1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 struct btrfs_delayed_ref_node *node, u64 parent,
45 u64 root_objectid, u64 owner_objectid,
46 u64 owner_offset, int refs_to_drop,
47 struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 struct extent_buffer *leaf,
50 struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_delayed_ref_node *node,
57 struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 struct btrfs_key *key);
60
block_group_bits(struct btrfs_block_group * cache,u64 bits)61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 return (cache->flags & bits) == bits;
64 }
65
btrfs_add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 u64 start, u64 num_bytes)
68 {
69 u64 end = start + num_bytes - 1;
70 set_extent_bits(&fs_info->excluded_extents, start, end,
71 EXTENT_UPTODATE);
72 return 0;
73 }
74
btrfs_free_excluded_extents(struct btrfs_block_group * cache)75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 struct btrfs_fs_info *fs_info = cache->fs_info;
78 u64 start, end;
79
80 start = cache->start;
81 end = start + cache->length - 1;
82
83 clear_extent_bits(&fs_info->excluded_extents, start, end,
84 EXTENT_UPTODATE);
85 }
86
87 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
91 int ret;
92 struct btrfs_key key;
93 struct btrfs_path *path;
94
95 path = btrfs_alloc_path();
96 if (!path)
97 return -ENOMEM;
98
99 key.objectid = start;
100 key.offset = len;
101 key.type = BTRFS_EXTENT_ITEM_KEY;
102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
103 btrfs_free_path(path);
104 return ret;
105 }
106
107 /*
108 * helper function to lookup reference count and flags of a tree block.
109 *
110 * the head node for delayed ref is used to store the sum of all the
111 * reference count modifications queued up in the rbtree. the head
112 * node may also store the extent flags to set. This way you can check
113 * to see what the reference count and extent flags would be if all of
114 * the delayed refs are not processed.
115 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
117 struct btrfs_fs_info *fs_info, u64 bytenr,
118 u64 offset, int metadata, u64 *refs, u64 *flags)
119 {
120 struct btrfs_root *extent_root;
121 struct btrfs_delayed_ref_head *head;
122 struct btrfs_delayed_ref_root *delayed_refs;
123 struct btrfs_path *path;
124 struct btrfs_extent_item *ei;
125 struct extent_buffer *leaf;
126 struct btrfs_key key;
127 u32 item_size;
128 u64 num_refs;
129 u64 extent_flags;
130 int ret;
131
132 /*
133 * If we don't have skinny metadata, don't bother doing anything
134 * different
135 */
136 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
137 offset = fs_info->nodesize;
138 metadata = 0;
139 }
140
141 path = btrfs_alloc_path();
142 if (!path)
143 return -ENOMEM;
144
145 if (!trans) {
146 path->skip_locking = 1;
147 path->search_commit_root = 1;
148 }
149
150 search_again:
151 key.objectid = bytenr;
152 key.offset = offset;
153 if (metadata)
154 key.type = BTRFS_METADATA_ITEM_KEY;
155 else
156 key.type = BTRFS_EXTENT_ITEM_KEY;
157
158 extent_root = btrfs_extent_root(fs_info, bytenr);
159 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
160 if (ret < 0)
161 goto out_free;
162
163 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
164 if (path->slots[0]) {
165 path->slots[0]--;
166 btrfs_item_key_to_cpu(path->nodes[0], &key,
167 path->slots[0]);
168 if (key.objectid == bytenr &&
169 key.type == BTRFS_EXTENT_ITEM_KEY &&
170 key.offset == fs_info->nodesize)
171 ret = 0;
172 }
173 }
174
175 if (ret == 0) {
176 leaf = path->nodes[0];
177 item_size = btrfs_item_size(leaf, path->slots[0]);
178 if (item_size >= sizeof(*ei)) {
179 ei = btrfs_item_ptr(leaf, path->slots[0],
180 struct btrfs_extent_item);
181 num_refs = btrfs_extent_refs(leaf, ei);
182 extent_flags = btrfs_extent_flags(leaf, ei);
183 } else {
184 ret = -EINVAL;
185 btrfs_print_v0_err(fs_info);
186 if (trans)
187 btrfs_abort_transaction(trans, ret);
188 else
189 btrfs_handle_fs_error(fs_info, ret, NULL);
190
191 goto out_free;
192 }
193
194 BUG_ON(num_refs == 0);
195 } else {
196 num_refs = 0;
197 extent_flags = 0;
198 ret = 0;
199 }
200
201 if (!trans)
202 goto out;
203
204 delayed_refs = &trans->transaction->delayed_refs;
205 spin_lock(&delayed_refs->lock);
206 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
207 if (head) {
208 if (!mutex_trylock(&head->mutex)) {
209 refcount_inc(&head->refs);
210 spin_unlock(&delayed_refs->lock);
211
212 btrfs_release_path(path);
213
214 /*
215 * Mutex was contended, block until it's released and try
216 * again
217 */
218 mutex_lock(&head->mutex);
219 mutex_unlock(&head->mutex);
220 btrfs_put_delayed_ref_head(head);
221 goto search_again;
222 }
223 spin_lock(&head->lock);
224 if (head->extent_op && head->extent_op->update_flags)
225 extent_flags |= head->extent_op->flags_to_set;
226 else
227 BUG_ON(num_refs == 0);
228
229 num_refs += head->ref_mod;
230 spin_unlock(&head->lock);
231 mutex_unlock(&head->mutex);
232 }
233 spin_unlock(&delayed_refs->lock);
234 out:
235 WARN_ON(num_refs == 0);
236 if (refs)
237 *refs = num_refs;
238 if (flags)
239 *flags = extent_flags;
240 out_free:
241 btrfs_free_path(path);
242 return ret;
243 }
244
245 /*
246 * Back reference rules. Back refs have three main goals:
247 *
248 * 1) differentiate between all holders of references to an extent so that
249 * when a reference is dropped we can make sure it was a valid reference
250 * before freeing the extent.
251 *
252 * 2) Provide enough information to quickly find the holders of an extent
253 * if we notice a given block is corrupted or bad.
254 *
255 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
256 * maintenance. This is actually the same as #2, but with a slightly
257 * different use case.
258 *
259 * There are two kinds of back refs. The implicit back refs is optimized
260 * for pointers in non-shared tree blocks. For a given pointer in a block,
261 * back refs of this kind provide information about the block's owner tree
262 * and the pointer's key. These information allow us to find the block by
263 * b-tree searching. The full back refs is for pointers in tree blocks not
264 * referenced by their owner trees. The location of tree block is recorded
265 * in the back refs. Actually the full back refs is generic, and can be
266 * used in all cases the implicit back refs is used. The major shortcoming
267 * of the full back refs is its overhead. Every time a tree block gets
268 * COWed, we have to update back refs entry for all pointers in it.
269 *
270 * For a newly allocated tree block, we use implicit back refs for
271 * pointers in it. This means most tree related operations only involve
272 * implicit back refs. For a tree block created in old transaction, the
273 * only way to drop a reference to it is COW it. So we can detect the
274 * event that tree block loses its owner tree's reference and do the
275 * back refs conversion.
276 *
277 * When a tree block is COWed through a tree, there are four cases:
278 *
279 * The reference count of the block is one and the tree is the block's
280 * owner tree. Nothing to do in this case.
281 *
282 * The reference count of the block is one and the tree is not the
283 * block's owner tree. In this case, full back refs is used for pointers
284 * in the block. Remove these full back refs, add implicit back refs for
285 * every pointers in the new block.
286 *
287 * The reference count of the block is greater than one and the tree is
288 * the block's owner tree. In this case, implicit back refs is used for
289 * pointers in the block. Add full back refs for every pointers in the
290 * block, increase lower level extents' reference counts. The original
291 * implicit back refs are entailed to the new block.
292 *
293 * The reference count of the block is greater than one and the tree is
294 * not the block's owner tree. Add implicit back refs for every pointer in
295 * the new block, increase lower level extents' reference count.
296 *
297 * Back Reference Key composing:
298 *
299 * The key objectid corresponds to the first byte in the extent,
300 * The key type is used to differentiate between types of back refs.
301 * There are different meanings of the key offset for different types
302 * of back refs.
303 *
304 * File extents can be referenced by:
305 *
306 * - multiple snapshots, subvolumes, or different generations in one subvol
307 * - different files inside a single subvolume
308 * - different offsets inside a file (bookend extents in file.c)
309 *
310 * The extent ref structure for the implicit back refs has fields for:
311 *
312 * - Objectid of the subvolume root
313 * - objectid of the file holding the reference
314 * - original offset in the file
315 * - how many bookend extents
316 *
317 * The key offset for the implicit back refs is hash of the first
318 * three fields.
319 *
320 * The extent ref structure for the full back refs has field for:
321 *
322 * - number of pointers in the tree leaf
323 *
324 * The key offset for the implicit back refs is the first byte of
325 * the tree leaf
326 *
327 * When a file extent is allocated, The implicit back refs is used.
328 * the fields are filled in:
329 *
330 * (root_key.objectid, inode objectid, offset in file, 1)
331 *
332 * When a file extent is removed file truncation, we find the
333 * corresponding implicit back refs and check the following fields:
334 *
335 * (btrfs_header_owner(leaf), inode objectid, offset in file)
336 *
337 * Btree extents can be referenced by:
338 *
339 * - Different subvolumes
340 *
341 * Both the implicit back refs and the full back refs for tree blocks
342 * only consist of key. The key offset for the implicit back refs is
343 * objectid of block's owner tree. The key offset for the full back refs
344 * is the first byte of parent block.
345 *
346 * When implicit back refs is used, information about the lowest key and
347 * level of the tree block are required. These information are stored in
348 * tree block info structure.
349 */
350
351 /*
352 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
353 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
354 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
355 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
357 struct btrfs_extent_inline_ref *iref,
358 enum btrfs_inline_ref_type is_data)
359 {
360 int type = btrfs_extent_inline_ref_type(eb, iref);
361 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
362
363 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
364 type == BTRFS_SHARED_BLOCK_REF_KEY ||
365 type == BTRFS_SHARED_DATA_REF_KEY ||
366 type == BTRFS_EXTENT_DATA_REF_KEY) {
367 if (is_data == BTRFS_REF_TYPE_BLOCK) {
368 if (type == BTRFS_TREE_BLOCK_REF_KEY)
369 return type;
370 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
371 ASSERT(eb->fs_info);
372 /*
373 * Every shared one has parent tree block,
374 * which must be aligned to sector size.
375 */
376 if (offset &&
377 IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 return type;
379 }
380 } else if (is_data == BTRFS_REF_TYPE_DATA) {
381 if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 return type;
383 if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 ASSERT(eb->fs_info);
385 /*
386 * Every shared one has parent tree block,
387 * which must be aligned to sector size.
388 */
389 if (offset &&
390 IS_ALIGNED(offset, eb->fs_info->sectorsize))
391 return type;
392 }
393 } else {
394 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 return type;
396 }
397 }
398
399 btrfs_print_leaf((struct extent_buffer *)eb);
400 btrfs_err(eb->fs_info,
401 "eb %llu iref 0x%lx invalid extent inline ref type %d",
402 eb->start, (unsigned long)iref, type);
403 WARN_ON(1);
404
405 return BTRFS_REF_TYPE_INVALID;
406 }
407
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 u32 high_crc = ~(u32)0;
411 u32 low_crc = ~(u32)0;
412 __le64 lenum;
413
414 lenum = cpu_to_le64(root_objectid);
415 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
416 lenum = cpu_to_le64(owner);
417 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
418 lenum = cpu_to_le64(offset);
419 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
420
421 return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 struct btrfs_extent_data_ref *ref)
426 {
427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 btrfs_extent_data_ref_objectid(leaf, ref),
429 btrfs_extent_data_ref_offset(leaf, ref));
430 }
431
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 struct btrfs_extent_data_ref *ref,
434 u64 root_objectid, u64 owner, u64 offset)
435 {
436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 return 0;
440 return 1;
441 }
442
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 struct btrfs_path *path,
445 u64 bytenr, u64 parent,
446 u64 root_objectid,
447 u64 owner, u64 offset)
448 {
449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 struct btrfs_key key;
451 struct btrfs_extent_data_ref *ref;
452 struct extent_buffer *leaf;
453 u32 nritems;
454 int ret;
455 int recow;
456 int err = -ENOENT;
457
458 key.objectid = bytenr;
459 if (parent) {
460 key.type = BTRFS_SHARED_DATA_REF_KEY;
461 key.offset = parent;
462 } else {
463 key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 key.offset = hash_extent_data_ref(root_objectid,
465 owner, offset);
466 }
467 again:
468 recow = 0;
469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 if (ret < 0) {
471 err = ret;
472 goto fail;
473 }
474
475 if (parent) {
476 if (!ret)
477 return 0;
478 goto fail;
479 }
480
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 while (1) {
484 if (path->slots[0] >= nritems) {
485 ret = btrfs_next_leaf(root, path);
486 if (ret < 0)
487 err = ret;
488 if (ret)
489 goto fail;
490
491 leaf = path->nodes[0];
492 nritems = btrfs_header_nritems(leaf);
493 recow = 1;
494 }
495
496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 if (key.objectid != bytenr ||
498 key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 goto fail;
500
501 ref = btrfs_item_ptr(leaf, path->slots[0],
502 struct btrfs_extent_data_ref);
503
504 if (match_extent_data_ref(leaf, ref, root_objectid,
505 owner, offset)) {
506 if (recow) {
507 btrfs_release_path(path);
508 goto again;
509 }
510 err = 0;
511 break;
512 }
513 path->slots[0]++;
514 }
515 fail:
516 return err;
517 }
518
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 struct btrfs_path *path,
521 u64 bytenr, u64 parent,
522 u64 root_objectid, u64 owner,
523 u64 offset, int refs_to_add)
524 {
525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 struct btrfs_key key;
527 struct extent_buffer *leaf;
528 u32 size;
529 u32 num_refs;
530 int ret;
531
532 key.objectid = bytenr;
533 if (parent) {
534 key.type = BTRFS_SHARED_DATA_REF_KEY;
535 key.offset = parent;
536 size = sizeof(struct btrfs_shared_data_ref);
537 } else {
538 key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 key.offset = hash_extent_data_ref(root_objectid,
540 owner, offset);
541 size = sizeof(struct btrfs_extent_data_ref);
542 }
543
544 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 if (ret && ret != -EEXIST)
546 goto fail;
547
548 leaf = path->nodes[0];
549 if (parent) {
550 struct btrfs_shared_data_ref *ref;
551 ref = btrfs_item_ptr(leaf, path->slots[0],
552 struct btrfs_shared_data_ref);
553 if (ret == 0) {
554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 } else {
556 num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 num_refs += refs_to_add;
558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 }
560 } else {
561 struct btrfs_extent_data_ref *ref;
562 while (ret == -EEXIST) {
563 ref = btrfs_item_ptr(leaf, path->slots[0],
564 struct btrfs_extent_data_ref);
565 if (match_extent_data_ref(leaf, ref, root_objectid,
566 owner, offset))
567 break;
568 btrfs_release_path(path);
569 key.offset++;
570 ret = btrfs_insert_empty_item(trans, root, path, &key,
571 size);
572 if (ret && ret != -EEXIST)
573 goto fail;
574
575 leaf = path->nodes[0];
576 }
577 ref = btrfs_item_ptr(leaf, path->slots[0],
578 struct btrfs_extent_data_ref);
579 if (ret == 0) {
580 btrfs_set_extent_data_ref_root(leaf, ref,
581 root_objectid);
582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 } else {
586 num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 num_refs += refs_to_add;
588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 }
590 }
591 btrfs_mark_buffer_dirty(leaf);
592 ret = 0;
593 fail:
594 btrfs_release_path(path);
595 return ret;
596 }
597
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_path *path,
601 int refs_to_drop)
602 {
603 struct btrfs_key key;
604 struct btrfs_extent_data_ref *ref1 = NULL;
605 struct btrfs_shared_data_ref *ref2 = NULL;
606 struct extent_buffer *leaf;
607 u32 num_refs = 0;
608 int ret = 0;
609
610 leaf = path->nodes[0];
611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612
613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 struct btrfs_extent_data_ref);
616 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 struct btrfs_shared_data_ref);
620 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
622 btrfs_print_v0_err(trans->fs_info);
623 btrfs_abort_transaction(trans, -EINVAL);
624 return -EINVAL;
625 } else {
626 BUG();
627 }
628
629 BUG_ON(num_refs < refs_to_drop);
630 num_refs -= refs_to_drop;
631
632 if (num_refs == 0) {
633 ret = btrfs_del_item(trans, root, path);
634 } else {
635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 btrfs_mark_buffer_dirty(leaf);
640 }
641 return ret;
642 }
643
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 struct btrfs_extent_inline_ref *iref)
646 {
647 struct btrfs_key key;
648 struct extent_buffer *leaf;
649 struct btrfs_extent_data_ref *ref1;
650 struct btrfs_shared_data_ref *ref2;
651 u32 num_refs = 0;
652 int type;
653
654 leaf = path->nodes[0];
655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656
657 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
658 if (iref) {
659 /*
660 * If type is invalid, we should have bailed out earlier than
661 * this call.
662 */
663 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
664 ASSERT(type != BTRFS_REF_TYPE_INVALID);
665 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
666 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
667 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
668 } else {
669 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
670 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
671 }
672 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
673 ref1 = btrfs_item_ptr(leaf, path->slots[0],
674 struct btrfs_extent_data_ref);
675 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
676 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
677 ref2 = btrfs_item_ptr(leaf, path->slots[0],
678 struct btrfs_shared_data_ref);
679 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
680 } else {
681 WARN_ON(1);
682 }
683 return num_refs;
684 }
685
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
687 struct btrfs_path *path,
688 u64 bytenr, u64 parent,
689 u64 root_objectid)
690 {
691 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
692 struct btrfs_key key;
693 int ret;
694
695 key.objectid = bytenr;
696 if (parent) {
697 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
698 key.offset = parent;
699 } else {
700 key.type = BTRFS_TREE_BLOCK_REF_KEY;
701 key.offset = root_objectid;
702 }
703
704 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
705 if (ret > 0)
706 ret = -ENOENT;
707 return ret;
708 }
709
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
711 struct btrfs_path *path,
712 u64 bytenr, u64 parent,
713 u64 root_objectid)
714 {
715 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
716 struct btrfs_key key;
717 int ret;
718
719 key.objectid = bytenr;
720 if (parent) {
721 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
722 key.offset = parent;
723 } else {
724 key.type = BTRFS_TREE_BLOCK_REF_KEY;
725 key.offset = root_objectid;
726 }
727
728 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
729 btrfs_release_path(path);
730 return ret;
731 }
732
extent_ref_type(u64 parent,u64 owner)733 static inline int extent_ref_type(u64 parent, u64 owner)
734 {
735 int type;
736 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
737 if (parent > 0)
738 type = BTRFS_SHARED_BLOCK_REF_KEY;
739 else
740 type = BTRFS_TREE_BLOCK_REF_KEY;
741 } else {
742 if (parent > 0)
743 type = BTRFS_SHARED_DATA_REF_KEY;
744 else
745 type = BTRFS_EXTENT_DATA_REF_KEY;
746 }
747 return type;
748 }
749
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)750 static int find_next_key(struct btrfs_path *path, int level,
751 struct btrfs_key *key)
752
753 {
754 for (; level < BTRFS_MAX_LEVEL; level++) {
755 if (!path->nodes[level])
756 break;
757 if (path->slots[level] + 1 >=
758 btrfs_header_nritems(path->nodes[level]))
759 continue;
760 if (level == 0)
761 btrfs_item_key_to_cpu(path->nodes[level], key,
762 path->slots[level] + 1);
763 else
764 btrfs_node_key_to_cpu(path->nodes[level], key,
765 path->slots[level] + 1);
766 return 0;
767 }
768 return 1;
769 }
770
771 /*
772 * look for inline back ref. if back ref is found, *ref_ret is set
773 * to the address of inline back ref, and 0 is returned.
774 *
775 * if back ref isn't found, *ref_ret is set to the address where it
776 * should be inserted, and -ENOENT is returned.
777 *
778 * if insert is true and there are too many inline back refs, the path
779 * points to the extent item, and -EAGAIN is returned.
780 *
781 * NOTE: inline back refs are ordered in the same way that back ref
782 * items in the tree are ordered.
783 */
784 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
786 struct btrfs_path *path,
787 struct btrfs_extent_inline_ref **ref_ret,
788 u64 bytenr, u64 num_bytes,
789 u64 parent, u64 root_objectid,
790 u64 owner, u64 offset, int insert)
791 {
792 struct btrfs_fs_info *fs_info = trans->fs_info;
793 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
794 struct btrfs_key key;
795 struct extent_buffer *leaf;
796 struct btrfs_extent_item *ei;
797 struct btrfs_extent_inline_ref *iref;
798 u64 flags;
799 u64 item_size;
800 unsigned long ptr;
801 unsigned long end;
802 int extra_size;
803 int type;
804 int want;
805 int ret;
806 int err = 0;
807 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
808 int needed;
809
810 key.objectid = bytenr;
811 key.type = BTRFS_EXTENT_ITEM_KEY;
812 key.offset = num_bytes;
813
814 want = extent_ref_type(parent, owner);
815 if (insert) {
816 extra_size = btrfs_extent_inline_ref_size(want);
817 path->search_for_extension = 1;
818 path->keep_locks = 1;
819 } else
820 extra_size = -1;
821
822 /*
823 * Owner is our level, so we can just add one to get the level for the
824 * block we are interested in.
825 */
826 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
827 key.type = BTRFS_METADATA_ITEM_KEY;
828 key.offset = owner;
829 }
830
831 again:
832 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
833 if (ret < 0) {
834 err = ret;
835 goto out;
836 }
837
838 /*
839 * We may be a newly converted file system which still has the old fat
840 * extent entries for metadata, so try and see if we have one of those.
