINVAL;
7385
7386 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7387 /* 16 or 32 bit magic. +2 for kind and kind length */
7388 if (search_len != 4 && search_len != 6)
7389 return -EINVAL;
7390 magic = &search[2];
7391 magic_len = search_len - 2;
7392 } else {
7393 if (search_len)
7394 return -EINVAL;
7395 magic = NULL;
7396 magic_len = 0;
7397 }
7398
7399 if (load_syn) {
7400 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7401 if (ret < 0)
7402 return ret;
7403
7404 opend = op + ret;
7405 op += sizeof(struct tcphdr);
7406 } else {
7407 if (!bpf_sock->skb ||
7408 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7409 /* This bpf_sock->op cannot call this helper */
7410 return -EPERM;
7411
7412 opend = bpf_sock->skb_data_end;
7413 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7414 }
7415
7416 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7417 &eol);
7418 if (IS_ERR(op))
7419 return PTR_ERR(op);
7420
7421 copy_len = op[1];
7422 ret = copy_len;
7423 if (copy_len > len) {
7424 ret = -ENOSPC;
7425 copy_len = len;
7426 }
7427
7428 memcpy(search_res, op, copy_len);
7429 return ret;
7430 }
7431
7432 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7433 .func = bpf_sock_ops_load_hdr_opt,
7434 .gpl_only = false,
7435 .ret_type = RET_INTEGER,
7436 .arg1_type = ARG_PTR_TO_CTX,
7437 .arg2_type = ARG_PTR_TO_MEM,
7438 .arg3_type = ARG_CONST_SIZE,
7439 .arg4_type = ARG_ANYTHING,
7440 };
7441
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7442 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7443 const void *, from, u32, len, u64, flags)
7444 {
7445 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7446 const u8 *op, *new_op, *magic = NULL;
7447 struct sk_buff *skb;
7448 bool eol;
7449
7450 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7451 return -EPERM;
7452
7453 if (len < 2 || flags)
7454 return -EINVAL;
7455
7456 new_op = from;
7457 new_kind = new_op[0];
7458 new_kind_len = new_op[1];
7459
7460 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7461 new_kind == TCPOPT_EOL)
7462 return -EINVAL;
7463
7464 if (new_kind_len > bpf_sock->remaining_opt_len)
7465 return -ENOSPC;
7466
7467 /* 253 is another experimental kind */
7468 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7469 if (new_kind_len < 4)
7470 return -EINVAL;
7471 /* Match for the 2 byte magic also.
7472 * RFC 6994: the magic could be 2 or 4 bytes.
7473 * Hence, matching by 2 byte only is on the
7474 * conservative side but it is the right
7475 * thing to do for the 'search-for-duplication'
7476 * purpose.
7477 */
7478 magic = &new_op[2];
7479 magic_len = 2;
7480 }
7481
7482 /* Check for duplication */
7483 skb = bpf_sock->skb;
7484 op = skb->data + sizeof(struct tcphdr);
7485 opend = bpf_sock->skb_data_end;
7486
7487 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7488 &eol);
7489 if (!IS_ERR(op))
7490 return -EEXIST;
7491
7492 if (PTR_ERR(op) != -ENOMSG)
7493 return PTR_ERR(op);
7494
7495 if (eol)
7496 /* The option has been ended. Treat it as no more
7497 * header option can be written.
7498 */
7499 return -ENOSPC;
7500
7501 /* No duplication found. Store the header option. */
7502 memcpy(opend, from, new_kind_len);
7503
7504 bpf_sock->remaining_opt_len -= new_kind_len;
7505 bpf_sock->skb_data_end += new_kind_len;
7506
7507 return 0;
7508 }
7509
7510 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7511 .func = bpf_sock_ops_store_hdr_opt,
7512 .gpl_only = false,
7513 .ret_type = RET_INTEGER,
7514 .arg1_type = ARG_PTR_TO_CTX,
7515 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7516 .arg3_type = ARG_CONST_SIZE,
7517 .arg4_type = ARG_ANYTHING,
7518 };
7519
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7520 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7521 u32, len, u64, flags)
7522 {
7523 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7524 return -EPERM;
7525
7526 if (flags || len < 2)
7527 return -EINVAL;
7528
7529 if (len > bpf_sock->remaining_opt_len)
7530 return -ENOSPC;
7531
7532 bpf_sock->remaining_opt_len -= len;
7533
7534 return 0;
7535 }
7536
7537 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7538 .func = bpf_sock_ops_reserve_hdr_opt,
7539 .gpl_only = false,
7540 .ret_type = RET_INTEGER,
7541 .arg1_type = ARG_PTR_TO_CTX,
7542 .arg2_type = ARG_ANYTHING,
7543 .arg3_type = ARG_ANYTHING,
7544 };
7545
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7546 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7547 u64, tstamp, u32, tstamp_type)
7548 {
7549 /* skb_clear_delivery_time() is done for inet protocol */
7550 if (skb->protocol != htons(ETH_P_IP) &&
7551 skb->protocol != htons(ETH_P_IPV6))
7552 return -EOPNOTSUPP;
7553
7554 switch (tstamp_type) {
7555 case BPF_SKB_TSTAMP_DELIVERY_MONO:
7556 if (!tstamp)
7557 return -EINVAL;
7558 skb->tstamp = tstamp;
7559 skb->mono_delivery_time = 1;
7560 break;
7561 case BPF_SKB_TSTAMP_UNSPEC:
7562 if (tstamp)
7563 return -EINVAL;
7564 skb->tstamp = 0;
7565 skb->mono_delivery_time = 0;
7566 break;
7567 default:
7568 return -EINVAL;
7569 }
7570
7571 return 0;
7572 }
7573
7574 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7575 .func = bpf_skb_set_tstamp,
7576 .gpl_only = false,
7577 .ret_type = RET_INTEGER,
7578 .arg1_type = ARG_PTR_TO_CTX,
7579 .arg2_type = ARG_ANYTHING,
7580 .arg3_type = ARG_ANYTHING,
7581 };
7582
7583 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7584 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7585 struct tcphdr *, th, u32, th_len)
7586 {
7587 u32 cookie;
7588 u16 mss;
7589
7590 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7591 return -EINVAL;
7592
7593 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7594 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7595
7596 return cookie | ((u64)mss << 32);
7597 }
7598
7599 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7600 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7601 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7602 .pkt_access = true,
7603 .ret_type = RET_INTEGER,
7604 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7605 .arg1_size = sizeof(struct iphdr),
7606 .arg2_type = ARG_PTR_TO_MEM,
7607 .arg3_type = ARG_CONST_SIZE,
7608 };
7609
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7610 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7611 struct tcphdr *, th, u32, th_len)
7612 {
7613 #if IS_BUILTIN(CONFIG_IPV6)
7614 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7615 sizeof(struct ipv6hdr);
7616 u32 cookie;
7617 u16 mss;
7618
7619 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7620 return -EINVAL;
7621
7622 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7623 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7624
7625 return cookie | ((u64)mss << 32);
7626 #else
7627 return -EPROTONOSUPPORT;
7628 #endif
7629 }
7630
7631 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7632 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7633 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7634 .pkt_access = true,
7635 .ret_type = RET_INTEGER,
7636 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7637 .arg1_size = sizeof(struct ipv6hdr),
7638 .arg2_type = ARG_PTR_TO_MEM,
7639 .arg3_type = ARG_CONST_SIZE,
7640 };
7641
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7642 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7643 struct tcphdr *, th)
7644 {
7645 u32 cookie = ntohl(th->ack_seq) - 1;
7646
7647 if (__cookie_v4_check(iph, th, cookie) > 0)
7648 return 0;
7649
7650 return -EACCES;
7651 }
7652
7653 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7654 .func = bpf_tcp_raw_check_syncookie_ipv4,
7655 .gpl_only = true, /* __cookie_v4_check is GPL */
7656 .pkt_access = true,
7657 .ret_type = RET_INTEGER,
7658 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7659 .arg1_size = sizeof(struct iphdr),
7660 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7661 .arg2_size = sizeof(struct tcphdr),
7662 };
7663
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7664 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7665 struct tcphdr *, th)
7666 {
7667 #if IS_BUILTIN(CONFIG_IPV6)
7668 u32 cookie = ntohl(th->ack_seq) - 1;
7669
7670 if (__cookie_v6_check(iph, th, cookie) > 0)
7671 return 0;
7672
7673 return -EACCES;
7674 #else
7675 return -EPROTONOSUPPORT;
7676 #endif
7677 }
7678
7679 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7680 .func = bpf_tcp_raw_check_syncookie_ipv6,
7681 .gpl_only = true, /* __cookie_v6_check is GPL */
7682 .pkt_access = true,
7683 .ret_type = RET_INTEGER,
7684 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7685 .arg1_size = sizeof(struct ipv6hdr),
7686 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7687 .arg2_size = sizeof(struct tcphdr),
7688 };
7689 #endif /* CONFIG_SYN_COOKIES */
7690
7691 #endif /* CONFIG_INET */
7692
bpf_helper_changes_pkt_data(void * func)7693 bool bpf_helper_changes_pkt_data(void *func)
7694 {
7695 if (func == bpf_skb_vlan_push ||
7696 func == bpf_skb_vlan_pop ||
7697 func == bpf_skb_store_bytes ||
7698 func == bpf_skb_change_proto ||
7699 func == bpf_skb_change_head ||
7700 func == sk_skb_change_head ||
7701 func == bpf_skb_change_tail ||
7702 func == sk_skb_change_tail ||
7703 func == bpf_skb_adjust_room ||
7704 func == sk_skb_adjust_room ||
7705 func == bpf_skb_pull_data ||
7706 func == sk_skb_pull_data ||
7707 func == bpf_clone_redirect ||
7708 func == bpf_l3_csum_replace ||
7709 func == bpf_l4_csum_replace ||
7710 func == bpf_xdp_adjust_head ||
7711 func == bpf_xdp_adjust_meta ||
7712 func == bpf_msg_pull_data ||
7713 func == bpf_msg_push_data ||
7714 func == bpf_msg_pop_data ||
7715 func == bpf_xdp_adjust_tail ||
7716 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7717 func == bpf_lwt_seg6_store_bytes ||
7718 func == bpf_lwt_seg6_adjust_srh ||
7719 func == bpf_lwt_seg6_action ||
7720 #endif
7721 #ifdef CONFIG_INET
7722 func == bpf_sock_ops_store_hdr_opt ||
7723 #endif
7724 func == bpf_lwt_in_push_encap ||
7725 func == bpf_lwt_xmit_push_encap)
7726 return true;
7727
7728 return false;
7729 }
7730
7731 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7732 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7733
7734 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7735 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7736 {
7737 const struct bpf_func_proto *func_proto;
7738
7739 func_proto = cgroup_common_func_proto(func_id, prog);
7740 if (func_proto)
7741 return func_proto;
7742
7743 func_proto = cgroup_current_func_proto(func_id, prog);
7744 if (func_proto)
7745 return func_proto;
7746
7747 switch (func_id) {
7748 case BPF_FUNC_get_socket_cookie:
7749 return &bpf_get_socket_cookie_sock_proto;
7750 case BPF_FUNC_get_netns_cookie:
7751 return &bpf_get_netns_cookie_sock_proto;
7752 case BPF_FUNC_perf_event_output:
7753 return &bpf_event_output_data_proto;
7754 case BPF_FUNC_sk_storage_get:
7755 return &bpf_sk_storage_get_cg_sock_proto;
7756 case BPF_FUNC_ktime_get_coarse_ns:
7757 return &bpf_ktime_get_coarse_ns_proto;
7758 default:
7759 return bpf_base_func_proto(func_id);
7760 }
7761 }
7762
7763 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7764 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7765 {
7766 const struct bpf_func_proto *func_proto;
7767
7768 func_proto = cgroup_common_func_proto(func_id, prog);
7769 if (func_proto)
7770 return func_proto;
7771
7772 func_proto = cgroup_current_func_proto(func_id, prog);
7773 if (func_proto)
7774 return func_proto;
7775
7776 switch (func_id) {
7777 case BPF_FUNC_bind:
7778 switch (prog->expected_attach_type) {
7779 case BPF_CGROUP_INET4_CONNECT:
7780 case BPF_CGROUP_INET6_CONNECT:
7781 return &bpf_bind_proto;
7782 default:
7783 return NULL;
7784 }
7785 case BPF_FUNC_get_socket_cookie:
7786 return &bpf_get_socket_cookie_sock_addr_proto;
7787 case BPF_FUNC_get_netns_cookie:
7788 return &bpf_get_netns_cookie_sock_addr_proto;
7789 case BPF_FUNC_perf_event_output:
7790 return &bpf_event_output_data_proto;
7791 #ifdef CONFIG_INET
7792 case BPF_FUNC_sk_lookup_tcp:
7793 return &bpf_sock_addr_sk_lookup_tcp_proto;
7794 case BPF_FUNC_sk_lookup_udp:
7795 return &bpf_sock_addr_sk_lookup_udp_proto;
7796 case BPF_FUNC_sk_release:
7797 return &bpf_sk_release_proto;
7798 case BPF_FUNC_skc_lookup_tcp:
7799 return &bpf_sock_addr_skc_lookup_tcp_proto;
7800 #endif /* CONFIG_INET */
7801 case BPF_FUNC_sk_storage_get:
7802 return &bpf_sk_storage_get_proto;
7803 case BPF_FUNC_sk_storage_delete:
7804 return &bpf_sk_storage_delete_proto;
7805 case BPF_FUNC_setsockopt:
7806 switch (prog->expected_attach_type) {
7807 case BPF_CGROUP_INET4_BIND:
7808 case BPF_CGROUP_INET6_BIND:
7809 case BPF_CGROUP_INET4_CONNECT:
7810 case BPF_CGROUP_INET6_CONNECT:
7811 case BPF_CGROUP_UDP4_RECVMSG:
7812 case BPF_CGROUP_UDP6_RECVMSG:
7813 case BPF_CGROUP_UDP4_SENDMSG:
7814 case BPF_CGROUP_UDP6_SENDMSG:
7815 case BPF_CGROUP_INET4_GETPEERNAME:
7816 case BPF_CGROUP_INET6_GETPEERNAME:
7817 case BPF_CGROUP_INET4_GETSOCKNAME:
7818 case BPF_CGROUP_INET6_GETSOCKNAME:
7819 return &bpf_sock_addr_setsockopt_proto;
7820 default:
7821 return NULL;
7822 }
7823 case BPF_FUNC_getsockopt:
7824 switch (prog->expected_attach_type) {
7825 case BPF_CGROUP_INET4_BIND:
7826 case BPF_CGROUP_INET6_BIND:
7827 case BPF_CGROUP_INET4_CONNECT:
7828 case BPF_CGROUP_INET6_CONNECT:
7829 case BPF_CGROUP_UDP4_RECVMSG:
7830 case BPF_CGROUP_UDP6_RECVMSG:
7831 case BPF_CGROUP_UDP4_SENDMSG:
7832 case BPF_CGROUP_UDP6_SENDMSG:
7833 case BPF_CGROUP_INET4_GETPEERNAME:
7834 case BPF_CGROUP_INET6_GETPEERNAME:
7835 case BPF_CGROUP_INET4_GETSOCKNAME:
7836 case BPF_CGROUP_INET6_GETSOCKNAME:
7837 return &bpf_sock_addr_getsockopt_proto;
7838 default:
7839 return NULL;
7840 }
7841 default:
7842 return bpf_sk_base_func_proto(func_id);
7843 }
7844 }
7845
7846 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7847 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7848 {
7849 switch (func_id) {
7850 case BPF_FUNC_skb_load_bytes:
7851 return &bpf_skb_load_bytes_proto;
7852 case BPF_FUNC_skb_load_bytes_relative:
7853 return &bpf_skb_load_bytes_relative_proto;
7854 case BPF_FUNC_get_socket_cookie:
7855 return &bpf_get_socket_cookie_proto;
7856 case BPF_FUNC_get_socket_uid:
7857 return &bpf_get_socket_uid_proto;
7858 case BPF_FUNC_perf_event_output:
7859 return &bpf_skb_event_output_proto;
7860 default:
7861 return bpf_sk_base_func_proto(func_id);
7862 }
7863 }
7864
7865 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7866 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7867
7868 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7869 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7870 {
7871 const struct bpf_func_proto *func_proto;
7872
7873 func_proto = cgroup_common_func_proto(func_id, prog);
7874 if (func_proto)
7875 return func_proto;
7876
7877 switch (func_id) {
7878 case BPF_FUNC_sk_fullsock:
7879 return &bpf_sk_fullsock_proto;
7880 case BPF_FUNC_sk_storage_get:
7881 return &bpf_sk_storage_get_proto;
7882 case BPF_FUNC_sk_storage_delete:
7883 return &bpf_sk_storage_delete_proto;
7884 case BPF_FUNC_perf_event_output:
7885 return &bpf_skb_event_output_proto;
7886 #ifdef CONFIG_SOCK_CGROUP_DATA
7887 case BPF_FUNC_skb_cgroup_id:
7888 return &bpf_skb_cgroup_id_proto;
7889 case BPF_FUNC_skb_ancestor_cgroup_id:
7890 return &bpf_skb_ancestor_cgroup_id_proto;
7891 case BPF_FUNC_sk_cgroup_id:
7892 return &bpf_sk_cgroup_id_proto;
7893 case BPF_FUNC_sk_ancestor_cgroup_id:
7894 return &bpf_sk_ancestor_cgroup_id_proto;
7895 #endif
7896 #ifdef CONFIG_INET
7897 case BPF_FUNC_sk_lookup_tcp:
7898 return &bpf_sk_lookup_tcp_proto;
7899 case BPF_FUNC_sk_lookup_udp:
7900 return &bpf_sk_lookup_udp_proto;
7901 case BPF_FUNC_sk_release:
7902 return &bpf_sk_release_proto;
7903 case BPF_FUNC_skc_lookup_tcp:
7904 return &bpf_skc_lookup_tcp_proto;
7905 case BPF_FUNC_tcp_sock:
7906 return &bpf_tcp_sock_proto;
7907 case BPF_FUNC_get_listener_sock:
7908 return &bpf_get_listener_sock_proto;
7909 case BPF_FUNC_skb_ecn_set_ce:
7910 return &bpf_skb_ecn_set_ce_proto;
7911 #endif
7912 default:
7913 return sk_filter_func_proto(func_id, prog);
7914 }
7915 }
7916
7917 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7918 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7919 {
7920 switch (func_id) {
7921 case BPF_FUNC_skb_store_bytes:
7922 return &bpf_skb_store_bytes_proto;
7923 case BPF_FUNC_skb_load_bytes:
7924 return &bpf_skb_load_bytes_proto;
7925 case BPF_FUNC_skb_load_bytes_relative:
7926 return &bpf_skb_load_bytes_relative_proto;
7927 case BPF_FUNC_skb_pull_data:
7928 return &bpf_skb_pull_data_proto;
7929 case BPF_FUNC_csum_diff:
7930 return &bpf_csum_diff_proto;
7931 case BPF_FUNC_csum_update:
7932 return &bpf_csum_update_proto;
7933 case BPF_FUNC_csum_level:
7934 return &bpf_csum_level_proto;
7935 case BPF_FUNC_l3_csum_replace:
7936 return &bpf_l3_csum_replace_proto;
7937 case BPF_FUNC_l4_csum_replace:
7938 return &bpf_l4_csum_replace_proto;
7939 case BPF_FUNC_clone_redirect:
7940 return &bpf_clone_redirect_proto;
7941 case BPF_FUNC_get_cgroup_classid:
7942 return &bpf_get_cgroup_classid_proto;
7943 case BPF_FUNC_skb_vlan_push:
7944 return &bpf_skb_vlan_push_proto;
7945 case BPF_FUNC_skb_vlan_pop:
7946 return &bpf_skb_vlan_pop_proto;
7947 case BPF_FUNC_skb_change_proto:
7948 return &bpf_skb_change_proto_proto;
7949 case BPF_FUNC_skb_change_type:
7950 return &bpf_skb_change_type_proto;
7951 case BPF_FUNC_skb_adjust_room:
7952 return &bpf_skb_adjust_room_proto;
7953 case BPF_FUNC_skb_change_tail:
7954 return &bpf_skb_change_tail_proto;
7955 case BPF_FUNC_skb_change_head:
7956 return &bpf_skb_change_head_proto;
7957 case BPF_FUNC_skb_get_tunnel_key:
7958 return &bpf_skb_get_tunnel_key_proto;
7959 case BPF_FUNC_skb_set_tunnel_key:
7960 return bpf_get_skb_set_tunnel_proto(func_id);
7961 case BPF_FUNC_skb_get_tunnel_opt:
7962 return &bpf_skb_get_tunnel_opt_proto;
7963 case BPF_FUNC_skb_set_tunnel_opt:
7964 return bpf_get_skb_set_tunnel_proto(func_id);
7965 case BPF_FUNC_redirect:
7966 return &bpf_redirect_proto;
7967 case BPF_FUNC_redirect_neigh:
7968 return &bpf_redirect_neigh_proto;
7969 case BPF_FUNC_redirect_peer:
7970 return &bpf_redirect_peer_proto;
7971 case BPF_FUNC_get_route_realm:
7972 return &bpf_get_route_realm_proto;
7973 case BPF_FUNC_get_hash_recalc:
7974 return &bpf_get_hash_recalc_proto;
7975 case BPF_FUNC_set_hash_invalid:
7976 return &bpf_set_hash_invalid_proto;
7977 case BPF_FUNC_set_hash:
7978 return &bpf_set_hash_proto;
7979 case BPF_FUNC_perf_event_output:
7980 return &bpf_skb_event_output_proto;
7981 case BPF_FUNC_get_smp_processor_id:
7982 return &bpf_get_smp_processor_id_proto;
7983 case BPF_FUNC_skb_under_cgroup:
7984 return &bpf_skb_under_cgroup_proto;
7985 case BPF_FUNC_get_socket_cookie:
7986 return &bpf_get_socket_cookie_proto;
7987 case BPF_FUNC_get_socket_uid:
7988 return &bpf_get_socket_uid_proto;
7989 case BPF_FUNC_fib_lookup:
7990 return &bpf_skb_fib_lookup_proto;
7991 case BPF_FUNC_check_mtu:
7992 return &bpf_skb_check_mtu_proto;
7993 case BPF_FUNC_sk_fullsock:
7994 return &bpf_sk_fullsock_proto;
7995 case BPF_FUNC_sk_storage_get:
7996 return &bpf_sk_storage_get_proto;
7997 case BPF_FUNC_sk_storage_delete:
7998 return &bpf_sk_storage_delete_proto;
7999 #ifdef CONFIG_XFRM
8000 case BPF_FUNC_skb_get_xfrm_state:
8001 return &bpf_skb_get_xfrm_state_proto;
8002 #endif
8003 #ifdef CONFIG_CGROUP_NET_CLASSID
8004 case BPF_FUNC_skb_cgroup_classid:
8005 return &bpf_skb_cgroup_classid_proto;
8006 #endif
8007 #ifdef CONFIG_SOCK_CGROUP_DATA
8008 case BPF_FUNC_skb_cgroup_id:
8009 return &bpf_skb_cgroup_id_proto;
8010 case BPF_FUNC_skb_ancestor_cgroup_id:
8011 return &bpf_skb_ancestor_cgroup_id_proto;
8012 #endif
8013 #ifdef CONFIG_INET
8014 case BPF_FUNC_sk_lookup_tcp:
8015 return &bpf_tc_sk_lookup_tcp_proto;
8016 case BPF_FUNC_sk_lookup_udp:
8017 return &bpf_tc_sk_lookup_udp_proto;
8018 case BPF_FUNC_sk_release:
8019 return &bpf_sk_release_proto;
8020 case BPF_FUNC_tcp_sock:
8021 return &bpf_tcp_sock_proto;
8022 case BPF_FUNC_get_listener_sock:
8023 return &bpf_get_listener_sock_proto;
8024 case BPF_FUNC_skc_lookup_tcp:
8025 return &bpf_tc_skc_lookup_tcp_proto;
8026 case BPF_FUNC_tcp_check_syncookie:
8027 return &bpf_tcp_check_syncookie_proto;
8028 case BPF_FUNC_skb_ecn_set_ce:
8029 return &bpf_skb_ecn_set_ce_proto;
8030 case BPF_FUNC_tcp_gen_syncookie:
8031 return &bpf_tcp_gen_syncookie_proto;
8032 case BPF_FUNC_sk_assign:
8033 return &bpf_sk_assign_proto;
8034 case BPF_FUNC_skb_set_tstamp:
8035 return &bpf_skb_set_tstamp_proto;
8036 #ifdef CONFIG_SYN_COOKIES
8037 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8038 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8039 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8040 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8041 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8042 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8043 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8044 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8045 #endif
8046 #endif
8047 default:
8048 return bpf_sk_base_func_proto(func_id);
8049 }
8050 }
8051
8052 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8053 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8054 {
8055 switch (func_id) {
8056 case BPF_FUNC_perf_event_output:
8057 return &bpf_xdp_event_output_proto;
8058 case BPF_FUNC_get_smp_processor_id:
8059 return &bpf_get_smp_processor_id_proto;
8060 case BPF_FUNC_csum_diff:
8061 return &bpf_csum_diff_proto;
8062 case BPF_FUNC_xdp_adjust_head:
8063 return &bpf_xdp_adjust_head_proto;
8064 case BPF_FUNC_xdp_adjust_meta:
8065 return &bpf_xdp_adjust_meta_proto;
8066 case BPF_FUNC_redirect:
8067 return &bpf_xdp_redirect_proto;
8068 case BPF_FUNC_redirect_map:
8069 return &bpf_xdp_redirect_map_proto;
8070 case BPF_FUNC_xdp_adjust_tail:
8071 return &bpf_xdp_adjust_tail_proto;
8072 case BPF_FUNC_xdp_get_buff_len:
8073 return &bpf_xdp_get_buff_len_proto;
8074 case BPF_FUNC_xdp_load_bytes:
8075 return &bpf_xdp_load_bytes_proto;
8076 case BPF_FUNC_xdp_store_bytes:
8077 return &bpf_xdp_store_bytes_proto;
8078 case BPF_FUNC_fib_lookup:
8079 return &bpf_xdp_fib_lookup_proto;
8080 case BPF_FUNC_check_mtu:
8081 return &bpf_xdp_check_mtu_proto;
8082 #ifdef CONFIG_INET
8083 case BPF_FUNC_sk_lookup_udp:
8084 return &bpf_xdp_sk_lookup_udp_proto;
8085 case BPF_FUNC_sk_lookup_tcp:
8086 return &bpf_xdp_sk_lookup_tcp_proto;
8087 case BPF_FUNC_sk_release:
8088 return &bpf_sk_release_proto;
8089 case BPF_FUNC_skc_lookup_tcp:
8090 return &bpf_xdp_skc_lookup_tcp_proto;
8091 case BPF_FUNC_tcp_check_syncookie:
8092 return &bpf_tcp_check_syncookie_proto;
8093 case BPF_FUNC_tcp_gen_syncookie:
8094 return &bpf_tcp_gen_syncookie_proto;
8095 #ifdef CONFIG_SYN_COOKIES
8096 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8097 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8098 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8099 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8100 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8101 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8102 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8103 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8104 #endif
8105 #endif
8106 default:
8107 return bpf_sk_base_func_proto(func_id);
8108 }
8109
8110 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8111 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8112 * kfuncs are defined in two different modules, and we want to be able
8113 * to use them interchangably with the same BTF type ID. Because modules
8114 * can't de-duplicate BTF IDs between each other, we need the type to be
8115 * referenced in the vmlinux BTF or the verifier will get confused about
8116 * the different types. So we add this dummy type reference which will
8117 * be included in vmlinux BTF, allowing both modules to refer to the
8118 * same type ID.
8119 */
8120 BTF_TYPE_EMIT(struct nf_conn___init);
8121 #endif
8122 }
8123
8124 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8125 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8126
8127 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8128 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8129 {
8130 const struct bpf_func_proto *func_proto;
8131
8132 func_proto = cgroup_common_func_proto(func_id, prog);
8133 if (func_proto)
8134 return func_proto;
8135
8136 switch (func_id) {
8137 case BPF_FUNC_setsockopt:
8138 return &bpf_sock_ops_setsockopt_proto;
8139 case BPF_FUNC_getsockopt:
8140 return &bpf_sock_ops_getsockopt_proto;
8141 case BPF_FUNC_sock_ops_cb_flags_set:
8142 return &bpf_sock_ops_cb_flags_set_proto;
8143 case BPF_FUNC_sock_map_update:
8144 return &bpf_sock_map_update_proto;
8145 case BPF_FUNC_sock_hash_update:
8146 return &bpf_sock_hash_update_proto;
8147 case BPF_FUNC_get_socket_cookie:
8148 return &bpf_get_socket_cookie_sock_ops_proto;
8149 case BPF_FUNC_perf_event_output:
8150 return &bpf_event_output_data_proto;
8151 case BPF_FUNC_sk_storage_get:
8152 return &bpf_sk_storage_get_proto;
8153 case BPF_FUNC_sk_storage_delete:
8154 return &bpf_sk_storage_delete_proto;
8155 case BPF_FUNC_get_netns_cookie:
8156 return &bpf_get_netns_cookie_sock_ops_proto;
8157 #ifdef CONFIG_INET
8158 case BPF_FUNC_load_hdr_opt:
8159 return &bpf_sock_ops_load_hdr_opt_proto;
8160 case BPF_FUNC_store_hdr_opt:
8161 return &bpf_sock_ops_store_hdr_opt_proto;
8162 case BPF_FUNC_reserve_hdr_opt:
8163 return &bpf_sock_ops_reserve_hdr_opt_proto;
8164 case BPF_FUNC_tcp_sock:
8165 return &bpf_tcp_sock_proto;
8166 #endif /* CONFIG_INET */
8167 default:
8168 return bpf_sk_base_func_proto(func_id);
8169 }
8170 }
8171
8172 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8173 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8174
8175 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8176 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8177 {
8178 switch (func_id) {
8179 case BPF_FUNC_msg_redirect_map:
8180 return &bpf_msg_redirect_map_proto;
8181 case BPF_FUNC_msg_redirect_hash:
8182 return &bpf_msg_redirect_hash_proto;
8183 case BPF_FUNC_msg_apply_bytes:
8184 return &bpf_msg_apply_bytes_proto;
8185 case BPF_FUNC_msg_cork_bytes:
8186 return &bpf_msg_cork_bytes_proto;
8187 case BPF_FUNC_msg_pull_data:
8188 return &bpf_msg_pull_data_proto;
8189 case BPF_FUNC_msg_push_data:
8190 return &bpf_msg_push_data_proto;
8191 case BPF_FUNC_msg_pop_data:
8192 return &bpf_msg_pop_data_proto;
8193 case BPF_FUNC_perf_event_output:
8194 return &bpf_event_output_data_proto;
8195 case BPF_FUNC_get_current_uid_gid:
8196 return &bpf_get_current_uid_gid_proto;
8197 case BPF_FUNC_get_current_pid_tgid:
8198 return &bpf_get_current_pid_tgid_proto;
8199 case BPF_FUNC_sk_storage_get:
8200 return &bpf_sk_storage_get_proto;
8201 case BPF_FUNC_sk_storage_delete:
8202 return &bpf_sk_storage_delete_proto;
8203 case BPF_FUNC_get_netns_cookie:
8204 return &bpf_get_netns_cookie_sk_msg_proto;
8205 #ifdef CONFIG_CGROUPS
8206 case BPF_FUNC_get_current_cgroup_id:
8207 return &bpf_get_current_cgroup_id_proto;
8208 case BPF_FUNC_get_current_ancestor_cgroup_id:
8209 return &bpf_get_current_ancestor_cgroup_id_proto;
8210 #endif
8211 #ifdef CONFIG_CGROUP_NET_CLASSID
8212 case BPF_FUNC_get_cgroup_classid:
8213 return &bpf_get_cgroup_classid_curr_proto;
8214 #endif
8215 default:
8216 return bpf_sk_base_func_proto(func_id);
8217 }
8218 }
8219
8220 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8221 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8222
8223 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8224 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8225 {
8226 switch (func_id) {
8227 case BPF_FUNC_skb_store_bytes:
8228 return &bpf_skb_store_bytes_proto;
8229 case BPF_FUNC_skb_load_bytes:
8230 return &bpf_skb_load_bytes_proto;
8231 case BPF_FUNC_skb_pull_data:
8232 return &sk_skb_pull_data_proto;
8233 case BPF_FUNC_skb_change_tail:
8234 return &sk_skb_change_tail_proto;
8235 case BPF_FUNC_skb_change_head:
8236 return &sk_skb_change_head_proto;
8237 case BPF_FUNC_skb_adjust_room:
8238 return &sk_skb_adjust_room_proto;
8239 case BPF_FUNC_get_socket_cookie:
8240 return &bpf_get_socket_cookie_proto;
8241 case BPF_FUNC_get_socket_uid:
8242 return &bpf_get_socket_uid_proto;
8243 case BPF_FUNC_sk_redirect_map:
8244 return &bpf_sk_redirect_map_proto;
8245 case BPF_FUNC_sk_redirect_hash:
8246 return &bpf_sk_redirect_hash_proto;
8247 case BPF_FUNC_perf_event_output:
8248 return &bpf_skb_event_output_proto;
8249 #ifdef CONFIG_INET
8250 case BPF_FUNC_sk_lookup_tcp:
8251 return &bpf_sk_lookup_tcp_proto;
8252 case BPF_FUNC_sk_lookup_udp:
8253 return &bpf_sk_lookup_udp_proto;
8254 case BPF_FUNC_sk_release:
8255 return &bpf_sk_release_proto;
8256 case BPF_FUNC_skc_lookup_tcp:
8257 return &bpf_skc_lookup_tcp_proto;
8258 #endif
8259 default:
8260 return bpf_sk_base_func_proto(func_id);
8261 }
8262 }
8263
8264 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8265 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8266 {
8267 switch (func_id) {
8268 case BPF_FUNC_skb_load_bytes:
8269 return &bpf_flow_dissector_load_bytes_proto;
8270 default:
8271 return bpf_sk_base_func_proto(func_id);
8272 }
8273 }
8274
8275 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8276 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8277 {
8278 switch (func_id) {
8279 case BPF_FUNC_skb_load_bytes:
8280 return &bpf_skb_load_bytes_proto;
8281 case BPF_FUNC_skb_pull_data:
8282 return &bpf_skb_pull_data_proto;
8283 case BPF_FUNC_csum_diff:
8284 return &bpf_csum_diff_proto;
8285 case BPF_FUNC_get_cgroup_classid:
8286 return &bpf_get_cgroup_classid_proto;
8287 case BPF_FUNC_get_route_realm:
8288 return &bpf_get_route_realm_proto;
8289 case BPF_FUNC_get_hash_recalc:
8290 return &bpf_get_hash_recalc_proto;
8291 case BPF_FUNC_perf_event_output:
8292 return &bpf_skb_event_output_proto;
8293 case BPF_FUNC_get_smp_processor_id:
8294 return &bpf_get_smp_processor_id_proto;
8295 case BPF_FUNC_skb_under_cgroup:
8296 return &bpf_skb_under_cgroup_proto;
8297 default:
8298 return bpf_sk_base_func_proto(func_id);
8299 }
8300 }
8301
8302 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8303 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8304 {
8305 switch (func_id) {
8306 case BPF_FUNC_lwt_push_encap:
8307 return &bpf_lwt_in_push_encap_proto;
8308 default:
8309 return lwt_out_func_proto(func_id, prog);
8310 }
8311 }
8312
