• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include <linux/fscrypt.h>
32 #include "extent-io-tree.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "async-thread.h"
36 #include "block-rsv.h"
37 #include "locking.h"
38 
39 struct btrfs_trans_handle;
40 struct btrfs_transaction;
41 struct btrfs_pending_snapshot;
42 struct btrfs_delayed_ref_root;
43 struct btrfs_space_info;
44 struct btrfs_block_group;
45 extern struct kmem_cache *btrfs_trans_handle_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53 struct btrfs_device;
54 struct btrfs_fs_devices;
55 struct btrfs_balance_control;
56 struct btrfs_delayed_root;
57 struct reloc_control;
58 
59 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
60 
61 /*
62  * Maximum number of mirrors that can be available for all profiles counting
63  * the target device of dev-replace as one. During an active device replace
64  * procedure, the target device of the copy operation is a mirror for the
65  * filesystem data as well that can be used to read data in order to repair
66  * read errors on other disks.
67  *
68  * Current value is derived from RAID1C4 with 4 copies.
69  */
70 #define BTRFS_MAX_MIRRORS (4 + 1)
71 
72 #define BTRFS_MAX_LEVEL 8
73 
74 #define BTRFS_OLDEST_GENERATION	0ULL
75 
76 /*
77  * we can actually store much bigger names, but lets not confuse the rest
78  * of linux
79  */
80 #define BTRFS_NAME_LEN 255
81 
82 /*
83  * Theoretical limit is larger, but we keep this down to a sane
84  * value. That should limit greatly the possibility of collisions on
85  * inode ref items.
86  */
87 #define BTRFS_LINK_MAX 65535U
88 
89 #define BTRFS_EMPTY_DIR_SIZE 0
90 
91 /* ioprio of readahead is set to idle */
92 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
93 
94 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
95 
96 /*
97  * Use large batch size to reduce overhead of metadata updates.  On the reader
98  * side, we only read it when we are close to ENOSPC and the read overhead is
99  * mostly related to the number of CPUs, so it is OK to use arbitrary large
100  * value here.
101  */
102 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
103 
104 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
105 
106 /*
107  * Deltas are an effective way to populate global statistics.  Give macro names
108  * to make it clear what we're doing.  An example is discard_extents in
109  * btrfs_free_space_ctl.
110  */
111 #define BTRFS_STAT_NR_ENTRIES	2
112 #define BTRFS_STAT_CURR		0
113 #define BTRFS_STAT_PREV		1
114 
btrfs_chunk_item_size(int num_stripes)115 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
116 {
117 	BUG_ON(num_stripes == 0);
118 	return sizeof(struct btrfs_chunk) +
119 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
120 }
121 
122 /*
123  * Runtime (in-memory) states of filesystem
124  */
125 enum {
126 	/* Global indicator of serious filesystem errors */
127 	BTRFS_FS_STATE_ERROR,
128 	/*
129 	 * Filesystem is being remounted, allow to skip some operations, like
130 	 * defrag
131 	 */
132 	BTRFS_FS_STATE_REMOUNTING,
133 	/* Filesystem in RO mode */
134 	BTRFS_FS_STATE_RO,
135 	/* Track if a transaction abort has been reported on this filesystem */
136 	BTRFS_FS_STATE_TRANS_ABORTED,
137 	/*
138 	 * Bio operations should be blocked on this filesystem because a source
139 	 * or target device is being destroyed as part of a device replace
140 	 */
141 	BTRFS_FS_STATE_DEV_REPLACING,
142 	/* The btrfs_fs_info created for self-tests */
143 	BTRFS_FS_STATE_DUMMY_FS_INFO,
144 
145 	BTRFS_FS_STATE_NO_CSUMS,
146 
147 	/* Indicates there was an error cleaning up a log tree. */
148 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
149 
150 	BTRFS_FS_STATE_COUNT
151 };
152 
153 #define BTRFS_BACKREF_REV_MAX		256
154 #define BTRFS_BACKREF_REV_SHIFT		56
155 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
156 					 BTRFS_BACKREF_REV_SHIFT)
157 
158 #define BTRFS_OLD_BACKREF_REV		0
159 #define BTRFS_MIXED_BACKREF_REV		1
160 
161 /*
162  * every tree block (leaf or node) starts with this header.
163  */
164 struct btrfs_header {
165 	/* these first four must match the super block */
166 	u8 csum[BTRFS_CSUM_SIZE];
167 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
168 	__le64 bytenr; /* which block this node is supposed to live in */
169 	__le64 flags;
170 
171 	/* allowed to be different from the super from here on down */
172 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
173 	__le64 generation;
174 	__le64 owner;
175 	__le32 nritems;
176 	u8 level;
177 } __attribute__ ((__packed__));
178 
179 /*
180  * this is a very generous portion of the super block, giving us
181  * room to translate 14 chunks with 3 stripes each.
182  */
183 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
184 
185 /*
186  * just in case we somehow lose the roots and are not able to mount,
187  * we store an array of the roots from previous transactions
188  * in the super.
189  */
190 #define BTRFS_NUM_BACKUP_ROOTS 4
191 struct btrfs_root_backup {
192 	__le64 tree_root;
193 	__le64 tree_root_gen;
194 
195 	__le64 chunk_root;
196 	__le64 chunk_root_gen;
197 
198 	__le64 extent_root;
199 	__le64 extent_root_gen;
200 
201 	__le64 fs_root;
202 	__le64 fs_root_gen;
203 
204 	__le64 dev_root;
205 	__le64 dev_root_gen;
206 
207 	__le64 csum_root;
208 	__le64 csum_root_gen;
209 
210 	__le64 total_bytes;
211 	__le64 bytes_used;
212 	__le64 num_devices;
213 	/* future */
214 	__le64 unused_64[4];
215 
216 	u8 tree_root_level;
217 	u8 chunk_root_level;
218 	u8 extent_root_level;
219 	u8 fs_root_level;
220 	u8 dev_root_level;
221 	u8 csum_root_level;
222 	/* future and to align */
223 	u8 unused_8[10];
224 } __attribute__ ((__packed__));
225 
226 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
227 #define BTRFS_SUPER_INFO_SIZE			4096
228 
229 /*
230  * The reserved space at the beginning of each device.
231  * It covers the primary super block and leaves space for potential use by other
232  * tools like bootloaders or to lower potential damage of accidental overwrite.
233  */
234 #define BTRFS_DEVICE_RANGE_RESERVED			(SZ_1M)
235 
236 /*
237  * the super block basically lists the main trees of the FS
238  * it currently lacks any block count etc etc
239  */
240 struct btrfs_super_block {
241 	/* the first 4 fields must match struct btrfs_header */
242 	u8 csum[BTRFS_CSUM_SIZE];
243 	/* FS specific UUID, visible to user */
244 	u8 fsid[BTRFS_FSID_SIZE];
245 	__le64 bytenr; /* this block number */
246 	__le64 flags;
247 
248 	/* allowed to be different from the btrfs_header from here own down */
249 	__le64 magic;
250 	__le64 generation;
251 	__le64 root;
252 	__le64 chunk_root;
253 	__le64 log_root;
254 
255 	/*
256 	 * This member has never been utilized since the very beginning, thus
257 	 * it's always 0 regardless of kernel version.  We always use
258 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
259 	 */
260 	__le64 __unused_log_root_transid;
261 	__le64 total_bytes;
262 	__le64 bytes_used;
263 	__le64 root_dir_objectid;
264 	__le64 num_devices;
265 	__le32 sectorsize;
266 	__le32 nodesize;
267 	__le32 __unused_leafsize;
268 	__le32 stripesize;
269 	__le32 sys_chunk_array_size;
270 	__le64 chunk_root_generation;
271 	__le64 compat_flags;
272 	__le64 compat_ro_flags;
273 	__le64 incompat_flags;
274 	__le16 csum_type;
275 	u8 root_level;
276 	u8 chunk_root_level;
277 	u8 log_root_level;
278 	struct btrfs_dev_item dev_item;
279 
280 	char label[BTRFS_LABEL_SIZE];
281 
282 	__le64 cache_generation;
283 	__le64 uuid_tree_generation;
284 
285 	/* the UUID written into btree blocks */
286 	u8 metadata_uuid[BTRFS_FSID_SIZE];
287 
288 	/* future expansion */
289 	u8 reserved8[8];
290 	__le64 reserved[27];
291 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
292 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
293 
294 	/* Padded to 4096 bytes */
295 	u8 padding[565];
296 } __attribute__ ((__packed__));
297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
298 
299 /*
300  * Compat flags that we support.  If any incompat flags are set other than the
301  * ones specified below then we will fail to mount
302  */
303 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
304 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
306 
307 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
308 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
309 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
310 	 BTRFS_FEATURE_COMPAT_RO_VERITY |		\
311 	 BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE)
312 
313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
314 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
315 
316 #ifdef CONFIG_BTRFS_DEBUG
317 /*
318  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
319  */
320 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
321 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
322 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
323 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
324 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
325 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
326 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
327 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
328 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
329 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
330 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
331 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
332 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
333 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
334 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
335 #else
336 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
337 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
338 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
339 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
340 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
341 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
342 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
343 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
344 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
345 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
346 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
347 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
348 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
349 	 BTRFS_FEATURE_INCOMPAT_ZONED)
350 #endif
351 
352 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
353 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
354 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
355 
356 /*
357  * A leaf is full of items. offset and size tell us where to find
358  * the item in the leaf (relative to the start of the data area)
359  */
360 struct btrfs_item {
361 	struct btrfs_disk_key key;
362 	__le32 offset;
363 	__le32 size;
364 } __attribute__ ((__packed__));
365 
366 /*
367  * leaves have an item area and a data area:
368  * [item0, item1....itemN] [free space] [dataN...data1, data0]
369  *
370  * The data is separate from the items to get the keys closer together
371  * during searches.
372  */
373 struct btrfs_leaf {
374 	struct btrfs_header header;
375 	struct btrfs_item items[];
376 } __attribute__ ((__packed__));
377 
378 /*
379  * all non-leaf blocks are nodes, they hold only keys and pointers to
380  * other blocks
381  */
382 struct btrfs_key_ptr {
383 	struct btrfs_disk_key key;
384 	__le64 blockptr;
385 	__le64 generation;
386 } __attribute__ ((__packed__));
387 
388 struct btrfs_node {
389 	struct btrfs_header header;
390 	struct btrfs_key_ptr ptrs[];
391 } __attribute__ ((__packed__));
392 
393 /* Read ahead values for struct btrfs_path.reada */
394 enum {
395 	READA_NONE,
396 	READA_BACK,
397 	READA_FORWARD,
398 	/*
399 	 * Similar to READA_FORWARD but unlike it:
400 	 *
401 	 * 1) It will trigger readahead even for leaves that are not close to
402 	 *    each other on disk;
403 	 * 2) It also triggers readahead for nodes;
404 	 * 3) During a search, even when a node or leaf is already in memory, it
405 	 *    will still trigger readahead for other nodes and leaves that follow
406 	 *    it.
407 	 *
408 	 * This is meant to be used only when we know we are iterating over the
409 	 * entire tree or a very large part of it.
410 	 */
411 	READA_FORWARD_ALWAYS,
412 };
413 
414 /*
415  * btrfs_paths remember the path taken from the root down to the leaf.
416  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
417  * to any other levels that are present.
418  *
419  * The slots array records the index of the item or block pointer
420  * used while walking the tree.
421  */
422 struct btrfs_path {
423 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
424 	int slots[BTRFS_MAX_LEVEL];
425 	/* if there is real range locking, this locks field will change */
426 	u8 locks[BTRFS_MAX_LEVEL];
427 	u8 reada;
428 	/* keep some upper locks as we walk down */
429 	u8 lowest_level;
430 
431 	/*
432 	 * set by btrfs_split_item, tells search_slot to keep all locks
433 	 * and to force calls to keep space in the nodes
434 	 */
435 	unsigned int search_for_split:1;
436 	unsigned int keep_locks:1;
437 	unsigned int skip_locking:1;
438 	unsigned int search_commit_root:1;
439 	unsigned int need_commit_sem:1;
440 	unsigned int skip_release_on_error:1;
441 	/*
442 	 * Indicate that new item (btrfs_search_slot) is extending already
443 	 * existing item and ins_len contains only the data size and not item
444 	 * header (ie. sizeof(struct btrfs_item) is not included).
445 	 */
446 	unsigned int search_for_extension:1;
447 	/* Stop search if any locks need to be taken (for read) */
448 	unsigned int nowait:1;
449 };
450 
451 struct btrfs_dev_replace {
452 	u64 replace_state;	/* see #define above */
453 	time64_t time_started;	/* seconds since 1-Jan-1970 */
454 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
455 	atomic64_t num_write_errors;
456 	atomic64_t num_uncorrectable_read_errors;
457 
458 	u64 cursor_left;
459 	u64 committed_cursor_left;
460 	u64 cursor_left_last_write_of_item;
461 	u64 cursor_right;
462 
463 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
464 
465 	int is_valid;
466 	int item_needs_writeback;
467 	struct btrfs_device *srcdev;
468 	struct btrfs_device *tgtdev;
469 
470 	struct mutex lock_finishing_cancel_unmount;
471 	struct rw_semaphore rwsem;
472 
473 	struct btrfs_scrub_progress scrub_progress;
474 
475 	struct percpu_counter bio_counter;
476 	wait_queue_head_t replace_wait;
477 };
478 
479 /*
480  * free clusters are used to claim free space in relatively large chunks,
481  * allowing us to do less seeky writes. They are used for all metadata
482  * allocations. In ssd_spread mode they are also used for data allocations.
483  */
484 struct btrfs_free_cluster {
485 	spinlock_t lock;
486 	spinlock_t refill_lock;
487 	struct rb_root root;
488 
489 	/* largest extent in this cluster */
490 	u64 max_size;
491 
492 	/* first extent starting offset */
493 	u64 window_start;
494 
495 	/* We did a full search and couldn't create a cluster */
496 	bool fragmented;
497 
498 	struct btrfs_block_group *block_group;
499 	/*
500 	 * when a cluster is allocated from a block group, we put the
501 	 * cluster onto a list in the block group so that it can
502 	 * be freed before the block group is freed.
503 	 */
504 	struct list_head block_group_list;
505 };
506 
507 /* Discard control. */
508 /*
509  * Async discard uses multiple lists to differentiate the discard filter
510  * parameters.  Index 0 is for completely free block groups where we need to
511  * ensure the entire block group is trimmed without being lossy.  Indices
512  * afterwards represent monotonically decreasing discard filter sizes to
513  * prioritize what should be discarded next.
514  */
515 #define BTRFS_NR_DISCARD_LISTS		3
516 #define BTRFS_DISCARD_INDEX_UNUSED	0
517 #define BTRFS_DISCARD_INDEX_START	1
518 
519 struct btrfs_discard_ctl {
520 	struct workqueue_struct *discard_workers;
521 	struct delayed_work work;
522 	spinlock_t lock;
523 	struct btrfs_block_group *block_group;
524 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
525 	u64 prev_discard;
526 	u64 prev_discard_time;
527 	atomic_t discardable_extents;
528 	atomic64_t discardable_bytes;
529 	u64 max_discard_size;
530 	u64 delay_ms;
531 	u32 iops_limit;
532 	u32 kbps_limit;
533 	u64 discard_extent_bytes;
534 	u64 discard_bitmap_bytes;
535 	atomic64_t discard_bytes_saved;
536 };
537 
538 enum {
539 	BTRFS_FS_CLOSING_START,
540 	BTRFS_FS_CLOSING_DONE,
541 	BTRFS_FS_LOG_RECOVERING,
542 	BTRFS_FS_OPEN,
543 	BTRFS_FS_QUOTA_ENABLED,
544 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
545 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
546 	BTRFS_FS_BTREE_ERR,
547 	BTRFS_FS_LOG1_ERR,
548 	BTRFS_FS_LOG2_ERR,
549 	BTRFS_FS_QUOTA_OVERRIDE,
550 	/* Used to record internally whether fs has been frozen */
551 	BTRFS_FS_FROZEN,
552 	/*
553 	 * Indicate that balance has been set up from the ioctl and is in the
554 	 * main phase. The fs_info::balance_ctl is initialized.