841 */
842 if (ret > 0 && skinny_metadata) {
843 skinny_metadata = false;
844 if (path->slots[0]) {
845 path->slots[0]--;
846 btrfs_item_key_to_cpu(path->nodes[0], &key,
847 path->slots[0]);
848 if (key.objectid == bytenr &&
849 key.type == BTRFS_EXTENT_ITEM_KEY &&
850 key.offset == num_bytes)
851 ret = 0;
852 }
853 if (ret) {
854 key.objectid = bytenr;
855 key.type = BTRFS_EXTENT_ITEM_KEY;
856 key.offset = num_bytes;
857 btrfs_release_path(path);
858 goto again;
859 }
860 }
861
862 if (ret && !insert) {
863 err = -ENOENT;
864 goto out;
865 } else if (WARN_ON(ret)) {
866 btrfs_print_leaf(path->nodes[0]);
867 btrfs_err(fs_info,
868 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
869 bytenr, num_bytes, parent, root_objectid, owner,
870 offset);
871 err = -EIO;
872 goto out;
873 }
874
875 leaf = path->nodes[0];
876 item_size = btrfs_item_size(leaf, path->slots[0]);
877 if (unlikely(item_size < sizeof(*ei))) {
878 err = -EINVAL;
879 btrfs_print_v0_err(fs_info);
880 btrfs_abort_transaction(trans, err);
881 goto out;
882 }
883
884 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
885 flags = btrfs_extent_flags(leaf, ei);
886
887 ptr = (unsigned long)(ei + 1);
888 end = (unsigned long)ei + item_size;
889
890 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
891 ptr += sizeof(struct btrfs_tree_block_info);
892 BUG_ON(ptr > end);
893 }
894
895 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
896 needed = BTRFS_REF_TYPE_DATA;
897 else
898 needed = BTRFS_REF_TYPE_BLOCK;
899
900 err = -ENOENT;
901 while (1) {
902 if (ptr >= end) {
903 if (ptr > end) {
904 err = -EUCLEAN;
905 btrfs_print_leaf(path->nodes[0]);
906 btrfs_crit(fs_info,
907 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
908 path->slots[0], root_objectid, owner, offset, parent);
909 }
910 break;
911 }
912 iref = (struct btrfs_extent_inline_ref *)ptr;
913 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
914 if (type == BTRFS_REF_TYPE_INVALID) {
915 err = -EUCLEAN;
916 goto out;
917 }
918
919 if (want < type)
920 break;
921 if (want > type) {
922 ptr += btrfs_extent_inline_ref_size(type);
923 continue;
924 }
925
926 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
927 struct btrfs_extent_data_ref *dref;
928 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
929 if (match_extent_data_ref(leaf, dref, root_objectid,
930 owner, offset)) {
931 err = 0;
932 break;
933 }
934 if (hash_extent_data_ref_item(leaf, dref) <
935 hash_extent_data_ref(root_objectid, owner, offset))
936 break;
937 } else {
938 u64 ref_offset;
939 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
940 if (parent > 0) {
941 if (parent == ref_offset) {
942 err = 0;
943 break;
944 }
945 if (ref_offset < parent)
946 break;
947 } else {
948 if (root_objectid == ref_offset) {
949 err = 0;
950 break;
951 }
952 if (ref_offset < root_objectid)
953 break;
954 }
955 }
956 ptr += btrfs_extent_inline_ref_size(type);
957 }
958 if (err == -ENOENT && insert) {
959 if (item_size + extra_size >=
960 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
961 err = -EAGAIN;
962 goto out;
963 }
964 /*
965 * To add new inline back ref, we have to make sure
966 * there is no corresponding back ref item.
967 * For simplicity, we just do not add new inline back
968 * ref if there is any kind of item for this block
969 */
970 if (find_next_key(path, 0, &key) == 0 &&
971 key.objectid == bytenr &&
972 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
973 err = -EAGAIN;
974 goto out;
975 }
976 }
977 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
978 out:
979 if (insert) {
980 path->keep_locks = 0;
981 path->search_for_extension = 0;
982 btrfs_unlock_up_safe(path, 1);
983 }
984 return err;
985 }
986
987 /*
988 * helper to add new inline back ref
989 */
990 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)991 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
992 struct btrfs_path *path,
993 struct btrfs_extent_inline_ref *iref,
994 u64 parent, u64 root_objectid,
995 u64 owner, u64 offset, int refs_to_add,
996 struct btrfs_delayed_extent_op *extent_op)
997 {
998 struct extent_buffer *leaf;
999 struct btrfs_extent_item *ei;
1000 unsigned long ptr;
1001 unsigned long end;
1002 unsigned long item_offset;
1003 u64 refs;
1004 int size;
1005 int type;
1006
1007 leaf = path->nodes[0];
1008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1009 item_offset = (unsigned long)iref - (unsigned long)ei;
1010
1011 type = extent_ref_type(parent, owner);
1012 size = btrfs_extent_inline_ref_size(type);
1013
1014 btrfs_extend_item(path, size);
1015
1016 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 refs = btrfs_extent_refs(leaf, ei);
1018 refs += refs_to_add;
1019 btrfs_set_extent_refs(leaf, ei, refs);
1020 if (extent_op)
1021 __run_delayed_extent_op(extent_op, leaf, ei);
1022
1023 ptr = (unsigned long)ei + item_offset;
1024 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1025 if (ptr < end - size)
1026 memmove_extent_buffer(leaf, ptr + size, ptr,
1027 end - size - ptr);
1028
1029 iref = (struct btrfs_extent_inline_ref *)ptr;
1030 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1031 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1032 struct btrfs_extent_data_ref *dref;
1033 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1034 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1035 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1036 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1037 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1038 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1039 struct btrfs_shared_data_ref *sref;
1040 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1041 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1042 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1043 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1044 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045 } else {
1046 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1047 }
1048 btrfs_mark_buffer_dirty(leaf);
1049 }
1050
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1051 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1052 struct btrfs_path *path,
1053 struct btrfs_extent_inline_ref **ref_ret,
1054 u64 bytenr, u64 num_bytes, u64 parent,
1055 u64 root_objectid, u64 owner, u64 offset)
1056 {
1057 int ret;
1058
1059 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1060 num_bytes, parent, root_objectid,
1061 owner, offset, 0);
1062 if (ret != -ENOENT)
1063 return ret;
1064
1065 btrfs_release_path(path);
1066 *ref_ret = NULL;
1067
1068 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1069 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1070 root_objectid);
1071 } else {
1072 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1073 root_objectid, owner, offset);
1074 }
1075 return ret;
1076 }
1077
1078 /*
1079 * helper to update/remove inline back ref
1080 */
1081 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1082 void update_inline_extent_backref(struct btrfs_path *path,
1083 struct btrfs_extent_inline_ref *iref,
1084 int refs_to_mod,
1085 struct btrfs_delayed_extent_op *extent_op)
1086 {
1087 struct extent_buffer *leaf = path->nodes[0];
1088 struct btrfs_extent_item *ei;
1089 struct btrfs_extent_data_ref *dref = NULL;
1090 struct btrfs_shared_data_ref *sref = NULL;
1091 unsigned long ptr;
1092 unsigned long end;
1093 u32 item_size;
1094 int size;
1095 int type;
1096 u64 refs;
1097
1098 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1099 refs = btrfs_extent_refs(leaf, ei);
1100 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1101 refs += refs_to_mod;
1102 btrfs_set_extent_refs(leaf, ei, refs);
1103 if (extent_op)
1104 __run_delayed_extent_op(extent_op, leaf, ei);
1105
1106 /*
1107 * If type is invalid, we should have bailed out after
1108 * lookup_inline_extent_backref().
1109 */
1110 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1111 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1112
1113 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1114 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1115 refs = btrfs_extent_data_ref_count(leaf, dref);
1116 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1117 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1118 refs = btrfs_shared_data_ref_count(leaf, sref);
1119 } else {
1120 refs = 1;
1121 BUG_ON(refs_to_mod != -1);
1122 }
1123
1124 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1125 refs += refs_to_mod;
1126
1127 if (refs > 0) {
1128 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1129 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1130 else
1131 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1132 } else {
1133 size = btrfs_extent_inline_ref_size(type);
1134 item_size = btrfs_item_size(leaf, path->slots[0]);
1135 ptr = (unsigned long)iref;
1136 end = (unsigned long)ei + item_size;
1137 if (ptr + size < end)
1138 memmove_extent_buffer(leaf, ptr, ptr + size,
1139 end - ptr - size);
1140 item_size -= size;
1141 btrfs_truncate_item(path, item_size, 1);
1142 }
1143 btrfs_mark_buffer_dirty(leaf);
1144 }
1145
1146 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1147 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1148 struct btrfs_path *path,
1149 u64 bytenr, u64 num_bytes, u64 parent,
1150 u64 root_objectid, u64 owner,
1151 u64 offset, int refs_to_add,
1152 struct btrfs_delayed_extent_op *extent_op)
1153 {
1154 struct btrfs_extent_inline_ref *iref;
1155 int ret;
1156
1157 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1158 num_bytes, parent, root_objectid,
1159 owner, offset, 1);
1160 if (ret == 0) {
1161 /*
1162 * We're adding refs to a tree block we already own, this
1163 * should not happen at all.
1164 */
1165 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1166 btrfs_crit(trans->fs_info,
1167 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1168 bytenr, num_bytes, root_objectid);
1169 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1170 WARN_ON(1);
1171 btrfs_crit(trans->fs_info,
1172 "path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1173 btrfs_print_leaf(path->nodes[0]);
1174 }
1175 return -EUCLEAN;
1176 }
1177 update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1178 } else if (ret == -ENOENT) {
1179 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1180 root_objectid, owner, offset,
1181 refs_to_add, extent_op);
1182 ret = 0;
1183 }
1184 return ret;
1185 }
1186
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1187 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1188 struct btrfs_root *root,
1189 struct btrfs_path *path,
1190 struct btrfs_extent_inline_ref *iref,
1191 int refs_to_drop, int is_data)
1192 {
1193 int ret = 0;
1194
1195 BUG_ON(!is_data && refs_to_drop != 1);
1196 if (iref)
1197 update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1198 else if (is_data)
1199 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1200 else
1201 ret = btrfs_del_item(trans, root, path);
1202 return ret;
1203 }
1204
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1205 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1206 u64 *discarded_bytes)
1207 {
1208 int j, ret = 0;
1209 u64 bytes_left, end;
1210 u64 aligned_start = ALIGN(start, 1 << 9);
1211
1212 /* Adjust the range to be aligned to 512B sectors if necessary. */
1213 if (start != aligned_start) {
1214 len -= aligned_start - start;
1215 len = round_down(len, 1 << 9);
1216 start = aligned_start;
1217 }
1218
1219 *discarded_bytes = 0;
1220
1221 if (!len)
1222 return 0;
1223
1224 end = start + len;
1225 bytes_left = len;
1226
1227 /* Skip any superblocks on this device. */
1228 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1229 u64 sb_start = btrfs_sb_offset(j);
1230 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1231 u64 size = sb_start - start;
1232
1233 if (!in_range(sb_start, start, bytes_left) &&
1234 !in_range(sb_end, start, bytes_left) &&
1235 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1236 continue;
1237
1238 /*
1239 * Superblock spans beginning of range. Adjust start and
1240 * try again.
1241 */
1242 if (sb_start <= start) {
1243 start += sb_end - start;
1244 if (start > end) {
1245 bytes_left = 0;
1246 break;
1247 }
1248 bytes_left = end - start;
1249 continue;
1250 }
1251
1252 if (size) {
1253 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1254 GFP_NOFS);
1255 if (!ret)
1256 *discarded_bytes += size;
1257 else if (ret != -EOPNOTSUPP)
1258 return ret;
1259 }
1260
1261 start = sb_end;
1262 if (start > end) {
1263 bytes_left = 0;
1264 break;
1265 }
1266 bytes_left = end - start;
1267 }
1268
1269 if (bytes_left) {
1270 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1271 GFP_NOFS);
1272 if (!ret)
1273 *discarded_bytes += bytes_left;
1274 }
1275 return ret;
1276 }
1277
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1278 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1279 {
1280 struct btrfs_device *dev = stripe->dev;
1281 struct btrfs_fs_info *fs_info = dev->fs_info;
1282 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1283 u64 phys = stripe->physical;
1284 u64 len = stripe->length;
1285 u64 discarded = 0;
1286 int ret = 0;
1287
1288 /* Zone reset on a zoned filesystem */
1289 if (btrfs_can_zone_reset(dev, phys, len)) {
1290 u64 src_disc;
1291
1292 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1293 if (ret)
1294 goto out;
1295
1296 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1297 dev != dev_replace->srcdev)
1298 goto out;
1299
1300 src_disc = discarded;
1301
1302 /* Send to replace target as well */
1303 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1304 &discarded);
1305 discarded += src_disc;
1306 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1307 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1308 } else {
1309 ret = 0;
1310 *bytes = 0;
1311 }
1312
1313 out:
1314 *bytes = discarded;
1315 return ret;
1316 }
1317
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1318 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1319 u64 num_bytes, u64 *actual_bytes)
1320 {
1321 int ret = 0;
1322 u64 discarded_bytes = 0;
1323 u64 end = bytenr + num_bytes;
1324 u64 cur = bytenr;
1325
1326 /*
1327 * Avoid races with device replace and make sure the devices in the
1328 * stripes don't go away while we are discarding.
1329 */
1330 btrfs_bio_counter_inc_blocked(fs_info);
1331 while (cur < end) {
1332 struct btrfs_discard_stripe *stripes;
1333 unsigned int num_stripes;
1334 int i;
1335
1336 num_bytes = end - cur;
1337 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1338 if (IS_ERR(stripes)) {
1339 ret = PTR_ERR(stripes);
1340 if (ret == -EOPNOTSUPP)
1341 ret = 0;
1342 break;
1343 }
1344
1345 for (i = 0; i < num_stripes; i++) {
1346 struct btrfs_discard_stripe *stripe = stripes + i;
1347 u64 bytes;
1348
1349 if (!stripe->dev->bdev) {
1350 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1351 continue;
1352 }
1353
1354 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1355 &stripe->dev->dev_state))
1356 continue;
1357
1358 ret = do_discard_extent(stripe, &bytes);
1359 if (ret) {
1360 /*
1361 * Keep going if discard is not supported by the
1362 * device.
1363 */
1364 if (ret != -EOPNOTSUPP)
1365 break;
1366 ret = 0;
1367 } else {
1368 discarded_bytes += bytes;
1369 }
1370 }
1371 kfree(stripes);
1372 if (ret)
1373 break;
1374 cur += num_bytes;
1375 }
1376 btrfs_bio_counter_dec(fs_info);
1377 if (actual_bytes)
1378 *actual_bytes = discarded_bytes;
1379 return ret;
1380 }
1381
1382 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1383 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1384 struct btrfs_ref *generic_ref)
1385 {
1386 struct btrfs_fs_info *fs_info = trans->fs_info;
1387 int ret;
1388
1389 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1390 generic_ref->action);
1391 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1392 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1393
1394 if (generic_ref->type == BTRFS_REF_METADATA)
1395 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1396 else
1397 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1398
1399 btrfs_ref_tree_mod(fs_info, generic_ref);
1400
1401 return ret;
1402 }
1403
1404 /*
1405 * __btrfs_inc_extent_ref - insert backreference for a given extent
1406 *
1407 * The counterpart is in __btrfs_free_extent(), with examples and more details
1408 * how it works.
1409 *
1410 * @trans: Handle of transaction
1411 *
1412 * @node: The delayed ref node used to get the bytenr/length for
1413 * extent whose references are incremented.
1414 *
1415 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1416 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1417 * bytenr of the parent block. Since new extents are always
1418 * created with indirect references, this will only be the case
1419 * when relocating a shared extent. In that case, root_objectid
1420 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1421 * be 0
1422 *
1423 * @root_objectid: The id of the root where this modification has originated,
1424 * this can be either one of the well-known metadata trees or
1425 * the subvolume id which references this extent.
1426 *
1427 * @owner: For data extents it is the inode number of the owning file.
1428 * For metadata extents this parameter holds the level in the
1429 * tree of the extent.
1430 *
1431 * @offset: For metadata extents the offset is ignored and is currently
1432 * always passed as 0. For data extents it is the fileoffset
1433 * this extent belongs to.
1434 *
1435 * @refs_to_add Number of references to add
1436 *
1437 * @extent_op Pointer to a structure, holding information necessary when
1438 * updating a tree block's flags
1439 *
1440 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1441 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1442 struct btrfs_delayed_ref_node *node,
1443 u64 parent, u64 root_objectid,
1444 u64 owner, u64 offset, int refs_to_add,
1445 struct btrfs_delayed_extent_op *extent_op)
1446 {
1447 struct btrfs_path *path;
1448 struct extent_buffer *leaf;
1449 struct btrfs_extent_item *item;
1450 struct btrfs_key key;
1451 u64 bytenr = node->bytenr;
1452 u64 num_bytes = node->num_bytes;
1453 u64 refs;
1454 int ret;
1455
1456 path = btrfs_alloc_path();
1457 if (!path)
1458 return -ENOMEM;
1459
1460 /* this will setup the path even if it fails to insert the back ref */
1461 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1462 parent, root_objectid, owner,
1463 offset, refs_to_add, extent_op);
1464 if ((ret < 0 && ret != -EAGAIN) || !ret)
1465 goto out;
1466
1467 /*
1468 * Ok we had -EAGAIN which means we didn't have space to insert and
1469 * inline extent ref, so just update the reference count and add a
1470 * normal backref.
1471 */
1472 leaf = path->nodes[0];
1473 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1474 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1475 refs = btrfs_extent_refs(leaf, item);
1476 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1477 if (extent_op)
1478 __run_delayed_extent_op(extent_op, leaf, item);
1479
1480 btrfs_mark_buffer_dirty(leaf);
1481 btrfs_release_path(path);
1482
1483 /* now insert the actual backref */
1484 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1485 BUG_ON(refs_to_add != 1);
1486 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1487 root_objectid);
1488 } else {
1489 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1490 root_objectid, owner, offset,
1491 refs_to_add);
1492 }
1493 if (ret)
1494 btrfs_abort_transaction(trans, ret);
1495 out:
1496 btrfs_free_path(path);
1497 return ret;
1498 }
1499
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1500 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1501 struct btrfs_delayed_ref_node *node,
1502 struct btrfs_delayed_extent_op *extent_op,
1503 int insert_reserved)
1504 {
1505 int ret = 0;
1506 struct btrfs_delayed_data_ref *ref;
1507 struct btrfs_key ins;
1508 u64 parent = 0;
1509 u64 ref_root = 0;
1510 u64 flags = 0;
1511
1512 ins.objectid = node->bytenr;
1513 ins.offset = node->num_bytes;
1514 ins.type = BTRFS_EXTENT_ITEM_KEY;
1515
1516 ref = btrfs_delayed_node_to_data_ref(node);
1517 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1518
1519 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1520 parent = ref->parent;
1521 ref_root = ref->root;
1522
1523 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1524 if (extent_op)
1525 flags |= extent_op->flags_to_set;
1526 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1527 flags, ref->objectid,
1528 ref->offset, &ins,
1529 node->ref_mod);
1530 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1531 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1532 ref->objectid, ref->offset,
1533 node->ref_mod, extent_op);
1534 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1535 ret = __btrfs_free_extent(trans, node, parent,
1536 ref_root, ref->objectid,
1537 ref->offset, node->ref_mod,
1538 extent_op);
1539 } else {
1540 BUG();
1541 }
1542 return ret;
1543 }
1544
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1545 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1546 struct extent_buffer *leaf,
1547 struct btrfs_extent_item *ei)
1548 {
1549 u64 flags = btrfs_extent_flags(leaf, ei);
1550 if (extent_op->update_flags) {
1551 flags |= extent_op->flags_to_set;
1552 btrfs_set_extent_flags(leaf, ei, flags);
1553 }
1554
1555 if (extent_op->update_key) {
1556 struct btrfs_tree_block_info *bi;
1557 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1558 bi = (struct btrfs_tree_block_info *)(ei + 1);
1559 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1560 }
1561 }
1562
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1563 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1564 struct btrfs_delayed_ref_head *head,
1565 struct btrfs_delayed_extent_op *extent_op)
1566 {
1567 struct btrfs_fs_info *fs_info = trans->fs_info;
1568 struct btrfs_root *root;
1569 struct btrfs_key key;
1570 struct btrfs_path *path;
1571 struct btrfs_extent_item *ei;
1572 struct extent_buffer *leaf;
1573 u32 item_size;
1574 int ret;
1575 int err = 0;
1576 int metadata = 1;
1577
1578 if (TRANS_ABORTED(trans))
1579 return 0;
1580
1581 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1582 metadata = 0;
1583
1584 path = btrfs_alloc_path();
1585 if (!path)
1586 return -ENOMEM;
1587
1588 key.objectid = head->bytenr;
1589
1590 if (metadata) {
1591 key.type = BTRFS_METADATA_ITEM_KEY;
1592 key.offset = extent_op->level;
1593 } else {
1594 key.type = BTRFS_EXTENT_ITEM_KEY;
1595 key.offset = head->num_bytes;
1596 }
1597
1598 root = btrfs_extent_root(fs_info, key.objectid);
1599 again:
1600 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1601 if (ret < 0) {
1602 err = ret;
1603 goto out;
1604 }
1605 if (ret > 0) {
1606 if (metadata) {
1607 if (path->slots[0] > 0) {
1608 path->slots[0]--;
1609 btrfs_item_key_to_cpu(path->nodes[0], &key,
1610 path->slots[0]);
1611 if (key.objectid == head->bytenr &&
1612 key.type == BTRFS_EXTENT_ITEM_KEY &&
1613 key.offset == head->num_bytes)
1614 ret = 0;
1615 }
1616 if (ret > 0) {
1617 btrfs_release_path(path);
1618 metadata = 0;
1619
1620 key.objectid = head->bytenr;
1621 key.offset = head->num_bytes;
1622 key.type = BTRFS_EXTENT_ITEM_KEY;
1623 goto again;
1624 }
1625 } else {
1626 err = -EIO;
1627 goto out;
1628 }
1629 }
1630
1631 leaf = path->nodes[0];
1632 item_size = btrfs_item_size(leaf, path->slots[0]);
1633
1634 if (unlikely(item_size < sizeof(*ei))) {
1635 err = -EINVAL;
1636 btrfs_print_v0_err(fs_info);
1637 btrfs_abort_transaction(trans, err);
1638 goto out;
1639 }
1640
1641 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1642 __run_delayed_extent_op(extent_op, leaf, ei);
1643
1644 btrfs_mark_buffer_dirty(leaf);
1645 out:
1646 btrfs_free_path(path);
1647 return err;
1648 }
1649
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1650 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1651 struct btrfs_delayed_ref_node *node,
1652 struct btrfs_delayed_extent_op *extent_op,
1653 int insert_reserved)
1654 {
1655 int ret = 0;
1656 struct btrfs_delayed_tree_ref *ref;
1657 u64 parent = 0;
1658 u64 ref_root = 0;
1659
1660 ref = btrfs_delayed_node_to_tree_ref(node);
1661 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1662
1663 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1664 parent = ref->parent;
1665 ref_root = ref->root;
1666
1667 if (unlikely(node->ref_mod != 1)) {
1668 btrfs_err(trans->fs_info,
1669 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1670 node->bytenr, node->ref_mod, node->action, ref_root,
1671 parent);
1672 return -EUCLEAN;
1673 }
1674 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1675 BUG_ON(!extent_op || !extent_op->update_flags);
1676 ret = alloc_reserved_tree_block(trans, node, extent_op);
1677 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1678 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1679 ref->level, 0, 1, extent_op);
1680 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1681 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1682 ref->level, 0, 1, extent_op);
1683 } else {
1684 BUG();
1685 }
1686 return ret;
1687 }
1688
1689 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1690 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1691 struct btrfs_delayed_ref_node *node,
1692 struct btrfs_delayed_extent_op *extent_op,
1693 int insert_reserved)
1694 {
1695 int ret = 0;
1696
1697 if (TRANS_ABORTED(trans)) {
1698 if (insert_reserved)
1699 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1700 return 0;
1701 }
1702
1703 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1704 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1705 ret = run_delayed_tree_ref(trans, node, extent_op,
1706 insert_reserved);
1707 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1708 node->type == BTRFS_SHARED_DATA_REF_KEY)
1709 ret = run_delayed_data_ref(trans, node, extent_op,
1710 insert_reserved);
1711 else
1712 BUG();
1713 if (ret && insert_reserved)
1714 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1715 if (ret < 0)
1716 btrfs_err(trans->fs_info,
1717 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1718 node->bytenr, node->num_bytes, node->type,
1719 node->action, node->ref_mod, ret);
1720 return ret;
1721 }
1722
1723 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1724 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1725 {
1726 struct btrfs_delayed_ref_node *ref;
1727
1728 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1729 return NULL;
1730
1731 /*
1732 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1733 * This is to prevent a ref count from going down to zero, which deletes
1734 * the extent item from the extent tree, when there still are references
1735 * to add, which would fail because they would not find the extent item.