8313 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8314 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8315 {
8316 switch (func_id) {
8317 case BPF_FUNC_skb_get_tunnel_key:
8318 return &bpf_skb_get_tunnel_key_proto;
8319 case BPF_FUNC_skb_set_tunnel_key:
8320 return bpf_get_skb_set_tunnel_proto(func_id);
8321 case BPF_FUNC_skb_get_tunnel_opt:
8322 return &bpf_skb_get_tunnel_opt_proto;
8323 case BPF_FUNC_skb_set_tunnel_opt:
8324 return bpf_get_skb_set_tunnel_proto(func_id);
8325 case BPF_FUNC_redirect:
8326 return &bpf_redirect_proto;
8327 case BPF_FUNC_clone_redirect:
8328 return &bpf_clone_redirect_proto;
8329 case BPF_FUNC_skb_change_tail:
8330 return &bpf_skb_change_tail_proto;
8331 case BPF_FUNC_skb_change_head:
8332 return &bpf_skb_change_head_proto;
8333 case BPF_FUNC_skb_store_bytes:
8334 return &bpf_skb_store_bytes_proto;
8335 case BPF_FUNC_csum_update:
8336 return &bpf_csum_update_proto;
8337 case BPF_FUNC_csum_level:
8338 return &bpf_csum_level_proto;
8339 case BPF_FUNC_l3_csum_replace:
8340 return &bpf_l3_csum_replace_proto;
8341 case BPF_FUNC_l4_csum_replace:
8342 return &bpf_l4_csum_replace_proto;
8343 case BPF_FUNC_set_hash_invalid:
8344 return &bpf_set_hash_invalid_proto;
8345 case BPF_FUNC_lwt_push_encap:
8346 return &bpf_lwt_xmit_push_encap_proto;
8347 default:
8348 return lwt_out_func_proto(func_id, prog);
8349 }
8350 }
8351
8352 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8353 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8354 {
8355 switch (func_id) {
8356 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8357 case BPF_FUNC_lwt_seg6_store_bytes:
8358 return &bpf_lwt_seg6_store_bytes_proto;
8359 case BPF_FUNC_lwt_seg6_action:
8360 return &bpf_lwt_seg6_action_proto;
8361 case BPF_FUNC_lwt_seg6_adjust_srh:
8362 return &bpf_lwt_seg6_adjust_srh_proto;
8363 #endif
8364 default:
8365 return lwt_out_func_proto(func_id, prog);
8366 }
8367 }
8368
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8369 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8370 const struct bpf_prog *prog,
8371 struct bpf_insn_access_aux *info)
8372 {
8373 const int size_default = sizeof(__u32);
8374
8375 if (off < 0 || off >= sizeof(struct __sk_buff))
8376 return false;
8377
8378 /* The verifier guarantees that size > 0. */
8379 if (off % size != 0)
8380 return false;
8381
8382 switch (off) {
8383 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8384 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8385 return false;
8386 break;
8387 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8388 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8389 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8390 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8391 case bpf_ctx_range(struct __sk_buff, data):
8392 case bpf_ctx_range(struct __sk_buff, data_meta):
8393 case bpf_ctx_range(struct __sk_buff, data_end):
8394 if (size != size_default)
8395 return false;
8396 break;
8397 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8398 return false;
8399 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8400 if (type == BPF_WRITE || size != sizeof(__u64))
8401 return false;
8402 break;
8403 case bpf_ctx_range(struct __sk_buff, tstamp):
8404 if (size != sizeof(__u64))
8405 return false;
8406 break;
8407 case offsetof(struct __sk_buff, sk):
8408 if (type == BPF_WRITE || size != sizeof(__u64))
8409 return false;
8410 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8411 break;
8412 case offsetof(struct __sk_buff, tstamp_type):
8413 return false;
8414 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8415 /* Explicitly prohibit access to padding in __sk_buff. */
8416 return false;
8417 default:
8418 /* Only narrow read access allowed for now. */
8419 if (type == BPF_WRITE) {
8420 if (size != size_default)
8421 return false;
8422 } else {
8423 bpf_ctx_record_field_size(info, size_default);
8424 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8425 return false;
8426 }
8427 }
8428
8429 return true;
8430 }
8431
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8432 static bool sk_filter_is_valid_access(int off, int size,
8433 enum bpf_access_type type,
8434 const struct bpf_prog *prog,
8435 struct bpf_insn_access_aux *info)
8436 {
8437 switch (off) {
8438 case bpf_ctx_range(struct __sk_buff, tc_classid):
8439 case bpf_ctx_range(struct __sk_buff, data):
8440 case bpf_ctx_range(struct __sk_buff, data_meta):
8441 case bpf_ctx_range(struct __sk_buff, data_end):
8442 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8443 case bpf_ctx_range(struct __sk_buff, tstamp):
8444 case bpf_ctx_range(struct __sk_buff, wire_len):
8445 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8446 return false;
8447 }
8448
8449 if (type == BPF_WRITE) {
8450 switch (off) {
8451 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8452 break;
8453 default:
8454 return false;
8455 }
8456 }
8457
8458 return bpf_skb_is_valid_access(off, size, type, prog, info);
8459 }
8460
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8461 static bool cg_skb_is_valid_access(int off, int size,
8462 enum bpf_access_type type,
8463 const struct bpf_prog *prog,
8464 struct bpf_insn_access_aux *info)
8465 {
8466 switch (off) {
8467 case bpf_ctx_range(struct __sk_buff, tc_classid):
8468 case bpf_ctx_range(struct __sk_buff, data_meta):
8469 case bpf_ctx_range(struct __sk_buff, wire_len):
8470 return false;
8471 case bpf_ctx_range(struct __sk_buff, data):
8472 case bpf_ctx_range(struct __sk_buff, data_end):
8473 if (!bpf_capable())
8474 return false;
8475 break;
8476 }
8477
8478 if (type == BPF_WRITE) {
8479 switch (off) {
8480 case bpf_ctx_range(struct __sk_buff, mark):
8481 case bpf_ctx_range(struct __sk_buff, priority):
8482 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8483 break;
8484 case bpf_ctx_range(struct __sk_buff, tstamp):
8485 if (!bpf_capable())
8486 return false;
8487 break;
8488 default:
8489 return false;
8490 }
8491 }
8492
8493 switch (off) {
8494 case bpf_ctx_range(struct __sk_buff, data):
8495 info->reg_type = PTR_TO_PACKET;
8496 break;
8497 case bpf_ctx_range(struct __sk_buff, data_end):
8498 info->reg_type = PTR_TO_PACKET_END;
8499 break;
8500 }
8501
8502 return bpf_skb_is_valid_access(off, size, type, prog, info);
8503 }
8504
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8505 static bool lwt_is_valid_access(int off, int size,
8506 enum bpf_access_type type,
8507 const struct bpf_prog *prog,
8508 struct bpf_insn_access_aux *info)
8509 {
8510 switch (off) {
8511 case bpf_ctx_range(struct __sk_buff, tc_classid):
8512 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8513 case bpf_ctx_range(struct __sk_buff, data_meta):
8514 case bpf_ctx_range(struct __sk_buff, tstamp):
8515 case bpf_ctx_range(struct __sk_buff, wire_len):
8516 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8517 return false;
8518 }
8519
8520 if (type == BPF_WRITE) {
8521 switch (off) {
8522 case bpf_ctx_range(struct __sk_buff, mark):
8523 case bpf_ctx_range(struct __sk_buff, priority):
8524 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8525 break;
8526 default:
8527 return false;
8528 }
8529 }
8530
8531 switch (off) {
8532 case bpf_ctx_range(struct __sk_buff, data):
8533 info->reg_type = PTR_TO_PACKET;
8534 break;
8535 case bpf_ctx_range(struct __sk_buff, data_end):
8536 info->reg_type = PTR_TO_PACKET_END;
8537 break;
8538 }
8539
8540 return bpf_skb_is_valid_access(off, size, type, prog, info);
8541 }
8542
8543 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8544 static bool __sock_filter_check_attach_type(int off,
8545 enum bpf_access_type access_type,
8546 enum bpf_attach_type attach_type)
8547 {
8548 switch (off) {
8549 case offsetof(struct bpf_sock, bound_dev_if):
8550 case offsetof(struct bpf_sock, mark):
8551 case offsetof(struct bpf_sock, priority):
8552 switch (attach_type) {
8553 case BPF_CGROUP_INET_SOCK_CREATE:
8554 case BPF_CGROUP_INET_SOCK_RELEASE:
8555 goto full_access;
8556 default:
8557 return false;
8558 }
8559 case bpf_ctx_range(struct bpf_sock, src_ip4):
8560 switch (attach_type) {
8561 case BPF_CGROUP_INET4_POST_BIND:
8562 goto read_only;
8563 default:
8564 return false;
8565 }
8566 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8567 switch (attach_type) {
8568 case BPF_CGROUP_INET6_POST_BIND:
8569 goto read_only;
8570 default:
8571 return false;
8572 }
8573 case bpf_ctx_range(struct bpf_sock, src_port):
8574 switch (attach_type) {
8575 case BPF_CGROUP_INET4_POST_BIND:
8576 case BPF_CGROUP_INET6_POST_BIND:
8577 goto read_only;
8578 default:
8579 return false;
8580 }
8581 }
8582 read_only:
8583 return access_type == BPF_READ;
8584 full_access:
8585 return true;
8586 }
8587
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8588 bool bpf_sock_common_is_valid_access(int off, int size,
8589 enum bpf_access_type type,
8590 struct bpf_insn_access_aux *info)
8591 {
8592 switch (off) {
8593 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8594 return false;
8595 default:
8596 return bpf_sock_is_valid_access(off, size, type, info);
8597 }
8598 }
8599
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8600 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8601 struct bpf_insn_access_aux *info)
8602 {
8603 const int size_default = sizeof(__u32);
8604 int field_size;
8605
8606 if (off < 0 || off >= sizeof(struct bpf_sock))
8607 return false;
8608 if (off % size != 0)
8609 return false;
8610
8611 switch (off) {
8612 case offsetof(struct bpf_sock, state):
8613 case offsetof(struct bpf_sock, family):
8614 case offsetof(struct bpf_sock, type):
8615 case offsetof(struct bpf_sock, protocol):
8616 case offsetof(struct bpf_sock, src_port):
8617 case offsetof(struct bpf_sock, rx_queue_mapping):
8618 case bpf_ctx_range(struct bpf_sock, src_ip4):
8619 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8620 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8621 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8622 bpf_ctx_record_field_size(info, size_default);
8623 return bpf_ctx_narrow_access_ok(off, size, size_default);
8624 case bpf_ctx_range(struct bpf_sock, dst_port):
8625 field_size = size == size_default ?
8626 size_default : sizeof_field(struct bpf_sock, dst_port);
8627 bpf_ctx_record_field_size(info, field_size);
8628 return bpf_ctx_narrow_access_ok(off, size, field_size);
8629 case offsetofend(struct bpf_sock, dst_port) ...
8630 offsetof(struct bpf_sock, dst_ip4) - 1:
8631 return false;
8632 }
8633
8634 return size == size_default;
8635 }
8636
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8637 static bool sock_filter_is_valid_access(int off, int size,
8638 enum bpf_access_type type,
8639 const struct bpf_prog *prog,
8640 struct bpf_insn_access_aux *info)
8641 {
8642 if (!bpf_sock_is_valid_access(off, size, type, info))
8643 return false;
8644 return __sock_filter_check_attach_type(off, type,
8645 prog->expected_attach_type);
8646 }
8647
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8648 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8649 const struct bpf_prog *prog)
8650 {
8651 /* Neither direct read nor direct write requires any preliminary
8652 * action.
8653 */
8654 return 0;
8655 }
8656
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8657 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8658 const struct bpf_prog *prog, int drop_verdict)
8659 {
8660 struct bpf_insn *insn = insn_buf;
8661
8662 if (!direct_write)
8663 return 0;
8664
8665 /* if (!skb->cloned)
8666 * goto start;
8667 *
8668 * (Fast-path, otherwise approximation that we might be
8669 * a clone, do the rest in helper.)
8670 */
8671 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8672 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8673 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8674
8675 /* ret = bpf_skb_pull_data(skb, 0); */
8676 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8677 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8678 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8679 BPF_FUNC_skb_pull_data);
8680 /* if (!ret)
8681 * goto restore;
8682 * return TC_ACT_SHOT;
8683 */
8684 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8685 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8686 *insn++ = BPF_EXIT_INSN();
8687
8688 /* restore: */
8689 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8690 /* start: */
8691 *insn++ = prog->insnsi[0];
8692
8693 return insn - insn_buf;
8694 }
8695
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8696 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8697 struct bpf_insn *insn_buf)
8698 {
8699 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8700 struct bpf_insn *insn = insn_buf;
8701
8702 if (!indirect) {
8703 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8704 } else {
8705 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8706 if (orig->imm)
8707 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8708 }
8709 /* We're guaranteed here that CTX is in R6. */
8710 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8711
8712 switch (BPF_SIZE(orig->code)) {
8713 case BPF_B:
8714 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8715 break;
8716 case BPF_H:
8717 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8718 break;
8719 case BPF_W:
8720 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8721 break;
8722 }
8723
8724 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8725 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8726 *insn++ = BPF_EXIT_INSN();
8727
8728 return insn - insn_buf;
8729 }
8730
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8731 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8732 const struct bpf_prog *prog)
8733 {
8734 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8735 }
8736
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8737 static bool tc_cls_act_is_valid_access(int off, int size,
8738 enum bpf_access_type type,
8739 const struct bpf_prog *prog,
8740 struct bpf_insn_access_aux *info)
8741 {
8742 if (type == BPF_WRITE) {
8743 switch (off) {
8744 case bpf_ctx_range(struct __sk_buff, mark):
8745 case bpf_ctx_range(struct __sk_buff, tc_index):
8746 case bpf_ctx_range(struct __sk_buff, priority):
8747 case bpf_ctx_range(struct __sk_buff, tc_classid):
8748 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8749 case bpf_ctx_range(struct __sk_buff, tstamp):
8750 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8751 break;
8752 default:
8753 return false;
8754 }
8755 }
8756
8757 switch (off) {
8758 case bpf_ctx_range(struct __sk_buff, data):
8759 info->reg_type = PTR_TO_PACKET;
8760 break;
8761 case bpf_ctx_range(struct __sk_buff, data_meta):
8762 info->reg_type = PTR_TO_PACKET_META;
8763 break;
8764 case bpf_ctx_range(struct __sk_buff, data_end):
8765 info->reg_type = PTR_TO_PACKET_END;
8766 break;
8767 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8768 return false;
8769 case offsetof(struct __sk_buff, tstamp_type):
8770 /* The convert_ctx_access() on reading and writing
8771 * __sk_buff->tstamp depends on whether the bpf prog
8772 * has used __sk_buff->tstamp_type or not.
8773 * Thus, we need to set prog->tstamp_type_access
8774 * earlier during is_valid_access() here.