555 	 */
556 	BTRFS_FS_BALANCE_RUNNING,
557 
558 	/*
559 	 * Indicate that relocation of a chunk has started, it's set per chunk
560 	 * and is toggled between chunks.
561 	 */
562 	BTRFS_FS_RELOC_RUNNING,
563 
564 	/* Indicate that the cleaner thread is awake and doing something. */
565 	BTRFS_FS_CLEANER_RUNNING,
566 
567 	/*
568 	 * The checksumming has an optimized version and is considered fast,
569 	 * so we don't need to offload checksums to workqueues.
570 	 */
571 	BTRFS_FS_CSUM_IMPL_FAST,
572 
573 	/* Indicate that the discard workqueue can service discards. */
574 	BTRFS_FS_DISCARD_RUNNING,
575 
576 	/* Indicate that we need to cleanup space cache v1 */
577 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
578 
579 	/* Indicate that we can't trust the free space tree for caching yet */
580 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
581 
582 	/* Indicate whether there are any tree modification log users */
583 	BTRFS_FS_TREE_MOD_LOG_USERS,
584 
585 	/* Indicate that we want the transaction kthread to commit right now. */
586 	BTRFS_FS_COMMIT_TRANS,
587 
588 	/* Indicate we have half completed snapshot deletions pending. */
589 	BTRFS_FS_UNFINISHED_DROPS,
590 
591 	/* Indicate we have to finish a zone to do next allocation. */
592 	BTRFS_FS_NEED_ZONE_FINISH,
593 
594 	/* This is set when active zone tracking is needed. */
595 	BTRFS_FS_ACTIVE_ZONE_TRACKING,
596 
597 #if BITS_PER_LONG == 32
598 	/* Indicate if we have error/warn message printed on 32bit systems */
599 	BTRFS_FS_32BIT_ERROR,
600 	BTRFS_FS_32BIT_WARN,
601 #endif
602 };
603 
604 /*
605  * Exclusive operations (device replace, resize, device add/remove, balance)
606  */
607 enum btrfs_exclusive_operation {
608 	BTRFS_EXCLOP_NONE,
609 	BTRFS_EXCLOP_BALANCE_PAUSED,
610 	BTRFS_EXCLOP_BALANCE,
611 	BTRFS_EXCLOP_DEV_ADD,
612 	BTRFS_EXCLOP_DEV_REMOVE,
613 	BTRFS_EXCLOP_DEV_REPLACE,
614 	BTRFS_EXCLOP_RESIZE,
615 	BTRFS_EXCLOP_SWAP_ACTIVATE,
616 };
617 
618 /* Store data about transaction commits, exported via sysfs. */
619 struct btrfs_commit_stats {
620 	/* Total number of commits */
621 	u64 commit_count;
622 	/* The maximum commit duration so far in ns */
623 	u64 max_commit_dur;
624 	/* The last commit duration in ns */
625 	u64 last_commit_dur;
626 	/* The total commit duration in ns */
627 	u64 total_commit_dur;
628 };
629 
630 struct btrfs_fs_info {
631 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
632 	unsigned long flags;
633 	struct btrfs_root *tree_root;
634 	struct btrfs_root *chunk_root;
635 	struct btrfs_root *dev_root;
636 	struct btrfs_root *fs_root;
637 	struct btrfs_root *quota_root;
638 	struct btrfs_root *uuid_root;
639 	struct btrfs_root *data_reloc_root;
640 	struct btrfs_root *block_group_root;
641 
642 	/* the log root tree is a directory of all the other log roots */
643 	struct btrfs_root *log_root_tree;
644 
645 	/* The tree that holds the global roots (csum, extent, etc) */
646 	rwlock_t global_root_lock;
647 	struct rb_root global_root_tree;
648 
649 	spinlock_t fs_roots_radix_lock;
650 	struct radix_tree_root fs_roots_radix;
651 
652 	/* block group cache stuff */
653 	rwlock_t block_group_cache_lock;
654 	struct rb_root_cached block_group_cache_tree;
655 
656 	/* keep track of unallocated space */
657 	atomic64_t free_chunk_space;
658 
659 	/* Track ranges which are used by log trees blocks/logged data extents */
660 	struct extent_io_tree excluded_extents;
661 
662 	/* logical->physical extent mapping */
663 	struct extent_map_tree mapping_tree;
664 
665 	/*
666 	 * block reservation for extent, checksum, root tree and
667 	 * delayed dir index item
668 	 */
669 	struct btrfs_block_rsv global_block_rsv;
670 	/* block reservation for metadata operations */
671 	struct btrfs_block_rsv trans_block_rsv;
672 	/* block reservation for chunk tree */
673 	struct btrfs_block_rsv chunk_block_rsv;
674 	/* block reservation for delayed operations */
675 	struct btrfs_block_rsv delayed_block_rsv;
676 	/* block reservation for delayed refs */
677 	struct btrfs_block_rsv delayed_refs_rsv;
678 
679 	struct btrfs_block_rsv empty_block_rsv;
680 
681 	u64 generation;
682 	u64 last_trans_committed;
683 	/*
684 	 * Generation of the last transaction used for block group relocation
685 	 * since the filesystem was last mounted (or 0 if none happened yet).
686 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
687 	 */
688 	u64 last_reloc_trans;
689 	u64 avg_delayed_ref_runtime;
690 
691 	/*
692 	 * this is updated to the current trans every time a full commit
693 	 * is required instead of the faster short fsync log commits
694 	 */
695 	u64 last_trans_log_full_commit;
696 	unsigned long mount_opt;
697 	/*
698 	 * Track requests for actions that need to be done during transaction
699 	 * commit (like for some mount options).
700 	 */
701 	unsigned long pending_changes;
702 	unsigned long compress_type:4;
703 	unsigned int compress_level;
704 	u32 commit_interval;
705 	/*
706 	 * It is a suggestive number, the read side is safe even it gets a
707 	 * wrong number because we will write out the data into a regular
708 	 * extent. The write side(mount/remount) is under ->s_umount lock,
709 	 * so it is also safe.
710 	 */
711 	u64 max_inline;
712 
713 	struct btrfs_transaction *running_transaction;
714 	wait_queue_head_t transaction_throttle;
715 	wait_queue_head_t transaction_wait;
716 	wait_queue_head_t transaction_blocked_wait;
717 	wait_queue_head_t async_submit_wait;
718 
719 	/*
720 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
721 	 * when they are updated.
722 	 *
723 	 * Because we do not clear the flags for ever, so we needn't use
724 	 * the lock on the read side.
725 	 *
726 	 * We also needn't use the lock when we mount the fs, because
727 	 * there is no other task which will update the flag.
728 	 */
729 	spinlock_t super_lock;
730 	struct btrfs_super_block *super_copy;
731 	struct btrfs_super_block *super_for_commit;
732 	struct super_block *sb;
733 	struct inode *btree_inode;
734 	struct mutex tree_log_mutex;
735 	struct mutex transaction_kthread_mutex;
736 	struct mutex cleaner_mutex;
737 	struct mutex chunk_mutex;
738 
739 	/*
740 	 * this is taken to make sure we don't set block groups ro after
741 	 * the free space cache has been allocated on them
742 	 */
743 	struct mutex ro_block_group_mutex;
744 
745 	/* this is used during read/modify/write to make sure
746 	 * no two ios are trying to mod the same stripe at the same
747 	 * time
748 	 */
749 	struct btrfs_stripe_hash_table *stripe_hash_table;
750 
751 	/*
752 	 * this protects the ordered operations list only while we are
753 	 * processing all of the entries on it.  This way we make
754 	 * sure the commit code doesn't find the list temporarily empty
755 	 * because another function happens to be doing non-waiting preflush
756 	 * before jumping into the main commit.
757 	 */
758 	struct mutex ordered_operations_mutex;
759 
760 	struct rw_semaphore commit_root_sem;
761 
762 	struct rw_semaphore cleanup_work_sem;
763 
764 	struct rw_semaphore subvol_sem;
765 
766 	spinlock_t trans_lock;
767 	/*
768 	 * the reloc mutex goes with the trans lock, it is taken
769 	 * during commit to protect us from the relocation code
770 	 */
771 	struct mutex reloc_mutex;
772 
773 	struct list_head trans_list;
774 	struct list_head dead_roots;
775 	struct list_head caching_block_groups;
776 
777 	spinlock_t delayed_iput_lock;
778 	struct list_head delayed_iputs;
779 	atomic_t nr_delayed_iputs;
780 	wait_queue_head_t delayed_iputs_wait;
781 
782 	atomic64_t tree_mod_seq;
783 
784 	/* this protects tree_mod_log and tree_mod_seq_list */
785 	rwlock_t tree_mod_log_lock;
786 	struct rb_root tree_mod_log;
787 	struct list_head tree_mod_seq_list;
788 
789 	atomic_t async_delalloc_pages;
790 
791 	/*
792 	 * this is used to protect the following list -- ordered_roots.
793 	 */
794 	spinlock_t ordered_root_lock;
795 
796 	/*
797 	 * all fs/file tree roots in which there are data=ordered extents
798 	 * pending writeback are added into this list.
799 	 *
800 	 * these can span multiple transactions and basically include
801 	 * every dirty data page that isn't from nodatacow
802 	 */
803 	struct list_head ordered_roots;
804 
805 	struct mutex delalloc_root_mutex;
806 	spinlock_t delalloc_root_lock;
807 	/* all fs/file tree roots that have delalloc inodes. */
808 	struct list_head delalloc_roots;
809 
810 	/*
811 	 * there is a pool of worker threads for checksumming during writes
812 	 * and a pool for checksumming after reads.  This is because readers
813 	 * can run with FS locks held, and the writers may be waiting for
814 	 * those locks.  We don't want ordering in the pending list to cause
815 	 * deadlocks, and so the two are serviced separately.
816 	 *
817 	 * A third pool does submit_bio to avoid deadlocking with the other
818 	 * two
819 	 */
820 	struct btrfs_workqueue *workers;
821 	struct btrfs_workqueue *hipri_workers;
822 	struct btrfs_workqueue *delalloc_workers;
823 	struct btrfs_workqueue *flush_workers;
824 	struct workqueue_struct *endio_workers;
825 	struct workqueue_struct *endio_meta_workers;
826 	struct workqueue_struct *endio_raid56_workers;
827 	struct workqueue_struct *rmw_workers;
828 	struct workqueue_struct *compressed_write_workers;
829 	struct btrfs_workqueue *endio_write_workers;
830 	struct btrfs_workqueue *endio_freespace_worker;
831 	struct btrfs_workqueue *caching_workers;
832 
833 	/*
834 	 * fixup workers take dirty pages that didn't properly go through
835 	 * the cow mechanism and make them safe to write.  It happens
836 	 * for the sys_munmap function call path
837 	 */
838 	struct btrfs_workqueue *fixup_workers;
839 	struct btrfs_workqueue *delayed_workers;
840 
841 	struct task_struct *transaction_kthread;
842 	struct task_struct *cleaner_kthread;
843 	u32 thread_pool_size;
844 
845 	struct kobject *space_info_kobj;
846 	struct kobject *qgroups_kobj;
847 	struct kobject *discard_kobj;
848 
849 	/* used to keep from writing metadata until there is a nice batch */
850 	struct percpu_counter dirty_metadata_bytes;
851 	struct percpu_counter delalloc_bytes;
852 	struct percpu_counter ordered_bytes;
853 	s32 dirty_metadata_batch;
854 	s32 delalloc_batch;
855 
856 	struct list_head dirty_cowonly_roots;
857 
858 	struct btrfs_fs_devices *fs_devices;
859 
860 	/*
861 	 * The space_info list is effectively read only after initial
862 	 * setup.  It is populated at mount time and cleaned up after
863 	 * all block groups are removed.  RCU is used to protect it.
864 	 */
865 	struct list_head space_info;
866 
867 	struct btrfs_space_info *data_sinfo;
868 
869 	struct reloc_control *reloc_ctl;
870 
871 	/* data_alloc_cluster is only used in ssd_spread mode */
872 	struct btrfs_free_cluster data_alloc_cluster;
873 
874 	/* all metadata allocations go through this cluster */
875 	struct btrfs_free_cluster meta_alloc_cluster;
876 
877 	/* auto defrag inodes go here */
878 	spinlock_t defrag_inodes_lock;
879 	struct rb_root defrag_inodes;
880 	atomic_t defrag_running;
881 
882 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
883 	seqlock_t profiles_lock;
884 	/*
885 	 * these three are in extended format (availability of single
886 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
887 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
888 	 */
889 	u64 avail_data_alloc_bits;
890 	u64 avail_metadata_alloc_bits;
891 	u64 avail_system_alloc_bits;
892 
893 	/* restriper state */
894 	spinlock_t balance_lock;
895 	struct mutex balance_mutex;
896 	atomic_t balance_pause_req;
897 	atomic_t balance_cancel_req;
898 	struct btrfs_balance_control *balance_ctl;
899 	wait_queue_head_t balance_wait_q;
900 
901 	/* Cancellation requests for chunk relocation */
902 	atomic_t reloc_cancel_req;
903 
904 	u32 data_chunk_allocations;
905 	u32 metadata_ratio;
906 
907 	void *bdev_holder;
908 
909 	/* private scrub information */
910 	struct mutex scrub_lock;
911 	atomic_t scrubs_running;
912 	atomic_t scrub_pause_req;
913 	atomic_t scrubs_paused;
914 	atomic_t scrub_cancel_req;
915 	wait_queue_head_t scrub_pause_wait;
916 	/*
917 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
918 	 * running.
919 	 */
920 	refcount_t scrub_workers_refcnt;
921 	struct workqueue_struct *scrub_workers;
922 	struct workqueue_struct *scrub_wr_completion_workers;
923 	struct workqueue_struct *scrub_parity_workers;
924 	struct btrfs_subpage_info *subpage_info;
925 
926 	struct btrfs_discard_ctl discard_ctl;
927 
928 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
929 	u32 check_integrity_print_mask;
930 #endif
931 	/* is qgroup tracking in a consistent state? */
932 	u64 qgroup_flags;
933 
934 	/* holds configuration and tracking. Protected by qgroup_lock */
935 	struct rb_root qgroup_tree;
936 	spinlock_t qgroup_lock;
937 
938 	/*
939 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
940 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
941 	 */
942 	struct ulist *qgroup_ulist;
943 
944 	/*
945 	 * Protect user change for quota operations. If a transaction is needed,
946 	 * it must be started before locking this lock.
947 	 */
948 	struct mutex qgroup_ioctl_lock;
949 
950 	/* list of dirty qgroups to be written at next commit */
951 	struct list_head dirty_qgroups;
952 
953 	/* used by qgroup for an efficient tree traversal */
954 	u64 qgroup_seq;
955 
956 	/* qgroup rescan items */
957 	struct mutex qgroup_rescan_lock; /* protects the progress item */
958 	struct btrfs_key qgroup_rescan_progress;
959 	struct btrfs_workqueue *qgroup_rescan_workers;
960 	struct completion qgroup_rescan_completion;
961 	struct btrfs_work qgroup_rescan_work;
962 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
963 	u8 qgroup_drop_subtree_thres;
964 
965 	/* filesystem state */
966 	unsigned long fs_state;
967 
968 	struct btrfs_delayed_root *delayed_root;
969 
970 	/* Extent buffer radix tree */
971 	spinlock_t buffer_lock;
972 	/* Entries are eb->start / sectorsize */
973 	struct radix_tree_root buffer_radix;
974 
975 	/* next backup root to be overwritten */
976 	int backup_root_index;
977 
978 	/* device replace state */
979 	struct btrfs_dev_replace dev_replace;
980 
981 	struct semaphore uuid_tree_rescan_sem;
982 
983 	/* Used to reclaim the metadata space in the background. */
984 	struct work_struct async_reclaim_work;
985 	struct work_struct async_data_reclaim_work;
986 	struct work_struct preempt_reclaim_work;
987 
988 	/* Reclaim partially filled block groups in the background */
989 	struct work_struct reclaim_bgs_work;
990 	struct list_head reclaim_bgs;
991 	int bg_reclaim_threshold;
992 
993 	spinlock_t unused_bgs_lock;
994 	struct list_head unused_bgs;
995 	struct mutex unused_bg_unpin_mutex;
996 	/* Protect block groups that are going to be deleted */
997 	struct mutex reclaim_bgs_lock;
998 
999 	/* Cached block sizes */
1000 	u32 nodesize;
1001 	u32 sectorsize;
1002 	/* ilog2 of sectorsize, use to avoid 64bit division */
1003 	u32 sectorsize_bits;
1004 	u32 csum_size;
1005 	u32 csums_per_leaf;
1006 	u32 stripesize;
1007 
1008 	/*
1009 	 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1010 	 * filesystem, on zoned it depends on the device constraints.