1736 */
1737 if (!list_empty(&head->ref_add_list))
1738 return list_first_entry(&head->ref_add_list,
1739 struct btrfs_delayed_ref_node, add_list);
1740
1741 ref = rb_entry(rb_first_cached(&head->ref_tree),
1742 struct btrfs_delayed_ref_node, ref_node);
1743 ASSERT(list_empty(&ref->add_list));
1744 return ref;
1745 }
1746
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1747 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1748 struct btrfs_delayed_ref_head *head)
1749 {
1750 spin_lock(&delayed_refs->lock);
1751 head->processing = 0;
1752 delayed_refs->num_heads_ready++;
1753 spin_unlock(&delayed_refs->lock);
1754 btrfs_delayed_ref_unlock(head);
1755 }
1756
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1757 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1758 struct btrfs_delayed_ref_head *head)
1759 {
1760 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1761
1762 if (!extent_op)
1763 return NULL;
1764
1765 if (head->must_insert_reserved) {
1766 head->extent_op = NULL;
1767 btrfs_free_delayed_extent_op(extent_op);
1768 return NULL;
1769 }
1770 return extent_op;
1771 }
1772
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1773 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1774 struct btrfs_delayed_ref_head *head)
1775 {
1776 struct btrfs_delayed_extent_op *extent_op;
1777 int ret;
1778
1779 extent_op = cleanup_extent_op(head);
1780 if (!extent_op)
1781 return 0;
1782 head->extent_op = NULL;
1783 spin_unlock(&head->lock);
1784 ret = run_delayed_extent_op(trans, head, extent_op);
1785 btrfs_free_delayed_extent_op(extent_op);
1786 return ret ? ret : 1;
1787 }
1788
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1789 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1790 struct btrfs_delayed_ref_root *delayed_refs,
1791 struct btrfs_delayed_ref_head *head)
1792 {
1793 int nr_items = 1; /* Dropping this ref head update. */
1794
1795 /*
1796 * We had csum deletions accounted for in our delayed refs rsv, we need
1797 * to drop the csum leaves for this update from our delayed_refs_rsv.
1798 */
1799 if (head->total_ref_mod < 0 && head->is_data) {
1800 spin_lock(&delayed_refs->lock);
1801 delayed_refs->pending_csums -= head->num_bytes;
1802 spin_unlock(&delayed_refs->lock);
1803 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1804 }
1805
1806 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1807 }
1808
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1809 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1810 struct btrfs_delayed_ref_head *head)
1811 {
1812
1813 struct btrfs_fs_info *fs_info = trans->fs_info;
1814 struct btrfs_delayed_ref_root *delayed_refs;
1815 int ret;
1816
1817 delayed_refs = &trans->transaction->delayed_refs;
1818
1819 ret = run_and_cleanup_extent_op(trans, head);
1820 if (ret < 0) {
1821 unselect_delayed_ref_head(delayed_refs, head);
1822 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1823 return ret;
1824 } else if (ret) {
1825 return ret;
1826 }
1827
1828 /*
1829 * Need to drop our head ref lock and re-acquire the delayed ref lock
1830 * and then re-check to make sure nobody got added.
1831 */
1832 spin_unlock(&head->lock);
1833 spin_lock(&delayed_refs->lock);
1834 spin_lock(&head->lock);
1835 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1836 spin_unlock(&head->lock);
1837 spin_unlock(&delayed_refs->lock);
1838 return 1;
1839 }
1840 btrfs_delete_ref_head(delayed_refs, head);
1841 spin_unlock(&head->lock);
1842 spin_unlock(&delayed_refs->lock);
1843
1844 if (head->must_insert_reserved) {
1845 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1846 if (head->is_data) {
1847 struct btrfs_root *csum_root;
1848
1849 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1850 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1851 head->num_bytes);
1852 }
1853 }
1854
1855 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1856
1857 trace_run_delayed_ref_head(fs_info, head, 0);
1858 btrfs_delayed_ref_unlock(head);
1859 btrfs_put_delayed_ref_head(head);
1860 return ret;
1861 }
1862
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1863 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1864 struct btrfs_trans_handle *trans)
1865 {
1866 struct btrfs_delayed_ref_root *delayed_refs =
1867 &trans->transaction->delayed_refs;
1868 struct btrfs_delayed_ref_head *head = NULL;
1869 int ret;
1870
1871 spin_lock(&delayed_refs->lock);
1872 head = btrfs_select_ref_head(delayed_refs);
1873 if (!head) {
1874 spin_unlock(&delayed_refs->lock);
1875 return head;
1876 }
1877
1878 /*
1879 * Grab the lock that says we are going to process all the refs for
1880 * this head
1881 */
1882 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1883 spin_unlock(&delayed_refs->lock);
1884
1885 /*
1886 * We may have dropped the spin lock to get the head mutex lock, and
1887 * that might have given someone else time to free the head. If that's
1888 * true, it has been removed from our list and we can move on.
1889 */
1890 if (ret == -EAGAIN)
1891 head = ERR_PTR(-EAGAIN);
1892
1893 return head;
1894 }
1895
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,unsigned long * run_refs)1896 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1897 struct btrfs_delayed_ref_head *locked_ref,
1898 unsigned long *run_refs)
1899 {
1900 struct btrfs_fs_info *fs_info = trans->fs_info;
1901 struct btrfs_delayed_ref_root *delayed_refs;
1902 struct btrfs_delayed_extent_op *extent_op;
1903 struct btrfs_delayed_ref_node *ref;
1904 int must_insert_reserved = 0;
1905 int ret;
1906
1907 delayed_refs = &trans->transaction->delayed_refs;
1908
1909 lockdep_assert_held(&locked_ref->mutex);
1910 lockdep_assert_held(&locked_ref->lock);
1911
1912 while ((ref = select_delayed_ref(locked_ref))) {
1913 if (ref->seq &&
1914 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1915 spin_unlock(&locked_ref->lock);
1916 unselect_delayed_ref_head(delayed_refs, locked_ref);
1917 return -EAGAIN;
1918 }
1919
1920 (*run_refs)++;
1921 ref->in_tree = 0;
1922 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1923 RB_CLEAR_NODE(&ref->ref_node);
1924 if (!list_empty(&ref->add_list))
1925 list_del(&ref->add_list);
1926 /*
1927 * When we play the delayed ref, also correct the ref_mod on
1928 * head
1929 */
1930 switch (ref->action) {
1931 case BTRFS_ADD_DELAYED_REF:
1932 case BTRFS_ADD_DELAYED_EXTENT:
1933 locked_ref->ref_mod -= ref->ref_mod;
1934 break;
1935 case BTRFS_DROP_DELAYED_REF:
1936 locked_ref->ref_mod += ref->ref_mod;
1937 break;
1938 default:
1939 WARN_ON(1);
1940 }
1941 atomic_dec(&delayed_refs->num_entries);
1942
1943 /*
1944 * Record the must_insert_reserved flag before we drop the
1945 * spin lock.
1946 */
1947 must_insert_reserved = locked_ref->must_insert_reserved;
1948 locked_ref->must_insert_reserved = 0;
1949
1950 extent_op = locked_ref->extent_op;
1951 locked_ref->extent_op = NULL;
1952 spin_unlock(&locked_ref->lock);
1953
1954 ret = run_one_delayed_ref(trans, ref, extent_op,
1955 must_insert_reserved);
1956
1957 btrfs_free_delayed_extent_op(extent_op);
1958 if (ret) {
1959 unselect_delayed_ref_head(delayed_refs, locked_ref);
1960 btrfs_put_delayed_ref(ref);
1961 return ret;
1962 }
1963
1964 btrfs_put_delayed_ref(ref);
1965 cond_resched();
1966
1967 spin_lock(&locked_ref->lock);
1968 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1969 }
1970
1971 return 0;
1972 }
1973
1974 /*
1975 * Returns 0 on success or if called with an already aborted transaction.
1976 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1977 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)1978 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1979 unsigned long nr)
1980 {
1981 struct btrfs_fs_info *fs_info = trans->fs_info;
1982 struct btrfs_delayed_ref_root *delayed_refs;
1983 struct btrfs_delayed_ref_head *locked_ref = NULL;
1984 ktime_t start = ktime_get();
1985 int ret;
1986 unsigned long count = 0;
1987 unsigned long actual_count = 0;
1988
1989 delayed_refs = &trans->transaction->delayed_refs;
1990 do {
1991 if (!locked_ref) {
1992 locked_ref = btrfs_obtain_ref_head(trans);
1993 if (IS_ERR_OR_NULL(locked_ref)) {
1994 if (PTR_ERR(locked_ref) == -EAGAIN) {
1995 continue;
1996 } else {
1997 break;
1998 }
1999 }
2000 count++;
2001 }
2002 /*
2003 * We need to try and merge add/drops of the same ref since we
2004 * can run into issues with relocate dropping the implicit ref
2005 * and then it being added back again before the drop can
2006 * finish. If we merged anything we need to re-loop so we can
2007 * get a good ref.
2008 * Or we can get node references of the same type that weren't
2009 * merged when created due to bumps in the tree mod seq, and
2010 * we need to merge them to prevent adding an inline extent
2011 * backref before dropping it (triggering a BUG_ON at
2012 * insert_inline_extent_backref()).
2013 */
2014 spin_lock(&locked_ref->lock);
2015 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2016
2017 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2018 &actual_count);
2019 if (ret < 0 && ret != -EAGAIN) {
2020 /*
2021 * Error, btrfs_run_delayed_refs_for_head already
2022 * unlocked everything so just bail out
2023 */
2024 return ret;
2025 } else if (!ret) {
2026 /*
2027 * Success, perform the usual cleanup of a processed
2028 * head
2029 */
2030 ret = cleanup_ref_head(trans, locked_ref);
2031 if (ret > 0 ) {
2032 /* We dropped our lock, we need to loop. */
2033 ret = 0;
2034 continue;
2035 } else if (ret) {
2036 return ret;
2037 }
2038 }
2039
2040 /*
2041 * Either success case or btrfs_run_delayed_refs_for_head
2042 * returned -EAGAIN, meaning we need to select another head
2043 */
2044
2045 locked_ref = NULL;
2046 cond_resched();
2047 } while ((nr != -1 && count < nr) || locked_ref);
2048
2049 /*
2050 * We don't want to include ref heads since we can have empty ref heads
2051 * and those will drastically skew our runtime down since we just do
2052 * accounting, no actual extent tree updates.
2053 */
2054 if (actual_count > 0) {
2055 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2056 u64 avg;
2057
2058 /*
2059 * We weigh the current average higher than our current runtime
2060 * to avoid large swings in the average.
2061 */
2062 spin_lock(&delayed_refs->lock);
2063 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2064 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2065 spin_unlock(&delayed_refs->lock);
2066 }
2067 return 0;
2068 }
2069
2070 #ifdef SCRAMBLE_DELAYED_REFS
2071 /*
2072 * Normally delayed refs get processed in ascending bytenr order. This
2073 * correlates in most cases to the order added. To expose dependencies on this
2074 * order, we start to process the tree in the middle instead of the beginning
2075 */
find_middle(struct rb_root * root)2076 static u64 find_middle(struct rb_root *root)
2077 {
2078 struct rb_node *n = root->rb_node;
2079 struct btrfs_delayed_ref_node *entry;
2080 int alt = 1;
2081 u64 middle;
2082 u64 first = 0, last = 0;
2083
2084 n = rb_first(root);
2085 if (n) {
2086 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2087 first = entry->bytenr;
2088 }
2089 n = rb_last(root);
2090 if (n) {
2091 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2092 last = entry->bytenr;
2093 }
2094 n = root->rb_node;
2095
2096 while (n) {
2097 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2098 WARN_ON(!entry->in_tree);
2099
2100 middle = entry->bytenr;
2101
2102 if (alt)
2103 n = n->rb_left;
2104 else
2105 n = n->rb_right;
2106
2107 alt = 1 - alt;
2108 }
2109 return middle;
2110 }
2111 #endif
2112
2113 /*
2114 * this starts processing the delayed reference count updates and
2115 * extent insertions we have queued up so far. count can be
2116 * 0, which means to process everything in the tree at the start
2117 * of the run (but not newly added entries), or it can be some target
2118 * number you'd like to process.
2119 *
2120 * Returns 0 on success or if called with an aborted transaction
2121 * Returns <0 on error and aborts the transaction
2122 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2123 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2124 unsigned long count)
2125 {
2126 struct btrfs_fs_info *fs_info = trans->fs_info;
2127 struct rb_node *node;
2128 struct btrfs_delayed_ref_root *delayed_refs;
2129 struct btrfs_delayed_ref_head *head;
2130 int ret;
2131 int run_all = count == (unsigned long)-1;
2132
2133 /* We'll clean this up in btrfs_cleanup_transaction */
2134 if (TRANS_ABORTED(trans))
2135 return 0;
2136
2137 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2138 return 0;
2139
2140 delayed_refs = &trans->transaction->delayed_refs;
2141 if (count == 0)
2142 count = delayed_refs->num_heads_ready;
2143
2144 again:
2145 #ifdef SCRAMBLE_DELAYED_REFS
2146 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2147 #endif
2148 ret = __btrfs_run_delayed_refs(trans, count);
2149 if (ret < 0) {
2150 btrfs_abort_transaction(trans, ret);
2151 return ret;
2152 }
2153
2154 if (run_all) {
2155 btrfs_create_pending_block_groups(trans);
2156
2157 spin_lock(&delayed_refs->lock);
2158 node = rb_first_cached(&delayed_refs->href_root);
2159 if (!node) {
2160 spin_unlock(&delayed_refs->lock);
2161 goto out;
2162 }
2163 head = rb_entry(node, struct btrfs_delayed_ref_head,
2164 href_node);
2165 refcount_inc(&head->refs);
2166 spin_unlock(&delayed_refs->lock);
2167
2168 /* Mutex was contended, block until it's released and retry. */
2169 mutex_lock(&head->mutex);
2170 mutex_unlock(&head->mutex);
2171
2172 btrfs_put_delayed_ref_head(head);
2173 cond_resched();
2174 goto again;
2175 }
2176 out:
2177 return 0;
2178 }
2179
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags,int level)2180 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2181 struct extent_buffer *eb, u64 flags,
2182 int level)
2183 {
2184 struct btrfs_delayed_extent_op *extent_op;
2185 int ret;
2186
2187 extent_op = btrfs_alloc_delayed_extent_op();
2188 if (!extent_op)
2189 return -ENOMEM;
2190
2191 extent_op->flags_to_set = flags;
2192 extent_op->update_flags = true;
2193 extent_op->update_key = false;
2194 extent_op->level = level;
2195
2196 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2197 if (ret)
2198 btrfs_free_delayed_extent_op(extent_op);
2199 return ret;
2200 }
2201
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2202 static noinline int check_delayed_ref(struct btrfs_root *root,
2203 struct btrfs_path *path,
2204 u64 objectid, u64 offset, u64 bytenr)
2205 {
2206 struct btrfs_delayed_ref_head *head;
2207 struct btrfs_delayed_ref_node *ref;
2208 struct btrfs_delayed_data_ref *data_ref;
2209 struct btrfs_delayed_ref_root *delayed_refs;
2210 struct btrfs_transaction *cur_trans;
2211 struct rb_node *node;
2212 int ret = 0;
2213
2214 spin_lock(&root->fs_info->trans_lock);
2215 cur_trans = root->fs_info->running_transaction;
2216 if (cur_trans)
2217 refcount_inc(&cur_trans->use_count);
2218 spin_unlock(&root->fs_info->trans_lock);
2219 if (!cur_trans)
2220 return 0;
2221
2222 delayed_refs = &cur_trans->delayed_refs;
2223 spin_lock(&delayed_refs->lock);
2224 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2225 if (!head) {
2226 spin_unlock(&delayed_refs->lock);
2227 btrfs_put_transaction(cur_trans);
2228 return 0;
2229 }
2230
2231 if (!mutex_trylock(&head->mutex)) {
2232 if (path->nowait) {
2233 spin_unlock(&delayed_refs->lock);
2234 btrfs_put_transaction(cur_trans);
2235 return -EAGAIN;
2236 }
2237
2238 refcount_inc(&head->refs);
2239 spin_unlock(&delayed_refs->lock);
2240
2241 btrfs_release_path(path);
2242
2243 /*
2244 * Mutex was contended, block until it's released and let
2245 * caller try again
2246 */
2247 mutex_lock(&head->mutex);
2248 mutex_unlock(&head->mutex);
2249 btrfs_put_delayed_ref_head(head);
2250 btrfs_put_transaction(cur_trans);
2251 return -EAGAIN;
2252 }
2253 spin_unlock(&delayed_refs->lock);
2254
2255 spin_lock(&head->lock);
2256 /*
2257 * XXX: We should replace this with a proper search function in the
2258 * future.
2259 */
2260 for (node = rb_first_cached(&head->ref_tree); node;
2261 node = rb_next(node)) {
2262 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2263 /* If it's a shared ref we know a cross reference exists */
2264 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2265 ret = 1;
2266 break;
2267 }
2268
2269 data_ref = btrfs_delayed_node_to_data_ref(ref);
2270
2271 /*
2272 * If our ref doesn't match the one we're currently looking at
2273 * then we have a cross reference.
2274 */
2275 if (data_ref->root != root->root_key.objectid ||
2276 data_ref->objectid != objectid ||
2277 data_ref->offset != offset) {
2278 ret = 1;
2279 break;
2280 }
2281 }
2282 spin_unlock(&head->lock);
2283 mutex_unlock(&head->mutex);
2284 btrfs_put_transaction(cur_trans);
2285 return ret;
2286 }
2287
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2288 static noinline int check_committed_ref(struct btrfs_root *root,
2289 struct btrfs_path *path,
2290 u64 objectid, u64 offset, u64 bytenr,
2291 bool strict)
2292 {
2293 struct btrfs_fs_info *fs_info = root->fs_info;
2294 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2295 struct extent_buffer *leaf;
2296 struct btrfs_extent_data_ref *ref;
2297 struct btrfs_extent_inline_ref *iref;
2298 struct btrfs_extent_item *ei;
2299 struct btrfs_key key;
2300 u32 item_size;
2301 int type;
2302 int ret;
2303
2304 key.objectid = bytenr;
2305 key.offset = (u64)-1;
2306 key.type = BTRFS_EXTENT_ITEM_KEY;
2307
2308 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2309 if (ret < 0)
2310 goto out;
2311 BUG_ON(ret == 0); /* Corruption */
2312
2313 ret = -ENOENT;
2314 if (path->slots[0] == 0)
2315 goto out;
2316
2317 path->slots[0]--;
2318 leaf = path->nodes[0];
2319 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2320
2321 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2322 goto out;
2323
2324 ret = 1;
2325 item_size = btrfs_item_size(leaf, path->slots[0]);
2326 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2327
2328 /* If extent item has more than 1 inline ref then it's shared */
2329 if (item_size != sizeof(*ei) +
2330 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2331 goto out;
2332
2333 /*
2334 * If extent created before last snapshot => it's shared unless the
2335 * snapshot has been deleted. Use the heuristic if strict is false.
2336 */
2337 if (!strict &&
2338 (btrfs_extent_generation(leaf, ei) <=
2339 btrfs_root_last_snapshot(&root->root_item)))
2340 goto out;
2341
2342 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2343
2344 /* If this extent has SHARED_DATA_REF then it's shared */
2345 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2346 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2347 goto out;
2348
2349 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2350 if (btrfs_extent_refs(leaf, ei) !=
2351 btrfs_extent_data_ref_count(leaf, ref) ||
2352 btrfs_extent_data_ref_root(leaf, ref) !=
2353 root->root_key.objectid ||
2354 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2355 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2356 goto out;
2357
2358 ret = 0;
2359 out:
2360 return ret;
2361 }
2362
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2363 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2364 u64 bytenr, bool strict, struct btrfs_path *path)
2365 {
2366 int ret;
2367
2368 do {
2369 ret = check_committed_ref(root, path, objectid,
2370 offset, bytenr, strict);
2371 if (ret && ret != -ENOENT)
2372 goto out;
2373
2374 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2375 } while (ret == -EAGAIN);
2376
2377 out:
2378 btrfs_release_path(path);
2379 if (btrfs_is_data_reloc_root(root))
2380 WARN_ON(ret > 0);
2381 return ret;
2382 }
2383
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2384 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2385 struct btrfs_root *root,
2386 struct extent_buffer *buf,
2387 int full_backref, int inc)
2388 {
2389 struct btrfs_fs_info *fs_info = root->fs_info;
2390 u64 bytenr;
2391 u64 num_bytes;
2392 u64 parent;
2393 u64 ref_root;
2394 u32 nritems;
2395 struct btrfs_key key;
2396 struct btrfs_file_extent_item *fi;
2397 struct btrfs_ref generic_ref = { 0 };
2398 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2399 int i;
2400 int action;
2401 int level;
2402 int ret = 0;
2403
2404 if (btrfs_is_testing(fs_info))
2405 return 0;
2406
2407 ref_root = btrfs_header_owner(buf);
2408 nritems = btrfs_header_nritems(buf);
2409 level = btrfs_header_level(buf);
2410
2411 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2412 return 0;
2413
2414 if (full_backref)
2415 parent = buf->start;
2416 else
2417 parent = 0;
2418 if (inc)
2419 action = BTRFS_ADD_DELAYED_REF;
2420 else
2421 action = BTRFS_DROP_DELAYED_REF;
2422
2423 for (i = 0; i < nritems; i++) {
2424 if (level == 0) {
2425 btrfs_item_key_to_cpu(buf, &key, i);
2426 if (key.type != BTRFS_EXTENT_DATA_KEY)
2427 continue;
2428 fi = btrfs_item_ptr(buf, i,
2429 struct btrfs_file_extent_item);
2430 if (btrfs_file_extent_type(buf, fi) ==
2431 BTRFS_FILE_EXTENT_INLINE)
2432 continue;
2433 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2434 if (bytenr == 0)
2435 continue;
2436
2437 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2438 key.offset -= btrfs_file_extent_offset(buf, fi);
2439 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2440 num_bytes, parent);
2441 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2442 key.offset, root->root_key.objectid,
2443 for_reloc);
2444 if (inc)
2445 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2446 else
2447 ret = btrfs_free_extent(trans, &generic_ref);
2448 if (ret)
2449 goto fail;
2450 } else {
2451 bytenr = btrfs_node_blockptr(buf, i);
2452 num_bytes = fs_info->nodesize;
2453 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2454 num_bytes, parent);
2455 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2456 root->root_key.objectid, for_reloc);
2457 if (inc)
2458 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2459 else
2460 ret = btrfs_free_extent(trans, &generic_ref);
2461 if (ret)
2462 goto fail;
2463 }
2464 }
2465 return 0;
2466 fail:
2467 return ret;
2468 }
2469
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2470 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2471 struct extent_buffer *buf, int full_backref)
2472 {
2473 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2474 }
2475
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2476 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2477 struct extent_buffer *buf, int full_backref)
2478 {
2479 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2480 }
2481
get_alloc_profile_by_root(struct btrfs_root * root,int data)2482 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2483 {
2484 struct btrfs_fs_info *fs_info = root->fs_info;
2485 u64 flags;
2486 u64 ret;
2487
2488 if (data)
2489 flags = BTRFS_BLOCK_GROUP_DATA;
2490 else if (root == fs_info->chunk_root)
2491 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2492 else
2493 flags = BTRFS_BLOCK_GROUP_METADATA;
2494
2495 ret = btrfs_get_alloc_profile(fs_info, flags);
2496 return ret;
2497 }
2498
first_logical_byte(struct btrfs_fs_info * fs_info)2499 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2500 {
2501 struct rb_node *leftmost;
2502 u64 bytenr = 0;
2503
2504 read_lock(&fs_info->block_group_cache_lock);
2505 /* Get the block group with the lowest logical start address. */
2506 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2507 if (leftmost) {
2508 struct btrfs_block_group *bg;
2509
2510 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2511 bytenr = bg->start;
2512 }
2513 read_unlock(&fs_info->block_group_cache_lock);
2514
2515 return bytenr;
2516 }
2517
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2518 static int pin_down_extent(struct btrfs_trans_handle *trans,
2519 struct btrfs_block_group *cache,
2520 u64 bytenr, u64 num_bytes, int reserved)
2521 {
2522 struct btrfs_fs_info *fs_info = cache->fs_info;
2523
2524 spin_lock(&cache->space_info->lock);
2525 spin_lock(&cache->lock);
2526 cache->pinned += num_bytes;
2527 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2528 num_bytes);
2529 if (reserved) {
2530 cache->reserved -= num_bytes;
2531 cache->space_info->bytes_reserved -= num_bytes;
2532 }
2533 spin_unlock(&cache->lock);
2534 spin_unlock(&cache->space_info->lock);
2535
2536 set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2537 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2538 return 0;
2539 }
2540
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2541 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2542 u64 bytenr, u64 num_bytes, int reserved)
2543 {
2544 struct btrfs_block_group *cache;
2545
2546 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2547 BUG_ON(!cache); /* Logic error */
2548
2549 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2550
2551 btrfs_put_block_group(cache);
2552 return 0;
2553 }
2554
2555 /*
2556 * this function must be called within transaction
2557 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2558 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2559 u64 bytenr, u64 num_bytes)
2560 {
2561 struct btrfs_block_group *cache;
2562 int ret;
2563
2564 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2565 if (!cache)
2566 return -EINVAL;
2567
2568 /*
2569 * Fully cache the free space first so that our pin removes the free space
2570 * from the cache.