8775 */
8776 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8777 return size == sizeof(__u8);
8778 }
8779
8780 return bpf_skb_is_valid_access(off, size, type, prog, info);
8781 }
8782
8783 DEFINE_MUTEX(nf_conn_btf_access_lock);
8784 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8785
8786 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf,
8787 const struct btf_type *t, int off, int size,
8788 enum bpf_access_type atype, u32 *next_btf_id,
8789 enum bpf_type_flag *flag);
8790 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8791
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag)8792 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8793 const struct btf *btf,
8794 const struct btf_type *t, int off,
8795 int size, enum bpf_access_type atype,
8796 u32 *next_btf_id,
8797 enum bpf_type_flag *flag)
8798 {
8799 int ret = -EACCES;
8800
8801 if (atype == BPF_READ)
8802 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8803 flag);
8804
8805 mutex_lock(&nf_conn_btf_access_lock);
8806 if (nfct_btf_struct_access)
8807 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8808 mutex_unlock(&nf_conn_btf_access_lock);
8809
8810 return ret;
8811 }
8812
__is_valid_xdp_access(int off,int size)8813 static bool __is_valid_xdp_access(int off, int size)
8814 {
8815 if (off < 0 || off >= sizeof(struct xdp_md))
8816 return false;
8817 if (off % size != 0)
8818 return false;
8819 if (size != sizeof(__u32))
8820 return false;
8821
8822 return true;
8823 }
8824
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8825 static bool xdp_is_valid_access(int off, int size,
8826 enum bpf_access_type type,
8827 const struct bpf_prog *prog,
8828 struct bpf_insn_access_aux *info)
8829 {
8830 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8831 switch (off) {
8832 case offsetof(struct xdp_md, egress_ifindex):
8833 return false;
8834 }
8835 }
8836
8837 if (type == BPF_WRITE) {
8838 if (bpf_prog_is_dev_bound(prog->aux)) {
8839 switch (off) {
8840 case offsetof(struct xdp_md, rx_queue_index):
8841 return __is_valid_xdp_access(off, size);
8842 }
8843 }
8844 return false;
8845 }
8846
8847 switch (off) {
8848 case offsetof(struct xdp_md, data):
8849 info->reg_type = PTR_TO_PACKET;
8850 break;
8851 case offsetof(struct xdp_md, data_meta):
8852 info->reg_type = PTR_TO_PACKET_META;
8853 break;
8854 case offsetof(struct xdp_md, data_end):
8855 info->reg_type = PTR_TO_PACKET_END;
8856 break;
8857 }
8858
8859 return __is_valid_xdp_access(off, size);
8860 }
8861
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)8862 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8863 {
8864 const u32 act_max = XDP_REDIRECT;
8865
8866 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8867 act > act_max ? "Illegal" : "Driver unsupported",
8868 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8869 }
8870 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8871
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag)8872 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8873 const struct btf *btf,
8874 const struct btf_type *t, int off,
8875 int size, enum bpf_access_type atype,
8876 u32 *next_btf_id,
8877 enum bpf_type_flag *flag)
8878 {
8879 int ret = -EACCES;
8880
8881 if (atype == BPF_READ)
8882 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8883 flag);
8884
8885 mutex_lock(&nf_conn_btf_access_lock);
8886 if (nfct_btf_struct_access)
8887 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8888 mutex_unlock(&nf_conn_btf_access_lock);
8889
8890 return ret;
8891 }
8892
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8893 static bool sock_addr_is_valid_access(int off, int size,
8894 enum bpf_access_type type,
8895 const struct bpf_prog *prog,
8896 struct bpf_insn_access_aux *info)
8897 {
8898 const int size_default = sizeof(__u32);
8899
8900 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8901 return false;
8902 if (off % size != 0)
8903 return false;
8904
8905 /* Disallow access to IPv6 fields from IPv4 contex and vise
8906 * versa.
8907 */
8908 switch (off) {
8909 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8910 switch (prog->expected_attach_type) {
8911 case BPF_CGROUP_INET4_BIND:
8912 case BPF_CGROUP_INET4_CONNECT:
8913 case BPF_CGROUP_INET4_GETPEERNAME:
8914 case BPF_CGROUP_INET4_GETSOCKNAME:
8915 case BPF_CGROUP_UDP4_SENDMSG:
8916 case BPF_CGROUP_UDP4_RECVMSG:
8917 break;
8918 default:
8919 return false;
8920 }
8921 break;
8922 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8923 switch (prog->expected_attach_type) {
8924 case BPF_CGROUP_INET6_BIND:
8925 case BPF_CGROUP_INET6_CONNECT:
8926 case BPF_CGROUP_INET6_GETPEERNAME:
8927 case BPF_CGROUP_INET6_GETSOCKNAME:
8928 case BPF_CGROUP_UDP6_SENDMSG:
8929 case BPF_CGROUP_UDP6_RECVMSG:
8930 break;
8931 default:
8932 return false;
8933 }
8934 break;
8935 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8936 switch (prog->expected_attach_type) {
8937 case BPF_CGROUP_UDP4_SENDMSG:
8938 break;
8939 default:
8940 return false;
8941 }
8942 break;
8943 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8944 msg_src_ip6[3]):
8945 switch (prog->expected_attach_type) {
8946 case BPF_CGROUP_UDP6_SENDMSG:
8947 break;
8948 default:
8949 return false;
8950 }
8951 break;
8952 }
8953
8954 switch (off) {
8955 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8956 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8957 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8958 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8959 msg_src_ip6[3]):
8960 case bpf_ctx_range(struct bpf_sock_addr, user_port):
8961 if (type == BPF_READ) {
8962 bpf_ctx_record_field_size(info, size_default);
8963
8964 if (bpf_ctx_wide_access_ok(off, size,
8965 struct bpf_sock_addr,
8966 user_ip6))
8967 return true;
8968
8969 if (bpf_ctx_wide_access_ok(off, size,
8970 struct bpf_sock_addr,
8971 msg_src_ip6))
8972 return true;
8973
8974 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8975 return false;
8976 } else {
8977 if (bpf_ctx_wide_access_ok(off, size,
8978 struct bpf_sock_addr,
8979 user_ip6))
8980 return true;
8981
8982 if (bpf_ctx_wide_access_ok(off, size,
8983 struct bpf_sock_addr,
8984 msg_src_ip6))
8985 return true;
8986
8987 if (size != size_default)
8988 return false;
8989 }
8990 break;
8991 case offsetof(struct bpf_sock_addr, sk):
8992 if (type != BPF_READ)
8993 return false;
8994 if (size != sizeof(__u64))
8995 return false;
8996 info->reg_type = PTR_TO_SOCKET;
8997 break;
8998 default:
8999 if (type == BPF_READ) {
9000 if (size != size_default)
9001 return false;
9002 } else {
9003 return false;
9004 }
9005 }
9006
9007 return true;
9008 }
9009
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9010 static bool sock_ops_is_valid_access(int off, int size,
9011 enum bpf_access_type type,
9012 const struct bpf_prog *prog,
9013 struct bpf_insn_access_aux *info)
9014 {
9015 const int size_default = sizeof(__u32);
9016
9017 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9018 return false;
9019
9020 /* The verifier guarantees that size > 0. */
9021 if (off % size != 0)
9022 return false;
9023
9024 if (type == BPF_WRITE) {
9025 switch (off) {
9026 case offsetof(struct bpf_sock_ops, reply):
9027 case offsetof(struct bpf_sock_ops, sk_txhash):
9028 if (size != size_default)
9029 return false;
9030 break;
9031 default:
9032 return false;
9033 }
9034 } else {
9035 switch (off) {
9036 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9037 bytes_acked):
9038 if (size != sizeof(__u64))
9039 return false;
9040 break;
9041 case offsetof(struct bpf_sock_ops, sk):
9042 if (size != sizeof(__u64))
9043 return false;
9044 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9045 break;
9046 case offsetof(struct bpf_sock_ops, skb_data):
9047 if (size != sizeof(__u64))
9048 return false;
9049 info->reg_type = PTR_TO_PACKET;
9050 break;
9051 case offsetof(struct bpf_sock_ops, skb_data_end):
9052 if (size != sizeof(__u64))
9053 return false;
9054 info->reg_type = PTR_TO_PACKET_END;
9055 break;
9056 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9057 bpf_ctx_record_field_size(info, size_default);
9058 return bpf_ctx_narrow_access_ok(off, size,
9059 size_default);
9060 default:
9061 if (size != size_default)
9062 return false;
9063 break;
9064 }
9065 }
9066
9067 return true;
9068 }
9069
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9070 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9071 const struct bpf_prog *prog)
9072 {
9073 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9074 }
9075
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9076 static bool sk_skb_is_valid_access(int off, int size,
9077 enum bpf_access_type type,
9078 const struct bpf_prog *prog,
9079 struct bpf_insn_access_aux *info)
9080 {
9081 switch (off) {
9082 case bpf_ctx_range(struct __sk_buff, tc_classid):
9083 case bpf_ctx_range(struct __sk_buff, data_meta):
9084 case bpf_ctx_range(struct __sk_buff, tstamp):
9085 case bpf_ctx_range(struct __sk_buff, wire_len):
9086 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9087 return false;
9088 }
9089
9090 if (type == BPF_WRITE) {
9091 switch (off) {
9092 case bpf_ctx_range(struct __sk_buff, tc_index):
9093 case bpf_ctx_range(struct __sk_buff, priority):
9094 break;
9095 default:
9096 return false;
9097 }
9098 }
9099
9100 switch (off) {
9101 case bpf_ctx_range(struct __sk_buff, mark):
9102 return false;
9103 case bpf_ctx_range(struct __sk_buff, data):
9104 info->reg_type = PTR_TO_PACKET;
9105 break;
9106 case bpf_ctx_range(struct __sk_buff, data_end):
9107 info->reg_type = PTR_TO_PACKET_END;
9108 break;
9109 }
9110
9111 return bpf_skb_is_valid_access(off, size, type, prog, info);
9112 }
9113
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9114 static bool sk_msg_is_valid_access(int off, int size,
9115 enum bpf_access_type type,
9116 const struct bpf_prog *prog,
9117 struct bpf_insn_access_aux *info)
9118 {
9119 if (type == BPF_WRITE)
9120 return false;
9121
9122 if (off % size != 0)
9123 return false;
9124
9125 switch (off) {
9126 case offsetof(struct sk_msg_md, data):
9127 info->reg_type = PTR_TO_PACKET;
9128 if (size != sizeof(__u64))
9129 return false;
9130 break;
9131 case offsetof(struct sk_msg_md, data_end):
9132 info->reg_type = PTR_TO_PACKET_END;
9133 if (size != sizeof(__u64))
9134 return false;
9135 break;
9136 case offsetof(struct sk_msg_md, sk):
9137 if (size != sizeof(__u64))
9138 return false;
9139 info->reg_type = PTR_TO_SOCKET;
9140 break;
9141 case bpf_ctx_range(struct sk_msg_md, family):
9142 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9143 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9144 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9145 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9146 case bpf_ctx_range(struct sk_msg_md, remote_port):
9147 case bpf_ctx_range(struct sk_msg_md, local_port):
9148 case bpf_ctx_range(struct sk_msg_md, size):
9149 if (size != sizeof(__u32))
9150 return false;
9151 break;
9152 default:
9153 return false;
9154 }
9155 return true;
9156 }
9157
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9158 static bool flow_dissector_is_valid_access(int off, int size,
9159 enum bpf_access_type type,
9160 const struct bpf_prog *prog,
9161 struct bpf_insn_access_aux *info)
9162 {
9163 const int size_default = sizeof(__u32);
9164
9165 if (off < 0 || off >= sizeof(struct __sk_buff))
9166 return false;
9167
9168 if (type == BPF_WRITE)
9169 return false;
9170
9171 switch (off) {
9172 case bpf_ctx_range(struct __sk_buff, data):
9173 if (size != size_default)
9174 return false;
9175 info->reg_type = PTR_TO_PACKET;
9176 return true;
9177 case bpf_ctx_range(struct __sk_buff, data_end):
9178 if (size != size_default)
9179 return false;
9180 info->reg_type = PTR_TO_PACKET_END;
9181 return true;
9182 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9183 if (size != sizeof(__u64))
9184 return false;
9185 info->reg_type = PTR_TO_FLOW_KEYS;
9186 return true;
9187 default:
9188 return false;
9189 }
9190 }
9191
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9192 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9193 const struct bpf_insn *si,
9194 struct bpf_insn *insn_buf,
9195 struct bpf_prog *prog,
9196 u32 *target_size)
9197
9198 {
9199 struct bpf_insn *insn = insn_buf;
9200
9201 switch (si->off) {
9202 case offsetof(struct __sk_buff, data):
9203 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9204 si->dst_reg, si->src_reg,
9205 offsetof(struct bpf_flow_dissector, data));
9206 break;
9207
9208 case offsetof(struct __sk_buff, data_end):
9209 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9210 si->dst_reg, si->src_reg,
9211 offsetof(struct bpf_flow_dissector, data_end));
9212 break;
9213
9214 case offsetof(struct __sk_buff, flow_keys):
9215 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9216 si->dst_reg, si->src_reg,
9217 offsetof(struct bpf_flow_dissector, flow_keys));
9218 break;
9219 }
9220
9221 return insn - insn_buf;
9222 }
9223
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9224 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9225 struct bpf_insn *insn)
9226 {
9227 __u8 value_reg = si->dst_reg;
9228 __u8 skb_reg = si->src_reg;
9229 /* AX is needed because src_reg and dst_reg could be the same */
9230 __u8 tmp_reg = BPF_REG_AX;
9231
9232 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9233 PKT_VLAN_PRESENT_OFFSET);
9234 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9235 SKB_MONO_DELIVERY_TIME_MASK, 2);
9236 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9237 *insn++ = BPF_JMP_A(1);
9238 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9239
9240 return insn;
9241 }
9242
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)9243 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9244 struct bpf_insn *insn)
9245 {
9246 /* si->dst_reg = skb_shinfo(SKB); */
9247 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9248 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9249 BPF_REG_AX, si->src_reg,
9250 offsetof(struct sk_buff, end));
9251 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9252 si->dst_reg, si->src_reg,
9253 offsetof(struct sk_buff, head));
9254 *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9255 #else
9256 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9257 si->dst_reg, si->src_reg,
9258 offsetof(struct sk_buff, end));
9259 #endif
9260
9261 return insn;
9262 }
9263
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9264 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9265 const struct bpf_insn *si,
9266 struct bpf_insn *insn)
9267 {
9268 __u8 value_reg = si->dst_reg;
9269 __u8 skb_reg = si->src_reg;
9270
9271 #ifdef CONFIG_NET_CLS_ACT
9272 /* If the tstamp_type is read,
9273 * the bpf prog is aware the tstamp could have delivery time.
9274 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9275 */
9276 if (!prog->tstamp_type_access) {
9277 /* AX is needed because src_reg and dst_reg could be the same */
9278 __u8 tmp_reg = BPF_REG_AX;
9279
9280 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9281 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9282 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9283 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9284 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9285 /* skb->tc_at_ingress && skb->mono_delivery_time,
9286 * read 0 as the (rcv) timestamp.
9287 */
9288 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9289 *insn++ = BPF_JMP_A(1);
9290 }
9291 #endif
9292
9293 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9294 offsetof(struct sk_buff, tstamp));
9295 return insn;
9296 }
9297
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9298 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9299 const struct bpf_insn *si,
9300 struct bpf_insn *insn)
9301 {
9302 __u8 value_reg = si->src_reg;
9303 __u8 skb_reg = si->dst_reg;
9304
9305 #ifdef CONFIG_NET_CLS_ACT
9306 /* If the tstamp_type is read,
9307 * the bpf prog is aware the tstamp could have delivery time.
9308 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9309 * Otherwise, writing at ingress will have to clear the
9310 * mono_delivery_time bit also.
9311 */
9312 if (!prog->tstamp_type_access) {
9313 __u8 tmp_reg = BPF_REG_AX;
9314
9315 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9316 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9317 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9318 /* goto <store> */
9319 *insn++ = BPF_JMP_A(2);
9320 /* <clear>: mono_delivery_time */
9321 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9322 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9323 }
9324 #endif
9325
9326 /* <store>: skb->tstamp = tstamp */
9327 *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9328 offsetof(struct sk_buff, tstamp));
9329 return insn;
9330 }
9331
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9332 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9333 const struct bpf_insn *si,
9334 struct bpf_insn *insn_buf,
9335 struct bpf_prog *prog, u32 *target_size)
9336 {
9337 struct bpf_insn *insn = insn_buf;
9338 int off;
9339
9340 switch (si->off) {
9341 case offsetof(struct __sk_buff, len):
9342 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9343 bpf_target_off(struct sk_buff, len, 4,
9344 target_size));
9345 break;
9346
9347 case offsetof(struct __sk_buff, protocol):
9348 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9349 bpf_target_off(struct sk_buff, protocol, 2,
9350 target_size));
9351 break;
9352
9353 case offsetof(struct __sk_buff, vlan_proto):
9354 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9355 bpf_target_off(struct sk_buff, vlan_proto, 2,
9356 target_size));
9357 break;
9358
9359 case offsetof(struct __sk_buff, priority):
9360 if (type == BPF_WRITE)
9361 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9362 bpf_target_off(struct sk_buff, priority, 4,
9363 target_size));
9364 else
9365 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9366 bpf_target_off(struct sk_buff, priority, 4,
9367 target_size));
9368 break;
9369
9370 case offsetof(struct __sk_buff, ingress_ifindex):
9371 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9372 bpf_target_off(struct sk_buff, skb_iif, 4,
9373 target_size));
9374 break;
9375
9376 case offsetof(struct __sk_buff, ifindex):
9377 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9378 si->dst_reg, si->src_reg,
9379 offsetof(struct sk_buff, dev));
9380 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9381 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9382 bpf_target_off(struct net_device, ifindex, 4,
9383 target_size));
9384 break;
9385
9386 case offsetof(struct __sk_buff, hash):
9387 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9388 bpf_target_off(struct sk_buff, hash, 4,
9389 target_size));
9390 break;
9391
9392 case offsetof(struct __sk_buff, mark):
9393 if (type == BPF_WRITE)
9394 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9395 bpf_target_off(struct sk_buff, mark, 4,
9396 target_size));
9397 else
9398 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9399 bpf_target_off(struct sk_buff, mark, 4,
9400 target_size));
9401 break;
9402
9403 case offsetof(struct __sk_buff, pkt_type):
9404 *target_size = 1;
9405 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9406 PKT_TYPE_OFFSET);
9407 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9408 #ifdef __BIG_ENDIAN_BITFIELD
9409 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9410 #endif
9411 break;
9412
9413 case offsetof(struct __sk_buff, queue_mapping):
9414 if (type == BPF_WRITE) {
9415 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9416 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9417 bpf_target_off(struct sk_buff,
9418 queue_mapping,
9419 2, target_size));
9420 } else {
9421 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9422 bpf_target_off(struct sk_buff,
9423 queue_mapping,
9424 2, target_size));
9425 }
9426 break;
9427
9428 case offsetof(struct __sk_buff, vlan_present):
9429 *target_size = 1;
9430 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9431 PKT_VLAN_PRESENT_OFFSET);
9432 if (PKT_VLAN_PRESENT_BIT)
9433 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9434 if (PKT_VLAN_PRESENT_BIT < 7)
9435 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9436 break;
9437
9438 case offsetof(struct __sk_buff, vlan_tci):
9439 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9440 bpf_target_off(struct sk_buff, vlan_tci, 2,
9441 target_size));
9442 break;
9443
9444 case offsetof(struct __sk_buff, cb[0]) ...