1011 	 */
1012 	u64 max_extent_size;
1013 
1014 	/* Block groups and devices containing active swapfiles. */
1015 	spinlock_t swapfile_pins_lock;
1016 	struct rb_root swapfile_pins;
1017 
1018 	struct crypto_shash *csum_shash;
1019 
1020 	/* Type of exclusive operation running, protected by super_lock */
1021 	enum btrfs_exclusive_operation exclusive_operation;
1022 
1023 	/*
1024 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1025 	 * if the mode is enabled
1026 	 */
1027 	u64 zone_size;
1028 
1029 	/* Max size to emit ZONE_APPEND write command */
1030 	u64 max_zone_append_size;
1031 	struct mutex zoned_meta_io_lock;
1032 	spinlock_t treelog_bg_lock;
1033 	u64 treelog_bg;
1034 
1035 	/*
1036 	 * Start of the dedicated data relocation block group, protected by
1037 	 * relocation_bg_lock.
1038 	 */
1039 	spinlock_t relocation_bg_lock;
1040 	u64 data_reloc_bg;
1041 	struct mutex zoned_data_reloc_io_lock;
1042 
1043 	u64 nr_global_roots;
1044 
1045 	spinlock_t zone_active_bgs_lock;
1046 	struct list_head zone_active_bgs;
1047 
1048 	/* Updates are not protected by any lock */
1049 	struct btrfs_commit_stats commit_stats;
1050 
1051 	/*
1052 	 * Last generation where we dropped a non-relocation root.
1053 	 * Use btrfs_set_last_root_drop_gen() and btrfs_get_last_root_drop_gen()
1054 	 * to change it and to read it, respectively.
1055 	 */
1056 	u64 last_root_drop_gen;
1057 
1058 	/*
1059 	 * Annotations for transaction events (structures are empty when
1060 	 * compiled without lockdep).
1061 	 */
1062 	struct lockdep_map btrfs_trans_num_writers_map;
1063 	struct lockdep_map btrfs_trans_num_extwriters_map;
1064 	struct lockdep_map btrfs_state_change_map[4];
1065 	struct lockdep_map btrfs_trans_pending_ordered_map;
1066 	struct lockdep_map btrfs_ordered_extent_map;
1067 
1068 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1069 	spinlock_t ref_verify_lock;
1070 	struct rb_root block_tree;
1071 #endif
1072 
1073 #ifdef CONFIG_BTRFS_DEBUG
1074 	struct kobject *debug_kobj;
1075 	struct list_head allocated_roots;
1076 
1077 	spinlock_t eb_leak_lock;
1078 	struct list_head allocated_ebs;
1079 #endif
1080 };
1081 
btrfs_set_last_root_drop_gen(struct btrfs_fs_info * fs_info,u64 gen)1082 static inline void btrfs_set_last_root_drop_gen(struct btrfs_fs_info *fs_info,
1083 						u64 gen)
1084 {
1085 	WRITE_ONCE(fs_info->last_root_drop_gen, gen);
1086 }
1087 
btrfs_get_last_root_drop_gen(const struct btrfs_fs_info * fs_info)1088 static inline u64 btrfs_get_last_root_drop_gen(const struct btrfs_fs_info *fs_info)
1089 {
1090 	return READ_ONCE(fs_info->last_root_drop_gen);
1091 }
1092 
btrfs_sb(struct super_block * sb)1093 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1094 {
1095 	return sb->s_fs_info;
1096 }
1097 
1098 /*
1099  * Take the number of bytes to be checksummed and figure out how many leaves
1100  * it would require to store the csums for that many bytes.
1101  */
btrfs_csum_bytes_to_leaves(const struct btrfs_fs_info * fs_info,u64 csum_bytes)1102 static inline u64 btrfs_csum_bytes_to_leaves(
1103 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
1104 {
1105 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
1106 
1107 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
1108 }
1109 
1110 /*
1111  * Use this if we would be adding new items, as we could split nodes as we cow
1112  * down the tree.
1113  */
btrfs_calc_insert_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)1114 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
1115 						  unsigned num_items)
1116 {
1117 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
1118 }
1119 
1120 /*
1121  * Doing a truncate or a modification won't result in new nodes or leaves, just
1122  * what we need for COW.
1123  */
btrfs_calc_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)1124 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
1125 						 unsigned num_items)
1126 {
1127 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
1128 }
1129 
1130 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
1131 					sizeof(struct btrfs_item))
1132 
btrfs_is_zoned(const struct btrfs_fs_info * fs_info)1133 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
1134 {
1135 	return fs_info->zone_size > 0;
1136 }
1137 
1138 /*
1139  * Count how many fs_info->max_extent_size cover the @size
1140  */
count_max_extents(struct btrfs_fs_info * fs_info,u64 size)1141 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
1142 {
1143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1144 	if (!fs_info)
1145 		return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
1146 #endif
1147 
1148 	return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
1149 }
1150 
1151 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
1152 			enum btrfs_exclusive_operation type);
1153 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
1154 				 enum btrfs_exclusive_operation type);
1155 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
1156 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
1157 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
1158 			  enum btrfs_exclusive_operation op);
1159 
1160 /*
1161  * The state of btrfs root
1162  */
1163 enum {
1164 	/*
1165 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1166 	 * with the balancing code.   But the race is very small, and only the
1167 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1168 	 * is used to tell us when more checks are required
1169 	 */
1170 	BTRFS_ROOT_IN_TRANS_SETUP,
1171 
1172 	/*
1173 	 * Set if tree blocks of this root can be shared by other roots.
1174 	 * Only subvolume trees and their reloc trees have this bit set.
1175 	 * Conflicts with TRACK_DIRTY bit.
1176 	 *
1177 	 * This affects two things:
1178 	 *
1179 	 * - How balance works
1180 	 *   For shareable roots, we need to use reloc tree and do path
1181 	 *   replacement for balance, and need various pre/post hooks for
1182 	 *   snapshot creation to handle them.
1183 	 *
1184 	 *   While for non-shareable trees, we just simply do a tree search
1185 	 *   with COW.
1186 	 *
1187 	 * - How dirty roots are tracked
1188 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1189 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1190 	 *   don't need to set this manually.
1191 	 */
1192 	BTRFS_ROOT_SHAREABLE,
1193 	BTRFS_ROOT_TRACK_DIRTY,
1194 	BTRFS_ROOT_IN_RADIX,
1195 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1196 	BTRFS_ROOT_DEFRAG_RUNNING,
1197 	BTRFS_ROOT_FORCE_COW,
1198 	BTRFS_ROOT_MULTI_LOG_TASKS,
1199 	BTRFS_ROOT_DIRTY,
1200 	BTRFS_ROOT_DELETING,
1201 
1202 	/*
1203 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1204 	 *
1205 	 * Set for the subvolume tree owning the reloc tree.
1206 	 */
1207 	BTRFS_ROOT_DEAD_RELOC_TREE,
1208 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1209 	BTRFS_ROOT_DEAD_TREE,
1210 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1211 	BTRFS_ROOT_HAS_LOG_TREE,
1212 	/* Qgroup flushing is in progress */
1213 	BTRFS_ROOT_QGROUP_FLUSHING,
1214 	/* We started the orphan cleanup for this root. */
1215 	BTRFS_ROOT_ORPHAN_CLEANUP,
1216 	/* This root has a drop operation that was started previously. */
1217 	BTRFS_ROOT_UNFINISHED_DROP,
1218 	/* This reloc root needs to have its buffers lockdep class reset. */
1219 	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1220 };
1221 
1222 enum btrfs_lockdep_trans_states {
1223 	BTRFS_LOCKDEP_TRANS_COMMIT_START,
1224 	BTRFS_LOCKDEP_TRANS_UNBLOCKED,
1225 	BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED,
1226 	BTRFS_LOCKDEP_TRANS_COMPLETED,
1227 };
1228 
1229 /*
1230  * Lockdep annotation for wait events.
1231  *
1232  * @owner:  The struct where the lockdep map is defined
1233  * @lock:   The lockdep map corresponding to a wait event
1234  *
1235  * This macro is used to annotate a wait event. In this case a thread acquires
1236  * the lockdep map as writer (exclusive lock) because it has to block until all
1237  * the threads that hold the lock as readers signal the condition for the wait
1238  * event and release their locks.
1239  */
1240 #define btrfs_might_wait_for_event(owner, lock)					\
1241 	do {									\
1242 		rwsem_acquire(&owner->lock##_map, 0, 0, _THIS_IP_);		\
1243 		rwsem_release(&owner->lock##_map, _THIS_IP_);			\
1244 	} while (0)
1245 
1246 /*
1247  * Protection for the resource/condition of a wait event.
1248  *
1249  * @owner:  The struct where the lockdep map is defined
1250  * @lock:   The lockdep map corresponding to a wait event
1251  *
1252  * Many threads can modify the condition for the wait event at the same time
1253  * and signal the threads that block on the wait event. The threads that modify
1254  * the condition and do the signaling acquire the lock as readers (shared
1255  * lock).
1256  */
1257 #define btrfs_lockdep_acquire(owner, lock)					\
1258 	rwsem_acquire_read(&owner->lock##_map, 0, 0, _THIS_IP_)
1259 
1260 /*
1261  * Used after signaling the condition for a wait event to release the lockdep
1262  * map held by a reader thread.
1263  */
1264 #define btrfs_lockdep_release(owner, lock)					\
1265 	rwsem_release(&owner->lock##_map, _THIS_IP_)
1266 
1267 /*
1268  * Macros for the transaction states wait events, similar to the generic wait
1269  * event macros.
1270  */
1271 #define btrfs_might_wait_for_state(owner, i)					\
1272 	do {									\
1273 		rwsem_acquire(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_); \
1274 		rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_);	\
1275 	} while (0)
1276 
1277 #define btrfs_trans_state_lockdep_acquire(owner, i)				\
1278 	rwsem_acquire_read(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_)
1279 
1280 #define btrfs_trans_state_lockdep_release(owner, i)				\
1281 	rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_)
1282 
1283 /* Initialization of the lockdep map */
1284 #define btrfs_lockdep_init_map(owner, lock)					\
1285 	do {									\
1286 		static struct lock_class_key lock##_key;			\
1287 		lockdep_init_map(&owner->lock##_map, #lock, &lock##_key, 0);	\
1288 	} while (0)
1289 
1290 /* Initialization of the transaction states lockdep maps. */
1291 #define btrfs_state_lockdep_init_map(owner, lock, state)			\
1292 	do {									\
1293 		static struct lock_class_key lock##_key;			\
1294 		lockdep_init_map(&owner->btrfs_state_change_map[state], #lock,	\
1295 				 &lock##_key, 0);				\
1296 	} while (0)
1297 
btrfs_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1298 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1299 {
1300 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1301 }
1302 
1303 /*
1304  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1305  * code. For detail check comment in fs/btrfs/qgroup.c.
1306  */
1307 struct btrfs_qgroup_swapped_blocks {
1308 	spinlock_t lock;
1309 	/* RM_EMPTY_ROOT() of above blocks[] */
1310 	bool swapped;
1311 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1312 };
1313 
1314 /*
1315  * in ram representation of the tree.  extent_root is used for all allocations
1316  * and for the extent tree extent_root root.
1317  */
1318 struct btrfs_root {
1319 	struct rb_node rb_node;
1320 
1321 	struct extent_buffer *node;
1322 
1323 	struct extent_buffer *commit_root;
1324 	struct btrfs_root *log_root;
1325 	struct btrfs_root *reloc_root;
1326 
1327 	unsigned long state;
1328 	struct btrfs_root_item root_item;
1329 	struct btrfs_key root_key;
1330 	struct btrfs_fs_info *fs_info;
1331 	struct extent_io_tree dirty_log_pages;
1332 
1333 	struct mutex objectid_mutex;
1334 
1335 	spinlock_t accounting_lock;
1336 	struct btrfs_block_rsv *block_rsv;
1337 
1338 	struct mutex log_mutex;
1339 	wait_queue_head_t log_writer_wait;
1340 	wait_queue_head_t log_commit_wait[2];
1341 	struct list_head log_ctxs[2];
1342 	/* Used only for log trees of subvolumes, not for the log root tree */
1343 	atomic_t log_writers;
1344 	atomic_t log_commit[2];
1345 	/* Used only for log trees of subvolumes, not for the log root tree */
1346 	atomic_t log_batch;
1347 	int log_transid;
1348 	/* No matter the commit succeeds or not*/
1349 	int log_transid_committed;
1350 	/* Just be updated when the commit succeeds. */
1351 	int last_log_commit;
1352 	pid_t log_start_pid;
1353 
1354 	u64 last_trans;
1355 
1356 	u32 type;
1357 
1358 	u64 free_objectid;
1359 
1360 	struct btrfs_key defrag_progress;
1361 	struct btrfs_key defrag_max;
1362 
1363 	/* The dirty list is only used by non-shareable roots */
1364 	struct list_head dirty_list;
1365 
1366 	struct list_head root_list;
1367 
1368 	spinlock_t log_extents_lock[2];
1369 	struct list_head logged_list[2];
1370 
1371 	spinlock_t inode_lock;
1372 	/* red-black tree that keeps track of in-memory inodes */
1373 	struct rb_root inode_tree;
1374 
1375 	/*
1376 	 * radix tree that keeps track of delayed nodes of every inode,
1377 	 * protected by inode_lock
1378 	 */
1379 	struct radix_tree_root delayed_nodes_tree;
1380 	/*
1381 	 * right now this just gets used so that a root has its own devid
1382 	 * for stat.  It may be used for more later
1383 	 */
1384 	dev_t anon_dev;
1385 
1386 	spinlock_t root_item_lock;
1387 	refcount_t refs;
1388 
1389 	struct mutex delalloc_mutex;
1390 	spinlock_t delalloc_lock;
1391 	/*
1392 	 * all of the inodes that have delalloc bytes.  It is possible for
1393 	 * this list to be empty even when there is still dirty data=ordered
1394 	 * extents waiting to finish IO.
1395 	 */
1396 	struct list_head delalloc_inodes;
1397 	struct list_head delalloc_root;
1398 	u64 nr_delalloc_inodes;
1399 
1400 	struct mutex ordered_extent_mutex;
1401 	/*
1402 	 * this is used by the balancing code to wait for all the pending
1403 	 * ordered extents
1404 	 */
1405 	spinlock_t ordered_extent_lock;
1406 
1407 	/*
1408 	 * all of the data=ordered extents pending writeback
1409 	 * these can span multiple transactions and basically include
1410 	 * every dirty data page that isn't from nodatacow
1411 	 */
1412 	struct list_head ordered_extents;
1413 	struct list_head ordered_root;
1414 	u64 nr_ordered_extents;
1415 
1416 	/*
1417 	 * Not empty if this subvolume root has gone through tree block swap
1418 	 * (relocation)
1419 	 *
1420 	 * Will be used by reloc_control::dirty_subvol_roots.
