1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28
29 static struct btf_type btf_void;
30
31 struct btf {
32 /* raw BTF data in native endianness */
33 void *raw_data;
34 /* raw BTF data in non-native endianness */
35 void *raw_data_swapped;
36 __u32 raw_size;
37 /* whether target endianness differs from the native one */
38 bool swapped_endian;
39
40 /*
41 * When BTF is loaded from an ELF or raw memory it is stored
42 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 * point inside that memory region to their respective parts of BTF
44 * representation:
45 *
46 * +--------------------------------+
47 * | Header | Types | Strings |
48 * +--------------------------------+
49 * ^ ^ ^
50 * | | |
51 * hdr | |
52 * types_data-+ |
53 * strs_data------------+
54 *
55 * If BTF data is later modified, e.g., due to types added or
56 * removed, BTF deduplication performed, etc, this contiguous
57 * representation is broken up into three independently allocated
58 * memory regions to be able to modify them independently.
59 * raw_data is nulled out at that point, but can be later allocated
60 * and cached again if user calls btf__raw_data(), at which point
61 * raw_data will contain a contiguous copy of header, types, and
62 * strings:
63 *
64 * +----------+ +---------+ +-----------+
65 * | Header | | Types | | Strings |
66 * +----------+ +---------+ +-----------+
67 * ^ ^ ^
68 * | | |
69 * hdr | |
70 * types_data----+ |
71 * strset__data(strs_set)-----+
72 *
73 * +----------+---------+-----------+
74 * | Header | Types | Strings |
75 * raw_data----->+----------+---------+-----------+
76 */
77 struct btf_header *hdr;
78
79 void *types_data;
80 size_t types_data_cap; /* used size stored in hdr->type_len */
81
82 /* type ID to `struct btf_type *` lookup index
83 * type_offs[0] corresponds to the first non-VOID type:
84 * - for base BTF it's type [1];
85 * - for split BTF it's the first non-base BTF type.
86 */
87 __u32 *type_offs;
88 size_t type_offs_cap;
89 /* number of types in this BTF instance:
90 * - doesn't include special [0] void type;
91 * - for split BTF counts number of types added on top of base BTF.
92 */
93 __u32 nr_types;
94 /* if not NULL, points to the base BTF on top of which the current
95 * split BTF is based
96 */
97 struct btf *base_btf;
98 /* BTF type ID of the first type in this BTF instance:
99 * - for base BTF it's equal to 1;
100 * - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 */
102 int start_id;
103 /* logical string offset of this BTF instance:
104 * - for base BTF it's equal to 0;
105 * - for split BTF it's equal to total size of base BTF's string section size.
106 */
107 int start_str_off;
108
109 /* only one of strs_data or strs_set can be non-NULL, depending on
110 * whether BTF is in a modifiable state (strs_set is used) or not
111 * (strs_data points inside raw_data)
112 */
113 void *strs_data;
114 /* a set of unique strings */
115 struct strset *strs_set;
116 /* whether strings are already deduplicated */
117 bool strs_deduped;
118
119 /* BTF object FD, if loaded into kernel */
120 int fd;
121
122 /* Pointer size (in bytes) for a target architecture of this BTF */
123 int ptr_sz;
124 };
125
ptr_to_u64(const void * ptr)126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 return (__u64) (unsigned long) ptr;
129 }
130
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
134 * are already used. At most *max_cnt* elements can be ever allocated.
135 * If necessary, memory is reallocated and all existing data is copied over,
136 * new pointer to the memory region is stored at *data, new memory region
137 * capacity (in number of elements) is stored in *cap.
138 * On success, memory pointer to the beginning of unused memory is returned.
139 * On error, NULL is returned.
140 */
libbpf_add_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t cur_cnt,size_t max_cnt,size_t add_cnt)141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 size_t new_cnt;
145 void *new_data;
146
147 if (cur_cnt + add_cnt <= *cap_cnt)
148 return *data + cur_cnt * elem_sz;
149
150 /* requested more than the set limit */
151 if (cur_cnt + add_cnt > max_cnt)
152 return NULL;
153
154 new_cnt = *cap_cnt;
155 new_cnt += new_cnt / 4; /* expand by 25% */
156 if (new_cnt < 16) /* but at least 16 elements */
157 new_cnt = 16;
158 if (new_cnt > max_cnt) /* but not exceeding a set limit */
159 new_cnt = max_cnt;
160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */
161 new_cnt = cur_cnt + add_cnt;
162
163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 if (!new_data)
165 return NULL;
166
167 /* zero out newly allocated portion of memory */
168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169
170 *data = new_data;
171 *cap_cnt = new_cnt;
172 return new_data + cur_cnt * elem_sz;
173 }
174
175 /* Ensure given dynamically allocated memory region has enough allocated space
176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177 */
libbpf_ensure_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t need_cnt)178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 void *p;
181
182 if (need_cnt <= *cap_cnt)
183 return 0;
184
185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 if (!p)
187 return -ENOMEM;
188
189 return 0;
190 }
191
btf_add_type_offs_mem(struct btf * btf,size_t add_cnt)192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193 {
194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196 }
197
btf_add_type_idx_entry(struct btf * btf,__u32 type_off)198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199 {
200 __u32 *p;
201
202 p = btf_add_type_offs_mem(btf, 1);
203 if (!p)
204 return -ENOMEM;
205
206 *p = type_off;
207 return 0;
208 }
209
btf_bswap_hdr(struct btf_header * h)210 static void btf_bswap_hdr(struct btf_header *h)
211 {
212 h->magic = bswap_16(h->magic);
213 h->hdr_len = bswap_32(h->hdr_len);
214 h->type_off = bswap_32(h->type_off);
215 h->type_len = bswap_32(h->type_len);
216 h->str_off = bswap_32(h->str_off);
217 h->str_len = bswap_32(h->str_len);
218 }
219
btf_parse_hdr(struct btf * btf)220 static int btf_parse_hdr(struct btf *btf)
221 {
222 struct btf_header *hdr = btf->hdr;
223 __u32 meta_left;
224
225 if (btf->raw_size < sizeof(struct btf_header)) {
226 pr_debug("BTF header not found\n");
227 return -EINVAL;
228 }
229
230 if (hdr->magic == bswap_16(BTF_MAGIC)) {
231 btf->swapped_endian = true;
232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234 bswap_32(hdr->hdr_len));
235 return -ENOTSUP;
236 }
237 btf_bswap_hdr(hdr);
238 } else if (hdr->magic != BTF_MAGIC) {
239 pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240 return -EINVAL;
241 }
242
243 if (btf->raw_size < hdr->hdr_len) {
244 pr_debug("BTF header len %u larger than data size %u\n",
245 hdr->hdr_len, btf->raw_size);
246 return -EINVAL;
247 }
248
249 meta_left = btf->raw_size - hdr->hdr_len;
250 if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252 return -EINVAL;
253 }
254
255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258 return -EINVAL;
259 }
260
261 if (hdr->type_off % 4) {
262 pr_debug("BTF type section is not aligned to 4 bytes\n");
263 return -EINVAL;
264 }
265
266 return 0;
267 }
268
btf_parse_str_sec(struct btf * btf)269 static int btf_parse_str_sec(struct btf *btf)
270 {
271 const struct btf_header *hdr = btf->hdr;
272 const char *start = btf->strs_data;
273 const char *end = start + btf->hdr->str_len;
274
275 if (btf->base_btf && hdr->str_len == 0)
276 return 0;
277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278 pr_debug("Invalid BTF string section\n");
279 return -EINVAL;
280 }
281 if (!btf->base_btf && start[0]) {
282 pr_debug("Invalid BTF string section\n");
283 return -EINVAL;
284 }
285 return 0;
286 }
287
btf_type_size(const struct btf_type * t)288 static int btf_type_size(const struct btf_type *t)
289 {
290 const int base_size = sizeof(struct btf_type);
291 __u16 vlen = btf_vlen(t);
292
293 switch (btf_kind(t)) {
294 case BTF_KIND_FWD:
295 case BTF_KIND_CONST:
296 case BTF_KIND_VOLATILE:
297 case BTF_KIND_RESTRICT:
298 case BTF_KIND_PTR:
299 case BTF_KIND_TYPEDEF:
300 case BTF_KIND_FUNC:
301 case BTF_KIND_FLOAT:
302 case BTF_KIND_TYPE_TAG:
303 return base_size;
304 case BTF_KIND_INT:
305 return base_size + sizeof(__u32);
306 case BTF_KIND_ENUM:
307 return base_size + vlen * sizeof(struct btf_enum);
308 case BTF_KIND_ENUM64:
309 return base_size + vlen * sizeof(struct btf_enum64);
310 case BTF_KIND_ARRAY:
311 return base_size + sizeof(struct btf_array);
312 case BTF_KIND_STRUCT:
313 case BTF_KIND_UNION:
314 return base_size + vlen * sizeof(struct btf_member);
315 case BTF_KIND_FUNC_PROTO:
316 return base_size + vlen * sizeof(struct btf_param);
317 case BTF_KIND_VAR:
318 return base_size + sizeof(struct btf_var);
319 case BTF_KIND_DATASEC:
320 return base_size + vlen * sizeof(struct btf_var_secinfo);
321 case BTF_KIND_DECL_TAG:
322 return base_size + sizeof(struct btf_decl_tag);
323 default:
324 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
325 return -EINVAL;
326 }
327 }
328
btf_bswap_type_base(struct btf_type * t)329 static void btf_bswap_type_base(struct btf_type *t)
330 {
331 t->name_off = bswap_32(t->name_off);
332 t->info = bswap_32(t->info);
333 t->type = bswap_32(t->type);
334 }
335
btf_bswap_type_rest(struct btf_type * t)336 static int btf_bswap_type_rest(struct btf_type *t)
337 {
338 struct btf_var_secinfo *v;
339 struct btf_enum64 *e64;
340 struct btf_member *m;
341 struct btf_array *a;
342 struct btf_param *p;
343 struct btf_enum *e;
344 __u16 vlen = btf_vlen(t);
345 int i;
346
347 switch (btf_kind(t)) {
348 case BTF_KIND_FWD:
349 case BTF_KIND_CONST:
350 case BTF_KIND_VOLATILE:
351 case BTF_KIND_RESTRICT:
352 case BTF_KIND_PTR:
353 case BTF_KIND_TYPEDEF:
354 case BTF_KIND_FUNC:
355 case BTF_KIND_FLOAT:
356 case BTF_KIND_TYPE_TAG:
357 return 0;
358 case BTF_KIND_INT:
359 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
360 return 0;
361 case BTF_KIND_ENUM:
362 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
363 e->name_off = bswap_32(e->name_off);
364 e->val = bswap_32(e->val);
365 }
366 return 0;
367 case BTF_KIND_ENUM64:
368 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
369 e64->name_off = bswap_32(e64->name_off);
370 e64->val_lo32 = bswap_32(e64->val_lo32);
371 e64->val_hi32 = bswap_32(e64->val_hi32);
372 }
373 return 0;
374 case BTF_KIND_ARRAY:
375 a = btf_array(t);
376 a->type = bswap_32(a->type);
377 a->index_type = bswap_32(a->index_type);
378 a->nelems = bswap_32(a->nelems);
379 return 0;
380 case BTF_KIND_STRUCT:
381 case BTF_KIND_UNION:
382 for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
383 m->name_off = bswap_32(m->name_off);
384 m->type = bswap_32(m->type);
385 m->offset = bswap_32(m->offset);
386 }
387 return 0;
388 case BTF_KIND_FUNC_PROTO:
389 for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
390 p->name_off = bswap_32(p->name_off);
391 p->type = bswap_32(p->type);
392 }
393 return 0;
394 case BTF_KIND_VAR:
395 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
396 return 0;
397 case BTF_KIND_DATASEC:
398 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
399 v->type = bswap_32(v->type);
400 v->offset = bswap_32(v->offset);
401 v->size = bswap_32(v->size);
402 }
403 return 0;
404 case BTF_KIND_DECL_TAG:
405 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
406 return 0;
407 default:
408 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
409 return -EINVAL;
410 }
411 }
412
btf_parse_type_sec(struct btf * btf)413 static int btf_parse_type_sec(struct btf *btf)
414 {
415 struct btf_header *hdr = btf->hdr;
416 void *next_type = btf->types_data;
417 void *end_type = next_type + hdr->type_len;
418 int err, type_size;
419
420 while (next_type + sizeof(struct btf_type) <= end_type) {
421 if (btf->swapped_endian)
422 btf_bswap_type_base(next_type);
423
424 type_size = btf_type_size(next_type);
425 if (type_size < 0)
426 return type_size;
427 if (next_type + type_size > end_type) {
428 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
429 return -EINVAL;
430 }
431
432 if (btf->swapped_endian && btf_bswap_type_rest(next_type))
433 return -EINVAL;
434
435 err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
436 if (err)
437 return err;
438
439 next_type += type_size;
440 btf->nr_types++;
441 }
442
443 if (next_type != end_type) {
444 pr_warn("BTF types data is malformed\n");
445 return -EINVAL;
446 }
447
448 return 0;
449 }
450
btf__type_cnt(const struct btf * btf)451 __u32 btf__type_cnt(const struct btf *btf)
452 {
453 return btf->start_id + btf->nr_types;
454 }
455
btf__base_btf(const struct btf * btf)456 const struct btf *btf__base_btf(const struct btf *btf)
457 {
458 return btf->base_btf;
459 }
460
461 /* internal helper returning non-const pointer to a type */
btf_type_by_id(const struct btf * btf,__u32 type_id)462 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
463 {
464 if (type_id == 0)
465 return &btf_void;
466 if (type_id < btf->start_id)
467 return btf_type_by_id(btf->base_btf, type_id);
468 return btf->types_data + btf->type_offs[type_id - btf->start_id];
469 }
470
btf__type_by_id(const struct btf * btf,__u32 type_id)471 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
472 {
473 if (type_id >= btf->start_id + btf->nr_types)
474 return errno = EINVAL, NULL;
475 return btf_type_by_id((struct btf *)btf, type_id);
476 }
477
determine_ptr_size(const struct btf * btf)478 static int determine_ptr_size(const struct btf *btf)
479 {
480 static const char * const long_aliases[] = {
481 "long",
482 "long int",
483 "int long",
484 "unsigned long",
485 "long unsigned",
486 "unsigned long int",
487 "unsigned int long",
488 "long unsigned int",
489 "long int unsigned",
490 "int unsigned long",
491 "int long unsigned",
492 };
493 const struct btf_type *t;
494 const char *name;
495 int i, j, n;
496
497 if (btf->base_btf && btf->base_btf->ptr_sz > 0)
498 return btf->base_btf->ptr_sz;
499
500 n = btf__type_cnt(btf);
501 for (i = 1; i < n; i++) {
502 t = btf__type_by_id(btf, i);
503 if (!btf_is_int(t))
504 continue;
505
506 if (t->size != 4 && t->size != 8)
507 continue;
508
509 name = btf__name_by_offset(btf, t->name_off);
510 if (!name)
511 continue;
512
513 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
514 if (strcmp(name, long_aliases[j]) == 0)
515 return t->size;
516 }
517 }
518
519 return -1;
520 }
521
btf_ptr_sz(const struct btf * btf)522 static size_t btf_ptr_sz(const struct btf *btf)
523 {
524 if (!btf->ptr_sz)
525 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
526 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
527 }
528
529 /* Return pointer size this BTF instance assumes. The size is heuristically
530 * determined by looking for 'long' or 'unsigned long' integer type and
531 * recording its size in bytes. If BTF type information doesn't have any such
532 * type, this function returns 0. In the latter case, native architecture's
533 * pointer size is assumed, so will be either 4 or 8, depending on
534 * architecture that libbpf was compiled for. It's possible to override
535 * guessed value by using btf__set_pointer_size() API.
536 */
btf__pointer_size(const struct btf * btf)537 size_t btf__pointer_size(const struct btf *btf)
538 {
539 if (!btf->ptr_sz)
540 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
541
542 if (btf->ptr_sz < 0)
543 /* not enough BTF type info to guess */
544 return 0;
545
546 return btf->ptr_sz;
547 }
548
549 /* Override or set pointer size in bytes. Only values of 4 and 8 are
550 * supported.