9445 offsetofend(struct __sk_buff, cb[4]) - 1:
9446 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9447 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9448 offsetof(struct qdisc_skb_cb, data)) %
9449 sizeof(__u64));
9450
9451 prog->cb_access = 1;
9452 off = si->off;
9453 off -= offsetof(struct __sk_buff, cb[0]);
9454 off += offsetof(struct sk_buff, cb);
9455 off += offsetof(struct qdisc_skb_cb, data);
9456 if (type == BPF_WRITE)
9457 *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9458 si->src_reg, off);
9459 else
9460 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9461 si->src_reg, off);
9462 break;
9463
9464 case offsetof(struct __sk_buff, tc_classid):
9465 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9466
9467 off = si->off;
9468 off -= offsetof(struct __sk_buff, tc_classid);
9469 off += offsetof(struct sk_buff, cb);
9470 off += offsetof(struct qdisc_skb_cb, tc_classid);
9471 *target_size = 2;
9472 if (type == BPF_WRITE)
9473 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9474 si->src_reg, off);
9475 else
9476 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9477 si->src_reg, off);
9478 break;
9479
9480 case offsetof(struct __sk_buff, data):
9481 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9482 si->dst_reg, si->src_reg,
9483 offsetof(struct sk_buff, data));
9484 break;
9485
9486 case offsetof(struct __sk_buff, data_meta):
9487 off = si->off;
9488 off -= offsetof(struct __sk_buff, data_meta);
9489 off += offsetof(struct sk_buff, cb);
9490 off += offsetof(struct bpf_skb_data_end, data_meta);
9491 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9492 si->src_reg, off);
9493 break;
9494
9495 case offsetof(struct __sk_buff, data_end):
9496 off = si->off;
9497 off -= offsetof(struct __sk_buff, data_end);
9498 off += offsetof(struct sk_buff, cb);
9499 off += offsetof(struct bpf_skb_data_end, data_end);
9500 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9501 si->src_reg, off);
9502 break;
9503
9504 case offsetof(struct __sk_buff, tc_index):
9505 #ifdef CONFIG_NET_SCHED
9506 if (type == BPF_WRITE)
9507 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9508 bpf_target_off(struct sk_buff, tc_index, 2,
9509 target_size));
9510 else
9511 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9512 bpf_target_off(struct sk_buff, tc_index, 2,
9513 target_size));
9514 #else
9515 *target_size = 2;
9516 if (type == BPF_WRITE)
9517 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9518 else
9519 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9520 #endif
9521 break;
9522
9523 case offsetof(struct __sk_buff, napi_id):
9524 #if defined(CONFIG_NET_RX_BUSY_POLL)
9525 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9526 bpf_target_off(struct sk_buff, napi_id, 4,
9527 target_size));
9528 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9529 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9530 #else
9531 *target_size = 4;
9532 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9533 #endif
9534 break;
9535 case offsetof(struct __sk_buff, family):
9536 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9537
9538 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9539 si->dst_reg, si->src_reg,
9540 offsetof(struct sk_buff, sk));
9541 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9542 bpf_target_off(struct sock_common,
9543 skc_family,
9544 2, target_size));
9545 break;
9546 case offsetof(struct __sk_buff, remote_ip4):
9547 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9548
9549 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9550 si->dst_reg, si->src_reg,
9551 offsetof(struct sk_buff, sk));
9552 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9553 bpf_target_off(struct sock_common,
9554 skc_daddr,
9555 4, target_size));
9556 break;
9557 case offsetof(struct __sk_buff, local_ip4):
9558 BUILD_BUG_ON(sizeof_field(struct sock_common,
9559 skc_rcv_saddr) != 4);
9560
9561 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9562 si->dst_reg, si->src_reg,
9563 offsetof(struct sk_buff, sk));
9564 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9565 bpf_target_off(struct sock_common,
9566 skc_rcv_saddr,
9567 4, target_size));
9568 break;
9569 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9570 offsetof(struct __sk_buff, remote_ip6[3]):
9571 #if IS_ENABLED(CONFIG_IPV6)
9572 BUILD_BUG_ON(sizeof_field(struct sock_common,
9573 skc_v6_daddr.s6_addr32[0]) != 4);
9574
9575 off = si->off;
9576 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9577
9578 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9579 si->dst_reg, si->src_reg,
9580 offsetof(struct sk_buff, sk));
9581 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9582 offsetof(struct sock_common,
9583 skc_v6_daddr.s6_addr32[0]) +
9584 off);
9585 #else
9586 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9587 #endif
9588 break;
9589 case offsetof(struct __sk_buff, local_ip6[0]) ...
9590 offsetof(struct __sk_buff, local_ip6[3]):
9591 #if IS_ENABLED(CONFIG_IPV6)
9592 BUILD_BUG_ON(sizeof_field(struct sock_common,
9593 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9594
9595 off = si->off;
9596 off -= offsetof(struct __sk_buff, local_ip6[0]);
9597
9598 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9599 si->dst_reg, si->src_reg,
9600 offsetof(struct sk_buff, sk));
9601 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9602 offsetof(struct sock_common,
9603 skc_v6_rcv_saddr.s6_addr32[0]) +
9604 off);
9605 #else
9606 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9607 #endif
9608 break;
9609
9610 case offsetof(struct __sk_buff, remote_port):
9611 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9612
9613 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9614 si->dst_reg, si->src_reg,
9615 offsetof(struct sk_buff, sk));
9616 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9617 bpf_target_off(struct sock_common,
9618 skc_dport,
9619 2, target_size));
9620 #ifndef __BIG_ENDIAN_BITFIELD
9621 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9622 #endif
9623 break;
9624
9625 case offsetof(struct __sk_buff, local_port):
9626 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9627
9628 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9629 si->dst_reg, si->src_reg,
9630 offsetof(struct sk_buff, sk));
9631 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9632 bpf_target_off(struct sock_common,
9633 skc_num, 2, target_size));
9634 break;
9635
9636 case offsetof(struct __sk_buff, tstamp):
9637 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9638
9639 if (type == BPF_WRITE)
9640 insn = bpf_convert_tstamp_write(prog, si, insn);
9641 else
9642 insn = bpf_convert_tstamp_read(prog, si, insn);
9643 break;
9644
9645 case offsetof(struct __sk_buff, tstamp_type):
9646 insn = bpf_convert_tstamp_type_read(si, insn);
9647 break;
9648
9649 case offsetof(struct __sk_buff, gso_segs):
9650 insn = bpf_convert_shinfo_access(si, insn);
9651 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9652 si->dst_reg, si->dst_reg,
9653 bpf_target_off(struct skb_shared_info,
9654 gso_segs, 2,
9655 target_size));
9656 break;
9657 case offsetof(struct __sk_buff, gso_size):
9658 insn = bpf_convert_shinfo_access(si, insn);
9659 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9660 si->dst_reg, si->dst_reg,
9661 bpf_target_off(struct skb_shared_info,
9662 gso_size, 2,
9663 target_size));
9664 break;
9665 case offsetof(struct __sk_buff, wire_len):
9666 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9667
9668 off = si->off;
9669 off -= offsetof(struct __sk_buff, wire_len);
9670 off += offsetof(struct sk_buff, cb);
9671 off += offsetof(struct qdisc_skb_cb, pkt_len);
9672 *target_size = 4;
9673 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9674 break;
9675
9676 case offsetof(struct __sk_buff, sk):
9677 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9678 si->dst_reg, si->src_reg,
9679 offsetof(struct sk_buff, sk));
9680 break;
9681 case offsetof(struct __sk_buff, hwtstamp):
9682 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9683 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9684
9685 insn = bpf_convert_shinfo_access(si, insn);
9686 *insn++ = BPF_LDX_MEM(BPF_DW,
9687 si->dst_reg, si->dst_reg,
9688 bpf_target_off(struct skb_shared_info,
9689 hwtstamps, 8,
9690 target_size));
9691 break;
9692 }
9693
9694 return insn - insn_buf;
9695 }
9696
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9697 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9698 const struct bpf_insn *si,
9699 struct bpf_insn *insn_buf,
9700 struct bpf_prog *prog, u32 *target_size)
9701 {
9702 struct bpf_insn *insn = insn_buf;
9703 int off;
9704
9705 switch (si->off) {
9706 case offsetof(struct bpf_sock, bound_dev_if):
9707 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9708
9709 if (type == BPF_WRITE)
9710 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9711 offsetof(struct sock, sk_bound_dev_if));
9712 else
9713 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9714 offsetof(struct sock, sk_bound_dev_if));
9715 break;
9716
9717 case offsetof(struct bpf_sock, mark):
9718 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9719
9720 if (type == BPF_WRITE)
9721 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9722 offsetof(struct sock, sk_mark));
9723 else
9724 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9725 offsetof(struct sock, sk_mark));
9726 break;
9727
9728 case offsetof(struct bpf_sock, priority):
9729 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9730
9731 if (type == BPF_WRITE)
9732 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9733 offsetof(struct sock, sk_priority));
9734 else
9735 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9736 offsetof(struct sock, sk_priority));
9737 break;
9738
9739 case offsetof(struct bpf_sock, family):
9740 *insn++ = BPF_LDX_MEM(
9741 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9742 si->dst_reg, si->src_reg,
9743 bpf_target_off(struct sock_common,
9744 skc_family,
9745 sizeof_field(struct sock_common,
9746 skc_family),
9747 target_size));
9748 break;
9749
9750 case offsetof(struct bpf_sock, type):
9751 *insn++ = BPF_LDX_MEM(
9752 BPF_FIELD_SIZEOF(struct sock, sk_type),
9753 si->dst_reg, si->src_reg,
9754 bpf_target_off(struct sock, sk_type,
9755 sizeof_field(struct sock, sk_type),
9756 target_size));
9757 break;
9758
9759 case offsetof(struct bpf_sock, protocol):
9760 *insn++ = BPF_LDX_MEM(
9761 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9762 si->dst_reg, si->src_reg,
9763 bpf_target_off(struct sock, sk_protocol,
9764 sizeof_field(struct sock, sk_protocol),
9765 target_size));
9766 break;
9767
9768 case offsetof(struct bpf_sock, src_ip4):
9769 *insn++ = BPF_LDX_MEM(
9770 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9771 bpf_target_off(struct sock_common, skc_rcv_saddr,
9772 sizeof_field(struct sock_common,
9773 skc_rcv_saddr),
9774 target_size));
9775 break;
9776
9777 case offsetof(struct bpf_sock, dst_ip4):
9778 *insn++ = BPF_LDX_MEM(
9779 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9780 bpf_target_off(struct sock_common, skc_daddr,
9781 sizeof_field(struct sock_common,
9782 skc_daddr),
9783 target_size));
9784 break;
9785
9786 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9787 #if IS_ENABLED(CONFIG_IPV6)
9788 off = si->off;
9789 off -= offsetof(struct bpf_sock, src_ip6[0]);
9790 *insn++ = BPF_LDX_MEM(
9791 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9792 bpf_target_off(
9793 struct sock_common,
9794 skc_v6_rcv_saddr.s6_addr32[0],
9795 sizeof_field(struct sock_common,
9796 skc_v6_rcv_saddr.s6_addr32[0]),
9797 target_size) + off);
9798 #else
9799 (void)off;
9800 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9801 #endif
9802 break;
9803
9804 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9805 #if IS_ENABLED(CONFIG_IPV6)
9806 off = si->off;
9807 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9808 *insn++ = BPF_LDX_MEM(
9809 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9810 bpf_target_off(struct sock_common,
9811 skc_v6_daddr.s6_addr32[0],
9812 sizeof_field(struct sock_common,
9813 skc_v6_daddr.s6_addr32[0]),
9814 target_size) + off);
9815 #else
9816 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9817 *target_size = 4;
9818 #endif
9819 break;
9820
9821 case offsetof(struct bpf_sock, src_port):
9822 *insn++ = BPF_LDX_MEM(
9823 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9824 si->dst_reg, si->src_reg,
9825 bpf_target_off(struct sock_common, skc_num,
9826 sizeof_field(struct sock_common,
9827 skc_num),
9828 target_size));
9829 break;
9830
9831 case offsetof(struct bpf_sock, dst_port):
9832 *insn++ = BPF_LDX_MEM(
9833 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9834 si->dst_reg, si->src_reg,
9835 bpf_target_off(struct sock_common, skc_dport,
9836 sizeof_field(struct sock_common,
9837 skc_dport),
9838 target_size));
9839 break;
9840
9841 case offsetof(struct bpf_sock, state):
9842 *insn++ = BPF_LDX_MEM(
9843 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9844 si->dst_reg, si->src_reg,
9845 bpf_target_off(struct sock_common, skc_state,
9846 sizeof_field(struct sock_common,
9847 skc_state),
9848 target_size));
9849 break;
9850 case offsetof(struct bpf_sock, rx_queue_mapping):
9851 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9852 *insn++ = BPF_LDX_MEM(
9853 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9854 si->dst_reg, si->src_reg,
9855 bpf_target_off(struct sock, sk_rx_queue_mapping,
9856 sizeof_field(struct sock,
9857 sk_rx_queue_mapping),
9858 target_size));
9859 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9860 1);
9861 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9862 #else
9863 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9864 *target_size = 2;
9865 #endif
9866 break;
9867 }
9868
9869 return insn - insn_buf;
9870 }
9871
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9872 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9873 const struct bpf_insn *si,
9874 struct bpf_insn *insn_buf,
9875 struct bpf_prog *prog, u32 *target_size)
9876 {
9877 struct bpf_insn *insn = insn_buf;
9878
9879 switch (si->off) {
9880 case offsetof(struct __sk_buff, ifindex):
9881 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9882 si->dst_reg, si->src_reg,
9883 offsetof(struct sk_buff, dev));
9884 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9885 bpf_target_off(struct net_device, ifindex, 4,
9886 target_size));
9887 break;
9888 default:
9889 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9890 target_size);
9891 }
9892
9893 return insn - insn_buf;
9894 }
9895
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9896 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9897 const struct bpf_insn *si,
9898 struct bpf_insn *insn_buf,
9899 struct bpf_prog *prog, u32 *target_size)
9900 {
9901 struct bpf_insn *insn = insn_buf;
9902
9903 switch (si->off) {
9904 case offsetof(struct xdp_md, data):
9905 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9906 si->dst_reg, si->src_reg,
9907 offsetof(struct xdp_buff, data));
9908 break;
9909 case offsetof(struct xdp_md, data_meta):
9910 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9911 si->dst_reg, si->src_reg,
9912 offsetof(struct xdp_buff, data_meta));
9913 break;
9914 case offsetof(struct xdp_md, data_end):
9915 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9916 si->dst_reg, si->src_reg,
9917 offsetof(struct xdp_buff, data_end));
9918 break;
9919 case offsetof(struct xdp_md, ingress_ifindex):
9920 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9921 si->dst_reg, si->src_reg,
9922 offsetof(struct xdp_buff, rxq));
9923 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9924 si->dst_reg, si->dst_reg,
9925 offsetof(struct xdp_rxq_info, dev));
9926 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9927 offsetof(struct net_device, ifindex));
9928 break;
9929 case offsetof(struct xdp_md, rx_queue_index):
9930 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9931 si->dst_reg, si->src_reg,
9932 offsetof(struct xdp_buff, rxq));
9933 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9934 offsetof(struct xdp_rxq_info,
9935 queue_index));
9936 break;
9937 case offsetof(struct xdp_md, egress_ifindex):
9938 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9939 si->dst_reg, si->src_reg,
9940 offsetof(struct xdp_buff, txq));
9941 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9942 si->dst_reg, si->dst_reg,
9943 offsetof(struct xdp_txq_info, dev));
9944 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9945 offsetof(struct net_device, ifindex));
9946 break;
9947 }
9948
9949 return insn - insn_buf;
9950 }
9951
9952 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9953 * context Structure, F is Field in context structure that contains a pointer
9954 * to Nested Structure of type NS that has the field NF.
