• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/android_fuse.h>
7 #include <uapi/linux/bpf_perf_event.h>
8 #include <uapi/linux/types.h>
9 #include <linux/seq_file.h>
10 #include <linux/compiler.h>
11 #include <linux/ctype.h>
12 #include <linux/errno.h>
13 #include <linux/slab.h>
14 #include <linux/anon_inodes.h>
15 #include <linux/file.h>
16 #include <linux/uaccess.h>
17 #include <linux/kernel.h>
18 #include <linux/idr.h>
19 #include <linux/sort.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/btf.h>
22 #include <linux/btf_ids.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28 #include <net/sock.h>
29 #include "../tools/lib/bpf/relo_core.h"
30 
31 /* BTF (BPF Type Format) is the meta data format which describes
32  * the data types of BPF program/map.  Hence, it basically focus
33  * on the C programming language which the modern BPF is primary
34  * using.
35  *
36  * ELF Section:
37  * ~~~~~~~~~~~
38  * The BTF data is stored under the ".BTF" ELF section
39  *
40  * struct btf_type:
41  * ~~~~~~~~~~~~~~~
42  * Each 'struct btf_type' object describes a C data type.
43  * Depending on the type it is describing, a 'struct btf_type'
44  * object may be followed by more data.  F.e.
45  * To describe an array, 'struct btf_type' is followed by
46  * 'struct btf_array'.
47  *
48  * 'struct btf_type' and any extra data following it are
49  * 4 bytes aligned.
50  *
51  * Type section:
52  * ~~~~~~~~~~~~~
53  * The BTF type section contains a list of 'struct btf_type' objects.
54  * Each one describes a C type.  Recall from the above section
55  * that a 'struct btf_type' object could be immediately followed by extra
56  * data in order to describe some particular C types.
57  *
58  * type_id:
59  * ~~~~~~~
60  * Each btf_type object is identified by a type_id.  The type_id
61  * is implicitly implied by the location of the btf_type object in
62  * the BTF type section.  The first one has type_id 1.  The second
63  * one has type_id 2...etc.  Hence, an earlier btf_type has
64  * a smaller type_id.
65  *
66  * A btf_type object may refer to another btf_type object by using
67  * type_id (i.e. the "type" in the "struct btf_type").
68  *
69  * NOTE that we cannot assume any reference-order.
70  * A btf_type object can refer to an earlier btf_type object
71  * but it can also refer to a later btf_type object.
72  *
73  * For example, to describe "const void *".  A btf_type
74  * object describing "const" may refer to another btf_type
75  * object describing "void *".  This type-reference is done
76  * by specifying type_id:
77  *
78  * [1] CONST (anon) type_id=2
79  * [2] PTR (anon) type_id=0
80  *
81  * The above is the btf_verifier debug log:
82  *   - Each line started with "[?]" is a btf_type object
83  *   - [?] is the type_id of the btf_type object.
84  *   - CONST/PTR is the BTF_KIND_XXX
85  *   - "(anon)" is the name of the type.  It just
86  *     happens that CONST and PTR has no name.
87  *   - type_id=XXX is the 'u32 type' in btf_type
88  *
89  * NOTE: "void" has type_id 0
90  *
91  * String section:
92  * ~~~~~~~~~~~~~~
93  * The BTF string section contains the names used by the type section.
94  * Each string is referred by an "offset" from the beginning of the
95  * string section.
96  *
97  * Each string is '\0' terminated.
98  *
99  * The first character in the string section must be '\0'
100  * which is used to mean 'anonymous'. Some btf_type may not
101  * have a name.
102  */
103 
104 /* BTF verification:
105  *
106  * To verify BTF data, two passes are needed.
107  *
108  * Pass #1
109  * ~~~~~~~
110  * The first pass is to collect all btf_type objects to
111  * an array: "btf->types".
112  *
113  * Depending on the C type that a btf_type is describing,
114  * a btf_type may be followed by extra data.  We don't know
115  * how many btf_type is there, and more importantly we don't
116  * know where each btf_type is located in the type section.
117  *
118  * Without knowing the location of each type_id, most verifications
119  * cannot be done.  e.g. an earlier btf_type may refer to a later
120  * btf_type (recall the "const void *" above), so we cannot
121  * check this type-reference in the first pass.
122  *
123  * In the first pass, it still does some verifications (e.g.
124  * checking the name is a valid offset to the string section).
125  *
126  * Pass #2
127  * ~~~~~~~
128  * The main focus is to resolve a btf_type that is referring
129  * to another type.
130  *
131  * We have to ensure the referring type:
132  * 1) does exist in the BTF (i.e. in btf->types[])
133  * 2) does not cause a loop:
134  *	struct A {
135  *		struct B b;
136  *	};
137  *
138  *	struct B {
139  *		struct A a;
140  *	};
141  *
142  * btf_type_needs_resolve() decides if a btf_type needs
143  * to be resolved.
144  *
145  * The needs_resolve type implements the "resolve()" ops which
146  * essentially does a DFS and detects backedge.
147  *
148  * During resolve (or DFS), different C types have different
149  * "RESOLVED" conditions.
150  *
151  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
152  * members because a member is always referring to another
153  * type.  A struct's member can be treated as "RESOLVED" if
154  * it is referring to a BTF_KIND_PTR.  Otherwise, the
155  * following valid C struct would be rejected:
156  *
157  *	struct A {
158  *		int m;
159  *		struct A *a;
160  *	};
161  *
162  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
163  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
164  * detect a pointer loop, e.g.:
165  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
166  *                        ^                                         |
167  *                        +-----------------------------------------+
168  *
169  */
170 
171 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
172 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
173 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
174 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
175 #define BITS_ROUNDUP_BYTES(bits) \
176 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
177 
178 #define BTF_INFO_MASK 0x9f00ffff
179 #define BTF_INT_MASK 0x0fffffff
180 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
181 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
182 
183 /* 16MB for 64k structs and each has 16 members and
184  * a few MB spaces for the string section.
185  * The hard limit is S32_MAX.
186  */
187 #define BTF_MAX_SIZE (16 * 1024 * 1024)
188 
189 #define for_each_member_from(i, from, struct_type, member)		\
190 	for (i = from, member = btf_type_member(struct_type) + from;	\
191 	     i < btf_type_vlen(struct_type);				\
192 	     i++, member++)
193 
194 #define for_each_vsi_from(i, from, struct_type, member)				\
195 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);					\
197 	     i++, member++)
198 
199 DEFINE_IDR(btf_idr);
200 DEFINE_SPINLOCK(btf_idr_lock);
201 
202 enum btf_kfunc_hook {
203 	BTF_KFUNC_HOOK_XDP,
204 	BTF_KFUNC_HOOK_TC,
205 	BTF_KFUNC_HOOK_STRUCT_OPS,
206 	BTF_KFUNC_HOOK_TRACING,
207 	BTF_KFUNC_HOOK_SYSCALL,
208 	BTF_KFUNC_HOOK_MAX,
209 };
210 
211 enum {
212 	BTF_KFUNC_SET_MAX_CNT = 256,
213 	BTF_DTOR_KFUNC_MAX_CNT = 256,
214 };
215 
216 struct btf_kfunc_set_tab {
217 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
218 };
219 
220 struct btf_id_dtor_kfunc_tab {
221 	u32 cnt;
222 	struct btf_id_dtor_kfunc dtors[];
223 };
224 
225 struct btf {
226 	void *data;
227 	struct btf_type **types;
228 	u32 *resolved_ids;
229 	u32 *resolved_sizes;
230 	const char *strings;
231 	void *nohdr_data;
232 	struct btf_header hdr;
233 	u32 nr_types; /* includes VOID for base BTF */
234 	u32 types_size;
235 	u32 data_size;
236 	refcount_t refcnt;
237 	u32 id;
238 	struct rcu_head rcu;
239 	struct btf_kfunc_set_tab *kfunc_set_tab;
240 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
241 
242 	/* split BTF support */
243 	struct btf *base_btf;
244 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
245 	u32 start_str_off; /* first string offset (0 for base BTF) */
246 	char name[MODULE_NAME_LEN];
247 	bool kernel_btf;
248 };
249 
250 enum verifier_phase {
251 	CHECK_META,
252 	CHECK_TYPE,
253 };
254 
255 struct resolve_vertex {
256 	const struct btf_type *t;
257 	u32 type_id;
258 	u16 next_member;
259 };
260 
261 enum visit_state {
262 	NOT_VISITED,
263 	VISITED,
264 	RESOLVED,
265 };
266 
267 enum resolve_mode {
268 	RESOLVE_TBD,	/* To Be Determined */
269 	RESOLVE_PTR,	/* Resolving for Pointer */
270 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
271 					 * or array
272 					 */
273 };
274 
275 #define MAX_RESOLVE_DEPTH 32
276 
277 struct btf_sec_info {
278 	u32 off;
279 	u32 len;
280 };
281 
282 struct btf_verifier_env {
283 	struct btf *btf;
284 	u8 *visit_states;
285 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
286 	struct bpf_verifier_log log;
287 	u32 log_type_id;
288 	u32 top_stack;
289 	enum verifier_phase phase;
290 	enum resolve_mode resolve_mode;
291 };
292 
293 static const char * const btf_kind_str[NR_BTF_KINDS] = {
294 	[BTF_KIND_UNKN]		= "UNKNOWN",
295 	[BTF_KIND_INT]		= "INT",
296 	[BTF_KIND_PTR]		= "PTR",
297 	[BTF_KIND_ARRAY]	= "ARRAY",
298 	[BTF_KIND_STRUCT]	= "STRUCT",
299 	[BTF_KIND_UNION]	= "UNION",
300 	[BTF_KIND_ENUM]		= "ENUM",
301 	[BTF_KIND_FWD]		= "FWD",
302 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
303 	[BTF_KIND_VOLATILE]	= "VOLATILE",
304 	[BTF_KIND_CONST]	= "CONST",
305 	[BTF_KIND_RESTRICT]	= "RESTRICT",
306 	[BTF_KIND_FUNC]		= "FUNC",
307 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
308 	[BTF_KIND_VAR]		= "VAR",
309 	[BTF_KIND_DATASEC]	= "DATASEC",
310 	[BTF_KIND_FLOAT]	= "FLOAT",
311 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
312 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
313 	[BTF_KIND_ENUM64]	= "ENUM64",
314 };
315 
btf_type_str(const struct btf_type * t)316 const char *btf_type_str(const struct btf_type *t)
317 {
318 	return btf_kind_str[BTF_INFO_KIND(t->info)];
319 }
320 
321 /* Chunk size we use in safe copy of data to be shown. */
322 #define BTF_SHOW_OBJ_SAFE_SIZE		32
323 
324 /*
325  * This is the maximum size of a base type value (equivalent to a
326  * 128-bit int); if we are at the end of our safe buffer and have
327  * less than 16 bytes space we can't be assured of being able
328  * to copy the next type safely, so in such cases we will initiate
329  * a new copy.
330  */
331 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
332 
333 /* Type name size */
334 #define BTF_SHOW_NAME_SIZE		80
335 
336 /*
337  * Common data to all BTF show operations. Private show functions can add
338  * their own data to a structure containing a struct btf_show and consult it
339  * in the show callback.  See btf_type_show() below.
340  *
341  * One challenge with showing nested data is we want to skip 0-valued
342  * data, but in order to figure out whether a nested object is all zeros
343  * we need to walk through it.  As a result, we need to make two passes
344  * when handling structs, unions and arrays; the first path simply looks
345  * for nonzero data, while the second actually does the display.  The first
346  * pass is signalled by show->state.depth_check being set, and if we
347  * encounter a non-zero value we set show->state.depth_to_show to
348  * the depth at which we encountered it.  When we have completed the
349  * first pass, we will know if anything needs to be displayed if
350  * depth_to_show > depth.  See btf_[struct,array]_show() for the
351  * implementation of this.
352  *
353  * Another problem is we want to ensure the data for display is safe to
354  * access.  To support this, the anonymous "struct {} obj" tracks the data
355  * object and our safe copy of it.  We copy portions of the data needed
356  * to the object "copy" buffer, but because its size is limited to
357  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
358  * traverse larger objects for display.
359  *
360  * The various data type show functions all start with a call to
361  * btf_show_start_type() which returns a pointer to the safe copy
362  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
363  * raw data itself).  btf_show_obj_safe() is responsible for
364  * using copy_from_kernel_nofault() to update the safe data if necessary
365  * as we traverse the object's data.  skbuff-like semantics are
366  * used:
367  *
368  * - obj.head points to the start of the toplevel object for display
369  * - obj.size is the size of the toplevel object
370  * - obj.data points to the current point in the original data at
371  *   which our safe data starts.  obj.data will advance as we copy
372  *   portions of the data.
373  *
374  * In most cases a single copy will suffice, but larger data structures
375  * such as "struct task_struct" will require many copies.  The logic in
376  * btf_show_obj_safe() handles the logic that determines if a new
377  * copy_from_kernel_nofault() is needed.
378  */
379 struct btf_show {
380 	u64 flags;
381 	void *target;	/* target of show operation (seq file, buffer) */
382 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
383 	const struct btf *btf;
384 	/* below are used during iteration */
385 	struct {
386 		u8 depth;
387 		u8 depth_to_show;
388 		u8 depth_check;
389 		u8 array_member:1,
390 		   array_terminated:1;
391 		u16 array_encoding;
392 		u32 type_id;
393 		int status;			/* non-zero for error */
394 		const struct btf_type *type;
395 		const struct btf_member *member;
396 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
397 	} state;
398 	struct {
399 		u32 size;
400 		void *head;
401 		void *data;
402 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
403 	} obj;
404 };
405 
406 struct btf_kind_operations {
407 	s32 (*check_meta)(struct btf_verifier_env *env,
408 			  const struct btf_type *t,
409 			  u32 meta_left);
410 	int (*resolve)(struct btf_verifier_env *env,
411 		       const struct resolve_vertex *v);
412 	int (*check_member)(struct btf_verifier_env *env,
413 			    const struct btf_type *struct_type,
414 			    const struct btf_member *member,
415 			    const struct btf_type *member_type);
416 	int (*check_kflag_member)(struct btf_verifier_env *env,
417 				  const struct btf_type *struct_type,
418 				  const struct btf_member *member,
419 				  const struct btf_type *member_type);
420 	void (*log_details)(struct btf_verifier_env *env,
421 			    const struct btf_type *t);
422 	void (*show)(const struct btf *btf, const struct btf_type *t,
423 			 u32 type_id, void *data, u8 bits_offsets,
424 			 struct btf_show *show);
425 };
426 
427 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
428 static struct btf_type btf_void;
429 
430 static int btf_resolve(struct btf_verifier_env *env,
431 		       const struct btf_type *t, u32 type_id);
432 
433 static int btf_func_check(struct btf_verifier_env *env,
434 			  const struct btf_type *t);
435 
btf_type_is_modifier(const struct btf_type * t)436 static bool btf_type_is_modifier(const struct btf_type *t)
437 {
438 	/* Some of them is not strictly a C modifier
439 	 * but they are grouped into the same bucket
440 	 * for BTF concern:
441 	 *   A type (t) that refers to another
442 	 *   type through t->type AND its size cannot
443 	 *   be determined without following the t->type.
444 	 *
445 	 * ptr does not fall into this bucket
446 	 * because its size is always sizeof(void *).
447 	 */
448 	switch (BTF_INFO_KIND(t->info)) {
449 	case BTF_KIND_TYPEDEF:
450 	case BTF_KIND_VOLATILE:
451 	case BTF_KIND_CONST:
452 	case BTF_KIND_RESTRICT:
453 	case BTF_KIND_TYPE_TAG:
454 		return true;
455 	}
456 
457 	return false;
458 }
459 
btf_type_is_void(const struct btf_type * t)460 bool btf_type_is_void(const struct btf_type *t)
461 {
462 	return t == &btf_void;
463 }
464 
btf_type_is_fwd(const struct btf_type * t)465 static bool btf_type_is_fwd(const struct btf_type *t)
466 {
467 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
468 }
469 
btf_type_nosize(const struct btf_type * t)470 static bool btf_type_nosize(const struct btf_type *t)
471 {
472 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
473 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
474 }
475 
btf_type_nosize_or_null(const struct btf_type * t)476 static bool btf_type_nosize_or_null(const struct btf_type *t)
477 {
478 	return !t || btf_type_nosize(t);
479 }
480 
__btf_type_is_struct(const struct btf_type * t)481 static bool __btf_type_is_struct(const struct btf_type *t)
482 {
483 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
484 }
485 
btf_type_is_array(const struct btf_type * t)486 static bool btf_type_is_array(const struct btf_type *t)
487 {
488 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
489 }
490 
btf_type_is_datasec(const struct btf_type * t)491 static bool btf_type_is_datasec(const struct btf_type *t)
492 {
493 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
494 }
495 
btf_type_is_decl_tag(const struct btf_type * t)496 static bool btf_type_is_decl_tag(const struct btf_type *t)
497 {
498 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
499 }
500 
btf_type_is_decl_tag_target(const struct btf_type * t)501 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
502 {
503 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
504 	       btf_type_is_var(t) || btf_type_is_typedef(t);
505 }
506 
btf_nr_types(const struct btf * btf)507 u32 btf_nr_types(const struct btf *btf)
508 {
509 	u32 total = 0;
510 
511 	while (btf) {
512 		total += btf->nr_types;
513 		btf = btf->base_btf;
514 	}
515 
516 	return total;
517 }
518 
btf_find_by_name_kind(const struct btf * btf,const char * name,u8 kind)519 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
520 {
521 	const struct btf_type *t;
522 	const char *tname;
523 	u32 i, total;
524 
525 	total = btf_nr_types(btf);
526 	for (i = 1; i < total; i++) {
527 		t = btf_type_by_id(btf, i);
528 		if (BTF_INFO_KIND(t->info) != kind)
529 			continue;
530 
531 		tname = btf_name_by_offset(btf, t->name_off);
532 		if (!strcmp(tname, name))
533 			return i;
534 	}
535 
536 	return -ENOENT;
537 }
538 
bpf_find_btf_id(const char * name,u32 kind,struct btf ** btf_p)539 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
540 {
541 	struct btf *btf;
542 	s32 ret;
543 	int id;
544 
545 	btf = bpf_get_btf_vmlinux();
546 	if (IS_ERR(btf))
547 		return PTR_ERR(btf);
548 	if (!btf)
549 		return -EINVAL;
550 
551 	ret = btf_find_by_name_kind(btf, name, kind);
552 	/* ret is never zero, since btf_find_by_name_kind returns
553 	 * positive btf_id or negative error.
554 	 */
555 	if (ret > 0) {
556 		btf_get(btf);
557 		*btf_p = btf;
558 		return ret;
559 	}
560 
561 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
562 	spin_lock_bh(&btf_idr_lock);
563 	idr_for_each_entry(&btf_idr, btf, id) {
564 		if (!btf_is_module(btf))
565 			continue;
566 		/* linear search could be slow hence unlock/lock
567 		 * the IDR to avoiding holding it for too long
568 		 */
569 		btf_get(btf);
570 		spin_unlock_bh(&btf_idr_lock);
571 		ret = btf_find_by_name_kind(btf, name, kind);
572 		if (ret > 0) {
573 			*btf_p = btf;
574 			return ret;
575 		}
576 		btf_put(btf);
577 		spin_lock_bh(&btf_idr_lock);
578 	}
579 	spin_unlock_bh(&btf_idr_lock);
580 	return ret;
581 }
582 
btf_type_skip_modifiers(const struct btf * btf,u32 id,u32 * res_id)583 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
584 					       u32 id, u32 *res_id)
585 {
586 	const struct btf_type *t = btf_type_by_id(btf, id);
587 
588 	while (btf_type_is_modifier(t)) {
589 		id = t->type;
590 		t = btf_type_by_id(btf, t->type);
591 	}
592 
593 	if (res_id)
594 		*res_id = id;
595 
596 	return t;
597 }
598 
btf_type_resolve_ptr(const struct btf * btf,u32 id,u32 * res_id)599 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
600 					    u32 id, u32 *res_id)
601 {
602 	const struct btf_type *t;
603 
604 	t = btf_type_skip_modifiers(btf, id, NULL);
605 	if (!btf_type_is_ptr(t))
606 		return NULL;
607 
608 	return btf_type_skip_modifiers(btf, t->type, res_id);
609 }
610 
btf_type_resolve_func_ptr(const struct btf * btf,u32 id,u32 * res_id)611 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
612 						 u32 id, u32 *res_id)
613 {
614 	const struct btf_type *ptype;
615 
616 	ptype = btf_type_resolve_ptr(btf, id, res_id);
617 	if (ptype && btf_type_is_func_proto(ptype))
618 		return ptype;
619 
620 	return NULL;
621 }
622 
623 /* Types that act only as a source, not sink or intermediate
624  * type when resolving.
625  */
btf_type_is_resolve_source_only(const struct btf_type * t)626 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
627 {
628 	return btf_type_is_var(t) ||
629 	       btf_type_is_decl_tag(t) ||
630 	       btf_type_is_datasec(t);
631 }
632 
633 /* What types need to be resolved?
634  *
635  * btf_type_is_modifier() is an obvious one.
636  *
637  * btf_type_is_struct() because its member refers to
638  * another type (through member->type).
639  *
640  * btf_type_is_var() because the variable refers to
641  * another type. btf_type_is_datasec() holds multiple
642  * btf_type_is_var() types that need resolving.
643  *
644  * btf_type_is_array() because its element (array->type)
645  * refers to another type.  Array can be thought of a
646  * special case of struct while array just has the same
647  * member-type repeated by array->nelems of times.
648  */
btf_type_needs_resolve(const struct btf_type * t)649 static bool btf_type_needs_resolve(const struct btf_type *t)
650 {
651 	return btf_type_is_modifier(t) ||
652 	       btf_type_is_ptr(t) ||
653 	       btf_type_is_struct(t) ||
654 	       btf_type_is_array(t) ||
655 	       btf_type_is_var(t) ||
656 	       btf_type_is_func(t) ||
657 	       btf_type_is_decl_tag(t) ||
658 	       btf_type_is_datasec(t);
659 }
660 
661 /* t->size can be used */
btf_type_has_size(const struct btf_type * t)662 static bool btf_type_has_size(const struct btf_type *t)
663 {
664 	switch (BTF_INFO_KIND(t->info)) {
665 	case BTF_KIND_INT:
666 	case BTF_KIND_STRUCT:
667 	case BTF_KIND_UNION:
668 	case BTF_KIND_ENUM:
669 	case BTF_KIND_DATASEC:
670 	case BTF_KIND_FLOAT:
671 	case BTF_KIND_ENUM64:
672 		return true;
673 	}
674 
675 	return false;
676 }
677 
btf_int_encoding_str(u8 encoding)678 static const char *btf_int_encoding_str(u8 encoding)
679 {
680 	if (encoding == 0)
681 		return "(none)";
682 	else if (encoding == BTF_INT_SIGNED)
683 		return "SIGNED";
684 	else if (encoding == BTF_INT_CHAR)
685 		return "CHAR";
686 	else if (encoding == BTF_INT_BOOL)
687 		return "BOOL";
688 	else
689 		return "UNKN";
690 }
691 
btf_type_int(const struct btf_type * t)692 static u32 btf_type_int(const struct btf_type *t)
693 {
694 	return *(u32 *)(t + 1);
695 }
696 
btf_type_array(const struct btf_type * t)697 static const struct btf_array *btf_type_array(const struct btf_type *t)
698 {
699 	return (const struct btf_array *)(t + 1);
700 }
701 
btf_type_enum(const struct btf_type * t)702 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
703 {
704 	return (const struct btf_enum *)(t + 1);
705 }
706 
btf_type_var(const struct btf_type * t)707 static const struct btf_var *btf_type_var(const struct btf_type *t)
708 {
709 	return (const struct btf_var *)(t + 1);
710 }
711 
btf_type_decl_tag(const struct btf_type * t)712 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
713 {
714 	return (const struct btf_decl_tag *)(t + 1);
715 }
716 
btf_type_enum64(const struct btf_type * t)717 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
718 {
719 	return (const struct btf_enum64 *)(t + 1);
720 }
721 
btf_type_ops(const struct btf_type * t)722 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
723 {
724 	return kind_ops[BTF_INFO_KIND(t->info)];
725 }
726 
btf_name_offset_valid(const struct btf * btf,u32 offset)727 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
728 {
729 	if (!BTF_STR_OFFSET_VALID(offset))
730 		return false;
731 
732 	while (offset < btf->start_str_off)
733 		btf = btf->base_btf;
734 
735 	offset -= btf->start_str_off;
736 	return offset < btf->hdr.str_len;
737 }
738 
__btf_name_char_ok(char c,bool first)739 static bool __btf_name_char_ok(char c, bool first)
740 {
741 	if ((first ? !isalpha(c) :
742 		     !isalnum(c)) &&
743 	    c != '_' &&
744 	    c != '.')
745 		return false;
746 	return true;
747 }
748 
btf_str_by_offset(const struct btf * btf,u32 offset)749 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
750 {
751 	while (offset < btf->start_str_off)
752 		btf = btf->base_btf;
753 
754 	offset -= btf->start_str_off;
755 	if (offset < btf->hdr.str_len)
756 		return &btf->strings[offset];
757 
758 	return NULL;
759 }
760 
__btf_name_valid(const struct btf * btf,u32 offset)761 static bool __btf_name_valid(const struct btf *btf, u32 offset)
762 {
763 	/* offset must be valid */
764 	const char *src = btf_str_by_offset(btf, offset);
765 	const char *src_limit;
766 
767 	if (!__btf_name_char_ok(*src, true))
768 		return false;
769 
770 	/* set a limit on identifier length */
771 	src_limit = src + KSYM_NAME_LEN;
772 	src++;
773 	while (*src && src < src_limit) {
774 		if (!__btf_name_char_ok(*src, false))
775 			return false;
776 		src++;
777 	}
778 
779 	return !*src;
780 }
781 
btf_name_valid_identifier(const struct btf * btf,u32 offset)782 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
783 {
784 	return __btf_name_valid(btf, offset);
785 }
786 
btf_name_valid_section(const struct btf * btf,u32 offset)787 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
788 {
789 	return __btf_name_valid(btf, offset);
790 }
791 
__btf_name_by_offset(const struct btf * btf,u32 offset)792 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
793 {
794 	const char *name;
795 
796 	if (!offset)
797 		return "(anon)";
798 
799 	name = btf_str_by_offset(btf, offset);
800 	return name ?: "(invalid-name-offset)";
801 }
802 
btf_name_by_offset(const struct btf * btf,u32 offset)803 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
804 {
805 	return btf_str_by_offset(btf, offset);
806 }
807 
btf_type_by_id(const struct btf * btf,u32 type_id)808 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
809 {
810 	while (type_id < btf->start_id)
811 		btf = btf->base_btf;
812 
813 	type_id -= btf->start_id;
814 	if (type_id >= btf->nr_types)
815 		return NULL;
816 	return btf->types[type_id];
817 }
818 EXPORT_SYMBOL_GPL(btf_type_by_id);
819 
820 /*
821  * Regular int is not a bit field and it must be either
822  * u8/u16/u32/u64 or __int128.
823  */
btf_type_int_is_regular(const struct btf_type * t)824 static bool btf_type_int_is_regular(const struct btf_type *t)
825 {
826 	u8 nr_bits, nr_bytes;
827 	u32 int_data;
828 
829 	int_data = btf_type_int(t);
830 	nr_bits = BTF_INT_BITS(int_data);
831 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
832 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
833 	    BTF_INT_OFFSET(int_data) ||
834 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
835 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
836 	     nr_bytes != (2 * sizeof(u64)))) {
837 		return false;
838 	}
839 
840 	return true;
841 }
842 
843 /*
844  * Check that given struct member is a regular int with expected
845  * offset and size.
846  */
btf_member_is_reg_int(const struct btf * btf,const struct btf_type * s,const struct btf_member * m,u32 expected_offset,u32 expected_size)847 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
848 			   const struct btf_member *m,
849 			   u32 expected_offset, u32 expected_size)
850 {
851 	const struct btf_type *t;
852 	u32 id, int_data;
853 	u8 nr_bits;
854 
855 	id = m->type;
856 	t = btf_type_id_size(btf, &id, NULL);
857 	if (!t || !btf_type_is_int(t))
858 		return false;
859 
860 	int_data = btf_type_int(t);
861 	nr_bits = BTF_INT_BITS(int_data);
862 	if (btf_type_kflag(s)) {
863 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
864 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
865 
866 		/* if kflag set, int should be a regular int and
867 		 * bit offset should be at byte boundary.
868 		 */
869 		return !bitfield_size &&
870 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
871 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
872 	}
873 
874 	if (BTF_INT_OFFSET(int_data) ||
875 	    BITS_PER_BYTE_MASKED(m->offset) ||
876 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
877 	    BITS_PER_BYTE_MASKED(nr_bits) ||
878 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
879 		return false;
880 
881 	return true;
882 }
883 
884 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
btf_type_skip_qualifiers(const struct btf * btf,u32 id)885 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
886 						       u32 id)
887 {
888 	const struct btf_type *t = btf_type_by_id(btf, id);
889 
890 	while (btf_type_is_modifier(t) &&
891 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
892 		t = btf_type_by_id(btf, t->type);
893 	}
894 
895 	return t;
896 }
897 
898 #define BTF_SHOW_MAX_ITER	10
899 
900 #define BTF_KIND_BIT(kind)	(1ULL << kind)
901 
902 /*
903  * Populate show->state.name with type name information.
904  * Format of type name is
905  *
906  * [.member_name = ] (type_name)
907  */
btf_show_name(struct btf_show * show)908 static const char *btf_show_name(struct btf_show *show)
909 {
910 	/* BTF_MAX_ITER array suffixes "[]" */
911 	const char *array_suffixes = "[][][][][][][][][][]";
912 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
913 	/* BTF_MAX_ITER pointer suffixes "*" */
914 	const char *ptr_suffixes = "**********";
915 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
916 	const char *name = NULL, *prefix = "", *parens = "";
917 	const struct btf_member *m = show->state.member;
918 	const struct btf_type *t;
919 	const struct btf_array *array;
920 	u32 id = show->state.type_id;
921 	const char *member = NULL;
922 	bool show_member = false;
923 	u64 kinds = 0;
924 	int i;
925 
926 	show->state.name[0] = '\0';
927 
928 	/*
929 	 * Don't show type name if we're showing an array member;
930 	 * in that case we show the array type so don't need to repeat
931 	 * ourselves for each member.
932 	 */
933 	if (show->state.array_member)
934 		return "";
935 
936 	/* Retrieve member name, if any. */
937 	if (m) {
938 		member = btf_name_by_offset(show->btf, m->name_off);
939 		show_member = strlen(member) > 0;
940 		id = m->type;
941 	}
942 
943 	/*
944 	 * Start with type_id, as we have resolved the struct btf_type *
945 	 * via btf_modifier_show() past the parent typedef to the child
946 	 * struct, int etc it is defined as.  In such cases, the type_id
947 	 * still represents the starting type while the struct btf_type *
948 	 * in our show->state points at the resolved type of the typedef.
949 	 */
950 	t = btf_type_by_id(show->btf, id);
951 	if (!t)
952 		return "";
953 
954 	/*
955 	 * The goal here is to build up the right number of pointer and
956 	 * array suffixes while ensuring the type name for a typedef
957 	 * is represented.  Along the way we accumulate a list of
958 	 * BTF kinds we have encountered, since these will inform later
959 	 * display; for example, pointer types will not require an
960 	 * opening "{" for struct, we will just display the pointer value.
961 	 *
962 	 * We also want to accumulate the right number of pointer or array
963 	 * indices in the format string while iterating until we get to
964 	 * the typedef/pointee/array member target type.
965 	 *
966 	 * We start by pointing at the end of pointer and array suffix
967 	 * strings; as we accumulate pointers and arrays we move the pointer
968 	 * or array string backwards so it will show the expected number of
969 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
970 	 * and/or arrays and typedefs are supported as a precaution.
971 	 *
972 	 * We also want to get typedef name while proceeding to resolve
973 	 * type it points to so that we can add parentheses if it is a
974 	 * "typedef struct" etc.