551 */
btf__set_pointer_size(struct btf * btf,size_t ptr_sz)552 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
553 {
554 if (ptr_sz != 4 && ptr_sz != 8)
555 return libbpf_err(-EINVAL);
556 btf->ptr_sz = ptr_sz;
557 return 0;
558 }
559
is_host_big_endian(void)560 static bool is_host_big_endian(void)
561 {
562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
563 return false;
564 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
565 return true;
566 #else
567 # error "Unrecognized __BYTE_ORDER__"
568 #endif
569 }
570
btf__endianness(const struct btf * btf)571 enum btf_endianness btf__endianness(const struct btf *btf)
572 {
573 if (is_host_big_endian())
574 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
575 else
576 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
577 }
578
btf__set_endianness(struct btf * btf,enum btf_endianness endian)579 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
580 {
581 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
582 return libbpf_err(-EINVAL);
583
584 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
585 if (!btf->swapped_endian) {
586 free(btf->raw_data_swapped);
587 btf->raw_data_swapped = NULL;
588 }
589 return 0;
590 }
591
btf_type_is_void(const struct btf_type * t)592 static bool btf_type_is_void(const struct btf_type *t)
593 {
594 return t == &btf_void || btf_is_fwd(t);
595 }
596
btf_type_is_void_or_null(const struct btf_type * t)597 static bool btf_type_is_void_or_null(const struct btf_type *t)
598 {
599 return !t || btf_type_is_void(t);
600 }
601
602 #define MAX_RESOLVE_DEPTH 32
603
btf__resolve_size(const struct btf * btf,__u32 type_id)604 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
605 {
606 const struct btf_array *array;
607 const struct btf_type *t;
608 __u32 nelems = 1;
609 __s64 size = -1;
610 int i;
611
612 t = btf__type_by_id(btf, type_id);
613 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
614 switch (btf_kind(t)) {
615 case BTF_KIND_INT:
616 case BTF_KIND_STRUCT:
617 case BTF_KIND_UNION:
618 case BTF_KIND_ENUM:
619 case BTF_KIND_ENUM64:
620 case BTF_KIND_DATASEC:
621 case BTF_KIND_FLOAT:
622 size = t->size;
623 goto done;
624 case BTF_KIND_PTR:
625 size = btf_ptr_sz(btf);
626 goto done;
627 case BTF_KIND_TYPEDEF:
628 case BTF_KIND_VOLATILE:
629 case BTF_KIND_CONST:
630 case BTF_KIND_RESTRICT:
631 case BTF_KIND_VAR:
632 case BTF_KIND_DECL_TAG:
633 case BTF_KIND_TYPE_TAG:
634 type_id = t->type;
635 break;
636 case BTF_KIND_ARRAY:
637 array = btf_array(t);
638 if (nelems && array->nelems > UINT32_MAX / nelems)
639 return libbpf_err(-E2BIG);
640 nelems *= array->nelems;
641 type_id = array->type;
642 break;
643 default:
644 return libbpf_err(-EINVAL);
645 }
646
647 t = btf__type_by_id(btf, type_id);
648 }
649
650 done:
651 if (size < 0)
652 return libbpf_err(-EINVAL);
653 if (nelems && size > UINT32_MAX / nelems)
654 return libbpf_err(-E2BIG);
655
656 return nelems * size;
657 }
658
btf__align_of(const struct btf * btf,__u32 id)659 int btf__align_of(const struct btf *btf, __u32 id)
660 {
661 const struct btf_type *t = btf__type_by_id(btf, id);
662 __u16 kind = btf_kind(t);
663
664 switch (kind) {
665 case BTF_KIND_INT:
666 case BTF_KIND_ENUM:
667 case BTF_KIND_ENUM64:
668 case BTF_KIND_FLOAT:
669 return min(btf_ptr_sz(btf), (size_t)t->size);
670 case BTF_KIND_PTR:
671 return btf_ptr_sz(btf);
672 case BTF_KIND_TYPEDEF:
673 case BTF_KIND_VOLATILE:
674 case BTF_KIND_CONST:
675 case BTF_KIND_RESTRICT:
676 case BTF_KIND_TYPE_TAG:
677 return btf__align_of(btf, t->type);
678 case BTF_KIND_ARRAY:
679 return btf__align_of(btf, btf_array(t)->type);
680 case BTF_KIND_STRUCT:
681 case BTF_KIND_UNION: {
682 const struct btf_member *m = btf_members(t);
683 __u16 vlen = btf_vlen(t);
684 int i, max_align = 1, align;
685
686 for (i = 0; i < vlen; i++, m++) {
687 align = btf__align_of(btf, m->type);
688 if (align <= 0)
689 return libbpf_err(align);
690 max_align = max(max_align, align);
691
692 /* if field offset isn't aligned according to field
693 * type's alignment, then struct must be packed
694 */
695 if (btf_member_bitfield_size(t, i) == 0 &&
696 (m->offset % (8 * align)) != 0)
697 return 1;
698 }
699
700 /* if struct/union size isn't a multiple of its alignment,
701 * then struct must be packed
702 */
703 if ((t->size % max_align) != 0)
704 return 1;
705
706 return max_align;
707 }
708 default:
709 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
710 return errno = EINVAL, 0;
711 }
712 }
713
btf__resolve_type(const struct btf * btf,__u32 type_id)714 int btf__resolve_type(const struct btf *btf, __u32 type_id)
715 {
716 const struct btf_type *t;
717 int depth = 0;
718
719 t = btf__type_by_id(btf, type_id);
720 while (depth < MAX_RESOLVE_DEPTH &&
721 !btf_type_is_void_or_null(t) &&
722 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
723 type_id = t->type;
724 t = btf__type_by_id(btf, type_id);
725 depth++;
726 }
727
728 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
729 return libbpf_err(-EINVAL);
730
731 return type_id;
732 }
733
btf__find_by_name(const struct btf * btf,const char * type_name)734 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
735 {
736 __u32 i, nr_types = btf__type_cnt(btf);
737
738 if (!strcmp(type_name, "void"))
739 return 0;
740
741 for (i = 1; i < nr_types; i++) {
742 const struct btf_type *t = btf__type_by_id(btf, i);
743 const char *name = btf__name_by_offset(btf, t->name_off);
744
745 if (name && !strcmp(type_name, name))
746 return i;
747 }
748
749 return libbpf_err(-ENOENT);
750 }
751
btf_find_by_name_kind(const struct btf * btf,int start_id,const char * type_name,__u32 kind)752 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
753 const char *type_name, __u32 kind)
754 {
755 __u32 i, nr_types = btf__type_cnt(btf);
756
757 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
758 return 0;
759
760 for (i = start_id; i < nr_types; i++) {
761 const struct btf_type *t = btf__type_by_id(btf, i);
762 const char *name;
763
764 if (btf_kind(t) != kind)
765 continue;
766 name = btf__name_by_offset(btf, t->name_off);
767 if (name && !strcmp(type_name, name))
768 return i;
769 }
770
771 return libbpf_err(-ENOENT);
772 }
773
btf__find_by_name_kind_own(const struct btf * btf,const char * type_name,__u32 kind)774 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
775 __u32 kind)
776 {
777 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
778 }
779
btf__find_by_name_kind(const struct btf * btf,const char * type_name,__u32 kind)780 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
781 __u32 kind)
782 {
783 return btf_find_by_name_kind(btf, 1, type_name, kind);
784 }
785
btf_is_modifiable(const struct btf * btf)786 static bool btf_is_modifiable(const struct btf *btf)
787 {
788 return (void *)btf->hdr != btf->raw_data;
789 }
790
btf__free(struct btf * btf)791 void btf__free(struct btf *btf)
792 {
793 if (IS_ERR_OR_NULL(btf))
794 return;
795
796 if (btf->fd >= 0)
797 close(btf->fd);
798
799 if (btf_is_modifiable(btf)) {
800 /* if BTF was modified after loading, it will have a split
801 * in-memory representation for header, types, and strings
802 * sections, so we need to free all of them individually. It
803 * might still have a cached contiguous raw data present,
804 * which will be unconditionally freed below.
805 */
806 free(btf->hdr);
807 free(btf->types_data);
808 strset__free(btf->strs_set);
809 }
810 free(btf->raw_data);
811 free(btf->raw_data_swapped);
812 free(btf->type_offs);
813 free(btf);
814 }
815
btf_new_empty(struct btf * base_btf)816 static struct btf *btf_new_empty(struct btf *base_btf)
817 {
818 struct btf *btf;
819
820 btf = calloc(1, sizeof(*btf));
821 if (!btf)
822 return ERR_PTR(-ENOMEM);
823
824 btf->nr_types = 0;
825 btf->start_id = 1;
826 btf->start_str_off = 0;
827 btf->fd = -1;
828 btf->ptr_sz = sizeof(void *);
829 btf->swapped_endian = false;
830
831 if (base_btf) {
832 btf->base_btf = base_btf;
833 btf->start_id = btf__type_cnt(base_btf);
834 btf->start_str_off = base_btf->hdr->str_len;
835 }
836
837 /* +1 for empty string at offset 0 */
838 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
839 btf->raw_data = calloc(1, btf->raw_size);
840 if (!btf->raw_data) {
841 free(btf);
842 return ERR_PTR(-ENOMEM);
843 }
844
845 btf->hdr = btf->raw_data;
846 btf->hdr->hdr_len = sizeof(struct btf_header);
847 btf->hdr->magic = BTF_MAGIC;
848 btf->hdr->version = BTF_VERSION;
849
850 btf->types_data = btf->raw_data + btf->hdr->hdr_len;
851 btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
852 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
853
854 return btf;
855 }
856
btf__new_empty(void)857 struct btf *btf__new_empty(void)
858 {
859 return libbpf_ptr(btf_new_empty(NULL));
860 }
861
btf__new_empty_split(struct btf * base_btf)862 struct btf *btf__new_empty_split(struct btf *base_btf)
863 {
864 return libbpf_ptr(btf_new_empty(base_btf));
865 }
866
btf_new(const void * data,__u32 size,struct btf * base_btf)867 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
868 {
869 struct btf *btf;
870 int err;
871
872 btf = calloc(1, sizeof(struct btf));
873 if (!btf)
874 return ERR_PTR(-ENOMEM);
875
876 btf->nr_types = 0;
877 btf->start_id = 1;
878 btf->start_str_off = 0;
879 btf->fd = -1;
880
881 if (base_btf) {
882 btf->base_btf = base_btf;
883 btf->start_id = btf__type_cnt(base_btf);
884 btf->start_str_off = base_btf->hdr->str_len;
885 }
886
887 btf->raw_data = malloc(size);
888 if (!btf->raw_data) {
889 err = -ENOMEM;
890 goto done;
891 }
892 memcpy(btf->raw_data, data, size);
893 btf->raw_size = size;
894
895 btf->hdr = btf->raw_data;
896 err = btf_parse_hdr(btf);
897 if (err)
898 goto done;
899
900 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
901 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
902
903 err = btf_parse_str_sec(btf);
904 err = err ?: btf_parse_type_sec(btf);
905 if (err)
906 goto done;
907
908 done:
909 if (err) {
910 btf__free(btf);
911 return ERR_PTR(err);
912 }
913
914 return btf;
915 }
916
btf__new(const void * data,__u32 size)917 struct btf *btf__new(const void *data, __u32 size)
918 {
919 return libbpf_ptr(btf_new(data, size, NULL));
920 }
921
btf_parse_elf(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)922 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
923 struct btf_ext **btf_ext)
924 {
925 Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
926 int err = 0, fd = -1, idx = 0;
927 struct btf *btf = NULL;
928 Elf_Scn *scn = NULL;
929 Elf *elf = NULL;
930 GElf_Ehdr ehdr;
931 size_t shstrndx;
932
933 if (elf_version(EV_CURRENT) == EV_NONE) {
934 pr_warn("failed to init libelf for %s\n", path);
935 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
936 }
937
938 fd = open(path, O_RDONLY | O_CLOEXEC);
939 if (fd < 0) {
940 err = -errno;
941 pr_warn("failed to open %s: %s\n", path, strerror(errno));
942 return ERR_PTR(err);
943 }
944
945 err = -LIBBPF_ERRNO__FORMAT;
946
947 elf = elf_begin(fd, ELF_C_READ, NULL);
948 if (!elf) {
949 pr_warn("failed to open %s as ELF file\n", path);
950 goto done;
951 }
952 if (!gelf_getehdr(elf, &ehdr)) {
953 pr_warn("failed to get EHDR from %s\n", path);
954 goto done;
955 }
956
957 if (elf_getshdrstrndx(elf, &shstrndx)) {
958 pr_warn("failed to get section names section index for %s\n",
959 path);
960 goto done;
961 }
962
963 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
964 pr_warn("failed to get e_shstrndx from %s\n", path);
965 goto done;
966 }
967
968 while ((scn = elf_nextscn(elf, scn)) != NULL) {
969 GElf_Shdr sh;
970 char *name;
971
972 idx++;
973 if (gelf_getshdr(scn, &sh) != &sh) {
974 pr_warn("failed to get section(%d) header from %s\n",
975 idx, path);
976 goto done;
977 }
978 name = elf_strptr(elf, shstrndx, sh.sh_name);
979 if (!name) {
980 pr_warn("failed to get section(%d) name from %s\n",
981 idx, path);
982 goto done;
983 }
984 if (strcmp(name, BTF_ELF_SEC) == 0) {
985 btf_data = elf_getdata(scn, 0);
986 if (!btf_data) {
987 pr_warn("failed to get section(%d, %s) data from %s\n",
988 idx, name, path);
989 goto done;
990 }
991 continue;
992 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
993 btf_ext_data = elf_getdata(scn, 0);
994 if (!btf_ext_data) {
995 pr_warn("failed to get section(%d, %s) data from %s\n",
996 idx, name, path);
997 goto done;
998 }
999 continue;
1000 }
1001 }
1002
1003 err = 0;
1004
1005 if (!btf_data) {
1006 err = -ENOENT;
1007 goto done;
1008 }
1009 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
1010 err = libbpf_get_error(btf);
1011 if (err)
1012 goto done;
1013
1014 switch (gelf_getclass(elf)) {
1015 case ELFCLASS32:
1016 btf__set_pointer_size(btf, 4);
1017 break;
1018 case ELFCLASS64:
1019 btf__set_pointer_size(btf, 8);
1020 break;
1021 default:
1022 pr_warn("failed to get ELF class (bitness) for %s\n", path);
1023 break;
1024 }
1025
1026 if (btf_ext && btf_ext_data) {
1027 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1028 err = libbpf_get_error(*btf_ext);
1029 if (err)
1030 goto done;
1031 } else if (btf_ext) {
1032 *btf_ext = NULL;
1033 }
1034 done:
1035 if (elf)
1036 elf_end(elf);
1037 close(fd);
1038
1039 if (!err)
1040 return btf;
1041
1042 if (btf_ext)
1043 btf_ext__free(*btf_ext);
1044 btf__free(btf);
1045
1046 return ERR_PTR(err);
1047 }
1048
btf__parse_elf(const char * path,struct btf_ext ** btf_ext)1049 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1050 {
1051 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1052 }
1053
btf__parse_elf_split(const char * path,struct btf * base_btf)1054 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1055 {
1056 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1057 }
1058
btf_parse_raw(const char * path,struct btf * base_btf)1059 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1060 {
1061 struct btf *btf = NULL;
1062 void *data = NULL;
1063 FILE *f = NULL;
1064 __u16 magic;
1065 int err = 0;
1066 long sz;
1067
1068 f = fopen(path, "rb");
1069 if (!f) {
1070 err = -errno;
1071 goto err_out;
1072 }
1073
1074 /* check BTF magic */
1075 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1076 err = -EIO;
1077 goto err_out;
1078 }
1079 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1080 /* definitely not a raw BTF */
1081 err = -EPROTO;
1082 goto err_out;
1083 }
1084
1085 /* get file size */
1086 if (fseek(f, 0, SEEK_END)) {
1087 err = -errno;
1088 goto err_out;
1089 }
1090 sz = ftell(f);
1091 if (sz < 0) {
1092 err = -errno;
1093 goto err_out;
1094 }
1095 /* rewind to the start */
1096 if (fseek(f, 0, SEEK_SET)) {
1097 err = -errno;
1098 goto err_out;
1099 }
1100
1101 /* pre-alloc memory and read all of BTF data */
1102 data = malloc(sz);
1103 if (!data) {
1104 err = -ENOMEM;
1105 goto err_out;
1106 }
1107 if (fread(data, 1, sz, f) < sz) {
1108 err = -EIO;
1109 goto err_out;
1110 }
1111
1112 /* finally parse BTF data */
1113 btf = btf_new(data, sz, base_btf);
1114
1115 err_out:
1116 free(data);
1117 if (f)
1118 fclose(f);
1119 return err ? ERR_PTR(err) : btf;
1120 }
1121
btf__parse_raw(const char * path)1122 struct btf *btf__parse_raw(const char *path)
1123 {
1124 return libbpf_ptr(btf_parse_raw(path, NULL));
1125 }
1126
btf__parse_raw_split(const char * path,struct btf * base_btf)1127 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1128 {
1129 return libbpf_ptr(btf_parse_raw(path, base_btf));
1130 }
1131
btf_parse(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)1132 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1133 {
1134 struct btf *btf;
1135 int err;
1136
1137 if (btf_ext)
1138 *btf_ext = NULL;
1139
1140 btf = btf_parse_raw(path, base_btf);
1141 err = libbpf_get_error(btf);
1142 if (!err)
1143 return btf;
1144 if (err != -EPROTO)
1145 return ERR_PTR(err);
1146 return btf_parse_elf(path, base_btf, btf_ext);
1147 }
1148
btf__parse(const char * path,struct btf_ext ** btf_ext)1149 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1150 {
1151 return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1152 }
1153
btf__parse_split(const char * path,struct btf * base_btf)1154 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1155 {
1156 return libbpf_ptr(btf_parse(path, base_btf, NULL));
1157 }
1158
1159 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1160
btf_load_into_kernel(struct btf * btf,char * log_buf,size_t log_sz,__u32 log_level)1161 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1162 {
1163 LIBBPF_OPTS(bpf_btf_load_opts, opts);
1164 __u32 buf_sz = 0, raw_size;
1165 char *buf = NULL, *tmp;
1166 void *raw_data;
1167 int err = 0;
1168
1169 if (btf->fd >= 0)
1170 return libbpf_err(-EEXIST);
1171 if (log_sz && !log_buf)
1172 return libbpf_err(-EINVAL);
1173
1174 /* cache native raw data representation */
1175 raw_data = btf_get_raw_data(btf, &raw_size, false);
1176 if (!raw_data) {
1177 err = -ENOMEM;
1178 goto done;
1179 }
1180 btf->raw_size = raw_size;
1181 btf->raw_data = raw_data;
1182
1183 retry_load:
1184 /* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1185 * initially. Only if BTF loading fails, we bump log_level to 1 and
1186 * retry, using either auto-allocated or custom log_buf. This way
1187 * non-NULL custom log_buf provides a buffer just in case, but hopes
1188 * for successful load and no need for log_buf.
1189 */
1190 if (log_level) {
1191 /* if caller didn't provide custom log_buf, we'll keep
1192 * allocating our own progressively bigger buffers for BTF
1193 * verification log
1194 */
1195 if (!log_buf) {
1196 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1197 tmp = realloc(buf, buf_sz);
1198 if (!tmp) {
1199 err = -ENOMEM;
1200 goto done;
1201 }
1202 buf = tmp;
1203 buf[0] = '\0';
1204 }
1205
1206 opts.log_buf = log_buf ? log_buf : buf;
1207 opts.log_size = log_buf ? log_sz : buf_sz;
1208 opts.log_level = log_level;
1209 }
1210
1211 btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1212 if (btf->fd < 0) {
1213 /* time to turn on verbose mode and try again */
1214 if (log_level == 0) {
1215 log_level = 1;
1216 goto retry_load;
1217 }
1218 /* only retry if caller didn't provide custom log_buf, but
1219 * make sure we can never overflow buf_sz
1220 */
1221 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1222 goto retry_load;
1223
1224 err = -errno;
1225 pr_warn("BTF loading error: %d\n", err);
1226 /* don't print out contents of custom log_buf */
1227 if (!log_buf && buf[0])
1228 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1229 }
1230
1231 done:
1232 free(buf);
1233 return libbpf_err(err);
1234 }
1235
btf__load_into_kernel(struct btf * btf)1236 int btf__load_into_kernel(struct btf *btf)
1237 {
1238 return btf_load_into_kernel(btf, NULL, 0, 0);
1239 }
1240
btf__fd(const struct btf * btf)1241 int btf__fd(const struct btf *btf)
1242 {
1243 return btf->fd;
1244 }
1245
btf__set_fd(struct btf * btf,int fd)1246 void btf__set_fd(struct btf *btf, int fd)
1247 {
1248 btf->fd = fd;
1249 }
1250
btf_strs_data(const struct btf * btf)1251 static const void *btf_strs_data(const struct btf *btf)
1252 {
1253 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1254 }
1255
btf_get_raw_data(const struct btf * btf,__u32 * size,bool swap_endian)1256 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1257 {
1258 struct btf_header *hdr = btf->hdr;
1259 struct btf_type *t;
1260 void *data, *p;
1261 __u32 data_sz;
1262 int i;
1263
1264 data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1265 if (data) {
1266 *size = btf->raw_size;
1267 return data;
1268 }
1269
1270 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1271 data = calloc(1, data_sz);
1272 if (!data)
1273 return NULL;
1274 p = data;
1275
1276 memcpy(p, hdr, hdr->hdr_len);
1277 if (swap_endian)
1278 btf_bswap_hdr(p);
1279 p += hdr->hdr_len;
1280
1281 memcpy(p, btf->types_data, hdr->type_len);
1282 if (swap_endian) {
1283 for (i = 0; i < btf->nr_types; i++) {
1284 t = p + btf->type_offs[i];
1285 /* btf_bswap_type_rest() relies on native t->info, so
1286 * we swap base type info after we swapped all the
1287 * additional information
1288 */
1289 if (btf_bswap_type_rest(t))
1290 goto err_out;
1291 btf_bswap_type_base(t);
1292 }
1293 }
1294 p += hdr->type_len;
1295
1296 memcpy(p, btf_strs_data(btf), hdr->str_len);
1297 p += hdr->str_len;
1298
1299 *size = data_sz;
1300 return data;
1301 err_out:
1302 free(data);
1303 return NULL;
1304 }
1305
btf__raw_data(const struct btf * btf_ro,__u32 * size)1306 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1307 {
1308 struct btf *btf = (struct btf *)btf_ro;
1309 __u32 data_sz;
1310 void *data;
1311
1312 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1313 if (!data)
1314 return errno = ENOMEM, NULL;
1315
1316 btf->raw_size = data_sz;
1317 if (btf->swapped_endian)
1318 btf->raw_data_swapped = data;
1319 else
1320 btf->raw_data = data;
1321 *size = data_sz;
1322 return data;
1323 }
1324
1325 __attribute__((alias("btf__raw_data")))
1326 const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1327
btf__str_by_offset(const struct btf * btf,__u32 offset)1328 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1329 {
1330 if (offset < btf->start_str_off)
1331 return btf__str_by_offset(btf->base_btf, offset);
1332 else if (offset - btf->start_str_off < btf->hdr->str_len)
1333 return btf_strs_data(btf) + (offset - btf->start_str_off);
1334 else
1335 return errno = EINVAL, NULL;
1336 }
1337
btf__name_by_offset(const struct btf * btf,__u32 offset)1338 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1339 {
1340 return btf__str_by_offset(btf, offset);
1341 }
1342
btf_get_from_fd(int btf_fd,struct btf * base_btf)1343 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1344 {
1345 struct bpf_btf_info btf_info;
1346 __u32 len = sizeof(btf_info);
1347 __u32 last_size;
1348 struct btf *btf;
1349 void *ptr;
1350 int err;
1351
1352 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1353 * let's start with a sane default - 4KiB here - and resize it only if
1354 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1355 */
1356 last_size = 4096;
1357 ptr = malloc(last_size);
1358 if (!ptr)
1359 return ERR_PTR(-ENOMEM);
1360
1361 memset(&btf_info, 0, sizeof(btf_info));
1362 btf_info.btf = ptr_to_u64(ptr);
1363 btf_info.btf_size = last_size;
1364 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1365
1366 if (!err && btf_info.btf_size > last_size) {
1367 void *temp_ptr;
1368
1369 last_size = btf_info.btf_size;
1370 temp_ptr = realloc(ptr, last_size);
1371 if (!temp_ptr) {
1372 btf = ERR_PTR(-ENOMEM);
1373 goto exit_free;
1374 }
1375 ptr = temp_ptr;
1376
1377 len = sizeof(btf_info);
1378 memset(&btf_info, 0, sizeof(btf_info));
1379 btf_info.btf = ptr_to_u64(ptr);
1380 btf_info.btf_size = last_size;
1381
1382 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1383 }
1384
1385 if (err || btf_info.btf_size > last_size) {
1386 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1387 goto exit_free;
1388 }
1389
1390 btf = btf_new(ptr, btf_info.btf_size, base_btf);
1391
1392 exit_free:
1393 free(ptr);
1394 return btf;
1395 }
1396
btf__load_from_kernel_by_id_split(__u32 id,struct btf * base_btf)1397 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1398 {
1399 struct btf *btf;
1400 int btf_fd;
1401
1402 btf_fd = bpf_btf_get_fd_by_id(id);
1403 if (btf_fd < 0)
1404 return libbpf_err_ptr(-errno);
1405
1406 btf = btf_get_from_fd(btf_fd, base_btf);
1407 close(btf_fd);
1408
1409 return libbpf_ptr(btf);
1410 }
1411
btf__load_from_kernel_by_id(__u32 id)1412 struct btf *btf__load_from_kernel_by_id(__u32 id)
1413 {
1414 return btf__load_from_kernel_by_id_split(id, NULL);
1415 }
1416
btf_invalidate_raw_data(struct btf * btf)1417 static void btf_invalidate_raw_data(struct btf *btf)
1418 {
1419 if (btf->raw_data) {
1420 free(btf->raw_data);
1421 btf->raw_data = NULL;
1422 }
1423 if (btf->raw_data_swapped) {
1424 free(btf->raw_data_swapped);
1425 btf->raw_data_swapped = NULL;
1426 }
1427 }
1428
1429 /* Ensure BTF is ready to be modified (by splitting into a three memory
1430 * regions for header, types, and strings). Also invalidate cached
1431 * raw_data, if any.