2571 */
2572 ret = btrfs_cache_block_group(cache, true);
2573 if (ret)
2574 goto out;
2575
2576 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2577
2578 /* remove us from the free space cache (if we're there at all) */
2579 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2580 out:
2581 btrfs_put_block_group(cache);
2582 return ret;
2583 }
2584
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2585 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2586 u64 start, u64 num_bytes)
2587 {
2588 int ret;
2589 struct btrfs_block_group *block_group;
2590
2591 block_group = btrfs_lookup_block_group(fs_info, start);
2592 if (!block_group)
2593 return -EINVAL;
2594
2595 ret = btrfs_cache_block_group(block_group, true);
2596 if (ret)
2597 goto out;
2598
2599 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2600 out:
2601 btrfs_put_block_group(block_group);
2602 return ret;
2603 }
2604
btrfs_exclude_logged_extents(struct extent_buffer * eb)2605 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2606 {
2607 struct btrfs_fs_info *fs_info = eb->fs_info;
2608 struct btrfs_file_extent_item *item;
2609 struct btrfs_key key;
2610 int found_type;
2611 int i;
2612 int ret = 0;
2613
2614 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2615 return 0;
2616
2617 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2618 btrfs_item_key_to_cpu(eb, &key, i);
2619 if (key.type != BTRFS_EXTENT_DATA_KEY)
2620 continue;
2621 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2622 found_type = btrfs_file_extent_type(eb, item);
2623 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2624 continue;
2625 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2626 continue;
2627 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2628 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2629 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2630 if (ret)
2631 break;
2632 }
2633
2634 return ret;
2635 }
2636
2637 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2638 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2639 {
2640 atomic_inc(&bg->reservations);
2641 }
2642
2643 /*
2644 * Returns the free cluster for the given space info and sets empty_cluster to
2645 * what it should be based on the mount options.
2646 */
2647 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2648 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2649 struct btrfs_space_info *space_info, u64 *empty_cluster)
2650 {
2651 struct btrfs_free_cluster *ret = NULL;
2652
2653 *empty_cluster = 0;
2654 if (btrfs_mixed_space_info(space_info))
2655 return ret;
2656
2657 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2658 ret = &fs_info->meta_alloc_cluster;
2659 if (btrfs_test_opt(fs_info, SSD))
2660 *empty_cluster = SZ_2M;
2661 else
2662 *empty_cluster = SZ_64K;
2663 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2664 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2665 *empty_cluster = SZ_2M;
2666 ret = &fs_info->data_alloc_cluster;
2667 }
2668
2669 return ret;
2670 }
2671
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2672 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2673 u64 start, u64 end,
2674 const bool return_free_space)
2675 {
2676 struct btrfs_block_group *cache = NULL;
2677 struct btrfs_space_info *space_info;
2678 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2679 struct btrfs_free_cluster *cluster = NULL;
2680 u64 len;
2681 u64 total_unpinned = 0;
2682 u64 empty_cluster = 0;
2683 bool readonly;
2684
2685 while (start <= end) {
2686 readonly = false;
2687 if (!cache ||
2688 start >= cache->start + cache->length) {
2689 if (cache)
2690 btrfs_put_block_group(cache);
2691 total_unpinned = 0;
2692 cache = btrfs_lookup_block_group(fs_info, start);
2693 BUG_ON(!cache); /* Logic error */
2694
2695 cluster = fetch_cluster_info(fs_info,
2696 cache->space_info,
2697 &empty_cluster);
2698 empty_cluster <<= 1;
2699 }
2700
2701 len = cache->start + cache->length - start;
2702 len = min(len, end + 1 - start);
2703
2704 if (return_free_space)
2705 btrfs_add_free_space(cache, start, len);
2706
2707 start += len;
2708 total_unpinned += len;
2709 space_info = cache->space_info;
2710
2711 /*
2712 * If this space cluster has been marked as fragmented and we've
2713 * unpinned enough in this block group to potentially allow a
2714 * cluster to be created inside of it go ahead and clear the
2715 * fragmented check.
2716 */
2717 if (cluster && cluster->fragmented &&
2718 total_unpinned > empty_cluster) {
2719 spin_lock(&cluster->lock);
2720 cluster->fragmented = 0;
2721 spin_unlock(&cluster->lock);
2722 }
2723
2724 spin_lock(&space_info->lock);
2725 spin_lock(&cache->lock);
2726 cache->pinned -= len;
2727 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2728 space_info->max_extent_size = 0;
2729 if (cache->ro) {
2730 space_info->bytes_readonly += len;
2731 readonly = true;
2732 } else if (btrfs_is_zoned(fs_info)) {
2733 /* Need reset before reusing in a zoned block group */
2734 space_info->bytes_zone_unusable += len;
2735 readonly = true;
2736 }
2737 spin_unlock(&cache->lock);
2738 if (!readonly && return_free_space &&
2739 global_rsv->space_info == space_info) {
2740 spin_lock(&global_rsv->lock);
2741 if (!global_rsv->full) {
2742 u64 to_add = min(len, global_rsv->size -
2743 global_rsv->reserved);
2744
2745 global_rsv->reserved += to_add;
2746 btrfs_space_info_update_bytes_may_use(fs_info,
2747 space_info, to_add);
2748 if (global_rsv->reserved >= global_rsv->size)
2749 global_rsv->full = 1;
2750 len -= to_add;
2751 }
2752 spin_unlock(&global_rsv->lock);
2753 }
2754 /* Add to any tickets we may have */
2755 if (!readonly && return_free_space && len)
2756 btrfs_try_granting_tickets(fs_info, space_info);
2757 spin_unlock(&space_info->lock);
2758 }
2759
2760 if (cache)
2761 btrfs_put_block_group(cache);
2762 return 0;
2763 }
2764
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2765 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2766 {
2767 struct btrfs_fs_info *fs_info = trans->fs_info;
2768 struct btrfs_block_group *block_group, *tmp;
2769 struct list_head *deleted_bgs;
2770 struct extent_io_tree *unpin;
2771 u64 start;
2772 u64 end;
2773 int ret;
2774
2775 unpin = &trans->transaction->pinned_extents;
2776
2777 while (!TRANS_ABORTED(trans)) {
2778 struct extent_state *cached_state = NULL;
2779
2780 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2781 ret = find_first_extent_bit(unpin, 0, &start, &end,
2782 EXTENT_DIRTY, &cached_state);
2783 if (ret) {
2784 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2785 break;
2786 }
2787
2788 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2789 ret = btrfs_discard_extent(fs_info, start,
2790 end + 1 - start, NULL);
2791
2792 clear_extent_dirty(unpin, start, end, &cached_state);
2793 unpin_extent_range(fs_info, start, end, true);
2794 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2795 free_extent_state(cached_state);
2796 cond_resched();
2797 }
2798
2799 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2800 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2801 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2802 }
2803
2804 /*
2805 * Transaction is finished. We don't need the lock anymore. We
2806 * do need to clean up the block groups in case of a transaction
2807 * abort.
2808 */
2809 deleted_bgs = &trans->transaction->deleted_bgs;
2810 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2811 u64 trimmed = 0;
2812
2813 ret = -EROFS;
2814 if (!TRANS_ABORTED(trans))
2815 ret = btrfs_discard_extent(fs_info,
2816 block_group->start,
2817 block_group->length,
2818 &trimmed);
2819
2820 list_del_init(&block_group->bg_list);
2821 btrfs_unfreeze_block_group(block_group);
2822 btrfs_put_block_group(block_group);
2823
2824 if (ret) {
2825 const char *errstr = btrfs_decode_error(ret);
2826 btrfs_warn(fs_info,
2827 "discard failed while removing blockgroup: errno=%d %s",
2828 ret, errstr);
2829 }
2830 }
2831
2832 return 0;
2833 }
2834
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool is_data)2835 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2836 u64 bytenr, u64 num_bytes, bool is_data)
2837 {
2838 int ret;
2839
2840 if (is_data) {
2841 struct btrfs_root *csum_root;
2842
2843 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2844 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2845 if (ret) {
2846 btrfs_abort_transaction(trans, ret);
2847 return ret;
2848 }
2849 }
2850
2851 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2852 if (ret) {
2853 btrfs_abort_transaction(trans, ret);
2854 return ret;
2855 }
2856
2857 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2858 if (ret)
2859 btrfs_abort_transaction(trans, ret);
2860
2861 return ret;
2862 }
2863
2864 /*
2865 * Drop one or more refs of @node.
2866 *
2867 * 1. Locate the extent refs.
2868 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2869 * Locate it, then reduce the refs number or remove the ref line completely.
2870 *
2871 * 2. Update the refs count in EXTENT/METADATA_ITEM
2872 *
2873 * Inline backref case:
2874 *
2875 * in extent tree we have:
2876 *
2877 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2878 * refs 2 gen 6 flags DATA
2879 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2880 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2881 *
2882 * This function gets called with:
2883 *
2884 * node->bytenr = 13631488
2885 * node->num_bytes = 1048576
2886 * root_objectid = FS_TREE
2887 * owner_objectid = 257
2888 * owner_offset = 0
2889 * refs_to_drop = 1
2890 *
2891 * Then we should get some like:
2892 *
2893 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2894 * refs 1 gen 6 flags DATA
2895 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2896 *
2897 * Keyed backref case:
2898 *
2899 * in extent tree we have:
2900 *
2901 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2902 * refs 754 gen 6 flags DATA
2903 * [...]
2904 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2905 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2906 *
2907 * This function get called with:
2908 *
2909 * node->bytenr = 13631488
2910 * node->num_bytes = 1048576
2911 * root_objectid = FS_TREE
2912 * owner_objectid = 866
2913 * owner_offset = 0
2914 * refs_to_drop = 1
2915 *
2916 * Then we should get some like:
2917 *
2918 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2919 * refs 753 gen 6 flags DATA
2920 *
2921 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2922 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2923 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2924 struct btrfs_delayed_ref_node *node, u64 parent,
2925 u64 root_objectid, u64 owner_objectid,
2926 u64 owner_offset, int refs_to_drop,
2927 struct btrfs_delayed_extent_op *extent_op)
2928 {
2929 struct btrfs_fs_info *info = trans->fs_info;
2930 struct btrfs_key key;
2931 struct btrfs_path *path;
2932 struct btrfs_root *extent_root;
2933 struct extent_buffer *leaf;
2934 struct btrfs_extent_item *ei;
2935 struct btrfs_extent_inline_ref *iref;
2936 int ret;
2937 int is_data;
2938 int extent_slot = 0;
2939 int found_extent = 0;
2940 int num_to_del = 1;
2941 u32 item_size;
2942 u64 refs;
2943 u64 bytenr = node->bytenr;
2944 u64 num_bytes = node->num_bytes;
2945 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2946
2947 extent_root = btrfs_extent_root(info, bytenr);
2948 ASSERT(extent_root);
2949
2950 path = btrfs_alloc_path();
2951 if (!path)
2952 return -ENOMEM;
2953
2954 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2955
2956 if (!is_data && refs_to_drop != 1) {
2957 btrfs_crit(info,
2958 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2959 node->bytenr, refs_to_drop);
2960 ret = -EINVAL;
2961 btrfs_abort_transaction(trans, ret);
2962 goto out;
2963 }
2964
2965 if (is_data)
2966 skinny_metadata = false;
2967
2968 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2969 parent, root_objectid, owner_objectid,
2970 owner_offset);
2971 if (ret == 0) {
2972 /*
2973 * Either the inline backref or the SHARED_DATA_REF/
2974 * SHARED_BLOCK_REF is found
2975 *
2976 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2977 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2978 */
2979 extent_slot = path->slots[0];
2980 while (extent_slot >= 0) {
2981 btrfs_item_key_to_cpu(path->nodes[0], &key,
2982 extent_slot);
2983 if (key.objectid != bytenr)
2984 break;
2985 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2986 key.offset == num_bytes) {
2987 found_extent = 1;
2988 break;
2989 }
2990 if (key.type == BTRFS_METADATA_ITEM_KEY &&
2991 key.offset == owner_objectid) {
2992 found_extent = 1;
2993 break;
2994 }
2995
2996 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
2997 if (path->slots[0] - extent_slot > 5)
2998 break;
2999 extent_slot--;
3000 }
3001
3002 if (!found_extent) {
3003 if (iref) {
3004 btrfs_crit(info,
3005 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3006 btrfs_abort_transaction(trans, -EUCLEAN);
3007 goto err_dump;
3008 }
3009 /* Must be SHARED_* item, remove the backref first */
3010 ret = remove_extent_backref(trans, extent_root, path,
3011 NULL, refs_to_drop, is_data);
3012 if (ret) {
3013 btrfs_abort_transaction(trans, ret);
3014 goto out;
3015 }
3016 btrfs_release_path(path);
3017
3018 /* Slow path to locate EXTENT/METADATA_ITEM */
3019 key.objectid = bytenr;
3020 key.type = BTRFS_EXTENT_ITEM_KEY;
3021 key.offset = num_bytes;
3022
3023 if (!is_data && skinny_metadata) {
3024 key.type = BTRFS_METADATA_ITEM_KEY;
3025 key.offset = owner_objectid;
3026 }
3027
3028 ret = btrfs_search_slot(trans, extent_root,
3029 &key, path, -1, 1);
3030 if (ret > 0 && skinny_metadata && path->slots[0]) {
3031 /*
3032 * Couldn't find our skinny metadata item,
3033 * see if we have ye olde extent item.
3034 */
3035 path->slots[0]--;
3036 btrfs_item_key_to_cpu(path->nodes[0], &key,
3037 path->slots[0]);
3038 if (key.objectid == bytenr &&
3039 key.type == BTRFS_EXTENT_ITEM_KEY &&
3040 key.offset == num_bytes)
3041 ret = 0;
3042 }
3043
3044 if (ret > 0 && skinny_metadata) {
3045 skinny_metadata = false;
3046 key.objectid = bytenr;
3047 key.type = BTRFS_EXTENT_ITEM_KEY;
3048 key.offset = num_bytes;
3049 btrfs_release_path(path);
3050 ret = btrfs_search_slot(trans, extent_root,
3051 &key, path, -1, 1);
3052 }
3053
3054 if (ret) {
3055 btrfs_err(info,
3056 "umm, got %d back from search, was looking for %llu",
3057 ret, bytenr);
3058 if (ret > 0)
3059 btrfs_print_leaf(path->nodes[0]);
3060 }
3061 if (ret < 0) {
3062 btrfs_abort_transaction(trans, ret);
3063 goto out;
3064 }
3065 extent_slot = path->slots[0];
3066 }
3067 } else if (WARN_ON(ret == -ENOENT)) {
3068 btrfs_print_leaf(path->nodes[0]);
3069 btrfs_err(info,
3070 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3071 bytenr, parent, root_objectid, owner_objectid,
3072 owner_offset);
3073 btrfs_abort_transaction(trans, ret);
3074 goto out;
3075 } else {
3076 btrfs_abort_transaction(trans, ret);
3077 goto out;
3078 }
3079
3080 leaf = path->nodes[0];
3081 item_size = btrfs_item_size(leaf, extent_slot);
3082 if (unlikely(item_size < sizeof(*ei))) {
3083 ret = -EINVAL;
3084 btrfs_print_v0_err(info);
3085 btrfs_abort_transaction(trans, ret);
3086 goto out;
3087 }
3088 ei = btrfs_item_ptr(leaf, extent_slot,
3089 struct btrfs_extent_item);
3090 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3091 key.type == BTRFS_EXTENT_ITEM_KEY) {
3092 struct btrfs_tree_block_info *bi;
3093 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3094 btrfs_crit(info,
3095 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3096 key.objectid, key.type, key.offset,
3097 owner_objectid, item_size,
3098 sizeof(*ei) + sizeof(*bi));
3099 btrfs_abort_transaction(trans, -EUCLEAN);
3100 goto err_dump;
3101 }
3102 bi = (struct btrfs_tree_block_info *)(ei + 1);
3103 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3104 }
3105
3106 refs = btrfs_extent_refs(leaf, ei);
3107 if (refs < refs_to_drop) {
3108 btrfs_crit(info,
3109 "trying to drop %d refs but we only have %llu for bytenr %llu",
3110 refs_to_drop, refs, bytenr);
3111 btrfs_abort_transaction(trans, -EUCLEAN);
3112 goto err_dump;
3113 }
3114 refs -= refs_to_drop;
3115
3116 if (refs > 0) {
3117 if (extent_op)
3118 __run_delayed_extent_op(extent_op, leaf, ei);
3119 /*
3120 * In the case of inline back ref, reference count will
3121 * be updated by remove_extent_backref
3122 */
3123 if (iref) {
3124 if (!found_extent) {
3125 btrfs_crit(info,
3126 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3127 btrfs_abort_transaction(trans, -EUCLEAN);
3128 goto err_dump;
3129 }
3130 } else {
3131 btrfs_set_extent_refs(leaf, ei, refs);
3132 btrfs_mark_buffer_dirty(leaf);
3133 }
3134 if (found_extent) {
3135 ret = remove_extent_backref(trans, extent_root, path,
3136 iref, refs_to_drop, is_data);
3137 if (ret) {
3138 btrfs_abort_transaction(trans, ret);
3139 goto out;
3140 }
3141 }
3142 } else {
3143 /* In this branch refs == 1 */
3144 if (found_extent) {
3145 if (is_data && refs_to_drop !=
3146 extent_data_ref_count(path, iref)) {
3147 btrfs_crit(info,
3148 "invalid refs_to_drop, current refs %u refs_to_drop %u",
3149 extent_data_ref_count(path, iref),
3150 refs_to_drop);
3151 btrfs_abort_transaction(trans, -EUCLEAN);
3152 goto err_dump;
3153 }
3154 if (iref) {
3155 if (path->slots[0] != extent_slot) {
3156 btrfs_crit(info,
3157 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3158 key.objectid, key.type,
3159 key.offset);
3160 btrfs_abort_transaction(trans, -EUCLEAN);
3161 goto err_dump;
3162 }
3163 } else {
3164 /*
3165 * No inline ref, we must be at SHARED_* item,
3166 * And it's single ref, it must be:
3167 * | extent_slot ||extent_slot + 1|
3168 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3169 */
3170 if (path->slots[0] != extent_slot + 1) {
3171 btrfs_crit(info,
3172 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3173 btrfs_abort_transaction(trans, -EUCLEAN);
3174 goto err_dump;
3175 }
3176 path->slots[0] = extent_slot;
3177 num_to_del = 2;
3178 }
3179 }
3180
3181 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3182 num_to_del);
3183 if (ret) {
3184 btrfs_abort_transaction(trans, ret);
3185 goto out;
3186 }
3187 btrfs_release_path(path);
3188
3189 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3190 }
3191 btrfs_release_path(path);
3192
3193 out:
3194 btrfs_free_path(path);
3195 return ret;
3196 err_dump:
3197 /*
3198 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3199 * dump for debug build.
3200 */
3201 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3202 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3203 path->slots[0], extent_slot);
3204 btrfs_print_leaf(path->nodes[0]);
3205 }
3206
3207 btrfs_free_path(path);
3208 return -EUCLEAN;
3209 }
3210
3211 /*
3212 * when we free an block, it is possible (and likely) that we free the last
3213 * delayed ref for that extent as well. This searches the delayed ref tree for
3214 * a given extent, and if there are no other delayed refs to be processed, it
3215 * removes it from the tree.