1421 	 */
1422 	struct list_head reloc_dirty_list;
1423 
1424 	/*
1425 	 * Number of currently running SEND ioctls to prevent
1426 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1427 	 */
1428 	int send_in_progress;
1429 	/*
1430 	 * Number of currently running deduplication operations that have a
1431 	 * destination inode belonging to this root. Protected by the lock
1432 	 * root_item_lock.
1433 	 */
1434 	int dedupe_in_progress;
1435 	/* For exclusion of snapshot creation and nocow writes */
1436 	struct btrfs_drew_lock snapshot_lock;
1437 
1438 	atomic_t snapshot_force_cow;
1439 
1440 	/* For qgroup metadata reserved space */
1441 	spinlock_t qgroup_meta_rsv_lock;
1442 	u64 qgroup_meta_rsv_pertrans;
1443 	u64 qgroup_meta_rsv_prealloc;
1444 	wait_queue_head_t qgroup_flush_wait;
1445 
1446 	/* Number of active swapfiles */
1447 	atomic_t nr_swapfiles;
1448 
1449 	/* Record pairs of swapped blocks for qgroup */
1450 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1451 
1452 	/* Used only by log trees, when logging csum items */
1453 	struct extent_io_tree log_csum_range;
1454 
1455 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1456 	u64 alloc_bytenr;
1457 #endif
1458 
1459 #ifdef CONFIG_BTRFS_DEBUG
1460 	struct list_head leak_list;
1461 #endif
1462 };
1463 
1464 /*
1465  * Structure that conveys information about an extent that is going to replace
1466  * all the extents in a file range.
1467  */
1468 struct btrfs_replace_extent_info {
1469 	u64 disk_offset;
1470 	u64 disk_len;
1471 	u64 data_offset;
1472 	u64 data_len;
1473 	u64 file_offset;
1474 	/* Pointer to a file extent item of type regular or prealloc. */
1475 	char *extent_buf;
1476 	/*
1477 	 * Set to true when attempting to replace a file range with a new extent
1478 	 * described by this structure, set to false when attempting to clone an
1479 	 * existing extent into a file range.
1480 	 */
1481 	bool is_new_extent;
1482 	/* Indicate if we should update the inode's mtime and ctime. */
1483 	bool update_times;
1484 	/* Meaningful only if is_new_extent is true. */
1485 	int qgroup_reserved;
1486 	/*
1487 	 * Meaningful only if is_new_extent is true.
1488 	 * Used to track how many extent items we have already inserted in a
1489 	 * subvolume tree that refer to the extent described by this structure,
1490 	 * so that we know when to create a new delayed ref or update an existing
1491 	 * one.
1492 	 */
1493 	int insertions;
1494 };
1495 
1496 /* Arguments for btrfs_drop_extents() */
1497 struct btrfs_drop_extents_args {
1498 	/* Input parameters */
1499 
1500 	/*
1501 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1502 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1503 	 * is always released except if 'replace_extent' is true and
1504 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1505 	 * the path is kept locked.
1506 	 */
1507 	struct btrfs_path *path;
1508 	/* Start offset of the range to drop extents from */
1509 	u64 start;
1510 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1511 	u64 end;
1512 	/* If true drop all the extent maps in the range */
1513 	bool drop_cache;
1514 	/*
1515 	 * If true it means we want to insert a new extent after dropping all
1516 	 * the extents in the range. If this is true, the 'extent_item_size'
1517 	 * parameter must be set as well and the 'extent_inserted' field will
1518 	 * be set to true by btrfs_drop_extents() if it could insert the new
1519 	 * extent.
1520 	 * Note: when this is set to true the path must not be NULL.
1521 	 */
1522 	bool replace_extent;
1523 	/*
1524 	 * Used if 'replace_extent' is true. Size of the file extent item to
1525 	 * insert after dropping all existing extents in the range
1526 	 */
1527 	u32 extent_item_size;
1528 
1529 	/* Output parameters */
1530 
1531 	/*
1532 	 * Set to the minimum between the input parameter 'end' and the end
1533 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1534 	 * set even if btrfs_drop_extents() returns an error.
1535 	 */
1536 	u64 drop_end;
1537 	/*
1538 	 * The number of allocated bytes found in the range. This can be smaller
1539 	 * than the range's length when there are holes in the range.
1540 	 */
1541 	u64 bytes_found;
1542 	/*
1543 	 * Only set if 'replace_extent' is true. Set to true if we were able
1544 	 * to insert a replacement extent after dropping all extents in the
1545 	 * range, otherwise set to false by btrfs_drop_extents().
1546 	 * Also, if btrfs_drop_extents() has set this to true it means it
1547 	 * returned with the path locked, otherwise if it has set this to
1548 	 * false it has returned with the path released.
1549 	 */
1550 	bool extent_inserted;
1551 };
1552 
1553 struct btrfs_file_private {
1554 	void *filldir_buf;
1555 	u64 last_index;
1556 };
1557 
1558 
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)1559 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1560 {
1561 
1562 	return info->nodesize - sizeof(struct btrfs_header);
1563 }
1564 
1565 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1566 
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)1567 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1568 {
1569 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1570 }
1571 
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)1572 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1573 {
1574 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1575 }
1576 
1577 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1578 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info * info)1579 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1580 {
1581 	return BTRFS_MAX_ITEM_SIZE(info) -
1582 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1583 }
1584 
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)1585 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1586 {
1587 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1588 }
1589 
1590 /*
1591  * Flags for mount options.
1592  *
1593  * Note: don't forget to add new options to btrfs_show_options()
1594  */
1595 enum {
1596 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1597 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1598 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1599 	BTRFS_MOUNT_SSD				= (1UL << 3),
1600 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1601 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1602 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1603 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1604 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1605 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1606 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1607 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1608 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1609 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1610 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1611 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1612 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1613 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1614 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1615 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1616 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1617 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1618 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1619 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1620 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1621 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1622 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1623 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1624 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1625 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1626 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1627 };
1628 
1629 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1630 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1631 
1632 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1633 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1634 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1635 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1636 					 BTRFS_MOUNT_##opt)
1637 
1638 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1639 do {									\
1640 	if (!btrfs_test_opt(fs_info, opt))				\
1641 		btrfs_info(fs_info, fmt, ##args);			\
1642 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1643 } while (0)
1644 
1645 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1646 do {									\
1647 	if (btrfs_test_opt(fs_info, opt))				\
1648 		btrfs_info(fs_info, fmt, ##args);			\
1649 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1650 } while (0)
1651 
1652 /*
1653  * Requests for changes that need to be done during transaction commit.
1654  *
1655  * Internal mount options that are used for special handling of the real
1656  * mount options (eg. cannot be set during remount and have to be set during
1657  * transaction commit)
1658  */
1659 
1660 #define BTRFS_PENDING_COMMIT			(0)
1661 
1662 #define btrfs_test_pending(info, opt)	\
1663 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1664 #define btrfs_set_pending(info, opt)	\
1665 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1666 #define btrfs_clear_pending(info, opt)	\
1667 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1668 
1669 /*
1670  * Helpers for setting pending mount option changes.
1671  *
1672  * Expects corresponding macros
1673  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1674  */
1675 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1676 do {                                                                   \
1677        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1678                btrfs_info((info), fmt, ##args);                        \
1679                btrfs_set_pending((info), SET_##opt);                   \
1680                btrfs_clear_pending((info), CLEAR_##opt);               \
1681        }                                                               \
1682 } while(0)
1683 
1684 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1685 do {                                                                   \
1686        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1687                btrfs_info((info), fmt, ##args);                        \
1688                btrfs_set_pending((info), CLEAR_##opt);                 \
1689                btrfs_clear_pending((info), SET_##opt);                 \
1690        }                                                               \
1691 } while(0)
1692 
1693 /*
1694  * Inode flags
1695  */
1696 #define BTRFS_INODE_NODATASUM		(1U << 0)
1697 #define BTRFS_INODE_NODATACOW		(1U << 1)
1698 #define BTRFS_INODE_READONLY		(1U << 2)
1699 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1700 #define BTRFS_INODE_PREALLOC		(1U << 4)
1701 #define BTRFS_INODE_SYNC		(1U << 5)
1702 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1703 #define BTRFS_INODE_APPEND		(1U << 7)
1704 #define BTRFS_INODE_NODUMP		(1U << 8)
1705 #define BTRFS_INODE_NOATIME		(1U << 9)
1706 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1707 #define BTRFS_INODE_COMPRESS		(1U << 11)
1708 
1709 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1710 
1711 #define BTRFS_INODE_FLAG_MASK						\
1712 	(BTRFS_INODE_NODATASUM |					\
1713 	 BTRFS_INODE_NODATACOW |					\
1714 	 BTRFS_INODE_READONLY |						\
1715 	 BTRFS_INODE_NOCOMPRESS |					\
1716 	 BTRFS_INODE_PREALLOC |						\
1717 	 BTRFS_INODE_SYNC |						\
1718 	 BTRFS_INODE_IMMUTABLE |					\
1719 	 BTRFS_INODE_APPEND |						\
1720 	 BTRFS_INODE_NODUMP |						\
1721 	 BTRFS_INODE_NOATIME |						\
1722 	 BTRFS_INODE_DIRSYNC |						\
1723 	 BTRFS_INODE_COMPRESS |						\
1724 	 BTRFS_INODE_ROOT_ITEM_INIT)
1725 
1726 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1727 
1728 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1729 
1730 struct btrfs_map_token {
1731 	struct extent_buffer *eb;
1732 	char *kaddr;
1733 	unsigned long offset;
1734 };
1735 
1736 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1737 				((bytes) >> (fs_info)->sectorsize_bits)
1738 
btrfs_init_map_token(struct btrfs_map_token * token,struct extent_buffer * eb)1739 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1740 					struct extent_buffer *eb)
1741 {
1742 	token->eb = eb;
1743 	token->kaddr = page_address(eb->pages[0]);
1744 	token->offset = 0;
1745 }
1746 
1747 /* some macros to generate set/get functions for the struct fields.  This
1748  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1749  * one for u8:
1750  */
1751 #define le8_to_cpu(v) (v)
1752 #define cpu_to_le8(v) (v)
1753 #define __le8 u8
1754 
get_unaligned_le8(const void * p)1755 static inline u8 get_unaligned_le8(const void *p)
1756 {
1757        return *(u8 *)p;
1758 }
1759 
put_unaligned_le8(u8 val,void * p)1760 static inline void put_unaligned_le8(u8 val, void *p)
1761 {
1762        *(u8 *)p = val;
1763 }
1764 
1765 #define read_eb_member(eb, ptr, type, member, result) (\
1766 	read_extent_buffer(eb, (char *)(result),			\
1767 			   ((unsigned long)(ptr)) +			\
1768 			    offsetof(type, member),			\
1769 			   sizeof(((type *)0)->member)))
1770 
1771 #define write_eb_member(eb, ptr, type, member, result) (\
1772 	write_extent_buffer(eb, (char *)(result),			\
1773 			   ((unsigned long)(ptr)) +			\
1774 			    offsetof(type, member),			\
1775 			   sizeof(((type *)0)->member)))
1776 
1777 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1778 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1779 			       const void *ptr, unsigned long off);	\
1780 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1781 			    const void *ptr, unsigned long off,		\
1782 			    u##bits val);				\
1783 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1784 			 const void *ptr, unsigned long off);		\
1785 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1786 		      unsigned long off, u##bits val);
1787 
1788 DECLARE_BTRFS_SETGET_BITS(8)
1789 DECLARE_BTRFS_SETGET_BITS(16)
1790 DECLARE_BTRFS_SETGET_BITS(32)
1791 DECLARE_BTRFS_SETGET_BITS(64)
1792 
1793 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1794 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1795 				   const type *s)			\
1796 {									\
1797 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1798 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1799 }									\
1800 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1801 				    u##bits val)			\
1802 {									\
1803 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1804 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1805 }									\
1806 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1807 					 const type *s)			\
1808 {									\
1809 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1810 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1811 }									\
1812 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1813 					  type *s, u##bits val)		\
1814 {									\
1815 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1816 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1817 }
1818 
1819 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1820 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1821 {									\
1822 	const type *p = page_address(eb->pages[0]) +			\
1823 			offset_in_page(eb->start);			\
1824 	return get_unaligned_le##bits(&p->member);			\
1825 }									\
1826 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1827 				    u##bits val)			\
1828 {									\
1829 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1830 	put_unaligned_le##bits(val, &p->member);			\
1831 }
1832 
1833 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1834 static inline u##bits btrfs_##name(const type *s)			\
1835 {									\
1836 	return get_unaligned_le##bits(&s->member);			\
1837 }									\
1838 static inline void btrfs_set_##name(type *s, u##bits val)		\
1839 {									\
1840 	put_unaligned_le##bits(val, &s->member);			\
1841 }
1842 
btrfs_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s)1843 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1844 					   struct btrfs_dev_item *s)
1845 {
1846 	static_assert(sizeof(u64) ==
1847 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1848 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1849 					    total_bytes));
1850 }
btrfs_set_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s,u64 val)1851 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1852 						struct btrfs_dev_item *s,
1853 						u64 val)
1854 {
1855 	static_assert(sizeof(u64) ==
1856 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1857 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1858 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1859 }
1860 
1861 
1862 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1863 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1864 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1865 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1866 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1867 		   start_offset, 64);
1868 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1869 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1870 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1871 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1872 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1873 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1874 
1875 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1876 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1877 			 total_bytes, 64);
1878 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1879 			 bytes_used, 64);
1880 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1881 			 io_align, 32);
1882 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1883 			 io_width, 32);
1884 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1885 			 sector_size, 32);
1886 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1887 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1888 			 dev_group, 32);
1889 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1890 			 seek_speed, 8);
1891 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1892 			 bandwidth, 8);
1893 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1894 			 generation, 64);
1895 
btrfs_device_uuid(struct btrfs_dev_item * d)1896 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1897 {
1898 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1899 }
1900 
btrfs_device_fsid(struct btrfs_dev_item * d)1901 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1902 {
1903 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1904 }
1905 
1906 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1907 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1908 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1909 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1910 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1911 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1912 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1913 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1914 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1915 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1916 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1917 
btrfs_stripe_dev_uuid(struct btrfs_stripe * s)1918 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1919 {
1920 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1921 }
1922 
1923 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1924 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1925 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1926 			 stripe_len, 64);
1927 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1928 			 io_align, 32);
1929 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1930 			 io_width, 32);
1931 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1932 			 sector_size, 32);
1933 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1934 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1935 			 num_stripes, 16);
1936 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1937 			 sub_stripes, 16);
1938 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1939 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1940 
btrfs_stripe_nr(struct btrfs_chunk * c,int nr)1941 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1942 						   int nr)
1943 {
1944 	unsigned long offset = (unsigned long)c;
1945 	offset += offsetof(struct btrfs_chunk, stripe);
1946 	offset += nr * sizeof(struct btrfs_stripe);
1947 	return (struct btrfs_stripe *)offset;
1948 }
1949 
btrfs_stripe_dev_uuid_nr(struct btrfs_chunk * c,int nr)1950 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1951 {
1952 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1953 }
1954 
btrfs_stripe_offset_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1955 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1956 					 struct btrfs_chunk *c, int nr)
1957 {
1958 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1959 }
1960 
btrfs_stripe_devid_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1961 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1962 					 struct btrfs_chunk *c, int nr)
1963 {
1964 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1965 }
1966 
1967 /* struct btrfs_block_group_item */
1968 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1969 			 used, 64);
1970 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1971 			 used, 64);
1972 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1973 			struct btrfs_block_group_item, chunk_objectid, 64);
1974 
1975 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1976 		   struct btrfs_block_group_item, chunk_objectid, 64);
1977 BTRFS_SETGET_FUNCS(block_group_flags,
1978 		   struct btrfs_block_group_item, flags, 64);
1979 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1980 			struct btrfs_block_group_item, flags, 64);
1981 
1982 /* struct btrfs_free_space_info */
1983 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1984 		   extent_count, 32);
1985 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1986 
1987 /* struct btrfs_inode_ref */
1988 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1989 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1990 
1991 /* struct btrfs_inode_extref */
1992 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1993 		   parent_objectid, 64);
1994 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1995 		   name_len, 16);
1996 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1997 
1998 /* struct btrfs_inode_item */
1999 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2000 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2001 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2002 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2003 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2004 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2005 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2006 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2007 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2008 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2009 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2010 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2011 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2012 			 generation, 64);
2013 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2014 			 sequence, 64);
2015 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2016 			 transid, 64);
2017 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2018 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2019 			 nbytes, 64);
2020 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2021 			 block_group, 64);
2022 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2023 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2024 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2025 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2026 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2027 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2028 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2029 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2030 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2031 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2032 
2033 /* struct btrfs_dev_extent */
2034 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2035 		   chunk_tree, 64);
2036 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2037 		   chunk_objectid, 64);
2038 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2039 		   chunk_offset, 64);
2040 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2041 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2042 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2043 		   generation, 64);