9955 *
9956 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9957 * sure that SIZE is not greater than actual size of S.F.NF.
9958 *
9959 * If offset OFF is provided, the load happens from that offset relative to
9960 * offset of NF.
9961 */
9962 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
9963 do { \
9964 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
9965 si->src_reg, offsetof(S, F)); \
9966 *insn++ = BPF_LDX_MEM( \
9967 SIZE, si->dst_reg, si->dst_reg, \
9968 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
9969 target_size) \
9970 + OFF); \
9971 } while (0)
9972
9973 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
9974 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
9975 BPF_FIELD_SIZEOF(NS, NF), 0)
9976
9977 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9978 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9979 *
9980 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9981 * "register" since two registers available in convert_ctx_access are not
9982 * enough: we can't override neither SRC, since it contains value to store, nor
9983 * DST since it contains pointer to context that may be used by later
9984 * instructions. But we need a temporary place to save pointer to nested
9985 * structure whose field we want to store to.
9986 */
9987 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
9988 do { \
9989 int tmp_reg = BPF_REG_9; \
9990 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
9991 --tmp_reg; \
9992 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
9993 --tmp_reg; \
9994 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
9995 offsetof(S, TF)); \
9996 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
9997 si->dst_reg, offsetof(S, F)); \
9998 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg, \
9999 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10000 target_size) \
10001 + OFF); \
10002 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10003 offsetof(S, TF)); \
10004 } while (0)
10005
10006 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10007 TF) \
10008 do { \
10009 if (type == BPF_WRITE) { \
10010 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10011 OFF, TF); \
10012 } else { \
10013 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10014 S, NS, F, NF, SIZE, OFF); \
10015 } \
10016 } while (0)
10017
10018 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
10019 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
10020 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10021
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10022 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10023 const struct bpf_insn *si,
10024 struct bpf_insn *insn_buf,
10025 struct bpf_prog *prog, u32 *target_size)
10026 {
10027 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10028 struct bpf_insn *insn = insn_buf;
10029
10030 switch (si->off) {
10031 case offsetof(struct bpf_sock_addr, user_family):
10032 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10033 struct sockaddr, uaddr, sa_family);
10034 break;
10035
10036 case offsetof(struct bpf_sock_addr, user_ip4):
10037 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10038 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10039 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10040 break;
10041
10042 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10043 off = si->off;
10044 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10045 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10046 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10047 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10048 tmp_reg);
10049 break;
10050
10051 case offsetof(struct bpf_sock_addr, user_port):
10052 /* To get port we need to know sa_family first and then treat
10053 * sockaddr as either sockaddr_in or sockaddr_in6.
10054 * Though we can simplify since port field has same offset and
10055 * size in both structures.
10056 * Here we check this invariant and use just one of the
10057 * structures if it's true.
10058 */
10059 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10060 offsetof(struct sockaddr_in6, sin6_port));
10061 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10062 sizeof_field(struct sockaddr_in6, sin6_port));
10063 /* Account for sin6_port being smaller than user_port. */
10064 port_size = min(port_size, BPF_LDST_BYTES(si));
10065 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10066 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10067 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10068 break;
10069
10070 case offsetof(struct bpf_sock_addr, family):
10071 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10072 struct sock, sk, sk_family);
10073 break;
10074
10075 case offsetof(struct bpf_sock_addr, type):
10076 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10077 struct sock, sk, sk_type);
10078 break;
10079
10080 case offsetof(struct bpf_sock_addr, protocol):
10081 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10082 struct sock, sk, sk_protocol);
10083 break;
10084
10085 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10086 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10087 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10088 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10089 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10090 break;
10091
10092 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10093 msg_src_ip6[3]):
10094 off = si->off;
10095 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10096 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10097 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10098 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10099 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10100 break;
10101 case offsetof(struct bpf_sock_addr, sk):
10102 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10103 si->dst_reg, si->src_reg,
10104 offsetof(struct bpf_sock_addr_kern, sk));
10105 break;
10106 }
10107
10108 return insn - insn_buf;
10109 }
10110
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10111 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10112 const struct bpf_insn *si,
10113 struct bpf_insn *insn_buf,
10114 struct bpf_prog *prog,
10115 u32 *target_size)
10116 {
10117 struct bpf_insn *insn = insn_buf;
10118 int off;
10119
10120 /* Helper macro for adding read access to tcp_sock or sock fields. */
10121 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10122 do { \
10123 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10124 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10125 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10126 if (si->dst_reg == reg || si->src_reg == reg) \
10127 reg--; \
10128 if (si->dst_reg == reg || si->src_reg == reg) \
10129 reg--; \
10130 if (si->dst_reg == si->src_reg) { \
10131 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10132 offsetof(struct bpf_sock_ops_kern, \
10133 temp)); \
10134 fullsock_reg = reg; \
10135 jmp += 2; \
10136 } \
10137 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10138 struct bpf_sock_ops_kern, \
10139 is_fullsock), \
10140 fullsock_reg, si->src_reg, \
10141 offsetof(struct bpf_sock_ops_kern, \
10142 is_fullsock)); \
10143 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10144 if (si->dst_reg == si->src_reg) \
10145 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10146 offsetof(struct bpf_sock_ops_kern, \
10147 temp)); \
10148 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10149 struct bpf_sock_ops_kern, sk),\
10150 si->dst_reg, si->src_reg, \
10151 offsetof(struct bpf_sock_ops_kern, sk));\
10152 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10153 OBJ_FIELD), \
10154 si->dst_reg, si->dst_reg, \
10155 offsetof(OBJ, OBJ_FIELD)); \
10156 if (si->dst_reg == si->src_reg) { \
10157 *insn++ = BPF_JMP_A(1); \
10158 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10159 offsetof(struct bpf_sock_ops_kern, \
10160 temp)); \
10161 } \
10162 } while (0)
10163
10164 #define SOCK_OPS_GET_SK() \
10165 do { \
10166 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10167 if (si->dst_reg == reg || si->src_reg == reg) \
10168 reg--; \
10169 if (si->dst_reg == reg || si->src_reg == reg) \
10170 reg--; \
10171 if (si->dst_reg == si->src_reg) { \
10172 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10173 offsetof(struct bpf_sock_ops_kern, \
10174 temp)); \
10175 fullsock_reg = reg; \
10176 jmp += 2; \
10177 } \
10178 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10179 struct bpf_sock_ops_kern, \
10180 is_fullsock), \
10181 fullsock_reg, si->src_reg, \
10182 offsetof(struct bpf_sock_ops_kern, \
10183 is_fullsock)); \
10184 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10185 if (si->dst_reg == si->src_reg) \
10186 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10187 offsetof(struct bpf_sock_ops_kern, \
10188 temp)); \
10189 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10190 struct bpf_sock_ops_kern, sk),\
10191 si->dst_reg, si->src_reg, \
10192 offsetof(struct bpf_sock_ops_kern, sk));\
10193 if (si->dst_reg == si->src_reg) { \
10194 *insn++ = BPF_JMP_A(1); \
10195 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10196 offsetof(struct bpf_sock_ops_kern, \
10197 temp)); \
10198 } \
10199 } while (0)
10200
10201 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10202 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10203
10204 /* Helper macro for adding write access to tcp_sock or sock fields.
10205 * The macro is called with two registers, dst_reg which contains a pointer
10206 * to ctx (context) and src_reg which contains the value that should be
10207 * stored. However, we need an additional register since we cannot overwrite
10208 * dst_reg because it may be used later in the program.
10209 * Instead we "borrow" one of the other register. We first save its value
10210 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10211 * it at the end of the macro.
10212 */
10213 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10214 do { \
10215 int reg = BPF_REG_9; \
10216 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10217 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10218 if (si->dst_reg == reg || si->src_reg == reg) \
10219 reg--; \
10220 if (si->dst_reg == reg || si->src_reg == reg) \
10221 reg--; \
10222 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10223 offsetof(struct bpf_sock_ops_kern, \
10224 temp)); \
10225 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10226 struct bpf_sock_ops_kern, \
10227 is_fullsock), \
10228 reg, si->dst_reg, \
10229 offsetof(struct bpf_sock_ops_kern, \
10230 is_fullsock)); \
10231 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10232 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10233 struct bpf_sock_ops_kern, sk),\
10234 reg, si->dst_reg, \
10235 offsetof(struct bpf_sock_ops_kern, sk));\
10236 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD), \
10237 reg, si->src_reg, \
10238 offsetof(OBJ, OBJ_FIELD)); \
10239 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10240 offsetof(struct bpf_sock_ops_kern, \
10241 temp)); \
10242 } while (0)
10243
10244 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10245 do { \
10246 if (TYPE == BPF_WRITE) \
10247 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10248 else \
10249 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10250 } while (0)
10251
10252 if (insn > insn_buf)
10253 return insn - insn_buf;
10254
10255 switch (si->off) {
10256 case offsetof(struct bpf_sock_ops, op):
10257 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10258 op),
10259 si->dst_reg, si->src_reg,
10260 offsetof(struct bpf_sock_ops_kern, op));
10261 break;
10262
10263 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10264 offsetof(struct bpf_sock_ops, replylong[3]):
10265 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10266 sizeof_field(struct bpf_sock_ops_kern, reply));
10267 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10268 sizeof_field(struct bpf_sock_ops_kern, replylong));
10269 off = si->off;
10270 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10271 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10272 if (type == BPF_WRITE)
10273 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10274 off);
10275 else
10276 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10277 off);
10278 break;
10279
10280 case offsetof(struct bpf_sock_ops, family):
10281 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10282
10283 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10284 struct bpf_sock_ops_kern, sk),
10285 si->dst_reg, si->src_reg,
10286 offsetof(struct bpf_sock_ops_kern, sk));
10287 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10288 offsetof(struct sock_common, skc_family));
10289 break;
10290
10291 case offsetof(struct bpf_sock_ops, remote_ip4):
10292 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10293
10294 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10295 struct bpf_sock_ops_kern, sk),
10296 si->dst_reg, si->src_reg,
10297 offsetof(struct bpf_sock_ops_kern, sk));
10298 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10299 offsetof(struct sock_common, skc_daddr));
10300 break;
10301
10302 case offsetof(struct bpf_sock_ops, local_ip4):
10303 BUILD_BUG_ON(sizeof_field(struct sock_common,
10304 skc_rcv_saddr) != 4);
10305
10306 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10307 struct bpf_sock_ops_kern, sk),
10308 si->dst_reg, si->src_reg,
10309 offsetof(struct bpf_sock_ops_kern, sk));
10310 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10311 offsetof(struct sock_common,
10312 skc_rcv_saddr));
10313 break;
10314
10315 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10316 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10317 #if IS_ENABLED(CONFIG_IPV6)
10318 BUILD_BUG_ON(sizeof_field(struct sock_common,
10319 skc_v6_daddr.s6_addr32[0]) != 4);
10320
10321 off = si->off;
10322 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10323 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10324 struct bpf_sock_ops_kern, sk),
10325 si->dst_reg, si->src_reg,
10326 offsetof(struct bpf_sock_ops_kern, sk));
10327 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10328 offsetof(struct sock_common,
10329 skc_v6_daddr.s6_addr32[0]) +
10330 off);
10331 #else
10332 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10333 #endif
10334 break;
10335
10336 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10337 offsetof(struct bpf_sock_ops, local_ip6[3]):
10338 #if IS_ENABLED(CONFIG_IPV6)
10339 BUILD_BUG_ON(sizeof_field(struct sock_common,
10340 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10341
10342 off = si->off;
10343 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10344 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10345 struct bpf_sock_ops_kern, sk),
10346 si->dst_reg, si->src_reg,
10347 offsetof(struct bpf_sock_ops_kern, sk));
10348 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10349 offsetof(struct sock_common,
10350 skc_v6_rcv_saddr.s6_addr32[0]) +
10351 off);
10352 #else
10353 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10354 #endif
10355 break;
10356
10357 case offsetof(struct bpf_sock_ops, remote_port):
10358 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10359
10360 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10361 struct bpf_sock_ops_kern, sk),
10362 si->dst_reg, si->src_reg,
10363 offsetof(struct bpf_sock_ops_kern, sk));
10364 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10365 offsetof(struct sock_common, skc_dport));
10366 #ifndef __BIG_ENDIAN_BITFIELD
10367 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10368 #endif
10369 break;
10370
10371 case offsetof(struct bpf_sock_ops, local_port):
10372 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10373
10374 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10375 struct bpf_sock_ops_kern, sk),
10376 si->dst_reg, si->src_reg,
10377 offsetof(struct bpf_sock_ops_kern, sk));
10378 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10379 offsetof(struct sock_common, skc_num));
10380 break;
10381
10382 case offsetof(struct bpf_sock_ops, is_fullsock):
10383 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10384 struct bpf_sock_ops_kern,
10385 is_fullsock),
10386 si->dst_reg, si->src_reg,
10387 offsetof(struct bpf_sock_ops_kern,
10388 is_fullsock));
10389 break;
10390
10391 case offsetof(struct bpf_sock_ops, state):
10392 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10393
10394 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10395 struct bpf_sock_ops_kern, sk),
10396 si->dst_reg, si->src_reg,
10397 offsetof(struct bpf_sock_ops_kern, sk));
10398 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10399 offsetof(struct sock_common, skc_state));
10400 break;
10401
10402 case offsetof(struct bpf_sock_ops, rtt_min):
10403 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10404 sizeof(struct minmax));
10405 BUILD_BUG_ON(sizeof(struct minmax) <
10406 sizeof(struct minmax_sample));
10407
10408 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10409 struct bpf_sock_ops_kern, sk),
10410 si->dst_reg, si->src_reg,
10411 offsetof(struct bpf_sock_ops_kern, sk));
10412 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10413 offsetof(struct tcp_sock, rtt_min) +
10414 sizeof_field(struct minmax_sample, t));
10415 break;
10416
10417 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10418 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10419 struct tcp_sock);
10420 break;
10421
10422 case offsetof(struct bpf_sock_ops, sk_txhash):
10423 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10424 struct sock, type);
10425 break;
10426 case offsetof(struct bpf_sock_ops, snd_cwnd):
10427 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10428 break;
10429 case offsetof(struct bpf_sock_ops, srtt_us):
10430 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10431 break;
10432 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10433 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10434 break;
10435 case offsetof(struct bpf_sock_ops, rcv_nxt):
10436 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10437 break;
10438 case offsetof(struct bpf_sock_ops, snd_nxt):
10439 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10440 break;
10441 case offsetof(struct bpf_sock_ops, snd_una):
10442 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10443 break;
10444 case offsetof(struct bpf_sock_ops, mss_cache):
10445 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10446 break;
10447 case offsetof(struct bpf_sock_ops, ecn_flags):
10448 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10449 break;
10450 case offsetof(struct bpf_sock_ops, rate_delivered):
10451 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10452 break;
10453 case offsetof(struct bpf_sock_ops, rate_interval_us):
10454 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10455 break;
10456 case offsetof(struct bpf_sock_ops, packets_out):
10457 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10458 break;
10459 case offsetof(struct bpf_sock_ops, retrans_out):
10460 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10461 break;
10462 case offsetof(struct bpf_sock_ops, total_retrans):
10463 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10464 break;
10465 case offsetof(struct bpf_sock_ops, segs_in):
10466 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10467 break;
10468 case offsetof(struct bpf_sock_ops, data_segs_in):
10469 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10470 break;
10471 case offsetof(struct bpf_sock_ops, segs_out):
10472 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10473 break;
10474 case offsetof(struct bpf_sock_ops, data_segs_out):
10475 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10476 break;
10477 case offsetof(struct bpf_sock_ops, lost_out):
10478 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10479 break;
10480 case offsetof(struct bpf_sock_ops, sacked_out):
10481 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10482 break;
10483 case offsetof(struct bpf_sock_ops, bytes_received):
10484 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10485 break;
10486 case offsetof(struct bpf_sock_ops, bytes_acked):
10487 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10488 break;
10489 case offsetof(struct bpf_sock_ops, sk):
10490 SOCK_OPS_GET_SK();
10491 break;
10492 case offsetof(struct bpf_sock_ops, skb_data_end):
10493 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10494 skb_data_end),
10495 si->dst_reg, si->src_reg,
10496 offsetof(struct bpf_sock_ops_kern,
10497 skb_data_end));
10498 break;
10499 case offsetof(struct bpf_sock_ops, skb_data):
10500 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10501 skb),
10502 si->dst_reg, si->src_reg,
10503 offsetof(struct bpf_sock_ops_kern,
10504 skb));
10505 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10506 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10507 si->dst_reg, si->dst_reg,
10508 offsetof(struct sk_buff, data));
10509 break;
10510 case offsetof(struct bpf_sock_ops, skb_len):
10511 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10512 skb),
10513 si->dst_reg, si->src_reg,
10514 offsetof(struct bpf_sock_ops_kern,
10515 skb));
10516 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10517 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10518 si->dst_reg, si->dst_reg,
10519 offsetof(struct sk_buff, len));
10520 break;
10521 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10522 off = offsetof(struct sk_buff, cb);
10523 off += offsetof(struct tcp_skb_cb, tcp_flags);
10524 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10525 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10526 skb),
10527 si->dst_reg, si->src_reg,
10528 offsetof(struct bpf_sock_ops_kern,
10529 skb));
10530 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10531 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10532 tcp_flags),
10533 si->dst_reg, si->dst_reg, off);
10534 break;
10535 }
10536 return insn - insn_buf;
10537 }
10538
10539 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10540 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10541 struct bpf_insn *insn)
10542 {
10543 int reg;
10544 int temp_reg_off = offsetof(struct sk_buff, cb) +
10545 offsetof(struct sk_skb_cb, temp_reg);
10546
10547 if (si->src_reg == si->dst_reg) {
10548 /* We need an extra register, choose and save a register. */
10549 reg = BPF_REG_9;
10550 if (si->src_reg == reg || si->dst_reg == reg)
10551 reg--;
10552 if (si->src_reg == reg || si->dst_reg == reg)
10553 reg--;
10554 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10555 } else {
10556 reg = si->dst_reg;
10557 }
10558
10559 /* reg = skb->data */
10560 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10561 reg, si->src_reg,
10562 offsetof(struct sk_buff, data));
10563 /* AX = skb->len */
10564 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10565 BPF_REG_AX, si->src_reg,
10566 offsetof(struct sk_buff, len));
10567 /* reg = skb->data + skb->len */
10568 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10569 /* AX = skb->data_len */
10570 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10571 BPF_REG_AX, si->src_reg,
10572 offsetof(struct sk_buff, data_len));
10573
10574 /* reg = skb->data + skb->len - skb->data_len */
10575 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10576
10577 if (si->src_reg == si->dst_reg) {
10578 /* Restore the saved register */
10579 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10580 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10581 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10582 }
10583
10584 return insn;
10585 }
10586
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10587 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10588 const struct bpf_insn *si,
10589 struct bpf_insn *insn_buf,
10590 struct bpf_prog *prog, u32 *target_size)
10591 {
10592 struct bpf_insn *insn = insn_buf;
10593 int off;
10594
10595 switch (si->off) {
10596 case offsetof(struct __sk_buff, data_end):
10597 insn = bpf_convert_data_end_access(si, insn);
10598 break;
10599 case offsetof(struct __sk_buff, cb[0]) ...