1432 */
btf_ensure_modifiable(struct btf * btf)1433 static int btf_ensure_modifiable(struct btf *btf)
1434 {
1435 void *hdr, *types;
1436 struct strset *set = NULL;
1437 int err = -ENOMEM;
1438
1439 if (btf_is_modifiable(btf)) {
1440 /* any BTF modification invalidates raw_data */
1441 btf_invalidate_raw_data(btf);
1442 return 0;
1443 }
1444
1445 /* split raw data into three memory regions */
1446 hdr = malloc(btf->hdr->hdr_len);
1447 types = malloc(btf->hdr->type_len);
1448 if (!hdr || !types)
1449 goto err_out;
1450
1451 memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1452 memcpy(types, btf->types_data, btf->hdr->type_len);
1453
1454 /* build lookup index for all strings */
1455 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1456 if (IS_ERR(set)) {
1457 err = PTR_ERR(set);
1458 goto err_out;
1459 }
1460
1461 /* only when everything was successful, update internal state */
1462 btf->hdr = hdr;
1463 btf->types_data = types;
1464 btf->types_data_cap = btf->hdr->type_len;
1465 btf->strs_data = NULL;
1466 btf->strs_set = set;
1467 /* if BTF was created from scratch, all strings are guaranteed to be
1468 * unique and deduplicated
1469 */
1470 if (btf->hdr->str_len == 0)
1471 btf->strs_deduped = true;
1472 if (!btf->base_btf && btf->hdr->str_len == 1)
1473 btf->strs_deduped = true;
1474
1475 /* invalidate raw_data representation */
1476 btf_invalidate_raw_data(btf);
1477
1478 return 0;
1479
1480 err_out:
1481 strset__free(set);
1482 free(hdr);
1483 free(types);
1484 return err;
1485 }
1486
1487 /* Find an offset in BTF string section that corresponds to a given string *s*.
1488 * Returns:
1489 * - >0 offset into string section, if string is found;
1490 * - -ENOENT, if string is not in the string section;
1491 * - <0, on any other error.
1492 */
btf__find_str(struct btf * btf,const char * s)1493 int btf__find_str(struct btf *btf, const char *s)
1494 {
1495 int off;
1496
1497 if (btf->base_btf) {
1498 off = btf__find_str(btf->base_btf, s);
1499 if (off != -ENOENT)
1500 return off;
1501 }
1502
1503 /* BTF needs to be in a modifiable state to build string lookup index */
1504 if (btf_ensure_modifiable(btf))
1505 return libbpf_err(-ENOMEM);
1506
1507 off = strset__find_str(btf->strs_set, s);
1508 if (off < 0)
1509 return libbpf_err(off);
1510
1511 return btf->start_str_off + off;
1512 }
1513
1514 /* Add a string s to the BTF string section.
1515 * Returns:
1516 * - > 0 offset into string section, on success;
1517 * - < 0, on error.
1518 */
btf__add_str(struct btf * btf,const char * s)1519 int btf__add_str(struct btf *btf, const char *s)
1520 {
1521 int off;
1522
1523 if (btf->base_btf) {
1524 off = btf__find_str(btf->base_btf, s);
1525 if (off != -ENOENT)
1526 return off;
1527 }
1528
1529 if (btf_ensure_modifiable(btf))
1530 return libbpf_err(-ENOMEM);
1531
1532 off = strset__add_str(btf->strs_set, s);
1533 if (off < 0)
1534 return libbpf_err(off);
1535
1536 btf->hdr->str_len = strset__data_size(btf->strs_set);
1537
1538 return btf->start_str_off + off;
1539 }
1540
btf_add_type_mem(struct btf * btf,size_t add_sz)1541 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1542 {
1543 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1544 btf->hdr->type_len, UINT_MAX, add_sz);
1545 }
1546
btf_type_inc_vlen(struct btf_type * t)1547 static void btf_type_inc_vlen(struct btf_type *t)
1548 {
1549 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1550 }
1551
btf_commit_type(struct btf * btf,int data_sz)1552 static int btf_commit_type(struct btf *btf, int data_sz)
1553 {
1554 int err;
1555
1556 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1557 if (err)
1558 return libbpf_err(err);
1559
1560 btf->hdr->type_len += data_sz;
1561 btf->hdr->str_off += data_sz;
1562 btf->nr_types++;
1563 return btf->start_id + btf->nr_types - 1;
1564 }
1565
1566 struct btf_pipe {
1567 const struct btf *src;
1568 struct btf *dst;
1569 struct hashmap *str_off_map; /* map string offsets from src to dst */
1570 };
1571
btf_rewrite_str(__u32 * str_off,void * ctx)1572 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1573 {
1574 struct btf_pipe *p = ctx;
1575 void *mapped_off;
1576 int off, err;
1577
1578 if (!*str_off) /* nothing to do for empty strings */
1579 return 0;
1580
1581 if (p->str_off_map &&
1582 hashmap__find(p->str_off_map, (void *)(long)*str_off, &mapped_off)) {
1583 *str_off = (__u32)(long)mapped_off;
1584 return 0;
1585 }
1586
1587 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1588 if (off < 0)
1589 return off;
1590
1591 /* Remember string mapping from src to dst. It avoids
1592 * performing expensive string comparisons.
1593 */
1594 if (p->str_off_map) {
1595 err = hashmap__append(p->str_off_map, (void *)(long)*str_off, (void *)(long)off);
1596 if (err)
1597 return err;
1598 }
1599
1600 *str_off = off;
1601 return 0;
1602 }
1603
btf__add_type(struct btf * btf,const struct btf * src_btf,const struct btf_type * src_type)1604 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1605 {
1606 struct btf_pipe p = { .src = src_btf, .dst = btf };
1607 struct btf_type *t;
1608 int sz, err;
1609
1610 sz = btf_type_size(src_type);
1611 if (sz < 0)
1612 return libbpf_err(sz);
1613
1614 /* deconstruct BTF, if necessary, and invalidate raw_data */
1615 if (btf_ensure_modifiable(btf))
1616 return libbpf_err(-ENOMEM);
1617
1618 t = btf_add_type_mem(btf, sz);
1619 if (!t)
1620 return libbpf_err(-ENOMEM);
1621
1622 memcpy(t, src_type, sz);
1623
1624 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1625 if (err)
1626 return libbpf_err(err);
1627
1628 return btf_commit_type(btf, sz);
1629 }
1630
btf_rewrite_type_ids(__u32 * type_id,void * ctx)1631 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1632 {
1633 struct btf *btf = ctx;
1634
1635 if (!*type_id) /* nothing to do for VOID references */
1636 return 0;
1637
1638 /* we haven't updated btf's type count yet, so
1639 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1640 * add to all newly added BTF types
1641 */
1642 *type_id += btf->start_id + btf->nr_types - 1;
1643 return 0;
1644 }
1645
1646 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx);
1647 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx);
1648
btf__add_btf(struct btf * btf,const struct btf * src_btf)1649 int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1650 {
1651 struct btf_pipe p = { .src = src_btf, .dst = btf };
1652 int data_sz, sz, cnt, i, err, old_strs_len;
1653 __u32 *off;
1654 void *t;
1655
1656 /* appending split BTF isn't supported yet */
1657 if (src_btf->base_btf)
1658 return libbpf_err(-ENOTSUP);
1659
1660 /* deconstruct BTF, if necessary, and invalidate raw_data */
1661 if (btf_ensure_modifiable(btf))
1662 return libbpf_err(-ENOMEM);
1663
1664 /* remember original strings section size if we have to roll back
1665 * partial strings section changes
1666 */
1667 old_strs_len = btf->hdr->str_len;
1668
1669 data_sz = src_btf->hdr->type_len;
1670 cnt = btf__type_cnt(src_btf) - 1;
1671
1672 /* pre-allocate enough memory for new types */
1673 t = btf_add_type_mem(btf, data_sz);
1674 if (!t)
1675 return libbpf_err(-ENOMEM);
1676
1677 /* pre-allocate enough memory for type offset index for new types */
1678 off = btf_add_type_offs_mem(btf, cnt);
1679 if (!off)
1680 return libbpf_err(-ENOMEM);
1681
1682 /* Map the string offsets from src_btf to the offsets from btf to improve performance */
1683 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1684 if (IS_ERR(p.str_off_map))
1685 return libbpf_err(-ENOMEM);
1686
1687 /* bulk copy types data for all types from src_btf */
1688 memcpy(t, src_btf->types_data, data_sz);
1689
1690 for (i = 0; i < cnt; i++) {
1691 sz = btf_type_size(t);
1692 if (sz < 0) {
1693 /* unlikely, has to be corrupted src_btf */
1694 err = sz;
1695 goto err_out;
1696 }
1697
1698 /* fill out type ID to type offset mapping for lookups by type ID */
1699 *off = t - btf->types_data;
1700
1701 /* add, dedup, and remap strings referenced by this BTF type */
1702 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1703 if (err)
1704 goto err_out;
1705
1706 /* remap all type IDs referenced from this BTF type */
1707 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1708 if (err)
1709 goto err_out;
1710
1711 /* go to next type data and type offset index entry */
1712 t += sz;
1713 off++;
1714 }
1715
1716 /* Up until now any of the copied type data was effectively invisible,
1717 * so if we exited early before this point due to error, BTF would be
1718 * effectively unmodified. There would be extra internal memory
1719 * pre-allocated, but it would not be available for querying. But now
1720 * that we've copied and rewritten all the data successfully, we can
1721 * update type count and various internal offsets and sizes to
1722 * "commit" the changes and made them visible to the outside world.
1723 */
1724 btf->hdr->type_len += data_sz;
1725 btf->hdr->str_off += data_sz;
1726 btf->nr_types += cnt;
1727
1728 hashmap__free(p.str_off_map);
1729
1730 /* return type ID of the first added BTF type */
1731 return btf->start_id + btf->nr_types - cnt;
1732 err_out:
1733 /* zero out preallocated memory as if it was just allocated with
1734 * libbpf_add_mem()
1735 */
1736 memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1737 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1738
1739 /* and now restore original strings section size; types data size
1740 * wasn't modified, so doesn't need restoring, see big comment above */
1741 btf->hdr->str_len = old_strs_len;
1742
1743 hashmap__free(p.str_off_map);
1744
1745 return libbpf_err(err);
1746 }
1747
1748 /*
1749 * Append new BTF_KIND_INT type with:
1750 * - *name* - non-empty, non-NULL type name;
1751 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1752 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1753 * Returns:
1754 * - >0, type ID of newly added BTF type;
1755 * - <0, on error.
1756 */
btf__add_int(struct btf * btf,const char * name,size_t byte_sz,int encoding)1757 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1758 {
1759 struct btf_type *t;
1760 int sz, name_off;
1761
1762 /* non-empty name */
1763 if (!name || !name[0])
1764 return libbpf_err(-EINVAL);
1765 /* byte_sz must be power of 2 */
1766 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1767 return libbpf_err(-EINVAL);
1768 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1769 return libbpf_err(-EINVAL);
1770
1771 /* deconstruct BTF, if necessary, and invalidate raw_data */
1772 if (btf_ensure_modifiable(btf))
1773 return libbpf_err(-ENOMEM);
1774
1775 sz = sizeof(struct btf_type) + sizeof(int);
1776 t = btf_add_type_mem(btf, sz);
1777 if (!t)
1778 return libbpf_err(-ENOMEM);
1779
1780 /* if something goes wrong later, we might end up with an extra string,
1781 * but that shouldn't be a problem, because BTF can't be constructed
1782 * completely anyway and will most probably be just discarded
1783 */
1784 name_off = btf__add_str(btf, name);
1785 if (name_off < 0)
1786 return name_off;
1787
1788 t->name_off = name_off;
1789 t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1790 t->size = byte_sz;
1791 /* set INT info, we don't allow setting legacy bit offset/size */
1792 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1793
1794 return btf_commit_type(btf, sz);
1795 }
1796
1797 /*
1798 * Append new BTF_KIND_FLOAT type with:
1799 * - *name* - non-empty, non-NULL type name;
1800 * - *sz* - size of the type, in bytes;
1801 * Returns:
1802 * - >0, type ID of newly added BTF type;
1803 * - <0, on error.
1804 */
btf__add_float(struct btf * btf,const char * name,size_t byte_sz)1805 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1806 {
1807 struct btf_type *t;
1808 int sz, name_off;
1809
1810 /* non-empty name */
1811 if (!name || !name[0])
1812 return libbpf_err(-EINVAL);
1813
1814 /* byte_sz must be one of the explicitly allowed values */
1815 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1816 byte_sz != 16)
1817 return libbpf_err(-EINVAL);
1818
1819 if (btf_ensure_modifiable(btf))
1820 return libbpf_err(-ENOMEM);
1821
1822 sz = sizeof(struct btf_type);
1823 t = btf_add_type_mem(btf, sz);
1824 if (!t)
1825 return libbpf_err(-ENOMEM);
1826
1827 name_off = btf__add_str(btf, name);
1828 if (name_off < 0)
1829 return name_off;
1830
1831 t->name_off = name_off;
1832 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1833 t->size = byte_sz;
1834
1835 return btf_commit_type(btf, sz);
1836 }
1837
1838 /* it's completely legal to append BTF types with type IDs pointing forward to
1839 * types that haven't been appended yet, so we only make sure that id looks
1840 * sane, we can't guarantee that ID will always be valid
1841 */
validate_type_id(int id)1842 static int validate_type_id(int id)
1843 {
1844 if (id < 0 || id > BTF_MAX_NR_TYPES)
1845 return -EINVAL;
1846 return 0;
1847 }
1848
1849 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
btf_add_ref_kind(struct btf * btf,int kind,const char * name,int ref_type_id)1850 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1851 {
1852 struct btf_type *t;
1853 int sz, name_off = 0;
1854
1855 if (validate_type_id(ref_type_id))
1856 return libbpf_err(-EINVAL);
1857
1858 if (btf_ensure_modifiable(btf))
1859 return libbpf_err(-ENOMEM);
1860
1861 sz = sizeof(struct btf_type);
1862 t = btf_add_type_mem(btf, sz);
1863 if (!t)
1864 return libbpf_err(-ENOMEM);
1865
1866 if (name && name[0]) {
1867 name_off = btf__add_str(btf, name);
1868 if (name_off < 0)
1869 return name_off;
1870 }
1871
1872 t->name_off = name_off;
1873 t->info = btf_type_info(kind, 0, 0);
1874 t->type = ref_type_id;
1875
1876 return btf_commit_type(btf, sz);
1877 }
1878
1879 /*
1880 * Append new BTF_KIND_PTR type with:
1881 * - *ref_type_id* - referenced type ID, it might not exist yet;
1882 * Returns:
1883 * - >0, type ID of newly added BTF type;
1884 * - <0, on error.
1885 */
btf__add_ptr(struct btf * btf,int ref_type_id)1886 int btf__add_ptr(struct btf *btf, int ref_type_id)
1887 {
1888 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1889 }
1890
1891 /*
1892 * Append new BTF_KIND_ARRAY type with:
1893 * - *index_type_id* - type ID of the type describing array index;
1894 * - *elem_type_id* - type ID of the type describing array element;
1895 * - *nr_elems* - the size of the array;
1896 * Returns:
1897 * - >0, type ID of newly added BTF type;
1898 * - <0, on error.
1899 */
btf__add_array(struct btf * btf,int index_type_id,int elem_type_id,__u32 nr_elems)1900 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1901 {
1902 struct btf_type *t;
1903 struct btf_array *a;
1904 int sz;
1905
1906 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1907 return libbpf_err(-EINVAL);
1908
1909 if (btf_ensure_modifiable(btf))
1910 return libbpf_err(-ENOMEM);
1911
1912 sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1913 t = btf_add_type_mem(btf, sz);
1914 if (!t)
1915 return libbpf_err(-ENOMEM);
1916
1917 t->name_off = 0;
1918 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1919 t->size = 0;
1920
1921 a = btf_array(t);
1922 a->type = elem_type_id;
1923 a->index_type = index_type_id;
1924 a->nelems = nr_elems;
1925
1926 return btf_commit_type(btf, sz);
1927 }
1928
1929 /* generic STRUCT/UNION append function */
btf_add_composite(struct btf * btf,int kind,const char * name,__u32 bytes_sz)1930 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1931 {
1932 struct btf_type *t;
1933 int sz, name_off = 0;
1934
1935 if (btf_ensure_modifiable(btf))
1936 return libbpf_err(-ENOMEM);
1937
1938 sz = sizeof(struct btf_type);
1939 t = btf_add_type_mem(btf, sz);
1940 if (!t)
1941 return libbpf_err(-ENOMEM);
1942
1943 if (name && name[0]) {
1944 name_off = btf__add_str(btf, name);
1945 if (name_off < 0)
1946 return name_off;
1947 }
1948
1949 /* start out with vlen=0 and no kflag; this will be adjusted when
1950 * adding each member
1951 */
1952 t->name_off = name_off;
1953 t->info = btf_type_info(kind, 0, 0);
1954 t->size = bytes_sz;
1955
1956 return btf_commit_type(btf, sz);
1957 }
1958
1959 /*
1960 * Append new BTF_KIND_STRUCT type with:
1961 * - *name* - name of the struct, can be NULL or empty for anonymous structs;
1962 * - *byte_sz* - size of the struct, in bytes;
1963 *
1964 * Struct initially has no fields in it. Fields can be added by
1965 * btf__add_field() right after btf__add_struct() succeeds.