975 	 */
976 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
977 
978 		switch (BTF_INFO_KIND(t->info)) {
979 		case BTF_KIND_TYPEDEF:
980 			if (!name)
981 				name = btf_name_by_offset(show->btf,
982 							       t->name_off);
983 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
984 			id = t->type;
985 			break;
986 		case BTF_KIND_ARRAY:
987 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
988 			parens = "[";
989 			if (!t)
990 				return "";
991 			array = btf_type_array(t);
992 			if (array_suffix > array_suffixes)
993 				array_suffix -= 2;
994 			id = array->type;
995 			break;
996 		case BTF_KIND_PTR:
997 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
998 			if (ptr_suffix > ptr_suffixes)
999 				ptr_suffix -= 1;
1000 			id = t->type;
1001 			break;
1002 		default:
1003 			id = 0;
1004 			break;
1005 		}
1006 		if (!id)
1007 			break;
1008 		t = btf_type_skip_qualifiers(show->btf, id);
1009 	}
1010 	/* We may not be able to represent this type; bail to be safe */
1011 	if (i == BTF_SHOW_MAX_ITER)
1012 		return "";
1013 
1014 	if (!name)
1015 		name = btf_name_by_offset(show->btf, t->name_off);
1016 
1017 	switch (BTF_INFO_KIND(t->info)) {
1018 	case BTF_KIND_STRUCT:
1019 	case BTF_KIND_UNION:
1020 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1021 			 "struct" : "union";
1022 		/* if it's an array of struct/union, parens is already set */
1023 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1024 			parens = "{";
1025 		break;
1026 	case BTF_KIND_ENUM:
1027 	case BTF_KIND_ENUM64:
1028 		prefix = "enum";
1029 		break;
1030 	default:
1031 		break;
1032 	}
1033 
1034 	/* pointer does not require parens */
1035 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1036 		parens = "";
1037 	/* typedef does not require struct/union/enum prefix */
1038 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1039 		prefix = "";
1040 
1041 	if (!name)
1042 		name = "";
1043 
1044 	/* Even if we don't want type name info, we want parentheses etc */
1045 	if (show->flags & BTF_SHOW_NONAME)
1046 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1047 			 parens);
1048 	else
1049 		snprintf(show->state.name, sizeof(show->state.name),
1050 			 "%s%s%s(%s%s%s%s%s%s)%s",
1051 			 /* first 3 strings comprise ".member = " */
1052 			 show_member ? "." : "",
1053 			 show_member ? member : "",
1054 			 show_member ? " = " : "",
1055 			 /* ...next is our prefix (struct, enum, etc) */
1056 			 prefix,
1057 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1058 			 /* ...this is the type name itself */
1059 			 name,
1060 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1061 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1062 			 array_suffix, parens);
1063 
1064 	return show->state.name;
1065 }
1066 
__btf_show_indent(struct btf_show * show)1067 static const char *__btf_show_indent(struct btf_show *show)
1068 {
1069 	const char *indents = "                                ";
1070 	const char *indent = &indents[strlen(indents)];
1071 
1072 	if ((indent - show->state.depth) >= indents)
1073 		return indent - show->state.depth;
1074 	return indents;
1075 }
1076 
btf_show_indent(struct btf_show * show)1077 static const char *btf_show_indent(struct btf_show *show)
1078 {
1079 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1080 }
1081 
btf_show_newline(struct btf_show * show)1082 static const char *btf_show_newline(struct btf_show *show)
1083 {
1084 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1085 }
1086 
btf_show_delim(struct btf_show * show)1087 static const char *btf_show_delim(struct btf_show *show)
1088 {
1089 	if (show->state.depth == 0)
1090 		return "";
1091 
1092 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1093 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1094 		return "|";
1095 
1096 	return ",";
1097 }
1098 
btf_show(struct btf_show * show,const char * fmt,...)1099 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1100 {
1101 	va_list args;
1102 
1103 	if (!show->state.depth_check) {
1104 		va_start(args, fmt);
1105 		show->showfn(show, fmt, args);
1106 		va_end(args);
1107 	}
1108 }
1109 
1110 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1111  * format specifiers to the format specifier passed in; these do the work of
1112  * adding indentation, delimiters etc while the caller simply has to specify
1113  * the type value(s) in the format specifier + value(s).
1114  */
1115 #define btf_show_type_value(show, fmt, value)				       \
1116 	do {								       \
1117 		if ((value) != (__typeof__(value))0 ||			       \
1118 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1119 		    show->state.depth == 0) {				       \
1120 			btf_show(show, "%s%s" fmt "%s%s",		       \
1121 				 btf_show_indent(show),			       \
1122 				 btf_show_name(show),			       \
1123 				 value, btf_show_delim(show),		       \
1124 				 btf_show_newline(show));		       \
1125 			if (show->state.depth > show->state.depth_to_show)     \
1126 				show->state.depth_to_show = show->state.depth; \
1127 		}							       \
1128 	} while (0)
1129 
1130 #define btf_show_type_values(show, fmt, ...)				       \
1131 	do {								       \
1132 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1133 			 btf_show_name(show),				       \
1134 			 __VA_ARGS__, btf_show_delim(show),		       \
1135 			 btf_show_newline(show));			       \
1136 		if (show->state.depth > show->state.depth_to_show)	       \
1137 			show->state.depth_to_show = show->state.depth;	       \
1138 	} while (0)
1139 
1140 /* How much is left to copy to safe buffer after @data? */
btf_show_obj_size_left(struct btf_show * show,void * data)1141 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1142 {
1143 	return show->obj.head + show->obj.size - data;
1144 }
1145 
1146 /* Is object pointed to by @data of @size already copied to our safe buffer? */
btf_show_obj_is_safe(struct btf_show * show,void * data,int size)1147 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1148 {
1149 	return data >= show->obj.data &&
1150 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1151 }
1152 
1153 /*
1154  * If object pointed to by @data of @size falls within our safe buffer, return
1155  * the equivalent pointer to the same safe data.  Assumes
1156  * copy_from_kernel_nofault() has already happened and our safe buffer is
1157  * populated.
1158  */
__btf_show_obj_safe(struct btf_show * show,void * data,int size)1159 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1160 {
1161 	if (btf_show_obj_is_safe(show, data, size))
1162 		return show->obj.safe + (data - show->obj.data);
1163 	return NULL;
1164 }
1165 
1166 /*
1167  * Return a safe-to-access version of data pointed to by @data.
1168  * We do this by copying the relevant amount of information
1169  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1170  *
1171  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1172  * safe copy is needed.
1173  *
1174  * Otherwise we need to determine if we have the required amount
1175  * of data (determined by the @data pointer and the size of the
1176  * largest base type we can encounter (represented by
1177  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1178  * that we will be able to print some of the current object,
1179  * and if more is needed a copy will be triggered.
1180  * Some objects such as structs will not fit into the buffer;
1181  * in such cases additional copies when we iterate over their
1182  * members may be needed.
1183  *
1184  * btf_show_obj_safe() is used to return a safe buffer for
1185  * btf_show_start_type(); this ensures that as we recurse into
1186  * nested types we always have safe data for the given type.
1187  * This approach is somewhat wasteful; it's possible for example
1188  * that when iterating over a large union we'll end up copying the
1189  * same data repeatedly, but the goal is safety not performance.
1190  * We use stack data as opposed to per-CPU buffers because the
1191  * iteration over a type can take some time, and preemption handling
1192  * would greatly complicate use of the safe buffer.
1193  */
btf_show_obj_safe(struct btf_show * show,const struct btf_type * t,void * data)1194 static void *btf_show_obj_safe(struct btf_show *show,
1195 			       const struct btf_type *t,
1196 			       void *data)
1197 {
1198 	const struct btf_type *rt;
1199 	int size_left, size;
1200 	void *safe = NULL;
1201 
1202 	if (show->flags & BTF_SHOW_UNSAFE)
1203 		return data;
1204 
1205 	rt = btf_resolve_size(show->btf, t, &size);
1206 	if (IS_ERR(rt)) {
1207 		show->state.status = PTR_ERR(rt);
1208 		return NULL;
1209 	}
1210 
1211 	/*
1212 	 * Is this toplevel object? If so, set total object size and
1213 	 * initialize pointers.  Otherwise check if we still fall within
1214 	 * our safe object data.
1215 	 */
1216 	if (show->state.depth == 0) {
1217 		show->obj.size = size;
1218 		show->obj.head = data;
1219 	} else {
1220 		/*
1221 		 * If the size of the current object is > our remaining
1222 		 * safe buffer we _may_ need to do a new copy.  However
1223 		 * consider the case of a nested struct; it's size pushes
1224 		 * us over the safe buffer limit, but showing any individual
1225 		 * struct members does not.  In such cases, we don't need
1226 		 * to initiate a fresh copy yet; however we definitely need
1227 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1228 		 * in our buffer, regardless of the current object size.
1229 		 * The logic here is that as we resolve types we will
1230 		 * hit a base type at some point, and we need to be sure
1231 		 * the next chunk of data is safely available to display
1232 		 * that type info safely.  We cannot rely on the size of
1233 		 * the current object here because it may be much larger
1234 		 * than our current buffer (e.g. task_struct is 8k).
1235 		 * All we want to do here is ensure that we can print the
1236 		 * next basic type, which we can if either
1237 		 * - the current type size is within the safe buffer; or
1238 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1239 		 *   the safe buffer.
1240 		 */
1241 		safe = __btf_show_obj_safe(show, data,
1242 					   min(size,
1243 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1244 	}
1245 
1246 	/*
1247 	 * We need a new copy to our safe object, either because we haven't
1248 	 * yet copied and are initializing safe data, or because the data
1249 	 * we want falls outside the boundaries of the safe object.
1250 	 */
1251 	if (!safe) {
1252 		size_left = btf_show_obj_size_left(show, data);
1253 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1254 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1255 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1256 							      data, size_left);
1257 		if (!show->state.status) {
1258 			show->obj.data = data;
1259 			safe = show->obj.safe;
1260 		}
1261 	}
1262 
1263 	return safe;
1264 }
1265 
1266 /*
1267  * Set the type we are starting to show and return a safe data pointer
1268  * to be used for showing the associated data.
1269  */
btf_show_start_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1270 static void *btf_show_start_type(struct btf_show *show,
1271 				 const struct btf_type *t,
1272 				 u32 type_id, void *data)
1273 {
1274 	show->state.type = t;
1275 	show->state.type_id = type_id;
1276 	show->state.name[0] = '\0';
1277 
1278 	return btf_show_obj_safe(show, t, data);
1279 }
1280 
btf_show_end_type(struct btf_show * show)1281 static void btf_show_end_type(struct btf_show *show)
1282 {
1283 	show->state.type = NULL;
1284 	show->state.type_id = 0;
1285 	show->state.name[0] = '\0';
1286 }
1287 
btf_show_start_aggr_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1288 static void *btf_show_start_aggr_type(struct btf_show *show,
1289 				      const struct btf_type *t,
1290 				      u32 type_id, void *data)
1291 {
1292 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1293 
1294 	if (!safe_data)
1295 		return safe_data;
1296 
1297 	btf_show(show, "%s%s%s", btf_show_indent(show),
1298 		 btf_show_name(show),
1299 		 btf_show_newline(show));
1300 	show->state.depth++;
1301 	return safe_data;
1302 }
1303 
btf_show_end_aggr_type(struct btf_show * show,const char * suffix)1304 static void btf_show_end_aggr_type(struct btf_show *show,
1305 				   const char *suffix)
1306 {
1307 	show->state.depth--;
1308 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1309 		 btf_show_delim(show), btf_show_newline(show));
1310 	btf_show_end_type(show);
1311 }
1312 
btf_show_start_member(struct btf_show * show,const struct btf_member * m)1313 static void btf_show_start_member(struct btf_show *show,
1314 				  const struct btf_member *m)
1315 {
1316 	show->state.member = m;
1317 }
1318 
btf_show_start_array_member(struct btf_show * show)1319 static void btf_show_start_array_member(struct btf_show *show)
1320 {
1321 	show->state.array_member = 1;
1322 	btf_show_start_member(show, NULL);
1323 }
1324 
btf_show_end_member(struct btf_show * show)1325 static void btf_show_end_member(struct btf_show *show)
1326 {
1327 	show->state.member = NULL;
1328 }
1329 
btf_show_end_array_member(struct btf_show * show)1330 static void btf_show_end_array_member(struct btf_show *show)
1331 {
1332 	show->state.array_member = 0;
1333 	btf_show_end_member(show);
1334 }
1335 
btf_show_start_array_type(struct btf_show * show,const struct btf_type * t,u32 type_id,u16 array_encoding,void * data)1336 static void *btf_show_start_array_type(struct btf_show *show,
1337 				       const struct btf_type *t,
1338 				       u32 type_id,
1339 				       u16 array_encoding,
1340 				       void *data)
1341 {
1342 	show->state.array_encoding = array_encoding;
1343 	show->state.array_terminated = 0;
1344 	return btf_show_start_aggr_type(show, t, type_id, data);
1345 }
1346 
btf_show_end_array_type(struct btf_show * show)1347 static void btf_show_end_array_type(struct btf_show *show)
1348 {
1349 	show->state.array_encoding = 0;
1350 	show->state.array_terminated = 0;
1351 	btf_show_end_aggr_type(show, "]");
1352 }
1353 
btf_show_start_struct_type(struct btf_show * show,const struct btf_type * t,u32 type_id,void * data)1354 static void *btf_show_start_struct_type(struct btf_show *show,
1355 					const struct btf_type *t,
1356 					u32 type_id,
1357 					void *data)
1358 {
1359 	return btf_show_start_aggr_type(show, t, type_id, data);
1360 }
1361 
btf_show_end_struct_type(struct btf_show * show)1362 static void btf_show_end_struct_type(struct btf_show *show)
1363 {
1364 	btf_show_end_aggr_type(show, "}");
1365 }
1366 
__btf_verifier_log(struct bpf_verifier_log * log,const char * fmt,...)1367 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1368 					      const char *fmt, ...)
1369 {
1370 	va_list args;
1371 
1372 	va_start(args, fmt);
1373 	bpf_verifier_vlog(log, fmt, args);
1374 	va_end(args);
1375 }
1376 
btf_verifier_log(struct btf_verifier_env * env,const char * fmt,...)1377 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1378 					    const char *fmt, ...)
1379 {
1380 	struct bpf_verifier_log *log = &env->log;
1381 	va_list args;
1382 
1383 	if (!bpf_verifier_log_needed(log))
1384 		return;
1385 
1386 	va_start(args, fmt);
1387 	bpf_verifier_vlog(log, fmt, args);
1388 	va_end(args);
1389 }
1390 
__btf_verifier_log_type(struct btf_verifier_env * env,const struct btf_type * t,bool log_details,const char * fmt,...)1391 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1392 						   const struct btf_type *t,
1393 						   bool log_details,
1394 						   const char *fmt, ...)
1395 {
1396 	struct bpf_verifier_log *log = &env->log;
1397 	struct btf *btf = env->btf;
1398 	va_list args;
1399 
1400 	if (!bpf_verifier_log_needed(log))
1401 		return;
1402 
1403 	if (log->level == BPF_LOG_KERNEL) {
1404 		/* btf verifier prints all types it is processing via
1405 		 * btf_verifier_log_type(..., fmt = NULL).
1406 		 * Skip those prints for in-kernel BTF verification.
1407 		 */
1408 		if (!fmt)
1409 			return;
1410 
1411 		/* Skip logging when loading module BTF with mismatches permitted */
1412 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1413 			return;
1414 	}
1415 
1416 	__btf_verifier_log(log, "[%u] %s %s%s",
1417 			   env->log_type_id,
1418 			   btf_type_str(t),
1419 			   __btf_name_by_offset(btf, t->name_off),
1420 			   log_details ? " " : "");
1421 
1422 	if (log_details)
1423 		btf_type_ops(t)->log_details(env, t);
1424 
1425 	if (fmt && *fmt) {
1426 		__btf_verifier_log(log, " ");
1427 		va_start(args, fmt);
1428 		bpf_verifier_vlog(log, fmt, args);
1429 		va_end(args);
1430 	}
1431 
1432 	__btf_verifier_log(log, "\n");
1433 }
1434 
1435 #define btf_verifier_log_type(env, t, ...) \
1436 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1437 #define btf_verifier_log_basic(env, t, ...) \
1438 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1439 
1440 __printf(4, 5)
btf_verifier_log_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const char * fmt,...)1441 static void btf_verifier_log_member(struct btf_verifier_env *env,
1442 				    const struct btf_type *struct_type,
1443 				    const struct btf_member *member,
1444 				    const char *fmt, ...)
1445 {
1446 	struct bpf_verifier_log *log = &env->log;
1447 	struct btf *btf = env->btf;
1448 	va_list args;
1449 
1450 	if (!bpf_verifier_log_needed(log))
1451 		return;
1452 
1453 	if (log->level == BPF_LOG_KERNEL) {
1454 		if (!fmt)
1455 			return;
1456 
1457 		/* Skip logging when loading module BTF with mismatches permitted */
1458 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1459 			return;
1460 	}
1461 
1462 	/* The CHECK_META phase already did a btf dump.
1463 	 *
1464 	 * If member is logged again, it must hit an error in
1465 	 * parsing this member.  It is useful to print out which
1466 	 * struct this member belongs to.
1467 	 */
1468 	if (env->phase != CHECK_META)
1469 		btf_verifier_log_type(env, struct_type, NULL);
1470 
1471 	if (btf_type_kflag(struct_type))
1472 		__btf_verifier_log(log,
1473 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1474 				   __btf_name_by_offset(btf, member->name_off),
1475 				   member->type,
1476 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1477 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1478 	else
1479 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1480 				   __btf_name_by_offset(btf, member->name_off),
1481 				   member->type, member->offset);
1482 
1483 	if (fmt && *fmt) {
1484 		__btf_verifier_log(log, " ");
1485 		va_start(args, fmt);
1486 		bpf_verifier_vlog(log, fmt, args);
1487 		va_end(args);
1488 	}
1489 
1490 	__btf_verifier_log(log, "\n");
1491 }
1492 
1493 __printf(4, 5)
btf_verifier_log_vsi(struct btf_verifier_env * env,const struct btf_type * datasec_type,const struct btf_var_secinfo * vsi,const char * fmt,...)1494 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1495 				 const struct btf_type *datasec_type,
1496 				 const struct btf_var_secinfo *vsi,
1497 				 const char *fmt, ...)
1498 {
1499 	struct bpf_verifier_log *log = &env->log;
1500 	va_list args;
1501 
1502 	if (!bpf_verifier_log_needed(log))
1503 		return;
1504 	if (log->level == BPF_LOG_KERNEL && !fmt)
1505 		return;
1506 	if (env->phase != CHECK_META)
1507 		btf_verifier_log_type(env, datasec_type, NULL);
1508 
1509 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1510 			   vsi->type, vsi->offset, vsi->size);
1511 	if (fmt && *fmt) {
1512 		__btf_verifier_log(log, " ");
1513 		va_start(args, fmt);
1514 		bpf_verifier_vlog(log, fmt, args);
1515 		va_end(args);
1516 	}
1517 
1518 	__btf_verifier_log(log, "\n");
1519 }
1520 
btf_verifier_log_hdr(struct btf_verifier_env * env,u32 btf_data_size)1521 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1522 				 u32 btf_data_size)
1523 {
1524 	struct bpf_verifier_log *log = &env->log;
1525 	const struct btf *btf = env->btf;
1526 	const struct btf_header *hdr;
1527 
1528 	if (!bpf_verifier_log_needed(log))
1529 		return;
1530 
1531 	if (log->level == BPF_LOG_KERNEL)
1532 		return;
1533 	hdr = &btf->hdr;
1534 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1535 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1536 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1537 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1538 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1539 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1540 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1541 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1542 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1543 }
1544 
btf_add_type(struct btf_verifier_env * env,struct btf_type * t)1545 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1546 {
1547 	struct btf *btf = env->btf;
1548 
1549 	if (btf->types_size == btf->nr_types) {
1550 		/* Expand 'types' array */
1551 
1552 		struct btf_type **new_types;
1553 		u32 expand_by, new_size;
1554 
1555 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1556 			btf_verifier_log(env, "Exceeded max num of types");
1557 			return -E2BIG;
1558 		}
1559 
1560 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1561 		new_size = min_t(u32, BTF_MAX_TYPE,
1562 				 btf->types_size + expand_by);
1563 
1564 		new_types = kvcalloc(new_size, sizeof(*new_types),
1565 				     GFP_KERNEL | __GFP_NOWARN);
1566 		if (!new_types)
1567 			return -ENOMEM;
1568 
1569 		if (btf->nr_types == 0) {
1570 			if (!btf->base_btf) {
1571 				/* lazily init VOID type */
1572 				new_types[0] = &btf_void;
1573 				btf->nr_types++;
1574 			}
1575 		} else {
1576 			memcpy(new_types, btf->types,
1577 			       sizeof(*btf->types) * btf->nr_types);
1578 		}
1579 
1580 		kvfree(btf->types);
1581 		btf->types = new_types;
1582 		btf->types_size = new_size;
1583 	}
1584 
1585 	btf->types[btf->nr_types++] = t;
1586 
1587 	return 0;
1588 }
1589 
btf_alloc_id(struct btf * btf)1590 static int btf_alloc_id(struct btf *btf)
1591 {
1592 	int id;
1593 
1594 	idr_preload(GFP_KERNEL);
1595 	spin_lock_bh(&btf_idr_lock);
1596 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1597 	if (id > 0)
1598 		btf->id = id;
1599 	spin_unlock_bh(&btf_idr_lock);
1600 	idr_preload_end();
1601 
1602 	if (WARN_ON_ONCE(!id))
1603 		return -ENOSPC;
1604 
1605 	return id > 0 ? 0 : id;
1606 }
1607 
btf_free_id(struct btf * btf)1608 static void btf_free_id(struct btf *btf)
1609 {
1610 	unsigned long flags;
1611 
1612 	/*
1613 	 * In map-in-map, calling map_delete_elem() on outer
1614 	 * map will call bpf_map_put on the inner map.
1615 	 * It will then eventually call btf_free_id()
1616 	 * on the inner map.  Some of the map_delete_elem()
1617 	 * implementation may have irq disabled, so
1618 	 * we need to use the _irqsave() version instead
1619 	 * of the _bh() version.
1620 	 */
1621 	spin_lock_irqsave(&btf_idr_lock, flags);
1622 	idr_remove(&btf_idr, btf->id);
1623 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1624 }
1625 
btf_free_kfunc_set_tab(struct btf * btf)1626 static void btf_free_kfunc_set_tab(struct btf *btf)
1627 {
1628 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1629 	int hook;
1630 
1631 	if (!tab)
1632 		return;
1633 	/* For module BTF, we directly assign the sets being registered, so
1634 	 * there is nothing to free except kfunc_set_tab.
1635 	 */
1636 	if (btf_is_module(btf))
1637 		goto free_tab;
1638 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1639 		kfree(tab->sets[hook]);
1640 free_tab:
1641 	kfree(tab);
1642 	btf->kfunc_set_tab = NULL;
1643 }
1644 
btf_free_dtor_kfunc_tab(struct btf * btf)1645 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1646 {
1647 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1648 
1649 	if (!tab)
1650 		return;
1651 	kfree(tab);
1652 	btf->dtor_kfunc_tab = NULL;
1653 }
1654 
btf_free(struct btf * btf)1655 static void btf_free(struct btf *btf)
1656 {
1657 	btf_free_dtor_kfunc_tab(btf);
1658 	btf_free_kfunc_set_tab(btf);
1659 	kvfree(btf->types);
1660 	kvfree(btf->resolved_sizes);
1661 	kvfree(btf->resolved_ids);
1662 	kvfree(btf->data);
1663 	kfree(btf);
1664 }
1665 
btf_free_rcu(struct rcu_head * rcu)1666 static void btf_free_rcu(struct rcu_head *rcu)
1667 {
1668 	struct btf *btf = container_of(rcu, struct btf, rcu);
1669 
1670 	btf_free(btf);
1671 }
1672 
btf_get(struct btf * btf)1673 void btf_get(struct btf *btf)
1674 {
1675 	refcount_inc(&btf->refcnt);
1676 }
1677 
btf_put(struct btf * btf)1678 void btf_put(struct btf *btf)
1679 {
1680 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1681 		btf_free_id(btf);
1682 		call_rcu(&btf->rcu, btf_free_rcu);
1683 	}
1684 }
1685 
env_resolve_init(struct btf_verifier_env * env)1686 static int env_resolve_init(struct btf_verifier_env *env)
1687 {
1688 	struct btf *btf = env->btf;
1689 	u32 nr_types = btf->nr_types;
1690 	u32 *resolved_sizes = NULL;
1691 	u32 *resolved_ids = NULL;
1692 	u8 *visit_states = NULL;
1693 
1694 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1695 				  GFP_KERNEL | __GFP_NOWARN);
1696 	if (!resolved_sizes)
1697 		goto nomem;
1698 
1699 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1700 				GFP_KERNEL | __GFP_NOWARN);
1701 	if (!resolved_ids)
1702 		goto nomem;
1703 
1704 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1705 				GFP_KERNEL | __GFP_NOWARN);
1706 	if (!visit_states)
1707 		goto nomem;
1708 
1709 	btf->resolved_sizes = resolved_sizes;
1710 	btf->resolved_ids = resolved_ids;
1711 	env->visit_states = visit_states;
1712 
1713 	return 0;
1714 
1715 nomem:
1716 	kvfree(resolved_sizes);
1717 	kvfree(resolved_ids);
1718 	kvfree(visit_states);
1719 	return -ENOMEM;
1720 }
1721 
btf_verifier_env_free(struct btf_verifier_env * env)1722 static void btf_verifier_env_free(struct btf_verifier_env *env)
1723 {
1724 	kvfree(env->visit_states);
1725 	kfree(env);
1726 }
1727 
env_type_is_resolve_sink(const struct btf_verifier_env * env,const struct btf_type * next_type)1728 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1729 				     const struct btf_type *next_type)
1730 {
1731 	switch (env->resolve_mode) {
1732 	case RESOLVE_TBD:
1733 		/* int, enum or void is a sink */
1734 		return !btf_type_needs_resolve(next_type);
1735 	case RESOLVE_PTR:
1736 		/* int, enum, void, struct, array, func or func_proto is a sink
1737 		 * for ptr
1738 		 */
1739 		return !btf_type_is_modifier(next_type) &&
1740 			!btf_type_is_ptr(next_type);
1741 	case RESOLVE_STRUCT_OR_ARRAY:
1742 		/* int, enum, void, ptr, func or func_proto is a sink
1743 		 * for struct and array
1744 		 */
1745 		return !btf_type_is_modifier(next_type) &&
1746 			!btf_type_is_array(next_type) &&
1747 			!btf_type_is_struct(next_type);
1748 	default:
1749 		BUG();
1750 	}
1751 }
1752 
env_type_is_resolved(const struct btf_verifier_env * env,u32 type_id)1753 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1754 				 u32 type_id)
1755 {
1756 	/* base BTF types should be resolved by now */
1757 	if (type_id < env->btf->start_id)
1758 		return true;
1759 
1760 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1761 }
1762 
env_stack_push(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)1763 static int env_stack_push(struct btf_verifier_env *env,
1764 			  const struct btf_type *t, u32 type_id)
1765 {
1766 	const struct btf *btf = env->btf;
1767 	struct resolve_vertex *v;
1768 
1769 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1770 		return -E2BIG;
1771 
1772 	if (type_id < btf->start_id
1773 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1774 		return -EEXIST;
1775 
1776 	env->visit_states[type_id - btf->start_id] = VISITED;
1777 
1778 	v = &env->stack[env->top_stack++];
1779 	v->t = t;
1780 	v->type_id = type_id;
1781 	v->next_member = 0;
1782 
1783 	if (env->resolve_mode == RESOLVE_TBD) {
1784 		if (btf_type_is_ptr(t))
1785 			env->resolve_mode = RESOLVE_PTR;
1786 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1787 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1788 	}
1789 
1790 	return 0;
1791 }
1792 
env_stack_set_next_member(struct btf_verifier_env * env,u16 next_member)1793 static void env_stack_set_next_member(struct btf_verifier_env *env,
1794 				      u16 next_member)
1795 {
1796 	env->stack[env->top_stack - 1].next_member = next_member;
1797 }
1798 
env_stack_pop_resolved(struct btf_verifier_env * env,u32 resolved_type_id,u32 resolved_size)1799 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1800 				   u32 resolved_type_id,
1801 				   u32 resolved_size)
1802 {
1803 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1804 	struct btf *btf = env->btf;
1805 
1806 	type_id -= btf->start_id; /* adjust to local type id */
1807 	btf->resolved_sizes[type_id] = resolved_size;
1808 	btf->resolved_ids[type_id] = resolved_type_id;
1809 	env->visit_states[type_id] = RESOLVED;
1810 }
1811 
env_stack_peak(struct btf_verifier_env * env)1812 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1813 {
1814 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1815 }
1816 
1817 /* Resolve the size of a passed-in "type"
1818  *
1819  * type: is an array (e.g. u32 array[x][y])
1820  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1821  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1822  *             corresponds to the return type.
1823  * *elem_type: u32
1824  * *elem_id: id of u32
1825  * *total_nelems: (x * y).  Hence, individual elem size is
1826  *                (*type_size / *total_nelems)
1827  * *type_id: id of type if it's changed within the function, 0 if not
1828  *
1829  * type: is not an array (e.g. const struct X)
1830  * return type: type "struct X"
1831  * *type_size: sizeof(struct X)
1832  * *elem_type: same as return type ("struct X")
1833  * *elem_id: 0
1834  * *total_nelems: 1
1835  * *type_id: id of type if it's changed within the function, 0 if not
1836  */
1837 static const struct btf_type *
__btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size,const struct btf_type ** elem_type,u32 * elem_id,u32 * total_nelems,u32 * type_id)1838 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1839 		   u32 *type_size, const struct btf_type **elem_type,
1840 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1841 {
1842 	const struct btf_type *array_type = NULL;
1843 	const struct btf_array *array = NULL;
1844 	u32 i, size, nelems = 1, id = 0;
1845 
1846 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1847 		switch (BTF_INFO_KIND(type->info)) {
1848 		/* type->size can be used */
1849 		case BTF_KIND_INT:
1850 		case BTF_KIND_STRUCT:
1851 		case BTF_KIND_UNION:
1852 		case BTF_KIND_ENUM:
1853 		case BTF_KIND_FLOAT:
1854 		case BTF_KIND_ENUM64:
1855 			size = type->size;
1856 			goto resolved;
1857 
1858 		case BTF_KIND_PTR:
1859 			size = sizeof(void *);
1860 			goto resolved;
1861 
1862 		/* Modifiers */
1863 		case BTF_KIND_TYPEDEF:
1864 		case BTF_KIND_VOLATILE:
1865 		case BTF_KIND_CONST:
1866 		case BTF_KIND_RESTRICT:
1867 		case BTF_KIND_TYPE_TAG:
1868 			id = type->type;
1869 			type = btf_type_by_id(btf, type->type);
1870 			break;
1871 
1872 		case BTF_KIND_ARRAY:
1873 			if (!array_type)
1874 				array_type = type;
1875 			array = btf_type_array(type);
1876 			if (nelems && array->nelems > U32_MAX / nelems)
1877 				return ERR_PTR(-EINVAL);
1878 			nelems *= array->nelems;
1879 			type = btf_type_by_id(btf, array->type);
1880 			break;
1881 
1882 		/* type without size */
1883 		default:
1884 			return ERR_PTR(-EINVAL);
1885 		}
1886 	}
1887 
1888 	return ERR_PTR(-EINVAL);
1889 
1890 resolved:
1891 	if (nelems && size > U32_MAX / nelems)
1892 		return ERR_PTR(-EINVAL);
1893 
1894 	*type_size = nelems * size;
1895 	if (total_nelems)
1896 		*total_nelems = nelems;
1897 	if (elem_type)
1898 		*elem_type = type;
1899 	if (elem_id)
1900 		*elem_id = array ? array->type : 0;
1901 	if (type_id && id)
1902 		*type_id = id;
1903 
1904 	return array_type ? : type;
1905 }
1906 
1907 const struct btf_type *
btf_resolve_size(const struct btf * btf,const struct btf_type * type,u32 * type_size)1908 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1909 		 u32 *type_size)
1910 {
1911 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1912 }
1913 
btf_resolved_type_id(const struct btf * btf,u32 type_id)1914 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1915 {
1916 	while (type_id < btf->start_id)
1917 		btf = btf->base_btf;
1918 
1919 	return btf->resolved_ids[type_id - btf->start_id];
1920 }
1921 
1922 /* The input param "type_id" must point to a needs_resolve type */
btf_type_id_resolve(const struct btf * btf,u32 * type_id)1923 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1924 						  u32 *type_id)
1925 {
1926 	*type_id = btf_resolved_type_id(btf, *type_id);
1927 	return btf_type_by_id(btf, *type_id);
1928 }
1929 
btf_resolved_type_size(const struct btf * btf,u32 type_id)1930 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1931 {
1932 	while (type_id < btf->start_id)
1933 		btf = btf->base_btf;
1934 
1935 	return btf->resolved_sizes[type_id - btf->start_id];
1936 }
1937 
btf_type_id_size(const struct btf * btf,u32 * type_id,u32 * ret_size)1938 const struct btf_type *btf_type_id_size(const struct btf *btf,
1939 					u32 *type_id, u32 *ret_size)
1940 {
1941 	const struct btf_type *size_type;
1942 	u32 size_type_id = *type_id;
1943 	u32 size = 0;
1944 
1945 	size_type = btf_type_by_id(btf, size_type_id);
1946 	if (btf_type_nosize_or_null(size_type))
1947 		return NULL;
1948 
1949 	if (btf_type_has_size(size_type)) {
1950 		size = size_type->size;
1951 	} else if (btf_type_is_array(size_type)) {
1952 		size = btf_resolved_type_size(btf, size_type_id);
1953 	} else if (btf_type_is_ptr(size_type)) {
1954 		size = sizeof(void *);
1955 	} else {
1956 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1957 				 !btf_type_is_var(size_type)))
1958 			return NULL;
1959 
1960 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1961 		size_type = btf_type_by_id(btf, size_type_id);
1962 		if (btf_type_nosize_or_null(size_type))
1963 			return NULL;
1964 		else if (btf_type_has_size(size_type))
1965 			size = size_type->size;
1966 		else if (btf_type_is_array(size_type))
1967 			size = btf_resolved_type_size(btf, size_type_id);
1968 		else if (btf_type_is_ptr(size_type))
1969 			size = sizeof(void *);
1970 		else
1971 			return NULL;
1972 	}
1973 
1974 	*type_id = size_type_id;
1975 	if (ret_size)
1976 		*ret_size = size;
1977 
1978 	return size_type;
1979 }
1980 
btf_df_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1981 static int btf_df_check_member(struct btf_verifier_env *env,
1982 			       const struct btf_type *struct_type,
1983 			       const struct btf_member *member,
1984 			       const struct btf_type *member_type)
1985 {
1986 	btf_verifier_log_basic(env, struct_type,
1987 			       "Unsupported check_member");
1988 	return -EINVAL;
1989 }
1990 
btf_df_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)1991 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1992 				     const struct btf_type *struct_type,
1993 				     const struct btf_member *member,
1994 				     const struct btf_type *member_type)
1995 {
1996 	btf_verifier_log_basic(env, struct_type,
1997 			       "Unsupported check_kflag_member");
1998 	return -EINVAL;
1999 }
2000 
2001 /* Used for ptr, array struct/union and float type members.