2044 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2045 
2046 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2047 
btrfs_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)2048 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
2049 					struct btrfs_tree_block_info *item,
2050 					struct btrfs_disk_key *key)
2051 {
2052 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2053 }
2054 
btrfs_set_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)2055 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
2056 					    struct btrfs_tree_block_info *item,
2057 					    struct btrfs_disk_key *key)
2058 {
2059 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2060 }
2061 
2062 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2063 		   root, 64);
2064 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2065 		   objectid, 64);
2066 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2067 		   offset, 64);
2068 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2069 		   count, 32);
2070 
2071 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2072 		   count, 32);
2073 
2074 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2075 		   type, 8);
2076 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2077 		   offset, 64);
2078 
btrfs_extent_inline_ref_size(int type)2079 static inline u32 btrfs_extent_inline_ref_size(int type)
2080 {
2081 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2082 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
2083 		return sizeof(struct btrfs_extent_inline_ref);
2084 	if (type == BTRFS_SHARED_DATA_REF_KEY)
2085 		return sizeof(struct btrfs_shared_data_ref) +
2086 		       sizeof(struct btrfs_extent_inline_ref);
2087 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
2088 		return sizeof(struct btrfs_extent_data_ref) +
2089 		       offsetof(struct btrfs_extent_inline_ref, offset);
2090 	return 0;
2091 }
2092 
2093 /* struct btrfs_node */
2094 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2095 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2096 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2097 			 blockptr, 64);
2098 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2099 			 generation, 64);
2100 
btrfs_node_blockptr(const struct extent_buffer * eb,int nr)2101 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
2102 {
2103 	unsigned long ptr;
2104 	ptr = offsetof(struct btrfs_node, ptrs) +
2105 		sizeof(struct btrfs_key_ptr) * nr;
2106 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2107 }
2108 
btrfs_set_node_blockptr(const struct extent_buffer * eb,int nr,u64 val)2109 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
2110 					   int nr, u64 val)
2111 {
2112 	unsigned long ptr;
2113 	ptr = offsetof(struct btrfs_node, ptrs) +
2114 		sizeof(struct btrfs_key_ptr) * nr;
2115 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2116 }
2117 
btrfs_node_ptr_generation(const struct extent_buffer * eb,int nr)2118 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
2119 {
2120 	unsigned long ptr;
2121 	ptr = offsetof(struct btrfs_node, ptrs) +
2122 		sizeof(struct btrfs_key_ptr) * nr;
2123 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2124 }
2125 
btrfs_set_node_ptr_generation(const struct extent_buffer * eb,int nr,u64 val)2126 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2127 						 int nr, u64 val)
2128 {
2129 	unsigned long ptr;
2130 	ptr = offsetof(struct btrfs_node, ptrs) +
2131 		sizeof(struct btrfs_key_ptr) * nr;
2132 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2133 }
2134 
btrfs_node_key_ptr_offset(int nr)2135 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2136 {
2137 	return offsetof(struct btrfs_node, ptrs) +
2138 		sizeof(struct btrfs_key_ptr) * nr;
2139 }
2140 
2141 void btrfs_node_key(const struct extent_buffer *eb,
2142 		    struct btrfs_disk_key *disk_key, int nr);
2143 
btrfs_set_node_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2144 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2145 				      struct btrfs_disk_key *disk_key, int nr)
2146 {
2147 	unsigned long ptr;
2148 	ptr = btrfs_node_key_ptr_offset(nr);
2149 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2150 		       struct btrfs_key_ptr, key, disk_key);
2151 }
2152 
2153 /* struct btrfs_item */
2154 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2155 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2156 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2157 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2158 
btrfs_item_nr_offset(int nr)2159 static inline unsigned long btrfs_item_nr_offset(int nr)
2160 {
2161 	return offsetof(struct btrfs_leaf, items) +
2162 		sizeof(struct btrfs_item) * nr;
2163 }
2164 
btrfs_item_nr(int nr)2165 static inline struct btrfs_item *btrfs_item_nr(int nr)
2166 {
2167 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2168 }
2169 
2170 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2171 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2172 				      int slot)					\
2173 {										\
2174 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2175 }										\
2176 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2177 					   int slot, u32 val)			\
2178 {										\
2179 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2180 }										\
2181 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2182 					    int slot)				\
2183 {										\
2184 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2185 	return btrfs_token_raw_item_##member(token, item);			\
2186 }										\
2187 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2188 						 int slot, u32 val)		\
2189 {										\
2190 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2191 	btrfs_set_token_raw_item_##member(token, item, val);			\
2192 }
2193 
2194 BTRFS_ITEM_SETGET_FUNCS(offset)
2195 BTRFS_ITEM_SETGET_FUNCS(size);
2196 
btrfs_item_data_end(const struct extent_buffer * eb,int nr)2197 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2198 {
2199 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2200 }
2201 
btrfs_item_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2202 static inline void btrfs_item_key(const struct extent_buffer *eb,
2203 			   struct btrfs_disk_key *disk_key, int nr)
2204 {
2205 	struct btrfs_item *item = btrfs_item_nr(nr);
2206 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2207 }
2208 
btrfs_set_item_key(struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2209 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2210 			       struct btrfs_disk_key *disk_key, int nr)
2211 {
2212 	struct btrfs_item *item = btrfs_item_nr(nr);
2213 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2214 }
2215 
2216 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2217 
2218 /*
2219  * struct btrfs_root_ref
2220  */
2221 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2222 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2223 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2224 
2225 /* struct btrfs_dir_item */
2226 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2227 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2228 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2229 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2230 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2231 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2232 			 data_len, 16);
2233 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2234 			 name_len, 16);
2235 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2236 			 transid, 64);
2237 
btrfs_dir_item_key(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_disk_key * key)2238 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2239 				      const struct btrfs_dir_item *item,
2240 				      struct btrfs_disk_key *key)
2241 {
2242 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2243 }
2244 
btrfs_set_dir_item_key(struct extent_buffer * eb,struct btrfs_dir_item * item,const struct btrfs_disk_key * key)2245 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2246 					  struct btrfs_dir_item *item,
2247 					  const struct btrfs_disk_key *key)
2248 {
2249 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2250 }
2251 
2252 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2253 		   num_entries, 64);
2254 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2255 		   num_bitmaps, 64);
2256 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2257 		   generation, 64);
2258 
btrfs_free_space_key(const struct extent_buffer * eb,const struct btrfs_free_space_header * h,struct btrfs_disk_key * key)2259 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2260 					const struct btrfs_free_space_header *h,
2261 					struct btrfs_disk_key *key)
2262 {
2263 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2264 }
2265 
btrfs_set_free_space_key(struct extent_buffer * eb,struct btrfs_free_space_header * h,const struct btrfs_disk_key * key)2266 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2267 					    struct btrfs_free_space_header *h,
2268 					    const struct btrfs_disk_key *key)
2269 {
2270 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2271 }
2272 
2273 /* struct btrfs_disk_key */
2274 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2275 			 objectid, 64);
2276 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2277 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2278 
2279 #ifdef __LITTLE_ENDIAN
2280 
2281 /*
2282  * Optimized helpers for little-endian architectures where CPU and on-disk
2283  * structures have the same endianness and we can skip conversions.
2284  */
2285 
btrfs_disk_key_to_cpu(struct btrfs_key * cpu_key,const struct btrfs_disk_key * disk_key)2286 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2287 					 const struct btrfs_disk_key *disk_key)
2288 {
2289 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2290 }
2291 
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk_key,const struct btrfs_key * cpu_key)2292 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2293 					 const struct btrfs_key *cpu_key)
2294 {
2295 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2296 }
2297 
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2298 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2299 					 struct btrfs_key *cpu_key, int nr)
2300 {
2301 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2302 
2303 	btrfs_node_key(eb, disk_key, nr);
2304 }
2305 
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2306 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2307 					 struct btrfs_key *cpu_key, int nr)
2308 {
2309 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2310 
2311 	btrfs_item_key(eb, disk_key, nr);
2312 }
2313 
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * cpu_key)2314 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2315 					     const struct btrfs_dir_item *item,
2316 					     struct btrfs_key *cpu_key)
2317 {
2318 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2319 
2320 	btrfs_dir_item_key(eb, item, disk_key);
2321 }
2322 
2323 #else
2324 
btrfs_disk_key_to_cpu(struct btrfs_key * cpu,const struct btrfs_disk_key * disk)2325 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2326 					 const struct btrfs_disk_key *disk)
2327 {
2328 	cpu->offset = le64_to_cpu(disk->offset);
2329 	cpu->type = disk->type;
2330 	cpu->objectid = le64_to_cpu(disk->objectid);
2331 }
2332 
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk,const struct btrfs_key * cpu)2333 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2334 					 const struct btrfs_key *cpu)
2335 {
2336 	disk->offset = cpu_to_le64(cpu->offset);
2337 	disk->type = cpu->type;
2338 	disk->objectid = cpu_to_le64(cpu->objectid);
2339 }
2340 
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2341 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2342 					 struct btrfs_key *key, int nr)
2343 {
2344 	struct btrfs_disk_key disk_key;
2345 	btrfs_node_key(eb, &disk_key, nr);
2346 	btrfs_disk_key_to_cpu(key, &disk_key);
2347 }
2348 
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2349 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2350 					 struct btrfs_key *key, int nr)
2351 {
2352 	struct btrfs_disk_key disk_key;
2353 	btrfs_item_key(eb, &disk_key, nr);
2354 	btrfs_disk_key_to_cpu(key, &disk_key);
2355 }
2356 
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * key)2357 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2358 					     const struct btrfs_dir_item *item,
2359 					     struct btrfs_key *key)
2360 {
2361 	struct btrfs_disk_key disk_key;
2362 	btrfs_dir_item_key(eb, item, &disk_key);
2363 	btrfs_disk_key_to_cpu(key, &disk_key);
2364 }
2365 
2366 #endif
2367 
2368 /* struct btrfs_header */
2369 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2370 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2371 			  generation, 64);
2372 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2373 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2374 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2375 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2376 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2377 			 generation, 64);
2378 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2379 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2380 			 nritems, 32);
2381 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2382 
btrfs_header_flag(const struct extent_buffer * eb,u64 flag)2383 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2384 {
2385 	return (btrfs_header_flags(eb) & flag) == flag;
2386 }
2387 
btrfs_set_header_flag(struct extent_buffer * eb,u64 flag)2388 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2389 {
2390 	u64 flags = btrfs_header_flags(eb);
2391 	btrfs_set_header_flags(eb, flags | flag);
2392 }
2393 
btrfs_clear_header_flag(struct extent_buffer * eb,u64 flag)2394 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2395 {
2396 	u64 flags = btrfs_header_flags(eb);
2397 	btrfs_set_header_flags(eb, flags & ~flag);
2398 }
2399 
btrfs_header_backref_rev(const struct extent_buffer * eb)2400 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2401 {
2402 	u64 flags = btrfs_header_flags(eb);
2403 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2404 }
2405 
btrfs_set_header_backref_rev(struct extent_buffer * eb,int rev)2406 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2407 						int rev)
2408 {
2409 	u64 flags = btrfs_header_flags(eb);
2410 	flags &= ~BTRFS_BACKREF_REV_MASK;
2411 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2412 	btrfs_set_header_flags(eb, flags);
2413 }
2414 
btrfs_is_leaf(const struct extent_buffer * eb)2415 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2416 {
2417 	return btrfs_header_level(eb) == 0;
2418 }
2419 
2420 /* struct btrfs_root_item */
2421 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2422 		   generation, 64);
2423 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2424 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2425 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2426 
2427 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2428 			 generation, 64);
2429 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2430 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2431 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2432 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2433 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2434 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2435 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2436 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2437 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2438 			 last_snapshot, 64);
2439 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2440 			 generation_v2, 64);
2441 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2442 			 ctransid, 64);
2443 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2444 			 otransid, 64);
2445 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2446 			 stransid, 64);
2447 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2448 			 rtransid, 64);
2449 
btrfs_root_readonly(const struct btrfs_root * root)2450 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2451 {
2452 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2453 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2454 }
2455 
btrfs_root_dead(const struct btrfs_root * root)2456 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2457 {
2458 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2459 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2460 }
2461 
btrfs_root_id(const struct btrfs_root * root)2462 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2463 {
2464 	return root->root_key.objectid;
2465 }
2466 
2467 /* struct btrfs_root_backup */
2468 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2469 		   tree_root, 64);
2470 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2471 		   tree_root_gen, 64);
2472 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2473 		   tree_root_level, 8);
2474 
2475 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2476 		   chunk_root, 64);
2477 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2478 		   chunk_root_gen, 64);
2479 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2480 		   chunk_root_level, 8);
2481 
2482 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2483 		   extent_root, 64);
2484 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2485 		   extent_root_gen, 64);
2486 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2487 		   extent_root_level, 8);
2488 
2489 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2490 		   fs_root, 64);
2491 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2492 		   fs_root_gen, 64);
2493 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2494 		   fs_root_level, 8);
2495 
2496 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2497 		   dev_root, 64);
2498 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2499 		   dev_root_gen, 64);
2500 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2501 		   dev_root_level, 8);
2502 
2503 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2504 		   csum_root, 64);
2505 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2506 		   csum_root_gen, 64);
2507 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2508 		   csum_root_level, 8);
2509 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2510 		   total_bytes, 64);
2511 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2512 		   bytes_used, 64);
2513 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2514 		   num_devices, 64);
2515 
2516 /* struct btrfs_balance_item */
2517 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2518 
btrfs_balance_data(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2519 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2520 				      const struct btrfs_balance_item *bi,
2521 				      struct btrfs_disk_balance_args *ba)
2522 {
2523 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2524 }
2525 
btrfs_set_balance_data(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2526 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2527 				  struct btrfs_balance_item *bi,
2528 				  const struct btrfs_disk_balance_args *ba)
2529 {
2530 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2531 }
2532 
btrfs_balance_meta(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2533 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2534 				      const struct btrfs_balance_item *bi,
2535 				      struct btrfs_disk_balance_args *ba)
2536 {
2537 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2538 }
2539 
btrfs_set_balance_meta(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2540 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2541 				  struct btrfs_balance_item *bi,
2542 				  const struct btrfs_disk_balance_args *ba)
2543 {
2544 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2545 }
2546 
btrfs_balance_sys(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2547 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2548 				     const struct btrfs_balance_item *bi,
2549 				     struct btrfs_disk_balance_args *ba)
2550 {
2551 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2552 }
2553 
btrfs_set_balance_sys(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2554 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2555 				 struct btrfs_balance_item *bi,
2556 				 const struct btrfs_disk_balance_args *ba)
2557 {
2558 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2559 }
2560 
2561 static inline void
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)2562 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2563 			       const struct btrfs_disk_balance_args *disk)
2564 {
2565 	memset(cpu, 0, sizeof(*cpu));
2566 
2567 	cpu->profiles = le64_to_cpu(disk->profiles);
2568 	cpu->usage = le64_to_cpu(disk->usage);
2569 	cpu->devid = le64_to_cpu(disk->devid);
2570 	cpu->pstart = le64_to_cpu(disk->pstart);
2571 	cpu->pend = le64_to_cpu(disk->pend);
2572 	cpu->vstart = le64_to_cpu(disk->vstart);
2573 	cpu->vend = le64_to_cpu(disk->vend);
2574 	cpu->target = le64_to_cpu(disk->target);
2575 	cpu->flags = le64_to_cpu(disk->flags);
2576 	cpu->limit = le64_to_cpu(disk->limit);
2577 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2578 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2579 }
2580 
2581 static inline void
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)2582 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2583 			       const struct btrfs_balance_args *cpu)
2584 {
2585 	memset(disk, 0, sizeof(*disk));
2586 
2587 	disk->profiles = cpu_to_le64(cpu->profiles);
2588 	disk->usage = cpu_to_le64(cpu->usage);
2589 	disk->devid = cpu_to_le64(cpu->devid);
2590 	disk->pstart = cpu_to_le64(cpu->pstart);
2591 	disk->pend = cpu_to_le64(cpu->pend);
2592 	disk->vstart = cpu_to_le64(cpu->vstart);
2593 	disk->vend = cpu_to_le64(cpu->vend);
2594 	disk->target = cpu_to_le64(cpu->target);
2595 	disk->flags = cpu_to_le64(cpu->flags);
2596 	disk->limit = cpu_to_le64(cpu->limit);
2597 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2598 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2599 }
2600 
2601 /* struct btrfs_super_block */
2602 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2603 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2604 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2605 			 generation, 64);
2606 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2607 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2608 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2609 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2610 			 struct btrfs_super_block, chunk_root_generation, 64);
2611 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2612 			 root_level, 8);
2613 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2614 			 chunk_root, 64);
2615 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2616 			 chunk_root_level, 8);
2617 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2618 			 log_root, 64);
2619 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2620 			 log_root_level, 8);
2621 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2622 			 total_bytes, 64);
2623 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2624 			 bytes_used, 64);
2625 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2626 			 sectorsize, 32);
2627 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2628 			 nodesize, 32);
2629 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2630 			 stripesize, 32);
2631 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2632 			 root_dir_objectid, 64);
2633 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2634 			 num_devices, 64);
2635 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2636 			 compat_flags, 64);
2637 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2638 			 compat_ro_flags, 64);
2639 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2640 			 incompat_flags, 64);
2641 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2642 			 csum_type, 16);
2643 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2644 			 cache_generation, 64);
2645 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2646 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2647 			 uuid_tree_generation, 64);
2648 
2649 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2650 const char *btrfs_super_csum_name(u16 csum_type);
2651 const char *btrfs_super_csum_driver(u16 csum_type);
2652 size_t __attribute_const__ btrfs_get_num_csums(void);
2653 
2654 
2655 /*
2656  * The leaf data grows from end-to-front in the node.