1966 *
1967 * Returns:
1968 * - >0, type ID of newly added BTF type;
1969 * - <0, on error.
1970 */
btf__add_struct(struct btf * btf,const char * name,__u32 byte_sz)1971 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1972 {
1973 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1974 }
1975
1976 /*
1977 * Append new BTF_KIND_UNION type with:
1978 * - *name* - name of the union, can be NULL or empty for anonymous union;
1979 * - *byte_sz* - size of the union, in bytes;
1980 *
1981 * Union initially has no fields in it. Fields can be added by
1982 * btf__add_field() right after btf__add_union() succeeds. All fields
1983 * should have *bit_offset* of 0.
1984 *
1985 * Returns:
1986 * - >0, type ID of newly added BTF type;
1987 * - <0, on error.
1988 */
btf__add_union(struct btf * btf,const char * name,__u32 byte_sz)1989 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1990 {
1991 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1992 }
1993
btf_last_type(struct btf * btf)1994 static struct btf_type *btf_last_type(struct btf *btf)
1995 {
1996 return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1997 }
1998
1999 /*
2000 * Append new field for the current STRUCT/UNION type with:
2001 * - *name* - name of the field, can be NULL or empty for anonymous field;
2002 * - *type_id* - type ID for the type describing field type;
2003 * - *bit_offset* - bit offset of the start of the field within struct/union;
2004 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2005 * Returns:
2006 * - 0, on success;
2007 * - <0, on error.
2008 */
btf__add_field(struct btf * btf,const char * name,int type_id,__u32 bit_offset,__u32 bit_size)2009 int btf__add_field(struct btf *btf, const char *name, int type_id,
2010 __u32 bit_offset, __u32 bit_size)
2011 {
2012 struct btf_type *t;
2013 struct btf_member *m;
2014 bool is_bitfield;
2015 int sz, name_off = 0;
2016
2017 /* last type should be union/struct */
2018 if (btf->nr_types == 0)
2019 return libbpf_err(-EINVAL);
2020 t = btf_last_type(btf);
2021 if (!btf_is_composite(t))
2022 return libbpf_err(-EINVAL);
2023
2024 if (validate_type_id(type_id))
2025 return libbpf_err(-EINVAL);
2026 /* best-effort bit field offset/size enforcement */
2027 is_bitfield = bit_size || (bit_offset % 8 != 0);
2028 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2029 return libbpf_err(-EINVAL);
2030
2031 /* only offset 0 is allowed for unions */
2032 if (btf_is_union(t) && bit_offset)
2033 return libbpf_err(-EINVAL);
2034
2035 /* decompose and invalidate raw data */
2036 if (btf_ensure_modifiable(btf))
2037 return libbpf_err(-ENOMEM);
2038
2039 sz = sizeof(struct btf_member);
2040 m = btf_add_type_mem(btf, sz);
2041 if (!m)
2042 return libbpf_err(-ENOMEM);
2043
2044 if (name && name[0]) {
2045 name_off = btf__add_str(btf, name);
2046 if (name_off < 0)
2047 return name_off;
2048 }
2049
2050 m->name_off = name_off;
2051 m->type = type_id;
2052 m->offset = bit_offset | (bit_size << 24);
2053
2054 /* btf_add_type_mem can invalidate t pointer */
2055 t = btf_last_type(btf);
2056 /* update parent type's vlen and kflag */
2057 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2058
2059 btf->hdr->type_len += sz;
2060 btf->hdr->str_off += sz;
2061 return 0;
2062 }
2063
btf_add_enum_common(struct btf * btf,const char * name,__u32 byte_sz,bool is_signed,__u8 kind)2064 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2065 bool is_signed, __u8 kind)
2066 {
2067 struct btf_type *t;
2068 int sz, name_off = 0;
2069
2070 /* byte_sz must be power of 2 */
2071 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2072 return libbpf_err(-EINVAL);
2073
2074 if (btf_ensure_modifiable(btf))
2075 return libbpf_err(-ENOMEM);
2076
2077 sz = sizeof(struct btf_type);
2078 t = btf_add_type_mem(btf, sz);
2079 if (!t)
2080 return libbpf_err(-ENOMEM);
2081
2082 if (name && name[0]) {
2083 name_off = btf__add_str(btf, name);
2084 if (name_off < 0)
2085 return name_off;
2086 }
2087
2088 /* start out with vlen=0; it will be adjusted when adding enum values */
2089 t->name_off = name_off;
2090 t->info = btf_type_info(kind, 0, is_signed);
2091 t->size = byte_sz;
2092
2093 return btf_commit_type(btf, sz);
2094 }
2095
2096 /*
2097 * Append new BTF_KIND_ENUM type with:
2098 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
2099 * - *byte_sz* - size of the enum, in bytes.
2100 *
2101 * Enum initially has no enum values in it (and corresponds to enum forward
2102 * declaration). Enumerator values can be added by btf__add_enum_value()
2103 * immediately after btf__add_enum() succeeds.
2104 *
2105 * Returns:
2106 * - >0, type ID of newly added BTF type;
2107 * - <0, on error.
2108 */
btf__add_enum(struct btf * btf,const char * name,__u32 byte_sz)2109 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2110 {
2111 /*
2112 * set the signedness to be unsigned, it will change to signed
2113 * if any later enumerator is negative.
2114 */
2115 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2116 }
2117
2118 /*
2119 * Append new enum value for the current ENUM type with:
2120 * - *name* - name of the enumerator value, can't be NULL or empty;
2121 * - *value* - integer value corresponding to enum value *name*;
2122 * Returns:
2123 * - 0, on success;
2124 * - <0, on error.
2125 */
btf__add_enum_value(struct btf * btf,const char * name,__s64 value)2126 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2127 {
2128 struct btf_type *t;
2129 struct btf_enum *v;
2130 int sz, name_off;
2131
2132 /* last type should be BTF_KIND_ENUM */
2133 if (btf->nr_types == 0)
2134 return libbpf_err(-EINVAL);
2135 t = btf_last_type(btf);
2136 if (!btf_is_enum(t))
2137 return libbpf_err(-EINVAL);
2138
2139 /* non-empty name */
2140 if (!name || !name[0])
2141 return libbpf_err(-EINVAL);
2142 if (value < INT_MIN || value > UINT_MAX)
2143 return libbpf_err(-E2BIG);
2144
2145 /* decompose and invalidate raw data */
2146 if (btf_ensure_modifiable(btf))
2147 return libbpf_err(-ENOMEM);
2148
2149 sz = sizeof(struct btf_enum);
2150 v = btf_add_type_mem(btf, sz);
2151 if (!v)
2152 return libbpf_err(-ENOMEM);
2153
2154 name_off = btf__add_str(btf, name);
2155 if (name_off < 0)
2156 return name_off;
2157
2158 v->name_off = name_off;
2159 v->val = value;
2160
2161 /* update parent type's vlen */
2162 t = btf_last_type(btf);
2163 btf_type_inc_vlen(t);
2164
2165 /* if negative value, set signedness to signed */
2166 if (value < 0)
2167 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2168
2169 btf->hdr->type_len += sz;
2170 btf->hdr->str_off += sz;
2171 return 0;
2172 }
2173
2174 /*
2175 * Append new BTF_KIND_ENUM64 type with:
2176 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
2177 * - *byte_sz* - size of the enum, in bytes.
2178 * - *is_signed* - whether the enum values are signed or not;
2179 *
2180 * Enum initially has no enum values in it (and corresponds to enum forward
2181 * declaration). Enumerator values can be added by btf__add_enum64_value()
2182 * immediately after btf__add_enum64() succeeds.
2183 *
2184 * Returns:
2185 * - >0, type ID of newly added BTF type;
2186 * - <0, on error.
2187 */
btf__add_enum64(struct btf * btf,const char * name,__u32 byte_sz,bool is_signed)2188 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2189 bool is_signed)
2190 {
2191 return btf_add_enum_common(btf, name, byte_sz, is_signed,
2192 BTF_KIND_ENUM64);
2193 }
2194
2195 /*
2196 * Append new enum value for the current ENUM64 type with:
2197 * - *name* - name of the enumerator value, can't be NULL or empty;
2198 * - *value* - integer value corresponding to enum value *name*;
2199 * Returns:
2200 * - 0, on success;
2201 * - <0, on error.
2202 */
btf__add_enum64_value(struct btf * btf,const char * name,__u64 value)2203 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2204 {
2205 struct btf_enum64 *v;
2206 struct btf_type *t;
2207 int sz, name_off;
2208
2209 /* last type should be BTF_KIND_ENUM64 */
2210 if (btf->nr_types == 0)
2211 return libbpf_err(-EINVAL);
2212 t = btf_last_type(btf);
2213 if (!btf_is_enum64(t))
2214 return libbpf_err(-EINVAL);
2215
2216 /* non-empty name */
2217 if (!name || !name[0])
2218 return libbpf_err(-EINVAL);
2219
2220 /* decompose and invalidate raw data */
2221 if (btf_ensure_modifiable(btf))
2222 return libbpf_err(-ENOMEM);
2223
2224 sz = sizeof(struct btf_enum64);
2225 v = btf_add_type_mem(btf, sz);
2226 if (!v)
2227 return libbpf_err(-ENOMEM);
2228
2229 name_off = btf__add_str(btf, name);
2230 if (name_off < 0)
2231 return name_off;
2232
2233 v->name_off = name_off;
2234 v->val_lo32 = (__u32)value;
2235 v->val_hi32 = value >> 32;
2236
2237 /* update parent type's vlen */
2238 t = btf_last_type(btf);
2239 btf_type_inc_vlen(t);
2240
2241 btf->hdr->type_len += sz;
2242 btf->hdr->str_off += sz;
2243 return 0;
2244 }
2245
2246 /*
2247 * Append new BTF_KIND_FWD type with:
2248 * - *name*, non-empty/non-NULL name;
2249 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2250 * BTF_FWD_UNION, or BTF_FWD_ENUM;
2251 * Returns:
2252 * - >0, type ID of newly added BTF type;
2253 * - <0, on error.
2254 */
btf__add_fwd(struct btf * btf,const char * name,enum btf_fwd_kind fwd_kind)2255 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2256 {
2257 if (!name || !name[0])
2258 return libbpf_err(-EINVAL);
2259
2260 switch (fwd_kind) {
2261 case BTF_FWD_STRUCT:
2262 case BTF_FWD_UNION: {
2263 struct btf_type *t;
2264 int id;
2265
2266 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2267 if (id <= 0)
2268 return id;
2269 t = btf_type_by_id(btf, id);
2270 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2271 return id;
2272 }
2273 case BTF_FWD_ENUM:
2274 /* enum forward in BTF currently is just an enum with no enum
2275 * values; we also assume a standard 4-byte size for it
2276 */
2277 return btf__add_enum(btf, name, sizeof(int));
2278 default:
2279 return libbpf_err(-EINVAL);
2280 }
2281 }
2282
2283 /*
2284 * Append new BTF_KING_TYPEDEF type with:
2285 * - *name*, non-empty/non-NULL name;
2286 * - *ref_type_id* - referenced type ID, it might not exist yet;
2287 * Returns:
2288 * - >0, type ID of newly added BTF type;
2289 * - <0, on error.
2290 */
btf__add_typedef(struct btf * btf,const char * name,int ref_type_id)2291 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2292 {
2293 if (!name || !name[0])
2294 return libbpf_err(-EINVAL);
2295
2296 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2297 }
2298
2299 /*
2300 * Append new BTF_KIND_VOLATILE type with:
2301 * - *ref_type_id* - referenced type ID, it might not exist yet;
2302 * Returns:
2303 * - >0, type ID of newly added BTF type;
2304 * - <0, on error.
2305 */
btf__add_volatile(struct btf * btf,int ref_type_id)2306 int btf__add_volatile(struct btf *btf, int ref_type_id)
2307 {
2308 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2309 }
2310
2311 /*
2312 * Append new BTF_KIND_CONST type with:
2313 * - *ref_type_id* - referenced type ID, it might not exist yet;
2314 * Returns:
2315 * - >0, type ID of newly added BTF type;
2316 * - <0, on error.
2317 */
btf__add_const(struct btf * btf,int ref_type_id)2318 int btf__add_const(struct btf *btf, int ref_type_id)
2319 {
2320 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2321 }
2322
2323 /*
2324 * Append new BTF_KIND_RESTRICT type with:
2325 * - *ref_type_id* - referenced type ID, it might not exist yet;
2326 * Returns:
2327 * - >0, type ID of newly added BTF type;
2328 * - <0, on error.
2329 */
btf__add_restrict(struct btf * btf,int ref_type_id)2330 int btf__add_restrict(struct btf *btf, int ref_type_id)
2331 {
2332 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2333 }
2334
2335 /*
2336 * Append new BTF_KIND_TYPE_TAG type with:
2337 * - *value*, non-empty/non-NULL tag value;
2338 * - *ref_type_id* - referenced type ID, it might not exist yet;
2339 * Returns:
2340 * - >0, type ID of newly added BTF type;
2341 * - <0, on error.
2342 */
btf__add_type_tag(struct btf * btf,const char * value,int ref_type_id)2343 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2344 {
2345 if (!value|| !value[0])
2346 return libbpf_err(-EINVAL);
2347
2348 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2349 }
2350
2351 /*
2352 * Append new BTF_KIND_FUNC type with:
2353 * - *name*, non-empty/non-NULL name;
2354 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2355 * Returns:
2356 * - >0, type ID of newly added BTF type;
2357 * - <0, on error.
2358 */
btf__add_func(struct btf * btf,const char * name,enum btf_func_linkage linkage,int proto_type_id)2359 int btf__add_func(struct btf *btf, const char *name,
2360 enum btf_func_linkage linkage, int proto_type_id)
2361 {
2362 int id;
2363
2364 if (!name || !name[0])
2365 return libbpf_err(-EINVAL);
2366 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2367 linkage != BTF_FUNC_EXTERN)
2368 return libbpf_err(-EINVAL);
2369
2370 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2371 if (id > 0) {
2372 struct btf_type *t = btf_type_by_id(btf, id);
2373
2374 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2375 }
2376 return libbpf_err(id);
2377 }
2378
2379 /*
2380 * Append new BTF_KIND_FUNC_PROTO with:
2381 * - *ret_type_id* - type ID for return result of a function.
2382 *
2383 * Function prototype initially has no arguments, but they can be added by
2384 * btf__add_func_param() one by one, immediately after
2385 * btf__add_func_proto() succeeded.
2386 *
2387 * Returns:
2388 * - >0, type ID of newly added BTF type;
2389 * - <0, on error.
2390 */
btf__add_func_proto(struct btf * btf,int ret_type_id)2391 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2392 {
2393 struct btf_type *t;
2394 int sz;
2395
2396 if (validate_type_id(ret_type_id))
2397 return libbpf_err(-EINVAL);
2398
2399 if (btf_ensure_modifiable(btf))
2400 return libbpf_err(-ENOMEM);
2401
2402 sz = sizeof(struct btf_type);
2403 t = btf_add_type_mem(btf, sz);
2404 if (!t)
2405 return libbpf_err(-ENOMEM);
2406
2407 /* start out with vlen=0; this will be adjusted when adding enum
2408 * values, if necessary
2409 */
2410 t->name_off = 0;
2411 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2412 t->type = ret_type_id;
2413
2414 return btf_commit_type(btf, sz);
2415 }
2416
2417 /*
2418 * Append new function parameter for current FUNC_PROTO type with:
2419 * - *name* - parameter name, can be NULL or empty;
2420 * - *type_id* - type ID describing the type of the parameter.
2421 * Returns:
2422 * - 0, on success;
2423 * - <0, on error.
2424 */
btf__add_func_param(struct btf * btf,const char * name,int type_id)2425 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2426 {
2427 struct btf_type *t;
2428 struct btf_param *p;
2429 int sz, name_off = 0;
2430
2431 if (validate_type_id(type_id))
2432 return libbpf_err(-EINVAL);
2433
2434 /* last type should be BTF_KIND_FUNC_PROTO */
2435 if (btf->nr_types == 0)
2436 return libbpf_err(-EINVAL);
2437 t = btf_last_type(btf);
2438 if (!btf_is_func_proto(t))
2439 return libbpf_err(-EINVAL);
2440
2441 /* decompose and invalidate raw data */
2442 if (btf_ensure_modifiable(btf))
2443 return libbpf_err(-ENOMEM);
2444
2445 sz = sizeof(struct btf_param);
2446 p = btf_add_type_mem(btf, sz);
2447 if (!p)
2448 return libbpf_err(-ENOMEM);
2449
2450 if (name && name[0]) {
2451 name_off = btf__add_str(btf, name);
2452 if (name_off < 0)
2453 return name_off;
2454 }
2455
2456 p->name_off = name_off;
2457 p->type = type_id;
2458
2459 /* update parent type's vlen */
2460 t = btf_last_type(btf);
2461 btf_type_inc_vlen(t);
2462
2463 btf->hdr->type_len += sz;
2464 btf->hdr->str_off += sz;
2465 return 0;
2466 }
2467
2468 /*
2469 * Append new BTF_KIND_VAR type with:
2470 * - *name* - non-empty/non-NULL name;
2471 * - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2472 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2473 * - *type_id* - type ID of the type describing the type of the variable.
2474 * Returns:
2475 * - >0, type ID of newly added BTF type;
2476 * - <0, on error.
2477 */
btf__add_var(struct btf * btf,const char * name,int linkage,int type_id)2478 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2479 {
2480 struct btf_type *t;
2481 struct btf_var *v;
2482 int sz, name_off;
2483
2484 /* non-empty name */
2485 if (!name || !name[0])
2486 return libbpf_err(-EINVAL);
2487 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2488 linkage != BTF_VAR_GLOBAL_EXTERN)
2489 return libbpf_err(-EINVAL);
2490 if (validate_type_id(type_id))
2491 return libbpf_err(-EINVAL);
2492
2493 /* deconstruct BTF, if necessary, and invalidate raw_data */
2494 if (btf_ensure_modifiable(btf))
2495 return libbpf_err(-ENOMEM);
2496
2497 sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2498 t = btf_add_type_mem(btf, sz);
2499 if (!t)
2500 return libbpf_err(-ENOMEM);
2501
2502 name_off = btf__add_str(btf, name);
2503 if (name_off < 0)
2504 return name_off;
2505
2506 t->name_off = name_off;
2507 t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2508 t->type = type_id;
2509
2510 v = btf_var(t);
2511 v->linkage = linkage;
2512
2513 return btf_commit_type(btf, sz);
2514 }
2515
2516 /*
2517 * Append new BTF_KIND_DATASEC type with:
2518 * - *name* - non-empty/non-NULL name;
2519 * - *byte_sz* - data section size, in bytes.
2520 *
2521 * Data section is initially empty. Variables info can be added with
2522 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2523 *
2524 * Returns:
2525 * - >0, type ID of newly added BTF type;
2526 * - <0, on error.