2002  * int, enum and modifier types have their specific callback functions.
2003  */
btf_generic_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2004 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2005 					  const struct btf_type *struct_type,
2006 					  const struct btf_member *member,
2007 					  const struct btf_type *member_type)
2008 {
2009 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2010 		btf_verifier_log_member(env, struct_type, member,
2011 					"Invalid member bitfield_size");
2012 		return -EINVAL;
2013 	}
2014 
2015 	/* bitfield size is 0, so member->offset represents bit offset only.
2016 	 * It is safe to call non kflag check_member variants.
2017 	 */
2018 	return btf_type_ops(member_type)->check_member(env, struct_type,
2019 						       member,
2020 						       member_type);
2021 }
2022 
btf_df_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2023 static int btf_df_resolve(struct btf_verifier_env *env,
2024 			  const struct resolve_vertex *v)
2025 {
2026 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2027 	return -EINVAL;
2028 }
2029 
btf_df_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offsets,struct btf_show * show)2030 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2031 			u32 type_id, void *data, u8 bits_offsets,
2032 			struct btf_show *show)
2033 {
2034 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2035 }
2036 
btf_int_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2037 static int btf_int_check_member(struct btf_verifier_env *env,
2038 				const struct btf_type *struct_type,
2039 				const struct btf_member *member,
2040 				const struct btf_type *member_type)
2041 {
2042 	u32 int_data = btf_type_int(member_type);
2043 	u32 struct_bits_off = member->offset;
2044 	u32 struct_size = struct_type->size;
2045 	u32 nr_copy_bits;
2046 	u32 bytes_offset;
2047 
2048 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2049 		btf_verifier_log_member(env, struct_type, member,
2050 					"bits_offset exceeds U32_MAX");
2051 		return -EINVAL;
2052 	}
2053 
2054 	struct_bits_off += BTF_INT_OFFSET(int_data);
2055 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2056 	nr_copy_bits = BTF_INT_BITS(int_data) +
2057 		BITS_PER_BYTE_MASKED(struct_bits_off);
2058 
2059 	if (nr_copy_bits > BITS_PER_U128) {
2060 		btf_verifier_log_member(env, struct_type, member,
2061 					"nr_copy_bits exceeds 128");
2062 		return -EINVAL;
2063 	}
2064 
2065 	if (struct_size < bytes_offset ||
2066 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2067 		btf_verifier_log_member(env, struct_type, member,
2068 					"Member exceeds struct_size");
2069 		return -EINVAL;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
btf_int_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2075 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2076 				      const struct btf_type *struct_type,
2077 				      const struct btf_member *member,
2078 				      const struct btf_type *member_type)
2079 {
2080 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2081 	u32 int_data = btf_type_int(member_type);
2082 	u32 struct_size = struct_type->size;
2083 	u32 nr_copy_bits;
2084 
2085 	/* a regular int type is required for the kflag int member */
2086 	if (!btf_type_int_is_regular(member_type)) {
2087 		btf_verifier_log_member(env, struct_type, member,
2088 					"Invalid member base type");
2089 		return -EINVAL;
2090 	}
2091 
2092 	/* check sanity of bitfield size */
2093 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2094 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2095 	nr_int_data_bits = BTF_INT_BITS(int_data);
2096 	if (!nr_bits) {
2097 		/* Not a bitfield member, member offset must be at byte
2098 		 * boundary.
2099 		 */
2100 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2101 			btf_verifier_log_member(env, struct_type, member,
2102 						"Invalid member offset");
2103 			return -EINVAL;
2104 		}
2105 
2106 		nr_bits = nr_int_data_bits;
2107 	} else if (nr_bits > nr_int_data_bits) {
2108 		btf_verifier_log_member(env, struct_type, member,
2109 					"Invalid member bitfield_size");
2110 		return -EINVAL;
2111 	}
2112 
2113 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2114 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2115 	if (nr_copy_bits > BITS_PER_U128) {
2116 		btf_verifier_log_member(env, struct_type, member,
2117 					"nr_copy_bits exceeds 128");
2118 		return -EINVAL;
2119 	}
2120 
2121 	if (struct_size < bytes_offset ||
2122 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2123 		btf_verifier_log_member(env, struct_type, member,
2124 					"Member exceeds struct_size");
2125 		return -EINVAL;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
btf_int_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2131 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2132 			      const struct btf_type *t,
2133 			      u32 meta_left)
2134 {
2135 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2136 	u16 encoding;
2137 
2138 	if (meta_left < meta_needed) {
2139 		btf_verifier_log_basic(env, t,
2140 				       "meta_left:%u meta_needed:%u",
2141 				       meta_left, meta_needed);
2142 		return -EINVAL;
2143 	}
2144 
2145 	if (btf_type_vlen(t)) {
2146 		btf_verifier_log_type(env, t, "vlen != 0");
2147 		return -EINVAL;
2148 	}
2149 
2150 	if (btf_type_kflag(t)) {
2151 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2152 		return -EINVAL;
2153 	}
2154 
2155 	int_data = btf_type_int(t);
2156 	if (int_data & ~BTF_INT_MASK) {
2157 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2158 				       int_data);
2159 		return -EINVAL;
2160 	}
2161 
2162 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2163 
2164 	if (nr_bits > BITS_PER_U128) {
2165 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2166 				      BITS_PER_U128);
2167 		return -EINVAL;
2168 	}
2169 
2170 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2171 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2172 		return -EINVAL;
2173 	}
2174 
2175 	/*
2176 	 * Only one of the encoding bits is allowed and it
2177 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2178 	 * Multiple bits can be allowed later if it is found
2179 	 * to be insufficient.
2180 	 */
2181 	encoding = BTF_INT_ENCODING(int_data);
2182 	if (encoding &&
2183 	    encoding != BTF_INT_SIGNED &&
2184 	    encoding != BTF_INT_CHAR &&
2185 	    encoding != BTF_INT_BOOL) {
2186 		btf_verifier_log_type(env, t, "Unsupported encoding");
2187 		return -ENOTSUPP;
2188 	}
2189 
2190 	btf_verifier_log_type(env, t, NULL);
2191 
2192 	return meta_needed;
2193 }
2194 
btf_int_log(struct btf_verifier_env * env,const struct btf_type * t)2195 static void btf_int_log(struct btf_verifier_env *env,
2196 			const struct btf_type *t)
2197 {
2198 	int int_data = btf_type_int(t);
2199 
2200 	btf_verifier_log(env,
2201 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2202 			 t->size, BTF_INT_OFFSET(int_data),
2203 			 BTF_INT_BITS(int_data),
2204 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2205 }
2206 
btf_int128_print(struct btf_show * show,void * data)2207 static void btf_int128_print(struct btf_show *show, void *data)
2208 {
2209 	/* data points to a __int128 number.
2210 	 * Suppose
2211 	 *     int128_num = *(__int128 *)data;
2212 	 * The below formulas shows what upper_num and lower_num represents:
2213 	 *     upper_num = int128_num >> 64;
2214 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2215 	 */
2216 	u64 upper_num, lower_num;
2217 
2218 #ifdef __BIG_ENDIAN_BITFIELD
2219 	upper_num = *(u64 *)data;
2220 	lower_num = *(u64 *)(data + 8);
2221 #else
2222 	upper_num = *(u64 *)(data + 8);
2223 	lower_num = *(u64 *)data;
2224 #endif
2225 	if (upper_num == 0)
2226 		btf_show_type_value(show, "0x%llx", lower_num);
2227 	else
2228 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2229 				     lower_num);
2230 }
2231 
btf_int128_shift(u64 * print_num,u16 left_shift_bits,u16 right_shift_bits)2232 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2233 			     u16 right_shift_bits)
2234 {
2235 	u64 upper_num, lower_num;
2236 
2237 #ifdef __BIG_ENDIAN_BITFIELD
2238 	upper_num = print_num[0];
2239 	lower_num = print_num[1];
2240 #else
2241 	upper_num = print_num[1];
2242 	lower_num = print_num[0];
2243 #endif
2244 
2245 	/* shake out un-needed bits by shift/or operations */
2246 	if (left_shift_bits >= 64) {
2247 		upper_num = lower_num << (left_shift_bits - 64);
2248 		lower_num = 0;
2249 	} else {
2250 		upper_num = (upper_num << left_shift_bits) |
2251 			    (lower_num >> (64 - left_shift_bits));
2252 		lower_num = lower_num << left_shift_bits;
2253 	}
2254 
2255 	if (right_shift_bits >= 64) {
2256 		lower_num = upper_num >> (right_shift_bits - 64);
2257 		upper_num = 0;
2258 	} else {
2259 		lower_num = (lower_num >> right_shift_bits) |
2260 			    (upper_num << (64 - right_shift_bits));
2261 		upper_num = upper_num >> right_shift_bits;
2262 	}
2263 
2264 #ifdef __BIG_ENDIAN_BITFIELD
2265 	print_num[0] = upper_num;
2266 	print_num[1] = lower_num;
2267 #else
2268 	print_num[0] = lower_num;
2269 	print_num[1] = upper_num;
2270 #endif
2271 }
2272 
btf_bitfield_show(void * data,u8 bits_offset,u8 nr_bits,struct btf_show * show)2273 static void btf_bitfield_show(void *data, u8 bits_offset,
2274 			      u8 nr_bits, struct btf_show *show)
2275 {
2276 	u16 left_shift_bits, right_shift_bits;
2277 	u8 nr_copy_bytes;
2278 	u8 nr_copy_bits;
2279 	u64 print_num[2] = {};
2280 
2281 	nr_copy_bits = nr_bits + bits_offset;
2282 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2283 
2284 	memcpy(print_num, data, nr_copy_bytes);
2285 
2286 #ifdef __BIG_ENDIAN_BITFIELD
2287 	left_shift_bits = bits_offset;
2288 #else
2289 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2290 #endif
2291 	right_shift_bits = BITS_PER_U128 - nr_bits;
2292 
2293 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2294 	btf_int128_print(show, print_num);
2295 }
2296 
2297 
btf_int_bits_show(const struct btf * btf,const struct btf_type * t,void * data,u8 bits_offset,struct btf_show * show)2298 static void btf_int_bits_show(const struct btf *btf,
2299 			      const struct btf_type *t,
2300 			      void *data, u8 bits_offset,
2301 			      struct btf_show *show)
2302 {
2303 	u32 int_data = btf_type_int(t);
2304 	u8 nr_bits = BTF_INT_BITS(int_data);
2305 	u8 total_bits_offset;
2306 
2307 	/*
2308 	 * bits_offset is at most 7.
2309 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2310 	 */
2311 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2312 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2313 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2314 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2315 }
2316 
btf_int_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2317 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2318 			 u32 type_id, void *data, u8 bits_offset,
2319 			 struct btf_show *show)
2320 {
2321 	u32 int_data = btf_type_int(t);
2322 	u8 encoding = BTF_INT_ENCODING(int_data);
2323 	bool sign = encoding & BTF_INT_SIGNED;
2324 	u8 nr_bits = BTF_INT_BITS(int_data);
2325 	void *safe_data;
2326 
2327 	safe_data = btf_show_start_type(show, t, type_id, data);
2328 	if (!safe_data)
2329 		return;
2330 
2331 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2332 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2333 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2334 		goto out;
2335 	}
2336 
2337 	switch (nr_bits) {
2338 	case 128:
2339 		btf_int128_print(show, safe_data);
2340 		break;
2341 	case 64:
2342 		if (sign)
2343 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2344 		else
2345 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2346 		break;
2347 	case 32:
2348 		if (sign)
2349 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2350 		else
2351 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2352 		break;
2353 	case 16:
2354 		if (sign)
2355 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2356 		else
2357 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2358 		break;
2359 	case 8:
2360 		if (show->state.array_encoding == BTF_INT_CHAR) {
2361 			/* check for null terminator */
2362 			if (show->state.array_terminated)
2363 				break;
2364 			if (*(char *)data == '\0') {
2365 				show->state.array_terminated = 1;
2366 				break;
2367 			}
2368 			if (isprint(*(char *)data)) {
2369 				btf_show_type_value(show, "'%c'",
2370 						    *(char *)safe_data);
2371 				break;
2372 			}
2373 		}
2374 		if (sign)
2375 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2376 		else
2377 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2378 		break;
2379 	default:
2380 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2381 		break;
2382 	}
2383 out:
2384 	btf_show_end_type(show);
2385 }
2386 
2387 static const struct btf_kind_operations int_ops = {
2388 	.check_meta = btf_int_check_meta,
2389 	.resolve = btf_df_resolve,
2390 	.check_member = btf_int_check_member,
2391 	.check_kflag_member = btf_int_check_kflag_member,
2392 	.log_details = btf_int_log,
2393 	.show = btf_int_show,
2394 };
2395 
btf_modifier_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2396 static int btf_modifier_check_member(struct btf_verifier_env *env,
2397 				     const struct btf_type *struct_type,
2398 				     const struct btf_member *member,
2399 				     const struct btf_type *member_type)
2400 {
2401 	const struct btf_type *resolved_type;
2402 	u32 resolved_type_id = member->type;
2403 	struct btf_member resolved_member;
2404 	struct btf *btf = env->btf;
2405 
2406 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2407 	if (!resolved_type) {
2408 		btf_verifier_log_member(env, struct_type, member,
2409 					"Invalid member");
2410 		return -EINVAL;
2411 	}
2412 
2413 	resolved_member = *member;
2414 	resolved_member.type = resolved_type_id;
2415 
2416 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2417 							 &resolved_member,
2418 							 resolved_type);
2419 }
2420 
btf_modifier_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2421 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2422 					   const struct btf_type *struct_type,
2423 					   const struct btf_member *member,
2424 					   const struct btf_type *member_type)
2425 {
2426 	const struct btf_type *resolved_type;
2427 	u32 resolved_type_id = member->type;
2428 	struct btf_member resolved_member;
2429 	struct btf *btf = env->btf;
2430 
2431 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2432 	if (!resolved_type) {
2433 		btf_verifier_log_member(env, struct_type, member,
2434 					"Invalid member");
2435 		return -EINVAL;
2436 	}
2437 
2438 	resolved_member = *member;
2439 	resolved_member.type = resolved_type_id;
2440 
2441 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2442 							       &resolved_member,
2443 							       resolved_type);
2444 }
2445 
btf_ptr_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2446 static int btf_ptr_check_member(struct btf_verifier_env *env,
2447 				const struct btf_type *struct_type,
2448 				const struct btf_member *member,
2449 				const struct btf_type *member_type)
2450 {
2451 	u32 struct_size, struct_bits_off, bytes_offset;
2452 
2453 	struct_size = struct_type->size;
2454 	struct_bits_off = member->offset;
2455 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2456 
2457 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2458 		btf_verifier_log_member(env, struct_type, member,
2459 					"Member is not byte aligned");
2460 		return -EINVAL;
2461 	}
2462 
2463 	if (struct_size - bytes_offset < sizeof(void *)) {
2464 		btf_verifier_log_member(env, struct_type, member,
2465 					"Member exceeds struct_size");
2466 		return -EINVAL;
2467 	}
2468 
2469 	return 0;
2470 }
2471 
btf_ref_type_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2472 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2473 				   const struct btf_type *t,
2474 				   u32 meta_left)
2475 {
2476 	const char *value;
2477 
2478 	if (btf_type_vlen(t)) {
2479 		btf_verifier_log_type(env, t, "vlen != 0");
2480 		return -EINVAL;
2481 	}
2482 
2483 	if (btf_type_kflag(t)) {
2484 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2485 		return -EINVAL;
2486 	}
2487 
2488 	if (!BTF_TYPE_ID_VALID(t->type)) {
2489 		btf_verifier_log_type(env, t, "Invalid type_id");
2490 		return -EINVAL;
2491 	}
2492 
2493 	/* typedef/type_tag type must have a valid name, and other ref types,
2494 	 * volatile, const, restrict, should have a null name.
2495 	 */
2496 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2497 		if (!t->name_off ||
2498 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2499 			btf_verifier_log_type(env, t, "Invalid name");
2500 			return -EINVAL;
2501 		}
2502 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2503 		value = btf_name_by_offset(env->btf, t->name_off);
2504 		if (!value || !value[0]) {
2505 			btf_verifier_log_type(env, t, "Invalid name");
2506 			return -EINVAL;
2507 		}
2508 	} else {
2509 		if (t->name_off) {
2510 			btf_verifier_log_type(env, t, "Invalid name");
2511 			return -EINVAL;
2512 		}
2513 	}
2514 
2515 	btf_verifier_log_type(env, t, NULL);
2516 
2517 	return 0;
2518 }
2519 
btf_modifier_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2520 static int btf_modifier_resolve(struct btf_verifier_env *env,
2521 				const struct resolve_vertex *v)
2522 {
2523 	const struct btf_type *t = v->t;
2524 	const struct btf_type *next_type;
2525 	u32 next_type_id = t->type;
2526 	struct btf *btf = env->btf;
2527 
2528 	next_type = btf_type_by_id(btf, next_type_id);
2529 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2530 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2531 		return -EINVAL;
2532 	}
2533 
2534 	if (!env_type_is_resolve_sink(env, next_type) &&
2535 	    !env_type_is_resolved(env, next_type_id))
2536 		return env_stack_push(env, next_type, next_type_id);
2537 
2538 	/* Figure out the resolved next_type_id with size.
2539 	 * They will be stored in the current modifier's
2540 	 * resolved_ids and resolved_sizes such that it can
2541 	 * save us a few type-following when we use it later (e.g. in
2542 	 * pretty print).
2543 	 */
2544 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2545 		if (env_type_is_resolved(env, next_type_id))
2546 			next_type = btf_type_id_resolve(btf, &next_type_id);
2547 
2548 		/* "typedef void new_void", "const void"...etc */
2549 		if (!btf_type_is_void(next_type) &&
2550 		    !btf_type_is_fwd(next_type) &&
2551 		    !btf_type_is_func_proto(next_type)) {
2552 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2553 			return -EINVAL;
2554 		}
2555 	}
2556 
2557 	env_stack_pop_resolved(env, next_type_id, 0);
2558 
2559 	return 0;
2560 }
2561 
btf_var_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2562 static int btf_var_resolve(struct btf_verifier_env *env,
2563 			   const struct resolve_vertex *v)
2564 {
2565 	const struct btf_type *next_type;
2566 	const struct btf_type *t = v->t;
2567 	u32 next_type_id = t->type;
2568 	struct btf *btf = env->btf;
2569 
2570 	next_type = btf_type_by_id(btf, next_type_id);
2571 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2572 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2573 		return -EINVAL;
2574 	}
2575 
2576 	if (!env_type_is_resolve_sink(env, next_type) &&
2577 	    !env_type_is_resolved(env, next_type_id))
2578 		return env_stack_push(env, next_type, next_type_id);
2579 
2580 	if (btf_type_is_modifier(next_type)) {
2581 		const struct btf_type *resolved_type;
2582 		u32 resolved_type_id;
2583 
2584 		resolved_type_id = next_type_id;
2585 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2586 
2587 		if (btf_type_is_ptr(resolved_type) &&
2588 		    !env_type_is_resolve_sink(env, resolved_type) &&
2589 		    !env_type_is_resolved(env, resolved_type_id))
2590 			return env_stack_push(env, resolved_type,
2591 					      resolved_type_id);
2592 	}
2593 
2594 	/* We must resolve to something concrete at this point, no
2595 	 * forward types or similar that would resolve to size of
2596 	 * zero is allowed.
2597 	 */
2598 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2599 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2600 		return -EINVAL;
2601 	}
2602 
2603 	env_stack_pop_resolved(env, next_type_id, 0);
2604 
2605 	return 0;
2606 }
2607 
btf_ptr_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2608 static int btf_ptr_resolve(struct btf_verifier_env *env,
2609 			   const struct resolve_vertex *v)
2610 {
2611 	const struct btf_type *next_type;
2612 	const struct btf_type *t = v->t;
2613 	u32 next_type_id = t->type;
2614 	struct btf *btf = env->btf;
2615 
2616 	next_type = btf_type_by_id(btf, next_type_id);
2617 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2618 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2619 		return -EINVAL;
2620 	}
2621 
2622 	if (!env_type_is_resolve_sink(env, next_type) &&
2623 	    !env_type_is_resolved(env, next_type_id))
2624 		return env_stack_push(env, next_type, next_type_id);
2625 
2626 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2627 	 * the modifier may have stopped resolving when it was resolved
2628 	 * to a ptr (last-resolved-ptr).
2629 	 *
2630 	 * We now need to continue from the last-resolved-ptr to
2631 	 * ensure the last-resolved-ptr will not referring back to
2632 	 * the current ptr (t).
2633 	 */
2634 	if (btf_type_is_modifier(next_type)) {
2635 		const struct btf_type *resolved_type;
2636 		u32 resolved_type_id;
2637 
2638 		resolved_type_id = next_type_id;
2639 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2640 
2641 		if (btf_type_is_ptr(resolved_type) &&
2642 		    !env_type_is_resolve_sink(env, resolved_type) &&
2643 		    !env_type_is_resolved(env, resolved_type_id))
2644 			return env_stack_push(env, resolved_type,
2645 					      resolved_type_id);
2646 	}
2647 
2648 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2649 		if (env_type_is_resolved(env, next_type_id))
2650 			next_type = btf_type_id_resolve(btf, &next_type_id);
2651 
2652 		if (!btf_type_is_void(next_type) &&
2653 		    !btf_type_is_fwd(next_type) &&
2654 		    !btf_type_is_func_proto(next_type)) {
2655 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2656 			return -EINVAL;
2657 		}
2658 	}
2659 
2660 	env_stack_pop_resolved(env, next_type_id, 0);
2661 
2662 	return 0;
2663 }
2664 
btf_modifier_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2665 static void btf_modifier_show(const struct btf *btf,
2666 			      const struct btf_type *t,
2667 			      u32 type_id, void *data,
2668 			      u8 bits_offset, struct btf_show *show)
2669 {
2670 	if (btf->resolved_ids)
2671 		t = btf_type_id_resolve(btf, &type_id);
2672 	else
2673 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2674 
2675 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2676 }
2677 
btf_var_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2678 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2679 			 u32 type_id, void *data, u8 bits_offset,
2680 			 struct btf_show *show)
2681 {
2682 	t = btf_type_id_resolve(btf, &type_id);
2683 
2684 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2685 }
2686 
btf_ptr_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2687 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2688 			 u32 type_id, void *data, u8 bits_offset,
2689 			 struct btf_show *show)
2690 {
2691 	void *safe_data;
2692 
2693 	safe_data = btf_show_start_type(show, t, type_id, data);
2694 	if (!safe_data)
2695 		return;
2696 
2697 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2698 	if (show->flags & BTF_SHOW_PTR_RAW)
2699 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2700 	else
2701 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2702 	btf_show_end_type(show);
2703 }
2704 
btf_ref_type_log(struct btf_verifier_env * env,const struct btf_type * t)2705 static void btf_ref_type_log(struct btf_verifier_env *env,
2706 			     const struct btf_type *t)
2707 {
2708 	btf_verifier_log(env, "type_id=%u", t->type);
2709 }
2710 
2711 static struct btf_kind_operations modifier_ops = {
2712 	.check_meta = btf_ref_type_check_meta,
2713 	.resolve = btf_modifier_resolve,
2714 	.check_member = btf_modifier_check_member,
2715 	.check_kflag_member = btf_modifier_check_kflag_member,
2716 	.log_details = btf_ref_type_log,
2717 	.show = btf_modifier_show,
2718 };
2719 
2720 static struct btf_kind_operations ptr_ops = {
2721 	.check_meta = btf_ref_type_check_meta,
2722 	.resolve = btf_ptr_resolve,
2723 	.check_member = btf_ptr_check_member,
2724 	.check_kflag_member = btf_generic_check_kflag_member,
2725 	.log_details = btf_ref_type_log,
2726 	.show = btf_ptr_show,
2727 };
2728 
btf_fwd_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2729 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2730 			      const struct btf_type *t,
2731 			      u32 meta_left)
2732 {
2733 	if (btf_type_vlen(t)) {
2734 		btf_verifier_log_type(env, t, "vlen != 0");
2735 		return -EINVAL;
2736 	}
2737 
2738 	if (t->type) {
2739 		btf_verifier_log_type(env, t, "type != 0");
2740 		return -EINVAL;
2741 	}
2742 
2743 	/* fwd type must have a valid name */
2744 	if (!t->name_off ||
2745 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2746 		btf_verifier_log_type(env, t, "Invalid name");
2747 		return -EINVAL;
2748 	}
2749 
2750 	btf_verifier_log_type(env, t, NULL);
2751 
2752 	return 0;
2753 }
2754 
btf_fwd_type_log(struct btf_verifier_env * env,const struct btf_type * t)2755 static void btf_fwd_type_log(struct btf_verifier_env *env,
2756 			     const struct btf_type *t)
2757 {
2758 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2759 }
2760 
2761 static struct btf_kind_operations fwd_ops = {
2762 	.check_meta = btf_fwd_check_meta,
2763 	.resolve = btf_df_resolve,
2764 	.check_member = btf_df_check_member,
2765 	.check_kflag_member = btf_df_check_kflag_member,
2766 	.log_details = btf_fwd_type_log,
2767 	.show = btf_df_show,
2768 };
2769 
btf_array_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)2770 static int btf_array_check_member(struct btf_verifier_env *env,
2771 				  const struct btf_type *struct_type,
2772 				  const struct btf_member *member,
2773 				  const struct btf_type *member_type)
2774 {
2775 	u32 struct_bits_off = member->offset;
2776 	u32 struct_size, bytes_offset;
2777 	u32 array_type_id, array_size;
2778 	struct btf *btf = env->btf;
2779 
2780 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2781 		btf_verifier_log_member(env, struct_type, member,
2782 					"Member is not byte aligned");
2783 		return -EINVAL;
2784 	}
2785 
2786 	array_type_id = member->type;
2787 	btf_type_id_size(btf, &array_type_id, &array_size);
2788 	struct_size = struct_type->size;
2789 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2790 	if (struct_size - bytes_offset < array_size) {
2791 		btf_verifier_log_member(env, struct_type, member,
2792 					"Member exceeds struct_size");
2793 		return -EINVAL;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
btf_array_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)2799 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2800 				const struct btf_type *t,
2801 				u32 meta_left)
2802 {
2803 	const struct btf_array *array = btf_type_array(t);
2804 	u32 meta_needed = sizeof(*array);
2805 
2806 	if (meta_left < meta_needed) {
2807 		btf_verifier_log_basic(env, t,
2808 				       "meta_left:%u meta_needed:%u",
2809 				       meta_left, meta_needed);
2810 		return -EINVAL;
2811 	}
2812 
2813 	/* array type should not have a name */
2814 	if (t->name_off) {
2815 		btf_verifier_log_type(env, t, "Invalid name");
2816 		return -EINVAL;
2817 	}
2818 
2819 	if (btf_type_vlen(t)) {
2820 		btf_verifier_log_type(env, t, "vlen != 0");
2821 		return -EINVAL;
2822 	}
2823 
2824 	if (btf_type_kflag(t)) {
2825 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2826 		return -EINVAL;
2827 	}
2828 
2829 	if (t->size) {
2830 		btf_verifier_log_type(env, t, "size != 0");
2831 		return -EINVAL;
2832 	}
2833 
2834 	/* Array elem type and index type cannot be in type void,
2835 	 * so !array->type and !array->index_type are not allowed.
2836 	 */
2837 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2838 		btf_verifier_log_type(env, t, "Invalid elem");
2839 		return -EINVAL;
2840 	}
2841 
2842 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2843 		btf_verifier_log_type(env, t, "Invalid index");
2844 		return -EINVAL;
2845 	}
2846 
2847 	btf_verifier_log_type(env, t, NULL);
2848 
2849 	return meta_needed;
2850 }
2851 
btf_array_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)2852 static int btf_array_resolve(struct btf_verifier_env *env,
2853 			     const struct resolve_vertex *v)
2854 {
2855 	const struct btf_array *array = btf_type_array(v->t);
2856 	const struct btf_type *elem_type, *index_type;
2857 	u32 elem_type_id, index_type_id;
2858 	struct btf *btf = env->btf;
2859 	u32 elem_size;
2860 
2861 	/* Check array->index_type */
2862 	index_type_id = array->index_type;
2863 	index_type = btf_type_by_id(btf, index_type_id);
2864 	if (btf_type_nosize_or_null(index_type) ||
2865 	    btf_type_is_resolve_source_only(index_type)) {
2866 		btf_verifier_log_type(env, v->t, "Invalid index");
2867 		return -EINVAL;
2868 	}
2869 
2870 	if (!env_type_is_resolve_sink(env, index_type) &&
2871 	    !env_type_is_resolved(env, index_type_id))
2872 		return env_stack_push(env, index_type, index_type_id);
2873 
2874 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2875 	if (!index_type || !btf_type_is_int(index_type) ||
2876 	    !btf_type_int_is_regular(index_type)) {
2877 		btf_verifier_log_type(env, v->t, "Invalid index");
2878 		return -EINVAL;
2879 	}
2880 
2881 	/* Check array->type */
2882 	elem_type_id = array->type;
2883 	elem_type = btf_type_by_id(btf, elem_type_id);
2884 	if (btf_type_nosize_or_null(elem_type) ||
2885 	    btf_type_is_resolve_source_only(elem_type)) {
2886 		btf_verifier_log_type(env, v->t,
2887 				      "Invalid elem");
2888 		return -EINVAL;
2889 	}
2890 
2891 	if (!env_type_is_resolve_sink(env, elem_type) &&
2892 	    !env_type_is_resolved(env, elem_type_id))
2893 		return env_stack_push(env, elem_type, elem_type_id);
2894 
2895 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2896 	if (!elem_type) {
2897 		btf_verifier_log_type(env, v->t, "Invalid elem");
2898 		return -EINVAL;
2899 	}
2900 
2901 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2902 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2903 		return -EINVAL;
2904 	}
2905 
2906 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2907 		btf_verifier_log_type(env, v->t,
2908 				      "Array size overflows U32_MAX");
2909 		return -EINVAL;
2910 	}
2911 
2912 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2913 
2914 	return 0;
2915 }
2916 
btf_array_log(struct btf_verifier_env * env,const struct btf_type * t)2917 static void btf_array_log(struct btf_verifier_env *env,
2918 			  const struct btf_type *t)
2919 {
2920 	const struct btf_array *array = btf_type_array(t);
2921 
2922 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2923 			 array->type, array->index_type, array->nelems);
2924 }
2925 
__btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2926 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2927 			     u32 type_id, void *data, u8 bits_offset,
2928 			     struct btf_show *show)
2929 {
2930 	const struct btf_array *array = btf_type_array(t);
2931 	const struct btf_kind_operations *elem_ops;
2932 	const struct btf_type *elem_type;
2933 	u32 i, elem_size = 0, elem_type_id;
2934 	u16 encoding = 0;
2935 
2936 	elem_type_id = array->type;
2937 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2938 	if (elem_type && btf_type_has_size(elem_type))
2939 		elem_size = elem_type->size;
2940 
2941 	if (elem_type && btf_type_is_int(elem_type)) {
2942 		u32 int_type = btf_type_int(elem_type);
2943 
2944 		encoding = BTF_INT_ENCODING(int_type);
2945 
2946 		/*
2947 		 * BTF_INT_CHAR encoding never seems to be set for
2948 		 * char arrays, so if size is 1 and element is
2949 		 * printable as a char, we'll do that.
2950 		 */
2951 		if (elem_size == 1)
2952 			encoding = BTF_INT_CHAR;
2953 	}
2954 
2955 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2956 		return;
2957 
2958 	if (!elem_type)
2959 		goto out;
2960 	elem_ops = btf_type_ops(elem_type);
2961 
2962 	for (i = 0; i < array->nelems; i++) {
2963 
2964 		btf_show_start_array_member(show);
2965 
2966 		elem_ops->show(btf, elem_type, elem_type_id, data,
2967 			       bits_offset, show);
2968 		data += elem_size;
2969 
2970 		btf_show_end_array_member(show);
2971 
2972 		if (show->state.array_terminated)
2973 			break;
2974 	}
2975 out:
2976 	btf_show_end_array_type(show);
2977 }
2978 
btf_array_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)2979 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2980 			   u32 type_id, void *data, u8 bits_offset,
2981 			   struct btf_show *show)
2982 {
2983 	const struct btf_member *m = show->state.member;
2984 
2985 	/*
2986 	 * First check if any members would be shown (are non-zero).
2987 	 * See comments above "struct btf_show" definition for more
2988 	 * details on how this works at a high-level.
2989 	 */
2990 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2991 		if (!show->state.depth_check) {
2992 			show->state.depth_check = show->state.depth + 1;
2993 			show->state.depth_to_show = 0;
2994 		}
2995 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2996 		show->state.member = m;
2997 
2998 		if (show->state.depth_check != show->state.depth + 1)
2999 			return;
3000 		show->state.depth_check = 0;
3001 
3002 		if (show->state.depth_to_show <= show->state.depth)
3003 			return;
3004 		/*
3005 		 * Reaching here indicates we have recursed and found
3006 		 * non-zero array member(s).