2657  * this returns the address of the start of the last item,
2658  * which is the stop of the leaf data stack
2659  */
leaf_data_end(const struct extent_buffer * leaf)2660 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2661 {
2662 	u32 nr = btrfs_header_nritems(leaf);
2663 
2664 	if (nr == 0)
2665 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2666 	return btrfs_item_offset(leaf, nr - 1);
2667 }
2668 
2669 /* struct btrfs_file_extent_item */
2670 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2671 			 type, 8);
2672 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2673 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2674 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2675 			 struct btrfs_file_extent_item, offset, 64);
2676 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2677 			 struct btrfs_file_extent_item, generation, 64);
2678 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2679 			 struct btrfs_file_extent_item, num_bytes, 64);
2680 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2681 			 struct btrfs_file_extent_item, ram_bytes, 64);
2682 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2683 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2684 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2685 			 struct btrfs_file_extent_item, compression, 8);
2686 
2687 static inline unsigned long
btrfs_file_extent_inline_start(const struct btrfs_file_extent_item * e)2688 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2689 {
2690 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2691 }
2692 
btrfs_file_extent_calc_inline_size(u32 datasize)2693 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2694 {
2695 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2696 }
2697 
2698 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2699 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2700 		   disk_bytenr, 64);
2701 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2702 		   generation, 64);
2703 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2704 		   disk_num_bytes, 64);
2705 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2706 		  offset, 64);
2707 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2708 		   num_bytes, 64);
2709 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2710 		   ram_bytes, 64);
2711 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2712 		   compression, 8);
2713 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2714 		   encryption, 8);
2715 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2716 		   other_encoding, 16);
2717 
2718 /*
2719  * this returns the number of bytes used by the item on disk, minus the
2720  * size of any extent headers.  If a file is compressed on disk, this is
2721  * the compressed size
2722  */
btrfs_file_extent_inline_item_len(const struct extent_buffer * eb,int nr)2723 static inline u32 btrfs_file_extent_inline_item_len(
2724 						const struct extent_buffer *eb,
2725 						int nr)
2726 {
2727 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2728 }
2729 
2730 /* btrfs_qgroup_status_item */
2731 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2732 		   generation, 64);
2733 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2734 		   version, 64);
2735 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2736 		   flags, 64);
2737 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2738 		   rescan, 64);
2739 
2740 /* btrfs_qgroup_info_item */
2741 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2742 		   generation, 64);
2743 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2744 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2745 		   rfer_cmpr, 64);
2746 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2747 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2748 		   excl_cmpr, 64);
2749 
2750 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2751 			 struct btrfs_qgroup_info_item, generation, 64);
2752 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2753 			 rfer, 64);
2754 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2755 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2756 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2757 			 excl, 64);
2758 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2759 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2760 
2761 /* btrfs_qgroup_limit_item */
2762 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2763 		   flags, 64);
2764 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2765 		   max_rfer, 64);
2766 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2767 		   max_excl, 64);
2768 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2769 		   rsv_rfer, 64);
2770 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2771 		   rsv_excl, 64);
2772 
2773 /* btrfs_dev_replace_item */
2774 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2775 		   struct btrfs_dev_replace_item, src_devid, 64);
2776 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2777 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2778 		   64);
2779 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2780 		   replace_state, 64);
2781 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2782 		   time_started, 64);
2783 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2784 		   time_stopped, 64);
2785 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2786 		   num_write_errors, 64);
2787 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2788 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2789 		   64);
2790 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2791 		   cursor_left, 64);
2792 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2793 		   cursor_right, 64);
2794 
2795 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2796 			 struct btrfs_dev_replace_item, src_devid, 64);
2797 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2798 			 struct btrfs_dev_replace_item,
2799 			 cont_reading_from_srcdev_mode, 64);
2800 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2801 			 struct btrfs_dev_replace_item, replace_state, 64);
2802 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2803 			 struct btrfs_dev_replace_item, time_started, 64);
2804 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2805 			 struct btrfs_dev_replace_item, time_stopped, 64);
2806 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2807 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2808 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2809 			 struct btrfs_dev_replace_item,
2810 			 num_uncorrectable_read_errors, 64);
2811 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2812 			 struct btrfs_dev_replace_item, cursor_left, 64);
2813 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2814 			 struct btrfs_dev_replace_item, cursor_right, 64);
2815 
2816 /* helper function to cast into the data area of the leaf. */
2817 #define btrfs_item_ptr(leaf, slot, type) \
2818 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2819 	btrfs_item_offset(leaf, slot)))
2820 
2821 #define btrfs_item_ptr_offset(leaf, slot) \
2822 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2823 	btrfs_item_offset(leaf, slot)))
2824 
btrfs_crc32c(u32 crc,const void * address,unsigned length)2825 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2826 {
2827 	return crc32c(crc, address, length);
2828 }
2829 
btrfs_crc32c_final(u32 crc,u8 * result)2830 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2831 {
2832 	put_unaligned_le32(~crc, result);
2833 }
2834 
btrfs_name_hash(const char * name,int len)2835 static inline u64 btrfs_name_hash(const char *name, int len)
2836 {
2837        return crc32c((u32)~1, name, len);
2838 }
2839 
2840 /*
2841  * Figure the key offset of an extended inode ref
2842  */
btrfs_extref_hash(u64 parent_objectid,const char * name,int len)2843 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2844                                    int len)
2845 {
2846        return (u64) crc32c(parent_objectid, name, len);
2847 }
2848 
btrfs_alloc_write_mask(struct address_space * mapping)2849 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2850 {
2851 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2852 }
2853 
2854 /* extent-tree.c */
2855 
2856 enum btrfs_inline_ref_type {
2857 	BTRFS_REF_TYPE_INVALID,
2858 	BTRFS_REF_TYPE_BLOCK,
2859 	BTRFS_REF_TYPE_DATA,
2860 	BTRFS_REF_TYPE_ANY,
2861 };
2862 
2863 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2864 				     struct btrfs_extent_inline_ref *iref,
2865 				     enum btrfs_inline_ref_type is_data);
2866 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2867 
2868 
2869 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2870 			      u64 start, u64 num_bytes);
2871 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2872 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2873 			   unsigned long count);
2874 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2875 				  struct btrfs_delayed_ref_root *delayed_refs,
2876 				  struct btrfs_delayed_ref_head *head);
2877 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2878 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2879 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2880 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2881 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2882 		     int reserved);
2883 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2884 				    u64 bytenr, u64 num_bytes);
2885 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2886 int btrfs_cross_ref_exist(struct btrfs_root *root,
2887 			  u64 objectid, u64 offset, u64 bytenr, bool strict,
2888 			  struct btrfs_path *path);
2889 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2890 					     struct btrfs_root *root,
2891 					     u64 parent, u64 root_objectid,
2892 					     const struct btrfs_disk_key *key,
2893 					     int level, u64 hint,
2894 					     u64 empty_size,
2895 					     enum btrfs_lock_nesting nest);
2896 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2897 			   u64 root_id,
2898 			   struct extent_buffer *buf,
2899 			   u64 parent, int last_ref);
2900 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2901 				     struct btrfs_root *root, u64 owner,
2902 				     u64 offset, u64 ram_bytes,
2903 				     struct btrfs_key *ins);
2904 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2905 				   u64 root_objectid, u64 owner, u64 offset,
2906 				   struct btrfs_key *ins);
2907 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2908 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2909 			 struct btrfs_key *ins, int is_data, int delalloc);
2910 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2911 		  struct extent_buffer *buf, int full_backref);
2912 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2913 		  struct extent_buffer *buf, int full_backref);
2914 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2915 				struct extent_buffer *eb, u64 flags, int level);
2916 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2917 
2918 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2919 			       u64 start, u64 len, int delalloc);
2920 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2921 			      u64 len);
2922 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2923 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2924 			 struct btrfs_ref *generic_ref);
2925 
2926 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2927 
2928 /*
2929  * Different levels for to flush space when doing space reservations.
2930  *
2931  * The higher the level, the more methods we try to reclaim space.
2932  */
2933 enum btrfs_reserve_flush_enum {
2934 	/* If we are in the transaction, we can't flush anything.*/
2935 	BTRFS_RESERVE_NO_FLUSH,
2936 
2937 	/*
2938 	 * Flush space by:
2939 	 * - Running delayed inode items
2940 	 * - Allocating a new chunk
2941 	 */
2942 	BTRFS_RESERVE_FLUSH_LIMIT,
2943 
2944 	/*
2945 	 * Flush space by:
2946 	 * - Running delayed inode items
2947 	 * - Running delayed refs
2948 	 * - Running delalloc and waiting for ordered extents
2949 	 * - Allocating a new chunk
2950 	 */
2951 	BTRFS_RESERVE_FLUSH_EVICT,
2952 
2953 	/*
2954 	 * Flush space by above mentioned methods and by:
2955 	 * - Running delayed iputs
2956 	 * - Committing transaction
2957 	 *
2958 	 * Can be interrupted by a fatal signal.
2959 	 */
2960 	BTRFS_RESERVE_FLUSH_DATA,
2961 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2962 	BTRFS_RESERVE_FLUSH_ALL,
2963 
2964 	/*
2965 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2966 	 * global rsv.
2967 	 *
2968 	 * Can be interrupted by a fatal signal.
2969 	 */
2970 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2971 };
2972 
2973 enum btrfs_flush_state {
2974 	FLUSH_DELAYED_ITEMS_NR	=	1,
2975 	FLUSH_DELAYED_ITEMS	=	2,
2976 	FLUSH_DELAYED_REFS_NR	=	3,
2977 	FLUSH_DELAYED_REFS	=	4,
2978 	FLUSH_DELALLOC		=	5,
2979 	FLUSH_DELALLOC_WAIT	=	6,
2980 	FLUSH_DELALLOC_FULL	=	7,
2981 	ALLOC_CHUNK		=	8,
2982 	ALLOC_CHUNK_FORCE	=	9,
2983 	RUN_DELAYED_IPUTS	=	10,
2984 	COMMIT_TRANS		=	11,
2985 };
2986 
2987 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2988 				     struct btrfs_block_rsv *rsv,
2989 				     int nitems, bool use_global_rsv);
2990 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2991 				      struct btrfs_block_rsv *rsv);
2992 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2993 
2994 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2995 				    u64 disk_num_bytes, bool noflush);
2996 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2997 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2998 				   u64 start, u64 end);
2999 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
3000 			 u64 num_bytes, u64 *actual_bytes);
3001 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
3002 
3003 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3004 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3005 					 struct btrfs_fs_info *fs_info);
3006 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
3007 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
3008 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
3009 
3010 /* ctree.c */
3011 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
3012 		     int *slot);
3013 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
3014 int btrfs_previous_item(struct btrfs_root *root,
3015 			struct btrfs_path *path, u64 min_objectid,
3016 			int type);
3017 int btrfs_previous_extent_item(struct btrfs_root *root,
3018 			struct btrfs_path *path, u64 min_objectid);
3019 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3020 			     struct btrfs_path *path,
3021 			     const struct btrfs_key *new_key);
3022 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3023 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3024 			struct btrfs_key *key, int lowest_level,
3025 			u64 min_trans);
3026 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3027 			 struct btrfs_path *path,
3028 			 u64 min_trans);
3029 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
3030 					   int slot);
3031 
3032 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3033 		    struct btrfs_root *root, struct extent_buffer *buf,
3034 		    struct extent_buffer *parent, int parent_slot,
3035 		    struct extent_buffer **cow_ret,
3036 		    enum btrfs_lock_nesting nest);
3037 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3038 		      struct btrfs_root *root,
3039 		      struct extent_buffer *buf,
3040 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
3041 int btrfs_block_can_be_shared(struct btrfs_root *root,
3042 			      struct extent_buffer *buf);
3043 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
3044 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
3045 int btrfs_split_item(struct btrfs_trans_handle *trans,
3046 		     struct btrfs_root *root,
3047 		     struct btrfs_path *path,
3048 		     const struct btrfs_key *new_key,
3049 		     unsigned long split_offset);
3050 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3051 			 struct btrfs_root *root,
3052 			 struct btrfs_path *path,
3053 			 const struct btrfs_key *new_key);
3054 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3055 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3056 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3057 		      const struct btrfs_key *key, struct btrfs_path *p,
3058 		      int ins_len, int cow);
3059 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
3060 			  struct btrfs_path *p, u64 time_seq);
3061 int btrfs_search_slot_for_read(struct btrfs_root *root,
3062 			       const struct btrfs_key *key,
3063 			       struct btrfs_path *p, int find_higher,
3064 			       int return_any);
3065 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3066 		       struct btrfs_root *root, struct extent_buffer *parent,
3067 		       int start_slot, u64 *last_ret,
3068 		       struct btrfs_key *progress);
3069 void btrfs_release_path(struct btrfs_path *p);
3070 struct btrfs_path *btrfs_alloc_path(void);
3071 void btrfs_free_path(struct btrfs_path *p);
3072 
3073 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3074 		   struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)3075 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3076 				 struct btrfs_root *root,
3077 				 struct btrfs_path *path)
3078 {
3079 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3080 }
3081 
3082 /*
3083  * Describes a batch of items to insert in a btree. This is used by
3084  * btrfs_insert_empty_items().
3085  */
3086 struct btrfs_item_batch {
3087 	/*
3088 	 * Pointer to an array containing the keys of the items to insert (in
3089 	 * sorted order).