2527 */
btf__add_datasec(struct btf * btf,const char * name,__u32 byte_sz)2528 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2529 {
2530 struct btf_type *t;
2531 int sz, name_off;
2532
2533 /* non-empty name */
2534 if (!name || !name[0])
2535 return libbpf_err(-EINVAL);
2536
2537 if (btf_ensure_modifiable(btf))
2538 return libbpf_err(-ENOMEM);
2539
2540 sz = sizeof(struct btf_type);
2541 t = btf_add_type_mem(btf, sz);
2542 if (!t)
2543 return libbpf_err(-ENOMEM);
2544
2545 name_off = btf__add_str(btf, name);
2546 if (name_off < 0)
2547 return name_off;
2548
2549 /* start with vlen=0, which will be update as var_secinfos are added */
2550 t->name_off = name_off;
2551 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2552 t->size = byte_sz;
2553
2554 return btf_commit_type(btf, sz);
2555 }
2556
2557 /*
2558 * Append new data section variable information entry for current DATASEC type:
2559 * - *var_type_id* - type ID, describing type of the variable;
2560 * - *offset* - variable offset within data section, in bytes;
2561 * - *byte_sz* - variable size, in bytes.
2562 *
2563 * Returns:
2564 * - 0, on success;
2565 * - <0, on error.
2566 */
btf__add_datasec_var_info(struct btf * btf,int var_type_id,__u32 offset,__u32 byte_sz)2567 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2568 {
2569 struct btf_type *t;
2570 struct btf_var_secinfo *v;
2571 int sz;
2572
2573 /* last type should be BTF_KIND_DATASEC */
2574 if (btf->nr_types == 0)
2575 return libbpf_err(-EINVAL);
2576 t = btf_last_type(btf);
2577 if (!btf_is_datasec(t))
2578 return libbpf_err(-EINVAL);
2579
2580 if (validate_type_id(var_type_id))
2581 return libbpf_err(-EINVAL);
2582
2583 /* decompose and invalidate raw data */
2584 if (btf_ensure_modifiable(btf))
2585 return libbpf_err(-ENOMEM);
2586
2587 sz = sizeof(struct btf_var_secinfo);
2588 v = btf_add_type_mem(btf, sz);
2589 if (!v)
2590 return libbpf_err(-ENOMEM);
2591
2592 v->type = var_type_id;
2593 v->offset = offset;
2594 v->size = byte_sz;
2595
2596 /* update parent type's vlen */
2597 t = btf_last_type(btf);
2598 btf_type_inc_vlen(t);
2599
2600 btf->hdr->type_len += sz;
2601 btf->hdr->str_off += sz;
2602 return 0;
2603 }
2604
2605 /*
2606 * Append new BTF_KIND_DECL_TAG type with:
2607 * - *value* - non-empty/non-NULL string;
2608 * - *ref_type_id* - referenced type ID, it might not exist yet;
2609 * - *component_idx* - -1 for tagging reference type, otherwise struct/union
2610 * member or function argument index;
2611 * Returns:
2612 * - >0, type ID of newly added BTF type;
2613 * - <0, on error.
2614 */
btf__add_decl_tag(struct btf * btf,const char * value,int ref_type_id,int component_idx)2615 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2616 int component_idx)
2617 {
2618 struct btf_type *t;
2619 int sz, value_off;
2620
2621 if (!value || !value[0] || component_idx < -1)
2622 return libbpf_err(-EINVAL);
2623
2624 if (validate_type_id(ref_type_id))
2625 return libbpf_err(-EINVAL);
2626
2627 if (btf_ensure_modifiable(btf))
2628 return libbpf_err(-ENOMEM);
2629
2630 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2631 t = btf_add_type_mem(btf, sz);
2632 if (!t)
2633 return libbpf_err(-ENOMEM);
2634
2635 value_off = btf__add_str(btf, value);
2636 if (value_off < 0)
2637 return value_off;
2638
2639 t->name_off = value_off;
2640 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2641 t->type = ref_type_id;
2642 btf_decl_tag(t)->component_idx = component_idx;
2643
2644 return btf_commit_type(btf, sz);
2645 }
2646
2647 struct btf_ext_sec_setup_param {
2648 __u32 off;
2649 __u32 len;
2650 __u32 min_rec_size;
2651 struct btf_ext_info *ext_info;
2652 const char *desc;
2653 };
2654
btf_ext_setup_info(struct btf_ext * btf_ext,struct btf_ext_sec_setup_param * ext_sec)2655 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2656 struct btf_ext_sec_setup_param *ext_sec)
2657 {
2658 const struct btf_ext_info_sec *sinfo;
2659 struct btf_ext_info *ext_info;
2660 __u32 info_left, record_size;
2661 size_t sec_cnt = 0;
2662 /* The start of the info sec (including the __u32 record_size). */
2663 void *info;
2664
2665 if (ext_sec->len == 0)
2666 return 0;
2667
2668 if (ext_sec->off & 0x03) {
2669 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2670 ext_sec->desc);
2671 return -EINVAL;
2672 }
2673
2674 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2675 info_left = ext_sec->len;
2676
2677 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2678 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2679 ext_sec->desc, ext_sec->off, ext_sec->len);
2680 return -EINVAL;
2681 }
2682
2683 /* At least a record size */
2684 if (info_left < sizeof(__u32)) {
2685 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2686 return -EINVAL;
2687 }
2688
2689 /* The record size needs to meet the minimum standard */
2690 record_size = *(__u32 *)info;
2691 if (record_size < ext_sec->min_rec_size ||
2692 record_size & 0x03) {
2693 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2694 ext_sec->desc, record_size);
2695 return -EINVAL;
2696 }
2697
2698 sinfo = info + sizeof(__u32);
2699 info_left -= sizeof(__u32);
2700
2701 /* If no records, return failure now so .BTF.ext won't be used. */
2702 if (!info_left) {
2703 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2704 return -EINVAL;
2705 }
2706
2707 while (info_left) {
2708 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2709 __u64 total_record_size;
2710 __u32 num_records;
2711
2712 if (info_left < sec_hdrlen) {
2713 pr_debug("%s section header is not found in .BTF.ext\n",
2714 ext_sec->desc);
2715 return -EINVAL;
2716 }
2717
2718 num_records = sinfo->num_info;
2719 if (num_records == 0) {
2720 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2721 ext_sec->desc);
2722 return -EINVAL;
2723 }
2724
2725 total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2726 if (info_left < total_record_size) {
2727 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2728 ext_sec->desc);
2729 return -EINVAL;
2730 }
2731
2732 info_left -= total_record_size;
2733 sinfo = (void *)sinfo + total_record_size;
2734 sec_cnt++;
2735 }
2736
2737 ext_info = ext_sec->ext_info;
2738 ext_info->len = ext_sec->len - sizeof(__u32);
2739 ext_info->rec_size = record_size;
2740 ext_info->info = info + sizeof(__u32);
2741 ext_info->sec_cnt = sec_cnt;
2742
2743 return 0;
2744 }
2745
btf_ext_setup_func_info(struct btf_ext * btf_ext)2746 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2747 {
2748 struct btf_ext_sec_setup_param param = {
2749 .off = btf_ext->hdr->func_info_off,
2750 .len = btf_ext->hdr->func_info_len,
2751 .min_rec_size = sizeof(struct bpf_func_info_min),
2752 .ext_info = &btf_ext->func_info,
2753 .desc = "func_info"
2754 };
2755
2756 return btf_ext_setup_info(btf_ext, ¶m);
2757 }
2758
btf_ext_setup_line_info(struct btf_ext * btf_ext)2759 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2760 {
2761 struct btf_ext_sec_setup_param param = {
2762 .off = btf_ext->hdr->line_info_off,
2763 .len = btf_ext->hdr->line_info_len,
2764 .min_rec_size = sizeof(struct bpf_line_info_min),
2765 .ext_info = &btf_ext->line_info,
2766 .desc = "line_info",
2767 };
2768
2769 return btf_ext_setup_info(btf_ext, ¶m);
2770 }
2771
btf_ext_setup_core_relos(struct btf_ext * btf_ext)2772 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2773 {
2774 struct btf_ext_sec_setup_param param = {
2775 .off = btf_ext->hdr->core_relo_off,
2776 .len = btf_ext->hdr->core_relo_len,
2777 .min_rec_size = sizeof(struct bpf_core_relo),
2778 .ext_info = &btf_ext->core_relo_info,
2779 .desc = "core_relo",
2780 };
2781
2782 return btf_ext_setup_info(btf_ext, ¶m);
2783 }
2784
btf_ext_parse_hdr(__u8 * data,__u32 data_size)2785 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2786 {
2787 const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2788
2789 if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2790 data_size < hdr->hdr_len) {
2791 pr_debug("BTF.ext header not found");
2792 return -EINVAL;
2793 }
2794
2795 if (hdr->magic == bswap_16(BTF_MAGIC)) {
2796 pr_warn("BTF.ext in non-native endianness is not supported\n");
2797 return -ENOTSUP;
2798 } else if (hdr->magic != BTF_MAGIC) {
2799 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2800 return -EINVAL;
2801 }
2802
2803 if (hdr->version != BTF_VERSION) {
2804 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2805 return -ENOTSUP;
2806 }
2807
2808 if (hdr->flags) {
2809 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2810 return -ENOTSUP;
2811 }
2812
2813 if (data_size == hdr->hdr_len) {
2814 pr_debug("BTF.ext has no data\n");
2815 return -EINVAL;
2816 }
2817
2818 return 0;
2819 }
2820
btf_ext__free(struct btf_ext * btf_ext)2821 void btf_ext__free(struct btf_ext *btf_ext)
2822 {
2823 if (IS_ERR_OR_NULL(btf_ext))
2824 return;
2825 free(btf_ext->func_info.sec_idxs);
2826 free(btf_ext->line_info.sec_idxs);
2827 free(btf_ext->core_relo_info.sec_idxs);
2828 free(btf_ext->data);
2829 free(btf_ext);
2830 }
2831
btf_ext__new(const __u8 * data,__u32 size)2832 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2833 {
2834 struct btf_ext *btf_ext;
2835 int err;
2836
2837 btf_ext = calloc(1, sizeof(struct btf_ext));
2838 if (!btf_ext)
2839 return libbpf_err_ptr(-ENOMEM);
2840
2841 btf_ext->data_size = size;
2842 btf_ext->data = malloc(size);
2843 if (!btf_ext->data) {
2844 err = -ENOMEM;
2845 goto done;
2846 }
2847 memcpy(btf_ext->data, data, size);
2848
2849 err = btf_ext_parse_hdr(btf_ext->data, size);
2850 if (err)
2851 goto done;
2852
2853 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2854 err = -EINVAL;
2855 goto done;
2856 }
2857
2858 err = btf_ext_setup_func_info(btf_ext);
2859 if (err)
2860 goto done;
2861
2862 err = btf_ext_setup_line_info(btf_ext);
2863 if (err)
2864 goto done;
2865
2866 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2867 goto done; /* skip core relos parsing */
2868
2869 err = btf_ext_setup_core_relos(btf_ext);
2870 if (err)
2871 goto done;
2872
2873 done:
2874 if (err) {
2875 btf_ext__free(btf_ext);
2876 return libbpf_err_ptr(err);
2877 }
2878
2879 return btf_ext;
2880 }
2881
btf_ext__get_raw_data(const struct btf_ext * btf_ext,__u32 * size)2882 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2883 {
2884 *size = btf_ext->data_size;
2885 return btf_ext->data;
2886 }
2887
2888 struct btf_dedup;
2889
2890 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2891 static void btf_dedup_free(struct btf_dedup *d);
2892 static int btf_dedup_prep(struct btf_dedup *d);
2893 static int btf_dedup_strings(struct btf_dedup *d);
2894 static int btf_dedup_prim_types(struct btf_dedup *d);
2895 static int btf_dedup_struct_types(struct btf_dedup *d);
2896 static int btf_dedup_ref_types(struct btf_dedup *d);
2897 static int btf_dedup_compact_types(struct btf_dedup *d);
2898 static int btf_dedup_remap_types(struct btf_dedup *d);
2899
2900 /*
2901 * Deduplicate BTF types and strings.
2902 *
2903 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2904 * section with all BTF type descriptors and string data. It overwrites that
2905 * memory in-place with deduplicated types and strings without any loss of
2906 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2907 * is provided, all the strings referenced from .BTF.ext section are honored
2908 * and updated to point to the right offsets after deduplication.
2909 *
2910 * If function returns with error, type/string data might be garbled and should
2911 * be discarded.
2912 *
2913 * More verbose and detailed description of both problem btf_dedup is solving,
2914 * as well as solution could be found at:
2915 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2916 *
2917 * Problem description and justification
2918 * =====================================
2919 *
2920 * BTF type information is typically emitted either as a result of conversion
2921 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2922 * unit contains information about a subset of all the types that are used
2923 * in an application. These subsets are frequently overlapping and contain a lot
2924 * of duplicated information when later concatenated together into a single
2925 * binary. This algorithm ensures that each unique type is represented by single
2926 * BTF type descriptor, greatly reducing resulting size of BTF data.
2927 *
2928 * Compilation unit isolation and subsequent duplication of data is not the only
2929 * problem. The same type hierarchy (e.g., struct and all the type that struct
2930 * references) in different compilation units can be represented in BTF to
2931 * various degrees of completeness (or, rather, incompleteness) due to
2932 * struct/union forward declarations.
2933 *
2934 * Let's take a look at an example, that we'll use to better understand the
2935 * problem (and solution). Suppose we have two compilation units, each using
2936 * same `struct S`, but each of them having incomplete type information about
2937 * struct's fields:
2938 *
2939 * // CU #1:
2940 * struct S;
2941 * struct A {
2942 * int a;
2943 * struct A* self;
2944 * struct S* parent;
2945 * };
2946 * struct B;
2947 * struct S {
2948 * struct A* a_ptr;
2949 * struct B* b_ptr;
2950 * };
2951 *
2952 * // CU #2:
2953 * struct S;
2954 * struct A;
2955 * struct B {
2956 * int b;
2957 * struct B* self;
2958 * struct S* parent;
2959 * };
2960 * struct S {
2961 * struct A* a_ptr;
2962 * struct B* b_ptr;
2963 * };
2964 *
2965 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2966 * more), but will know the complete type information about `struct A`. While
2967 * for CU #2, it will know full type information about `struct B`, but will
2968 * only know about forward declaration of `struct A` (in BTF terms, it will
2969 * have `BTF_KIND_FWD` type descriptor with name `B`).
2970 *
2971 * This compilation unit isolation means that it's possible that there is no
2972 * single CU with complete type information describing structs `S`, `A`, and
2973 * `B`. Also, we might get tons of duplicated and redundant type information.
2974 *
2975 * Additional complication we need to keep in mind comes from the fact that
2976 * types, in general, can form graphs containing cycles, not just DAGs.
2977 *
2978 * While algorithm does deduplication, it also merges and resolves type
2979 * information (unless disabled throught `struct btf_opts`), whenever possible.
2980 * E.g., in the example above with two compilation units having partial type
2981 * information for structs `A` and `B`, the output of algorithm will emit
2982 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2983 * (as well as type information for `int` and pointers), as if they were defined
2984 * in a single compilation unit as:
2985 *
2986 * struct A {
2987 * int a;
2988 * struct A* self;
2989 * struct S* parent;
2990 * };
2991 * struct B {
2992 * int b;
2993 * struct B* self;
2994 * struct S* parent;
2995 * };
2996 * struct S {
2997 * struct A* a_ptr;
2998 * struct B* b_ptr;
2999 * };
3000 *
3001 * Algorithm summary
3002 * =================
3003 *
3004 * Algorithm completes its work in 6 separate passes:
3005 *
3006 * 1. Strings deduplication.
3007 * 2. Primitive types deduplication (int, enum, fwd).
3008 * 3. Struct/union types deduplication.
3009 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3010 * protos, and const/volatile/restrict modifiers).
3011 * 5. Types compaction.
3012 * 6. Types remapping.
3013 *
3014 * Algorithm determines canonical type descriptor, which is a single
3015 * representative type for each truly unique type. This canonical type is the
3016 * one that will go into final deduplicated BTF type information. For
3017 * struct/unions, it is also the type that algorithm will merge additional type
3018 * information into (while resolving FWDs), as it discovers it from data in
3019 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3020 * that type is canonical, or to some other type, if that type is equivalent
3021 * and was chosen as canonical representative. This mapping is stored in
3022 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3023 * FWD type got resolved to.
3024 *
3025 * To facilitate fast discovery of canonical types, we also maintain canonical
3026 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3027 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3028 * that match that signature. With sufficiently good choice of type signature
3029 * hashing function, we can limit number of canonical types for each unique type
3030 * signature to a very small number, allowing to find canonical type for any
3031 * duplicated type very quickly.
3032 *
3033 * Struct/union deduplication is the most critical part and algorithm for
3034 * deduplicating structs/unions is described in greater details in comments for
3035 * `btf_dedup_is_equiv` function.
3036 */
btf__dedup(struct btf * btf,const struct btf_dedup_opts * opts)3037 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3038 {
3039 struct btf_dedup *d;
3040 int err;
3041
3042 if (!OPTS_VALID(opts, btf_dedup_opts))
3043 return libbpf_err(-EINVAL);
3044
3045 d = btf_dedup_new(btf, opts);
3046 if (IS_ERR(d)) {
3047 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3048 return libbpf_err(-EINVAL);
3049 }
3050
3051 if (btf_ensure_modifiable(btf)) {
3052 err = -ENOMEM;
3053 goto done;
3054 }
3055
3056 err = btf_dedup_prep(d);
3057 if (err) {
3058 pr_debug("btf_dedup_prep failed:%d\n", err);
3059 goto done;
3060 }
3061 err = btf_dedup_strings(d);
3062 if (err < 0) {
3063 pr_debug("btf_dedup_strings failed:%d\n", err);
3064 goto done;
3065 }
3066 err = btf_dedup_prim_types(d);
3067 if (err < 0) {
3068 pr_debug("btf_dedup_prim_types failed:%d\n", err);
3069 goto done;
3070 }
3071 err = btf_dedup_struct_types(d);
3072 if (err < 0) {
3073 pr_debug("btf_dedup_struct_types failed:%d\n", err);
3074 goto done;
3075 }
3076 err = btf_dedup_ref_types(d);
3077 if (err < 0) {
3078 pr_debug("btf_dedup_ref_types failed:%d\n", err);
3079 goto done;
3080 }
3081 err = btf_dedup_compact_types(d);
3082 if (err < 0) {
3083 pr_debug("btf_dedup_compact_types failed:%d\n", err);
3084 goto done;
3085 }
3086 err = btf_dedup_remap_types(d);
3087 if (err < 0) {
3088 pr_debug("btf_dedup_remap_types failed:%d\n", err);
3089 goto done;
3090 }
3091
3092 done:
3093 btf_dedup_free(d);
3094 return libbpf_err(err);
3095 }
3096
3097 #define BTF_UNPROCESSED_ID ((__u32)-1)
3098 #define BTF_IN_PROGRESS_ID ((__u32)-2)
3099
3100 struct btf_dedup {
3101 /* .BTF section to be deduped in-place */
3102 struct btf *btf;
3103 /*
3104 * Optional .BTF.ext section. When provided, any strings referenced
3105 * from it will be taken into account when deduping strings
3106 */
3107 struct btf_ext *btf_ext;
3108 /*
3109 * This is a map from any type's signature hash to a list of possible
3110 * canonical representative type candidates. Hash collisions are
3111 * ignored, so even types of various kinds can share same list of
3112 * candidates, which is fine because we rely on subsequent
3113 * btf_xxx_equal() checks to authoritatively verify type equality.
3114 */
3115 struct hashmap *dedup_table;
3116 /* Canonical types map */
3117 __u32 *map;
3118 /* Hypothetical mapping, used during type graph equivalence checks */
3119 __u32 *hypot_map;
3120 __u32 *hypot_list;
3121 size_t hypot_cnt;
3122 size_t hypot_cap;
3123 /* Whether hypothetical mapping, if successful, would need to adjust
3124 * already canonicalized types (due to a new forward declaration to
3125 * concrete type resolution). In such case, during split BTF dedup
3126 * candidate type would still be considered as different, because base
3127 * BTF is considered to be immutable.