3007 		 */
3008 	}
3009 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3010 }
3011 
3012 static struct btf_kind_operations array_ops = {
3013 	.check_meta = btf_array_check_meta,
3014 	.resolve = btf_array_resolve,
3015 	.check_member = btf_array_check_member,
3016 	.check_kflag_member = btf_generic_check_kflag_member,
3017 	.log_details = btf_array_log,
3018 	.show = btf_array_show,
3019 };
3020 
btf_struct_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3021 static int btf_struct_check_member(struct btf_verifier_env *env,
3022 				   const struct btf_type *struct_type,
3023 				   const struct btf_member *member,
3024 				   const struct btf_type *member_type)
3025 {
3026 	u32 struct_bits_off = member->offset;
3027 	u32 struct_size, bytes_offset;
3028 
3029 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3030 		btf_verifier_log_member(env, struct_type, member,
3031 					"Member is not byte aligned");
3032 		return -EINVAL;
3033 	}
3034 
3035 	struct_size = struct_type->size;
3036 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3037 	if (struct_size - bytes_offset < member_type->size) {
3038 		btf_verifier_log_member(env, struct_type, member,
3039 					"Member exceeds struct_size");
3040 		return -EINVAL;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
btf_struct_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3046 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3047 				 const struct btf_type *t,
3048 				 u32 meta_left)
3049 {
3050 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3051 	const struct btf_member *member;
3052 	u32 meta_needed, last_offset;
3053 	struct btf *btf = env->btf;
3054 	u32 struct_size = t->size;
3055 	u32 offset;
3056 	u16 i;
3057 
3058 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3059 	if (meta_left < meta_needed) {
3060 		btf_verifier_log_basic(env, t,
3061 				       "meta_left:%u meta_needed:%u",
3062 				       meta_left, meta_needed);
3063 		return -EINVAL;
3064 	}
3065 
3066 	/* struct type either no name or a valid one */
3067 	if (t->name_off &&
3068 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3069 		btf_verifier_log_type(env, t, "Invalid name");
3070 		return -EINVAL;
3071 	}
3072 
3073 	btf_verifier_log_type(env, t, NULL);
3074 
3075 	last_offset = 0;
3076 	for_each_member(i, t, member) {
3077 		if (!btf_name_offset_valid(btf, member->name_off)) {
3078 			btf_verifier_log_member(env, t, member,
3079 						"Invalid member name_offset:%u",
3080 						member->name_off);
3081 			return -EINVAL;
3082 		}
3083 
3084 		/* struct member either no name or a valid one */
3085 		if (member->name_off &&
3086 		    !btf_name_valid_identifier(btf, member->name_off)) {
3087 			btf_verifier_log_member(env, t, member, "Invalid name");
3088 			return -EINVAL;
3089 		}
3090 		/* A member cannot be in type void */
3091 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3092 			btf_verifier_log_member(env, t, member,
3093 						"Invalid type_id");
3094 			return -EINVAL;
3095 		}
3096 
3097 		offset = __btf_member_bit_offset(t, member);
3098 		if (is_union && offset) {
3099 			btf_verifier_log_member(env, t, member,
3100 						"Invalid member bits_offset");
3101 			return -EINVAL;
3102 		}
3103 
3104 		/*
3105 		 * ">" instead of ">=" because the last member could be
3106 		 * "char a[0];"
3107 		 */
3108 		if (last_offset > offset) {
3109 			btf_verifier_log_member(env, t, member,
3110 						"Invalid member bits_offset");
3111 			return -EINVAL;
3112 		}
3113 
3114 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3115 			btf_verifier_log_member(env, t, member,
3116 						"Member bits_offset exceeds its struct size");
3117 			return -EINVAL;
3118 		}
3119 
3120 		btf_verifier_log_member(env, t, member, NULL);
3121 		last_offset = offset;
3122 	}
3123 
3124 	return meta_needed;
3125 }
3126 
btf_struct_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)3127 static int btf_struct_resolve(struct btf_verifier_env *env,
3128 			      const struct resolve_vertex *v)
3129 {
3130 	const struct btf_member *member;
3131 	int err;
3132 	u16 i;
3133 
3134 	/* Before continue resolving the next_member,
3135 	 * ensure the last member is indeed resolved to a
3136 	 * type with size info.
3137 	 */
3138 	if (v->next_member) {
3139 		const struct btf_type *last_member_type;
3140 		const struct btf_member *last_member;
3141 		u32 last_member_type_id;
3142 
3143 		last_member = btf_type_member(v->t) + v->next_member - 1;
3144 		last_member_type_id = last_member->type;
3145 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3146 						       last_member_type_id)))
3147 			return -EINVAL;
3148 
3149 		last_member_type = btf_type_by_id(env->btf,
3150 						  last_member_type_id);
3151 		if (btf_type_kflag(v->t))
3152 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3153 								last_member,
3154 								last_member_type);
3155 		else
3156 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3157 								last_member,
3158 								last_member_type);
3159 		if (err)
3160 			return err;
3161 	}
3162 
3163 	for_each_member_from(i, v->next_member, v->t, member) {
3164 		u32 member_type_id = member->type;
3165 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3166 								member_type_id);
3167 
3168 		if (btf_type_nosize_or_null(member_type) ||
3169 		    btf_type_is_resolve_source_only(member_type)) {
3170 			btf_verifier_log_member(env, v->t, member,
3171 						"Invalid member");
3172 			return -EINVAL;
3173 		}
3174 
3175 		if (!env_type_is_resolve_sink(env, member_type) &&
3176 		    !env_type_is_resolved(env, member_type_id)) {
3177 			env_stack_set_next_member(env, i + 1);
3178 			return env_stack_push(env, member_type, member_type_id);
3179 		}
3180 
3181 		if (btf_type_kflag(v->t))
3182 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3183 									    member,
3184 									    member_type);
3185 		else
3186 			err = btf_type_ops(member_type)->check_member(env, v->t,
3187 								      member,
3188 								      member_type);
3189 		if (err)
3190 			return err;
3191 	}
3192 
3193 	env_stack_pop_resolved(env, 0, 0);
3194 
3195 	return 0;
3196 }
3197 
btf_struct_log(struct btf_verifier_env * env,const struct btf_type * t)3198 static void btf_struct_log(struct btf_verifier_env *env,
3199 			   const struct btf_type *t)
3200 {
3201 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3202 }
3203 
3204 enum btf_field_type {
3205 	BTF_FIELD_SPIN_LOCK,
3206 	BTF_FIELD_TIMER,
3207 	BTF_FIELD_KPTR,
3208 };
3209 
3210 enum {
3211 	BTF_FIELD_IGNORE = 0,
3212 	BTF_FIELD_FOUND  = 1,
3213 };
3214 
3215 struct btf_field_info {
3216 	u32 type_id;
3217 	u32 off;
3218 	enum bpf_kptr_type type;
3219 };
3220 
btf_find_struct(const struct btf * btf,const struct btf_type * t,u32 off,int sz,struct btf_field_info * info)3221 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3222 			   u32 off, int sz, struct btf_field_info *info)
3223 {
3224 	if (!__btf_type_is_struct(t))
3225 		return BTF_FIELD_IGNORE;
3226 	if (t->size != sz)
3227 		return BTF_FIELD_IGNORE;
3228 	info->off = off;
3229 	return BTF_FIELD_FOUND;
3230 }
3231 
btf_find_kptr(const struct btf * btf,const struct btf_type * t,u32 off,int sz,struct btf_field_info * info)3232 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3233 			 u32 off, int sz, struct btf_field_info *info)
3234 {
3235 	enum bpf_kptr_type type;
3236 	u32 res_id;
3237 
3238 	/* For PTR, sz is always == 8 */
3239 	if (!btf_type_is_ptr(t))
3240 		return BTF_FIELD_IGNORE;
3241 	t = btf_type_by_id(btf, t->type);
3242 
3243 	if (!btf_type_is_type_tag(t))
3244 		return BTF_FIELD_IGNORE;
3245 	/* Reject extra tags */
3246 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3247 		return -EINVAL;
3248 	if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3249 		type = BPF_KPTR_UNREF;
3250 	else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3251 		type = BPF_KPTR_REF;
3252 	else
3253 		return -EINVAL;
3254 
3255 	/* Get the base type */
3256 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3257 	/* Only pointer to struct is allowed */
3258 	if (!__btf_type_is_struct(t))
3259 		return -EINVAL;
3260 
3261 	info->type_id = res_id;
3262 	info->off = off;
3263 	info->type = type;
3264 	return BTF_FIELD_FOUND;
3265 }
3266 
btf_find_struct_field(const struct btf * btf,const struct btf_type * t,const char * name,int sz,int align,enum btf_field_type field_type,struct btf_field_info * info,int info_cnt)3267 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3268 				 const char *name, int sz, int align,
3269 				 enum btf_field_type field_type,
3270 				 struct btf_field_info *info, int info_cnt)
3271 {
3272 	const struct btf_member *member;
3273 	struct btf_field_info tmp;
3274 	int ret, idx = 0;
3275 	u32 i, off;
3276 
3277 	for_each_member(i, t, member) {
3278 		const struct btf_type *member_type = btf_type_by_id(btf,
3279 								    member->type);
3280 
3281 		if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3282 			continue;
3283 
3284 		off = __btf_member_bit_offset(t, member);
3285 		if (off % 8)
3286 			/* valid C code cannot generate such BTF */
3287 			return -EINVAL;
3288 		off /= 8;
3289 		if (off % align)
3290 			return -EINVAL;
3291 
3292 		switch (field_type) {
3293 		case BTF_FIELD_SPIN_LOCK:
3294 		case BTF_FIELD_TIMER:
3295 			ret = btf_find_struct(btf, member_type, off, sz,
3296 					      idx < info_cnt ? &info[idx] : &tmp);
3297 			if (ret < 0)
3298 				return ret;
3299 			break;
3300 		case BTF_FIELD_KPTR:
3301 			ret = btf_find_kptr(btf, member_type, off, sz,
3302 					    idx < info_cnt ? &info[idx] : &tmp);
3303 			if (ret < 0)
3304 				return ret;
3305 			break;
3306 		default:
3307 			return -EFAULT;
3308 		}
3309 
3310 		if (ret == BTF_FIELD_IGNORE)
3311 			continue;
3312 		if (idx >= info_cnt)
3313 			return -E2BIG;
3314 		++idx;
3315 	}
3316 	return idx;
3317 }
3318 
btf_find_datasec_var(const struct btf * btf,const struct btf_type * t,const char * name,int sz,int align,enum btf_field_type field_type,struct btf_field_info * info,int info_cnt)3319 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3320 				const char *name, int sz, int align,
3321 				enum btf_field_type field_type,
3322 				struct btf_field_info *info, int info_cnt)
3323 {
3324 	const struct btf_var_secinfo *vsi;
3325 	struct btf_field_info tmp;
3326 	int ret, idx = 0;
3327 	u32 i, off;
3328 
3329 	for_each_vsi(i, t, vsi) {
3330 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3331 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3332 
3333 		off = vsi->offset;
3334 
3335 		if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3336 			continue;
3337 		if (vsi->size != sz)
3338 			continue;
3339 		if (off % align)
3340 			return -EINVAL;
3341 
3342 		switch (field_type) {
3343 		case BTF_FIELD_SPIN_LOCK:
3344 		case BTF_FIELD_TIMER:
3345 			ret = btf_find_struct(btf, var_type, off, sz,
3346 					      idx < info_cnt ? &info[idx] : &tmp);
3347 			if (ret < 0)
3348 				return ret;
3349 			break;
3350 		case BTF_FIELD_KPTR:
3351 			ret = btf_find_kptr(btf, var_type, off, sz,
3352 					    idx < info_cnt ? &info[idx] : &tmp);
3353 			if (ret < 0)
3354 				return ret;
3355 			break;
3356 		default:
3357 			return -EFAULT;
3358 		}
3359 
3360 		if (ret == BTF_FIELD_IGNORE)
3361 			continue;
3362 		if (idx >= info_cnt)
3363 			return -E2BIG;
3364 		++idx;
3365 	}
3366 	return idx;
3367 }
3368 
btf_find_field(const struct btf * btf,const struct btf_type * t,enum btf_field_type field_type,struct btf_field_info * info,int info_cnt)3369 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3370 			  enum btf_field_type field_type,
3371 			  struct btf_field_info *info, int info_cnt)
3372 {
3373 	const char *name;
3374 	int sz, align;
3375 
3376 	switch (field_type) {
3377 	case BTF_FIELD_SPIN_LOCK:
3378 		name = "bpf_spin_lock";
3379 		sz = sizeof(struct bpf_spin_lock);
3380 		align = __alignof__(struct bpf_spin_lock);
3381 		break;
3382 	case BTF_FIELD_TIMER:
3383 		name = "bpf_timer";
3384 		sz = sizeof(struct bpf_timer);
3385 		align = __alignof__(struct bpf_timer);
3386 		break;
3387 	case BTF_FIELD_KPTR:
3388 		name = NULL;
3389 		sz = sizeof(u64);
3390 		align = 8;
3391 		break;
3392 	default:
3393 		return -EFAULT;
3394 	}
3395 
3396 	if (__btf_type_is_struct(t))
3397 		return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt);
3398 	else if (btf_type_is_datasec(t))
3399 		return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt);
3400 	return -EINVAL;
3401 }
3402 
3403 /* find 'struct bpf_spin_lock' in map value.
3404  * return >= 0 offset if found
3405  * and < 0 in case of error
3406  */
btf_find_spin_lock(const struct btf * btf,const struct btf_type * t)3407 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3408 {
3409 	struct btf_field_info info;
3410 	int ret;
3411 
3412 	ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1);
3413 	if (ret < 0)
3414 		return ret;
3415 	if (!ret)
3416 		return -ENOENT;
3417 	return info.off;
3418 }
3419 
btf_find_timer(const struct btf * btf,const struct btf_type * t)3420 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3421 {
3422 	struct btf_field_info info;
3423 	int ret;
3424 
3425 	ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1);
3426 	if (ret < 0)
3427 		return ret;
3428 	if (!ret)
3429 		return -ENOENT;
3430 	return info.off;
3431 }
3432 
btf_parse_kptrs(const struct btf * btf,const struct btf_type * t)3433 struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf,
3434 					  const struct btf_type *t)
3435 {
3436 	struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX];
3437 	struct bpf_map_value_off *tab;
3438 	struct btf *kernel_btf = NULL;
3439 	struct module *mod = NULL;
3440 	int ret, i, nr_off;
3441 
3442 	ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr));
3443 	if (ret < 0)
3444 		return ERR_PTR(ret);
3445 	if (!ret)
3446 		return NULL;
3447 
3448 	nr_off = ret;
3449 	tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN);
3450 	if (!tab)
3451 		return ERR_PTR(-ENOMEM);
3452 
3453 	for (i = 0; i < nr_off; i++) {
3454 		const struct btf_type *t;
3455 		s32 id;
3456 
3457 		/* Find type in map BTF, and use it to look up the matching type
3458 		 * in vmlinux or module BTFs, by name and kind.
3459 		 */
3460 		t = btf_type_by_id(btf, info_arr[i].type_id);
3461 		id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3462 				     &kernel_btf);
3463 		if (id < 0) {
3464 			ret = id;
3465 			goto end;
3466 		}
3467 
3468 		/* Find and stash the function pointer for the destruction function that
3469 		 * needs to be eventually invoked from the map free path.
3470 		 */
3471 		if (info_arr[i].type == BPF_KPTR_REF) {
3472 			const struct btf_type *dtor_func;
3473 			const char *dtor_func_name;
3474 			unsigned long addr;
3475 			s32 dtor_btf_id;
3476 
3477 			/* This call also serves as a whitelist of allowed objects that
3478 			 * can be used as a referenced pointer and be stored in a map at
3479 			 * the same time.
3480 			 */
3481 			dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3482 			if (dtor_btf_id < 0) {
3483 				ret = dtor_btf_id;
3484 				goto end_btf;
3485 			}
3486 
3487 			dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3488 			if (!dtor_func) {
3489 				ret = -ENOENT;
3490 				goto end_btf;
3491 			}
3492 
3493 			if (btf_is_module(kernel_btf)) {
3494 				mod = btf_try_get_module(kernel_btf);
3495 				if (!mod) {
3496 					ret = -ENXIO;
3497 					goto end_btf;
3498 				}
3499 			}
3500 
3501 			/* We already verified dtor_func to be btf_type_is_func
3502 			 * in register_btf_id_dtor_kfuncs.
3503 			 */
3504 			dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3505 			addr = kallsyms_lookup_name(dtor_func_name);
3506 			if (!addr) {
3507 				ret = -EINVAL;
3508 				goto end_mod;
3509 			}
3510 			tab->off[i].kptr.dtor = (void *)addr;
3511 		}
3512 
3513 		tab->off[i].offset = info_arr[i].off;
3514 		tab->off[i].type = info_arr[i].type;
3515 		tab->off[i].kptr.btf_id = id;
3516 		tab->off[i].kptr.btf = kernel_btf;
3517 		tab->off[i].kptr.module = mod;
3518 	}
3519 	tab->nr_off = nr_off;
3520 	return tab;
3521 end_mod:
3522 	module_put(mod);
3523 end_btf:
3524 	btf_put(kernel_btf);
3525 end:
3526 	while (i--) {
3527 		btf_put(tab->off[i].kptr.btf);
3528 		if (tab->off[i].kptr.module)
3529 			module_put(tab->off[i].kptr.module);
3530 	}
3531 	kfree(tab);
3532 	return ERR_PTR(ret);
3533 }
3534 
__btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3535 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3536 			      u32 type_id, void *data, u8 bits_offset,
3537 			      struct btf_show *show)
3538 {
3539 	const struct btf_member *member;
3540 	void *safe_data;
3541 	u32 i;
3542 
3543 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3544 	if (!safe_data)
3545 		return;
3546 
3547 	for_each_member(i, t, member) {
3548 		const struct btf_type *member_type = btf_type_by_id(btf,
3549 								member->type);
3550 		const struct btf_kind_operations *ops;
3551 		u32 member_offset, bitfield_size;
3552 		u32 bytes_offset;
3553 		u8 bits8_offset;
3554 
3555 		btf_show_start_member(show, member);
3556 
3557 		member_offset = __btf_member_bit_offset(t, member);
3558 		bitfield_size = __btf_member_bitfield_size(t, member);
3559 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3560 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3561 		if (bitfield_size) {
3562 			safe_data = btf_show_start_type(show, member_type,
3563 							member->type,
3564 							data + bytes_offset);
3565 			if (safe_data)
3566 				btf_bitfield_show(safe_data,
3567 						  bits8_offset,
3568 						  bitfield_size, show);
3569 			btf_show_end_type(show);
3570 		} else {
3571 			ops = btf_type_ops(member_type);
3572 			ops->show(btf, member_type, member->type,
3573 				  data + bytes_offset, bits8_offset, show);
3574 		}
3575 
3576 		btf_show_end_member(show);
3577 	}
3578 
3579 	btf_show_end_struct_type(show);
3580 }
3581 
btf_struct_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3582 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3583 			    u32 type_id, void *data, u8 bits_offset,
3584 			    struct btf_show *show)
3585 {
3586 	const struct btf_member *m = show->state.member;
3587 
3588 	/*
3589 	 * First check if any members would be shown (are non-zero).
3590 	 * See comments above "struct btf_show" definition for more
3591 	 * details on how this works at a high-level.
3592 	 */
3593 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3594 		if (!show->state.depth_check) {
3595 			show->state.depth_check = show->state.depth + 1;
3596 			show->state.depth_to_show = 0;
3597 		}
3598 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3599 		/* Restore saved member data here */
3600 		show->state.member = m;
3601 		if (show->state.depth_check != show->state.depth + 1)
3602 			return;
3603 		show->state.depth_check = 0;
3604 
3605 		if (show->state.depth_to_show <= show->state.depth)
3606 			return;
3607 		/*
3608 		 * Reaching here indicates we have recursed and found
3609 		 * non-zero child values.
3610 		 */
3611 	}
3612 
3613 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3614 }
3615 
3616 static struct btf_kind_operations struct_ops = {
3617 	.check_meta = btf_struct_check_meta,
3618 	.resolve = btf_struct_resolve,
3619 	.check_member = btf_struct_check_member,
3620 	.check_kflag_member = btf_generic_check_kflag_member,
3621 	.log_details = btf_struct_log,
3622 	.show = btf_struct_show,
3623 };
3624 
btf_enum_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3625 static int btf_enum_check_member(struct btf_verifier_env *env,
3626 				 const struct btf_type *struct_type,
3627 				 const struct btf_member *member,
3628 				 const struct btf_type *member_type)
3629 {
3630 	u32 struct_bits_off = member->offset;
3631 	u32 struct_size, bytes_offset;
3632 
3633 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3634 		btf_verifier_log_member(env, struct_type, member,
3635 					"Member is not byte aligned");
3636 		return -EINVAL;
3637 	}
3638 
3639 	struct_size = struct_type->size;
3640 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3641 	if (struct_size - bytes_offset < member_type->size) {
3642 		btf_verifier_log_member(env, struct_type, member,
3643 					"Member exceeds struct_size");
3644 		return -EINVAL;
3645 	}
3646 
3647 	return 0;
3648 }
3649 
btf_enum_check_kflag_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)3650 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3651 				       const struct btf_type *struct_type,
3652 				       const struct btf_member *member,
3653 				       const struct btf_type *member_type)
3654 {
3655 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3656 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3657 
3658 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3659 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3660 	if (!nr_bits) {
3661 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3662 			btf_verifier_log_member(env, struct_type, member,
3663 						"Member is not byte aligned");
3664 			return -EINVAL;
3665 		}
3666 
3667 		nr_bits = int_bitsize;
3668 	} else if (nr_bits > int_bitsize) {
3669 		btf_verifier_log_member(env, struct_type, member,
3670 					"Invalid member bitfield_size");
3671 		return -EINVAL;
3672 	}
3673 
3674 	struct_size = struct_type->size;
3675 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3676 	if (struct_size < bytes_end) {
3677 		btf_verifier_log_member(env, struct_type, member,
3678 					"Member exceeds struct_size");
3679 		return -EINVAL;
3680 	}
3681 
3682 	return 0;
3683 }
3684 
btf_enum_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3685 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3686 			       const struct btf_type *t,
3687 			       u32 meta_left)
3688 {
3689 	const struct btf_enum *enums = btf_type_enum(t);
3690 	struct btf *btf = env->btf;
3691 	const char *fmt_str;
3692 	u16 i, nr_enums;
3693 	u32 meta_needed;
3694 
3695 	nr_enums = btf_type_vlen(t);
3696 	meta_needed = nr_enums * sizeof(*enums);
3697 
3698 	if (meta_left < meta_needed) {
3699 		btf_verifier_log_basic(env, t,
3700 				       "meta_left:%u meta_needed:%u",
3701 				       meta_left, meta_needed);
3702 		return -EINVAL;
3703 	}
3704 
3705 	if (t->size > 8 || !is_power_of_2(t->size)) {
3706 		btf_verifier_log_type(env, t, "Unexpected size");
3707 		return -EINVAL;
3708 	}
3709 
3710 	/* enum type either no name or a valid one */
3711 	if (t->name_off &&
3712 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3713 		btf_verifier_log_type(env, t, "Invalid name");
3714 		return -EINVAL;
3715 	}
3716 
3717 	btf_verifier_log_type(env, t, NULL);
3718 
3719 	for (i = 0; i < nr_enums; i++) {
3720 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3721 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3722 					 enums[i].name_off);
3723 			return -EINVAL;
3724 		}
3725 
3726 		/* enum member must have a valid name */
3727 		if (!enums[i].name_off ||
3728 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3729 			btf_verifier_log_type(env, t, "Invalid name");
3730 			return -EINVAL;
3731 		}
3732 
3733 		if (env->log.level == BPF_LOG_KERNEL)
3734 			continue;
3735 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
3736 		btf_verifier_log(env, fmt_str,
3737 				 __btf_name_by_offset(btf, enums[i].name_off),
3738 				 enums[i].val);
3739 	}
3740 
3741 	return meta_needed;
3742 }
3743 
btf_enum_log(struct btf_verifier_env * env,const struct btf_type * t)3744 static void btf_enum_log(struct btf_verifier_env *env,
3745 			 const struct btf_type *t)
3746 {
3747 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3748 }
3749 
btf_enum_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3750 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3751 			  u32 type_id, void *data, u8 bits_offset,
3752 			  struct btf_show *show)
3753 {
3754 	const struct btf_enum *enums = btf_type_enum(t);
3755 	u32 i, nr_enums = btf_type_vlen(t);
3756 	void *safe_data;
3757 	int v;
3758 
3759 	safe_data = btf_show_start_type(show, t, type_id, data);
3760 	if (!safe_data)
3761 		return;
3762 
3763 	v = *(int *)safe_data;
3764 
3765 	for (i = 0; i < nr_enums; i++) {
3766 		if (v != enums[i].val)
3767 			continue;
3768 
3769 		btf_show_type_value(show, "%s",
3770 				    __btf_name_by_offset(btf,
3771 							 enums[i].name_off));
3772 
3773 		btf_show_end_type(show);
3774 		return;
3775 	}
3776 
3777 	if (btf_type_kflag(t))
3778 		btf_show_type_value(show, "%d", v);
3779 	else
3780 		btf_show_type_value(show, "%u", v);
3781 	btf_show_end_type(show);
3782 }
3783 
3784 static struct btf_kind_operations enum_ops = {
3785 	.check_meta = btf_enum_check_meta,
3786 	.resolve = btf_df_resolve,
3787 	.check_member = btf_enum_check_member,
3788 	.check_kflag_member = btf_enum_check_kflag_member,
3789 	.log_details = btf_enum_log,
3790 	.show = btf_enum_show,
3791 };
3792 
btf_enum64_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3793 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
3794 				 const struct btf_type *t,
3795 				 u32 meta_left)
3796 {
3797 	const struct btf_enum64 *enums = btf_type_enum64(t);
3798 	struct btf *btf = env->btf;
3799 	const char *fmt_str;
3800 	u16 i, nr_enums;
3801 	u32 meta_needed;
3802 
3803 	nr_enums = btf_type_vlen(t);
3804 	meta_needed = nr_enums * sizeof(*enums);
3805 
3806 	if (meta_left < meta_needed) {
3807 		btf_verifier_log_basic(env, t,
3808 				       "meta_left:%u meta_needed:%u",
3809 				       meta_left, meta_needed);
3810 		return -EINVAL;
3811 	}
3812 
3813 	if (t->size > 8 || !is_power_of_2(t->size)) {
3814 		btf_verifier_log_type(env, t, "Unexpected size");
3815 		return -EINVAL;
3816 	}
3817 
3818 	/* enum type either no name or a valid one */
3819 	if (t->name_off &&
3820 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3821 		btf_verifier_log_type(env, t, "Invalid name");
3822 		return -EINVAL;
3823 	}
3824 
3825 	btf_verifier_log_type(env, t, NULL);
3826 
3827 	for (i = 0; i < nr_enums; i++) {
3828 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3829 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3830 					 enums[i].name_off);
3831 			return -EINVAL;
3832 		}
3833 
3834 		/* enum member must have a valid name */
3835 		if (!enums[i].name_off ||
3836 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3837 			btf_verifier_log_type(env, t, "Invalid name");
3838 			return -EINVAL;
3839 		}
3840 
3841 		if (env->log.level == BPF_LOG_KERNEL)
3842 			continue;
3843 
3844 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
3845 		btf_verifier_log(env, fmt_str,
3846 				 __btf_name_by_offset(btf, enums[i].name_off),
3847 				 btf_enum64_value(enums + i));
3848 	}
3849 
3850 	return meta_needed;
3851 }
3852 
btf_enum64_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)3853 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
3854 			    u32 type_id, void *data, u8 bits_offset,
3855 			    struct btf_show *show)
3856 {
3857 	const struct btf_enum64 *enums = btf_type_enum64(t);
3858 	u32 i, nr_enums = btf_type_vlen(t);
3859 	void *safe_data;
3860 	s64 v;
3861 
3862 	safe_data = btf_show_start_type(show, t, type_id, data);
3863 	if (!safe_data)
3864 		return;
3865 
3866 	v = *(u64 *)safe_data;
3867 
3868 	for (i = 0; i < nr_enums; i++) {
3869 		if (v != btf_enum64_value(enums + i))
3870 			continue;
3871 
3872 		btf_show_type_value(show, "%s",
3873 				    __btf_name_by_offset(btf,
3874 							 enums[i].name_off));
3875 
3876 		btf_show_end_type(show);
3877 		return;
3878 	}
3879 
3880 	if (btf_type_kflag(t))
3881 		btf_show_type_value(show, "%lld", v);
3882 	else
3883 		btf_show_type_value(show, "%llu", v);
3884 	btf_show_end_type(show);
3885 }
3886 
3887 static struct btf_kind_operations enum64_ops = {
3888 	.check_meta = btf_enum64_check_meta,
3889 	.resolve = btf_df_resolve,
3890 	.check_member = btf_enum_check_member,
3891 	.check_kflag_member = btf_enum_check_kflag_member,
3892 	.log_details = btf_enum_log,
3893 	.show = btf_enum64_show,
3894 };
3895 
btf_func_proto_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3896 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3897 				     const struct btf_type *t,
3898 				     u32 meta_left)
3899 {
3900 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3901 
3902 	if (meta_left < meta_needed) {
3903 		btf_verifier_log_basic(env, t,
3904 				       "meta_left:%u meta_needed:%u",
3905 				       meta_left, meta_needed);
3906 		return -EINVAL;
3907 	}
3908 
3909 	if (t->name_off) {
3910 		btf_verifier_log_type(env, t, "Invalid name");
3911 		return -EINVAL;
3912 	}
3913 
3914 	if (btf_type_kflag(t)) {
3915 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3916 		return -EINVAL;
3917 	}
3918 
3919 	btf_verifier_log_type(env, t, NULL);
3920 
3921 	return meta_needed;
3922 }
3923 
btf_func_proto_log(struct btf_verifier_env * env,const struct btf_type * t)3924 static void btf_func_proto_log(struct btf_verifier_env *env,
3925 			       const struct btf_type *t)
3926 {
3927 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3928 	u16 nr_args = btf_type_vlen(t), i;
3929 
3930 	btf_verifier_log(env, "return=%u args=(", t->type);
3931 	if (!nr_args) {
3932 		btf_verifier_log(env, "void");
3933 		goto done;
3934 	}
3935 
3936 	if (nr_args == 1 && !args[0].type) {
3937 		/* Only one vararg */
3938 		btf_verifier_log(env, "vararg");
3939 		goto done;
3940 	}
3941 
3942 	btf_verifier_log(env, "%u %s", args[0].type,
3943 			 __btf_name_by_offset(env->btf,
3944 					      args[0].name_off));
3945 	for (i = 1; i < nr_args - 1; i++)
3946 		btf_verifier_log(env, ", %u %s", args[i].type,
3947 				 __btf_name_by_offset(env->btf,
3948 						      args[i].name_off));
3949 
3950 	if (nr_args > 1) {
3951 		const struct btf_param *last_arg = &args[nr_args - 1];
3952 
3953 		if (last_arg->type)
3954 			btf_verifier_log(env, ", %u %s", last_arg->type,
3955 					 __btf_name_by_offset(env->btf,
3956 							      last_arg->name_off));
3957 		else
3958 			btf_verifier_log(env, ", vararg");
3959 	}
3960 
3961 done:
3962 	btf_verifier_log(env, ")");
3963 }
3964 
3965 static struct btf_kind_operations func_proto_ops = {
3966 	.check_meta = btf_func_proto_check_meta,
3967 	.resolve = btf_df_resolve,
3968 	/*
3969 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3970 	 * a struct's member.
3971 	 *
3972 	 * It should be a function pointer instead.
3973 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3974 	 *
3975 	 * Hence, there is no btf_func_check_member().