3090 	 */
3091 	const struct btrfs_key *keys;
3092 	/* Pointer to an array containing the data size for each item to insert. */
3093 	const u32 *data_sizes;
3094 	/*
3095 	 * The sum of data sizes for all items. The caller can compute this while
3096 	 * setting up the data_sizes array, so it ends up being more efficient
3097 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3098 	 * doing it, as it would avoid an extra loop over a potentially large
3099 	 * array, and in the case of setup_item_for_insert(), we would be doing
3100 	 * it while holding a write lock on a leaf and often on upper level nodes
3101 	 * too, unnecessarily increasing the size of a critical section.
3102 	 */
3103 	u32 total_data_size;
3104 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3105 	int nr;
3106 };
3107 
3108 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3109 				 struct btrfs_path *path,
3110 				 const struct btrfs_key *key,
3111 				 u32 data_size);
3112 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3113 		      const struct btrfs_key *key, void *data, u32 data_size);
3114 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3115 			     struct btrfs_root *root,
3116 			     struct btrfs_path *path,
3117 			     const struct btrfs_item_batch *batch);
3118 
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)3119 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3120 					  struct btrfs_root *root,
3121 					  struct btrfs_path *path,
3122 					  const struct btrfs_key *key,
3123 					  u32 data_size)
3124 {
3125 	struct btrfs_item_batch batch;
3126 
3127 	batch.keys = key;
3128 	batch.data_sizes = &data_size;
3129 	batch.total_data_size = data_size;
3130 	batch.nr = 1;
3131 
3132 	return btrfs_insert_empty_items(trans, root, path, &batch);
3133 }
3134 
3135 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3136 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3137 			u64 time_seq);
3138 
3139 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3140 			   struct btrfs_path *path);
3141 
3142 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3143 			      struct btrfs_path *path);
3144 
3145 /*
3146  * Search in @root for a given @key, and store the slot found in @found_key.
3147  *
3148  * @root:	The root node of the tree.
3149  * @key:	The key we are looking for.
3150  * @found_key:	Will hold the found item.
3151  * @path:	Holds the current slot/leaf.
3152  * @iter_ret:	Contains the value returned from btrfs_search_slot or
3153  * 		btrfs_get_next_valid_item, whichever was executed last.
3154  *
3155  * The @iter_ret is an output variable that will contain the return value of
3156  * btrfs_search_slot, if it encountered an error, or the value returned from
3157  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3158  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3159  *
3160  * It's recommended to use a separate variable for iter_ret and then use it to
3161  * set the function return value so there's no confusion of the 0/1/errno
3162  * values stemming from btrfs_search_slot.
3163  */
3164 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
3165 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
3166 		(iter_ret) >= 0 &&						\
3167 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3168 		(path)->slots[0]++						\
3169 	)
3170 
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * p,u64 time_seq)3171 static inline int btrfs_next_old_item(struct btrfs_root *root,
3172 				      struct btrfs_path *p, u64 time_seq)
3173 {
3174 	++p->slots[0];
3175 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3176 		return btrfs_next_old_leaf(root, p, time_seq);
3177 	return 0;
3178 }
3179 
3180 /*
3181  * Search the tree again to find a leaf with greater keys.
3182  *
3183  * Returns 0 if it found something or 1 if there are no greater leaves.
3184  * Returns < 0 on error.
3185  */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)3186 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3187 {
3188 	return btrfs_next_old_leaf(root, path, 0);
3189 }
3190 
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)3191 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3192 {
3193 	return btrfs_next_old_item(root, p, 0);
3194 }
3195 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3196 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3197 				     int for_reloc);
3198 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3199 			struct btrfs_root *root,
3200 			struct extent_buffer *node,
3201 			struct extent_buffer *parent);
btrfs_fs_closing(struct btrfs_fs_info * fs_info)3202 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3203 {
3204 	/*
3205 	 * Do it this way so we only ever do one test_bit in the normal case.
3206 	 */
3207 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3208 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3209 			return 2;
3210 		return 1;
3211 	}
3212 	return 0;
3213 }
3214 
3215 /*
3216  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3217  * anything except sleeping. This function is used to check the status of
3218  * the fs.
3219  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3220  * since setting and checking for SB_RDONLY in the superblock's flags is not
3221  * atomic.
3222  */
btrfs_need_cleaner_sleep(struct btrfs_fs_info * fs_info)3223 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3224 {
3225 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3226 		btrfs_fs_closing(fs_info);
3227 }
3228 
btrfs_set_sb_rdonly(struct super_block * sb)3229 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3230 {
3231 	sb->s_flags |= SB_RDONLY;
3232 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3233 }
3234 
btrfs_clear_sb_rdonly(struct super_block * sb)3235 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3236 {
3237 	sb->s_flags &= ~SB_RDONLY;
3238 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3239 }
3240 
3241 /* root-item.c */
3242 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3243 		       u64 ref_id, u64 dirid, u64 sequence,
3244 		       const struct fscrypt_str *name);
3245 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3246 		       u64 ref_id, u64 dirid, u64 *sequence,
3247 		       const struct fscrypt_str *name);
3248 int btrfs_del_root(struct btrfs_trans_handle *trans,
3249 		   const struct btrfs_key *key);
3250 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3251 		      const struct btrfs_key *key,
3252 		      struct btrfs_root_item *item);
3253 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3254 				   struct btrfs_root *root,
3255 				   struct btrfs_key *key,
3256 				   struct btrfs_root_item *item);
3257 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3258 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3259 		    struct btrfs_key *root_key);
3260 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3261 void btrfs_set_root_node(struct btrfs_root_item *item,
3262 			 struct extent_buffer *node);
3263 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3264 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3265 			     struct btrfs_root *root);
3266 
3267 /* uuid-tree.c */
3268 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3269 			u64 subid);
3270 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3271 			u64 subid);
3272 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3273 
3274 /* dir-item.c */
3275 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3276 			  const struct fscrypt_str *name);
3277 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3278 			  const struct fscrypt_str *name, struct btrfs_inode *dir,
3279 			  struct btrfs_key *location, u8 type, u64 index);
3280 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3281 					     struct btrfs_root *root,
3282 					     struct btrfs_path *path, u64 dir,
3283 					     const struct fscrypt_str *name, int mod);
3284 struct btrfs_dir_item *
3285 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3286 			    struct btrfs_root *root,
3287 			    struct btrfs_path *path, u64 dir,
3288 			    u64 index, const struct fscrypt_str *name, int mod);
3289 struct btrfs_dir_item *
3290 btrfs_search_dir_index_item(struct btrfs_root *root,
3291 			    struct btrfs_path *path, u64 dirid,
3292 			    const struct fscrypt_str *name);
3293 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3294 			      struct btrfs_root *root,
3295 			      struct btrfs_path *path,
3296 			      struct btrfs_dir_item *di);
3297 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3298 			    struct btrfs_root *root,
3299 			    struct btrfs_path *path, u64 objectid,
3300 			    const char *name, u16 name_len,
3301 			    const void *data, u16 data_len);
3302 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3303 					  struct btrfs_root *root,
3304 					  struct btrfs_path *path, u64 dir,
3305 					  const char *name, u16 name_len,
3306 					  int mod);
3307 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3308 						 struct btrfs_path *path,
3309 						 const char *name,
3310 						 int name_len);
3311 
3312 /* orphan.c */
3313 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3314 			     struct btrfs_root *root, u64 offset);
3315 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3316 			  struct btrfs_root *root, u64 offset);
3317 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3318 
3319 /* file-item.c */
3320 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3321 		    struct btrfs_root *root, u64 bytenr, u64 len);
3322 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3323 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
3324 			     struct btrfs_root *root, u64 objectid, u64 pos,
3325 			     u64 num_bytes);
3326 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3327 			     struct btrfs_root *root,
3328 			     struct btrfs_path *path, u64 objectid,
3329 			     u64 bytenr, int mod);
3330 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3331 			   struct btrfs_root *root,
3332 			   struct btrfs_ordered_sum *sums);
3333 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3334 				u64 offset, bool one_ordered);
3335 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3336 			     struct list_head *list, int search_commit,
3337 			     bool nowait);
3338 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3339 				     const struct btrfs_path *path,
3340 				     struct btrfs_file_extent_item *fi,
3341 				     const bool new_inline,
3342 				     struct extent_map *em);
3343 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3344 					u64 len);
3345 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3346 				      u64 len);
3347 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3348 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3349 
3350 /* inode.c */
3351 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3352 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3353 			int mirror_num, enum btrfs_compression_type compress_type);
3354 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3355 			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
3356 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3357 			  u32 bio_offset, struct page *page, u32 pgoff);
3358 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3359 				    u32 bio_offset, struct page *page,
3360 				    u64 start, u64 end);
3361 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3362 			  u32 bio_offset, struct page *page, u32 pgoff);
3363 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3364 			      u64 *orig_start, u64 *orig_block_len,
3365 			      u64 *ram_bytes, bool nowait, bool strict);
3366 
3367 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3368 				struct btrfs_inode *inode);
3369 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3370 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3371 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3372 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3373 		       const struct fscrypt_str *name);
3374 int btrfs_add_link(struct btrfs_trans_handle *trans,
3375 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3376 		   const struct fscrypt_str *name, int add_backref, u64 index);
3377 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3378 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3379 			 int front);
3380 
3381 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3382 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3383 			       bool in_reclaim_context);
3384 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3385 			      unsigned int extra_bits,
3386 			      struct extent_state **cached_state);
3387 struct btrfs_new_inode_args {
3388 	/* Input */
3389 	struct inode *dir;
3390 	struct dentry *dentry;
3391 	struct inode *inode;
3392 	bool orphan;
3393 	bool subvol;
3394 
3395 	/*
3396 	 * Output from btrfs_new_inode_prepare(), input to
3397 	 * btrfs_create_new_inode().
3398 	 */
3399 	struct posix_acl *default_acl;
3400 	struct posix_acl *acl;
3401 	struct fscrypt_name fname;
3402 };
3403 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3404 			    unsigned int *trans_num_items);
3405 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3406 			   struct btrfs_new_inode_args *args);
3407 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3408 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3409 				     struct inode *dir);
3410  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3411 			        u32 bits);
3412 void btrfs_clear_delalloc_extent(struct inode *inode,
3413 				 struct extent_state *state, u32 bits);
3414 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3415 				 struct extent_state *other);
3416 void btrfs_split_delalloc_extent(struct inode *inode,
3417 				 struct extent_state *orig, u64 split);
3418 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3419 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3420 void btrfs_evict_inode(struct inode *inode);
3421 struct inode *btrfs_alloc_inode(struct super_block *sb);
3422 void btrfs_destroy_inode(struct inode *inode);
3423 void btrfs_free_inode(struct inode *inode);
3424 int btrfs_drop_inode(struct inode *inode);
3425 int __init btrfs_init_cachep(void);
3426 void __cold btrfs_destroy_cachep(void);
3427 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3428 			      struct btrfs_root *root, struct btrfs_path *path);
3429 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3430 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3431 				    struct page *page, size_t pg_offset,
3432 				    u64 start, u64 end);
3433 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3434 		       struct btrfs_root *root, struct btrfs_inode *inode);
3435 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3436 				struct btrfs_root *root, struct btrfs_inode *inode);
3437 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3438 		struct btrfs_inode *inode);
3439 int btrfs_orphan_cleanup(struct btrfs_root *root);
3440 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3441 void btrfs_add_delayed_iput(struct inode *inode);
3442 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3443 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3444 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3445 			      u64 start, u64 num_bytes, u64 min_size,
3446 			      loff_t actual_len, u64 *alloc_hint);
3447 int btrfs_prealloc_file_range_trans(struct inode *inode,
3448 				    struct btrfs_trans_handle *trans, int mode,
3449 				    u64 start, u64 num_bytes, u64 min_size,
3450 				    loff_t actual_len, u64 *alloc_hint);
3451 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3452 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3453 		struct writeback_control *wbc);
3454 int btrfs_writepage_cow_fixup(struct page *page);
3455 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3456 					  struct page *page, u64 start,
3457 					  u64 end, bool uptodate);
3458 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3459 					     int compress_type);
3460 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3461 					  u64 file_offset, u64 disk_bytenr,
3462 					  u64 disk_io_size,
3463 					  struct page **pages);
3464 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3465 			   struct btrfs_ioctl_encoded_io_args *encoded);
3466 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3467 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3468 
3469 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
3470 		       size_t done_before);
3471 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
3472 				  size_t done_before);
3473 
3474 extern const struct dentry_operations btrfs_dentry_operations;
3475 
3476 /* Inode locking type flags, by default the exclusive lock is taken */
3477 #define BTRFS_ILOCK_SHARED	(1U << 0)
3478 #define BTRFS_ILOCK_TRY 	(1U << 1)
3479 #define BTRFS_ILOCK_MMAP	(1U << 2)
3480 
3481 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3482 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3483 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3484 			      const u64 add_bytes,
3485 			      const u64 del_bytes);
3486 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3487 
3488 /* ioctl.c */
3489 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3490 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3491 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3492 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3493 		       struct dentry *dentry, struct fileattr *fa);
3494 int btrfs_ioctl_get_supported_features(void __user *arg);
3495 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3496 int __pure btrfs_is_empty_uuid(u8 *uuid);
3497 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3498 		      struct btrfs_ioctl_defrag_range_args *range,
3499 		      u64 newer_than, unsigned long max_to_defrag);
3500 void btrfs_get_block_group_info(struct list_head *groups_list,
3501 				struct btrfs_ioctl_space_info *space);
3502 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3503 			       struct btrfs_ioctl_balance_args *bargs);
3504 
3505 /* file.c */
3506 int __init btrfs_auto_defrag_init(void);
3507 void __cold btrfs_auto_defrag_exit(void);
3508 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3509 			   struct btrfs_inode *inode, u32 extent_thresh);
3510 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3511 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3512 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3513 extern const struct file_operations btrfs_file_operations;
3514 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3515 		       struct btrfs_root *root, struct btrfs_inode *inode,
3516 		       struct btrfs_drop_extents_args *args);
3517 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3518 			   struct btrfs_path *path, const u64 start,
3519 			   const u64 end,
3520 			   struct btrfs_replace_extent_info *extent_info,
3521 			   struct btrfs_trans_handle **trans_out);
3522 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3523 			      struct btrfs_inode *inode, u64 start, u64 end);
3524 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3525 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3526 int btrfs_release_file(struct inode *inode, struct file *file);
3527 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3528 		      size_t num_pages, loff_t pos, size_t write_bytes,
3529 		      struct extent_state **cached, bool noreserve);
3530 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3531 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3532 			   size_t *write_bytes, bool nowait);
3533 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3534 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3535 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret);
3536 
3537 /* tree-defrag.c */
3538 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3539 			struct btrfs_root *root);
3540 
3541 /* super.c */
3542 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3543 			unsigned long new_flags);
3544 int btrfs_sync_fs(struct super_block *sb, int wait);
3545 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3546 					  u64 subvol_objectid);
3547 
3548 static inline __printf(2, 3) __cold
btrfs_no_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)3549 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3550 {
3551 }
3552 
3553 #ifdef CONFIG_PRINTK_INDEX
3554 
3555 #define btrfs_printk(fs_info, fmt, args...)					\
3556 do {										\
3557 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);	\
3558 	_btrfs_printk(fs_info, fmt, ##args);					\
3559 } while (0)
3560 
3561 __printf(2, 3)
3562 __cold
3563 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3564 
3565 #elif defined(CONFIG_PRINTK)
3566 
3567 #define btrfs_printk(fs_info, fmt, args...)				\
3568 	_btrfs_printk(fs_info, fmt, ##args)
3569 
3570 __printf(2, 3)
3571 __cold
3572 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3573 
3574 #else
3575 
3576 #define btrfs_printk(fs_info, fmt, args...) \
3577 	btrfs_no_printk(fs_info, fmt, ##args)
3578 #endif
3579 
3580 #define btrfs_emerg(fs_info, fmt, args...) \
3581 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3582 #define btrfs_alert(fs_info, fmt, args...) \
3583 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3584 #define btrfs_crit(fs_info, fmt, args...) \
3585 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3586 #define btrfs_err(fs_info, fmt, args...) \
3587 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3588 #define btrfs_warn(fs_info, fmt, args...) \
3589 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3590 #define btrfs_notice(fs_info, fmt, args...) \
3591 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3592 #define btrfs_info(fs_info, fmt, args...) \
3593 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3594 
3595 /*
3596  * Wrappers that use printk_in_rcu
3597  */
3598 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3599 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3600 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3601 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3602 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3603 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3604 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3605 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3606 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3607 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3608 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3609 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3610 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3611 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3612 
3613 /*
3614  * Wrappers that use a ratelimited printk_in_rcu
3615  */
3616 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3617 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3618 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3619 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3620 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3621 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3622 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3623 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3624 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3625 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3626 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3627 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3628 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3629 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3630 
3631 /*
3632  * Wrappers that use a ratelimited printk
3633  */
3634 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3635 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3636 #define btrfs_alert_rl(fs_info, fmt, args...) \
3637 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3638 #define btrfs_crit_rl(fs_info, fmt, args...) \
3639 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3640 #define btrfs_err_rl(fs_info, fmt, args...) \
3641 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3642 #define btrfs_warn_rl(fs_info, fmt, args...) \
3643 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3644 #define btrfs_notice_rl(fs_info, fmt, args...) \
3645 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3646 #define btrfs_info_rl(fs_info, fmt, args...) \
3647 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3648 
3649 #if defined(CONFIG_DYNAMIC_DEBUG)
3650 #define btrfs_debug(fs_info, fmt, args...)				\
3651 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3652 				   fs_info, KERN_DEBUG fmt, ##args)
3653 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3654 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3655 				   fs_info, KERN_DEBUG fmt, ##args)
3656 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3657 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3658 				   fs_info, KERN_DEBUG fmt, ##args)
3659 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3660 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3661 				   fs_info, KERN_DEBUG fmt, ##args)
3662 #elif defined(DEBUG)
3663 #define btrfs_debug(fs_info, fmt, args...) \
3664 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3665 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3666 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3667 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3668 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3669 #define btrfs_debug_rl(fs_info, fmt, args...) \
3670 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3671 #else
3672 #define btrfs_debug(fs_info, fmt, args...) \
3673 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3674 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3675 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3676 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3677 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3678 #define btrfs_debug_rl(fs_info, fmt, args...) \
3679 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3680 #endif
3681 
3682 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3683 do {							\
3684 	rcu_read_lock();				\
3685 	btrfs_printk(fs_info, fmt, ##args);		\
3686 	rcu_read_unlock();				\
3687 } while (0)
3688 
3689 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3690 do {							\
3691 	rcu_read_lock();				\
3692 	btrfs_no_printk(fs_info, fmt, ##args);		\
3693 	rcu_read_unlock();				\
3694 } while (0)
3695 
3696 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3697 do {								\
3698 	static DEFINE_RATELIMIT_STATE(_rs,			\
3699 		DEFAULT_RATELIMIT_INTERVAL,			\
3700 		DEFAULT_RATELIMIT_BURST);       		\
3701 	if (__ratelimit(&_rs))					\
3702 		btrfs_printk(fs_info, fmt, ##args);		\
3703 } while (0)
3704 
3705 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3706 do {								\
3707 	rcu_read_lock();					\
3708 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3709 	rcu_read_unlock();					\
3710 } while (0)
3711 
3712 #ifdef CONFIG_BTRFS_ASSERT
3713 __cold __noreturn
assertfail(const char * expr,const char * file,int line)3714 static inline void assertfail(const char *expr, const char *file, int line)
3715 {
3716 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3717 	BUG();
3718 }
3719 
3720 #define ASSERT(expr)						\
3721 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3722 
3723 #else
assertfail(const char * expr,const char * file,int line)3724 static inline void assertfail(const char *expr, const char* file, int line) { }
3725 #define ASSERT(expr)	(void)(expr)
3726 #endif
3727 
3728 #if BITS_PER_LONG == 32
3729 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3730 /*
3731  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3732  * addresses of extents.