3128 */
3129 bool hypot_adjust_canon;
3130 /* Various option modifying behavior of algorithm */
3131 struct btf_dedup_opts opts;
3132 /* temporary strings deduplication state */
3133 struct strset *strs_set;
3134 };
3135
hash_combine(long h,long value)3136 static long hash_combine(long h, long value)
3137 {
3138 return h * 31 + value;
3139 }
3140
3141 #define for_each_dedup_cand(d, node, hash) \
3142 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3143
btf_dedup_table_add(struct btf_dedup * d,long hash,__u32 type_id)3144 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3145 {
3146 return hashmap__append(d->dedup_table,
3147 (void *)hash, (void *)(long)type_id);
3148 }
3149
btf_dedup_hypot_map_add(struct btf_dedup * d,__u32 from_id,__u32 to_id)3150 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3151 __u32 from_id, __u32 to_id)
3152 {
3153 if (d->hypot_cnt == d->hypot_cap) {
3154 __u32 *new_list;
3155
3156 d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3157 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3158 if (!new_list)
3159 return -ENOMEM;
3160 d->hypot_list = new_list;
3161 }
3162 d->hypot_list[d->hypot_cnt++] = from_id;
3163 d->hypot_map[from_id] = to_id;
3164 return 0;
3165 }
3166
btf_dedup_clear_hypot_map(struct btf_dedup * d)3167 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3168 {
3169 int i;
3170
3171 for (i = 0; i < d->hypot_cnt; i++)
3172 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3173 d->hypot_cnt = 0;
3174 d->hypot_adjust_canon = false;
3175 }
3176
btf_dedup_free(struct btf_dedup * d)3177 static void btf_dedup_free(struct btf_dedup *d)
3178 {
3179 hashmap__free(d->dedup_table);
3180 d->dedup_table = NULL;
3181
3182 free(d->map);
3183 d->map = NULL;
3184
3185 free(d->hypot_map);
3186 d->hypot_map = NULL;
3187
3188 free(d->hypot_list);
3189 d->hypot_list = NULL;
3190
3191 free(d);
3192 }
3193
btf_dedup_identity_hash_fn(const void * key,void * ctx)3194 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3195 {
3196 return (size_t)key;
3197 }
3198
btf_dedup_collision_hash_fn(const void * key,void * ctx)3199 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3200 {
3201 return 0;
3202 }
3203
btf_dedup_equal_fn(const void * k1,const void * k2,void * ctx)3204 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3205 {
3206 return k1 == k2;
3207 }
3208
btf_dedup_new(struct btf * btf,const struct btf_dedup_opts * opts)3209 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3210 {
3211 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3212 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3213 int i, err = 0, type_cnt;
3214
3215 if (!d)
3216 return ERR_PTR(-ENOMEM);
3217
3218 if (OPTS_GET(opts, force_collisions, false))
3219 hash_fn = btf_dedup_collision_hash_fn;
3220
3221 d->btf = btf;
3222 d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3223
3224 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3225 if (IS_ERR(d->dedup_table)) {
3226 err = PTR_ERR(d->dedup_table);
3227 d->dedup_table = NULL;
3228 goto done;
3229 }
3230
3231 type_cnt = btf__type_cnt(btf);
3232 d->map = malloc(sizeof(__u32) * type_cnt);
3233 if (!d->map) {
3234 err = -ENOMEM;
3235 goto done;
3236 }
3237 /* special BTF "void" type is made canonical immediately */
3238 d->map[0] = 0;
3239 for (i = 1; i < type_cnt; i++) {
3240 struct btf_type *t = btf_type_by_id(d->btf, i);
3241
3242 /* VAR and DATASEC are never deduped and are self-canonical */
3243 if (btf_is_var(t) || btf_is_datasec(t))
3244 d->map[i] = i;
3245 else
3246 d->map[i] = BTF_UNPROCESSED_ID;
3247 }
3248
3249 d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3250 if (!d->hypot_map) {
3251 err = -ENOMEM;
3252 goto done;
3253 }
3254 for (i = 0; i < type_cnt; i++)
3255 d->hypot_map[i] = BTF_UNPROCESSED_ID;
3256
3257 done:
3258 if (err) {
3259 btf_dedup_free(d);
3260 return ERR_PTR(err);
3261 }
3262
3263 return d;
3264 }
3265
3266 /*
3267 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3268 * string and pass pointer to it to a provided callback `fn`.
3269 */
btf_for_each_str_off(struct btf_dedup * d,str_off_visit_fn fn,void * ctx)3270 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3271 {
3272 int i, r;
3273
3274 for (i = 0; i < d->btf->nr_types; i++) {
3275 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3276
3277 r = btf_type_visit_str_offs(t, fn, ctx);
3278 if (r)
3279 return r;
3280 }
3281
3282 if (!d->btf_ext)
3283 return 0;
3284
3285 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3286 if (r)
3287 return r;
3288
3289 return 0;
3290 }
3291
strs_dedup_remap_str_off(__u32 * str_off_ptr,void * ctx)3292 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3293 {
3294 struct btf_dedup *d = ctx;
3295 __u32 str_off = *str_off_ptr;
3296 const char *s;
3297 int off, err;
3298
3299 /* don't touch empty string or string in main BTF */
3300 if (str_off == 0 || str_off < d->btf->start_str_off)
3301 return 0;
3302
3303 s = btf__str_by_offset(d->btf, str_off);
3304 if (d->btf->base_btf) {
3305 err = btf__find_str(d->btf->base_btf, s);
3306 if (err >= 0) {
3307 *str_off_ptr = err;
3308 return 0;
3309 }
3310 if (err != -ENOENT)
3311 return err;
3312 }
3313
3314 off = strset__add_str(d->strs_set, s);
3315 if (off < 0)
3316 return off;
3317
3318 *str_off_ptr = d->btf->start_str_off + off;
3319 return 0;
3320 }
3321
3322 /*
3323 * Dedup string and filter out those that are not referenced from either .BTF
3324 * or .BTF.ext (if provided) sections.
3325 *
3326 * This is done by building index of all strings in BTF's string section,
3327 * then iterating over all entities that can reference strings (e.g., type
3328 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3329 * strings as used. After that all used strings are deduped and compacted into
3330 * sequential blob of memory and new offsets are calculated. Then all the string
3331 * references are iterated again and rewritten using new offsets.
3332 */
btf_dedup_strings(struct btf_dedup * d)3333 static int btf_dedup_strings(struct btf_dedup *d)
3334 {
3335 int err;
3336
3337 if (d->btf->strs_deduped)
3338 return 0;
3339
3340 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3341 if (IS_ERR(d->strs_set)) {
3342 err = PTR_ERR(d->strs_set);
3343 goto err_out;
3344 }
3345
3346 if (!d->btf->base_btf) {
3347 /* insert empty string; we won't be looking it up during strings
3348 * dedup, but it's good to have it for generic BTF string lookups
3349 */
3350 err = strset__add_str(d->strs_set, "");
3351 if (err < 0)
3352 goto err_out;
3353 }
3354
3355 /* remap string offsets */
3356 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3357 if (err)
3358 goto err_out;
3359
3360 /* replace BTF string data and hash with deduped ones */
3361 strset__free(d->btf->strs_set);
3362 d->btf->hdr->str_len = strset__data_size(d->strs_set);
3363 d->btf->strs_set = d->strs_set;
3364 d->strs_set = NULL;
3365 d->btf->strs_deduped = true;
3366 return 0;
3367
3368 err_out:
3369 strset__free(d->strs_set);
3370 d->strs_set = NULL;
3371
3372 return err;
3373 }
3374
btf_hash_common(struct btf_type * t)3375 static long btf_hash_common(struct btf_type *t)
3376 {
3377 long h;
3378
3379 h = hash_combine(0, t->name_off);
3380 h = hash_combine(h, t->info);
3381 h = hash_combine(h, t->size);
3382 return h;
3383 }
3384
btf_equal_common(struct btf_type * t1,struct btf_type * t2)3385 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3386 {
3387 return t1->name_off == t2->name_off &&
3388 t1->info == t2->info &&
3389 t1->size == t2->size;
3390 }
3391
3392 /* Calculate type signature hash of INT or TAG. */
btf_hash_int_decl_tag(struct btf_type * t)3393 static long btf_hash_int_decl_tag(struct btf_type *t)
3394 {
3395 __u32 info = *(__u32 *)(t + 1);
3396 long h;
3397
3398 h = btf_hash_common(t);
3399 h = hash_combine(h, info);
3400 return h;
3401 }
3402
3403 /* Check structural equality of two INTs or TAGs. */
btf_equal_int_tag(struct btf_type * t1,struct btf_type * t2)3404 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3405 {
3406 __u32 info1, info2;
3407
3408 if (!btf_equal_common(t1, t2))
3409 return false;
3410 info1 = *(__u32 *)(t1 + 1);
3411 info2 = *(__u32 *)(t2 + 1);
3412 return info1 == info2;
3413 }
3414
3415 /* Calculate type signature hash of ENUM/ENUM64. */
btf_hash_enum(struct btf_type * t)3416 static long btf_hash_enum(struct btf_type *t)
3417 {
3418 long h;
3419
3420 /* don't hash vlen and enum members to support enum fwd resolving */
3421 h = hash_combine(0, t->name_off);
3422 h = hash_combine(h, t->info & ~0xffff);
3423 h = hash_combine(h, t->size);
3424 return h;
3425 }
3426
3427 /* Check structural equality of two ENUMs. */
btf_equal_enum(struct btf_type * t1,struct btf_type * t2)3428 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3429 {
3430 const struct btf_enum *m1, *m2;
3431 __u16 vlen;
3432 int i;
3433
3434 if (!btf_equal_common(t1, t2))
3435 return false;
3436
3437 vlen = btf_vlen(t1);
3438 m1 = btf_enum(t1);
3439 m2 = btf_enum(t2);
3440 for (i = 0; i < vlen; i++) {
3441 if (m1->name_off != m2->name_off || m1->val != m2->val)
3442 return false;
3443 m1++;
3444 m2++;
3445 }
3446 return true;
3447 }
3448
btf_equal_enum64(struct btf_type * t1,struct btf_type * t2)3449 static bool btf_equal_enum64(struct btf_type *t1, struct btf_type *t2)
3450 {
3451 const struct btf_enum64 *m1, *m2;
3452 __u16 vlen;
3453 int i;
3454
3455 if (!btf_equal_common(t1, t2))
3456 return false;
3457
3458 vlen = btf_vlen(t1);
3459 m1 = btf_enum64(t1);
3460 m2 = btf_enum64(t2);
3461 for (i = 0; i < vlen; i++) {
3462 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3463 m1->val_hi32 != m2->val_hi32)
3464 return false;
3465 m1++;
3466 m2++;
3467 }
3468 return true;
3469 }
3470
btf_is_enum_fwd(struct btf_type * t)3471 static inline bool btf_is_enum_fwd(struct btf_type *t)
3472 {
3473 return btf_is_any_enum(t) && btf_vlen(t) == 0;
3474 }
3475
btf_compat_enum(struct btf_type * t1,struct btf_type * t2)3476 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3477 {
3478 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3479 return btf_equal_enum(t1, t2);
3480 /* ignore vlen when comparing */
3481 return t1->name_off == t2->name_off &&
3482 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3483 t1->size == t2->size;
3484 }
3485
btf_compat_enum64(struct btf_type * t1,struct btf_type * t2)3486 static bool btf_compat_enum64(struct btf_type *t1, struct btf_type *t2)
3487 {
3488 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3489 return btf_equal_enum64(t1, t2);
3490
3491 /* ignore vlen when comparing */
3492 return t1->name_off == t2->name_off &&
3493 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3494 t1->size == t2->size;
3495 }
3496
3497 /*
3498 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3499 * as referenced type IDs equivalence is established separately during type
3500 * graph equivalence check algorithm.
3501 */
btf_hash_struct(struct btf_type * t)3502 static long btf_hash_struct(struct btf_type *t)
3503 {
3504 const struct btf_member *member = btf_members(t);
3505 __u32 vlen = btf_vlen(t);
3506 long h = btf_hash_common(t);
3507 int i;
3508
3509 for (i = 0; i < vlen; i++) {
3510 h = hash_combine(h, member->name_off);
3511 h = hash_combine(h, member->offset);
3512 /* no hashing of referenced type ID, it can be unresolved yet */
3513 member++;
3514 }
3515 return h;
3516 }
3517
3518 /*
3519 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3520 * type IDs. This check is performed during type graph equivalence check and
3521 * referenced types equivalence is checked separately.
3522 */
btf_shallow_equal_struct(struct btf_type * t1,struct btf_type * t2)3523 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3524 {
3525 const struct btf_member *m1, *m2;
3526 __u16 vlen;
3527 int i;
3528
3529 if (!btf_equal_common(t1, t2))
3530 return false;
3531
3532 vlen = btf_vlen(t1);
3533 m1 = btf_members(t1);
3534 m2 = btf_members(t2);
3535 for (i = 0; i < vlen; i++) {
3536 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3537 return false;
3538 m1++;
3539 m2++;
3540 }
3541 return true;
3542 }
3543
3544 /*
3545 * Calculate type signature hash of ARRAY, including referenced type IDs,
3546 * under assumption that they were already resolved to canonical type IDs and
3547 * are not going to change.
3548 */
btf_hash_array(struct btf_type * t)3549 static long btf_hash_array(struct btf_type *t)
3550 {
3551 const struct btf_array *info = btf_array(t);
3552 long h = btf_hash_common(t);
3553
3554 h = hash_combine(h, info->type);
3555 h = hash_combine(h, info->index_type);
3556 h = hash_combine(h, info->nelems);
3557 return h;
3558 }
3559
3560 /*
3561 * Check exact equality of two ARRAYs, taking into account referenced
3562 * type IDs, under assumption that they were already resolved to canonical
3563 * type IDs and are not going to change.
3564 * This function is called during reference types deduplication to compare
3565 * ARRAY to potential canonical representative.
3566 */
btf_equal_array(struct btf_type * t1,struct btf_type * t2)3567 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3568 {
3569 const struct btf_array *info1, *info2;
3570
3571 if (!btf_equal_common(t1, t2))
3572 return false;
3573
3574 info1 = btf_array(t1);
3575 info2 = btf_array(t2);
3576 return info1->type == info2->type &&
3577 info1->index_type == info2->index_type &&
3578 info1->nelems == info2->nelems;
3579 }
3580
3581 /*
3582 * Check structural compatibility of two ARRAYs, ignoring referenced type
3583 * IDs. This check is performed during type graph equivalence check and
3584 * referenced types equivalence is checked separately.
3585 */
btf_compat_array(struct btf_type * t1,struct btf_type * t2)3586 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3587 {
3588 if (!btf_equal_common(t1, t2))
3589 return false;
3590
3591 return btf_array(t1)->nelems == btf_array(t2)->nelems;
3592 }
3593
3594 /*
3595 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3596 * under assumption that they were already resolved to canonical type IDs and
3597 * are not going to change.
3598 */
btf_hash_fnproto(struct btf_type * t)3599 static long btf_hash_fnproto(struct btf_type *t)
3600 {
3601 const struct btf_param *member = btf_params(t);
3602 __u16 vlen = btf_vlen(t);
3603 long h = btf_hash_common(t);
3604 int i;
3605
3606 for (i = 0; i < vlen; i++) {
3607 h = hash_combine(h, member->name_off);
3608 h = hash_combine(h, member->type);
3609 member++;
3610 }
3611 return h;
3612 }
3613
3614 /*
3615 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3616 * type IDs, under assumption that they were already resolved to canonical
3617 * type IDs and are not going to change.
3618 * This function is called during reference types deduplication to compare
3619 * FUNC_PROTO to potential canonical representative.
3620 */
btf_equal_fnproto(struct btf_type * t1,struct btf_type * t2)3621 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3622 {
3623 const struct btf_param *m1, *m2;
3624 __u16 vlen;
3625 int i;
3626
3627 if (!btf_equal_common(t1, t2))
3628 return false;
3629
3630 vlen = btf_vlen(t1);
3631 m1 = btf_params(t1);
3632 m2 = btf_params(t2);
3633 for (i = 0; i < vlen; i++) {
3634 if (m1->name_off != m2->name_off || m1->type != m2->type)
3635 return false;
3636 m1++;
3637 m2++;
3638 }
3639 return true;
3640 }
3641
3642 /*
3643 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3644 * IDs. This check is performed during type graph equivalence check and
3645 * referenced types equivalence is checked separately.
3646 */
btf_compat_fnproto(struct btf_type * t1,struct btf_type * t2)3647 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3648 {
3649 const struct btf_param *m1, *m2;
3650 __u16 vlen;
3651 int i;
3652
3653 /* skip return type ID */
3654 if (t1->name_off != t2->name_off || t1->info != t2->info)
3655 return false;
3656
3657 vlen = btf_vlen(t1);
3658 m1 = btf_params(t1);
3659 m2 = btf_params(t2);
3660 for (i = 0; i < vlen; i++) {
3661 if (m1->name_off != m2->name_off)
3662 return false;
3663 m1++;
3664 m2++;
3665 }
3666 return true;
3667 }
3668
3669 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3670 * types and initializing the rest of the state (canonical type mapping) for
3671 * the fixed base BTF part.