3216 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3217 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3218 u64 bytenr)
3219 {
3220 struct btrfs_delayed_ref_head *head;
3221 struct btrfs_delayed_ref_root *delayed_refs;
3222 int ret = 0;
3223
3224 delayed_refs = &trans->transaction->delayed_refs;
3225 spin_lock(&delayed_refs->lock);
3226 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3227 if (!head)
3228 goto out_delayed_unlock;
3229
3230 spin_lock(&head->lock);
3231 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3232 goto out;
3233
3234 if (cleanup_extent_op(head) != NULL)
3235 goto out;
3236
3237 /*
3238 * waiting for the lock here would deadlock. If someone else has it
3239 * locked they are already in the process of dropping it anyway
3240 */
3241 if (!mutex_trylock(&head->mutex))
3242 goto out;
3243
3244 btrfs_delete_ref_head(delayed_refs, head);
3245 head->processing = 0;
3246
3247 spin_unlock(&head->lock);
3248 spin_unlock(&delayed_refs->lock);
3249
3250 BUG_ON(head->extent_op);
3251 if (head->must_insert_reserved)
3252 ret = 1;
3253
3254 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3255 mutex_unlock(&head->mutex);
3256 btrfs_put_delayed_ref_head(head);
3257 return ret;
3258 out:
3259 spin_unlock(&head->lock);
3260
3261 out_delayed_unlock:
3262 spin_unlock(&delayed_refs->lock);
3263 return 0;
3264 }
3265
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3266 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3267 u64 root_id,
3268 struct extent_buffer *buf,
3269 u64 parent, int last_ref)
3270 {
3271 struct btrfs_fs_info *fs_info = trans->fs_info;
3272 struct btrfs_ref generic_ref = { 0 };
3273 int ret;
3274
3275 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3276 buf->start, buf->len, parent);
3277 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3278 root_id, 0, false);
3279
3280 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3281 btrfs_ref_tree_mod(fs_info, &generic_ref);
3282 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3283 BUG_ON(ret); /* -ENOMEM */
3284 }
3285
3286 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3287 struct btrfs_block_group *cache;
3288 bool must_pin = false;
3289
3290 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3291 ret = check_ref_cleanup(trans, buf->start);
3292 if (!ret) {
3293 btrfs_redirty_list_add(trans->transaction, buf);
3294 goto out;
3295 }
3296 }
3297
3298 cache = btrfs_lookup_block_group(fs_info, buf->start);
3299
3300 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3301 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3302 btrfs_put_block_group(cache);
3303 goto out;
3304 }
3305
3306 /*
3307 * If there are tree mod log users we may have recorded mod log
3308 * operations for this node. If we re-allocate this node we
3309 * could replay operations on this node that happened when it
3310 * existed in a completely different root. For example if it
3311 * was part of root A, then was reallocated to root B, and we
3312 * are doing a btrfs_old_search_slot(root b), we could replay
3313 * operations that happened when the block was part of root A,
3314 * giving us an inconsistent view of the btree.
3315 *
3316 * We are safe from races here because at this point no other
3317 * node or root points to this extent buffer, so if after this
3318 * check a new tree mod log user joins we will not have an
3319 * existing log of operations on this node that we have to
3320 * contend with.
3321 */
3322 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3323 must_pin = true;
3324
3325 if (must_pin || btrfs_is_zoned(fs_info)) {
3326 btrfs_redirty_list_add(trans->transaction, buf);
3327 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3328 btrfs_put_block_group(cache);
3329 goto out;
3330 }
3331
3332 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3333
3334 btrfs_add_free_space(cache, buf->start, buf->len);
3335 btrfs_free_reserved_bytes(cache, buf->len, 0);
3336 btrfs_put_block_group(cache);
3337 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3338 }
3339 out:
3340 if (last_ref) {
3341 /*
3342 * Deleting the buffer, clear the corrupt flag since it doesn't
3343 * matter anymore.
3344 */
3345 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3346 }
3347 }
3348
3349 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3350 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3351 {
3352 struct btrfs_fs_info *fs_info = trans->fs_info;
3353 int ret;
3354
3355 if (btrfs_is_testing(fs_info))
3356 return 0;
3357
3358 /*
3359 * tree log blocks never actually go into the extent allocation
3360 * tree, just update pinning info and exit early.
3361 */
3362 if ((ref->type == BTRFS_REF_METADATA &&
3363 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3364 (ref->type == BTRFS_REF_DATA &&
3365 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3366 /* unlocks the pinned mutex */
3367 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3368 ret = 0;
3369 } else if (ref->type == BTRFS_REF_METADATA) {
3370 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3371 } else {
3372 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3373 }
3374
3375 if (!((ref->type == BTRFS_REF_METADATA &&
3376 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3377 (ref->type == BTRFS_REF_DATA &&
3378 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3379 btrfs_ref_tree_mod(fs_info, ref);
3380
3381 return ret;
3382 }
3383
3384 enum btrfs_loop_type {
3385 LOOP_CACHING_NOWAIT,
3386 LOOP_CACHING_WAIT,
3387 LOOP_ALLOC_CHUNK,
3388 LOOP_NO_EMPTY_SIZE,
3389 };
3390
3391 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3392 btrfs_lock_block_group(struct btrfs_block_group *cache,
3393 int delalloc)
3394 {
3395 if (delalloc)
3396 down_read(&cache->data_rwsem);
3397 }
3398
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3399 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3400 int delalloc)
3401 {
3402 btrfs_get_block_group(cache);
3403 if (delalloc)
3404 down_read(&cache->data_rwsem);
3405 }
3406
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3407 static struct btrfs_block_group *btrfs_lock_cluster(
3408 struct btrfs_block_group *block_group,
3409 struct btrfs_free_cluster *cluster,
3410 int delalloc)
3411 __acquires(&cluster->refill_lock)
3412 {
3413 struct btrfs_block_group *used_bg = NULL;
3414
3415 spin_lock(&cluster->refill_lock);
3416 while (1) {
3417 used_bg = cluster->block_group;
3418 if (!used_bg)
3419 return NULL;
3420
3421 if (used_bg == block_group)
3422 return used_bg;
3423
3424 btrfs_get_block_group(used_bg);
3425
3426 if (!delalloc)
3427 return used_bg;
3428
3429 if (down_read_trylock(&used_bg->data_rwsem))
3430 return used_bg;
3431
3432 spin_unlock(&cluster->refill_lock);
3433
3434 /* We should only have one-level nested. */
3435 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3436
3437 spin_lock(&cluster->refill_lock);
3438 if (used_bg == cluster->block_group)
3439 return used_bg;
3440
3441 up_read(&used_bg->data_rwsem);
3442 btrfs_put_block_group(used_bg);
3443 }
3444 }
3445
3446 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3447 btrfs_release_block_group(struct btrfs_block_group *cache,
3448 int delalloc)
3449 {
3450 if (delalloc)
3451 up_read(&cache->data_rwsem);
3452 btrfs_put_block_group(cache);
3453 }
3454
3455 enum btrfs_extent_allocation_policy {
3456 BTRFS_EXTENT_ALLOC_CLUSTERED,
3457 BTRFS_EXTENT_ALLOC_ZONED,
3458 };
3459
3460 /*
3461 * Structure used internally for find_free_extent() function. Wraps needed
3462 * parameters.
3463 */
3464 struct find_free_extent_ctl {
3465 /* Basic allocation info */
3466 u64 ram_bytes;
3467 u64 num_bytes;
3468 u64 min_alloc_size;
3469 u64 empty_size;
3470 u64 flags;
3471 int delalloc;
3472
3473 /* Where to start the search inside the bg */
3474 u64 search_start;
3475
3476 /* For clustered allocation */
3477 u64 empty_cluster;
3478 struct btrfs_free_cluster *last_ptr;
3479 bool use_cluster;
3480
3481 bool have_caching_bg;
3482 bool orig_have_caching_bg;
3483
3484 /* Allocation is called for tree-log */
3485 bool for_treelog;
3486
3487 /* Allocation is called for data relocation */
3488 bool for_data_reloc;
3489
3490 /* RAID index, converted from flags */
3491 int index;
3492
3493 /*
3494 * Current loop number, check find_free_extent_update_loop() for details
3495 */
3496 int loop;
3497
3498 /*
3499 * Whether we're refilling a cluster, if true we need to re-search
3500 * current block group but don't try to refill the cluster again.
3501 */
3502 bool retry_clustered;
3503
3504 /*
3505 * Whether we're updating free space cache, if true we need to re-search
3506 * current block group but don't try updating free space cache again.
3507 */
3508 bool retry_unclustered;
3509
3510 /* If current block group is cached */
3511 int cached;
3512
3513 /* Max contiguous hole found */
3514 u64 max_extent_size;
3515
3516 /* Total free space from free space cache, not always contiguous */
3517 u64 total_free_space;
3518
3519 /* Found result */
3520 u64 found_offset;
3521
3522 /* Hint where to start looking for an empty space */
3523 u64 hint_byte;
3524
3525 /* Allocation policy */
3526 enum btrfs_extent_allocation_policy policy;
3527 };
3528
3529
3530 /*
3531 * Helper function for find_free_extent().
3532 *
3533 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3534 * Return -EAGAIN to inform caller that we need to re-search this block group
3535 * Return >0 to inform caller that we find nothing
3536 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3537 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3538 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3539 struct find_free_extent_ctl *ffe_ctl,
3540 struct btrfs_block_group **cluster_bg_ret)
3541 {
3542 struct btrfs_block_group *cluster_bg;
3543 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3544 u64 aligned_cluster;
3545 u64 offset;
3546 int ret;
3547
3548 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3549 if (!cluster_bg)
3550 goto refill_cluster;
3551 if (cluster_bg != bg && (cluster_bg->ro ||
3552 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3553 goto release_cluster;
3554
3555 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3556 ffe_ctl->num_bytes, cluster_bg->start,
3557 &ffe_ctl->max_extent_size);
3558 if (offset) {
3559 /* We have a block, we're done */
3560 spin_unlock(&last_ptr->refill_lock);
3561 trace_btrfs_reserve_extent_cluster(cluster_bg,
3562 ffe_ctl->search_start, ffe_ctl->num_bytes);
3563 *cluster_bg_ret = cluster_bg;
3564 ffe_ctl->found_offset = offset;
3565 return 0;
3566 }
3567 WARN_ON(last_ptr->block_group != cluster_bg);
3568
3569 release_cluster:
3570 /*
3571 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3572 * lets just skip it and let the allocator find whatever block it can
3573 * find. If we reach this point, we will have tried the cluster
3574 * allocator plenty of times and not have found anything, so we are
3575 * likely way too fragmented for the clustering stuff to find anything.
3576 *
3577 * However, if the cluster is taken from the current block group,
3578 * release the cluster first, so that we stand a better chance of
3579 * succeeding in the unclustered allocation.
3580 */
3581 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3582 spin_unlock(&last_ptr->refill_lock);
3583 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3584 return -ENOENT;
3585 }
3586
3587 /* This cluster didn't work out, free it and start over */
3588 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3589
3590 if (cluster_bg != bg)
3591 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3592
3593 refill_cluster:
3594 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3595 spin_unlock(&last_ptr->refill_lock);
3596 return -ENOENT;
3597 }
3598
3599 aligned_cluster = max_t(u64,
3600 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3601 bg->full_stripe_len);
3602 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3603 ffe_ctl->num_bytes, aligned_cluster);
3604 if (ret == 0) {
3605 /* Now pull our allocation out of this cluster */
3606 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3607 ffe_ctl->num_bytes, ffe_ctl->search_start,
3608 &ffe_ctl->max_extent_size);
3609 if (offset) {
3610 /* We found one, proceed */
3611 spin_unlock(&last_ptr->refill_lock);
3612 trace_btrfs_reserve_extent_cluster(bg,
3613 ffe_ctl->search_start,
3614 ffe_ctl->num_bytes);
3615 ffe_ctl->found_offset = offset;
3616 return 0;
3617 }
3618 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3619 !ffe_ctl->retry_clustered) {
3620 spin_unlock(&last_ptr->refill_lock);
3621
3622 ffe_ctl->retry_clustered = true;
3623 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3624 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3625 return -EAGAIN;
3626 }
3627 /*
3628 * At this point we either didn't find a cluster or we weren't able to
3629 * allocate a block from our cluster. Free the cluster we've been
3630 * trying to use, and go to the next block group.
3631 */
3632 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3633 spin_unlock(&last_ptr->refill_lock);
3634 return 1;
3635 }
3636
3637 /*
3638 * Return >0 to inform caller that we find nothing
3639 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3640 * Return -EAGAIN to inform caller that we need to re-search this block group
3641 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3642 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3643 struct find_free_extent_ctl *ffe_ctl)
3644 {
3645 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3646 u64 offset;
3647
3648 /*
3649 * We are doing an unclustered allocation, set the fragmented flag so
3650 * we don't bother trying to setup a cluster again until we get more
3651 * space.
3652 */
3653 if (unlikely(last_ptr)) {
3654 spin_lock(&last_ptr->lock);
3655 last_ptr->fragmented = 1;
3656 spin_unlock(&last_ptr->lock);
3657 }
3658 if (ffe_ctl->cached) {
3659 struct btrfs_free_space_ctl *free_space_ctl;
3660
3661 free_space_ctl = bg->free_space_ctl;
3662 spin_lock(&free_space_ctl->tree_lock);
3663 if (free_space_ctl->free_space <
3664 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3665 ffe_ctl->empty_size) {
3666 ffe_ctl->total_free_space = max_t(u64,
3667 ffe_ctl->total_free_space,
3668 free_space_ctl->free_space);
3669 spin_unlock(&free_space_ctl->tree_lock);
3670 return 1;
3671 }
3672 spin_unlock(&free_space_ctl->tree_lock);
3673 }
3674
3675 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3676 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3677 &ffe_ctl->max_extent_size);
3678
3679 /*
3680 * If we didn't find a chunk, and we haven't failed on this block group
3681 * before, and this block group is in the middle of caching and we are
3682 * ok with waiting, then go ahead and wait for progress to be made, and
3683 * set @retry_unclustered to true.
3684 *
3685 * If @retry_unclustered is true then we've already waited on this
3686 * block group once and should move on to the next block group.
3687 */
3688 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3689 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3690 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3691 ffe_ctl->empty_size);
3692 ffe_ctl->retry_unclustered = true;
3693 return -EAGAIN;
3694 } else if (!offset) {
3695 return 1;
3696 }
3697 ffe_ctl->found_offset = offset;
3698 return 0;
3699 }
3700
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3701 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3702 struct find_free_extent_ctl *ffe_ctl,
3703 struct btrfs_block_group **bg_ret)
3704 {
3705 int ret;
3706
3707 /* We want to try and use the cluster allocator, so lets look there */
3708 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3709 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3710 if (ret >= 0 || ret == -EAGAIN)
3711 return ret;
3712 /* ret == -ENOENT case falls through */
3713 }
3714
3715 return find_free_extent_unclustered(block_group, ffe_ctl);
3716 }
3717
3718 /*
3719 * Tree-log block group locking
3720 * ============================
3721 *
3722 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3723 * indicates the starting address of a block group, which is reserved only
3724 * for tree-log metadata.
3725 *
3726 * Lock nesting
3727 * ============
3728 *
3729 * space_info::lock
3730 * block_group::lock
3731 * fs_info::treelog_bg_lock
3732 */
3733
3734 /*
3735 * Simple allocator for sequential-only block group. It only allows sequential
3736 * allocation. No need to play with trees. This function also reserves the
3737 * bytes as in btrfs_add_reserved_bytes.
3738 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3739 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3740 struct find_free_extent_ctl *ffe_ctl,
3741 struct btrfs_block_group **bg_ret)
3742 {
3743 struct btrfs_fs_info *fs_info = block_group->fs_info;
3744 struct btrfs_space_info *space_info = block_group->space_info;
3745 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3746 u64 start = block_group->start;
3747 u64 num_bytes = ffe_ctl->num_bytes;
3748 u64 avail;
3749 u64 bytenr = block_group->start;
3750 u64 log_bytenr;
3751 u64 data_reloc_bytenr;
3752 int ret = 0;
3753 bool skip = false;
3754
3755 ASSERT(btrfs_is_zoned(block_group->fs_info));
3756
3757 /*
3758 * Do not allow non-tree-log blocks in the dedicated tree-log block
3759 * group, and vice versa.
3760 */
3761 spin_lock(&fs_info->treelog_bg_lock);
3762 log_bytenr = fs_info->treelog_bg;
3763 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3764 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3765 skip = true;
3766 spin_unlock(&fs_info->treelog_bg_lock);
3767 if (skip)
3768 return 1;
3769
3770 /*
3771 * Do not allow non-relocation blocks in the dedicated relocation block
3772 * group, and vice versa.
3773 */
3774 spin_lock(&fs_info->relocation_bg_lock);
3775 data_reloc_bytenr = fs_info->data_reloc_bg;
3776 if (data_reloc_bytenr &&
3777 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3778 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3779 skip = true;
3780 spin_unlock(&fs_info->relocation_bg_lock);
3781 if (skip)
3782 return 1;
3783
3784 /* Check RO and no space case before trying to activate it */
3785 spin_lock(&block_group->lock);
3786 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3787 ret = 1;
3788 /*
3789 * May need to clear fs_info->{treelog,data_reloc}_bg.
3790 * Return the error after taking the locks.
3791 */
3792 }
3793 spin_unlock(&block_group->lock);
3794
3795 if (!ret && !btrfs_zone_activate(block_group)) {
3796 ret = 1;
3797 /*
3798 * May need to clear fs_info->{treelog,data_reloc}_bg.
3799 * Return the error after taking the locks.
3800 */
3801 }
3802
3803 spin_lock(&space_info->lock);
3804 spin_lock(&block_group->lock);
3805 spin_lock(&fs_info->treelog_bg_lock);
3806 spin_lock(&fs_info->relocation_bg_lock);
3807
3808 if (ret)
3809 goto out;
3810
3811 ASSERT(!ffe_ctl->for_treelog ||
3812 block_group->start == fs_info->treelog_bg ||
3813 fs_info->treelog_bg == 0);
3814 ASSERT(!ffe_ctl->for_data_reloc ||
3815 block_group->start == fs_info->data_reloc_bg ||
3816 fs_info->data_reloc_bg == 0);
3817
3818 if (block_group->ro ||
3819 (!ffe_ctl->for_data_reloc &&
3820 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3821 ret = 1;
3822 goto out;
3823 }
3824
3825 /*
3826 * Do not allow currently using block group to be tree-log dedicated
3827 * block group.
3828 */
3829 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3830 (block_group->used || block_group->reserved)) {
3831 ret = 1;
3832 goto out;
3833 }
3834
3835 /*
3836 * Do not allow currently used block group to be the data relocation
3837 * dedicated block group.
3838 */
3839 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3840 (block_group->used || block_group->reserved)) {
3841 ret = 1;
3842 goto out;
3843 }
3844
3845 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3846 avail = block_group->zone_capacity - block_group->alloc_offset;
3847 if (avail < num_bytes) {
3848 if (ffe_ctl->max_extent_size < avail) {
3849 /*
3850 * With sequential allocator, free space is always
3851 * contiguous
3852 */
3853 ffe_ctl->max_extent_size = avail;
3854 ffe_ctl->total_free_space = avail;
3855 }
3856 ret = 1;
3857 goto out;
3858 }
3859
3860 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3861 fs_info->treelog_bg = block_group->start;
3862
3863 if (ffe_ctl->for_data_reloc) {
3864 if (!fs_info->data_reloc_bg)
3865 fs_info->data_reloc_bg = block_group->start;
3866 /*
3867 * Do not allow allocations from this block group, unless it is
3868 * for data relocation. Compared to increasing the ->ro, setting
3869 * the ->zoned_data_reloc_ongoing flag still allows nocow
3870 * writers to come in. See btrfs_inc_nocow_writers().
3871 *
3872 * We need to disable an allocation to avoid an allocation of
3873 * regular (non-relocation data) extent. With mix of relocation
3874 * extents and regular extents, we can dispatch WRITE commands
3875 * (for relocation extents) and ZONE APPEND commands (for
3876 * regular extents) at the same time to the same zone, which
3877 * easily break the write pointer.
3878 *
3879 * Also, this flag avoids this block group to be zone finished.
3880 */
3881 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3882 }
3883
3884 ffe_ctl->found_offset = start + block_group->alloc_offset;
3885 block_group->alloc_offset += num_bytes;
3886 spin_lock(&ctl->tree_lock);
3887 ctl->free_space -= num_bytes;
3888 spin_unlock(&ctl->tree_lock);
3889
3890 /*
3891 * We do not check if found_offset is aligned to stripesize. The
3892 * address is anyway rewritten when using zone append writing.
3893 */
3894
3895 ffe_ctl->search_start = ffe_ctl->found_offset;
3896
3897 out:
3898 if (ret && ffe_ctl->for_treelog)
3899 fs_info->treelog_bg = 0;
3900 if (ret && ffe_ctl->for_data_reloc)
3901 fs_info->data_reloc_bg = 0;
3902 spin_unlock(&fs_info->relocation_bg_lock);
3903 spin_unlock(&fs_info->treelog_bg_lock);
3904 spin_unlock(&block_group->lock);
3905 spin_unlock(&space_info->lock);
3906 return ret;
3907 }
3908
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3909 static int do_allocation(struct btrfs_block_group *block_group,
3910 struct find_free_extent_ctl *ffe_ctl,
3911 struct btrfs_block_group **bg_ret)
3912 {
3913 switch (ffe_ctl->policy) {
3914 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3915 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3916 case BTRFS_EXTENT_ALLOC_ZONED:
3917 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3918 default:
3919 BUG();
3920 }
3921 }
3922
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3923 static void release_block_group(struct btrfs_block_group *block_group,
3924 struct find_free_extent_ctl *ffe_ctl,
3925 int delalloc)
3926 {
3927 switch (ffe_ctl->policy) {
3928 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3929 ffe_ctl->retry_clustered = false;
3930 ffe_ctl->retry_unclustered = false;
3931 break;
3932 case BTRFS_EXTENT_ALLOC_ZONED:
3933 /* Nothing to do */
3934 break;
3935 default:
3936 BUG();
3937 }
3938
3939 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3940 ffe_ctl->index);
3941 btrfs_release_block_group(block_group, delalloc);
3942 }
3943
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3944 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3945 struct btrfs_key *ins)
3946 {
3947 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3948
3949 if (!ffe_ctl->use_cluster && last_ptr) {
3950 spin_lock(&last_ptr->lock);
3951 last_ptr->window_start = ins->objectid;
3952 spin_unlock(&last_ptr->lock);
3953 }
3954 }
3955
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3956 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3957 struct btrfs_key *ins)
3958 {
3959 switch (ffe_ctl->policy) {
3960 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3961 found_extent_clustered(ffe_ctl, ins);
3962 break;
3963 case BTRFS_EXTENT_ALLOC_ZONED:
3964 /* Nothing to do */
3965 break;
3966 default:
3967 BUG();
3968 }
3969 }
3970
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3971 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3972 struct find_free_extent_ctl *ffe_ctl)
3973 {
3974 /* If we can activate new zone, just allocate a chunk and use it */
3975 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3976 return 0;
3977
3978 /*
3979 * We already reached the max active zones. Try to finish one block
3980 * group to make a room for a new block group. This is only possible
3981 * for a data block group because btrfs_zone_finish() may need to wait
3982 * for a running transaction which can cause a deadlock for metadata
3983 * allocation.