3733  *
3734  * For 4K page size it's about 10T, for 64K it's 160T.
3735  */
3736 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3737 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3738 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3739 #endif
3740 
3741 /*
3742  * Get the correct offset inside the page of extent buffer.
3743  *
3744  * @eb:		target extent buffer
3745  * @start:	offset inside the extent buffer
3746  *
3747  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3748  */
get_eb_offset_in_page(const struct extent_buffer * eb,unsigned long offset)3749 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3750 					   unsigned long offset)
3751 {
3752 	/*
3753 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3754 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3755 	 *
3756 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3757 	 * to the eb, thus we have to take the eb->start into consideration.
3758 	 */
3759 	return offset_in_page(offset + eb->start);
3760 }
3761 
get_eb_page_index(unsigned long offset)3762 static inline unsigned long get_eb_page_index(unsigned long offset)
3763 {
3764 	/*
3765 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3766 	 *
3767 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3768 	 * and have ensured that all tree blocks are contained in one page,
3769 	 * thus we always get index == 0.
3770 	 */
3771 	return offset >> PAGE_SHIFT;
3772 }
3773 
3774 /*
3775  * Use that for functions that are conditionally exported for sanity tests but
3776  * otherwise static
3777  */
3778 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3779 #define EXPORT_FOR_TESTS static
3780 #else
3781 #define EXPORT_FOR_TESTS
3782 #endif
3783 
3784 __cold
btrfs_print_v0_err(struct btrfs_fs_info * fs_info)3785 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3786 {
3787 	btrfs_err(fs_info,
3788 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3789 }
3790 
3791 __printf(5, 6)
3792 __cold
3793 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3794 		     unsigned int line, int errno, const char *fmt, ...);
3795 
3796 const char * __attribute_const__ btrfs_decode_error(int errno);
3797 
3798 __cold
3799 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3800 			       const char *function,
3801 			       unsigned int line, int errno, bool first_hit);
3802 
3803 bool __cold abort_should_print_stack(int errno);
3804 
3805 /*
3806  * Call btrfs_abort_transaction as early as possible when an error condition is
3807  * detected, that way the exact stack trace is reported for some errors.
3808  */
3809 #define btrfs_abort_transaction(trans, errno)		\
3810 do {								\
3811 	bool first = false;					\
3812 	/* Report first abort since mount */			\
3813 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3814 			&((trans)->fs_info->fs_state))) {	\
3815 		first = true;					\
3816 		if (WARN(abort_should_print_stack(errno), 	\
3817 			KERN_DEBUG				\
3818 			"BTRFS: Transaction aborted (error %d)\n",	\
3819 			(errno))) {					\
3820 			/* Stack trace printed. */			\
3821 		} else {						\
3822 			btrfs_debug((trans)->fs_info,			\
3823 				    "Transaction aborted (error %d)", \
3824 				  (errno));			\
3825 		}						\
3826 	}							\
3827 	__btrfs_abort_transaction((trans), __func__,		\
3828 				  __LINE__, (errno), first);	\
3829 } while (0)
3830 
3831 #ifdef CONFIG_PRINTK_INDEX
3832 
3833 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3834 do {									\
3835 	printk_index_subsys_emit(					\
3836 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s",	\
3837 		KERN_CRIT, fmt);					\
3838 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3839 				(errno), fmt, ##args);			\
3840 } while (0)
3841 
3842 #else
3843 
3844 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3845 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3846 				(errno), fmt, ##args)
3847 
3848 #endif
3849 
3850 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3851 						   &(fs_info)->fs_state)))
3852 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3853 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3854 			   &(fs_info)->fs_state)))
3855 
3856 __printf(5, 6)
3857 __cold
3858 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3859 		   unsigned int line, int errno, const char *fmt, ...);
3860 /*
3861  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3862  * will panic().  Otherwise we BUG() here.
3863  */
3864 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3865 do {									\
3866 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3867 	BUG();								\
3868 } while (0)
3869 
3870 
3871 /* compatibility and incompatibility defines */
3872 
3873 #define btrfs_set_fs_incompat(__fs_info, opt) \
3874 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3875 				#opt)
3876 
__btrfs_set_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3877 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3878 					   u64 flag, const char* name)
3879 {
3880 	struct btrfs_super_block *disk_super;
3881 	u64 features;
3882 
3883 	disk_super = fs_info->super_copy;
3884 	features = btrfs_super_incompat_flags(disk_super);
3885 	if (!(features & flag)) {
3886 		spin_lock(&fs_info->super_lock);
3887 		features = btrfs_super_incompat_flags(disk_super);
3888 		if (!(features & flag)) {
3889 			features |= flag;
3890 			btrfs_set_super_incompat_flags(disk_super, features);
3891 			btrfs_info(fs_info,
3892 				"setting incompat feature flag for %s (0x%llx)",
3893 				name, flag);
3894 		}
3895 		spin_unlock(&fs_info->super_lock);
3896 	}
3897 }
3898 
3899 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3900 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3901 				  #opt)
3902 
__btrfs_clear_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3903 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3904 					     u64 flag, const char* name)
3905 {
3906 	struct btrfs_super_block *disk_super;
3907 	u64 features;
3908 
3909 	disk_super = fs_info->super_copy;
3910 	features = btrfs_super_incompat_flags(disk_super);
3911 	if (features & flag) {
3912 		spin_lock(&fs_info->super_lock);
3913 		features = btrfs_super_incompat_flags(disk_super);
3914 		if (features & flag) {
3915 			features &= ~flag;
3916 			btrfs_set_super_incompat_flags(disk_super, features);
3917 			btrfs_info(fs_info,
3918 				"clearing incompat feature flag for %s (0x%llx)",
3919 				name, flag);
3920 		}
3921 		spin_unlock(&fs_info->super_lock);
3922 	}
3923 }
3924 
3925 #define btrfs_fs_incompat(fs_info, opt) \
3926 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3927 
__btrfs_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag)3928 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3929 {
3930 	struct btrfs_super_block *disk_super;
3931 	disk_super = fs_info->super_copy;
3932 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3933 }
3934 
3935 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3936 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3937 				 #opt)
3938 
__btrfs_set_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3939 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3940 					    u64 flag, const char *name)
3941 {
3942 	struct btrfs_super_block *disk_super;
3943 	u64 features;
3944 
3945 	disk_super = fs_info->super_copy;
3946 	features = btrfs_super_compat_ro_flags(disk_super);
3947 	if (!(features & flag)) {
3948 		spin_lock(&fs_info->super_lock);
3949 		features = btrfs_super_compat_ro_flags(disk_super);
3950 		if (!(features & flag)) {
3951 			features |= flag;
3952 			btrfs_set_super_compat_ro_flags(disk_super, features);
3953 			btrfs_info(fs_info,
3954 				"setting compat-ro feature flag for %s (0x%llx)",
3955 				name, flag);
3956 		}
3957 		spin_unlock(&fs_info->super_lock);
3958 	}
3959 }
3960 
3961 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3962 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3963 				   #opt)
3964 
__btrfs_clear_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3965 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3966 					      u64 flag, const char *name)
3967 {
3968 	struct btrfs_super_block *disk_super;
3969 	u64 features;
3970 
3971 	disk_super = fs_info->super_copy;
3972 	features = btrfs_super_compat_ro_flags(disk_super);
3973 	if (features & flag) {
3974 		spin_lock(&fs_info->super_lock);
3975 		features = btrfs_super_compat_ro_flags(disk_super);
3976 		if (features & flag) {
3977 			features &= ~flag;
3978 			btrfs_set_super_compat_ro_flags(disk_super, features);
3979 			btrfs_info(fs_info,
3980 				"clearing compat-ro feature flag for %s (0x%llx)",
3981 				name, flag);
3982 		}
3983 		spin_unlock(&fs_info->super_lock);
3984 	}
3985 }
3986 
3987 #define btrfs_fs_compat_ro(fs_info, opt) \
3988 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3989 
__btrfs_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag)3990 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3991 {
3992 	struct btrfs_super_block *disk_super;
3993 	disk_super = fs_info->super_copy;
3994 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3995 }
3996 
3997 /* acl.c */
3998 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3999 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
4000 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
4001 		  struct posix_acl *acl, int type);
4002 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
4003 		    struct posix_acl *acl, int type);
4004 #else
4005 #define btrfs_get_acl NULL
4006 #define btrfs_set_acl NULL
__btrfs_set_acl(struct btrfs_trans_handle * trans,struct inode * inode,struct posix_acl * acl,int type)4007 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
4008 				  struct inode *inode, struct posix_acl *acl,
4009 				  int type)
4010 {
4011 	return -EOPNOTSUPP;
4012 }
4013 #endif
4014 
4015 /* relocation.c */
4016 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
4017 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4018 			  struct btrfs_root *root);
4019 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4020 			    struct btrfs_root *root);
4021 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
4022 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
4023 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4024 			  struct btrfs_root *root, struct extent_buffer *buf,
4025 			  struct extent_buffer *cow);
4026 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4027 			      u64 *bytes_to_reserve);
4028 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4029 			      struct btrfs_pending_snapshot *pending);
4030 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
4031 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
4032 				   u64 bytenr);
4033 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
4034 
4035 /* scrub.c */
4036 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4037 		    u64 end, struct btrfs_scrub_progress *progress,
4038 		    int readonly, int is_dev_replace);
4039 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
4040 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
4041 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4042 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
4043 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4044 			 struct btrfs_scrub_progress *progress);
4045 
4046 /* dev-replace.c */
4047 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4048 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4049 
btrfs_bio_counter_dec(struct btrfs_fs_info * fs_info)4050 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4051 {
4052 	btrfs_bio_counter_sub(fs_info, 1);
4053 }
4054 
is_fstree(u64 rootid)4055 static inline int is_fstree(u64 rootid)
4056 {
4057 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4058 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4059 	      !btrfs_qgroup_level(rootid)))
4060 		return 1;
4061 	return 0;
4062 }
4063 
btrfs_defrag_cancelled(struct btrfs_fs_info * fs_info)4064 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4065 {
4066 	return signal_pending(current);
4067 }
4068 
4069 /* verity.c */
4070 #ifdef CONFIG_FS_VERITY
4071 
4072 extern const struct fsverity_operations btrfs_verityops;
4073 int btrfs_drop_verity_items(struct btrfs_inode *inode);
4074 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size);
4075 
4076 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4077 		   encryption, 8);
4078 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4079 		   size, 64);
4080 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4081 			 struct btrfs_verity_descriptor_item, encryption, 8);
4082 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4083 			 struct btrfs_verity_descriptor_item, size, 64);
4084 
4085 #else
4086 
btrfs_drop_verity_items(struct btrfs_inode * inode)4087 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4088 {
4089 	return 0;
4090 }
4091 
btrfs_get_verity_descriptor(struct inode * inode,void * buf,size_t buf_size)4092 static inline int btrfs_get_verity_descriptor(struct inode *inode, void *buf,
4093 					      size_t buf_size)
4094 {
4095 	return -EPERM;
4096 }
4097 
4098 #endif
4099 
4100 /* Sanity test specific functions */
4101 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4102 void btrfs_test_destroy_inode(struct inode *inode);
btrfs_is_testing(struct btrfs_fs_info * fs_info)4103 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4104 {
4105 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4106 }
4107 #else
btrfs_is_testing(struct btrfs_fs_info * fs_info)4108 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4109 {
4110 	return 0;
4111 }
4112 #endif
4113 
btrfs_is_data_reloc_root(const struct btrfs_root * root)4114 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4115 {
4116 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4117 }
4118 
4119 /*
4120  * We use page status Private2 to indicate there is an ordered extent with
4121  * unfinished IO.
4122  *
4123  * Rename the Private2 accessors to Ordered, to improve readability.
4124  */
4125 #define PageOrdered(page)		PagePrivate2(page)
4126 #define SetPageOrdered(page)		SetPagePrivate2(page)
4127 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
4128 #define folio_test_ordered(folio)	folio_test_private_2(folio)
4129 #define folio_set_ordered(folio)	folio_set_private_2(folio)
4130 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
4131 
4132 #endif
4133