3672 */
btf_dedup_prep(struct btf_dedup * d)3673 static int btf_dedup_prep(struct btf_dedup *d)
3674 {
3675 struct btf_type *t;
3676 int type_id;
3677 long h;
3678
3679 if (!d->btf->base_btf)
3680 return 0;
3681
3682 for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3683 t = btf_type_by_id(d->btf, type_id);
3684
3685 /* all base BTF types are self-canonical by definition */
3686 d->map[type_id] = type_id;
3687
3688 switch (btf_kind(t)) {
3689 case BTF_KIND_VAR:
3690 case BTF_KIND_DATASEC:
3691 /* VAR and DATASEC are never hash/deduplicated */
3692 continue;
3693 case BTF_KIND_CONST:
3694 case BTF_KIND_VOLATILE:
3695 case BTF_KIND_RESTRICT:
3696 case BTF_KIND_PTR:
3697 case BTF_KIND_FWD:
3698 case BTF_KIND_TYPEDEF:
3699 case BTF_KIND_FUNC:
3700 case BTF_KIND_FLOAT:
3701 case BTF_KIND_TYPE_TAG:
3702 h = btf_hash_common(t);
3703 break;
3704 case BTF_KIND_INT:
3705 case BTF_KIND_DECL_TAG:
3706 h = btf_hash_int_decl_tag(t);
3707 break;
3708 case BTF_KIND_ENUM:
3709 case BTF_KIND_ENUM64:
3710 h = btf_hash_enum(t);
3711 break;
3712 case BTF_KIND_STRUCT:
3713 case BTF_KIND_UNION:
3714 h = btf_hash_struct(t);
3715 break;
3716 case BTF_KIND_ARRAY:
3717 h = btf_hash_array(t);
3718 break;
3719 case BTF_KIND_FUNC_PROTO:
3720 h = btf_hash_fnproto(t);
3721 break;
3722 default:
3723 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3724 return -EINVAL;
3725 }
3726 if (btf_dedup_table_add(d, h, type_id))
3727 return -ENOMEM;
3728 }
3729
3730 return 0;
3731 }
3732
3733 /*
3734 * Deduplicate primitive types, that can't reference other types, by calculating
3735 * their type signature hash and comparing them with any possible canonical
3736 * candidate. If no canonical candidate matches, type itself is marked as
3737 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3738 */
btf_dedup_prim_type(struct btf_dedup * d,__u32 type_id)3739 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3740 {
3741 struct btf_type *t = btf_type_by_id(d->btf, type_id);
3742 struct hashmap_entry *hash_entry;
3743 struct btf_type *cand;
3744 /* if we don't find equivalent type, then we are canonical */
3745 __u32 new_id = type_id;
3746 __u32 cand_id;
3747 long h;
3748
3749 switch (btf_kind(t)) {
3750 case BTF_KIND_CONST:
3751 case BTF_KIND_VOLATILE:
3752 case BTF_KIND_RESTRICT:
3753 case BTF_KIND_PTR:
3754 case BTF_KIND_TYPEDEF:
3755 case BTF_KIND_ARRAY:
3756 case BTF_KIND_STRUCT:
3757 case BTF_KIND_UNION:
3758 case BTF_KIND_FUNC:
3759 case BTF_KIND_FUNC_PROTO:
3760 case BTF_KIND_VAR:
3761 case BTF_KIND_DATASEC:
3762 case BTF_KIND_DECL_TAG:
3763 case BTF_KIND_TYPE_TAG:
3764 return 0;
3765
3766 case BTF_KIND_INT:
3767 h = btf_hash_int_decl_tag(t);
3768 for_each_dedup_cand(d, hash_entry, h) {
3769 cand_id = (__u32)(long)hash_entry->value;
3770 cand = btf_type_by_id(d->btf, cand_id);
3771 if (btf_equal_int_tag(t, cand)) {
3772 new_id = cand_id;
3773 break;
3774 }
3775 }
3776 break;
3777
3778 case BTF_KIND_ENUM:
3779 h = btf_hash_enum(t);
3780 for_each_dedup_cand(d, hash_entry, h) {
3781 cand_id = (__u32)(long)hash_entry->value;
3782 cand = btf_type_by_id(d->btf, cand_id);
3783 if (btf_equal_enum(t, cand)) {
3784 new_id = cand_id;
3785 break;
3786 }
3787 if (btf_compat_enum(t, cand)) {
3788 if (btf_is_enum_fwd(t)) {
3789 /* resolve fwd to full enum */
3790 new_id = cand_id;
3791 break;
3792 }
3793 /* resolve canonical enum fwd to full enum */
3794 d->map[cand_id] = type_id;
3795 }
3796 }
3797 break;
3798
3799 case BTF_KIND_ENUM64:
3800 h = btf_hash_enum(t);
3801 for_each_dedup_cand(d, hash_entry, h) {
3802 cand_id = (__u32)(long)hash_entry->value;
3803 cand = btf_type_by_id(d->btf, cand_id);
3804 if (btf_equal_enum64(t, cand)) {
3805 new_id = cand_id;
3806 break;
3807 }
3808 if (btf_compat_enum64(t, cand)) {
3809 if (btf_is_enum_fwd(t)) {
3810 /* resolve fwd to full enum */
3811 new_id = cand_id;
3812 break;
3813 }
3814 /* resolve canonical enum fwd to full enum */
3815 d->map[cand_id] = type_id;
3816 }
3817 }
3818 break;
3819
3820 case BTF_KIND_FWD:
3821 case BTF_KIND_FLOAT:
3822 h = btf_hash_common(t);
3823 for_each_dedup_cand(d, hash_entry, h) {
3824 cand_id = (__u32)(long)hash_entry->value;
3825 cand = btf_type_by_id(d->btf, cand_id);
3826 if (btf_equal_common(t, cand)) {
3827 new_id = cand_id;
3828 break;
3829 }
3830 }
3831 break;
3832
3833 default:
3834 return -EINVAL;
3835 }
3836
3837 d->map[type_id] = new_id;
3838 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3839 return -ENOMEM;
3840
3841 return 0;
3842 }
3843
btf_dedup_prim_types(struct btf_dedup * d)3844 static int btf_dedup_prim_types(struct btf_dedup *d)
3845 {
3846 int i, err;
3847
3848 for (i = 0; i < d->btf->nr_types; i++) {
3849 err = btf_dedup_prim_type(d, d->btf->start_id + i);
3850 if (err)
3851 return err;
3852 }
3853 return 0;
3854 }
3855
3856 /*
3857 * Check whether type is already mapped into canonical one (could be to itself).
3858 */
is_type_mapped(struct btf_dedup * d,uint32_t type_id)3859 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3860 {
3861 return d->map[type_id] <= BTF_MAX_NR_TYPES;
3862 }
3863
3864 /*
3865 * Resolve type ID into its canonical type ID, if any; otherwise return original
3866 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3867 * STRUCT/UNION link and resolve it into canonical type ID as well.
3868 */
resolve_type_id(struct btf_dedup * d,__u32 type_id)3869 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3870 {
3871 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3872 type_id = d->map[type_id];
3873 return type_id;
3874 }
3875
3876 /*
3877 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3878 * type ID.
3879 */
resolve_fwd_id(struct btf_dedup * d,uint32_t type_id)3880 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3881 {
3882 __u32 orig_type_id = type_id;
3883
3884 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3885 return type_id;
3886
3887 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3888 type_id = d->map[type_id];
3889
3890 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3891 return type_id;
3892
3893 return orig_type_id;
3894 }
3895
3896
btf_fwd_kind(struct btf_type * t)3897 static inline __u16 btf_fwd_kind(struct btf_type *t)
3898 {
3899 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3900 }
3901
3902 /* Check if given two types are identical ARRAY definitions */
btf_dedup_identical_arrays(struct btf_dedup * d,__u32 id1,__u32 id2)3903 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3904 {
3905 struct btf_type *t1, *t2;
3906
3907 t1 = btf_type_by_id(d->btf, id1);
3908 t2 = btf_type_by_id(d->btf, id2);
3909 if (!btf_is_array(t1) || !btf_is_array(t2))
3910 return false;
3911
3912 return btf_equal_array(t1, t2);
3913 }
3914
3915 /* Check if given two types are identical STRUCT/UNION definitions */
btf_dedup_identical_structs(struct btf_dedup * d,__u32 id1,__u32 id2)3916 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3917 {
3918 const struct btf_member *m1, *m2;
3919 struct btf_type *t1, *t2;
3920 int n, i;
3921
3922 t1 = btf_type_by_id(d->btf, id1);
3923 t2 = btf_type_by_id(d->btf, id2);
3924
3925 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3926 return false;
3927
3928 if (!btf_shallow_equal_struct(t1, t2))
3929 return false;
3930
3931 m1 = btf_members(t1);
3932 m2 = btf_members(t2);
3933 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3934 if (m1->type != m2->type &&
3935 !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
3936 !btf_dedup_identical_structs(d, m1->type, m2->type))
3937 return false;
3938 }
3939 return true;
3940 }
3941
3942 /*
3943 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3944 * call it "candidate graph" in this description for brevity) to a type graph
3945 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3946 * here, though keep in mind that not all types in canonical graph are
3947 * necessarily canonical representatives themselves, some of them might be
3948 * duplicates or its uniqueness might not have been established yet).
3949 * Returns:
3950 * - >0, if type graphs are equivalent;
3951 * - 0, if not equivalent;
3952 * - <0, on error.
3953 *
3954 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3955 * equivalence of BTF types at each step. If at any point BTF types in candidate
3956 * and canonical graphs are not compatible structurally, whole graphs are
3957 * incompatible. If types are structurally equivalent (i.e., all information
3958 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3959 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3960 * If a type references other types, then those referenced types are checked
3961 * for equivalence recursively.
3962 *
3963 * During DFS traversal, if we find that for current `canon_id` type we
3964 * already have some mapping in hypothetical map, we check for two possible
3965 * situations:
3966 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3967 * happen when type graphs have cycles. In this case we assume those two
3968 * types are equivalent.
3969 * - `canon_id` is mapped to different type. This is contradiction in our
3970 * hypothetical mapping, because same graph in canonical graph corresponds
3971 * to two different types in candidate graph, which for equivalent type
3972 * graphs shouldn't happen. This condition terminates equivalence check
3973 * with negative result.
3974 *
3975 * If type graphs traversal exhausts types to check and find no contradiction,
3976 * then type graphs are equivalent.
3977 *
3978 * When checking types for equivalence, there is one special case: FWD types.
3979 * If FWD type resolution is allowed and one of the types (either from canonical
3980 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3981 * flag) and their names match, hypothetical mapping is updated to point from
3982 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3983 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3984 *
3985 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3986 * if there are two exactly named (or anonymous) structs/unions that are
3987 * compatible structurally, one of which has FWD field, while other is concrete
3988 * STRUCT/UNION, but according to C sources they are different structs/unions
3989 * that are referencing different types with the same name. This is extremely
3990 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3991 * this logic is causing problems.
3992 *
3993 * Doing FWD resolution means that both candidate and/or canonical graphs can
3994 * consists of portions of the graph that come from multiple compilation units.
3995 * This is due to the fact that types within single compilation unit are always
3996 * deduplicated and FWDs are already resolved, if referenced struct/union
3997 * definiton is available. So, if we had unresolved FWD and found corresponding
3998 * STRUCT/UNION, they will be from different compilation units. This
3999 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4000 * type graph will likely have at least two different BTF types that describe
4001 * same type (e.g., most probably there will be two different BTF types for the
4002 * same 'int' primitive type) and could even have "overlapping" parts of type
4003 * graph that describe same subset of types.
4004 *
4005 * This in turn means that our assumption that each type in canonical graph
4006 * must correspond to exactly one type in candidate graph might not hold
4007 * anymore and will make it harder to detect contradictions using hypothetical
4008 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4009 * resolution only in canonical graph. FWDs in candidate graphs are never
4010 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4011 * that can occur:
4012 * - Both types in canonical and candidate graphs are FWDs. If they are
4013 * structurally equivalent, then they can either be both resolved to the
4014 * same STRUCT/UNION or not resolved at all. In both cases they are
4015 * equivalent and there is no need to resolve FWD on candidate side.
4016 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4017 * so nothing to resolve as well, algorithm will check equivalence anyway.
4018 * - Type in canonical graph is FWD, while type in candidate is concrete
4019 * STRUCT/UNION. In this case candidate graph comes from single compilation
4020 * unit, so there is exactly one BTF type for each unique C type. After
4021 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
4022 * in canonical graph mapping to single BTF type in candidate graph, but
4023 * because hypothetical mapping maps from canonical to candidate types, it's
4024 * alright, and we still maintain the property of having single `canon_id`
4025 * mapping to single `cand_id` (there could be two different `canon_id`
4026 * mapped to the same `cand_id`, but it's not contradictory).
4027 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4028 * graph is FWD. In this case we are just going to check compatibility of
4029 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4030 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4031 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4032 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4033 * canonical graph.
4034 */
btf_dedup_is_equiv(struct btf_dedup * d,__u32 cand_id,__u32 canon_id)4035 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4036 __u32 canon_id)
4037 {
4038 struct btf_type *cand_type;
4039 struct btf_type *canon_type;
4040 __u32 hypot_type_id;
4041 __u16 cand_kind;
4042 __u16 canon_kind;
4043 int i, eq;
4044
4045 /* if both resolve to the same canonical, they must be equivalent */
4046 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4047 return 1;
4048
4049 canon_id = resolve_fwd_id(d, canon_id);
4050
4051 hypot_type_id = d->hypot_map[canon_id];
4052 if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4053 if (hypot_type_id == cand_id)
4054 return 1;
4055 /* In some cases compiler will generate different DWARF types
4056 * for *identical* array type definitions and use them for
4057 * different fields within the *same* struct. This breaks type
4058 * equivalence check, which makes an assumption that candidate
4059 * types sub-graph has a consistent and deduped-by-compiler
4060 * types within a single CU. So work around that by explicitly
4061 * allowing identical array types here.
4062 */
4063 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4064 return 1;
4065 /* It turns out that similar situation can happen with
4066 * struct/union sometimes, sigh... Handle the case where
4067 * structs/unions are exactly the same, down to the referenced
4068 * type IDs. Anything more complicated (e.g., if referenced
4069 * types are different, but equivalent) is *way more*
4070 * complicated and requires a many-to-many equivalence mapping.
4071 */
4072 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4073 return 1;
4074 return 0;
4075 }
4076
4077 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4078 return -ENOMEM;
4079
4080 cand_type = btf_type_by_id(d->btf, cand_id);
4081 canon_type = btf_type_by_id(d->btf, canon_id);
4082 cand_kind = btf_kind(cand_type);
4083 canon_kind = btf_kind(canon_type);
4084
4085 if (cand_type->name_off != canon_type->name_off)
4086 return 0;
4087
4088 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
4089 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4090 && cand_kind != canon_kind) {
4091 __u16 real_kind;
4092 __u16 fwd_kind;
4093
4094 if (cand_kind == BTF_KIND_FWD) {
4095 real_kind = canon_kind;
4096 fwd_kind = btf_fwd_kind(cand_type);
4097 } else {
4098 real_kind = cand_kind;
4099 fwd_kind = btf_fwd_kind(canon_type);
4100 /* we'd need to resolve base FWD to STRUCT/UNION */
4101 if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4102 d->hypot_adjust_canon = true;
4103 }
4104 return fwd_kind == real_kind;
4105 }
4106
4107 if (cand_kind != canon_kind)
4108 return 0;
4109
4110 switch (cand_kind) {
4111 case BTF_KIND_INT:
4112 return btf_equal_int_tag(cand_type, canon_type);
4113
4114 case BTF_KIND_ENUM:
4115 return btf_compat_enum(cand_type, canon_type);
4116
4117 case BTF_KIND_ENUM64:
4118 return btf_compat_enum64(cand_type, canon_type);
4119
4120 case BTF_KIND_FWD:
4121 case BTF_KIND_FLOAT:
4122 return btf_equal_common(cand_type, canon_type);
4123
4124 case BTF_KIND_CONST:
4125 case BTF_KIND_VOLATILE:
4126 case BTF_KIND_RESTRICT:
4127 case BTF_KIND_PTR:
4128 case BTF_KIND_TYPEDEF:
4129 case BTF_KIND_FUNC:
4130 case BTF_KIND_TYPE_TAG:
4131 if (cand_type->info != canon_type->info)
4132 return 0;
4133 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4134
4135 case BTF_KIND_ARRAY: {
4136 const struct btf_array *cand_arr, *canon_arr;
4137
4138 if (!btf_compat_array(cand_type, canon_type))
4139 return 0;
4140 cand_arr = btf_array(cand_type);
4141 canon_arr = btf_array(canon_type);
4142 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4143 if (eq <= 0)
4144 return eq;
4145 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4146 }
4147
4148 case BTF_KIND_STRUCT:
4149 case BTF_KIND_UNION: {
4150 const struct btf_member *cand_m, *canon_m;
4151 __u16 vlen;
4152
4153 if (!btf_shallow_equal_struct(cand_type, canon_type))
4154 return 0;
4155 vlen = btf_vlen(cand_type);
4156 cand_m = btf_members(cand_type);
4157 canon_m = btf_members(canon_type);
4158 for (i = 0; i < vlen; i++) {
4159 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4160 if (eq <= 0)
4161 return eq;
4162 cand_m++;
4163 canon_m++;
4164 }
4165
4166 return 1;
4167 }
4168
4169 case BTF_KIND_FUNC_PROTO: {
4170 const struct btf_param *cand_p, *canon_p;
4171 __u16 vlen;
4172
4173 if (!btf_compat_fnproto(cand_type, canon_type))
4174 return 0;
4175 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4176 if (eq <= 0)
4177 return eq;
4178 vlen = btf_vlen(cand_type);
4179 cand_p = btf_params(cand_type);
4180 canon_p = btf_params(canon_type);
4181 for (i = 0; i < vlen; i++) {
4182 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4183 if (eq <= 0)
4184 return eq;
4185 cand_p++;
4186 canon_p++;
4187 }
4188 return 1;
4189 }
4190
4191 default:
4192 return -EINVAL;
4193 }
4194 return 0;
4195 }
4196
4197 /*
4198 * Use hypothetical mapping, produced by successful type graph equivalence
4199 * check, to augment existing struct/union canonical mapping, where possible.
4200 *
4201 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4202 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4203 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4204 * we are recording the mapping anyway. As opposed to carefulness required
4205 * for struct/union correspondence mapping (described below), for FWD resolution
4206 * it's not important, as by the time that FWD type (reference type) will be
4207 * deduplicated all structs/unions will be deduped already anyway.
4208 *
4209 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4210 * not required for correctness. It needs to be done carefully to ensure that
4211 * struct/union from candidate's type graph is not mapped into corresponding
4212 * struct/union from canonical type graph that itself hasn't been resolved into
4213 * canonical representative. The only guarantee we have is that canonical
4214 * struct/union was determined as canonical and that won't change. But any
4215 * types referenced through that struct/union fields could have been not yet
4216 * resolved, so in case like that it's too early to establish any kind of
4217 * correspondence between structs/unions.
4218 *
4219 * No canonical correspondence is derived for primitive types (they are already
4220 * deduplicated completely already anyway) or reference types (they rely on
4221 * stability of struct/union canonical relationship for equivalence checks).
4222 */
btf_dedup_merge_hypot_map(struct btf_dedup * d)4223 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4224 {
4225 __u32 canon_type_id, targ_type_id;
4226 __u16 t_kind, c_kind;
4227 __u32 t_id, c_id;
4228 int i;
4229
4230 for (i = 0; i < d->hypot_cnt; i++) {
4231 canon_type_id = d->hypot_list[i];
4232 targ_type_id = d->hypot_map[canon_type_id];
4233 t_id = resolve_type_id(d, targ_type_id);
4234 c_id = resolve_type_id(d, canon_type_id);
4235 t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4236 c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4237 /*
4238 * Resolve FWD into STRUCT/UNION.
4239 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4240 * mapped to canonical representative (as opposed to
4241 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4242 * eventually that struct is going to be mapped and all resolved
4243 * FWDs will automatically resolve to correct canonical
4244 * representative. This will happen before ref type deduping,
4245 * which critically depends on stability of these mapping. This
4246 * stability is not a requirement for STRUCT/UNION equivalence
4247 * checks, though.
4248 */
4249
4250 /* if it's the split BTF case, we still need to point base FWD
4251 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4252 * will be resolved against base FWD. If we don't point base
4253 * canonical FWD to the resolved STRUCT/UNION, then all the
4254 * FWDs in split BTF won't be correctly resolved to a proper
4255 * STRUCT/UNION.
4256 */
4257 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4258 d->map[c_id] = t_id;
4259
4260 /* if graph equivalence determined that we'd need to adjust
4261 * base canonical types, then we need to only point base FWDs
4262 * to STRUCTs/UNIONs and do no more modifications. For all
4263 * other purposes the type graphs were not equivalent.
4264 */
4265 if (d->hypot_adjust_canon)
4266 continue;
4267
4268 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4269 d->map[t_id] = c_id;
4270
4271 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4272 c_kind != BTF_KIND_FWD &&
4273 is_type_mapped(d, c_id) &&
4274 !is_type_mapped(d, t_id)) {
4275 /*
4276 * as a perf optimization, we can map struct/union
4277 * that's part of type graph we just verified for
4278 * equivalence. We can do that for struct/union that has
4279 * canonical representative only, though.
4280 */
4281 d->map[t_id] = c_id;
4282 }
4283 }
4284 }
4285
4286 /*
4287 * Deduplicate struct/union types.
4288 *
4289 * For each struct/union type its type signature hash is calculated, taking
4290 * into account type's name, size, number, order and names of fields, but
4291 * ignoring type ID's referenced from fields, because they might not be deduped
4292 * completely until after reference types deduplication phase. This type hash
4293 * is used to iterate over all potential canonical types, sharing same hash.
4294 * For each canonical candidate we check whether type graphs that they form
4295 * (through referenced types in fields and so on) are equivalent using algorithm
4296 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4297 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4298 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4299 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4300 * potentially map other structs/unions to their canonical representatives,
4301 * if such relationship hasn't yet been established. This speeds up algorithm
4302 * by eliminating some of the duplicate work.