3984 */
3985 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3986 int ret = btrfs_zone_finish_one_bg(fs_info);
3987
3988 if (ret == 1)
3989 return 0;
3990 else if (ret < 0)
3991 return ret;
3992 }
3993
3994 /*
3995 * If we have enough free space left in an already active block group
3996 * and we can't activate any other zone now, do not allow allocating a
3997 * new chunk and let find_free_extent() retry with a smaller size.
3998 */
3999 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4000 return -ENOSPC;
4001
4002 /*
4003 * Even min_alloc_size is not left in any block groups. Since we cannot
4004 * activate a new block group, allocating it may not help. Let's tell a
4005 * caller to try again and hope it progress something by writing some
4006 * parts of the region. That is only possible for data block groups,
4007 * where a part of the region can be written.
4008 */
4009 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4010 return -EAGAIN;
4011
4012 /*
4013 * We cannot activate a new block group and no enough space left in any
4014 * block groups. So, allocating a new block group may not help. But,
4015 * there is nothing to do anyway, so let's go with it.
4016 */
4017 return 0;
4018 }
4019
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4020 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4021 struct find_free_extent_ctl *ffe_ctl)
4022 {
4023 switch (ffe_ctl->policy) {
4024 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4025 return 0;
4026 case BTRFS_EXTENT_ALLOC_ZONED:
4027 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4028 default:
4029 BUG();
4030 }
4031 }
4032
chunk_allocation_failed(struct find_free_extent_ctl * ffe_ctl)4033 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4034 {
4035 switch (ffe_ctl->policy) {
4036 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4037 /*
4038 * If we can't allocate a new chunk we've already looped through
4039 * at least once, move on to the NO_EMPTY_SIZE case.
4040 */
4041 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4042 return 0;
4043 case BTRFS_EXTENT_ALLOC_ZONED:
4044 /* Give up here */
4045 return -ENOSPC;
4046 default:
4047 BUG();
4048 }
4049 }
4050
4051 /*
4052 * Return >0 means caller needs to re-search for free extent
4053 * Return 0 means we have the needed free extent.
4054 * Return <0 means we failed to locate any free extent.
4055 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4056 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4057 struct btrfs_key *ins,
4058 struct find_free_extent_ctl *ffe_ctl,
4059 bool full_search)
4060 {
4061 struct btrfs_root *root = fs_info->chunk_root;
4062 int ret;
4063
4064 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4065 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4066 ffe_ctl->orig_have_caching_bg = true;
4067
4068 if (ins->objectid) {
4069 found_extent(ffe_ctl, ins);
4070 return 0;
4071 }
4072
4073 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4074 return 1;
4075
4076 ffe_ctl->index++;
4077 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4078 return 1;
4079
4080 /*
4081 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4082 * caching kthreads as we move along
4083 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4084 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4085 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4086 * again
4087 */
4088 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4089 ffe_ctl->index = 0;
4090 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4091 /*
4092 * We want to skip the LOOP_CACHING_WAIT step if we
4093 * don't have any uncached bgs and we've already done a
4094 * full search through.
4095 */
4096 if (ffe_ctl->orig_have_caching_bg || !full_search)
4097 ffe_ctl->loop = LOOP_CACHING_WAIT;
4098 else
4099 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4100 } else {
4101 ffe_ctl->loop++;
4102 }
4103
4104 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4105 struct btrfs_trans_handle *trans;
4106 int exist = 0;
4107
4108 /*Check if allocation policy allows to create a new chunk */
4109 ret = can_allocate_chunk(fs_info, ffe_ctl);
4110 if (ret)
4111 return ret;
4112
4113 trans = current->journal_info;
4114 if (trans)
4115 exist = 1;
4116 else
4117 trans = btrfs_join_transaction(root);
4118
4119 if (IS_ERR(trans)) {
4120 ret = PTR_ERR(trans);
4121 return ret;
4122 }
4123
4124 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4125 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4126
4127 /* Do not bail out on ENOSPC since we can do more. */
4128 if (ret == -ENOSPC)
4129 ret = chunk_allocation_failed(ffe_ctl);
4130 else if (ret < 0)
4131 btrfs_abort_transaction(trans, ret);
4132 else
4133 ret = 0;
4134 if (!exist)
4135 btrfs_end_transaction(trans);
4136 if (ret)
4137 return ret;
4138 }
4139
4140 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4141 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4142 return -ENOSPC;
4143
4144 /*
4145 * Don't loop again if we already have no empty_size and
4146 * no empty_cluster.
4147 */
4148 if (ffe_ctl->empty_size == 0 &&
4149 ffe_ctl->empty_cluster == 0)
4150 return -ENOSPC;
4151 ffe_ctl->empty_size = 0;
4152 ffe_ctl->empty_cluster = 0;
4153 }
4154 return 1;
4155 }
4156 return -ENOSPC;
4157 }
4158
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4159 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4160 struct find_free_extent_ctl *ffe_ctl,
4161 struct btrfs_space_info *space_info,
4162 struct btrfs_key *ins)
4163 {
4164 /*
4165 * If our free space is heavily fragmented we may not be able to make
4166 * big contiguous allocations, so instead of doing the expensive search
4167 * for free space, simply return ENOSPC with our max_extent_size so we
4168 * can go ahead and search for a more manageable chunk.
4169 *
4170 * If our max_extent_size is large enough for our allocation simply
4171 * disable clustering since we will likely not be able to find enough
4172 * space to create a cluster and induce latency trying.
4173 */
4174 if (space_info->max_extent_size) {
4175 spin_lock(&space_info->lock);
4176 if (space_info->max_extent_size &&
4177 ffe_ctl->num_bytes > space_info->max_extent_size) {
4178 ins->offset = space_info->max_extent_size;
4179 spin_unlock(&space_info->lock);
4180 return -ENOSPC;
4181 } else if (space_info->max_extent_size) {
4182 ffe_ctl->use_cluster = false;
4183 }
4184 spin_unlock(&space_info->lock);
4185 }
4186
4187 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4188 &ffe_ctl->empty_cluster);
4189 if (ffe_ctl->last_ptr) {
4190 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4191
4192 spin_lock(&last_ptr->lock);
4193 if (last_ptr->block_group)
4194 ffe_ctl->hint_byte = last_ptr->window_start;
4195 if (last_ptr->fragmented) {
4196 /*
4197 * We still set window_start so we can keep track of the
4198 * last place we found an allocation to try and save
4199 * some time.
4200 */
4201 ffe_ctl->hint_byte = last_ptr->window_start;
4202 ffe_ctl->use_cluster = false;
4203 }
4204 spin_unlock(&last_ptr->lock);
4205 }
4206
4207 return 0;
4208 }
4209
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4210 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4211 struct find_free_extent_ctl *ffe_ctl)
4212 {
4213 if (ffe_ctl->for_treelog) {
4214 spin_lock(&fs_info->treelog_bg_lock);
4215 if (fs_info->treelog_bg)
4216 ffe_ctl->hint_byte = fs_info->treelog_bg;
4217 spin_unlock(&fs_info->treelog_bg_lock);
4218 } else if (ffe_ctl->for_data_reloc) {
4219 spin_lock(&fs_info->relocation_bg_lock);
4220 if (fs_info->data_reloc_bg)
4221 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4222 spin_unlock(&fs_info->relocation_bg_lock);
4223 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4224 struct btrfs_block_group *block_group;
4225
4226 spin_lock(&fs_info->zone_active_bgs_lock);
4227 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4228 /*
4229 * No lock is OK here because avail is monotinically
4230 * decreasing, and this is just a hint.
4231 */
4232 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4233
4234 if (block_group_bits(block_group, ffe_ctl->flags) &&
4235 avail >= ffe_ctl->num_bytes) {
4236 ffe_ctl->hint_byte = block_group->start;
4237 break;
4238 }
4239 }
4240 spin_unlock(&fs_info->zone_active_bgs_lock);
4241 }
4242
4243 return 0;
4244 }
4245
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4246 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4247 struct find_free_extent_ctl *ffe_ctl,
4248 struct btrfs_space_info *space_info,
4249 struct btrfs_key *ins)
4250 {
4251 switch (ffe_ctl->policy) {
4252 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4253 return prepare_allocation_clustered(fs_info, ffe_ctl,
4254 space_info, ins);
4255 case BTRFS_EXTENT_ALLOC_ZONED:
4256 return prepare_allocation_zoned(fs_info, ffe_ctl);
4257 default:
4258 BUG();
4259 }
4260 }
4261
4262 /*
4263 * walks the btree of allocated extents and find a hole of a given size.
4264 * The key ins is changed to record the hole:
4265 * ins->objectid == start position
4266 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4267 * ins->offset == the size of the hole.
4268 * Any available blocks before search_start are skipped.
4269 *
4270 * If there is no suitable free space, we will record the max size of
4271 * the free space extent currently.
4272 *
4273 * The overall logic and call chain:
4274 *
4275 * find_free_extent()
4276 * |- Iterate through all block groups
4277 * | |- Get a valid block group
4278 * | |- Try to do clustered allocation in that block group
4279 * | |- Try to do unclustered allocation in that block group
4280 * | |- Check if the result is valid
4281 * | | |- If valid, then exit
4282 * | |- Jump to next block group
4283 * |
4284 * |- Push harder to find free extents
4285 * |- If not found, re-iterate all block groups
4286 */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4287 static noinline int find_free_extent(struct btrfs_root *root,
4288 struct btrfs_key *ins,
4289 struct find_free_extent_ctl *ffe_ctl)
4290 {
4291 struct btrfs_fs_info *fs_info = root->fs_info;
4292 int ret = 0;
4293 int cache_block_group_error = 0;
4294 struct btrfs_block_group *block_group = NULL;
4295 struct btrfs_space_info *space_info;
4296 bool full_search = false;
4297
4298 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4299
4300 ffe_ctl->search_start = 0;
4301 /* For clustered allocation */
4302 ffe_ctl->empty_cluster = 0;
4303 ffe_ctl->last_ptr = NULL;
4304 ffe_ctl->use_cluster = true;
4305 ffe_ctl->have_caching_bg = false;
4306 ffe_ctl->orig_have_caching_bg = false;
4307 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4308 ffe_ctl->loop = 0;
4309 /* For clustered allocation */
4310 ffe_ctl->retry_clustered = false;
4311 ffe_ctl->retry_unclustered = false;
4312 ffe_ctl->cached = 0;
4313 ffe_ctl->max_extent_size = 0;
4314 ffe_ctl->total_free_space = 0;
4315 ffe_ctl->found_offset = 0;
4316 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4317
4318 if (btrfs_is_zoned(fs_info))
4319 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4320
4321 ins->type = BTRFS_EXTENT_ITEM_KEY;
4322 ins->objectid = 0;
4323 ins->offset = 0;
4324
4325 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4326 ffe_ctl->flags);
4327
4328 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4329 if (!space_info) {
4330 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4331 return -ENOSPC;
4332 }
4333
4334 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4335 if (ret < 0)
4336 return ret;
4337
4338 ffe_ctl->search_start = max(ffe_ctl->search_start,
4339 first_logical_byte(fs_info));
4340 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4341 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4342 block_group = btrfs_lookup_block_group(fs_info,
4343 ffe_ctl->search_start);
4344 /*
4345 * we don't want to use the block group if it doesn't match our
4346 * allocation bits, or if its not cached.
4347 *
4348 * However if we are re-searching with an ideal block group
4349 * picked out then we don't care that the block group is cached.
4350 */
4351 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4352 block_group->cached != BTRFS_CACHE_NO) {
4353 down_read(&space_info->groups_sem);
4354 if (list_empty(&block_group->list) ||
4355 block_group->ro) {
4356 /*
4357 * someone is removing this block group,
4358 * we can't jump into the have_block_group
4359 * target because our list pointers are not
4360 * valid
4361 */
4362 btrfs_put_block_group(block_group);
4363 up_read(&space_info->groups_sem);
4364 } else {
4365 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4366 block_group->flags);
4367 btrfs_lock_block_group(block_group,
4368 ffe_ctl->delalloc);
4369 goto have_block_group;
4370 }
4371 } else if (block_group) {
4372 btrfs_put_block_group(block_group);
4373 }
4374 }
4375 search:
4376 ffe_ctl->have_caching_bg = false;
4377 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4378 ffe_ctl->index == 0)
4379 full_search = true;
4380 down_read(&space_info->groups_sem);
4381 list_for_each_entry(block_group,
4382 &space_info->block_groups[ffe_ctl->index], list) {
4383 struct btrfs_block_group *bg_ret;
4384
4385 /* If the block group is read-only, we can skip it entirely. */
4386 if (unlikely(block_group->ro)) {
4387 if (ffe_ctl->for_treelog)
4388 btrfs_clear_treelog_bg(block_group);
4389 if (ffe_ctl->for_data_reloc)
4390 btrfs_clear_data_reloc_bg(block_group);
4391 continue;
4392 }
4393
4394 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4395 ffe_ctl->search_start = block_group->start;
4396
4397 /*
4398 * this can happen if we end up cycling through all the
4399 * raid types, but we want to make sure we only allocate
4400 * for the proper type.
4401 */
4402 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4403 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4404 BTRFS_BLOCK_GROUP_RAID1_MASK |
4405 BTRFS_BLOCK_GROUP_RAID56_MASK |
4406 BTRFS_BLOCK_GROUP_RAID10;
4407
4408 /*
4409 * if they asked for extra copies and this block group
4410 * doesn't provide them, bail. This does allow us to
4411 * fill raid0 from raid1.
4412 */
4413 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4414 goto loop;
4415
4416 /*
4417 * This block group has different flags than we want.
4418 * It's possible that we have MIXED_GROUP flag but no
4419 * block group is mixed. Just skip such block group.
4420 */
4421 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4422 continue;
4423 }
4424
4425 have_block_group:
4426 ffe_ctl->cached = btrfs_block_group_done(block_group);
4427 if (unlikely(!ffe_ctl->cached)) {
4428 ffe_ctl->have_caching_bg = true;
4429 ret = btrfs_cache_block_group(block_group, false);
4430
4431 /*
4432 * If we get ENOMEM here or something else we want to
4433 * try other block groups, because it may not be fatal.
4434 * However if we can't find anything else we need to
4435 * save our return here so that we return the actual
4436 * error that caused problems, not ENOSPC.
4437 */
4438 if (ret < 0) {
4439 if (!cache_block_group_error)
4440 cache_block_group_error = ret;
4441 ret = 0;
4442 goto loop;
4443 }
4444 ret = 0;
4445 }
4446
4447 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4448 if (!cache_block_group_error)
4449 cache_block_group_error = -EIO;
4450 goto loop;
4451 }
4452
4453 bg_ret = NULL;
4454 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4455 if (ret == 0) {
4456 if (bg_ret && bg_ret != block_group) {
4457 btrfs_release_block_group(block_group,
4458 ffe_ctl->delalloc);
4459 block_group = bg_ret;
4460 }
4461 } else if (ret == -EAGAIN) {
4462 goto have_block_group;
4463 } else if (ret > 0) {
4464 goto loop;
4465 }
4466
4467 /* Checks */
4468 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4469 fs_info->stripesize);
4470
4471 /* move on to the next group */
4472 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4473 block_group->start + block_group->length) {
4474 btrfs_add_free_space_unused(block_group,
4475 ffe_ctl->found_offset,
4476 ffe_ctl->num_bytes);
4477 goto loop;
4478 }
4479
4480 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4481 btrfs_add_free_space_unused(block_group,
4482 ffe_ctl->found_offset,
4483 ffe_ctl->search_start - ffe_ctl->found_offset);
4484
4485 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4486 ffe_ctl->num_bytes,
4487 ffe_ctl->delalloc);
4488 if (ret == -EAGAIN) {
4489 btrfs_add_free_space_unused(block_group,
4490 ffe_ctl->found_offset,
4491 ffe_ctl->num_bytes);
4492 goto loop;
4493 }
4494 btrfs_inc_block_group_reservations(block_group);
4495
4496 /* we are all good, lets return */
4497 ins->objectid = ffe_ctl->search_start;
4498 ins->offset = ffe_ctl->num_bytes;
4499
4500 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4501 ffe_ctl->num_bytes);
4502 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4503 break;
4504 loop:
4505 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4506 cond_resched();
4507 }
4508 up_read(&space_info->groups_sem);
4509
4510 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4511 if (ret > 0)
4512 goto search;
4513
4514 if (ret == -ENOSPC && !cache_block_group_error) {
4515 /*
4516 * Use ffe_ctl->total_free_space as fallback if we can't find
4517 * any contiguous hole.
4518 */
4519 if (!ffe_ctl->max_extent_size)
4520 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4521 spin_lock(&space_info->lock);
4522 space_info->max_extent_size = ffe_ctl->max_extent_size;
4523 spin_unlock(&space_info->lock);
4524 ins->offset = ffe_ctl->max_extent_size;
4525 } else if (ret == -ENOSPC) {
4526 ret = cache_block_group_error;
4527 }
4528 return ret;
4529 }
4530
4531 /*
4532 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4533 * hole that is at least as big as @num_bytes.
4534 *
4535 * @root - The root that will contain this extent
4536 *
4537 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4538 * is used for accounting purposes. This value differs
4539 * from @num_bytes only in the case of compressed extents.
4540 *
4541 * @num_bytes - Number of bytes to allocate on-disk.
4542 *
4543 * @min_alloc_size - Indicates the minimum amount of space that the
4544 * allocator should try to satisfy. In some cases
4545 * @num_bytes may be larger than what is required and if
4546 * the filesystem is fragmented then allocation fails.
4547 * However, the presence of @min_alloc_size gives a
4548 * chance to try and satisfy the smaller allocation.
4549 *
4550 * @empty_size - A hint that you plan on doing more COW. This is the
4551 * size in bytes the allocator should try to find free
4552 * next to the block it returns. This is just a hint and
4553 * may be ignored by the allocator.
4554 *
4555 * @hint_byte - Hint to the allocator to start searching above the byte
4556 * address passed. It might be ignored.
4557 *
4558 * @ins - This key is modified to record the found hole. It will
4559 * have the following values:
4560 * ins->objectid == start position
4561 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4562 * ins->offset == the size of the hole.
4563 *
4564 * @is_data - Boolean flag indicating whether an extent is
4565 * allocated for data (true) or metadata (false)
4566 *
4567 * @delalloc - Boolean flag indicating whether this allocation is for
4568 * delalloc or not. If 'true' data_rwsem of block groups
4569 * is going to be acquired.
4570 *
4571 *
4572 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4573 * case -ENOSPC is returned then @ins->offset will contain the size of the
4574 * largest available hole the allocator managed to find.
4575 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4576 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4577 u64 num_bytes, u64 min_alloc_size,
4578 u64 empty_size, u64 hint_byte,
4579 struct btrfs_key *ins, int is_data, int delalloc)
4580 {
4581 struct btrfs_fs_info *fs_info = root->fs_info;
4582 struct find_free_extent_ctl ffe_ctl = {};
4583 bool final_tried = num_bytes == min_alloc_size;
4584 u64 flags;
4585 int ret;
4586 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4587 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4588
4589 flags = get_alloc_profile_by_root(root, is_data);
4590 again:
4591 WARN_ON(num_bytes < fs_info->sectorsize);
4592
4593 ffe_ctl.ram_bytes = ram_bytes;
4594 ffe_ctl.num_bytes = num_bytes;
4595 ffe_ctl.min_alloc_size = min_alloc_size;
4596 ffe_ctl.empty_size = empty_size;
4597 ffe_ctl.flags = flags;
4598 ffe_ctl.delalloc = delalloc;
4599 ffe_ctl.hint_byte = hint_byte;
4600 ffe_ctl.for_treelog = for_treelog;
4601 ffe_ctl.for_data_reloc = for_data_reloc;
4602
4603 ret = find_free_extent(root, ins, &ffe_ctl);
4604 if (!ret && !is_data) {
4605 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4606 } else if (ret == -ENOSPC) {
4607 if (!final_tried && ins->offset) {
4608 num_bytes = min(num_bytes >> 1, ins->offset);
4609 num_bytes = round_down(num_bytes,
4610 fs_info->sectorsize);
4611 num_bytes = max(num_bytes, min_alloc_size);
4612 ram_bytes = num_bytes;
4613 if (num_bytes == min_alloc_size)
4614 final_tried = true;
4615 goto again;
4616 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4617 struct btrfs_space_info *sinfo;
4618
4619 sinfo = btrfs_find_space_info(fs_info, flags);
4620 btrfs_err(fs_info,
4621 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4622 flags, num_bytes, for_treelog, for_data_reloc);
4623 if (sinfo)
4624 btrfs_dump_space_info(fs_info, sinfo,
4625 num_bytes, 1);
4626 }
4627 }
4628
4629 return ret;
4630 }
4631
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4632 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4633 u64 start, u64 len, int delalloc)
4634 {
4635 struct btrfs_block_group *cache;
4636
4637 cache = btrfs_lookup_block_group(fs_info, start);
4638 if (!cache) {
4639 btrfs_err(fs_info, "Unable to find block group for %llu",
4640 start);
4641 return -ENOSPC;
4642 }
4643
4644 btrfs_add_free_space(cache, start, len);
4645 btrfs_free_reserved_bytes(cache, len, delalloc);
4646 trace_btrfs_reserved_extent_free(fs_info, start, len);
4647
4648 btrfs_put_block_group(cache);
4649 return 0;
4650 }
4651
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4652 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4653 u64 len)
4654 {
4655 struct btrfs_block_group *cache;
4656 int ret = 0;
4657
4658 cache = btrfs_lookup_block_group(trans->fs_info, start);
4659 if (!cache) {
4660 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4661 start);
4662 return -ENOSPC;
4663 }
4664
4665 ret = pin_down_extent(trans, cache, start, len, 1);
4666 btrfs_put_block_group(cache);
4667 return ret;
4668 }
4669
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4670 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4671 u64 num_bytes)
4672 {
4673 struct btrfs_fs_info *fs_info = trans->fs_info;
4674 int ret;
4675
4676 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4677 if (ret)
4678 return ret;
4679
4680 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4681 if (ret) {
4682 ASSERT(!ret);
4683 btrfs_err(fs_info, "update block group failed for %llu %llu",
4684 bytenr, num_bytes);
4685 return ret;
4686 }
4687
4688 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4689 return 0;
4690 }
4691
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4692 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4693 u64 parent, u64 root_objectid,
4694 u64 flags, u64 owner, u64 offset,
4695 struct btrfs_key *ins, int ref_mod)
4696 {
4697 struct btrfs_fs_info *fs_info = trans->fs_info;
4698 struct btrfs_root *extent_root;
4699 int ret;
4700 struct btrfs_extent_item *extent_item;
4701 struct btrfs_extent_inline_ref *iref;
4702 struct btrfs_path *path;
4703 struct extent_buffer *leaf;
4704 int type;
4705 u32 size;
4706
4707 if (parent > 0)
4708 type = BTRFS_SHARED_DATA_REF_KEY;
4709 else
4710 type = BTRFS_EXTENT_DATA_REF_KEY;
4711
4712 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4713
4714 path = btrfs_alloc_path();
4715 if (!path)
4716 return -ENOMEM;
4717
4718 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4719 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4720 if (ret) {
4721 btrfs_free_path(path);
4722 return ret;
4723 }
4724
4725 leaf = path->nodes[0];
4726 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4727 struct btrfs_extent_item);
4728 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4729 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4730 btrfs_set_extent_flags(leaf, extent_item,
4731 flags | BTRFS_EXTENT_FLAG_DATA);
4732
4733 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4734 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4735 if (parent > 0) {
4736 struct btrfs_shared_data_ref *ref;
4737 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4738 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4739 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4740 } else {
4741 struct btrfs_extent_data_ref *ref;
4742 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4743 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4744 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4745 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4746 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4747 }
4748
4749 btrfs_mark_buffer_dirty(path->nodes[0]);
4750 btrfs_free_path(path);
4751
4752 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4753 }
4754
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4755 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4756 struct btrfs_delayed_ref_node *node,
4757 struct btrfs_delayed_extent_op *extent_op)
4758 {
4759 struct btrfs_fs_info *fs_info = trans->fs_info;
4760 struct btrfs_root *extent_root;
4761 int ret;
4762 struct btrfs_extent_item *extent_item;
4763 struct btrfs_key extent_key;
4764 struct btrfs_tree_block_info *block_info;
4765 struct btrfs_extent_inline_ref *iref;
4766 struct btrfs_path *path;
4767 struct extent_buffer *leaf;
4768 struct btrfs_delayed_tree_ref *ref;
4769 u32 size = sizeof(*extent_item) + sizeof(*iref);
4770 u64 flags = extent_op->flags_to_set;
4771 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4772
4773 ref = btrfs_delayed_node_to_tree_ref(node);
4774
4775 extent_key.objectid = node->bytenr;
4776 if (skinny_metadata) {
4777 extent_key.offset = ref->level;
4778 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4779 } else {
4780 extent_key.offset = node->num_bytes;
4781 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4782 size += sizeof(*block_info);
4783 }
4784
4785 path = btrfs_alloc_path();
4786 if (!path)
4787 return -ENOMEM;
4788
4789 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4790 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4791 size);
4792 if (ret) {
4793 btrfs_free_path(path);
4794 return ret;
4795 }
4796
4797 leaf = path->nodes[0];
4798 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4799 struct btrfs_extent_item);
4800 btrfs_set_extent_refs(leaf, extent_item, 1);
4801 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4802 btrfs_set_extent_flags(leaf, extent_item,
4803 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4804
4805 if (skinny_metadata) {
4806 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4807 } else {
4808 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4809 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4810 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4811 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4812 }
4813
4814 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4815 btrfs_set_extent_inline_ref_type(leaf, iref,
4816 BTRFS_SHARED_BLOCK_REF_KEY);
4817 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4818 } else {
4819 btrfs_set_extent_inline_ref_type(leaf, iref,
4820 BTRFS_TREE_BLOCK_REF_KEY);
4821 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4822 }
4823
4824 btrfs_mark_buffer_dirty(leaf);
4825 btrfs_free_path(path);
4826
4827 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4828 }
4829
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4830 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4831 struct btrfs_root *root, u64 owner,
4832 u64 offset, u64 ram_bytes,
4833 struct btrfs_key *ins)
4834 {
4835 struct btrfs_ref generic_ref = { 0 };
4836
4837 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4838
4839 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4840 ins->objectid, ins->offset, 0);
4841 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4842 offset, 0, false);
4843 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4844
4845 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4846 }
4847
4848 /*
4849 * this is used by the tree logging recovery code. It records that
4850 * an extent has been allocated and makes sure to clear the free
4851 * space cache bits as well
4852 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4853 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4854 u64 root_objectid, u64 owner, u64 offset,
4855 struct btrfs_key *ins)
4856 {
4857 struct btrfs_fs_info *fs_info = trans->fs_info;
4858 int ret;
4859 struct btrfs_block_group *block_group;
4860 struct btrfs_space_info *space_info;
4861
4862 /*
4863 * Mixed block groups will exclude before processing the log so we only
4864 * need to do the exclude dance if this fs isn't mixed.