3976 	 */
3977 	.check_member = btf_df_check_member,
3978 	.check_kflag_member = btf_df_check_kflag_member,
3979 	.log_details = btf_func_proto_log,
3980 	.show = btf_df_show,
3981 };
3982 
btf_func_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)3983 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3984 			       const struct btf_type *t,
3985 			       u32 meta_left)
3986 {
3987 	if (!t->name_off ||
3988 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3989 		btf_verifier_log_type(env, t, "Invalid name");
3990 		return -EINVAL;
3991 	}
3992 
3993 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3994 		btf_verifier_log_type(env, t, "Invalid func linkage");
3995 		return -EINVAL;
3996 	}
3997 
3998 	if (btf_type_kflag(t)) {
3999 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4000 		return -EINVAL;
4001 	}
4002 
4003 	btf_verifier_log_type(env, t, NULL);
4004 
4005 	return 0;
4006 }
4007 
btf_func_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4008 static int btf_func_resolve(struct btf_verifier_env *env,
4009 			    const struct resolve_vertex *v)
4010 {
4011 	const struct btf_type *t = v->t;
4012 	u32 next_type_id = t->type;
4013 	int err;
4014 
4015 	err = btf_func_check(env, t);
4016 	if (err)
4017 		return err;
4018 
4019 	env_stack_pop_resolved(env, next_type_id, 0);
4020 	return 0;
4021 }
4022 
4023 static struct btf_kind_operations func_ops = {
4024 	.check_meta = btf_func_check_meta,
4025 	.resolve = btf_func_resolve,
4026 	.check_member = btf_df_check_member,
4027 	.check_kflag_member = btf_df_check_kflag_member,
4028 	.log_details = btf_ref_type_log,
4029 	.show = btf_df_show,
4030 };
4031 
btf_var_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4032 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4033 			      const struct btf_type *t,
4034 			      u32 meta_left)
4035 {
4036 	const struct btf_var *var;
4037 	u32 meta_needed = sizeof(*var);
4038 
4039 	if (meta_left < meta_needed) {
4040 		btf_verifier_log_basic(env, t,
4041 				       "meta_left:%u meta_needed:%u",
4042 				       meta_left, meta_needed);
4043 		return -EINVAL;
4044 	}
4045 
4046 	if (btf_type_vlen(t)) {
4047 		btf_verifier_log_type(env, t, "vlen != 0");
4048 		return -EINVAL;
4049 	}
4050 
4051 	if (btf_type_kflag(t)) {
4052 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4053 		return -EINVAL;
4054 	}
4055 
4056 	if (!t->name_off ||
4057 	    !__btf_name_valid(env->btf, t->name_off)) {
4058 		btf_verifier_log_type(env, t, "Invalid name");
4059 		return -EINVAL;
4060 	}
4061 
4062 	/* A var cannot be in type void */
4063 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4064 		btf_verifier_log_type(env, t, "Invalid type_id");
4065 		return -EINVAL;
4066 	}
4067 
4068 	var = btf_type_var(t);
4069 	if (var->linkage != BTF_VAR_STATIC &&
4070 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4071 		btf_verifier_log_type(env, t, "Linkage not supported");
4072 		return -EINVAL;
4073 	}
4074 
4075 	btf_verifier_log_type(env, t, NULL);
4076 
4077 	return meta_needed;
4078 }
4079 
btf_var_log(struct btf_verifier_env * env,const struct btf_type * t)4080 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4081 {
4082 	const struct btf_var *var = btf_type_var(t);
4083 
4084 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4085 }
4086 
4087 static const struct btf_kind_operations var_ops = {
4088 	.check_meta		= btf_var_check_meta,
4089 	.resolve		= btf_var_resolve,
4090 	.check_member		= btf_df_check_member,
4091 	.check_kflag_member	= btf_df_check_kflag_member,
4092 	.log_details		= btf_var_log,
4093 	.show			= btf_var_show,
4094 };
4095 
btf_datasec_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4096 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4097 				  const struct btf_type *t,
4098 				  u32 meta_left)
4099 {
4100 	const struct btf_var_secinfo *vsi;
4101 	u64 last_vsi_end_off = 0, sum = 0;
4102 	u32 i, meta_needed;
4103 
4104 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4105 	if (meta_left < meta_needed) {
4106 		btf_verifier_log_basic(env, t,
4107 				       "meta_left:%u meta_needed:%u",
4108 				       meta_left, meta_needed);
4109 		return -EINVAL;
4110 	}
4111 
4112 	if (!t->size) {
4113 		btf_verifier_log_type(env, t, "size == 0");
4114 		return -EINVAL;
4115 	}
4116 
4117 	if (btf_type_kflag(t)) {
4118 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4119 		return -EINVAL;
4120 	}
4121 
4122 	if (!t->name_off ||
4123 	    !btf_name_valid_section(env->btf, t->name_off)) {
4124 		btf_verifier_log_type(env, t, "Invalid name");
4125 		return -EINVAL;
4126 	}
4127 
4128 	btf_verifier_log_type(env, t, NULL);
4129 
4130 	for_each_vsi(i, t, vsi) {
4131 		/* A var cannot be in type void */
4132 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4133 			btf_verifier_log_vsi(env, t, vsi,
4134 					     "Invalid type_id");
4135 			return -EINVAL;
4136 		}
4137 
4138 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4139 			btf_verifier_log_vsi(env, t, vsi,
4140 					     "Invalid offset");
4141 			return -EINVAL;
4142 		}
4143 
4144 		if (!vsi->size || vsi->size > t->size) {
4145 			btf_verifier_log_vsi(env, t, vsi,
4146 					     "Invalid size");
4147 			return -EINVAL;
4148 		}
4149 
4150 		last_vsi_end_off = vsi->offset + vsi->size;
4151 		if (last_vsi_end_off > t->size) {
4152 			btf_verifier_log_vsi(env, t, vsi,
4153 					     "Invalid offset+size");
4154 			return -EINVAL;
4155 		}
4156 
4157 		btf_verifier_log_vsi(env, t, vsi, NULL);
4158 		sum += vsi->size;
4159 	}
4160 
4161 	if (t->size < sum) {
4162 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4163 		return -EINVAL;
4164 	}
4165 
4166 	return meta_needed;
4167 }
4168 
btf_datasec_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4169 static int btf_datasec_resolve(struct btf_verifier_env *env,
4170 			       const struct resolve_vertex *v)
4171 {
4172 	const struct btf_var_secinfo *vsi;
4173 	struct btf *btf = env->btf;
4174 	u16 i;
4175 
4176 	env->resolve_mode = RESOLVE_TBD;
4177 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4178 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4179 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4180 								 var_type_id);
4181 		if (!var_type || !btf_type_is_var(var_type)) {
4182 			btf_verifier_log_vsi(env, v->t, vsi,
4183 					     "Not a VAR kind member");
4184 			return -EINVAL;
4185 		}
4186 
4187 		if (!env_type_is_resolve_sink(env, var_type) &&
4188 		    !env_type_is_resolved(env, var_type_id)) {
4189 			env_stack_set_next_member(env, i + 1);
4190 			return env_stack_push(env, var_type, var_type_id);
4191 		}
4192 
4193 		type_id = var_type->type;
4194 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4195 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4196 			return -EINVAL;
4197 		}
4198 
4199 		if (vsi->size < type_size) {
4200 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4201 			return -EINVAL;
4202 		}
4203 	}
4204 
4205 	env_stack_pop_resolved(env, 0, 0);
4206 	return 0;
4207 }
4208 
btf_datasec_log(struct btf_verifier_env * env,const struct btf_type * t)4209 static void btf_datasec_log(struct btf_verifier_env *env,
4210 			    const struct btf_type *t)
4211 {
4212 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4213 }
4214 
btf_datasec_show(const struct btf * btf,const struct btf_type * t,u32 type_id,void * data,u8 bits_offset,struct btf_show * show)4215 static void btf_datasec_show(const struct btf *btf,
4216 			     const struct btf_type *t, u32 type_id,
4217 			     void *data, u8 bits_offset,
4218 			     struct btf_show *show)
4219 {
4220 	const struct btf_var_secinfo *vsi;
4221 	const struct btf_type *var;
4222 	u32 i;
4223 
4224 	if (!btf_show_start_type(show, t, type_id, data))
4225 		return;
4226 
4227 	btf_show_type_value(show, "section (\"%s\") = {",
4228 			    __btf_name_by_offset(btf, t->name_off));
4229 	for_each_vsi(i, t, vsi) {
4230 		var = btf_type_by_id(btf, vsi->type);
4231 		if (i)
4232 			btf_show(show, ",");
4233 		btf_type_ops(var)->show(btf, var, vsi->type,
4234 					data + vsi->offset, bits_offset, show);
4235 	}
4236 	btf_show_end_type(show);
4237 }
4238 
4239 static const struct btf_kind_operations datasec_ops = {
4240 	.check_meta		= btf_datasec_check_meta,
4241 	.resolve		= btf_datasec_resolve,
4242 	.check_member		= btf_df_check_member,
4243 	.check_kflag_member	= btf_df_check_kflag_member,
4244 	.log_details		= btf_datasec_log,
4245 	.show			= btf_datasec_show,
4246 };
4247 
btf_float_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4248 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4249 				const struct btf_type *t,
4250 				u32 meta_left)
4251 {
4252 	if (btf_type_vlen(t)) {
4253 		btf_verifier_log_type(env, t, "vlen != 0");
4254 		return -EINVAL;
4255 	}
4256 
4257 	if (btf_type_kflag(t)) {
4258 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4259 		return -EINVAL;
4260 	}
4261 
4262 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4263 	    t->size != 16) {
4264 		btf_verifier_log_type(env, t, "Invalid type_size");
4265 		return -EINVAL;
4266 	}
4267 
4268 	btf_verifier_log_type(env, t, NULL);
4269 
4270 	return 0;
4271 }
4272 
btf_float_check_member(struct btf_verifier_env * env,const struct btf_type * struct_type,const struct btf_member * member,const struct btf_type * member_type)4273 static int btf_float_check_member(struct btf_verifier_env *env,
4274 				  const struct btf_type *struct_type,
4275 				  const struct btf_member *member,
4276 				  const struct btf_type *member_type)
4277 {
4278 	u64 start_offset_bytes;
4279 	u64 end_offset_bytes;
4280 	u64 misalign_bits;
4281 	u64 align_bytes;
4282 	u64 align_bits;
4283 
4284 	/* Different architectures have different alignment requirements, so
4285 	 * here we check only for the reasonable minimum. This way we ensure
4286 	 * that types after CO-RE can pass the kernel BTF verifier.
4287 	 */
4288 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4289 	align_bits = align_bytes * BITS_PER_BYTE;
4290 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4291 	if (misalign_bits) {
4292 		btf_verifier_log_member(env, struct_type, member,
4293 					"Member is not properly aligned");
4294 		return -EINVAL;
4295 	}
4296 
4297 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4298 	end_offset_bytes = start_offset_bytes + member_type->size;
4299 	if (end_offset_bytes > struct_type->size) {
4300 		btf_verifier_log_member(env, struct_type, member,
4301 					"Member exceeds struct_size");
4302 		return -EINVAL;
4303 	}
4304 
4305 	return 0;
4306 }
4307 
btf_float_log(struct btf_verifier_env * env,const struct btf_type * t)4308 static void btf_float_log(struct btf_verifier_env *env,
4309 			  const struct btf_type *t)
4310 {
4311 	btf_verifier_log(env, "size=%u", t->size);
4312 }
4313 
4314 static const struct btf_kind_operations float_ops = {
4315 	.check_meta = btf_float_check_meta,
4316 	.resolve = btf_df_resolve,
4317 	.check_member = btf_float_check_member,
4318 	.check_kflag_member = btf_generic_check_kflag_member,
4319 	.log_details = btf_float_log,
4320 	.show = btf_df_show,
4321 };
4322 
btf_decl_tag_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4323 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4324 			      const struct btf_type *t,
4325 			      u32 meta_left)
4326 {
4327 	const struct btf_decl_tag *tag;
4328 	u32 meta_needed = sizeof(*tag);
4329 	s32 component_idx;
4330 	const char *value;
4331 
4332 	if (meta_left < meta_needed) {
4333 		btf_verifier_log_basic(env, t,
4334 				       "meta_left:%u meta_needed:%u",
4335 				       meta_left, meta_needed);
4336 		return -EINVAL;
4337 	}
4338 
4339 	value = btf_name_by_offset(env->btf, t->name_off);
4340 	if (!value || !value[0]) {
4341 		btf_verifier_log_type(env, t, "Invalid value");
4342 		return -EINVAL;
4343 	}
4344 
4345 	if (btf_type_vlen(t)) {
4346 		btf_verifier_log_type(env, t, "vlen != 0");
4347 		return -EINVAL;
4348 	}
4349 
4350 	if (btf_type_kflag(t)) {
4351 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4352 		return -EINVAL;
4353 	}
4354 
4355 	component_idx = btf_type_decl_tag(t)->component_idx;
4356 	if (component_idx < -1) {
4357 		btf_verifier_log_type(env, t, "Invalid component_idx");
4358 		return -EINVAL;
4359 	}
4360 
4361 	btf_verifier_log_type(env, t, NULL);
4362 
4363 	return meta_needed;
4364 }
4365 
btf_decl_tag_resolve(struct btf_verifier_env * env,const struct resolve_vertex * v)4366 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4367 			   const struct resolve_vertex *v)
4368 {
4369 	const struct btf_type *next_type;
4370 	const struct btf_type *t = v->t;
4371 	u32 next_type_id = t->type;
4372 	struct btf *btf = env->btf;
4373 	s32 component_idx;
4374 	u32 vlen;
4375 
4376 	next_type = btf_type_by_id(btf, next_type_id);
4377 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4378 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4379 		return -EINVAL;
4380 	}
4381 
4382 	if (!env_type_is_resolve_sink(env, next_type) &&
4383 	    !env_type_is_resolved(env, next_type_id))
4384 		return env_stack_push(env, next_type, next_type_id);
4385 
4386 	component_idx = btf_type_decl_tag(t)->component_idx;
4387 	if (component_idx != -1) {
4388 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4389 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4390 			return -EINVAL;
4391 		}
4392 
4393 		if (btf_type_is_struct(next_type)) {
4394 			vlen = btf_type_vlen(next_type);
4395 		} else {
4396 			/* next_type should be a function */
4397 			next_type = btf_type_by_id(btf, next_type->type);
4398 			vlen = btf_type_vlen(next_type);
4399 		}
4400 
4401 		if ((u32)component_idx >= vlen) {
4402 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4403 			return -EINVAL;
4404 		}
4405 	}
4406 
4407 	env_stack_pop_resolved(env, next_type_id, 0);
4408 
4409 	return 0;
4410 }
4411 
btf_decl_tag_log(struct btf_verifier_env * env,const struct btf_type * t)4412 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4413 {
4414 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4415 			 btf_type_decl_tag(t)->component_idx);
4416 }
4417 
4418 static const struct btf_kind_operations decl_tag_ops = {
4419 	.check_meta = btf_decl_tag_check_meta,
4420 	.resolve = btf_decl_tag_resolve,
4421 	.check_member = btf_df_check_member,
4422 	.check_kflag_member = btf_df_check_kflag_member,
4423 	.log_details = btf_decl_tag_log,
4424 	.show = btf_df_show,
4425 };
4426 
btf_func_proto_check(struct btf_verifier_env * env,const struct btf_type * t)4427 static int btf_func_proto_check(struct btf_verifier_env *env,
4428 				const struct btf_type *t)
4429 {
4430 	const struct btf_type *ret_type;
4431 	const struct btf_param *args;
4432 	const struct btf *btf;
4433 	u16 nr_args, i;
4434 	int err;
4435 
4436 	btf = env->btf;
4437 	args = (const struct btf_param *)(t + 1);
4438 	nr_args = btf_type_vlen(t);
4439 
4440 	/* Check func return type which could be "void" (t->type == 0) */
4441 	if (t->type) {
4442 		u32 ret_type_id = t->type;
4443 
4444 		ret_type = btf_type_by_id(btf, ret_type_id);
4445 		if (!ret_type) {
4446 			btf_verifier_log_type(env, t, "Invalid return type");
4447 			return -EINVAL;
4448 		}
4449 
4450 		if (btf_type_is_resolve_source_only(ret_type)) {
4451 			btf_verifier_log_type(env, t, "Invalid return type");
4452 			return -EINVAL;
4453 		}
4454 
4455 		if (btf_type_needs_resolve(ret_type) &&
4456 		    !env_type_is_resolved(env, ret_type_id)) {
4457 			err = btf_resolve(env, ret_type, ret_type_id);
4458 			if (err)
4459 				return err;
4460 		}
4461 
4462 		/* Ensure the return type is a type that has a size */
4463 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4464 			btf_verifier_log_type(env, t, "Invalid return type");
4465 			return -EINVAL;
4466 		}
4467 	}
4468 
4469 	if (!nr_args)
4470 		return 0;
4471 
4472 	/* Last func arg type_id could be 0 if it is a vararg */
4473 	if (!args[nr_args - 1].type) {
4474 		if (args[nr_args - 1].name_off) {
4475 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4476 					      nr_args);
4477 			return -EINVAL;
4478 		}
4479 		nr_args--;
4480 	}
4481 
4482 	err = 0;
4483 	for (i = 0; i < nr_args; i++) {
4484 		const struct btf_type *arg_type;
4485 		u32 arg_type_id;
4486 
4487 		arg_type_id = args[i].type;
4488 		arg_type = btf_type_by_id(btf, arg_type_id);
4489 		if (!arg_type) {
4490 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4491 			err = -EINVAL;
4492 			break;
4493 		}
4494 
4495 		if (btf_type_is_resolve_source_only(arg_type)) {
4496 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4497 			return -EINVAL;
4498 		}
4499 
4500 		if (args[i].name_off &&
4501 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4502 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4503 			btf_verifier_log_type(env, t,
4504 					      "Invalid arg#%u", i + 1);
4505 			err = -EINVAL;
4506 			break;
4507 		}
4508 
4509 		if (btf_type_needs_resolve(arg_type) &&
4510 		    !env_type_is_resolved(env, arg_type_id)) {
4511 			err = btf_resolve(env, arg_type, arg_type_id);
4512 			if (err)
4513 				break;
4514 		}
4515 
4516 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4517 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4518 			err = -EINVAL;
4519 			break;
4520 		}
4521 	}
4522 
4523 	return err;
4524 }
4525 
btf_func_check(struct btf_verifier_env * env,const struct btf_type * t)4526 static int btf_func_check(struct btf_verifier_env *env,
4527 			  const struct btf_type *t)
4528 {
4529 	const struct btf_type *proto_type;
4530 	const struct btf_param *args;
4531 	const struct btf *btf;
4532 	u16 nr_args, i;
4533 
4534 	btf = env->btf;
4535 	proto_type = btf_type_by_id(btf, t->type);
4536 
4537 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4538 		btf_verifier_log_type(env, t, "Invalid type_id");
4539 		return -EINVAL;
4540 	}
4541 
4542 	args = (const struct btf_param *)(proto_type + 1);
4543 	nr_args = btf_type_vlen(proto_type);
4544 	for (i = 0; i < nr_args; i++) {
4545 		if (!args[i].name_off && args[i].type) {
4546 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4547 			return -EINVAL;
4548 		}
4549 	}
4550 
4551 	return 0;
4552 }
4553 
4554 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4555 	[BTF_KIND_INT] = &int_ops,
4556 	[BTF_KIND_PTR] = &ptr_ops,
4557 	[BTF_KIND_ARRAY] = &array_ops,
4558 	[BTF_KIND_STRUCT] = &struct_ops,
4559 	[BTF_KIND_UNION] = &struct_ops,
4560 	[BTF_KIND_ENUM] = &enum_ops,
4561 	[BTF_KIND_FWD] = &fwd_ops,
4562 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4563 	[BTF_KIND_VOLATILE] = &modifier_ops,
4564 	[BTF_KIND_CONST] = &modifier_ops,
4565 	[BTF_KIND_RESTRICT] = &modifier_ops,
4566 	[BTF_KIND_FUNC] = &func_ops,
4567 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4568 	[BTF_KIND_VAR] = &var_ops,
4569 	[BTF_KIND_DATASEC] = &datasec_ops,
4570 	[BTF_KIND_FLOAT] = &float_ops,
4571 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4572 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4573 	[BTF_KIND_ENUM64] = &enum64_ops,
4574 };
4575 
btf_check_meta(struct btf_verifier_env * env,const struct btf_type * t,u32 meta_left)4576 static s32 btf_check_meta(struct btf_verifier_env *env,
4577 			  const struct btf_type *t,
4578 			  u32 meta_left)
4579 {
4580 	u32 saved_meta_left = meta_left;
4581 	s32 var_meta_size;
4582 
4583 	if (meta_left < sizeof(*t)) {
4584 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4585 				 env->log_type_id, meta_left, sizeof(*t));
4586 		return -EINVAL;
4587 	}
4588 	meta_left -= sizeof(*t);
4589 
4590 	if (t->info & ~BTF_INFO_MASK) {
4591 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4592 				 env->log_type_id, t->info);
4593 		return -EINVAL;
4594 	}
4595 
4596 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4597 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4598 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4599 				 env->log_type_id, BTF_INFO_KIND(t->info));
4600 		return -EINVAL;
4601 	}
4602 
4603 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4604 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4605 				 env->log_type_id, t->name_off);
4606 		return -EINVAL;
4607 	}
4608 
4609 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4610 	if (var_meta_size < 0)
4611 		return var_meta_size;
4612 
4613 	meta_left -= var_meta_size;
4614 
4615 	return saved_meta_left - meta_left;
4616 }
4617 
btf_check_all_metas(struct btf_verifier_env * env)4618 static int btf_check_all_metas(struct btf_verifier_env *env)
4619 {
4620 	struct btf *btf = env->btf;
4621 	struct btf_header *hdr;
4622 	void *cur, *end;
4623 
4624 	hdr = &btf->hdr;
4625 	cur = btf->nohdr_data + hdr->type_off;
4626 	end = cur + hdr->type_len;
4627 
4628 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4629 	while (cur < end) {
4630 		struct btf_type *t = cur;
4631 		s32 meta_size;
4632 
4633 		meta_size = btf_check_meta(env, t, end - cur);
4634 		if (meta_size < 0)
4635 			return meta_size;
4636 
4637 		btf_add_type(env, t);
4638 		cur += meta_size;
4639 		env->log_type_id++;
4640 	}
4641 
4642 	return 0;
4643 }
4644 
btf_resolve_valid(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)4645 static bool btf_resolve_valid(struct btf_verifier_env *env,
4646 			      const struct btf_type *t,
4647 			      u32 type_id)
4648 {
4649 	struct btf *btf = env->btf;
4650 
4651 	if (!env_type_is_resolved(env, type_id))
4652 		return false;
4653 
4654 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4655 		return !btf_resolved_type_id(btf, type_id) &&
4656 		       !btf_resolved_type_size(btf, type_id);
4657 
4658 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
4659 		return btf_resolved_type_id(btf, type_id) &&
4660 		       !btf_resolved_type_size(btf, type_id);
4661 
4662 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4663 	    btf_type_is_var(t)) {
4664 		t = btf_type_id_resolve(btf, &type_id);
4665 		return t &&
4666 		       !btf_type_is_modifier(t) &&
4667 		       !btf_type_is_var(t) &&
4668 		       !btf_type_is_datasec(t);
4669 	}
4670 
4671 	if (btf_type_is_array(t)) {
4672 		const struct btf_array *array = btf_type_array(t);
4673 		const struct btf_type *elem_type;
4674 		u32 elem_type_id = array->type;
4675 		u32 elem_size;
4676 
4677 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4678 		return elem_type && !btf_type_is_modifier(elem_type) &&
4679 			(array->nelems * elem_size ==
4680 			 btf_resolved_type_size(btf, type_id));
4681 	}
4682 
4683 	return false;
4684 }
4685 
btf_resolve(struct btf_verifier_env * env,const struct btf_type * t,u32 type_id)4686 static int btf_resolve(struct btf_verifier_env *env,
4687 		       const struct btf_type *t, u32 type_id)
4688 {
4689 	u32 save_log_type_id = env->log_type_id;
4690 	const struct resolve_vertex *v;
4691 	int err = 0;
4692 
4693 	env->resolve_mode = RESOLVE_TBD;
4694 	env_stack_push(env, t, type_id);
4695 	while (!err && (v = env_stack_peak(env))) {
4696 		env->log_type_id = v->type_id;
4697 		err = btf_type_ops(v->t)->resolve(env, v);
4698 	}
4699 
4700 	env->log_type_id = type_id;
4701 	if (err == -E2BIG) {
4702 		btf_verifier_log_type(env, t,
4703 				      "Exceeded max resolving depth:%u",
4704 				      MAX_RESOLVE_DEPTH);
4705 	} else if (err == -EEXIST) {
4706 		btf_verifier_log_type(env, t, "Loop detected");
4707 	}
4708 
4709 	/* Final sanity check */
4710 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4711 		btf_verifier_log_type(env, t, "Invalid resolve state");
4712 		err = -EINVAL;
4713 	}
4714 
4715 	env->log_type_id = save_log_type_id;
4716 	return err;
4717 }
4718 
btf_check_all_types(struct btf_verifier_env * env)4719 static int btf_check_all_types(struct btf_verifier_env *env)
4720 {
4721 	struct btf *btf = env->btf;
4722 	const struct btf_type *t;
4723 	u32 type_id, i;
4724 	int err;
4725 
4726 	err = env_resolve_init(env);
4727 	if (err)
4728 		return err;
4729 
4730 	env->phase++;
4731 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4732 		type_id = btf->start_id + i;
4733 		t = btf_type_by_id(btf, type_id);
4734 
4735 		env->log_type_id = type_id;
4736 		if (btf_type_needs_resolve(t) &&
4737 		    !env_type_is_resolved(env, type_id)) {
4738 			err = btf_resolve(env, t, type_id);
4739 			if (err)
4740 				return err;
4741 		}
4742 
4743 		if (btf_type_is_func_proto(t)) {
4744 			err = btf_func_proto_check(env, t);
4745 			if (err)
4746 				return err;
4747 		}
4748 	}
4749 
4750 	return 0;
4751 }
4752 
btf_parse_type_sec(struct btf_verifier_env * env)4753 static int btf_parse_type_sec(struct btf_verifier_env *env)
4754 {
4755 	const struct btf_header *hdr = &env->btf->hdr;
4756 	int err;
4757 
4758 	/* Type section must align to 4 bytes */
4759 	if (hdr->type_off & (sizeof(u32) - 1)) {
4760 		btf_verifier_log(env, "Unaligned type_off");
4761 		return -EINVAL;
4762 	}
4763 
4764 	if (!env->btf->base_btf && !hdr->type_len) {
4765 		btf_verifier_log(env, "No type found");
4766 		return -EINVAL;
4767 	}
4768 
4769 	err = btf_check_all_metas(env);
4770 	if (err)
4771 		return err;
4772 
4773 	return btf_check_all_types(env);
4774 }
4775 
btf_parse_str_sec(struct btf_verifier_env * env)4776 static int btf_parse_str_sec(struct btf_verifier_env *env)
4777 {
4778 	const struct btf_header *hdr;
4779 	struct btf *btf = env->btf;
4780 	const char *start, *end;
4781 
4782 	hdr = &btf->hdr;
4783 	start = btf->nohdr_data + hdr->str_off;
4784 	end = start + hdr->str_len;
4785 
4786 	if (end != btf->data + btf->data_size) {
4787 		btf_verifier_log(env, "String section is not at the end");
4788 		return -EINVAL;
4789 	}
4790 
4791 	btf->strings = start;
4792 
4793 	if (btf->base_btf && !hdr->str_len)
4794 		return 0;
4795 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4796 		btf_verifier_log(env, "Invalid string section");
4797 		return -EINVAL;
4798 	}
4799 	if (!btf->base_btf && start[0]) {
4800 		btf_verifier_log(env, "Invalid string section");
4801 		return -EINVAL;
4802 	}
4803 
4804 	return 0;
4805 }
4806 
4807 static const size_t btf_sec_info_offset[] = {
4808 	offsetof(struct btf_header, type_off),
4809 	offsetof(struct btf_header, str_off),
4810 };
4811 
btf_sec_info_cmp(const void * a,const void * b)4812 static int btf_sec_info_cmp(const void *a, const void *b)
4813 {
4814 	const struct btf_sec_info *x = a;
4815 	const struct btf_sec_info *y = b;
4816 
4817 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4818 }
4819 
btf_check_sec_info(struct btf_verifier_env * env,u32 btf_data_size)4820 static int btf_check_sec_info(struct btf_verifier_env *env,
4821 			      u32 btf_data_size)
4822 {
4823 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4824 	u32 total, expected_total, i;
4825 	const struct btf_header *hdr;
4826 	const struct btf *btf;
4827 
4828 	btf = env->btf;
4829 	hdr = &btf->hdr;
4830 
4831 	/* Populate the secs from hdr */
4832 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4833 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4834 						   btf_sec_info_offset[i]);
4835 
4836 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4837 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4838 
4839 	/* Check for gaps and overlap among sections */
4840 	total = 0;
4841 	expected_total = btf_data_size - hdr->hdr_len;
4842 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4843 		if (expected_total < secs[i].off) {
4844 			btf_verifier_log(env, "Invalid section offset");
4845 			return -EINVAL;
4846 		}
4847 		if (total < secs[i].off) {
4848 			/* gap */
4849 			btf_verifier_log(env, "Unsupported section found");
4850 			return -EINVAL;
4851 		}
4852 		if (total > secs[i].off) {
4853 			btf_verifier_log(env, "Section overlap found");
4854 			return -EINVAL;
4855 		}
4856 		if (expected_total - total < secs[i].len) {
4857 			btf_verifier_log(env,
4858 					 "Total section length too long");
4859 			return -EINVAL;
4860 		}
4861 		total += secs[i].len;
4862 	}
4863 
4864 	/* There is data other than hdr and known sections */
4865 	if (expected_total != total) {
4866 		btf_verifier_log(env, "Unsupported section found");
4867 		return -EINVAL;
4868 	}
4869 
4870 	return 0;
4871 }
4872 
btf_parse_hdr(struct btf_verifier_env * env)4873 static int btf_parse_hdr(struct btf_verifier_env *env)
4874 {
4875 	u32 hdr_len, hdr_copy, btf_data_size;
4876 	const struct btf_header *hdr;
4877 	struct btf *btf;
4878 
4879 	btf = env->btf;
4880 	btf_data_size = btf->data_size;
4881 
4882 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
4883 		btf_verifier_log(env, "hdr_len not found");
4884 		return -EINVAL;
4885 	}
4886 
4887 	hdr = btf->data;
4888 	hdr_len = hdr->hdr_len;
4889 	if (btf_data_size < hdr_len) {
4890 		btf_verifier_log(env, "btf_header not found");
4891 		return -EINVAL;
4892 	}
4893 
4894 	/* Ensure the unsupported header fields are zero */
4895 	if (hdr_len > sizeof(btf->hdr)) {
4896 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4897 		u8 *end = btf->data + hdr_len;
4898 
4899 		for (; expected_zero < end; expected_zero++) {
4900 			if (*expected_zero) {
4901 				btf_verifier_log(env, "Unsupported btf_header");
4902 				return -E2BIG;
4903 			}
4904 		}
4905 	}
4906 
4907 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4908 	memcpy(&btf->hdr, btf->data, hdr_copy);
4909 
4910 	hdr = &btf->hdr;
4911 
4912 	btf_verifier_log_hdr(env, btf_data_size);
4913 
4914 	if (hdr->magic != BTF_MAGIC) {
4915 		btf_verifier_log(env, "Invalid magic");
4916 		return -EINVAL;
4917 	}
4918 
4919 	if (hdr->version != BTF_VERSION) {
4920 		btf_verifier_log(env, "Unsupported version");
4921 		return -ENOTSUPP;
4922 	}
4923 
4924 	if (hdr->flags) {
4925 		btf_verifier_log(env, "Unsupported flags");
4926 		return -ENOTSUPP;
4927 	}
4928 
4929 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4930 		btf_verifier_log(env, "No data");
4931 		return -EINVAL;
4932 	}
4933 
4934 	return btf_check_sec_info(env, btf_data_size);
4935 }
4936 
btf_check_type_tags(struct btf_verifier_env * env,struct btf * btf,int start_id)4937 static int btf_check_type_tags(struct btf_verifier_env *env,
4938 			       struct btf *btf, int start_id)
4939 {
4940 	int i, n, good_id = start_id - 1;
4941 	bool in_tags;
4942 
4943 	n = btf_nr_types(btf);
4944 	for (i = start_id; i < n; i++) {
4945 		const struct btf_type *t;
4946 		int chain_limit = 32;
4947 		u32 cur_id = i;
4948 
4949 		t = btf_type_by_id(btf, i);
4950 		if (!t)
4951 			return -EINVAL;
4952 		if (!btf_type_is_modifier(t))
4953 			continue;
4954 
4955 		cond_resched();
4956 
4957 		in_tags = btf_type_is_type_tag(t);
4958 		while (btf_type_is_modifier(t)) {
4959 			if (!chain_limit--) {
4960 				btf_verifier_log(env, "Max chain length or cycle detected");
4961 				return -ELOOP;
4962 			}
4963 			if (btf_type_is_type_tag(t)) {
4964 				if (!in_tags) {
4965 					btf_verifier_log(env, "Type tags don't precede modifiers");
4966 					return -EINVAL;
4967 				}
4968 			} else if (in_tags) {
4969 				in_tags = false;
4970 			}
4971 			if (cur_id <= good_id)
4972 				break;
4973 			/* Move to next type */
4974 			cur_id = t->type;
4975 			t = btf_type_by_id(btf, cur_id);
4976 			if (!t)
4977 				return -EINVAL;
4978 		}
4979 		good_id = i;
4980 	}
4981 	return 0;
4982 }
4983 
btf_parse(bpfptr_t btf_data,u32 btf_data_size,u32 log_level,char __user * log_ubuf,u32 log_size)4984 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4985 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4986 {
4987 	struct btf_verifier_env *env = NULL;
4988 	struct bpf_verifier_log *log;
4989 	struct btf *btf = NULL;
4990 	u8 *data;
4991 	int err;
4992 
4993 	if (btf_data_size > BTF_MAX_SIZE)
4994 		return ERR_PTR(-E2BIG);
4995 
4996 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4997 	if (!env)
4998 		return ERR_PTR(-ENOMEM);
4999 
5000 	log = &env->log;
5001 	if (log_level || log_ubuf || log_size) {
5002 		/* user requested verbose verifier output
5003 		 * and supplied buffer to store the verification trace
5004 		 */
5005 		log->level = log_level;
5006 		log->ubuf = log_ubuf;
5007 		log->len_total = log_size;
5008 
5009 		/* log attributes have to be sane */
5010 		if (!bpf_verifier_log_attr_valid(log)) {
5011 			err = -EINVAL;
5012 			goto errout;
5013 		}
5014 	}
5015 
5016 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5017 	if (!btf) {
5018 		err = -ENOMEM;
5019 		goto errout;
5020 	}
5021 	env->btf = btf;
5022 
5023 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5024 	if (!data) {
5025 		err = -ENOMEM;
5026 		goto errout;
5027 	}
5028 
5029 	btf->data = data;
5030 	btf->data_size = btf_data_size;
5031 
5032 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
5033 		err = -EFAULT;
5034 		goto errout;
5035 	}
5036 
5037 	err = btf_parse_hdr(env);
5038 	if (err)
5039 		goto errout;
5040 
5041 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5042 
5043 	err = btf_parse_str_sec(env);
5044 	if (err)
5045 		goto errout;
5046 
5047 	err = btf_parse_type_sec(env);
5048 	if (err)
5049 		goto errout;
5050 
5051 	err = btf_check_type_tags(env, btf, 1);
5052 	if (err)
5053 		goto errout;
5054 
5055 	if (log->level && bpf_verifier_log_full(log)) {
5056 		err = -ENOSPC;
5057 		goto errout;
5058 	}
5059 
5060 	btf_verifier_env_free(env);
5061 	refcount_set(&btf->refcnt, 1);
5062 	return btf;
5063 
5064 errout:
5065 	btf_verifier_env_free(env);
5066 	if (btf)
5067 		btf_free(btf);
5068 	return ERR_PTR(err);
5069 }
5070 
5071 extern char __weak __start_BTF[];
5072 extern char __weak __stop_BTF[];
5073 extern struct btf *btf_vmlinux;
5074 
5075 #define BPF_MAP_TYPE(_id, _ops)
5076 #define BPF_LINK_TYPE(_id, _name)
5077 static union {
5078 	struct bpf_ctx_convert {
5079 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5080 	prog_ctx_type _id##_prog; \
5081 	kern_ctx_type _id##_kern;
5082 #include <linux/bpf_types.h>
5083 #undef BPF_PROG_TYPE
5084 	} *__t;
5085 	/* 't' is written once under lock. Read many times. */
5086 	const struct btf_type *t;
5087 } bpf_ctx_convert;
5088 enum {
5089 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5090 	__ctx_convert##_id,
5091 #include <linux/bpf_types.h>
5092 #undef BPF_PROG_TYPE
5093 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5094 };
5095 static u8 bpf_ctx_convert_map[] = {
5096 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5097 	[_id] = __ctx_convert##_id,
5098 #include <linux/bpf_types.h>
5099 #undef BPF_PROG_TYPE
5100 	0, /* avoid empty array */
5101 };
5102 #undef BPF_MAP_TYPE
5103 #undef BPF_LINK_TYPE
5104 
5105 static const struct btf_member *
btf_get_prog_ctx_type(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)5106 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5107 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5108 		      int arg)
5109 {
5110 	const struct btf_type *conv_struct;
5111 	const struct btf_type *ctx_struct;
5112 	const struct btf_member *ctx_type;
5113 	const char *tname, *ctx_tname;
5114 
5115 	conv_struct = bpf_ctx_convert.t;
5116 	if (!conv_struct) {
5117 		bpf_log(log, "btf_vmlinux is malformed\n");
5118 		return NULL;
5119 	}
5120 	t = btf_type_by_id(btf, t->type);
5121 	while (btf_type_is_modifier(t))
5122 		t = btf_type_by_id(btf, t->type);
5123 	if (!btf_type_is_struct(t)) {
5124 		/* Only pointer to struct is supported for now.