10600 offsetofend(struct __sk_buff, cb[4]) - 1:
10601 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10602 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10603 offsetof(struct sk_skb_cb, data)) %
10604 sizeof(__u64));
10605
10606 prog->cb_access = 1;
10607 off = si->off;
10608 off -= offsetof(struct __sk_buff, cb[0]);
10609 off += offsetof(struct sk_buff, cb);
10610 off += offsetof(struct sk_skb_cb, data);
10611 if (type == BPF_WRITE)
10612 *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10613 si->src_reg, off);
10614 else
10615 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10616 si->src_reg, off);
10617 break;
10618
10619
10620 default:
10621 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10622 target_size);
10623 }
10624
10625 return insn - insn_buf;
10626 }
10627
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10628 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10629 const struct bpf_insn *si,
10630 struct bpf_insn *insn_buf,
10631 struct bpf_prog *prog, u32 *target_size)
10632 {
10633 struct bpf_insn *insn = insn_buf;
10634 #if IS_ENABLED(CONFIG_IPV6)
10635 int off;
10636 #endif
10637
10638 /* convert ctx uses the fact sg element is first in struct */
10639 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10640
10641 switch (si->off) {
10642 case offsetof(struct sk_msg_md, data):
10643 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10644 si->dst_reg, si->src_reg,
10645 offsetof(struct sk_msg, data));
10646 break;
10647 case offsetof(struct sk_msg_md, data_end):
10648 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10649 si->dst_reg, si->src_reg,
10650 offsetof(struct sk_msg, data_end));
10651 break;
10652 case offsetof(struct sk_msg_md, family):
10653 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10654
10655 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10656 struct sk_msg, sk),
10657 si->dst_reg, si->src_reg,
10658 offsetof(struct sk_msg, sk));
10659 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10660 offsetof(struct sock_common, skc_family));
10661 break;
10662
10663 case offsetof(struct sk_msg_md, remote_ip4):
10664 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10665
10666 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10667 struct sk_msg, sk),
10668 si->dst_reg, si->src_reg,
10669 offsetof(struct sk_msg, sk));
10670 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10671 offsetof(struct sock_common, skc_daddr));
10672 break;
10673
10674 case offsetof(struct sk_msg_md, local_ip4):
10675 BUILD_BUG_ON(sizeof_field(struct sock_common,
10676 skc_rcv_saddr) != 4);
10677
10678 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10679 struct sk_msg, sk),
10680 si->dst_reg, si->src_reg,
10681 offsetof(struct sk_msg, sk));
10682 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10683 offsetof(struct sock_common,
10684 skc_rcv_saddr));
10685 break;
10686
10687 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10688 offsetof(struct sk_msg_md, remote_ip6[3]):
10689 #if IS_ENABLED(CONFIG_IPV6)
10690 BUILD_BUG_ON(sizeof_field(struct sock_common,
10691 skc_v6_daddr.s6_addr32[0]) != 4);
10692
10693 off = si->off;
10694 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10695 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10696 struct sk_msg, sk),
10697 si->dst_reg, si->src_reg,
10698 offsetof(struct sk_msg, sk));
10699 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10700 offsetof(struct sock_common,
10701 skc_v6_daddr.s6_addr32[0]) +
10702 off);
10703 #else
10704 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10705 #endif
10706 break;
10707
10708 case offsetof(struct sk_msg_md, local_ip6[0]) ...
10709 offsetof(struct sk_msg_md, local_ip6[3]):
10710 #if IS_ENABLED(CONFIG_IPV6)
10711 BUILD_BUG_ON(sizeof_field(struct sock_common,
10712 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10713
10714 off = si->off;
10715 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10716 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10717 struct sk_msg, sk),
10718 si->dst_reg, si->src_reg,
10719 offsetof(struct sk_msg, sk));
10720 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10721 offsetof(struct sock_common,
10722 skc_v6_rcv_saddr.s6_addr32[0]) +
10723 off);
10724 #else
10725 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10726 #endif
10727 break;
10728
10729 case offsetof(struct sk_msg_md, remote_port):
10730 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10731
10732 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10733 struct sk_msg, sk),
10734 si->dst_reg, si->src_reg,
10735 offsetof(struct sk_msg, sk));
10736 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10737 offsetof(struct sock_common, skc_dport));
10738 #ifndef __BIG_ENDIAN_BITFIELD
10739 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10740 #endif
10741 break;
10742
10743 case offsetof(struct sk_msg_md, local_port):
10744 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10745
10746 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10747 struct sk_msg, sk),
10748 si->dst_reg, si->src_reg,
10749 offsetof(struct sk_msg, sk));
10750 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10751 offsetof(struct sock_common, skc_num));
10752 break;
10753
10754 case offsetof(struct sk_msg_md, size):
10755 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10756 si->dst_reg, si->src_reg,
10757 offsetof(struct sk_msg_sg, size));
10758 break;
10759
10760 case offsetof(struct sk_msg_md, sk):
10761 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10762 si->dst_reg, si->src_reg,
10763 offsetof(struct sk_msg, sk));
10764 break;
10765 }
10766
10767 return insn - insn_buf;
10768 }
10769
10770 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10771 .get_func_proto = sk_filter_func_proto,
10772 .is_valid_access = sk_filter_is_valid_access,
10773 .convert_ctx_access = bpf_convert_ctx_access,
10774 .gen_ld_abs = bpf_gen_ld_abs,
10775 };
10776
10777 const struct bpf_prog_ops sk_filter_prog_ops = {
10778 .test_run = bpf_prog_test_run_skb,
10779 };
10780
10781 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10782 .get_func_proto = tc_cls_act_func_proto,
10783 .is_valid_access = tc_cls_act_is_valid_access,
10784 .convert_ctx_access = tc_cls_act_convert_ctx_access,
10785 .gen_prologue = tc_cls_act_prologue,
10786 .gen_ld_abs = bpf_gen_ld_abs,
10787 .btf_struct_access = tc_cls_act_btf_struct_access,
10788 };
10789
10790 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10791 .test_run = bpf_prog_test_run_skb,
10792 };
10793
10794 const struct bpf_verifier_ops xdp_verifier_ops = {
10795 .get_func_proto = xdp_func_proto,
10796 .is_valid_access = xdp_is_valid_access,
10797 .convert_ctx_access = xdp_convert_ctx_access,
10798 .gen_prologue = bpf_noop_prologue,
10799 .btf_struct_access = xdp_btf_struct_access,
10800 };
10801
10802 const struct bpf_prog_ops xdp_prog_ops = {
10803 .test_run = bpf_prog_test_run_xdp,
10804 };
10805
10806 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10807 .get_func_proto = cg_skb_func_proto,
10808 .is_valid_access = cg_skb_is_valid_access,
10809 .convert_ctx_access = bpf_convert_ctx_access,
10810 };
10811
10812 const struct bpf_prog_ops cg_skb_prog_ops = {
10813 .test_run = bpf_prog_test_run_skb,
10814 };
10815
10816 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10817 .get_func_proto = lwt_in_func_proto,
10818 .is_valid_access = lwt_is_valid_access,
10819 .convert_ctx_access = bpf_convert_ctx_access,
10820 };
10821
10822 const struct bpf_prog_ops lwt_in_prog_ops = {
10823 .test_run = bpf_prog_test_run_skb,
10824 };
10825
10826 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10827 .get_func_proto = lwt_out_func_proto,
10828 .is_valid_access = lwt_is_valid_access,
10829 .convert_ctx_access = bpf_convert_ctx_access,
10830 };
10831
10832 const struct bpf_prog_ops lwt_out_prog_ops = {
10833 .test_run = bpf_prog_test_run_skb,
10834 };
10835
10836 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10837 .get_func_proto = lwt_xmit_func_proto,
10838 .is_valid_access = lwt_is_valid_access,
10839 .convert_ctx_access = bpf_convert_ctx_access,
10840 .gen_prologue = tc_cls_act_prologue,
10841 };
10842
10843 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10844 .test_run = bpf_prog_test_run_skb,
10845 };
10846
10847 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10848 .get_func_proto = lwt_seg6local_func_proto,
10849 .is_valid_access = lwt_is_valid_access,
10850 .convert_ctx_access = bpf_convert_ctx_access,
10851 };
10852
10853 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10854 .test_run = bpf_prog_test_run_skb,
10855 };
10856
10857 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10858 .get_func_proto = sock_filter_func_proto,
10859 .is_valid_access = sock_filter_is_valid_access,
10860 .convert_ctx_access = bpf_sock_convert_ctx_access,
10861 };
10862
10863 const struct bpf_prog_ops cg_sock_prog_ops = {
10864 };
10865
10866 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10867 .get_func_proto = sock_addr_func_proto,
10868 .is_valid_access = sock_addr_is_valid_access,
10869 .convert_ctx_access = sock_addr_convert_ctx_access,
10870 };
10871
10872 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10873 };
10874
10875 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10876 .get_func_proto = sock_ops_func_proto,
10877 .is_valid_access = sock_ops_is_valid_access,
10878 .convert_ctx_access = sock_ops_convert_ctx_access,
10879 };
10880
10881 const struct bpf_prog_ops sock_ops_prog_ops = {
10882 };
10883
10884 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10885 .get_func_proto = sk_skb_func_proto,
10886 .is_valid_access = sk_skb_is_valid_access,
10887 .convert_ctx_access = sk_skb_convert_ctx_access,
10888 .gen_prologue = sk_skb_prologue,
10889 };
10890
10891 const struct bpf_prog_ops sk_skb_prog_ops = {
10892 };
10893
10894 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10895 .get_func_proto = sk_msg_func_proto,
10896 .is_valid_access = sk_msg_is_valid_access,
10897 .convert_ctx_access = sk_msg_convert_ctx_access,
10898 .gen_prologue = bpf_noop_prologue,
10899 };
10900
10901 const struct bpf_prog_ops sk_msg_prog_ops = {
10902 };
10903
10904 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10905 .get_func_proto = flow_dissector_func_proto,
10906 .is_valid_access = flow_dissector_is_valid_access,
10907 .convert_ctx_access = flow_dissector_convert_ctx_access,
10908 };
10909
10910 const struct bpf_prog_ops flow_dissector_prog_ops = {
10911 .test_run = bpf_prog_test_run_flow_dissector,
10912 };
10913
sk_detach_filter(struct sock * sk)10914 int sk_detach_filter(struct sock *sk)
10915 {
10916 int ret = -ENOENT;
10917 struct sk_filter *filter;
10918
10919 if (sock_flag(sk, SOCK_FILTER_LOCKED))
10920 return -EPERM;
10921
10922 filter = rcu_dereference_protected(sk->sk_filter,
10923 lockdep_sock_is_held(sk));
10924 if (filter) {
10925 RCU_INIT_POINTER(sk->sk_filter, NULL);
10926 sk_filter_uncharge(sk, filter);
10927 ret = 0;
10928 }
10929
10930 return ret;
10931 }
10932 EXPORT_SYMBOL_GPL(sk_detach_filter);
10933
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)10934 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10935 {
10936 struct sock_fprog_kern *fprog;
10937 struct sk_filter *filter;
10938 int ret = 0;
10939
10940 sockopt_lock_sock(sk);
10941 filter = rcu_dereference_protected(sk->sk_filter,
10942 lockdep_sock_is_held(sk));
10943 if (!filter)
10944 goto out;
10945
10946 /* We're copying the filter that has been originally attached,
10947 * so no conversion/decode needed anymore. eBPF programs that
10948 * have no original program cannot be dumped through this.
10949 */
10950 ret = -EACCES;
10951 fprog = filter->prog->orig_prog;
10952 if (!fprog)
10953 goto out;
10954
10955 ret = fprog->len;
10956 if (!len)
10957 /* User space only enquires number of filter blocks. */
10958 goto out;
10959
10960 ret = -EINVAL;
10961 if (len < fprog->len)
10962 goto out;
10963
10964 ret = -EFAULT;
10965 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10966 goto out;
10967
10968 /* Instead of bytes, the API requests to return the number
10969 * of filter blocks.
10970 */
10971 ret = fprog->len;
10972 out:
10973 sockopt_release_sock(sk);
10974 return ret;
10975 }
10976
10977 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10978 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10979 struct sock_reuseport *reuse,
10980 struct sock *sk, struct sk_buff *skb,
10981 struct sock *migrating_sk,
10982 u32 hash)
10983 {
10984 reuse_kern->skb = skb;
10985 reuse_kern->sk = sk;
10986 reuse_kern->selected_sk = NULL;
10987 reuse_kern->migrating_sk = migrating_sk;
10988 reuse_kern->data_end = skb->data + skb_headlen(skb);
10989 reuse_kern->hash = hash;
10990 reuse_kern->reuseport_id = reuse->reuseport_id;
10991 reuse_kern->bind_inany = reuse->bind_inany;
10992 }
10993
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)10994 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10995 struct bpf_prog *prog, struct sk_buff *skb,
10996 struct sock *migrating_sk,
10997 u32 hash)
10998 {
10999 struct sk_reuseport_kern reuse_kern;
11000 enum sk_action action;
11001
11002 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11003 action = bpf_prog_run(prog, &reuse_kern);
11004
11005 if (action == SK_PASS)
11006 return reuse_kern.selected_sk;
11007 else
11008 return ERR_PTR(-ECONNREFUSED);
11009 }
11010
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11011 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11012 struct bpf_map *, map, void *, key, u32, flags)
11013 {
11014 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11015 struct sock_reuseport *reuse;
11016 struct sock *selected_sk;
11017
11018 selected_sk = map->ops->map_lookup_elem(map, key);
11019 if (!selected_sk)
11020 return -ENOENT;
11021
11022 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11023 if (!reuse) {
11024 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11025 if (sk_is_refcounted(selected_sk))
11026 sock_put(selected_sk);
11027
11028 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11029 * The only (!reuse) case here is - the sk has already been
11030 * unhashed (e.g. by close()), so treat it as -ENOENT.
11031 *
11032 * Other maps (e.g. sock_map) do not provide this guarantee and
11033 * the sk may never be in the reuseport group to begin with.