4865 */
4866 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4867 ret = __exclude_logged_extent(fs_info, ins->objectid,
4868 ins->offset);
4869 if (ret)
4870 return ret;
4871 }
4872
4873 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4874 if (!block_group)
4875 return -EINVAL;
4876
4877 space_info = block_group->space_info;
4878 spin_lock(&space_info->lock);
4879 spin_lock(&block_group->lock);
4880 space_info->bytes_reserved += ins->offset;
4881 block_group->reserved += ins->offset;
4882 spin_unlock(&block_group->lock);
4883 spin_unlock(&space_info->lock);
4884
4885 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4886 offset, ins, 1);
4887 if (ret)
4888 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4889 btrfs_put_block_group(block_group);
4890 return ret;
4891 }
4892
4893 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4894 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4895 u64 bytenr, int level, u64 owner,
4896 enum btrfs_lock_nesting nest)
4897 {
4898 struct btrfs_fs_info *fs_info = root->fs_info;
4899 struct extent_buffer *buf;
4900 u64 lockdep_owner = owner;
4901
4902 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4903 if (IS_ERR(buf))
4904 return buf;
4905
4906 /*
4907 * Extra safety check in case the extent tree is corrupted and extent
4908 * allocator chooses to use a tree block which is already used and
4909 * locked.
4910 */
4911 if (buf->lock_owner == current->pid) {
4912 btrfs_err_rl(fs_info,
4913 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4914 buf->start, btrfs_header_owner(buf), current->pid);
4915 free_extent_buffer(buf);
4916 return ERR_PTR(-EUCLEAN);
4917 }
4918
4919 /*
4920 * The reloc trees are just snapshots, so we need them to appear to be
4921 * just like any other fs tree WRT lockdep.
4922 *
4923 * The exception however is in replace_path() in relocation, where we
4924 * hold the lock on the original fs root and then search for the reloc
4925 * root. At that point we need to make sure any reloc root buffers are
4926 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4927 * lockdep happy.
4928 */
4929 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4930 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4931 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4932
4933 /* btrfs_clean_tree_block() accesses generation field. */
4934 btrfs_set_header_generation(buf, trans->transid);
4935
4936 /*
4937 * This needs to stay, because we could allocate a freed block from an
4938 * old tree into a new tree, so we need to make sure this new block is
4939 * set to the appropriate level and owner.
4940 */
4941 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4942
4943 __btrfs_tree_lock(buf, nest);
4944 btrfs_clean_tree_block(buf);
4945 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4946 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4947
4948 set_extent_buffer_uptodate(buf);
4949
4950 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4951 btrfs_set_header_level(buf, level);
4952 btrfs_set_header_bytenr(buf, buf->start);
4953 btrfs_set_header_generation(buf, trans->transid);
4954 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4955 btrfs_set_header_owner(buf, owner);
4956 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4957 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4958 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4959 buf->log_index = root->log_transid % 2;
4960 /*
4961 * we allow two log transactions at a time, use different
4962 * EXTENT bit to differentiate dirty pages.
4963 */
4964 if (buf->log_index == 0)
4965 set_extent_dirty(&root->dirty_log_pages, buf->start,
4966 buf->start + buf->len - 1, GFP_NOFS);
4967 else
4968 set_extent_new(&root->dirty_log_pages, buf->start,
4969 buf->start + buf->len - 1);
4970 } else {
4971 buf->log_index = -1;
4972 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4973 buf->start + buf->len - 1, GFP_NOFS);
4974 }
4975 /* this returns a buffer locked for blocking */
4976 return buf;
4977 }
4978
4979 /*
4980 * finds a free extent and does all the dirty work required for allocation
4981 * returns the tree buffer or an ERR_PTR on error.
4982 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4983 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4984 struct btrfs_root *root,
4985 u64 parent, u64 root_objectid,
4986 const struct btrfs_disk_key *key,
4987 int level, u64 hint,
4988 u64 empty_size,
4989 enum btrfs_lock_nesting nest)
4990 {
4991 struct btrfs_fs_info *fs_info = root->fs_info;
4992 struct btrfs_key ins;
4993 struct btrfs_block_rsv *block_rsv;
4994 struct extent_buffer *buf;
4995 struct btrfs_delayed_extent_op *extent_op;
4996 struct btrfs_ref generic_ref = { 0 };
4997 u64 flags = 0;
4998 int ret;
4999 u32 blocksize = fs_info->nodesize;
5000 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5001
5002 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5003 if (btrfs_is_testing(fs_info)) {
5004 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5005 level, root_objectid, nest);
5006 if (!IS_ERR(buf))
5007 root->alloc_bytenr += blocksize;
5008 return buf;
5009 }
5010 #endif
5011
5012 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5013 if (IS_ERR(block_rsv))
5014 return ERR_CAST(block_rsv);
5015
5016 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5017 empty_size, hint, &ins, 0, 0);
5018 if (ret)
5019 goto out_unuse;
5020
5021 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5022 root_objectid, nest);
5023 if (IS_ERR(buf)) {
5024 ret = PTR_ERR(buf);
5025 goto out_free_reserved;
5026 }
5027
5028 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5029 if (parent == 0)
5030 parent = ins.objectid;
5031 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5032 } else
5033 BUG_ON(parent > 0);
5034
5035 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5036 extent_op = btrfs_alloc_delayed_extent_op();
5037 if (!extent_op) {
5038 ret = -ENOMEM;
5039 goto out_free_buf;
5040 }
5041 if (key)
5042 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5043 else
5044 memset(&extent_op->key, 0, sizeof(extent_op->key));
5045 extent_op->flags_to_set = flags;
5046 extent_op->update_key = skinny_metadata ? false : true;
5047 extent_op->update_flags = true;
5048 extent_op->level = level;
5049
5050 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5051 ins.objectid, ins.offset, parent);
5052 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5053 root->root_key.objectid, false);
5054 btrfs_ref_tree_mod(fs_info, &generic_ref);
5055 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5056 if (ret)
5057 goto out_free_delayed;
5058 }
5059 return buf;
5060
5061 out_free_delayed:
5062 btrfs_free_delayed_extent_op(extent_op);
5063 out_free_buf:
5064 btrfs_tree_unlock(buf);
5065 free_extent_buffer(buf);
5066 out_free_reserved:
5067 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5068 out_unuse:
5069 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5070 return ERR_PTR(ret);
5071 }
5072
5073 struct walk_control {
5074 u64 refs[BTRFS_MAX_LEVEL];
5075 u64 flags[BTRFS_MAX_LEVEL];
5076 struct btrfs_key update_progress;
5077 struct btrfs_key drop_progress;
5078 int drop_level;
5079 int stage;
5080 int level;
5081 int shared_level;
5082 int update_ref;
5083 int keep_locks;
5084 int reada_slot;
5085 int reada_count;
5086 int restarted;
5087 };
5088
5089 #define DROP_REFERENCE 1
5090 #define UPDATE_BACKREF 2
5091
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5092 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5093 struct btrfs_root *root,
5094 struct walk_control *wc,
5095 struct btrfs_path *path)
5096 {
5097 struct btrfs_fs_info *fs_info = root->fs_info;
5098 u64 bytenr;
5099 u64 generation;
5100 u64 refs;
5101 u64 flags;
5102 u32 nritems;
5103 struct btrfs_key key;
5104 struct extent_buffer *eb;
5105 int ret;
5106 int slot;
5107 int nread = 0;
5108
5109 if (path->slots[wc->level] < wc->reada_slot) {
5110 wc->reada_count = wc->reada_count * 2 / 3;
5111 wc->reada_count = max(wc->reada_count, 2);
5112 } else {
5113 wc->reada_count = wc->reada_count * 3 / 2;
5114 wc->reada_count = min_t(int, wc->reada_count,
5115 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5116 }
5117
5118 eb = path->nodes[wc->level];
5119 nritems = btrfs_header_nritems(eb);
5120
5121 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5122 if (nread >= wc->reada_count)
5123 break;
5124
5125 cond_resched();
5126 bytenr = btrfs_node_blockptr(eb, slot);
5127 generation = btrfs_node_ptr_generation(eb, slot);
5128
5129 if (slot == path->slots[wc->level])
5130 goto reada;
5131
5132 if (wc->stage == UPDATE_BACKREF &&
5133 generation <= root->root_key.offset)
5134 continue;
5135
5136 /* We don't lock the tree block, it's OK to be racy here */
5137 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5138 wc->level - 1, 1, &refs,
5139 &flags);
5140 /* We don't care about errors in readahead. */
5141 if (ret < 0)
5142 continue;
5143 BUG_ON(refs == 0);
5144
5145 if (wc->stage == DROP_REFERENCE) {
5146 if (refs == 1)
5147 goto reada;
5148
5149 if (wc->level == 1 &&
5150 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5151 continue;
5152 if (!wc->update_ref ||
5153 generation <= root->root_key.offset)
5154 continue;
5155 btrfs_node_key_to_cpu(eb, &key, slot);
5156 ret = btrfs_comp_cpu_keys(&key,
5157 &wc->update_progress);
5158 if (ret < 0)
5159 continue;
5160 } else {
5161 if (wc->level == 1 &&
5162 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5163 continue;
5164 }
5165 reada:
5166 btrfs_readahead_node_child(eb, slot);
5167 nread++;
5168 }
5169 wc->reada_slot = slot;
5170 }
5171
5172 /*
5173 * helper to process tree block while walking down the tree.
5174 *
5175 * when wc->stage == UPDATE_BACKREF, this function updates
5176 * back refs for pointers in the block.
5177 *
5178 * NOTE: return value 1 means we should stop walking down.
5179 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)5180 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5181 struct btrfs_root *root,
5182 struct btrfs_path *path,
5183 struct walk_control *wc, int lookup_info)
5184 {
5185 struct btrfs_fs_info *fs_info = root->fs_info;
5186 int level = wc->level;
5187 struct extent_buffer *eb = path->nodes[level];
5188 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5189 int ret;
5190
5191 if (wc->stage == UPDATE_BACKREF &&
5192 btrfs_header_owner(eb) != root->root_key.objectid)
5193 return 1;
5194
5195 /*
5196 * when reference count of tree block is 1, it won't increase
5197 * again. once full backref flag is set, we never clear it.
5198 */
5199 if (lookup_info &&
5200 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5201 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5202 BUG_ON(!path->locks[level]);
5203 ret = btrfs_lookup_extent_info(trans, fs_info,
5204 eb->start, level, 1,
5205 &wc->refs[level],
5206 &wc->flags[level]);
5207 BUG_ON(ret == -ENOMEM);
5208 if (ret)
5209 return ret;
5210 BUG_ON(wc->refs[level] == 0);
5211 }
5212
5213 if (wc->stage == DROP_REFERENCE) {
5214 if (wc->refs[level] > 1)
5215 return 1;
5216
5217 if (path->locks[level] && !wc->keep_locks) {
5218 btrfs_tree_unlock_rw(eb, path->locks[level]);
5219 path->locks[level] = 0;
5220 }
5221 return 0;
5222 }
5223
5224 /* wc->stage == UPDATE_BACKREF */
5225 if (!(wc->flags[level] & flag)) {
5226 BUG_ON(!path->locks[level]);
5227 ret = btrfs_inc_ref(trans, root, eb, 1);
5228 BUG_ON(ret); /* -ENOMEM */
5229 ret = btrfs_dec_ref(trans, root, eb, 0);
5230 BUG_ON(ret); /* -ENOMEM */
5231 ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5232 btrfs_header_level(eb));
5233 BUG_ON(ret); /* -ENOMEM */
5234 wc->flags[level] |= flag;
5235 }
5236
5237 /*
5238 * the block is shared by multiple trees, so it's not good to
5239 * keep the tree lock
5240 */
5241 if (path->locks[level] && level > 0) {
5242 btrfs_tree_unlock_rw(eb, path->locks[level]);
5243 path->locks[level] = 0;
5244 }
5245 return 0;
5246 }
5247
5248 /*
5249 * This is used to verify a ref exists for this root to deal with a bug where we
5250 * would have a drop_progress key that hadn't been updated properly.
5251 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5252 static int check_ref_exists(struct btrfs_trans_handle *trans,
5253 struct btrfs_root *root, u64 bytenr, u64 parent,
5254 int level)
5255 {
5256 struct btrfs_path *path;
5257 struct btrfs_extent_inline_ref *iref;
5258 int ret;
5259
5260 path = btrfs_alloc_path();
5261 if (!path)
5262 return -ENOMEM;
5263
5264 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5265 root->fs_info->nodesize, parent,
5266 root->root_key.objectid, level, 0);
5267 btrfs_free_path(path);
5268 if (ret == -ENOENT)
5269 return 0;
5270 if (ret < 0)
5271 return ret;
5272 return 1;
5273 }
5274
5275 /*
5276 * helper to process tree block pointer.
5277 *
5278 * when wc->stage == DROP_REFERENCE, this function checks
5279 * reference count of the block pointed to. if the block
5280 * is shared and we need update back refs for the subtree
5281 * rooted at the block, this function changes wc->stage to
5282 * UPDATE_BACKREF. if the block is shared and there is no
5283 * need to update back, this function drops the reference
5284 * to the block.
5285 *
5286 * NOTE: return value 1 means we should stop walking down.
5287 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)5288 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5289 struct btrfs_root *root,
5290 struct btrfs_path *path,
5291 struct walk_control *wc, int *lookup_info)
5292 {
5293 struct btrfs_fs_info *fs_info = root->fs_info;
5294 u64 bytenr;
5295 u64 generation;
5296 u64 parent;
5297 struct btrfs_key key;
5298 struct btrfs_key first_key;
5299 struct btrfs_ref ref = { 0 };
5300 struct extent_buffer *next;
5301 int level = wc->level;
5302 int reada = 0;
5303 int ret = 0;
5304 bool need_account = false;
5305
5306 generation = btrfs_node_ptr_generation(path->nodes[level],
5307 path->slots[level]);
5308 /*
5309 * if the lower level block was created before the snapshot
5310 * was created, we know there is no need to update back refs
5311 * for the subtree
5312 */
5313 if (wc->stage == UPDATE_BACKREF &&
5314 generation <= root->root_key.offset) {
5315 *lookup_info = 1;
5316 return 1;
5317 }
5318
5319 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5320 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5321 path->slots[level]);
5322
5323 next = find_extent_buffer(fs_info, bytenr);
5324 if (!next) {
5325 next = btrfs_find_create_tree_block(fs_info, bytenr,
5326 root->root_key.objectid, level - 1);
5327 if (IS_ERR(next))
5328 return PTR_ERR(next);
5329 reada = 1;
5330 }
5331 btrfs_tree_lock(next);
5332
5333 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5334 &wc->refs[level - 1],
5335 &wc->flags[level - 1]);
5336 if (ret < 0)
5337 goto out_unlock;
5338
5339 if (unlikely(wc->refs[level - 1] == 0)) {
5340 btrfs_err(fs_info, "Missing references.");
5341 ret = -EIO;
5342 goto out_unlock;
5343 }
5344 *lookup_info = 0;
5345
5346 if (wc->stage == DROP_REFERENCE) {
5347 if (wc->refs[level - 1] > 1) {
5348 need_account = true;
5349 if (level == 1 &&
5350 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5351 goto skip;
5352
5353 if (!wc->update_ref ||
5354 generation <= root->root_key.offset)
5355 goto skip;
5356
5357 btrfs_node_key_to_cpu(path->nodes[level], &key,
5358 path->slots[level]);
5359 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5360 if (ret < 0)
5361 goto skip;
5362
5363 wc->stage = UPDATE_BACKREF;
5364 wc->shared_level = level - 1;
5365 }
5366 } else {
5367 if (level == 1 &&
5368 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5369 goto skip;
5370 }
5371
5372 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5373 btrfs_tree_unlock(next);
5374 free_extent_buffer(next);
5375 next = NULL;
5376 *lookup_info = 1;
5377 }
5378
5379 if (!next) {
5380 if (reada && level == 1)
5381 reada_walk_down(trans, root, wc, path);
5382 next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5383 generation, level - 1, &first_key);
5384 if (IS_ERR(next)) {
5385 return PTR_ERR(next);
5386 } else if (!extent_buffer_uptodate(next)) {
5387 free_extent_buffer(next);
5388 return -EIO;
5389 }
5390 btrfs_tree_lock(next);
5391 }
5392
5393 level--;
5394 ASSERT(level == btrfs_header_level(next));
5395 if (level != btrfs_header_level(next)) {
5396 btrfs_err(root->fs_info, "mismatched level");
5397 ret = -EIO;
5398 goto out_unlock;
5399 }
5400 path->nodes[level] = next;
5401 path->slots[level] = 0;
5402 path->locks[level] = BTRFS_WRITE_LOCK;
5403 wc->level = level;
5404 if (wc->level == 1)
5405 wc->reada_slot = 0;
5406 return 0;
5407 skip:
5408 wc->refs[level - 1] = 0;
5409 wc->flags[level - 1] = 0;
5410 if (wc->stage == DROP_REFERENCE) {
5411 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5412 parent = path->nodes[level]->start;
5413 } else {
5414 ASSERT(root->root_key.objectid ==
5415 btrfs_header_owner(path->nodes[level]));
5416 if (root->root_key.objectid !=
5417 btrfs_header_owner(path->nodes[level])) {
5418 btrfs_err(root->fs_info,
5419 "mismatched block owner");
5420 ret = -EIO;
5421 goto out_unlock;
5422 }
5423 parent = 0;
5424 }
5425
5426 /*
5427 * If we had a drop_progress we need to verify the refs are set
5428 * as expected. If we find our ref then we know that from here
5429 * on out everything should be correct, and we can clear the
5430 * ->restarted flag.
5431 */
5432 if (wc->restarted) {
5433 ret = check_ref_exists(trans, root, bytenr, parent,
5434 level - 1);
5435 if (ret < 0)
5436 goto out_unlock;
5437 if (ret == 0)
5438 goto no_delete;
5439 ret = 0;
5440 wc->restarted = 0;
5441 }
5442
5443 /*
5444 * Reloc tree doesn't contribute to qgroup numbers, and we have
5445 * already accounted them at merge time (replace_path),
5446 * thus we could skip expensive subtree trace here.
5447 */
5448 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5449 need_account) {
5450 ret = btrfs_qgroup_trace_subtree(trans, next,
5451 generation, level - 1);
5452 if (ret) {
5453 btrfs_err_rl(fs_info,
5454 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5455 ret);
5456 }
5457 }
5458
5459 /*
5460 * We need to update the next key in our walk control so we can
5461 * update the drop_progress key accordingly. We don't care if
5462 * find_next_key doesn't find a key because that means we're at
5463 * the end and are going to clean up now.
5464 */
5465 wc->drop_level = level;
5466 find_next_key(path, level, &wc->drop_progress);
5467
5468 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5469 fs_info->nodesize, parent);
5470 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5471 0, false);
5472 ret = btrfs_free_extent(trans, &ref);
5473 if (ret)
5474 goto out_unlock;
5475 }
5476 no_delete:
5477 *lookup_info = 1;
5478 ret = 1;
5479
5480 out_unlock:
5481 btrfs_tree_unlock(next);
5482 free_extent_buffer(next);
5483
5484 return ret;
5485 }
5486
5487 /*
5488 * helper to process tree block while walking up the tree.
5489 *
5490 * when wc->stage == DROP_REFERENCE, this function drops
5491 * reference count on the block.