5125 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5126 		 * is not supported yet.
5127 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5128 		 */
5129 		return NULL;
5130 	}
5131 	tname = btf_name_by_offset(btf, t->name_off);
5132 	if (!tname) {
5133 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5134 		return NULL;
5135 	}
5136 	/* prog_type is valid bpf program type. No need for bounds check. */
5137 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5138 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5139 	 * Like 'struct __sk_buff'
5140 	 */
5141 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5142 	if (!ctx_struct)
5143 		/* should not happen */
5144 		return NULL;
5145 again:
5146 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5147 	if (!ctx_tname) {
5148 		/* should not happen */
5149 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5150 		return NULL;
5151 	}
5152 	/* only compare that prog's ctx type name is the same as
5153 	 * kernel expects. No need to compare field by field.
5154 	 * It's ok for bpf prog to do:
5155 	 * struct __sk_buff {};
5156 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5157 	 * { // no fields of skb are ever used }
5158 	 */
5159 	if (strcmp(ctx_tname, tname)) {
5160 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5161 		 * underlying struct and check name again
5162 		 */
5163 		if (!btf_type_is_modifier(ctx_struct))
5164 			return NULL;
5165 		while (btf_type_is_modifier(ctx_struct))
5166 			ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5167 		goto again;
5168 	}
5169 	return ctx_type;
5170 }
5171 
btf_translate_to_vmlinux(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * t,enum bpf_prog_type prog_type,int arg)5172 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5173 				     struct btf *btf,
5174 				     const struct btf_type *t,
5175 				     enum bpf_prog_type prog_type,
5176 				     int arg)
5177 {
5178 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5179 
5180 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5181 	if (!prog_ctx_type)
5182 		return -ENOENT;
5183 	kern_ctx_type = prog_ctx_type + 1;
5184 	return kern_ctx_type->type;
5185 }
5186 
5187 BTF_ID_LIST(bpf_ctx_convert_btf_id)
BTF_ID(struct,bpf_ctx_convert)5188 BTF_ID(struct, bpf_ctx_convert)
5189 
5190 struct btf *btf_parse_vmlinux(void)
5191 {
5192 	struct btf_verifier_env *env = NULL;
5193 	struct bpf_verifier_log *log;
5194 	struct btf *btf = NULL;
5195 	int err;
5196 
5197 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5198 	if (!env)
5199 		return ERR_PTR(-ENOMEM);
5200 
5201 	log = &env->log;
5202 	log->level = BPF_LOG_KERNEL;
5203 
5204 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5205 	if (!btf) {
5206 		err = -ENOMEM;
5207 		goto errout;
5208 	}
5209 	env->btf = btf;
5210 
5211 	btf->data = __start_BTF;
5212 	btf->data_size = __stop_BTF - __start_BTF;
5213 	btf->kernel_btf = true;
5214 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5215 
5216 	err = btf_parse_hdr(env);
5217 	if (err)
5218 		goto errout;
5219 
5220 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5221 
5222 	err = btf_parse_str_sec(env);
5223 	if (err)
5224 		goto errout;
5225 
5226 	err = btf_check_all_metas(env);
5227 	if (err)
5228 		goto errout;
5229 
5230 	err = btf_check_type_tags(env, btf, 1);
5231 	if (err)
5232 		goto errout;
5233 
5234 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5235 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5236 
5237 	bpf_struct_ops_init(btf, log);
5238 
5239 	refcount_set(&btf->refcnt, 1);
5240 
5241 	err = btf_alloc_id(btf);
5242 	if (err)
5243 		goto errout;
5244 
5245 	btf_verifier_env_free(env);
5246 	return btf;
5247 
5248 errout:
5249 	btf_verifier_env_free(env);
5250 	if (btf) {
5251 		kvfree(btf->types);
5252 		kfree(btf);
5253 	}
5254 	return ERR_PTR(err);
5255 }
5256 
5257 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5258 
btf_parse_module(const char * module_name,const void * data,unsigned int data_size)5259 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5260 {
5261 	struct btf_verifier_env *env = NULL;
5262 	struct bpf_verifier_log *log;
5263 	struct btf *btf = NULL, *base_btf;
5264 	int err;
5265 
5266 	base_btf = bpf_get_btf_vmlinux();
5267 	if (IS_ERR(base_btf))
5268 		return base_btf;
5269 	if (!base_btf)
5270 		return ERR_PTR(-EINVAL);
5271 
5272 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5273 	if (!env)
5274 		return ERR_PTR(-ENOMEM);
5275 
5276 	log = &env->log;
5277 	log->level = BPF_LOG_KERNEL;
5278 
5279 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5280 	if (!btf) {
5281 		err = -ENOMEM;
5282 		goto errout;
5283 	}
5284 	env->btf = btf;
5285 
5286 	btf->base_btf = base_btf;
5287 	btf->start_id = base_btf->nr_types;
5288 	btf->start_str_off = base_btf->hdr.str_len;
5289 	btf->kernel_btf = true;
5290 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5291 
5292 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5293 	if (!btf->data) {
5294 		err = -ENOMEM;
5295 		goto errout;
5296 	}
5297 	memcpy(btf->data, data, data_size);
5298 	btf->data_size = data_size;
5299 
5300 	err = btf_parse_hdr(env);
5301 	if (err)
5302 		goto errout;
5303 
5304 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5305 
5306 	err = btf_parse_str_sec(env);
5307 	if (err)
5308 		goto errout;
5309 
5310 	err = btf_check_all_metas(env);
5311 	if (err)
5312 		goto errout;
5313 
5314 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5315 	if (err)
5316 		goto errout;
5317 
5318 	btf_verifier_env_free(env);
5319 	refcount_set(&btf->refcnt, 1);
5320 	return btf;
5321 
5322 errout:
5323 	btf_verifier_env_free(env);
5324 	if (btf) {
5325 		kvfree(btf->data);
5326 		kvfree(btf->types);
5327 		kfree(btf);
5328 	}
5329 	return ERR_PTR(err);
5330 }
5331 
5332 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5333 
bpf_prog_get_target_btf(const struct bpf_prog * prog)5334 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5335 {
5336 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5337 
5338 	if (tgt_prog)
5339 		return tgt_prog->aux->btf;
5340 	else
5341 		return prog->aux->attach_btf;
5342 }
5343 
is_int_ptr(struct btf * btf,const struct btf_type * t)5344 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5345 {
5346 	/* skip modifiers */
5347 	t = btf_type_skip_modifiers(btf, t->type, NULL);
5348 
5349 	return btf_type_is_int(t);
5350 }
5351 
get_ctx_arg_idx(struct btf * btf,const struct btf_type * func_proto,int off)5352 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5353 			   int off)
5354 {
5355 	const struct btf_param *args;
5356 	const struct btf_type *t;
5357 	u32 offset = 0, nr_args;
5358 	int i;
5359 
5360 	if (!func_proto)
5361 		return off / 8;
5362 
5363 	nr_args = btf_type_vlen(func_proto);
5364 	args = (const struct btf_param *)(func_proto + 1);
5365 	for (i = 0; i < nr_args; i++) {
5366 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5367 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5368 		if (off < offset)
5369 			return i;
5370 	}
5371 
5372 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5373 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5374 	if (off < offset)
5375 		return nr_args;
5376 
5377 	return nr_args + 1;
5378 }
5379 
btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5380 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5381 		    const struct bpf_prog *prog,
5382 		    struct bpf_insn_access_aux *info)
5383 {
5384 	const struct btf_type *t = prog->aux->attach_func_proto;
5385 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5386 	struct btf *btf = bpf_prog_get_target_btf(prog);
5387 	const char *tname = prog->aux->attach_func_name;
5388 	struct bpf_verifier_log *log = info->log;
5389 	const struct btf_param *args;
5390 	const char *tag_value;
5391 	u32 nr_args, arg;
5392 	int i, ret;
5393 
5394 	if (off % 8) {
5395 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5396 			tname, off);
5397 		return false;
5398 	}
5399 	arg = get_ctx_arg_idx(btf, t, off);
5400 	args = (const struct btf_param *)(t + 1);
5401 	/* if (t == NULL) Fall back to default BPF prog with
5402 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5403 	 */
5404 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5405 	if (prog->aux->attach_btf_trace) {
5406 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5407 		args++;
5408 		nr_args--;
5409 	}
5410 
5411 	if (arg > nr_args) {
5412 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5413 			tname, arg + 1);
5414 		return false;
5415 	}
5416 
5417 	if (arg == nr_args) {
5418 		switch (prog->expected_attach_type) {
5419 		case BPF_LSM_CGROUP:
5420 		case BPF_LSM_MAC:
5421 		case BPF_TRACE_FEXIT:
5422 			/* When LSM programs are attached to void LSM hooks
5423 			 * they use FEXIT trampolines and when attached to
5424 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5425 			 *
5426 			 * While the LSM programs are BPF_MODIFY_RETURN-like
5427 			 * the check:
5428 			 *
5429 			 *	if (ret_type != 'int')
5430 			 *		return -EINVAL;
5431 			 *
5432 			 * is _not_ done here. This is still safe as LSM hooks
5433 			 * have only void and int return types.
5434 			 */
5435 			if (!t)
5436 				return true;
5437 			t = btf_type_by_id(btf, t->type);
5438 			break;
5439 		case BPF_MODIFY_RETURN:
5440 			/* For now the BPF_MODIFY_RETURN can only be attached to
5441 			 * functions that return an int.
5442 			 */
5443 			if (!t)
5444 				return false;
5445 
5446 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5447 			if (!btf_type_is_small_int(t)) {
5448 				bpf_log(log,
5449 					"ret type %s not allowed for fmod_ret\n",
5450 					btf_type_str(t));
5451 				return false;
5452 			}
5453 			break;
5454 		default:
5455 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5456 				tname, arg + 1);
5457 			return false;
5458 		}
5459 	} else {
5460 		if (!t)
5461 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5462 			return true;
5463 		t = btf_type_by_id(btf, args[arg].type);
5464 	}
5465 
5466 	/* skip modifiers */
5467 	while (btf_type_is_modifier(t))
5468 		t = btf_type_by_id(btf, t->type);
5469 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
5470 		/* accessing a scalar */
5471 		return true;
5472 	if (!btf_type_is_ptr(t)) {
5473 		bpf_log(log,
5474 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
5475 			tname, arg,
5476 			__btf_name_by_offset(btf, t->name_off),
5477 			btf_type_str(t));
5478 		return false;
5479 	}
5480 
5481 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5482 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5483 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5484 		u32 type, flag;
5485 
5486 		type = base_type(ctx_arg_info->reg_type);
5487 		flag = type_flag(ctx_arg_info->reg_type);
5488 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
5489 		    (flag & PTR_MAYBE_NULL)) {
5490 			info->reg_type = ctx_arg_info->reg_type;
5491 			return true;
5492 		}
5493 	}
5494 
5495 	if (t->type == 0)
5496 		/* This is a pointer to void.
5497 		 * It is the same as scalar from the verifier safety pov.
5498 		 * No further pointer walking is allowed.
5499 		 */
5500 		return true;
5501 
5502 	if (is_int_ptr(btf, t))
5503 		return true;
5504 
5505 	/* this is a pointer to another type */
5506 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5507 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5508 
5509 		if (ctx_arg_info->offset == off) {
5510 			if (!ctx_arg_info->btf_id) {
5511 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5512 				return false;
5513 			}
5514 
5515 			info->reg_type = ctx_arg_info->reg_type;
5516 			info->btf = btf_vmlinux;
5517 			info->btf_id = ctx_arg_info->btf_id;
5518 			return true;
5519 		}
5520 	}
5521 
5522 	info->reg_type = PTR_TO_BTF_ID;
5523 	if (tgt_prog) {
5524 		enum bpf_prog_type tgt_type;
5525 
5526 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5527 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
5528 		else
5529 			tgt_type = tgt_prog->type;
5530 
5531 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5532 		if (ret > 0) {
5533 			info->btf = btf_vmlinux;
5534 			info->btf_id = ret;
5535 			return true;
5536 		} else {
5537 			return false;
5538 		}
5539 	}
5540 
5541 	info->btf = btf;
5542 	info->btf_id = t->type;
5543 	t = btf_type_by_id(btf, t->type);
5544 
5545 	if (btf_type_is_type_tag(t)) {
5546 		tag_value = __btf_name_by_offset(btf, t->name_off);
5547 		if (strcmp(tag_value, "user") == 0)
5548 			info->reg_type |= MEM_USER;
5549 		if (strcmp(tag_value, "percpu") == 0)
5550 			info->reg_type |= MEM_PERCPU;
5551 	}
5552 
5553 	/* skip modifiers */
5554 	while (btf_type_is_modifier(t)) {
5555 		info->btf_id = t->type;
5556 		t = btf_type_by_id(btf, t->type);
5557 	}
5558 	if (!btf_type_is_struct(t)) {
5559 		bpf_log(log,
5560 			"func '%s' arg%d type %s is not a struct\n",
5561 			tname, arg, btf_type_str(t));
5562 		return false;
5563 	}
5564 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
5565 		tname, arg, info->btf_id, btf_type_str(t),
5566 		__btf_name_by_offset(btf, t->name_off));
5567 	return true;
5568 }
5569 
5570 enum bpf_struct_walk_result {
5571 	/* < 0 error */
5572 	WALK_SCALAR = 0,
5573 	WALK_PTR,
5574 	WALK_STRUCT,
5575 };
5576 
btf_struct_walk(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,u32 * next_btf_id,enum bpf_type_flag * flag)5577 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
5578 			   const struct btf_type *t, int off, int size,
5579 			   u32 *next_btf_id, enum bpf_type_flag *flag)
5580 {
5581 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5582 	const struct btf_type *mtype, *elem_type = NULL;
5583 	const struct btf_member *member;
5584 	const char *tname, *mname, *tag_value;
5585 	u32 vlen, elem_id, mid;
5586 
5587 again:
5588 	tname = __btf_name_by_offset(btf, t->name_off);
5589 	if (!btf_type_is_struct(t)) {
5590 		bpf_log(log, "Type '%s' is not a struct\n", tname);
5591 		return -EINVAL;
5592 	}
5593 
5594 	vlen = btf_type_vlen(t);
5595 	if (off + size > t->size) {
5596 		/* If the last element is a variable size array, we may
5597 		 * need to relax the rule.
5598 		 */
5599 		struct btf_array *array_elem;
5600 
5601 		if (vlen == 0)
5602 			goto error;
5603 
5604 		member = btf_type_member(t) + vlen - 1;
5605 		mtype = btf_type_skip_modifiers(btf, member->type,
5606 						NULL);
5607 		if (!btf_type_is_array(mtype))
5608 			goto error;
5609 
5610 		array_elem = (struct btf_array *)(mtype + 1);
5611 		if (array_elem->nelems != 0)
5612 			goto error;
5613 
5614 		moff = __btf_member_bit_offset(t, member) / 8;
5615 		if (off < moff)
5616 			goto error;
5617 
5618 		/* Only allow structure for now, can be relaxed for
5619 		 * other types later.
5620 		 */
5621 		t = btf_type_skip_modifiers(btf, array_elem->type,
5622 					    NULL);
5623 		if (!btf_type_is_struct(t))
5624 			goto error;
5625 
5626 		off = (off - moff) % t->size;
5627 		goto again;
5628 
5629 error:
5630 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
5631 			tname, off, size);
5632 		return -EACCES;
5633 	}
5634 
5635 	for_each_member(i, t, member) {
5636 		/* offset of the field in bytes */
5637 		moff = __btf_member_bit_offset(t, member) / 8;
5638 		if (off + size <= moff)
5639 			/* won't find anything, field is already too far */
5640 			break;
5641 
5642 		if (__btf_member_bitfield_size(t, member)) {
5643 			u32 end_bit = __btf_member_bit_offset(t, member) +
5644 				__btf_member_bitfield_size(t, member);
5645 
5646 			/* off <= moff instead of off == moff because clang
5647 			 * does not generate a BTF member for anonymous
5648 			 * bitfield like the ":16" here:
5649 			 * struct {
5650 			 *	int :16;
5651 			 *	int x:8;
5652 			 * };
5653 			 */
5654 			if (off <= moff &&
5655 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
5656 				return WALK_SCALAR;
5657 
5658 			/* off may be accessing a following member
5659 			 *
5660 			 * or
5661 			 *
5662 			 * Doing partial access at either end of this
5663 			 * bitfield.  Continue on this case also to
5664 			 * treat it as not accessing this bitfield
5665 			 * and eventually error out as field not
5666 			 * found to keep it simple.
5667 			 * It could be relaxed if there was a legit
5668 			 * partial access case later.
5669 			 */
5670 			continue;
5671 		}
5672 
5673 		/* In case of "off" is pointing to holes of a struct */
5674 		if (off < moff)
5675 			break;
5676 
5677 		/* type of the field */
5678 		mid = member->type;
5679 		mtype = btf_type_by_id(btf, member->type);
5680 		mname = __btf_name_by_offset(btf, member->name_off);
5681 
5682 		mtype = __btf_resolve_size(btf, mtype, &msize,
5683 					   &elem_type, &elem_id, &total_nelems,
5684 					   &mid);
5685 		if (IS_ERR(mtype)) {
5686 			bpf_log(log, "field %s doesn't have size\n", mname);
5687 			return -EFAULT;
5688 		}
5689 
5690 		mtrue_end = moff + msize;
5691 		if (off >= mtrue_end)
5692 			/* no overlap with member, keep iterating */
5693 			continue;
5694 
5695 		if (btf_type_is_array(mtype)) {
5696 			u32 elem_idx;
5697 
5698 			/* __btf_resolve_size() above helps to
5699 			 * linearize a multi-dimensional array.
5700 			 *
5701 			 * The logic here is treating an array
5702 			 * in a struct as the following way:
5703 			 *
5704 			 * struct outer {
5705 			 *	struct inner array[2][2];
5706 			 * };
5707 			 *
5708 			 * looks like:
5709 			 *
5710 			 * struct outer {
5711 			 *	struct inner array_elem0;
5712 			 *	struct inner array_elem1;
5713 			 *	struct inner array_elem2;
5714 			 *	struct inner array_elem3;
5715 			 * };
5716 			 *
5717 			 * When accessing outer->array[1][0], it moves
5718 			 * moff to "array_elem2", set mtype to
5719 			 * "struct inner", and msize also becomes
5720 			 * sizeof(struct inner).  Then most of the
5721 			 * remaining logic will fall through without
5722 			 * caring the current member is an array or
5723 			 * not.
5724 			 *
5725 			 * Unlike mtype/msize/moff, mtrue_end does not
5726 			 * change.  The naming difference ("_true") tells
5727 			 * that it is not always corresponding to
5728 			 * the current mtype/msize/moff.
5729 			 * It is the true end of the current
5730 			 * member (i.e. array in this case).  That
5731 			 * will allow an int array to be accessed like
5732 			 * a scratch space,
5733 			 * i.e. allow access beyond the size of
5734 			 *      the array's element as long as it is
5735 			 *      within the mtrue_end boundary.
5736 			 */
5737 
5738 			/* skip empty array */
5739 			if (moff == mtrue_end)
5740 				continue;
5741 
5742 			msize /= total_nelems;
5743 			elem_idx = (off - moff) / msize;
5744 			moff += elem_idx * msize;
5745 			mtype = elem_type;
5746 			mid = elem_id;
5747 		}
5748 
5749 		/* the 'off' we're looking for is either equal to start
5750 		 * of this field or inside of this struct
5751 		 */
5752 		if (btf_type_is_struct(mtype)) {
5753 			/* our field must be inside that union or struct */
5754 			t = mtype;
5755 
5756 			/* return if the offset matches the member offset */
5757 			if (off == moff) {
5758 				*next_btf_id = mid;
5759 				return WALK_STRUCT;
5760 			}
5761 
5762 			/* adjust offset we're looking for */
5763 			off -= moff;
5764 			goto again;
5765 		}
5766 
5767 		if (btf_type_is_ptr(mtype)) {
5768 			const struct btf_type *stype, *t;
5769 			enum bpf_type_flag tmp_flag = 0;
5770 			u32 id;
5771 
5772 			if (msize != size || off != moff) {
5773 				bpf_log(log,
5774 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5775 					mname, moff, tname, off, size);
5776 				return -EACCES;
5777 			}
5778 
5779 			/* check type tag */
5780 			t = btf_type_by_id(btf, mtype->type);
5781 			if (btf_type_is_type_tag(t)) {
5782 				tag_value = __btf_name_by_offset(btf, t->name_off);
5783 				/* check __user tag */
5784 				if (strcmp(tag_value, "user") == 0)
5785 					tmp_flag = MEM_USER;
5786 				/* check __percpu tag */
5787 				if (strcmp(tag_value, "percpu") == 0)
5788 					tmp_flag = MEM_PERCPU;
5789 			}
5790 
5791 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5792 			if (btf_type_is_struct(stype)) {
5793 				*next_btf_id = id;
5794 				*flag = tmp_flag;
5795 				return WALK_PTR;
5796 			}
5797 		}
5798 
5799 		/* Allow more flexible access within an int as long as
5800 		 * it is within mtrue_end.
5801 		 * Since mtrue_end could be the end of an array,
5802 		 * that also allows using an array of int as a scratch
5803 		 * space. e.g. skb->cb[].
5804 		 */
5805 		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
5806 			bpf_log(log,
5807 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5808 				mname, mtrue_end, tname, off, size);
5809 			return -EACCES;
5810 		}
5811 
5812 		return WALK_SCALAR;
5813 	}
5814 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5815 	return -EINVAL;
5816 }
5817 
btf_struct_access(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int off,int size,enum bpf_access_type atype __maybe_unused,u32 * next_btf_id,enum bpf_type_flag * flag)5818 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5819 		      const struct btf_type *t, int off, int size,
5820 		      enum bpf_access_type atype __maybe_unused,
5821 		      u32 *next_btf_id, enum bpf_type_flag *flag)
5822 {
5823 	enum bpf_type_flag tmp_flag = 0;
5824 	int err;
5825 	u32 id;
5826 
5827 	do {
5828 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
5829 
5830 		switch (err) {
5831 		case WALK_PTR:
5832 			/* If we found the pointer or scalar on t+off,
5833 			 * we're done.
5834 			 */
5835 			*next_btf_id = id;
5836 			*flag = tmp_flag;
5837 			return PTR_TO_BTF_ID;
5838 		case WALK_SCALAR:
5839 			return SCALAR_VALUE;
5840 		case WALK_STRUCT:
5841 			/* We found nested struct, so continue the search
5842 			 * by diving in it. At this point the offset is
5843 			 * aligned with the new type, so set it to 0.
5844 			 */
5845 			t = btf_type_by_id(btf, id);
5846 			off = 0;
5847 			break;
5848 		default:
5849 			/* It's either error or unknown return value..
5850 			 * scream and leave.
5851 			 */
5852 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5853 				return -EINVAL;
5854 			return err;
5855 		}
5856 	} while (t);
5857 
5858 	return -EINVAL;
5859 }
5860 
5861 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5862  * the same. Trivial ID check is not enough due to module BTFs, because we can
5863  * end up with two different module BTFs, but IDs point to the common type in
5864  * vmlinux BTF.
5865  */
btf_types_are_same(const struct btf * btf1,u32 id1,const struct btf * btf2,u32 id2)5866 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5867 			       const struct btf *btf2, u32 id2)
5868 {
5869 	if (id1 != id2)
5870 		return false;
5871 	if (btf1 == btf2)
5872 		return true;
5873 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5874 }
5875 
btf_struct_ids_match(struct bpf_verifier_log * log,const struct btf * btf,u32 id,int off,const struct btf * need_btf,u32 need_type_id,bool strict)5876 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5877 			  const struct btf *btf, u32 id, int off,
5878 			  const struct btf *need_btf, u32 need_type_id,
5879 			  bool strict)
5880 {
5881 	const struct btf_type *type;
5882 	enum bpf_type_flag flag;
5883 	int err;
5884 
5885 	/* Are we already done? */
5886 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5887 		return true;
5888 	/* In case of strict type match, we do not walk struct, the top level
5889 	 * type match must succeed. When strict is true, off should have already
5890 	 * been 0.
5891 	 */
5892 	if (strict)
5893 		return false;
5894 again:
5895 	type = btf_type_by_id(btf, id);
5896 	if (!type)
5897 		return false;
5898 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
5899 	if (err != WALK_STRUCT)
5900 		return false;
5901 
5902 	/* We found nested struct object. If it matches
5903 	 * the requested ID, we're done. Otherwise let's
5904 	 * continue the search with offset 0 in the new
5905 	 * type.
5906 	 */
5907 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5908 		off = 0;
5909 		goto again;
5910 	}
5911 
5912 	return true;
5913 }
5914 
__get_type_size(struct btf * btf,u32 btf_id,const struct btf_type ** ret_type)5915 static int __get_type_size(struct btf *btf, u32 btf_id,
5916 			   const struct btf_type **ret_type)
5917 {
5918 	const struct btf_type *t;
5919 
5920 	*ret_type = btf_type_by_id(btf, 0);
5921 	if (!btf_id)
5922 		/* void */
5923 		return 0;
5924 	t = btf_type_by_id(btf, btf_id);
5925 	while (t && btf_type_is_modifier(t))
5926 		t = btf_type_by_id(btf, t->type);
5927 	if (!t)
5928 		return -EINVAL;
5929 	*ret_type = t;
5930 	if (btf_type_is_ptr(t))
5931 		/* kernel size of pointer. Not BPF's size of pointer*/
5932 		return sizeof(void *);
5933 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
5934 		return t->size;
5935 	return -EINVAL;
5936 }
5937 
btf_distill_func_proto(struct bpf_verifier_log * log,struct btf * btf,const struct btf_type * func,const char * tname,struct btf_func_model * m)5938 int btf_distill_func_proto(struct bpf_verifier_log *log,
5939 			   struct btf *btf,
5940 			   const struct btf_type *func,
5941 			   const char *tname,
5942 			   struct btf_func_model *m)
5943 {
5944 	const struct btf_param *args;
5945 	const struct btf_type *t;
5946 	u32 i, nargs;
5947 	int ret;
5948 
5949 	if (!func) {
5950 		/* BTF function prototype doesn't match the verifier types.
5951 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5952 		 */
5953 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5954 			m->arg_size[i] = 8;
5955 			m->arg_flags[i] = 0;
5956 		}
5957 		m->ret_size = 8;
5958 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5959 		return 0;
5960 	}
5961 	args = (const struct btf_param *)(func + 1);
5962 	nargs = btf_type_vlen(func);
5963 	if (nargs > MAX_BPF_FUNC_ARGS) {
5964 		bpf_log(log,
5965 			"The function %s has %d arguments. Too many.\n",
5966 			tname, nargs);
5967 		return -EINVAL;
5968 	}
5969 	ret = __get_type_size(btf, func->type, &t);
5970 	if (ret < 0 || __btf_type_is_struct(t)) {
5971 		bpf_log(log,
5972 			"The function %s return type %s is unsupported.\n",
5973 			tname, btf_type_str(t));
5974 		return -EINVAL;
5975 	}
5976 	m->ret_size = ret;
5977 
5978 	for (i = 0; i < nargs; i++) {
5979 		if (i == nargs - 1 && args[i].type == 0) {
5980 			bpf_log(log,
5981 				"The function %s with variable args is unsupported.\n",
5982 				tname);
5983 			return -EINVAL;
5984 		}
5985 		ret = __get_type_size(btf, args[i].type, &t);
5986 
5987 		/* No support of struct argument size greater than 16 bytes */
5988 		if (ret < 0 || ret > 16) {
5989 			bpf_log(log,
5990 				"The function %s arg%d type %s is unsupported.\n",
5991 				tname, i, btf_type_str(t));
5992 			return -EINVAL;
5993 		}
5994 		if (ret == 0) {
5995 			bpf_log(log,
5996 				"The function %s has malformed void argument.\n",
5997 				tname);
5998 			return -EINVAL;
5999 		}
6000 		m->arg_size[i] = ret;
6001 		m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
6002 	}
6003 	m->nr_args = nargs;
6004 	return 0;
6005 }
6006 
6007 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6008  * t1 points to BTF_KIND_FUNC in btf1
6009  * t2 points to BTF_KIND_FUNC in btf2
6010  * Returns:
6011  * EINVAL - function prototype mismatch
6012  * EFAULT - verifier bug
6013  * 0 - 99% match. The last 1% is validated by the verifier.
6014  */
btf_check_func_type_match(struct bpf_verifier_log * log,struct btf * btf1,const struct btf_type * t1,struct btf * btf2,const struct btf_type * t2)6015 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6016 				     struct btf *btf1, const struct btf_type *t1,
6017 				     struct btf *btf2, const struct btf_type *t2)
6018 {
6019 	const struct btf_param *args1, *args2;
6020 	const char *fn1, *fn2, *s1, *s2;
6021 	u32 nargs1, nargs2, i;
6022 
6023 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6024 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6025 
6026 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6027 		bpf_log(log, "%s() is not a global function\n", fn1);
6028 		return -EINVAL;
6029 	}
6030 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6031 		bpf_log(log, "%s() is not a global function\n", fn2);
6032 		return -EINVAL;
6033 	}
6034 
6035 	t1 = btf_type_by_id(btf1, t1->type);
6036 	if (!t1 || !btf_type_is_func_proto(t1))
6037 		return -EFAULT;
6038 	t2 = btf_type_by_id(btf2, t2->type);
6039 	if (!t2 || !btf_type_is_func_proto(t2))
6040 		return -EFAULT;
6041 
6042 	args1 = (const struct btf_param *)(t1 + 1);
6043 	nargs1 = btf_type_vlen(t1);
6044 	args2 = (const struct btf_param *)(t2 + 1);
6045 	nargs2 = btf_type_vlen(t2);
6046 
6047 	if (nargs1 != nargs2) {
6048 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6049 			fn1, nargs1, fn2, nargs2);
6050 		return -EINVAL;
6051 	}
6052 
6053 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6054 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6055 	if (t1->info != t2->info) {
6056 		bpf_log(log,
6057 			"Return type %s of %s() doesn't match type %s of %s()\n",
6058 			btf_type_str(t1), fn1,
6059 			btf_type_str(t2), fn2);
6060 		return -EINVAL;
6061 	}
6062 
6063 	for (i = 0; i < nargs1; i++) {
6064 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6065 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6066 
6067 		if (t1->info != t2->info) {
6068 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6069 				i, fn1, btf_type_str(t1),
6070 				fn2, btf_type_str(t2));
6071 			return -EINVAL;
6072 		}
6073 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6074 			bpf_log(log,
6075 				"arg%d in %s() has size %d while %s() has %d\n",
6076 				i, fn1, t1->size,
6077 				fn2, t2->size);
6078 			return -EINVAL;
6079 		}
6080 
6081 		/* global functions are validated with scalars and pointers
6082 		 * to context only. And only global functions can be replaced.