4303 *
4304 * If no matching canonical representative was found, struct/union is marked
4305 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4306 * for further look ups.
4307 */
btf_dedup_struct_type(struct btf_dedup * d,__u32 type_id)4308 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4309 {
4310 struct btf_type *cand_type, *t;
4311 struct hashmap_entry *hash_entry;
4312 /* if we don't find equivalent type, then we are canonical */
4313 __u32 new_id = type_id;
4314 __u16 kind;
4315 long h;
4316
4317 /* already deduped or is in process of deduping (loop detected) */
4318 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4319 return 0;
4320
4321 t = btf_type_by_id(d->btf, type_id);
4322 kind = btf_kind(t);
4323
4324 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4325 return 0;
4326
4327 h = btf_hash_struct(t);
4328 for_each_dedup_cand(d, hash_entry, h) {
4329 __u32 cand_id = (__u32)(long)hash_entry->value;
4330 int eq;
4331
4332 /*
4333 * Even though btf_dedup_is_equiv() checks for
4334 * btf_shallow_equal_struct() internally when checking two
4335 * structs (unions) for equivalence, we need to guard here
4336 * from picking matching FWD type as a dedup candidate.
4337 * This can happen due to hash collision. In such case just
4338 * relying on btf_dedup_is_equiv() would lead to potentially
4339 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4340 * FWD and compatible STRUCT/UNION are considered equivalent.
4341 */
4342 cand_type = btf_type_by_id(d->btf, cand_id);
4343 if (!btf_shallow_equal_struct(t, cand_type))
4344 continue;
4345
4346 btf_dedup_clear_hypot_map(d);
4347 eq = btf_dedup_is_equiv(d, type_id, cand_id);
4348 if (eq < 0)
4349 return eq;
4350 if (!eq)
4351 continue;
4352 btf_dedup_merge_hypot_map(d);
4353 if (d->hypot_adjust_canon) /* not really equivalent */
4354 continue;
4355 new_id = cand_id;
4356 break;
4357 }
4358
4359 d->map[type_id] = new_id;
4360 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4361 return -ENOMEM;
4362
4363 return 0;
4364 }
4365
btf_dedup_struct_types(struct btf_dedup * d)4366 static int btf_dedup_struct_types(struct btf_dedup *d)
4367 {
4368 int i, err;
4369
4370 for (i = 0; i < d->btf->nr_types; i++) {
4371 err = btf_dedup_struct_type(d, d->btf->start_id + i);
4372 if (err)
4373 return err;
4374 }
4375 return 0;
4376 }
4377
4378 /*
4379 * Deduplicate reference type.
4380 *
4381 * Once all primitive and struct/union types got deduplicated, we can easily
4382 * deduplicate all other (reference) BTF types. This is done in two steps:
4383 *
4384 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4385 * resolution can be done either immediately for primitive or struct/union types
4386 * (because they were deduped in previous two phases) or recursively for
4387 * reference types. Recursion will always terminate at either primitive or
4388 * struct/union type, at which point we can "unwind" chain of reference types
4389 * one by one. There is no danger of encountering cycles because in C type
4390 * system the only way to form type cycle is through struct/union, so any chain
4391 * of reference types, even those taking part in a type cycle, will inevitably
4392 * reach struct/union at some point.
4393 *
4394 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4395 * becomes "stable", in the sense that no further deduplication will cause
4396 * any changes to it. With that, it's now possible to calculate type's signature
4397 * hash (this time taking into account referenced type IDs) and loop over all
4398 * potential canonical representatives. If no match was found, current type
4399 * will become canonical representative of itself and will be added into
4400 * btf_dedup->dedup_table as another possible canonical representative.
4401 */
btf_dedup_ref_type(struct btf_dedup * d,__u32 type_id)4402 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4403 {
4404 struct hashmap_entry *hash_entry;
4405 __u32 new_id = type_id, cand_id;
4406 struct btf_type *t, *cand;
4407 /* if we don't find equivalent type, then we are representative type */
4408 int ref_type_id;
4409 long h;
4410
4411 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4412 return -ELOOP;
4413 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4414 return resolve_type_id(d, type_id);
4415
4416 t = btf_type_by_id(d->btf, type_id);
4417 d->map[type_id] = BTF_IN_PROGRESS_ID;
4418
4419 switch (btf_kind(t)) {
4420 case BTF_KIND_CONST:
4421 case BTF_KIND_VOLATILE:
4422 case BTF_KIND_RESTRICT:
4423 case BTF_KIND_PTR:
4424 case BTF_KIND_TYPEDEF:
4425 case BTF_KIND_FUNC:
4426 case BTF_KIND_TYPE_TAG:
4427 ref_type_id = btf_dedup_ref_type(d, t->type);
4428 if (ref_type_id < 0)
4429 return ref_type_id;
4430 t->type = ref_type_id;
4431
4432 h = btf_hash_common(t);
4433 for_each_dedup_cand(d, hash_entry, h) {
4434 cand_id = (__u32)(long)hash_entry->value;
4435 cand = btf_type_by_id(d->btf, cand_id);
4436 if (btf_equal_common(t, cand)) {
4437 new_id = cand_id;
4438 break;
4439 }
4440 }
4441 break;
4442
4443 case BTF_KIND_DECL_TAG:
4444 ref_type_id = btf_dedup_ref_type(d, t->type);
4445 if (ref_type_id < 0)
4446 return ref_type_id;
4447 t->type = ref_type_id;
4448
4449 h = btf_hash_int_decl_tag(t);
4450 for_each_dedup_cand(d, hash_entry, h) {
4451 cand_id = (__u32)(long)hash_entry->value;
4452 cand = btf_type_by_id(d->btf, cand_id);
4453 if (btf_equal_int_tag(t, cand)) {
4454 new_id = cand_id;
4455 break;
4456 }
4457 }
4458 break;
4459
4460 case BTF_KIND_ARRAY: {
4461 struct btf_array *info = btf_array(t);
4462
4463 ref_type_id = btf_dedup_ref_type(d, info->type);
4464 if (ref_type_id < 0)
4465 return ref_type_id;
4466 info->type = ref_type_id;
4467
4468 ref_type_id = btf_dedup_ref_type(d, info->index_type);
4469 if (ref_type_id < 0)
4470 return ref_type_id;
4471 info->index_type = ref_type_id;
4472
4473 h = btf_hash_array(t);
4474 for_each_dedup_cand(d, hash_entry, h) {
4475 cand_id = (__u32)(long)hash_entry->value;
4476 cand = btf_type_by_id(d->btf, cand_id);
4477 if (btf_equal_array(t, cand)) {
4478 new_id = cand_id;
4479 break;
4480 }
4481 }
4482 break;
4483 }
4484
4485 case BTF_KIND_FUNC_PROTO: {
4486 struct btf_param *param;
4487 __u16 vlen;
4488 int i;
4489
4490 ref_type_id = btf_dedup_ref_type(d, t->type);
4491 if (ref_type_id < 0)
4492 return ref_type_id;
4493 t->type = ref_type_id;
4494
4495 vlen = btf_vlen(t);
4496 param = btf_params(t);
4497 for (i = 0; i < vlen; i++) {
4498 ref_type_id = btf_dedup_ref_type(d, param->type);
4499 if (ref_type_id < 0)
4500 return ref_type_id;
4501 param->type = ref_type_id;
4502 param++;
4503 }
4504
4505 h = btf_hash_fnproto(t);
4506 for_each_dedup_cand(d, hash_entry, h) {
4507 cand_id = (__u32)(long)hash_entry->value;
4508 cand = btf_type_by_id(d->btf, cand_id);
4509 if (btf_equal_fnproto(t, cand)) {
4510 new_id = cand_id;
4511 break;
4512 }
4513 }
4514 break;
4515 }
4516
4517 default:
4518 return -EINVAL;
4519 }
4520
4521 d->map[type_id] = new_id;
4522 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4523 return -ENOMEM;
4524
4525 return new_id;
4526 }
4527
btf_dedup_ref_types(struct btf_dedup * d)4528 static int btf_dedup_ref_types(struct btf_dedup *d)
4529 {
4530 int i, err;
4531
4532 for (i = 0; i < d->btf->nr_types; i++) {
4533 err = btf_dedup_ref_type(d, d->btf->start_id + i);
4534 if (err < 0)
4535 return err;
4536 }
4537 /* we won't need d->dedup_table anymore */
4538 hashmap__free(d->dedup_table);
4539 d->dedup_table = NULL;
4540 return 0;
4541 }
4542
4543 /*
4544 * Compact types.
4545 *
4546 * After we established for each type its corresponding canonical representative
4547 * type, we now can eliminate types that are not canonical and leave only
4548 * canonical ones layed out sequentially in memory by copying them over
4549 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4550 * a map from original type ID to a new compacted type ID, which will be used
4551 * during next phase to "fix up" type IDs, referenced from struct/union and
4552 * reference types.
4553 */
btf_dedup_compact_types(struct btf_dedup * d)4554 static int btf_dedup_compact_types(struct btf_dedup *d)
4555 {
4556 __u32 *new_offs;
4557 __u32 next_type_id = d->btf->start_id;
4558 const struct btf_type *t;
4559 void *p;
4560 int i, id, len;
4561
4562 /* we are going to reuse hypot_map to store compaction remapping */
4563 d->hypot_map[0] = 0;
4564 /* base BTF types are not renumbered */
4565 for (id = 1; id < d->btf->start_id; id++)
4566 d->hypot_map[id] = id;
4567 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4568 d->hypot_map[id] = BTF_UNPROCESSED_ID;
4569
4570 p = d->btf->types_data;
4571
4572 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4573 if (d->map[id] != id)
4574 continue;
4575
4576 t = btf__type_by_id(d->btf, id);
4577 len = btf_type_size(t);
4578 if (len < 0)
4579 return len;
4580
4581 memmove(p, t, len);
4582 d->hypot_map[id] = next_type_id;
4583 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4584 p += len;
4585 next_type_id++;
4586 }
4587
4588 /* shrink struct btf's internal types index and update btf_header */
4589 d->btf->nr_types = next_type_id - d->btf->start_id;
4590 d->btf->type_offs_cap = d->btf->nr_types;
4591 d->btf->hdr->type_len = p - d->btf->types_data;
4592 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4593 sizeof(*new_offs));
4594 if (d->btf->type_offs_cap && !new_offs)
4595 return -ENOMEM;
4596 d->btf->type_offs = new_offs;
4597 d->btf->hdr->str_off = d->btf->hdr->type_len;
4598 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4599 return 0;
4600 }
4601
4602 /*
4603 * Figure out final (deduplicated and compacted) type ID for provided original
4604 * `type_id` by first resolving it into corresponding canonical type ID and
4605 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4606 * which is populated during compaction phase.
4607 */
btf_dedup_remap_type_id(__u32 * type_id,void * ctx)4608 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4609 {
4610 struct btf_dedup *d = ctx;
4611 __u32 resolved_type_id, new_type_id;
4612
4613 resolved_type_id = resolve_type_id(d, *type_id);
4614 new_type_id = d->hypot_map[resolved_type_id];
4615 if (new_type_id > BTF_MAX_NR_TYPES)
4616 return -EINVAL;
4617
4618 *type_id = new_type_id;
4619 return 0;
4620 }
4621
4622 /*
4623 * Remap referenced type IDs into deduped type IDs.
4624 *
4625 * After BTF types are deduplicated and compacted, their final type IDs may
4626 * differ from original ones. The map from original to a corresponding
4627 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4628 * compaction phase. During remapping phase we are rewriting all type IDs
4629 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4630 * their final deduped type IDs.
4631 */
btf_dedup_remap_types(struct btf_dedup * d)4632 static int btf_dedup_remap_types(struct btf_dedup *d)
4633 {
4634 int i, r;
4635
4636 for (i = 0; i < d->btf->nr_types; i++) {
4637 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4638
4639 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4640 if (r)
4641 return r;
4642 }
4643
4644 if (!d->btf_ext)
4645 return 0;
4646
4647 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4648 if (r)
4649 return r;
4650
4651 return 0;
4652 }
4653
4654 /*
4655 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4656 * data out of it to use for target BTF.
4657 */
btf__load_vmlinux_btf(void)4658 struct btf *btf__load_vmlinux_btf(void)
4659 {
4660 const char *locations[] = {
4661 /* try canonical vmlinux BTF through sysfs first */
4662 "/sys/kernel/btf/vmlinux",
4663 /* fall back to trying to find vmlinux on disk otherwise */
4664 "/boot/vmlinux-%1$s",
4665 "/lib/modules/%1$s/vmlinux-%1$s",
4666 "/lib/modules/%1$s/build/vmlinux",
4667 "/usr/lib/modules/%1$s/kernel/vmlinux",
4668 "/usr/lib/debug/boot/vmlinux-%1$s",
4669 "/usr/lib/debug/boot/vmlinux-%1$s.debug",
4670 "/usr/lib/debug/lib/modules/%1$s/vmlinux",
4671 };
4672 char path[PATH_MAX + 1];
4673 struct utsname buf;
4674 struct btf *btf;
4675 int i, err;
4676
4677 uname(&buf);
4678
4679 for (i = 0; i < ARRAY_SIZE(locations); i++) {
4680 snprintf(path, PATH_MAX, locations[i], buf.release);
4681
4682 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4683 continue;
4684
4685 btf = btf__parse(path, NULL);
4686 err = libbpf_get_error(btf);
4687 pr_debug("loading kernel BTF '%s': %d\n", path, err);
4688 if (err)
4689 continue;
4690
4691 return btf;
4692 }
4693
4694 pr_warn("failed to find valid kernel BTF\n");
4695 return libbpf_err_ptr(-ESRCH);
4696 }
4697
4698 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4699
btf__load_module_btf(const char * module_name,struct btf * vmlinux_btf)4700 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4701 {
4702 char path[80];
4703
4704 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4705 return btf__parse_split(path, vmlinux_btf);
4706 }
4707
btf_type_visit_type_ids(struct btf_type * t,type_id_visit_fn visit,void * ctx)4708 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4709 {
4710 int i, n, err;
4711
4712 switch (btf_kind(t)) {
4713 case BTF_KIND_INT:
4714 case BTF_KIND_FLOAT:
4715 case BTF_KIND_ENUM:
4716 case BTF_KIND_ENUM64:
4717 return 0;
4718
4719 case BTF_KIND_FWD:
4720 case BTF_KIND_CONST:
4721 case BTF_KIND_VOLATILE:
4722 case BTF_KIND_RESTRICT:
4723 case BTF_KIND_PTR:
4724 case BTF_KIND_TYPEDEF:
4725 case BTF_KIND_FUNC:
4726 case BTF_KIND_VAR:
4727 case BTF_KIND_DECL_TAG:
4728 case BTF_KIND_TYPE_TAG:
4729 return visit(&t->type, ctx);
4730
4731 case BTF_KIND_ARRAY: {
4732 struct btf_array *a = btf_array(t);
4733
4734 err = visit(&a->type, ctx);
4735 err = err ?: visit(&a->index_type, ctx);
4736 return err;
4737 }
4738
4739 case BTF_KIND_STRUCT:
4740 case BTF_KIND_UNION: {
4741 struct btf_member *m = btf_members(t);
4742
4743 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4744 err = visit(&m->type, ctx);
4745 if (err)
4746 return err;
4747 }
4748 return 0;
4749 }
4750
4751 case BTF_KIND_FUNC_PROTO: {
4752 struct btf_param *m = btf_params(t);
4753
4754 err = visit(&t->type, ctx);
4755 if (err)
4756 return err;
4757 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4758 err = visit(&m->type, ctx);
4759 if (err)
4760 return err;
4761 }
4762 return 0;
4763 }
4764
4765 case BTF_KIND_DATASEC: {
4766 struct btf_var_secinfo *m = btf_var_secinfos(t);
4767
4768 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4769 err = visit(&m->type, ctx);
4770 if (err)
4771 return err;
4772 }
4773 return 0;
4774 }
4775
4776 default:
4777 return -EINVAL;
4778 }
4779 }
4780
btf_type_visit_str_offs(struct btf_type * t,str_off_visit_fn visit,void * ctx)4781 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4782 {
4783 int i, n, err;
4784
4785 err = visit(&t->name_off, ctx);
4786 if (err)
4787 return err;
4788
4789 switch (btf_kind(t)) {
4790 case BTF_KIND_STRUCT:
4791 case BTF_KIND_UNION: {
4792 struct btf_member *m = btf_members(t);
4793
4794 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4795 err = visit(&m->name_off, ctx);
4796 if (err)
4797 return err;
4798 }
4799 break;
4800 }
4801 case BTF_KIND_ENUM: {
4802 struct btf_enum *m = btf_enum(t);
4803
4804 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4805 err = visit(&m->name_off, ctx);
4806 if (err)
4807 return err;
4808 }
4809 break;
4810 }
4811 case BTF_KIND_ENUM64: {
4812 struct btf_enum64 *m = btf_enum64(t);
4813
4814 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4815 err = visit(&m->name_off, ctx);
4816 if (err)
4817 return err;
4818 }
4819 break;
4820 }
4821 case BTF_KIND_FUNC_PROTO: {
4822 struct btf_param *m = btf_params(t);
4823
4824 for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4825 err = visit(&m->name_off, ctx);
4826 if (err)
4827 return err;
4828 }
4829 break;
4830 }
4831 default:
4832 break;
4833 }
4834
4835 return 0;
4836 }
4837
btf_ext_visit_type_ids(struct btf_ext * btf_ext,type_id_visit_fn visit,void * ctx)4838 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4839 {
4840 const struct btf_ext_info *seg;
4841 struct btf_ext_info_sec *sec;
4842 int i, err;
4843
4844 seg = &btf_ext->func_info;
4845 for_each_btf_ext_sec(seg, sec) {
4846 struct bpf_func_info_min *rec;
4847
4848 for_each_btf_ext_rec(seg, sec, i, rec) {
4849 err = visit(&rec->type_id, ctx);
4850 if (err < 0)
4851 return err;
4852 }
4853 }
4854
4855 seg = &btf_ext->core_relo_info;
4856 for_each_btf_ext_sec(seg, sec) {
4857 struct bpf_core_relo *rec;
4858
4859 for_each_btf_ext_rec(seg, sec, i, rec) {
4860 err = visit(&rec->type_id, ctx);
4861 if (err < 0)
4862 return err;
4863 }
4864 }
4865
4866 return 0;
4867 }
4868
btf_ext_visit_str_offs(struct btf_ext * btf_ext,str_off_visit_fn visit,void * ctx)4869 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4870 {
4871 const struct btf_ext_info *seg;
4872 struct btf_ext_info_sec *sec;
4873 int i, err;
4874
4875 seg = &btf_ext->func_info;
4876 for_each_btf_ext_sec(seg, sec) {
4877 err = visit(&sec->sec_name_off, ctx);
4878 if (err)
4879 return err;
4880 }
4881
4882 seg = &btf_ext->line_info;
4883 for_each_btf_ext_sec(seg, sec) {
4884 struct bpf_line_info_min *rec;
4885
4886 err = visit(&sec->sec_name_off, ctx);
4887 if (err)
4888 return err;
4889
4890 for_each_btf_ext_rec(seg, sec, i, rec) {
4891 err = visit(&rec->file_name_off, ctx);
4892 if (err)
4893 return err;
4894 err = visit(&rec->line_off, ctx);
4895 if (err)
4896 return err;
4897 }
4898 }
4899
4900 seg = &btf_ext->core_relo_info;
4901 for_each_btf_ext_sec(seg, sec) {
4902 struct bpf_core_relo *rec;
4903
4904 err = visit(&sec->sec_name_off, ctx);
4905 if (err)
4906 return err;
4907
4908 for_each_btf_ext_rec(seg, sec, i, rec) {
4909 err = visit(&rec->access_str_off, ctx);
4910 if (err)
4911 return err;
4912 }
4913 }
4914
4915 return 0;
4916 }
4917