5492 *
5493 * when wc->stage == UPDATE_BACKREF, this function changes
5494 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5495 * to UPDATE_BACKREF previously while processing the block.
5496 *
5497 * NOTE: return value 1 means we should stop walking up.
5498 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5499 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5500 struct btrfs_root *root,
5501 struct btrfs_path *path,
5502 struct walk_control *wc)
5503 {
5504 struct btrfs_fs_info *fs_info = root->fs_info;
5505 int ret;
5506 int level = wc->level;
5507 struct extent_buffer *eb = path->nodes[level];
5508 u64 parent = 0;
5509
5510 if (wc->stage == UPDATE_BACKREF) {
5511 BUG_ON(wc->shared_level < level);
5512 if (level < wc->shared_level)
5513 goto out;
5514
5515 ret = find_next_key(path, level + 1, &wc->update_progress);
5516 if (ret > 0)
5517 wc->update_ref = 0;
5518
5519 wc->stage = DROP_REFERENCE;
5520 wc->shared_level = -1;
5521 path->slots[level] = 0;
5522
5523 /*
5524 * check reference count again if the block isn't locked.
5525 * we should start walking down the tree again if reference
5526 * count is one.
5527 */
5528 if (!path->locks[level]) {
5529 BUG_ON(level == 0);
5530 btrfs_tree_lock(eb);
5531 path->locks[level] = BTRFS_WRITE_LOCK;
5532
5533 ret = btrfs_lookup_extent_info(trans, fs_info,
5534 eb->start, level, 1,
5535 &wc->refs[level],
5536 &wc->flags[level]);
5537 if (ret < 0) {
5538 btrfs_tree_unlock_rw(eb, path->locks[level]);
5539 path->locks[level] = 0;
5540 return ret;
5541 }
5542 BUG_ON(wc->refs[level] == 0);
5543 if (wc->refs[level] == 1) {
5544 btrfs_tree_unlock_rw(eb, path->locks[level]);
5545 path->locks[level] = 0;
5546 return 1;
5547 }
5548 }
5549 }
5550
5551 /* wc->stage == DROP_REFERENCE */
5552 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5553
5554 if (wc->refs[level] == 1) {
5555 if (level == 0) {
5556 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5557 ret = btrfs_dec_ref(trans, root, eb, 1);
5558 else
5559 ret = btrfs_dec_ref(trans, root, eb, 0);
5560 BUG_ON(ret); /* -ENOMEM */
5561 if (is_fstree(root->root_key.objectid)) {
5562 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5563 if (ret) {
5564 btrfs_err_rl(fs_info,
5565 "error %d accounting leaf items, quota is out of sync, rescan required",
5566 ret);
5567 }
5568 }
5569 }
5570 /* make block locked assertion in btrfs_clean_tree_block happy */
5571 if (!path->locks[level] &&
5572 btrfs_header_generation(eb) == trans->transid) {
5573 btrfs_tree_lock(eb);
5574 path->locks[level] = BTRFS_WRITE_LOCK;
5575 }
5576 btrfs_clean_tree_block(eb);
5577 }
5578
5579 if (eb == root->node) {
5580 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5581 parent = eb->start;
5582 else if (root->root_key.objectid != btrfs_header_owner(eb))
5583 goto owner_mismatch;
5584 } else {
5585 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5586 parent = path->nodes[level + 1]->start;
5587 else if (root->root_key.objectid !=
5588 btrfs_header_owner(path->nodes[level + 1]))
5589 goto owner_mismatch;
5590 }
5591
5592 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5593 wc->refs[level] == 1);
5594 out:
5595 wc->refs[level] = 0;
5596 wc->flags[level] = 0;
5597 return 0;
5598
5599 owner_mismatch:
5600 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5601 btrfs_header_owner(eb), root->root_key.objectid);
5602 return -EUCLEAN;
5603 }
5604
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5605 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5606 struct btrfs_root *root,
5607 struct btrfs_path *path,
5608 struct walk_control *wc)
5609 {
5610 int level = wc->level;
5611 int lookup_info = 1;
5612 int ret;
5613
5614 while (level >= 0) {
5615 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5616 if (ret > 0)
5617 break;
5618
5619 if (level == 0)
5620 break;
5621
5622 if (path->slots[level] >=
5623 btrfs_header_nritems(path->nodes[level]))
5624 break;
5625
5626 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5627 if (ret > 0) {
5628 path->slots[level]++;
5629 continue;
5630 } else if (ret < 0)
5631 return ret;
5632 level = wc->level;
5633 }
5634 return 0;
5635 }
5636
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5637 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5638 struct btrfs_root *root,
5639 struct btrfs_path *path,
5640 struct walk_control *wc, int max_level)
5641 {
5642 int level = wc->level;
5643 int ret;
5644
5645 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5646 while (level < max_level && path->nodes[level]) {
5647 wc->level = level;
5648 if (path->slots[level] + 1 <
5649 btrfs_header_nritems(path->nodes[level])) {
5650 path->slots[level]++;
5651 return 0;
5652 } else {
5653 ret = walk_up_proc(trans, root, path, wc);
5654 if (ret > 0)
5655 return 0;
5656 if (ret < 0)
5657 return ret;
5658
5659 if (path->locks[level]) {
5660 btrfs_tree_unlock_rw(path->nodes[level],
5661 path->locks[level]);
5662 path->locks[level] = 0;
5663 }
5664 free_extent_buffer(path->nodes[level]);
5665 path->nodes[level] = NULL;
5666 level++;
5667 }
5668 }
5669 return 1;
5670 }
5671
5672 /*
5673 * drop a subvolume tree.
5674 *
5675 * this function traverses the tree freeing any blocks that only
5676 * referenced by the tree.
5677 *
5678 * when a shared tree block is found. this function decreases its
5679 * reference count by one. if update_ref is true, this function
5680 * also make sure backrefs for the shared block and all lower level
5681 * blocks are properly updated.
5682 *
5683 * If called with for_reloc == 0, may exit early with -EAGAIN
5684 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5685 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5686 {
5687 const bool is_reloc_root = (root->root_key.objectid ==
5688 BTRFS_TREE_RELOC_OBJECTID);
5689 struct btrfs_fs_info *fs_info = root->fs_info;
5690 struct btrfs_path *path;
5691 struct btrfs_trans_handle *trans;
5692 struct btrfs_root *tree_root = fs_info->tree_root;
5693 struct btrfs_root_item *root_item = &root->root_item;
5694 struct walk_control *wc;
5695 struct btrfs_key key;
5696 int err = 0;
5697 int ret;
5698 int level;
5699 bool root_dropped = false;
5700 bool unfinished_drop = false;
5701
5702 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5703
5704 path = btrfs_alloc_path();
5705 if (!path) {
5706 err = -ENOMEM;
5707 goto out;
5708 }
5709
5710 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5711 if (!wc) {
5712 btrfs_free_path(path);
5713 err = -ENOMEM;
5714 goto out;
5715 }
5716
5717 /*
5718 * Use join to avoid potential EINTR from transaction start. See
5719 * wait_reserve_ticket and the whole reservation callchain.
5720 */
5721 if (for_reloc)
5722 trans = btrfs_join_transaction(tree_root);
5723 else
5724 trans = btrfs_start_transaction(tree_root, 0);
5725 if (IS_ERR(trans)) {
5726 err = PTR_ERR(trans);
5727 goto out_free;
5728 }
5729
5730 err = btrfs_run_delayed_items(trans);
5731 if (err)
5732 goto out_end_trans;
5733
5734 /*
5735 * This will help us catch people modifying the fs tree while we're
5736 * dropping it. It is unsafe to mess with the fs tree while it's being
5737 * dropped as we unlock the root node and parent nodes as we walk down
5738 * the tree, assuming nothing will change. If something does change
5739 * then we'll have stale information and drop references to blocks we've
5740 * already dropped.
5741 */
5742 set_bit(BTRFS_ROOT_DELETING, &root->state);
5743 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5744
5745 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5746 level = btrfs_header_level(root->node);
5747 path->nodes[level] = btrfs_lock_root_node(root);
5748 path->slots[level] = 0;
5749 path->locks[level] = BTRFS_WRITE_LOCK;
5750 memset(&wc->update_progress, 0,
5751 sizeof(wc->update_progress));
5752 } else {
5753 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5754 memcpy(&wc->update_progress, &key,
5755 sizeof(wc->update_progress));
5756
5757 level = btrfs_root_drop_level(root_item);
5758 BUG_ON(level == 0);
5759 path->lowest_level = level;
5760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5761 path->lowest_level = 0;
5762 if (ret < 0) {
5763 err = ret;
5764 goto out_end_trans;
5765 }
5766 WARN_ON(ret > 0);
5767
5768 /*
5769 * unlock our path, this is safe because only this
5770 * function is allowed to delete this snapshot
5771 */
5772 btrfs_unlock_up_safe(path, 0);
5773
5774 level = btrfs_header_level(root->node);
5775 while (1) {
5776 btrfs_tree_lock(path->nodes[level]);
5777 path->locks[level] = BTRFS_WRITE_LOCK;
5778
5779 ret = btrfs_lookup_extent_info(trans, fs_info,
5780 path->nodes[level]->start,
5781 level, 1, &wc->refs[level],
5782 &wc->flags[level]);
5783 if (ret < 0) {
5784 err = ret;
5785 goto out_end_trans;
5786 }
5787 BUG_ON(wc->refs[level] == 0);
5788
5789 if (level == btrfs_root_drop_level(root_item))
5790 break;
5791
5792 btrfs_tree_unlock(path->nodes[level]);
5793 path->locks[level] = 0;
5794 WARN_ON(wc->refs[level] != 1);
5795 level--;
5796 }
5797 }
5798
5799 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5800 wc->level = level;
5801 wc->shared_level = -1;
5802 wc->stage = DROP_REFERENCE;
5803 wc->update_ref = update_ref;
5804 wc->keep_locks = 0;
5805 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5806
5807 while (1) {
5808
5809 ret = walk_down_tree(trans, root, path, wc);
5810 if (ret < 0) {
5811 err = ret;
5812 break;
5813 }
5814
5815 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5816 if (ret < 0) {
5817 err = ret;
5818 break;
5819 }
5820
5821 if (ret > 0) {
5822 BUG_ON(wc->stage != DROP_REFERENCE);
5823 break;
5824 }
5825
5826 if (wc->stage == DROP_REFERENCE) {
5827 wc->drop_level = wc->level;
5828 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5829 &wc->drop_progress,
5830 path->slots[wc->drop_level]);
5831 }
5832 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5833 &wc->drop_progress);
5834 btrfs_set_root_drop_level(root_item, wc->drop_level);
5835
5836 BUG_ON(wc->level == 0);
5837 if (btrfs_should_end_transaction(trans) ||
5838 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5839 ret = btrfs_update_root(trans, tree_root,
5840 &root->root_key,
5841 root_item);
5842 if (ret) {
5843 btrfs_abort_transaction(trans, ret);
5844 err = ret;
5845 goto out_end_trans;
5846 }
5847
5848 if (!is_reloc_root)
5849 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5850
5851 btrfs_end_transaction_throttle(trans);
5852 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5853 btrfs_debug(fs_info,
5854 "drop snapshot early exit");
5855 err = -EAGAIN;
5856 goto out_free;
5857 }
5858
5859 /*
5860 * Use join to avoid potential EINTR from transaction
5861 * start. See wait_reserve_ticket and the whole
5862 * reservation callchain.
5863 */
5864 if (for_reloc)
5865 trans = btrfs_join_transaction(tree_root);
5866 else
5867 trans = btrfs_start_transaction(tree_root, 0);
5868 if (IS_ERR(trans)) {
5869 err = PTR_ERR(trans);
5870 goto out_free;
5871 }
5872 }
5873 }
5874 btrfs_release_path(path);
5875 if (err)
5876 goto out_end_trans;
5877
5878 ret = btrfs_del_root(trans, &root->root_key);
5879 if (ret) {
5880 btrfs_abort_transaction(trans, ret);
5881 err = ret;
5882 goto out_end_trans;
5883 }
5884
5885 if (!is_reloc_root) {
5886 ret = btrfs_find_root(tree_root, &root->root_key, path,
5887 NULL, NULL);
5888 if (ret < 0) {
5889 btrfs_abort_transaction(trans, ret);
5890 err = ret;
5891 goto out_end_trans;
5892 } else if (ret > 0) {
5893 /* if we fail to delete the orphan item this time
5894 * around, it'll get picked up the next time.
5895 *
5896 * The most common failure here is just -ENOENT.
5897 */
5898 btrfs_del_orphan_item(trans, tree_root,
5899 root->root_key.objectid);
5900 }
5901 }
5902
5903 /*
5904 * This subvolume is going to be completely dropped, and won't be
5905 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5906 * commit transaction time. So free it here manually.
5907 */
5908 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5909 btrfs_qgroup_free_meta_all_pertrans(root);
5910
5911 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5912 btrfs_add_dropped_root(trans, root);
5913 else
5914 btrfs_put_root(root);
5915 root_dropped = true;
5916 out_end_trans:
5917 if (!is_reloc_root)
5918 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5919
5920 btrfs_end_transaction_throttle(trans);
5921 out_free:
5922 kfree(wc);
5923 btrfs_free_path(path);
5924 out:
5925 /*
5926 * We were an unfinished drop root, check to see if there are any
5927 * pending, and if not clear and wake up any waiters.
5928 */
5929 if (!err && unfinished_drop)
5930 btrfs_maybe_wake_unfinished_drop(fs_info);
5931
5932 /*
5933 * So if we need to stop dropping the snapshot for whatever reason we
5934 * need to make sure to add it back to the dead root list so that we
5935 * keep trying to do the work later. This also cleans up roots if we
5936 * don't have it in the radix (like when we recover after a power fail
5937 * or unmount) so we don't leak memory.
5938 */
5939 if (!for_reloc && !root_dropped)
5940 btrfs_add_dead_root(root);
5941 return err;
5942 }
5943
5944 /*
5945 * drop subtree rooted at tree block 'node'.
5946 *
5947 * NOTE: this function will unlock and release tree block 'node'
5948 * only used by relocation code
5949 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5950 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5951 struct btrfs_root *root,
5952 struct extent_buffer *node,
5953 struct extent_buffer *parent)
5954 {
5955 struct btrfs_fs_info *fs_info = root->fs_info;
5956 struct btrfs_path *path;
5957 struct walk_control *wc;
5958 int level;
5959 int parent_level;
5960 int ret = 0;
5961 int wret;
5962
5963 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5964
5965 path = btrfs_alloc_path();
5966 if (!path)
5967 return -ENOMEM;
5968
5969 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5970 if (!wc) {
5971 btrfs_free_path(path);
5972 return -ENOMEM;
5973 }
5974
5975 btrfs_assert_tree_write_locked(parent);
5976 parent_level = btrfs_header_level(parent);
5977 atomic_inc(&parent->refs);
5978 path->nodes[parent_level] = parent;
5979 path->slots[parent_level] = btrfs_header_nritems(parent);
5980
5981 btrfs_assert_tree_write_locked(node);
5982 level = btrfs_header_level(node);
5983 path->nodes[level] = node;
5984 path->slots[level] = 0;
5985 path->locks[level] = BTRFS_WRITE_LOCK;
5986
5987 wc->refs[parent_level] = 1;
5988 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5989 wc->level = level;
5990 wc->shared_level = -1;
5991 wc->stage = DROP_REFERENCE;
5992 wc->update_ref = 0;
5993 wc->keep_locks = 1;
5994 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5995
5996 while (1) {
5997 wret = walk_down_tree(trans, root, path, wc);
5998 if (wret < 0) {
5999 ret = wret;
6000 break;
6001 }
6002
6003 wret = walk_up_tree(trans, root, path, wc, parent_level);
6004 if (wret < 0)
6005 ret = wret;
6006 if (wret != 0)
6007 break;
6008 }
6009
6010 kfree(wc);
6011 btrfs_free_path(path);
6012 return ret;
6013 }
6014
6015 /*
6016 * helper to account the unused space of all the readonly block group in the
6017 * space_info. takes mirrors into account.
6018 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)6019 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6020 {
6021 struct btrfs_block_group *block_group;
6022 u64 free_bytes = 0;
6023 int factor;
6024
6025 /* It's df, we don't care if it's racy */
6026 if (list_empty(&sinfo->ro_bgs))
6027 return 0;
6028
6029 spin_lock(&sinfo->lock);
6030 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6031 spin_lock(&block_group->lock);
6032
6033 if (!block_group->ro) {
6034 spin_unlock(&block_group->lock);
6035 continue;
6036 }
6037
6038 factor = btrfs_bg_type_to_factor(block_group->flags);
6039 free_bytes += (block_group->length -
6040 block_group->used) * factor;
6041
6042 spin_unlock(&block_group->lock);
6043 }
6044 spin_unlock(&sinfo->lock);
6045
6046 return free_bytes;
6047 }
6048
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6049 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6050 u64 start, u64 end)
6051 {
6052 return unpin_extent_range(fs_info, start, end, false);
6053 }
6054
6055 /*
6056 * It used to be that old block groups would be left around forever.
6057 * Iterating over them would be enough to trim unused space. Since we
6058 * now automatically remove them, we also need to iterate over unallocated
6059 * space.
6060 *
6061 * We don't want a transaction for this since the discard may take a
6062 * substantial amount of time. We don't require that a transaction be
6063 * running, but we do need to take a running transaction into account
6064 * to ensure that we're not discarding chunks that were released or
6065 * allocated in the current transaction.
6066 *
6067 * Holding the chunks lock will prevent other threads from allocating
6068 * or releasing chunks, but it won't prevent a running transaction
6069 * from committing and releasing the memory that the pending chunks
6070 * list head uses. For that, we need to take a reference to the
6071 * transaction and hold the commit root sem. We only need to hold
6072 * it while performing the free space search since we have already
6073 * held back allocations.
6074 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6075 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6076 {
6077 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6078 int ret;
6079
6080 *trimmed = 0;
6081
6082 /* Discard not supported = nothing to do. */
6083 if (!bdev_max_discard_sectors(device->bdev))
6084 return 0;
6085
6086 /* Not writable = nothing to do. */
6087 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6088 return 0;
6089
6090 /* No free space = nothing to do. */
6091 if (device->total_bytes <= device->bytes_used)
6092 return 0;
6093
6094 ret = 0;
6095
6096 while (1) {
6097 struct btrfs_fs_info *fs_info = device->fs_info;
6098 u64 bytes;
6099
6100 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6101 if (ret)
6102 break;
6103
6104 find_first_clear_extent_bit(&device->alloc_state, start,
6105 &start, &end,
6106 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6107
6108 /* Check if there are any CHUNK_* bits left */
6109 if (start > device->total_bytes) {
6110 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6111 btrfs_warn_in_rcu(fs_info,
6112 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6113 start, end - start + 1,
6114 rcu_str_deref(device->name),
6115 device->total_bytes);
6116 mutex_unlock(&fs_info->chunk_mutex);
6117 ret = 0;
6118 break;
6119 }
6120
6121 /* Ensure we skip the reserved space on each device. */
6122 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6123
6124 /*
6125 * If find_first_clear_extent_bit find a range that spans the
6126 * end of the device it will set end to -1, in this case it's up
6127 * to the caller to trim the value to the size of the device.
6128 */
6129 end = min(end, device->total_bytes - 1);
6130
6131 len = end - start + 1;
6132
6133 /* We didn't find any extents */
6134 if (!len) {
6135 mutex_unlock(&fs_info->chunk_mutex);
6136 ret = 0;
6137 break;
6138 }
6139
6140 ret = btrfs_issue_discard(device->bdev, start, len,
6141 &bytes);
6142 if (!ret)
6143 set_extent_bits(&device->alloc_state, start,
6144 start + bytes - 1,
6145 CHUNK_TRIMMED);
6146 mutex_unlock(&fs_info->chunk_mutex);
6147
6148 if (ret)
6149 break;
6150
6151 start += len;
6152 *trimmed += bytes;
6153
6154 if (fatal_signal_pending(current)) {
6155 ret = -ERESTARTSYS;
6156 break;
6157 }
6158
6159 cond_resched();
6160 }
6161
6162 return ret;
6163 }
6164
6165 /*
6166 * Trim the whole filesystem by:
6167 * 1) trimming the free space in each block group
6168 * 2) trimming the unallocated space on each device
6169 *
6170 * This will also continue trimming even if a block group or device encounters
6171 * an error. The return value will be the last error, or 0 if nothing bad
6172 * happens.
6173 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6174 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6175 {
6176 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6177 struct btrfs_block_group *cache = NULL;
6178 struct btrfs_device *device;
6179 u64 group_trimmed;
6180 u64 range_end = U64_MAX;
6181 u64 start;
6182 u64 end;
6183 u64 trimmed = 0;
6184 u64 bg_failed = 0;
6185 u64 dev_failed = 0;
6186 int bg_ret = 0;
6187 int dev_ret = 0;
6188 int ret = 0;
6189
6190 if (range->start == U64_MAX)
6191 return -EINVAL;
6192
6193 /*
6194 * Check range overflow if range->len is set.
6195 * The default range->len is U64_MAX.
6196 */
6197 if (range->len != U64_MAX &&
6198 check_add_overflow(range->start, range->len, &range_end))
6199 return -EINVAL;
6200
6201 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6202 for (; cache; cache = btrfs_next_block_group(cache)) {
6203 if (cache->start >= range_end) {
6204 btrfs_put_block_group(cache);
6205 break;
6206 }
6207
6208 start = max(range->start, cache->start);
6209 end = min(range_end, cache->start + cache->length);
6210
6211 if (end - start >= range->minlen) {
6212 if (!btrfs_block_group_done(cache)) {
6213 ret = btrfs_cache_block_group(cache, true);
6214 if (ret) {
6215 bg_failed++;
6216 bg_ret = ret;
6217 continue;
6218 }
6219 }
6220 ret = btrfs_trim_block_group(cache,
6221 &group_trimmed,
6222 start,
6223 end,
6224 range->minlen);
6225
6226 trimmed += group_trimmed;
6227 if (ret) {
6228 bg_failed++;
6229 bg_ret = ret;
6230 continue;
6231 }
6232 }
6233 }
6234
6235 if (bg_failed)
6236 btrfs_warn(fs_info,
6237 "failed to trim %llu block group(s), last error %d",
6238 bg_failed, bg_ret);
6239
6240 mutex_lock(&fs_devices->device_list_mutex);
6241 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6242 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6243 continue;
6244
6245 ret = btrfs_trim_free_extents(device, &group_trimmed);
6246 if (ret) {
6247 dev_failed++;
6248 dev_ret = ret;
6249 break;
6250 }
6251
6252 trimmed += group_trimmed;
6253 }
6254 mutex_unlock(&fs_devices->device_list_mutex);
6255
6256 if (dev_failed)
6257 btrfs_warn(fs_info,
6258 "failed to trim %llu device(s), last error %d",
6259 dev_failed, dev_ret);
6260 range->len = trimmed;
6261 if (bg_ret)
6262 return bg_ret;
6263 return dev_ret;
6264 }
6265