6083 		 * Hence type check only those types.
6084 		 */
6085 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6086 			continue;
6087 		if (!btf_type_is_ptr(t1)) {
6088 			bpf_log(log,
6089 				"arg%d in %s() has unrecognized type\n",
6090 				i, fn1);
6091 			return -EINVAL;
6092 		}
6093 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6094 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6095 		if (!btf_type_is_struct(t1)) {
6096 			bpf_log(log,
6097 				"arg%d in %s() is not a pointer to context\n",
6098 				i, fn1);
6099 			return -EINVAL;
6100 		}
6101 		if (!btf_type_is_struct(t2)) {
6102 			bpf_log(log,
6103 				"arg%d in %s() is not a pointer to context\n",
6104 				i, fn2);
6105 			return -EINVAL;
6106 		}
6107 		/* This is an optional check to make program writing easier.
6108 		 * Compare names of structs and report an error to the user.
6109 		 * btf_prepare_func_args() already checked that t2 struct
6110 		 * is a context type. btf_prepare_func_args() will check
6111 		 * later that t1 struct is a context type as well.
6112 		 */
6113 		s1 = btf_name_by_offset(btf1, t1->name_off);
6114 		s2 = btf_name_by_offset(btf2, t2->name_off);
6115 		if (strcmp(s1, s2)) {
6116 			bpf_log(log,
6117 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6118 				i, fn1, s1, fn2, s2);
6119 			return -EINVAL;
6120 		}
6121 	}
6122 	return 0;
6123 }
6124 
6125 /* Compare BTFs of given program with BTF of target program */
btf_check_type_match(struct bpf_verifier_log * log,const struct bpf_prog * prog,struct btf * btf2,const struct btf_type * t2)6126 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6127 			 struct btf *btf2, const struct btf_type *t2)
6128 {
6129 	struct btf *btf1 = prog->aux->btf;
6130 	const struct btf_type *t1;
6131 	u32 btf_id = 0;
6132 
6133 	if (!prog->aux->func_info) {
6134 		bpf_log(log, "Program extension requires BTF\n");
6135 		return -EINVAL;
6136 	}
6137 
6138 	btf_id = prog->aux->func_info[0].type_id;
6139 	if (!btf_id)
6140 		return -EFAULT;
6141 
6142 	t1 = btf_type_by_id(btf1, btf_id);
6143 	if (!t1 || !btf_type_is_func(t1))
6144 		return -EFAULT;
6145 
6146 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6147 }
6148 
6149 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6150 #ifdef CONFIG_NET
6151 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6152 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6153 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6154 #endif
6155 };
6156 
6157 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_log * log,const struct btf * btf,const struct btf_type * t,int rec)6158 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
6159 					const struct btf *btf,
6160 					const struct btf_type *t, int rec)
6161 {
6162 	const struct btf_type *member_type;
6163 	const struct btf_member *member;
6164 	u32 i;
6165 
6166 	if (!btf_type_is_struct(t))
6167 		return false;
6168 
6169 	for_each_member(i, t, member) {
6170 		const struct btf_array *array;
6171 
6172 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
6173 		if (btf_type_is_struct(member_type)) {
6174 			if (rec >= 3) {
6175 				bpf_log(log, "max struct nesting depth exceeded\n");
6176 				return false;
6177 			}
6178 			if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
6179 				return false;
6180 			continue;
6181 		}
6182 		if (btf_type_is_array(member_type)) {
6183 			array = btf_type_array(member_type);
6184 			if (!array->nelems)
6185 				return false;
6186 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
6187 			if (!btf_type_is_scalar(member_type))
6188 				return false;
6189 			continue;
6190 		}
6191 		if (!btf_type_is_scalar(member_type))
6192 			return false;
6193 	}
6194 	return true;
6195 }
6196 
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)6197 static bool is_kfunc_arg_mem_size(const struct btf *btf,
6198 				  const struct btf_param *arg,
6199 				  const struct bpf_reg_state *reg)
6200 {
6201 	int len, sfx_len = sizeof("__sz") - 1;
6202 	const struct btf_type *t;
6203 	const char *param_name;
6204 
6205 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
6206 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
6207 		return false;
6208 
6209 	/* In the future, this can be ported to use BTF tagging */
6210 	param_name = btf_name_by_offset(btf, arg->name_off);
6211 	if (str_is_empty(param_name))
6212 		return false;
6213 	len = strlen(param_name);
6214 	if (len < sfx_len)
6215 		return false;
6216 	param_name += len - sfx_len;
6217 	if (strncmp(param_name, "__sz", sfx_len))
6218 		return false;
6219 
6220 	return true;
6221 }
6222 
btf_is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg,const char * name)6223 static bool btf_is_kfunc_arg_mem_size(const struct btf *btf,
6224 				      const struct btf_param *arg,
6225 				      const struct bpf_reg_state *reg,
6226 				      const char *name)
6227 {
6228 	int len, target_len = strlen(name);
6229 	const struct btf_type *t;
6230 	const char *param_name;
6231 
6232 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
6233 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
6234 		return false;
6235 
6236 	param_name = btf_name_by_offset(btf, arg->name_off);
6237 	if (str_is_empty(param_name))
6238 		return false;
6239 	len = strlen(param_name);
6240 	if (len != target_len)
6241 		return false;
6242 	if (strcmp(param_name, name))
6243 		return false;
6244 
6245 	return true;
6246 }
6247 
btf_check_func_arg_match(struct bpf_verifier_env * env,const struct btf * btf,u32 func_id,struct bpf_reg_state * regs,bool ptr_to_mem_ok,struct bpf_kfunc_arg_meta * kfunc_meta,bool processing_call)6248 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6249 				    const struct btf *btf, u32 func_id,
6250 				    struct bpf_reg_state *regs,
6251 				    bool ptr_to_mem_ok,
6252 				    struct bpf_kfunc_arg_meta *kfunc_meta,
6253 				    bool processing_call)
6254 {
6255 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6256 	bool rel = false, kptr_get = false, trusted_args = false;
6257 	bool sleepable = false;
6258 	struct bpf_verifier_log *log = &env->log;
6259 	u32 i, nargs, ref_id, ref_obj_id = 0;
6260 	bool is_kfunc = btf_is_kernel(btf);
6261 	const char *func_name, *ref_tname;
6262 	const struct btf_type *t, *ref_t;
6263 	const struct btf_param *args;
6264 	int ref_regno = 0, ret;
6265 
6266 	t = btf_type_by_id(btf, func_id);
6267 	if (!t || !btf_type_is_func(t)) {
6268 		/* These checks were already done by the verifier while loading
6269 		 * struct bpf_func_info or in add_kfunc_call().
6270 		 */
6271 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6272 			func_id);
6273 		return -EFAULT;
6274 	}
6275 	func_name = btf_name_by_offset(btf, t->name_off);
6276 
6277 	t = btf_type_by_id(btf, t->type);
6278 	if (!t || !btf_type_is_func_proto(t)) {
6279 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6280 		return -EFAULT;
6281 	}
6282 	args = (const struct btf_param *)(t + 1);
6283 	nargs = btf_type_vlen(t);
6284 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6285 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6286 			MAX_BPF_FUNC_REG_ARGS);
6287 		return -EINVAL;
6288 	}
6289 
6290 	if (is_kfunc && kfunc_meta) {
6291 		/* Only kfunc can be release func */
6292 		rel = kfunc_meta->flags & KF_RELEASE;
6293 		kptr_get = kfunc_meta->flags & KF_KPTR_GET;
6294 		trusted_args = kfunc_meta->flags & KF_TRUSTED_ARGS;
6295 		sleepable = kfunc_meta->flags & KF_SLEEPABLE;
6296 	}
6297 
6298 	/* check that BTF function arguments match actual types that the
6299 	 * verifier sees.
6300 	 */
6301 	for (i = 0; i < nargs; i++) {
6302 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6303 		u32 regno = i + 1;
6304 		struct bpf_reg_state *reg = &regs[regno];
6305 		bool obj_ptr = false;
6306 
6307 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6308 		if (btf_type_is_scalar(t)) {
6309 			if (is_kfunc && kfunc_meta) {
6310 				bool is_buf_size = false;
6311 
6312 				/* check for any const scalar parameter of name "rdonly_buf_size"
6313 				 * or "rdwr_buf_size"
6314 				 */
6315 				if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
6316 							      "rdonly_buf_size")) {
6317 					kfunc_meta->r0_rdonly = true;
6318 					is_buf_size = true;
6319 				} else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
6320 								     "rdwr_buf_size"))
6321 					is_buf_size = true;
6322 
6323 				if (is_buf_size) {
6324 					if (kfunc_meta->r0_size) {
6325 						bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
6326 						return -EINVAL;
6327 					}
6328 
6329 					if (!tnum_is_const(reg->var_off)) {
6330 						bpf_log(log, "R%d is not a const\n", regno);
6331 						return -EINVAL;
6332 					}
6333 
6334 					kfunc_meta->r0_size = reg->var_off.value;
6335 					ret = mark_chain_precision(env, regno);
6336 					if (ret)
6337 						return ret;
6338 				}
6339 			}
6340 
6341 			if (reg->type == SCALAR_VALUE)
6342 				continue;
6343 			bpf_log(log, "R%d is not a scalar\n", regno);
6344 			return -EINVAL;
6345 		}
6346 
6347 		if (!btf_type_is_ptr(t)) {
6348 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6349 				i, btf_type_str(t));
6350 			return -EINVAL;
6351 		}
6352 
6353 		/* These register types have special constraints wrt ref_obj_id
6354 		 * and offset checks. The rest of trusted args don't.
6355 		 */
6356 		obj_ptr = reg->type == PTR_TO_CTX || reg->type == PTR_TO_BTF_ID ||
6357 			  reg2btf_ids[base_type(reg->type)];
6358 
6359 		/* Check if argument must be a referenced pointer, args + i has
6360 		 * been verified to be a pointer (after skipping modifiers).
6361 		 * PTR_TO_CTX is ok without having non-zero ref_obj_id.
6362 		 */
6363 		if (is_kfunc && trusted_args && (obj_ptr && reg->type != PTR_TO_CTX) && !reg->ref_obj_id) {
6364 			bpf_log(log, "R%d must be referenced\n", regno);
6365 			return -EINVAL;
6366 		}
6367 
6368 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6369 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6370 
6371 		/* Trusted args have the same offset checks as release arguments */
6372 		if ((trusted_args && obj_ptr) || (rel && reg->ref_obj_id))
6373 			arg_type |= OBJ_RELEASE;
6374 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6375 		if (ret < 0)
6376 			return ret;
6377 
6378 		if (is_kfunc && reg->ref_obj_id) {
6379 			/* Ensure only one argument is referenced PTR_TO_BTF_ID */
6380 			if (ref_obj_id) {
6381 				bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6382 					regno, reg->ref_obj_id, ref_obj_id);
6383 				return -EFAULT;
6384 			}
6385 			ref_regno = regno;
6386 			ref_obj_id = reg->ref_obj_id;
6387 		}
6388 
6389 		/* kptr_get is only true for kfunc */
6390 		if (i == 0 && kptr_get) {
6391 			struct bpf_map_value_off_desc *off_desc;
6392 
6393 			if (reg->type != PTR_TO_MAP_VALUE) {
6394 				bpf_log(log, "arg#0 expected pointer to map value\n");
6395 				return -EINVAL;
6396 			}
6397 
6398 			/* check_func_arg_reg_off allows var_off for
6399 			 * PTR_TO_MAP_VALUE, but we need fixed offset to find
6400 			 * off_desc.
6401 			 */
6402 			if (!tnum_is_const(reg->var_off)) {
6403 				bpf_log(log, "arg#0 must have constant offset\n");
6404 				return -EINVAL;
6405 			}
6406 
6407 			off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value);
6408 			if (!off_desc || off_desc->type != BPF_KPTR_REF) {
6409 				bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n",
6410 					reg->off + reg->var_off.value);
6411 				return -EINVAL;
6412 			}
6413 
6414 			if (!btf_type_is_ptr(ref_t)) {
6415 				bpf_log(log, "arg#0 BTF type must be a double pointer\n");
6416 				return -EINVAL;
6417 			}
6418 
6419 			ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id);
6420 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6421 
6422 			if (!btf_type_is_struct(ref_t)) {
6423 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
6424 					func_name, i, btf_type_str(ref_t), ref_tname);
6425 				return -EINVAL;
6426 			}
6427 			if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf,
6428 						  off_desc->kptr.btf_id, true)) {
6429 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n",
6430 					func_name, i, btf_type_str(ref_t), ref_tname);
6431 				return -EINVAL;
6432 			}
6433 			/* rest of the arguments can be anything, like normal kfunc */
6434 		} else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6435 			/* If function expects ctx type in BTF check that caller
6436 			 * is passing PTR_TO_CTX.
6437 			 */
6438 			if (reg->type != PTR_TO_CTX) {
6439 				bpf_log(log,
6440 					"arg#%d expected pointer to ctx, but got %s\n",
6441 					i, btf_type_str(t));
6442 				return -EINVAL;
6443 			}
6444 		} else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
6445 			   (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
6446 			const struct btf_type *reg_ref_t;
6447 			const struct btf *reg_btf;
6448 			const char *reg_ref_tname;
6449 			u32 reg_ref_id;
6450 
6451 			if (!btf_type_is_struct(ref_t)) {
6452 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
6453 					func_name, i, btf_type_str(ref_t),
6454 					ref_tname);
6455 				return -EINVAL;
6456 			}
6457 
6458 			if (reg->type == PTR_TO_BTF_ID) {
6459 				reg_btf = reg->btf;
6460 				reg_ref_id = reg->btf_id;
6461 			} else {
6462 				reg_btf = btf_vmlinux;
6463 				reg_ref_id = *reg2btf_ids[base_type(reg->type)];
6464 			}
6465 
6466 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
6467 							    &reg_ref_id);
6468 			reg_ref_tname = btf_name_by_offset(reg_btf,
6469 							   reg_ref_t->name_off);
6470 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
6471 						  reg->off, btf, ref_id,
6472 						  trusted_args || (rel && reg->ref_obj_id))) {
6473 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
6474 					func_name, i,
6475 					btf_type_str(ref_t), ref_tname,
6476 					regno, btf_type_str(reg_ref_t),
6477 					reg_ref_tname);
6478 				return -EINVAL;
6479 			}
6480 		} else if (ptr_to_mem_ok && processing_call) {
6481 			const struct btf_type *resolve_ret;
6482 			u32 type_size;
6483 
6484 			if (is_kfunc) {
6485 				bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
6486 				bool arg_dynptr = btf_type_is_struct(ref_t) &&
6487 						  !strcmp(ref_tname,
6488 							  stringify_struct(bpf_dynptr_kern));
6489 
6490 				/* Permit pointer to mem, but only when argument
6491 				 * type is pointer to scalar, or struct composed
6492 				 * (recursively) of scalars.
6493 				 * When arg_mem_size is true, the pointer can be
6494 				 * void *.
6495 				 * Also permit initialized local dynamic pointers.
6496 				 */
6497 				if (!btf_type_is_scalar(ref_t) &&
6498 				    !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
6499 				    !arg_dynptr &&
6500 				    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
6501 					bpf_log(log,
6502 						"arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
6503 						i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
6504 					return -EINVAL;
6505 				}
6506 
6507 				if (arg_dynptr) {
6508 					if (reg->type != PTR_TO_STACK) {
6509 						bpf_log(log, "arg#%d pointer type %s %s not to stack\n",
6510 							i, btf_type_str(ref_t),
6511 							ref_tname);
6512 						return -EINVAL;
6513 					}
6514 
6515 					if (!is_dynptr_reg_valid_init(env, reg)) {
6516 						bpf_log(log,
6517 							"arg#%d pointer type %s %s must be valid and initialized\n",
6518 							i, btf_type_str(ref_t),
6519 							ref_tname);
6520 						return -EINVAL;
6521 					}
6522 
6523 					if (!is_dynptr_type_expected(env, reg,
6524 							ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
6525 						bpf_log(log,
6526 							"arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
6527 							i, btf_type_str(ref_t),
6528 							ref_tname);
6529 						return -EINVAL;
6530 					}
6531 
6532 					continue;
6533 				}
6534 
6535 				/* Check for mem, len pair */
6536 				if (arg_mem_size) {
6537 					if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
6538 						bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
6539 							i, i + 1);
6540 						return -EINVAL;
6541 					}
6542 					i++;
6543 					continue;
6544 				}
6545 			}
6546 
6547 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6548 			if (IS_ERR(resolve_ret)) {
6549 				bpf_log(log,
6550 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6551 					i, btf_type_str(ref_t), ref_tname,
6552 					PTR_ERR(resolve_ret));
6553 				return -EINVAL;
6554 			}
6555 
6556 			if (check_mem_reg(env, reg, regno, type_size))
6557 				return -EINVAL;
6558 		} else {
6559 			bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
6560 				is_kfunc ? "kernel " : "", func_name, func_id);
6561 			return -EINVAL;
6562 		}
6563 	}
6564 
6565 	/* Either both are set, or neither */
6566 	WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
6567 	/* We already made sure ref_obj_id is set only for one argument. We do
6568 	 * allow (!rel && ref_obj_id), so that passing such referenced
6569 	 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
6570 	 * is_kfunc is true.
6571 	 */
6572 	if (rel && !ref_obj_id) {
6573 		bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
6574 			func_name);
6575 		return -EINVAL;
6576 	}
6577 
6578 	if (sleepable && !env->prog->aux->sleepable) {
6579 		bpf_log(log, "kernel function %s is sleepable but the program is not\n",
6580 			func_name);
6581 		return -EINVAL;
6582 	}
6583 
6584 	if (kfunc_meta && ref_obj_id)
6585 		kfunc_meta->ref_obj_id = ref_obj_id;
6586 
6587 	/* returns argument register number > 0 in case of reference release kfunc */
6588 	return rel ? ref_regno : 0;
6589 }
6590 
6591 /* Compare BTF of a function declaration with given bpf_reg_state.
6592  * Returns:
6593  * EFAULT - there is a verifier bug. Abort verification.
6594  * EINVAL - there is a type mismatch or BTF is not available.
6595  * 0 - BTF matches with what bpf_reg_state expects.
6596  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6597  */
btf_check_subprog_arg_match(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)6598 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6599 				struct bpf_reg_state *regs)
6600 {
6601 	struct bpf_prog *prog = env->prog;
6602 	struct btf *btf = prog->aux->btf;
6603 	bool is_global;
6604 	u32 btf_id;
6605 	int err;
6606 
6607 	if (!prog->aux->func_info)
6608 		return -EINVAL;
6609 
6610 	btf_id = prog->aux->func_info[subprog].type_id;
6611 	if (!btf_id)
6612 		return -EFAULT;
6613 
6614 	if (prog->aux->func_info_aux[subprog].unreliable)
6615 		return -EINVAL;
6616 
6617 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6618 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false);
6619 
6620 	/* Compiler optimizations can remove arguments from static functions
6621 	 * or mismatched type can be passed into a global function.
6622 	 * In such cases mark the function as unreliable from BTF point of view.
6623 	 */
6624 	if (err)
6625 		prog->aux->func_info_aux[subprog].unreliable = true;
6626 	return err;
6627 }
6628 
6629 /* Compare BTF of a function call with given bpf_reg_state.
6630  * Returns:
6631  * EFAULT - there is a verifier bug. Abort verification.
6632  * EINVAL - there is a type mismatch or BTF is not available.
6633  * 0 - BTF matches with what bpf_reg_state expects.
6634  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6635  *
6636  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6637  * because btf_check_func_arg_match() is still doing both. Once that
6638  * function is split in 2, we can call from here btf_check_subprog_arg_match()
6639  * first, and then treat the calling part in a new code path.
6640  */
btf_check_subprog_call(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)6641 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6642 			   struct bpf_reg_state *regs)
6643 {
6644 	struct bpf_prog *prog = env->prog;
6645 	struct btf *btf = prog->aux->btf;
6646 	bool is_global;
6647 	u32 btf_id;
6648 	int err;
6649 
6650 	if (!prog->aux->func_info)
6651 		return -EINVAL;
6652 
6653 	btf_id = prog->aux->func_info[subprog].type_id;
6654 	if (!btf_id)
6655 		return -EFAULT;
6656 
6657 	if (prog->aux->func_info_aux[subprog].unreliable)
6658 		return -EINVAL;
6659 
6660 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6661 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true);
6662 
6663 	/* Compiler optimizations can remove arguments from static functions
6664 	 * or mismatched type can be passed into a global function.
6665 	 * In such cases mark the function as unreliable from BTF point of view.
6666 	 */
6667 	if (err)
6668 		prog->aux->func_info_aux[subprog].unreliable = true;
6669 	return err;
6670 }
6671 
btf_check_kfunc_arg_match(struct bpf_verifier_env * env,const struct btf * btf,u32 func_id,struct bpf_reg_state * regs,struct bpf_kfunc_arg_meta * meta)6672 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
6673 			      const struct btf *btf, u32 func_id,
6674 			      struct bpf_reg_state *regs,
6675 			      struct bpf_kfunc_arg_meta *meta)
6676 {
6677 	return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true);
6678 }
6679 
6680 /* Convert BTF of a function into bpf_reg_state if possible
6681  * Returns:
6682  * EFAULT - there is a verifier bug. Abort verification.
6683  * EINVAL - cannot convert BTF.
6684  * 0 - Successfully converted BTF into bpf_reg_state
6685  * (either PTR_TO_CTX or SCALAR_VALUE).
6686  */
btf_prepare_func_args(struct bpf_verifier_env * env,int subprog,struct bpf_reg_state * regs)6687 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6688 			  struct bpf_reg_state *regs)
6689 {
6690 	struct bpf_verifier_log *log = &env->log;
6691 	struct bpf_prog *prog = env->prog;
6692 	enum bpf_prog_type prog_type = prog->type;
6693 	struct btf *btf = prog->aux->btf;
6694 	const struct btf_param *args;
6695 	const struct btf_type *t, *ref_t;
6696 	u32 i, nargs, btf_id;
6697 	const char *tname;
6698 
6699 	if (!prog->aux->func_info ||
6700 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6701 		bpf_log(log, "Verifier bug\n");
6702 		return -EFAULT;
6703 	}
6704 
6705 	btf_id = prog->aux->func_info[subprog].type_id;
6706 	if (!btf_id) {
6707 		bpf_log(log, "Global functions need valid BTF\n");
6708 		return -EFAULT;
6709 	}
6710 
6711 	t = btf_type_by_id(btf, btf_id);
6712 	if (!t || !btf_type_is_func(t)) {
6713 		/* These checks were already done by the verifier while loading
6714 		 * struct bpf_func_info
6715 		 */
6716 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6717 			subprog);
6718 		return -EFAULT;
6719 	}
6720 	tname = btf_name_by_offset(btf, t->name_off);
6721 
6722 	if (log->level & BPF_LOG_LEVEL)
6723 		bpf_log(log, "Validating %s() func#%d...\n",
6724 			tname, subprog);
6725 
6726 	if (prog->aux->func_info_aux[subprog].unreliable) {
6727 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6728 		return -EFAULT;
6729 	}
6730 	if (prog_type == BPF_PROG_TYPE_EXT)
6731 		prog_type = prog->aux->dst_prog->type;
6732 
6733 	t = btf_type_by_id(btf, t->type);
6734 	if (!t || !btf_type_is_func_proto(t)) {
6735 		bpf_log(log, "Invalid type of function %s()\n", tname);
6736 		return -EFAULT;
6737 	}
6738 	args = (const struct btf_param *)(t + 1);
6739 	nargs = btf_type_vlen(t);
6740 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6741 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6742 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
6743 		return -EINVAL;
6744 	}
6745 	/* check that function returns int */
6746 	t = btf_type_by_id(btf, t->type);
6747 	while (btf_type_is_modifier(t))
6748 		t = btf_type_by_id(btf, t->type);
6749 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
6750 		bpf_log(log,
6751 			"Global function %s() doesn't return scalar. Only those are supported.\n",
6752 			tname);
6753 		return -EINVAL;
6754 	}
6755 	/* Convert BTF function arguments into verifier types.
6756 	 * Only PTR_TO_CTX and SCALAR are supported atm.
6757 	 */
6758 	for (i = 0; i < nargs; i++) {
6759 		struct bpf_reg_state *reg = &regs[i + 1];
6760 
6761 		t = btf_type_by_id(btf, args[i].type);
6762 		while (btf_type_is_modifier(t))
6763 			t = btf_type_by_id(btf, t->type);
6764 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
6765 			reg->type = SCALAR_VALUE;
6766 			continue;
6767 		}
6768 		if (btf_type_is_ptr(t)) {
6769 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6770 				reg->type = PTR_TO_CTX;
6771 				continue;
6772 			}
6773 
6774 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6775 
6776 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6777 			if (IS_ERR(ref_t)) {
6778 				bpf_log(log,
6779 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6780 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6781 					PTR_ERR(ref_t));
6782 				return -EINVAL;
6783 			}
6784 
6785 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6786 			reg->id = ++env->id_gen;
6787 
6788 			continue;
6789 		}
6790 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6791 			i, btf_type_str(t), tname);
6792 		return -EINVAL;
6793 	}
6794 	return 0;
6795 }
6796 
btf_type_show(const struct btf * btf,u32 type_id,void * obj,struct btf_show * show)6797 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6798 			  struct btf_show *show)
6799 {
6800 	const struct btf_type *t = btf_type_by_id(btf, type_id);
6801 
6802 	show->btf = btf;
6803 	memset(&show->state, 0, sizeof(show->state));
6804 	memset(&show->obj, 0, sizeof(show->obj));
6805 
6806 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6807 }
6808 
btf_seq_show(struct btf_show * show,const char * fmt,va_list args)6809 static void btf_seq_show(struct btf_show *show, const char *fmt,
6810 			 va_list args)
6811 {
6812 	seq_vprintf((struct seq_file *)show->target, fmt, args);
6813 }
6814 
btf_type_seq_show_flags(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m,u64 flags)6815 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6816 			    void *obj, struct seq_file *m, u64 flags)
6817 {
6818 	struct btf_show sseq;
6819 
6820 	sseq.target = m;
6821 	sseq.showfn = btf_seq_show;
6822 	sseq.flags = flags;
6823 
6824 	btf_type_show(btf, type_id, obj, &sseq);
6825 
6826 	return sseq.state.status;
6827 }
6828 
btf_type_seq_show(const struct btf * btf,u32 type_id,void * obj,struct seq_file * m)6829 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6830 		       struct seq_file *m)
6831 {
6832 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
6833 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6834 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6835 }
6836 
6837 struct btf_show_snprintf {
6838 	struct btf_show show;
6839 	int len_left;		/* space left in string */
6840 	int len;		/* length we would have written */
6841 };
6842 
btf_snprintf_show(struct btf_show * show,const char * fmt,va_list args)6843 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6844 			      va_list args)
6845 {
6846 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6847 	int len;
6848 
6849 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
6850 
6851 	if (len < 0) {
6852 		ssnprintf->len_left = 0;
6853 		ssnprintf->len = len;
6854 	} else if (len >= ssnprintf->len_left) {
6855 		/* no space, drive on to get length we would have written */
6856 		ssnprintf->len_left = 0;
6857 		ssnprintf->len += len;
6858 	} else {
6859 		ssnprintf->len_left -= len;
6860 		ssnprintf->len += len;
6861 		show->target += len;
6862 	}
6863 }
6864 
btf_type_snprintf_show(const struct btf * btf,u32 type_id,void * obj,char * buf,int len,u64 flags)6865 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
6866 			   char *buf, int len, u64 flags)
6867 {
6868 	struct btf_show_snprintf ssnprintf;
6869 
6870 	ssnprintf.show.target = buf;
6871 	ssnprintf.show.flags = flags;
6872 	ssnprintf.show.showfn = btf_snprintf_show;
6873 	ssnprintf.len_left = len;
6874 	ssnprintf.len = 0;
6875 
6876 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
6877 
6878 	/* If we encountered an error, return it. */
6879 	if (ssnprintf.show.state.status)
6880 		return ssnprintf.show.state.status;
6881 
6882 	/* Otherwise return length we would have written */
6883 	return ssnprintf.len;
6884 }
6885 
6886 #ifdef CONFIG_PROC_FS
bpf_btf_show_fdinfo(struct seq_file * m,struct file * filp)6887 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
6888 {
6889 	const struct btf *btf = filp->private_data;
6890 
6891 	seq_printf(m, "btf_id:\t%u\n", btf->id);
6892 }
6893 #endif
6894 
btf_release(struct inode * inode,struct file * filp)6895 static int btf_release(struct inode *inode, struct file *filp)
6896 {
6897 	btf_put(filp->private_data);
6898 	return 0;
6899 }
6900 
6901 const struct file_operations btf_fops = {
6902 #ifdef CONFIG_PROC_FS
6903 	.show_fdinfo	= bpf_btf_show_fdinfo,
6904 #endif
6905 	.release	= btf_release,
6906 };
6907 
__btf_new_fd(struct btf * btf)6908 static int __btf_new_fd(struct btf *btf)
6909 {
6910 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
6911 }
6912 
btf_new_fd(const union bpf_attr * attr,bpfptr_t uattr)6913 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
6914 {
6915 	struct btf *btf;
6916 	int ret;
6917 
6918 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
6919 			attr->btf_size, attr->btf_log_level,
6920 			u64_to_user_ptr(attr->btf_log_buf),
6921 			attr->btf_log_size);
6922 	if (IS_ERR(btf))
6923 		return PTR_ERR(btf);
6924 
6925 	ret = btf_alloc_id(btf);
6926 	if (ret) {
6927 		btf_free(btf);
6928 		return ret;
6929 	}
6930 
6931 	/*
6932 	 * The BTF ID is published to the userspace.
6933 	 * All BTF free must go through call_rcu() from
6934 	 * now on (i.e. free by calling btf_put()).