11034 */
11035 return is_sockarray ? -ENOENT : -EINVAL;
11036 }
11037
11038 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11039 struct sock *sk = reuse_kern->sk;
11040
11041 if (sk->sk_protocol != selected_sk->sk_protocol)
11042 return -EPROTOTYPE;
11043 else if (sk->sk_family != selected_sk->sk_family)
11044 return -EAFNOSUPPORT;
11045
11046 /* Catch all. Likely bound to a different sockaddr. */
11047 return -EBADFD;
11048 }
11049
11050 reuse_kern->selected_sk = selected_sk;
11051
11052 return 0;
11053 }
11054
11055 static const struct bpf_func_proto sk_select_reuseport_proto = {
11056 .func = sk_select_reuseport,
11057 .gpl_only = false,
11058 .ret_type = RET_INTEGER,
11059 .arg1_type = ARG_PTR_TO_CTX,
11060 .arg2_type = ARG_CONST_MAP_PTR,
11061 .arg3_type = ARG_PTR_TO_MAP_KEY,
11062 .arg4_type = ARG_ANYTHING,
11063 };
11064
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11065 BPF_CALL_4(sk_reuseport_load_bytes,
11066 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11067 void *, to, u32, len)
11068 {
11069 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11070 }
11071
11072 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11073 .func = sk_reuseport_load_bytes,
11074 .gpl_only = false,
11075 .ret_type = RET_INTEGER,
11076 .arg1_type = ARG_PTR_TO_CTX,
11077 .arg2_type = ARG_ANYTHING,
11078 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11079 .arg4_type = ARG_CONST_SIZE,
11080 };
11081
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11082 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11083 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11084 void *, to, u32, len, u32, start_header)
11085 {
11086 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11087 len, start_header);
11088 }
11089
11090 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11091 .func = sk_reuseport_load_bytes_relative,
11092 .gpl_only = false,
11093 .ret_type = RET_INTEGER,
11094 .arg1_type = ARG_PTR_TO_CTX,
11095 .arg2_type = ARG_ANYTHING,
11096 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11097 .arg4_type = ARG_CONST_SIZE,
11098 .arg5_type = ARG_ANYTHING,
11099 };
11100
11101 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11102 sk_reuseport_func_proto(enum bpf_func_id func_id,
11103 const struct bpf_prog *prog)
11104 {
11105 switch (func_id) {
11106 case BPF_FUNC_sk_select_reuseport:
11107 return &sk_select_reuseport_proto;
11108 case BPF_FUNC_skb_load_bytes:
11109 return &sk_reuseport_load_bytes_proto;
11110 case BPF_FUNC_skb_load_bytes_relative:
11111 return &sk_reuseport_load_bytes_relative_proto;
11112 case BPF_FUNC_get_socket_cookie:
11113 return &bpf_get_socket_ptr_cookie_proto;
11114 case BPF_FUNC_ktime_get_coarse_ns:
11115 return &bpf_ktime_get_coarse_ns_proto;
11116 default:
11117 return bpf_base_func_proto(func_id);
11118 }
11119 }
11120
11121 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11122 sk_reuseport_is_valid_access(int off, int size,
11123 enum bpf_access_type type,
11124 const struct bpf_prog *prog,
11125 struct bpf_insn_access_aux *info)
11126 {
11127 const u32 size_default = sizeof(__u32);
11128
11129 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11130 off % size || type != BPF_READ)
11131 return false;
11132
11133 switch (off) {
11134 case offsetof(struct sk_reuseport_md, data):
11135 info->reg_type = PTR_TO_PACKET;
11136 return size == sizeof(__u64);
11137
11138 case offsetof(struct sk_reuseport_md, data_end):
11139 info->reg_type = PTR_TO_PACKET_END;
11140 return size == sizeof(__u64);
11141
11142 case offsetof(struct sk_reuseport_md, hash):
11143 return size == size_default;
11144
11145 case offsetof(struct sk_reuseport_md, sk):
11146 info->reg_type = PTR_TO_SOCKET;
11147 return size == sizeof(__u64);
11148
11149 case offsetof(struct sk_reuseport_md, migrating_sk):
11150 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11151 return size == sizeof(__u64);
11152
11153 /* Fields that allow narrowing */
11154 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11155 if (size < sizeof_field(struct sk_buff, protocol))
11156 return false;
11157 fallthrough;
11158 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11159 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11160 case bpf_ctx_range(struct sk_reuseport_md, len):
11161 bpf_ctx_record_field_size(info, size_default);
11162 return bpf_ctx_narrow_access_ok(off, size, size_default);
11163
11164 default:
11165 return false;
11166 }
11167 }
11168
11169 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11170 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11171 si->dst_reg, si->src_reg, \
11172 bpf_target_off(struct sk_reuseport_kern, F, \
11173 sizeof_field(struct sk_reuseport_kern, F), \
11174 target_size)); \
11175 })
11176
11177 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11178 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11179 struct sk_buff, \
11180 skb, \
11181 SKB_FIELD)
11182
11183 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11184 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11185 struct sock, \
11186 sk, \
11187 SK_FIELD)
11188
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11189 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11190 const struct bpf_insn *si,
11191 struct bpf_insn *insn_buf,
11192 struct bpf_prog *prog,
11193 u32 *target_size)
11194 {
11195 struct bpf_insn *insn = insn_buf;
11196
11197 switch (si->off) {
11198 case offsetof(struct sk_reuseport_md, data):
11199 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11200 break;
11201
11202 case offsetof(struct sk_reuseport_md, len):
11203 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11204 break;
11205
11206 case offsetof(struct sk_reuseport_md, eth_protocol):
11207 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11208 break;
11209
11210 case offsetof(struct sk_reuseport_md, ip_protocol):
11211 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11212 break;
11213
11214 case offsetof(struct sk_reuseport_md, data_end):
11215 SK_REUSEPORT_LOAD_FIELD(data_end);
11216 break;
11217
11218 case offsetof(struct sk_reuseport_md, hash):
11219 SK_REUSEPORT_LOAD_FIELD(hash);
11220 break;
11221
11222 case offsetof(struct sk_reuseport_md, bind_inany):
11223 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11224 break;
11225
11226 case offsetof(struct sk_reuseport_md, sk):
11227 SK_REUSEPORT_LOAD_FIELD(sk);
11228 break;
11229
11230 case offsetof(struct sk_reuseport_md, migrating_sk):
11231 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11232 break;
11233 }
11234
11235 return insn - insn_buf;
11236 }
11237
11238 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11239 .get_func_proto = sk_reuseport_func_proto,
11240 .is_valid_access = sk_reuseport_is_valid_access,
11241 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11242 };
11243
11244 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11245 };
11246
11247 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11248 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11249
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11250 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11251 struct sock *, sk, u64, flags)
11252 {
11253 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11254 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11255 return -EINVAL;
11256 if (unlikely(sk && sk_is_refcounted(sk)))
11257 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11258 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11259 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11260 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11261 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11262
11263 /* Check if socket is suitable for packet L3/L4 protocol */
11264 if (sk && sk->sk_protocol != ctx->protocol)
11265 return -EPROTOTYPE;
11266 if (sk && sk->sk_family != ctx->family &&
11267 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11268 return -EAFNOSUPPORT;
11269
11270 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11271 return -EEXIST;
11272
11273 /* Select socket as lookup result */
11274 ctx->selected_sk = sk;
11275 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11276 return 0;
11277 }
11278
11279 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11280 .func = bpf_sk_lookup_assign,
11281 .gpl_only = false,
11282 .ret_type = RET_INTEGER,
11283 .arg1_type = ARG_PTR_TO_CTX,
11284 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11285 .arg3_type = ARG_ANYTHING,
11286 };
11287
11288 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11289 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11290 {
11291 switch (func_id) {
11292 case BPF_FUNC_perf_event_output:
11293 return &bpf_event_output_data_proto;
11294 case BPF_FUNC_sk_assign:
11295 return &bpf_sk_lookup_assign_proto;
11296 case BPF_FUNC_sk_release:
11297 return &bpf_sk_release_proto;
11298 default:
11299 return bpf_sk_base_func_proto(func_id);
11300 }
11301 }
11302
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11303 static bool sk_lookup_is_valid_access(int off, int size,
11304 enum bpf_access_type type,
11305 const struct bpf_prog *prog,
11306 struct bpf_insn_access_aux *info)
11307 {
11308 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11309 return false;
11310 if (off % size != 0)
11311 return false;
11312 if (type != BPF_READ)
11313 return false;
11314
11315 switch (off) {
11316 case offsetof(struct bpf_sk_lookup, sk):
11317 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11318 return size == sizeof(__u64);
11319
11320 case bpf_ctx_range(struct bpf_sk_lookup, family):
11321 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11322 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11323 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11324 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11325 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11326 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11327 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11328 bpf_ctx_record_field_size(info, sizeof(__u32));
11329 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11330
11331 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11332 /* Allow 4-byte access to 2-byte field for backward compatibility */
11333 if (size == sizeof(__u32))
11334 return true;
11335 bpf_ctx_record_field_size(info, sizeof(__be16));
11336 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11337
11338 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11339 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11340 /* Allow access to zero padding for backward compatibility */
11341 bpf_ctx_record_field_size(info, sizeof(__u16));
11342 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11343
11344 default:
11345 return false;
11346 }
11347 }
11348
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11349 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11350 const struct bpf_insn *si,
11351 struct bpf_insn *insn_buf,
11352 struct bpf_prog *prog,
11353 u32 *target_size)
11354 {
11355 struct bpf_insn *insn = insn_buf;
11356
11357 switch (si->off) {
11358 case offsetof(struct bpf_sk_lookup, sk):
11359 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11360 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11361 break;
11362
11363 case offsetof(struct bpf_sk_lookup, family):
11364 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11365 bpf_target_off(struct bpf_sk_lookup_kern,
11366 family, 2, target_size));
11367 break;
11368
11369 case offsetof(struct bpf_sk_lookup, protocol):
11370 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11371 bpf_target_off(struct bpf_sk_lookup_kern,
11372 protocol, 2, target_size));
11373 break;
11374
11375 case offsetof(struct bpf_sk_lookup, remote_ip4):
11376 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11377 bpf_target_off(struct bpf_sk_lookup_kern,
11378 v4.saddr, 4, target_size));
11379 break;
11380
11381 case offsetof(struct bpf_sk_lookup, local_ip4):
11382 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11383 bpf_target_off(struct bpf_sk_lookup_kern,
11384 v4.daddr, 4, target_size));
11385 break;
11386
11387 case bpf_ctx_range_till(struct bpf_sk_lookup,
11388 remote_ip6[0], remote_ip6[3]): {
11389 #if IS_ENABLED(CONFIG_IPV6)
11390 int off = si->off;
11391
11392 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11393 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11394 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11395 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11396 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11397 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11398 #else
11399 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11400 #endif
11401 break;
11402 }
11403 case bpf_ctx_range_till(struct bpf_sk_lookup,
11404 local_ip6[0], local_ip6[3]): {
11405 #if IS_ENABLED(CONFIG_IPV6)
11406 int off = si->off;
11407
11408 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11409 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11410 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11411 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11412 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11413 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11414 #else
11415 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11416 #endif
11417 break;
11418 }
11419 case offsetof(struct bpf_sk_lookup, remote_port):
11420 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11421 bpf_target_off(struct bpf_sk_lookup_kern,
11422 sport, 2, target_size));
11423 break;
11424
11425 case offsetofend(struct bpf_sk_lookup, remote_port):
11426 *target_size = 2;
11427 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11428 break;
11429
11430 case offsetof(struct bpf_sk_lookup, local_port):
11431 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11432 bpf_target_off(struct bpf_sk_lookup_kern,
11433 dport, 2, target_size));
11434 break;
11435
11436 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11437 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11438 bpf_target_off(struct bpf_sk_lookup_kern,
11439 ingress_ifindex, 4, target_size));
11440 break;
11441 }
11442
11443 return insn - insn_buf;
11444 }
11445
11446 const struct bpf_prog_ops sk_lookup_prog_ops = {
11447 .test_run = bpf_prog_test_run_sk_lookup,
11448 };
11449
11450 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11451 .get_func_proto = sk_lookup_func_proto,
11452 .is_valid_access = sk_lookup_is_valid_access,
11453 .convert_ctx_access = sk_lookup_convert_ctx_access,
11454 };
11455
11456 #endif /* CONFIG_INET */
11457
DEFINE_BPF_DISPATCHER(xdp)11458 DEFINE_BPF_DISPATCHER(xdp)
11459
11460 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11461 {
11462 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11463 }
11464
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11465 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11466 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11467 BTF_SOCK_TYPE_xxx
11468 #undef BTF_SOCK_TYPE
11469
11470 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11471 {
11472 /* tcp6_sock type is not generated in dwarf and hence btf,
11473 * trigger an explicit type generation here.
11474 */
11475 BTF_TYPE_EMIT(struct tcp6_sock);
11476 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11477 sk->sk_family == AF_INET6)
11478 return (unsigned long)sk;
11479
11480 return (unsigned long)NULL;
11481 }
11482
11483 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11484 .func = bpf_skc_to_tcp6_sock,
11485 .gpl_only = false,
11486 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11487 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11488 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11489 };
11490
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11491 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11492 {
11493 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11494 return (unsigned long)sk;
11495
11496 return (unsigned long)NULL;
11497 }
11498
11499 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11500 .func = bpf_skc_to_tcp_sock,
11501 .gpl_only = false,
11502 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11503 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11504 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11505 };
11506
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11507 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11508 {
11509 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11510 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11511 */
11512 BTF_TYPE_EMIT(struct inet_timewait_sock);
11513 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11514
11515 #ifdef CONFIG_INET
11516 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11517 return (unsigned long)sk;
11518 #endif
11519
11520 #if IS_BUILTIN(CONFIG_IPV6)
11521 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11522 return (unsigned long)sk;
11523 #endif
11524
11525 return (unsigned long)NULL;
11526 }
11527
11528 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11529 .func = bpf_skc_to_tcp_timewait_sock,
11530 .gpl_only = false,
11531 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11532 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11533 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11534 };
11535
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11536 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11537 {
11538 #ifdef CONFIG_INET
11539 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11540 return (unsigned long)sk;
11541 #endif
11542
11543 #if IS_BUILTIN(CONFIG_IPV6)
11544 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11545 return (unsigned long)sk;
11546 #endif
11547
11548 return (unsigned long)NULL;
11549 }
11550
11551 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11552 .func = bpf_skc_to_tcp_request_sock,
11553 .gpl_only = false,
11554 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11555 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11556 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11557 };
11558
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11559 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11560 {
11561 /* udp6_sock type is not generated in dwarf and hence btf,
11562 * trigger an explicit type generation here.
11563 */
11564 BTF_TYPE_EMIT(struct udp6_sock);
11565 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11566 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11567 return (unsigned long)sk;
11568
11569 return (unsigned long)NULL;
11570 }
11571
11572 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11573 .func = bpf_skc_to_udp6_sock,
11574 .gpl_only = false,
11575 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11576 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11577 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11578 };
11579
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11580 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11581 {
11582 /* unix_sock type is not generated in dwarf and hence btf,
11583 * trigger an explicit type generation here.
11584 */
11585 BTF_TYPE_EMIT(struct unix_sock);
11586 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11587 return (unsigned long)sk;
11588
11589 return (unsigned long)NULL;
11590 }
11591
11592 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11593 .func = bpf_skc_to_unix_sock,
11594 .gpl_only = false,
11595 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11596 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11597 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11598 };
11599
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11600 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11601 {
11602 BTF_TYPE_EMIT(struct mptcp_sock);
11603 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11604 }
11605
11606 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11607 .func = bpf_skc_to_mptcp_sock,
11608 .gpl_only = false,
11609 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11610 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11611 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11612 };
11613
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11614 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11615 {
11616 return (unsigned long)sock_from_file(file);
11617 }
11618
11619 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11620 BTF_ID(struct, socket)
11621 BTF_ID(struct, file)
11622
11623 const struct bpf_func_proto bpf_sock_from_file_proto = {
11624 .func = bpf_sock_from_file,
11625 .gpl_only = false,
11626 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11627 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11628 .arg1_type = ARG_PTR_TO_BTF_ID,
11629 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11630 };
11631
11632 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11633 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11634 {
11635 const struct bpf_func_proto *func;
11636
11637 switch (func_id) {
11638 case BPF_FUNC_skc_to_tcp6_sock:
11639 func = &bpf_skc_to_tcp6_sock_proto;
11640 break;
11641 case BPF_FUNC_skc_to_tcp_sock:
11642 func = &bpf_skc_to_tcp_sock_proto;
11643 break;
11644 case BPF_FUNC_skc_to_tcp_timewait_sock:
11645 func = &bpf_skc_to_tcp_timewait_sock_proto;
11646 break;
11647 case BPF_FUNC_skc_to_tcp_request_sock:
11648 func = &bpf_skc_to_tcp_request_sock_proto;
11649 break;
11650 case BPF_FUNC_skc_to_udp6_sock:
11651 func = &bpf_skc_to_udp6_sock_proto;
11652 break;
11653 case BPF_FUNC_skc_to_unix_sock:
11654 func = &bpf_skc_to_unix_sock_proto;
11655 break;
11656 case BPF_FUNC_skc_to_mptcp_sock:
11657 func = &bpf_skc_to_mptcp_sock_proto;
11658 break;
11659 case BPF_FUNC_ktime_get_coarse_ns:
11660 return &bpf_ktime_get_coarse_ns_proto;
11661 default:
11662 return bpf_base_func_proto(func_id);
11663 }
11664
11665 if (!perfmon_capable())
11666 return NULL;
11667
11668 return func;
11669 }
11670