6935 	 */
6936 
6937 	ret = __btf_new_fd(btf);
6938 	if (ret < 0)
6939 		btf_put(btf);
6940 
6941 	return ret;
6942 }
6943 
btf_get_by_fd(int fd)6944 struct btf *btf_get_by_fd(int fd)
6945 {
6946 	struct btf *btf;
6947 	struct fd f;
6948 
6949 	f = fdget(fd);
6950 
6951 	if (!f.file)
6952 		return ERR_PTR(-EBADF);
6953 
6954 	if (f.file->f_op != &btf_fops) {
6955 		fdput(f);
6956 		return ERR_PTR(-EINVAL);
6957 	}
6958 
6959 	btf = f.file->private_data;
6960 	refcount_inc(&btf->refcnt);
6961 	fdput(f);
6962 
6963 	return btf;
6964 }
6965 
btf_get_info_by_fd(const struct btf * btf,const union bpf_attr * attr,union bpf_attr __user * uattr)6966 int btf_get_info_by_fd(const struct btf *btf,
6967 		       const union bpf_attr *attr,
6968 		       union bpf_attr __user *uattr)
6969 {
6970 	struct bpf_btf_info __user *uinfo;
6971 	struct bpf_btf_info info;
6972 	u32 info_copy, btf_copy;
6973 	void __user *ubtf;
6974 	char __user *uname;
6975 	u32 uinfo_len, uname_len, name_len;
6976 	int ret = 0;
6977 
6978 	uinfo = u64_to_user_ptr(attr->info.info);
6979 	uinfo_len = attr->info.info_len;
6980 
6981 	info_copy = min_t(u32, uinfo_len, sizeof(info));
6982 	memset(&info, 0, sizeof(info));
6983 	if (copy_from_user(&info, uinfo, info_copy))
6984 		return -EFAULT;
6985 
6986 	info.id = btf->id;
6987 	ubtf = u64_to_user_ptr(info.btf);
6988 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
6989 	if (copy_to_user(ubtf, btf->data, btf_copy))
6990 		return -EFAULT;
6991 	info.btf_size = btf->data_size;
6992 
6993 	info.kernel_btf = btf->kernel_btf;
6994 
6995 	uname = u64_to_user_ptr(info.name);
6996 	uname_len = info.name_len;
6997 	if (!uname ^ !uname_len)
6998 		return -EINVAL;
6999 
7000 	name_len = strlen(btf->name);
7001 	info.name_len = name_len;
7002 
7003 	if (uname) {
7004 		if (uname_len >= name_len + 1) {
7005 			if (copy_to_user(uname, btf->name, name_len + 1))
7006 				return -EFAULT;
7007 		} else {
7008 			char zero = '\0';
7009 
7010 			if (copy_to_user(uname, btf->name, uname_len - 1))
7011 				return -EFAULT;
7012 			if (put_user(zero, uname + uname_len - 1))
7013 				return -EFAULT;
7014 			/* let user-space know about too short buffer */
7015 			ret = -ENOSPC;
7016 		}
7017 	}
7018 
7019 	if (copy_to_user(uinfo, &info, info_copy) ||
7020 	    put_user(info_copy, &uattr->info.info_len))
7021 		return -EFAULT;
7022 
7023 	return ret;
7024 }
7025 
btf_get_fd_by_id(u32 id)7026 int btf_get_fd_by_id(u32 id)
7027 {
7028 	struct btf *btf;
7029 	int fd;
7030 
7031 	rcu_read_lock();
7032 	btf = idr_find(&btf_idr, id);
7033 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7034 		btf = ERR_PTR(-ENOENT);
7035 	rcu_read_unlock();
7036 
7037 	if (IS_ERR(btf))
7038 		return PTR_ERR(btf);
7039 
7040 	fd = __btf_new_fd(btf);
7041 	if (fd < 0)
7042 		btf_put(btf);
7043 
7044 	return fd;
7045 }
7046 
btf_obj_id(const struct btf * btf)7047 u32 btf_obj_id(const struct btf *btf)
7048 {
7049 	return btf->id;
7050 }
7051 
btf_is_kernel(const struct btf * btf)7052 bool btf_is_kernel(const struct btf *btf)
7053 {
7054 	return btf->kernel_btf;
7055 }
7056 
btf_is_module(const struct btf * btf)7057 bool btf_is_module(const struct btf *btf)
7058 {
7059 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7060 }
7061 
btf_id_cmp_func(const void * a,const void * b)7062 static int btf_id_cmp_func(const void *a, const void *b)
7063 {
7064 	const int *pa = a, *pb = b;
7065 
7066 	return *pa - *pb;
7067 }
7068 
btf_id_set_contains(const struct btf_id_set * set,u32 id)7069 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
7070 {
7071 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
7072 }
7073 
btf_id_set8_contains(const struct btf_id_set8 * set,u32 id)7074 static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id)
7075 {
7076 	return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func);
7077 }
7078 
7079 enum {
7080 	BTF_MODULE_F_LIVE = (1 << 0),
7081 };
7082 
7083 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7084 struct btf_module {
7085 	struct list_head list;
7086 	struct module *module;
7087 	struct btf *btf;
7088 	struct bin_attribute *sysfs_attr;
7089 	int flags;
7090 };
7091 
7092 static LIST_HEAD(btf_modules);
7093 static DEFINE_MUTEX(btf_module_mutex);
7094 
7095 static ssize_t
btf_module_read(struct file * file,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t len)7096 btf_module_read(struct file *file, struct kobject *kobj,
7097 		struct bin_attribute *bin_attr,
7098 		char *buf, loff_t off, size_t len)
7099 {
7100 	const struct btf *btf = bin_attr->private;
7101 
7102 	memcpy(buf, btf->data + off, len);
7103 	return len;
7104 }
7105 
7106 static void purge_cand_cache(struct btf *btf);
7107 
btf_module_notify(struct notifier_block * nb,unsigned long op,void * module)7108 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7109 			     void *module)
7110 {
7111 	struct btf_module *btf_mod, *tmp;
7112 	struct module *mod = module;
7113 	struct btf *btf;
7114 	int err = 0;
7115 
7116 	if (mod->btf_data_size == 0 ||
7117 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7118 	     op != MODULE_STATE_GOING))
7119 		goto out;
7120 
7121 	switch (op) {
7122 	case MODULE_STATE_COMING:
7123 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7124 		if (!btf_mod) {
7125 			err = -ENOMEM;
7126 			goto out;
7127 		}
7128 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7129 		if (IS_ERR(btf)) {
7130 			kfree(btf_mod);
7131 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7132 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7133 					mod->name, PTR_ERR(btf));
7134 				err = PTR_ERR(btf);
7135 			} else {
7136 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7137 			}
7138 			goto out;
7139 		}
7140 		err = btf_alloc_id(btf);
7141 		if (err) {
7142 			btf_free(btf);
7143 			kfree(btf_mod);
7144 			goto out;
7145 		}
7146 
7147 		purge_cand_cache(NULL);
7148 		mutex_lock(&btf_module_mutex);
7149 		btf_mod->module = module;
7150 		btf_mod->btf = btf;
7151 		list_add(&btf_mod->list, &btf_modules);
7152 		mutex_unlock(&btf_module_mutex);
7153 
7154 		if (IS_ENABLED(CONFIG_SYSFS)) {
7155 			struct bin_attribute *attr;
7156 
7157 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7158 			if (!attr)
7159 				goto out;
7160 
7161 			sysfs_bin_attr_init(attr);
7162 			attr->attr.name = btf->name;
7163 			attr->attr.mode = 0444;
7164 			attr->size = btf->data_size;
7165 			attr->private = btf;
7166 			attr->read = btf_module_read;
7167 
7168 			err = sysfs_create_bin_file(btf_kobj, attr);
7169 			if (err) {
7170 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7171 					mod->name, err);
7172 				kfree(attr);
7173 				err = 0;
7174 				goto out;
7175 			}
7176 
7177 			btf_mod->sysfs_attr = attr;
7178 		}
7179 
7180 		break;
7181 	case MODULE_STATE_LIVE:
7182 		mutex_lock(&btf_module_mutex);
7183 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7184 			if (btf_mod->module != module)
7185 				continue;
7186 
7187 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7188 			break;
7189 		}
7190 		mutex_unlock(&btf_module_mutex);
7191 		break;
7192 	case MODULE_STATE_GOING:
7193 		mutex_lock(&btf_module_mutex);
7194 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7195 			if (btf_mod->module != module)
7196 				continue;
7197 
7198 			list_del(&btf_mod->list);
7199 			if (btf_mod->sysfs_attr)
7200 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7201 			purge_cand_cache(btf_mod->btf);
7202 			btf_put(btf_mod->btf);
7203 			kfree(btf_mod->sysfs_attr);
7204 			kfree(btf_mod);
7205 			break;
7206 		}
7207 		mutex_unlock(&btf_module_mutex);
7208 		break;
7209 	}
7210 out:
7211 	return notifier_from_errno(err);
7212 }
7213 
7214 static struct notifier_block btf_module_nb = {
7215 	.notifier_call = btf_module_notify,
7216 };
7217 
btf_module_init(void)7218 static int __init btf_module_init(void)
7219 {
7220 	register_module_notifier(&btf_module_nb);
7221 	return 0;
7222 }
7223 
7224 fs_initcall(btf_module_init);
7225 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7226 
btf_try_get_module(const struct btf * btf)7227 struct module *btf_try_get_module(const struct btf *btf)
7228 {
7229 	struct module *res = NULL;
7230 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7231 	struct btf_module *btf_mod, *tmp;
7232 
7233 	mutex_lock(&btf_module_mutex);
7234 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7235 		if (btf_mod->btf != btf)
7236 			continue;
7237 
7238 		/* We must only consider module whose __init routine has
7239 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7240 		 * which is set from the notifier callback for
7241 		 * MODULE_STATE_LIVE.
7242 		 */
7243 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7244 			res = btf_mod->module;
7245 
7246 		break;
7247 	}
7248 	mutex_unlock(&btf_module_mutex);
7249 #endif
7250 
7251 	return res;
7252 }
7253 
7254 /* Returns struct btf corresponding to the struct module.
7255  * This function can return NULL or ERR_PTR.
7256  */
btf_get_module_btf(const struct module * module)7257 static struct btf *btf_get_module_btf(const struct module *module)
7258 {
7259 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7260 	struct btf_module *btf_mod, *tmp;
7261 #endif
7262 	struct btf *btf = NULL;
7263 
7264 	if (!module) {
7265 		btf = bpf_get_btf_vmlinux();
7266 		if (!IS_ERR_OR_NULL(btf))
7267 			btf_get(btf);
7268 		return btf;
7269 	}
7270 
7271 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7272 	mutex_lock(&btf_module_mutex);
7273 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7274 		if (btf_mod->module != module)
7275 			continue;
7276 
7277 		btf_get(btf_mod->btf);
7278 		btf = btf_mod->btf;
7279 		break;
7280 	}
7281 	mutex_unlock(&btf_module_mutex);
7282 #endif
7283 
7284 	return btf;
7285 }
7286 
BPF_CALL_4(bpf_btf_find_by_name_kind,char *,name,int,name_sz,u32,kind,int,flags)7287 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7288 {
7289 	struct btf *btf = NULL;
7290 	int btf_obj_fd = 0;
7291 	long ret;
7292 
7293 	if (flags)
7294 		return -EINVAL;
7295 
7296 	if (name_sz <= 1 || name[name_sz - 1])
7297 		return -EINVAL;
7298 
7299 	ret = bpf_find_btf_id(name, kind, &btf);
7300 	if (ret > 0 && btf_is_module(btf)) {
7301 		btf_obj_fd = __btf_new_fd(btf);
7302 		if (btf_obj_fd < 0) {
7303 			btf_put(btf);
7304 			return btf_obj_fd;
7305 		}
7306 		return ret | (((u64)btf_obj_fd) << 32);
7307 	}
7308 	if (ret > 0)
7309 		btf_put(btf);
7310 	return ret;
7311 }
7312 
7313 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7314 	.func		= bpf_btf_find_by_name_kind,
7315 	.gpl_only	= false,
7316 	.ret_type	= RET_INTEGER,
7317 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7318 	.arg2_type	= ARG_CONST_SIZE,
7319 	.arg3_type	= ARG_ANYTHING,
7320 	.arg4_type	= ARG_ANYTHING,
7321 };
7322 
BTF_ID_LIST_GLOBAL(btf_tracing_ids,MAX_BTF_TRACING_TYPE)7323 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7324 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7325 BTF_TRACING_TYPE_xxx
7326 #undef BTF_TRACING_TYPE
7327 
7328 /* Kernel Function (kfunc) BTF ID set registration API */
7329 
7330 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7331 				  struct btf_id_set8 *add_set)
7332 {
7333 	bool vmlinux_set = !btf_is_module(btf);
7334 	struct btf_kfunc_set_tab *tab;
7335 	struct btf_id_set8 *set;
7336 	u32 set_cnt;
7337 	int ret;
7338 
7339 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7340 		ret = -EINVAL;
7341 		goto end;
7342 	}
7343 
7344 	if (!add_set->cnt)
7345 		return 0;
7346 
7347 	tab = btf->kfunc_set_tab;
7348 	if (!tab) {
7349 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7350 		if (!tab)
7351 			return -ENOMEM;
7352 		btf->kfunc_set_tab = tab;
7353 	}
7354 
7355 	set = tab->sets[hook];
7356 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7357 	 * for module sets.
7358 	 */
7359 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7360 		ret = -EINVAL;
7361 		goto end;
7362 	}
7363 
7364 	/* We don't need to allocate, concatenate, and sort module sets, because
7365 	 * only one is allowed per hook. Hence, we can directly assign the
7366 	 * pointer and return.
7367 	 */
7368 	if (!vmlinux_set) {
7369 		tab->sets[hook] = add_set;
7370 		return 0;
7371 	}
7372 
7373 	/* In case of vmlinux sets, there may be more than one set being
7374 	 * registered per hook. To create a unified set, we allocate a new set
7375 	 * and concatenate all individual sets being registered. While each set
7376 	 * is individually sorted, they may become unsorted when concatenated,
7377 	 * hence re-sorting the final set again is required to make binary
7378 	 * searching the set using btf_id_set8_contains function work.
7379 	 */
7380 	set_cnt = set ? set->cnt : 0;
7381 
7382 	if (set_cnt > U32_MAX - add_set->cnt) {
7383 		ret = -EOVERFLOW;
7384 		goto end;
7385 	}
7386 
7387 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7388 		ret = -E2BIG;
7389 		goto end;
7390 	}
7391 
7392 	/* Grow set */
7393 	set = krealloc(tab->sets[hook],
7394 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7395 		       GFP_KERNEL | __GFP_NOWARN);
7396 	if (!set) {
7397 		ret = -ENOMEM;
7398 		goto end;
7399 	}
7400 
7401 	/* For newly allocated set, initialize set->cnt to 0 */
7402 	if (!tab->sets[hook])
7403 		set->cnt = 0;
7404 	tab->sets[hook] = set;
7405 
7406 	/* Concatenate the two sets */
7407 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7408 	set->cnt += add_set->cnt;
7409 
7410 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7411 
7412 	return 0;
7413 end:
7414 	btf_free_kfunc_set_tab(btf);
7415 	return ret;
7416 }
7417 
__btf_kfunc_id_set_contains(const struct btf * btf,enum btf_kfunc_hook hook,u32 kfunc_btf_id)7418 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7419 					enum btf_kfunc_hook hook,
7420 					u32 kfunc_btf_id)
7421 {
7422 	struct btf_id_set8 *set;
7423 	u32 *id;
7424 
7425 	if (hook >= BTF_KFUNC_HOOK_MAX)
7426 		return NULL;
7427 	if (!btf->kfunc_set_tab)
7428 		return NULL;
7429 	set = btf->kfunc_set_tab->sets[hook];
7430 	if (!set)
7431 		return NULL;
7432 	id = btf_id_set8_contains(set, kfunc_btf_id);
7433 	if (!id)
7434 		return NULL;
7435 	/* The flags for BTF ID are located next to it */
7436 	return id + 1;
7437 }
7438 
bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)7439 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7440 {
7441 	switch (prog_type) {
7442 	case BPF_PROG_TYPE_XDP:
7443 		return BTF_KFUNC_HOOK_XDP;
7444 	case BPF_PROG_TYPE_SCHED_CLS:
7445 		return BTF_KFUNC_HOOK_TC;
7446 	case BPF_PROG_TYPE_STRUCT_OPS:
7447 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7448 	case BPF_PROG_TYPE_TRACING:
7449 	case BPF_PROG_TYPE_LSM:
7450 		return BTF_KFUNC_HOOK_TRACING;
7451 	case BPF_PROG_TYPE_SYSCALL:
7452 		return BTF_KFUNC_HOOK_SYSCALL;
7453 	default:
7454 		return BTF_KFUNC_HOOK_MAX;
7455 	}
7456 }
7457 
7458 /* Caution:
7459  * Reference to the module (obtained using btf_try_get_module) corresponding to
7460  * the struct btf *MUST* be held when calling this function from verifier
7461  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7462  * keeping the reference for the duration of the call provides the necessary
7463  * protection for looking up a well-formed btf->kfunc_set_tab.
7464  */
btf_kfunc_id_set_contains(const struct btf * btf,enum bpf_prog_type prog_type,u32 kfunc_btf_id)7465 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7466 			       enum bpf_prog_type prog_type,
7467 			       u32 kfunc_btf_id)
7468 {
7469 	enum btf_kfunc_hook hook;
7470 
7471 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7472 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
7473 }
7474 
7475 /* This function must be invoked only from initcalls/module init functions */
register_btf_kfunc_id_set(enum bpf_prog_type prog_type,const struct btf_kfunc_id_set * kset)7476 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7477 			      const struct btf_kfunc_id_set *kset)
7478 {
7479 	enum btf_kfunc_hook hook;
7480 	struct btf *btf;
7481 	int ret;
7482 
7483 	btf = btf_get_module_btf(kset->owner);
7484 	if (!btf) {
7485 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7486 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7487 			return -ENOENT;
7488 		}
7489 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7490 			pr_warn("missing module BTF, cannot register kfuncs\n");
7491 		return 0;
7492 	}
7493 	if (IS_ERR(btf))
7494 		return PTR_ERR(btf);
7495 
7496 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7497 	ret = btf_populate_kfunc_set(btf, hook, kset->set);
7498 	btf_put(btf);
7499 	return ret;
7500 }
7501 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7502 
btf_find_dtor_kfunc(struct btf * btf,u32 btf_id)7503 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7504 {
7505 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7506 	struct btf_id_dtor_kfunc *dtor;
7507 
7508 	if (!tab)
7509 		return -ENOENT;
7510 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7511 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7512 	 */
7513 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7514 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7515 	if (!dtor)
7516 		return -ENOENT;
7517 	return dtor->kfunc_btf_id;
7518 }
7519 
btf_check_dtor_kfuncs(struct btf * btf,const struct btf_id_dtor_kfunc * dtors,u32 cnt)7520 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7521 {
7522 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7523 	const struct btf_param *args;
7524 	s32 dtor_btf_id;
7525 	u32 nr_args, i;
7526 
7527 	for (i = 0; i < cnt; i++) {
7528 		dtor_btf_id = dtors[i].kfunc_btf_id;
7529 
7530 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7531 		if (!dtor_func || !btf_type_is_func(dtor_func))
7532 			return -EINVAL;
7533 
7534 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7535 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7536 			return -EINVAL;
7537 
7538 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7539 		t = btf_type_by_id(btf, dtor_func_proto->type);
7540 		if (!t || !btf_type_is_void(t))
7541 			return -EINVAL;
7542 
7543 		nr_args = btf_type_vlen(dtor_func_proto);
7544 		if (nr_args != 1)
7545 			return -EINVAL;
7546 		args = btf_params(dtor_func_proto);
7547 		t = btf_type_by_id(btf, args[0].type);
7548 		/* Allow any pointer type, as width on targets Linux supports
7549 		 * will be same for all pointer types (i.e. sizeof(void *))
7550 		 */
7551 		if (!t || !btf_type_is_ptr(t))
7552 			return -EINVAL;
7553 	}
7554 	return 0;
7555 }
7556 
7557 /* This function must be invoked only from initcalls/module init functions */
register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc * dtors,u32 add_cnt,struct module * owner)7558 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7559 				struct module *owner)
7560 {
7561 	struct btf_id_dtor_kfunc_tab *tab;
7562 	struct btf *btf;
7563 	u32 tab_cnt;
7564 	int ret;
7565 
7566 	btf = btf_get_module_btf(owner);
7567 	if (!btf) {
7568 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7569 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7570 			return -ENOENT;
7571 		}
7572 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7573 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
7574 			return -ENOENT;
7575 		}
7576 		return 0;
7577 	}
7578 	if (IS_ERR(btf))
7579 		return PTR_ERR(btf);
7580 
7581 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7582 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7583 		ret = -E2BIG;
7584 		goto end;
7585 	}
7586 
7587 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
7588 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7589 	if (ret < 0)
7590 		goto end;
7591 
7592 	tab = btf->dtor_kfunc_tab;
7593 	/* Only one call allowed for modules */
7594 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7595 		ret = -EINVAL;
7596 		goto end;
7597 	}
7598 
7599 	tab_cnt = tab ? tab->cnt : 0;
7600 	if (tab_cnt > U32_MAX - add_cnt) {
7601 		ret = -EOVERFLOW;
7602 		goto end;
7603 	}
7604 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7605 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7606 		ret = -E2BIG;
7607 		goto end;
7608 	}
7609 
7610 	tab = krealloc(btf->dtor_kfunc_tab,
7611 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7612 		       GFP_KERNEL | __GFP_NOWARN);
7613 	if (!tab) {
7614 		ret = -ENOMEM;
7615 		goto end;
7616 	}
7617 
7618 	if (!btf->dtor_kfunc_tab)
7619 		tab->cnt = 0;
7620 	btf->dtor_kfunc_tab = tab;
7621 
7622 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7623 	tab->cnt += add_cnt;
7624 
7625 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7626 
7627 end:
7628 	if (ret)
7629 		btf_free_dtor_kfunc_tab(btf);
7630 	btf_put(btf);
7631 	return ret;
7632 }
7633 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7634 
7635 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
7636 
7637 /* Check local and target types for compatibility. This check is used for
7638  * type-based CO-RE relocations and follow slightly different rules than
7639  * field-based relocations. This function assumes that root types were already
7640  * checked for name match. Beyond that initial root-level name check, names
7641  * are completely ignored. Compatibility rules are as follows:
7642  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
7643  *     kind should match for local and target types (i.e., STRUCT is not
7644  *     compatible with UNION);
7645  *   - for ENUMs/ENUM64s, the size is ignored;
7646  *   - for INT, size and signedness are ignored;
7647  *   - for ARRAY, dimensionality is ignored, element types are checked for
7648  *     compatibility recursively;
7649  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
7650  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7651  *   - FUNC_PROTOs are compatible if they have compatible signature: same
7652  *     number of input args and compatible return and argument types.
7653  * These rules are not set in stone and probably will be adjusted as we get
7654  * more experience with using BPF CO-RE relocations.
7655  */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)7656 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7657 			      const struct btf *targ_btf, __u32 targ_id)
7658 {
7659 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
7660 					   MAX_TYPES_ARE_COMPAT_DEPTH);
7661 }
7662 
7663 #define MAX_TYPES_MATCH_DEPTH 2
7664 
bpf_core_types_match(const struct btf * local_btf,u32 local_id,const struct btf * targ_btf,u32 targ_id)7665 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7666 			 const struct btf *targ_btf, u32 targ_id)
7667 {
7668 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7669 				      MAX_TYPES_MATCH_DEPTH);
7670 }
7671 
bpf_core_is_flavor_sep(const char * s)7672 static bool bpf_core_is_flavor_sep(const char *s)
7673 {
7674 	/* check X___Y name pattern, where X and Y are not underscores */
7675 	return s[0] != '_' &&				      /* X */
7676 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
7677 	       s[4] != '_';				      /* Y */
7678 }
7679 
bpf_core_essential_name_len(const char * name)7680 size_t bpf_core_essential_name_len(const char *name)
7681 {
7682 	size_t n = strlen(name);
7683 	int i;
7684 
7685 	for (i = n - 5; i >= 0; i--) {
7686 		if (bpf_core_is_flavor_sep(name + i))
7687 			return i + 1;
7688 	}
7689 	return n;
7690 }
7691 
7692 struct bpf_cand_cache {
7693 	const char *name;
7694 	u32 name_len;
7695 	u16 kind;
7696 	u16 cnt;
7697 	struct {
7698 		const struct btf *btf;
7699 		u32 id;
7700 	} cands[];
7701 };
7702 
bpf_free_cands(struct bpf_cand_cache * cands)7703 static void bpf_free_cands(struct bpf_cand_cache *cands)
7704 {
7705 	if (!cands->cnt)
7706 		/* empty candidate array was allocated on stack */
7707 		return;
7708 	kfree(cands);
7709 }
7710 
bpf_free_cands_from_cache(struct bpf_cand_cache * cands)7711 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7712 {
7713 	kfree(cands->name);
7714 	kfree(cands);
7715 }
7716 
7717 #define VMLINUX_CAND_CACHE_SIZE 31
7718 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7719 
7720 #define MODULE_CAND_CACHE_SIZE 31
7721 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7722 
7723 static DEFINE_MUTEX(cand_cache_mutex);
7724 
__print_cand_cache(struct bpf_verifier_log * log,struct bpf_cand_cache ** cache,int cache_size)7725 static void __print_cand_cache(struct bpf_verifier_log *log,
7726 			       struct bpf_cand_cache **cache,
7727 			       int cache_size)
7728 {
7729 	struct bpf_cand_cache *cc;
7730 	int i, j;
7731 
7732 	for (i = 0; i < cache_size; i++) {
7733 		cc = cache[i];
7734 		if (!cc)
7735 			continue;
7736 		bpf_log(log, "[%d]%s(", i, cc->name);
7737 		for (j = 0; j < cc->cnt; j++) {
7738 			bpf_log(log, "%d", cc->cands[j].id);
7739 			if (j < cc->cnt - 1)
7740 				bpf_log(log, " ");
7741 		}
7742 		bpf_log(log, "), ");
7743 	}
7744 }
7745 
print_cand_cache(struct bpf_verifier_log * log)7746 static void print_cand_cache(struct bpf_verifier_log *log)
7747 {
7748 	mutex_lock(&cand_cache_mutex);
7749 	bpf_log(log, "vmlinux_cand_cache:");
7750 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7751 	bpf_log(log, "\nmodule_cand_cache:");
7752 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7753 	bpf_log(log, "\n");
7754 	mutex_unlock(&cand_cache_mutex);
7755 }
7756 
hash_cands(struct bpf_cand_cache * cands)7757 static u32 hash_cands(struct bpf_cand_cache *cands)
7758 {
7759 	return jhash(cands->name, cands->name_len, 0);
7760 }
7761 
check_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)7762 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7763 					       struct bpf_cand_cache **cache,
7764 					       int cache_size)
7765 {
7766 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7767 
7768 	if (cc && cc->name_len == cands->name_len &&
7769 	    !strncmp(cc->name, cands->name, cands->name_len))
7770 		return cc;
7771 	return NULL;
7772 }
7773 
sizeof_cands(int cnt)7774 static size_t sizeof_cands(int cnt)
7775 {
7776 	return offsetof(struct bpf_cand_cache, cands[cnt]);
7777 }
7778 
populate_cand_cache(struct bpf_cand_cache * cands,struct bpf_cand_cache ** cache,int cache_size)7779 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7780 						  struct bpf_cand_cache **cache,
7781 						  int cache_size)
7782 {
7783 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7784 
7785 	if (*cc) {
7786 		bpf_free_cands_from_cache(*cc);
7787 		*cc = NULL;
7788 	}
7789 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
7790 	if (!new_cands) {
7791 		bpf_free_cands(cands);
7792 		return ERR_PTR(-ENOMEM);
7793 	}
7794 	/* strdup the name, since it will stay in cache.
7795 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7796 	 */
7797 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7798 	bpf_free_cands(cands);
7799 	if (!new_cands->name) {
7800 		kfree(new_cands);
7801 		return ERR_PTR(-ENOMEM);
7802 	}
7803 	*cc = new_cands;
7804 	return new_cands;
7805 }
7806 
7807 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
__purge_cand_cache(struct btf * btf,struct bpf_cand_cache ** cache,int cache_size)7808 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7809 			       int cache_size)
7810 {
7811 	struct bpf_cand_cache *cc;
7812 	int i, j;
7813 
7814 	for (i = 0; i < cache_size; i++) {
7815 		cc = cache[i];
7816 		if (!cc)
7817 			continue;
7818 		if (!btf) {
7819 			/* when new module is loaded purge all of module_cand_cache,
7820 			 * since new module might have candidates with the name
7821 			 * that matches cached cands.
7822 			 */
7823 			bpf_free_cands_from_cache(cc);
7824 			cache[i] = NULL;
7825 			continue;
7826 		}
7827 		/* when module is unloaded purge cache entries
7828 		 * that match module's btf
7829 		 */
7830 		for (j = 0; j < cc->cnt; j++)
7831 			if (cc->cands[j].btf == btf) {
7832 				bpf_free_cands_from_cache(cc);
7833 				cache[i] = NULL;
7834 				break;
7835 			}
7836 	}
7837 
7838 }
7839 
purge_cand_cache(struct btf * btf)7840 static void purge_cand_cache(struct btf *btf)
7841 {
7842 	mutex_lock(&cand_cache_mutex);
7843 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7844 	mutex_unlock(&cand_cache_mutex);
7845 }
7846 #endif
7847 
7848 static struct bpf_cand_cache *
bpf_core_add_cands(struct bpf_cand_cache * cands,const struct btf * targ_btf,int targ_start_id)7849 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
7850 		   int targ_start_id)
7851 {
7852 	struct bpf_cand_cache *new_cands;
7853 	const struct btf_type *t;
7854 	const char *targ_name;
7855 	size_t targ_essent_len;
7856 	int n, i;
7857 
7858 	n = btf_nr_types(targ_btf);
7859 	for (i = targ_start_id; i < n; i++) {
7860 		t = btf_type_by_id(targ_btf, i);
7861 		if (btf_kind(t) != cands->kind)
7862 			continue;
7863 
7864 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
7865 		if (!targ_name)
7866 			continue;
7867 
7868 		/* the resched point is before strncmp to make sure that search
7869 		 * for non-existing name will have a chance to schedule().
7870 		 */
7871 		cond_resched();
7872 
7873 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
7874 			continue;
7875 
7876 		targ_essent_len = bpf_core_essential_name_len(targ_name);
7877 		if (targ_essent_len != cands->name_len)
7878 			continue;
7879 
7880 		/* most of the time there is only one candidate for a given kind+name pair */
7881 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
7882 		if (!new_cands) {
7883 			bpf_free_cands(cands);
7884 			return ERR_PTR(-ENOMEM);
7885 		}
7886 
7887 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
7888 		bpf_free_cands(cands);
7889 		cands = new_cands;
7890 		cands->cands[cands->cnt].btf = targ_btf;
7891 		cands->cands[cands->cnt].id = i;
7892 		cands->cnt++;
7893 	}
7894 	return cands;
7895 }
7896 
7897 static struct bpf_cand_cache *
bpf_core_find_cands(struct bpf_core_ctx * ctx,u32 local_type_id)7898 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
7899 {
7900 	struct bpf_cand_cache *cands, *cc, local_cand = {};
7901 	const struct btf *local_btf = ctx->btf;
7902 	const struct btf_type *local_type;
7903 	const struct btf *main_btf;
7904 	size_t local_essent_len;
7905 	struct btf *mod_btf;
7906 	const char *name;
7907 	int id;
7908 
7909 	main_btf = bpf_get_btf_vmlinux();
7910 	if (IS_ERR(main_btf))
7911 		return ERR_CAST(main_btf);
7912 	if (!main_btf)
7913 		return ERR_PTR(-EINVAL);
7914 
7915 	local_type = btf_type_by_id(local_btf, local_type_id);
7916 	if (!local_type)
7917 		return ERR_PTR(-EINVAL);
7918 
7919 	name = btf_name_by_offset(local_btf, local_type->name_off);
7920 	if (str_is_empty(name))
7921 		return ERR_PTR(-EINVAL);
7922 	local_essent_len = bpf_core_essential_name_len(name);
7923 
7924 	cands = &local_cand;
7925 	cands->name = name;
7926 	cands->kind = btf_kind(local_type);
7927 	cands->name_len = local_essent_len;
7928 
7929 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7930 	/* cands is a pointer to stack here */
7931 	if (cc) {
7932 		if (cc->cnt)
7933 			return cc;
7934 		goto check_modules;
7935 	}
7936 
7937 	/* Attempt to find target candidates in vmlinux BTF first */
7938 	cands = bpf_core_add_cands(cands, main_btf, 1);
7939 	if (IS_ERR(cands))
7940 		return ERR_CAST(cands);
7941 
7942 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
7943 
7944 	/* populate cache even when cands->cnt == 0 */
7945 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7946 	if (IS_ERR(cc))
7947 		return ERR_CAST(cc);
7948 
7949 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
7950 	if (cc->cnt)
7951 		return cc;
7952 
7953 check_modules:
7954 	/* cands is a pointer to stack here and cands->cnt == 0 */
7955 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7956 	if (cc)
7957 		/* if cache has it return it even if cc->cnt == 0 */
7958 		return cc;
7959 
7960 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
7961 	spin_lock_bh(&btf_idr_lock);
7962 	idr_for_each_entry(&btf_idr, mod_btf, id) {
7963 		if (!btf_is_module(mod_btf))
7964 			continue;
7965 		/* linear search could be slow hence unlock/lock
7966 		 * the IDR to avoiding holding it for too long
7967 		 */
7968 		btf_get(mod_btf);
7969 		spin_unlock_bh(&btf_idr_lock);
7970 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
7971 		btf_put(mod_btf);
7972 		if (IS_ERR(cands))
7973 			return ERR_CAST(cands);
7974 		spin_lock_bh(&btf_idr_lock);
7975 	}
7976 	spin_unlock_bh(&btf_idr_lock);
7977 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
7978 	 * or pointer to stack if cands->cnd == 0.
7979 	 * Copy it into the cache even when cands->cnt == 0 and
7980 	 * return the result.
7981 	 */
7982 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7983 }
7984 
bpf_core_apply(struct bpf_core_ctx * ctx,const struct bpf_core_relo * relo,int relo_idx,void * insn)7985 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
7986 		   int relo_idx, void *insn)
7987 {
7988 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
7989 	struct bpf_core_cand_list cands = {};
7990 	struct bpf_core_relo_res targ_res;
7991 	struct bpf_core_spec *specs;
7992 	int err;
7993 
7994 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
7995 	 * into arrays of btf_ids of struct fields and array indices.
7996 	 */
7997 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
7998 	if (!specs)
7999 		return -ENOMEM;
8000 
8001 	if (need_cands) {
8002 		struct bpf_cand_cache *cc;
8003 		int i;
8004 
8005 		mutex_lock(&cand_cache_mutex);
8006 		cc = bpf_core_find_cands(ctx, relo->type_id);
8007 		if (IS_ERR(cc)) {
8008 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8009 				relo->type_id);
8010 			err = PTR_ERR(cc);
8011 			goto out;
8012 		}
8013 		if (cc->cnt) {
8014 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8015 			if (!cands.cands) {
8016 				err = -ENOMEM;
8017 				goto out;
8018 			}
8019 		}
8020 		for (i = 0; i < cc->cnt; i++) {
8021 			bpf_log(ctx->log,
8022 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8023 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8024 			cands.cands[i].btf = cc->cands[i].btf;
8025 			cands.cands[i].id = cc->cands[i].id;
8026 		}
8027 		cands.len = cc->cnt;
8028 		/* cand_cache_mutex needs to span the cache lookup and
8029 		 * copy of btf pointer into bpf_core_cand_list,
8030 		 * since module can be unloaded while bpf_core_calc_relo_insn
8031 		 * is working with module's btf.
8032 		 */
8033 	}
8034 
8035 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8036 				      &targ_res);
8037 	if (err)
8038 		goto out;
8039 
8040 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8041 				  &targ_res);
8042 
8043 out:
8044 	kfree(specs);
8045 	if (need_cands) {
8046 		kfree(cands.cands);
8047 		mutex_unlock(&cand_cache_mutex);
8048 		if (ctx->log->level & BPF_LOG_LEVEL2)
8049 			print_cand_cache(ctx->log);
8050 	}
8051 	return err;
8052 }
8053