• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 
14 /*
15  * HOW DOES SPACE RESERVATION WORK
16  *
17  * If you want to know about delalloc specifically, there is a separate comment
18  * for that with the delalloc code.  This comment is about how the whole system
19  * works generally.
20  *
21  * BASIC CONCEPTS
22  *
23  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
24  *   There's a description of the bytes_ fields with the struct declaration,
25  *   refer to that for specifics on each field.  Suffice it to say that for
26  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
27  *   determining if there is space to make an allocation.  There is a space_info
28  *   for METADATA, SYSTEM, and DATA areas.
29  *
30  *   2) block_rsv's.  These are basically buckets for every different type of
31  *   metadata reservation we have.  You can see the comment in the block_rsv
32  *   code on the rules for each type, but generally block_rsv->reserved is how
33  *   much space is accounted for in space_info->bytes_may_use.
34  *
35  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
36  *   on the number of items we will want to modify.  We have one for changing
37  *   items, and one for inserting new items.  Generally we use these helpers to
38  *   determine the size of the block reserves, and then use the actual bytes
39  *   values to adjust the space_info counters.
40  *
41  * MAKING RESERVATIONS, THE NORMAL CASE
42  *
43  *   We call into either btrfs_reserve_data_bytes() or
44  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
45  *   num_bytes we want to reserve.
46  *
47  *   ->reserve
48  *     space_info->bytes_may_reserve += num_bytes
49  *
50  *   ->extent allocation
51  *     Call btrfs_add_reserved_bytes() which does
52  *     space_info->bytes_may_reserve -= num_bytes
53  *     space_info->bytes_reserved += extent_bytes
54  *
55  *   ->insert reference
56  *     Call btrfs_update_block_group() which does
57  *     space_info->bytes_reserved -= extent_bytes
58  *     space_info->bytes_used += extent_bytes
59  *
60  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
61  *
62  *   Assume we are unable to simply make the reservation because we do not have
63  *   enough space
64  *
65  *   -> __reserve_bytes
66  *     create a reserve_ticket with ->bytes set to our reservation, add it to
67  *     the tail of space_info->tickets, kick async flush thread
68  *
69  *   ->handle_reserve_ticket
70  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
71  *     on the ticket.
72  *
73  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
74  *     Flushes various things attempting to free up space.
75  *
76  *   -> btrfs_try_granting_tickets()
77  *     This is called by anything that either subtracts space from
78  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
79  *     space_info->total_bytes.  This loops through the ->priority_tickets and
80  *     then the ->tickets list checking to see if the reservation can be
81  *     completed.  If it can the space is added to space_info->bytes_may_use and
82  *     the ticket is woken up.
83  *
84  *   -> ticket wakeup
85  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
86  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
87  *     were interrupted.)
88  *
89  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
90  *
91  *   Same as the above, except we add ourselves to the
92  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
93  *   call flush_space() ourselves for the states that are safe for us to call
94  *   without deadlocking and hope for the best.
95  *
96  * THE FLUSHING STATES
97  *
98  *   Generally speaking we will have two cases for each state, a "nice" state
99  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
100  *   reduce the locking over head on the various trees, and even to keep from
101  *   doing any work at all in the case of delayed refs.  Each of these delayed
102  *   things however hold reservations, and so letting them run allows us to
103  *   reclaim space so we can make new reservations.
104  *
105  *   FLUSH_DELAYED_ITEMS
106  *     Every inode has a delayed item to update the inode.  Take a simple write
107  *     for example, we would update the inode item at write time to update the
108  *     mtime, and then again at finish_ordered_io() time in order to update the
109  *     isize or bytes.  We keep these delayed items to coalesce these operations
110  *     into a single operation done on demand.  These are an easy way to reclaim
111  *     metadata space.
112  *
113  *   FLUSH_DELALLOC
114  *     Look at the delalloc comment to get an idea of how much space is reserved
115  *     for delayed allocation.  We can reclaim some of this space simply by
116  *     running delalloc, but usually we need to wait for ordered extents to
117  *     reclaim the bulk of this space.
118  *
119  *   FLUSH_DELAYED_REFS
120  *     We have a block reserve for the outstanding delayed refs space, and every
121  *     delayed ref operation holds a reservation.  Running these is a quick way
122  *     to reclaim space, but we want to hold this until the end because COW can
123  *     churn a lot and we can avoid making some extent tree modifications if we
124  *     are able to delay for as long as possible.
125  *
126  *   ALLOC_CHUNK
127  *     We will skip this the first time through space reservation, because of
128  *     overcommit and we don't want to have a lot of useless metadata space when
129  *     our worst case reservations will likely never come true.
130  *
131  *   RUN_DELAYED_IPUTS
132  *     If we're freeing inodes we're likely freeing checksums, file extent
133  *     items, and extent tree items.  Loads of space could be freed up by these
134  *     operations, however they won't be usable until the transaction commits.
135  *
136  *   COMMIT_TRANS
137  *     This will commit the transaction.  Historically we had a lot of logic
138  *     surrounding whether or not we'd commit the transaction, but this waits born
139  *     out of a pre-tickets era where we could end up committing the transaction
140  *     thousands of times in a row without making progress.  Now thanks to our
141  *     ticketing system we know if we're not making progress and can error
142  *     everybody out after a few commits rather than burning the disk hoping for
143  *     a different answer.
144  *
145  * OVERCOMMIT
146  *
147  *   Because we hold so many reservations for metadata we will allow you to
148  *   reserve more space than is currently free in the currently allocate
149  *   metadata space.  This only happens with metadata, data does not allow
150  *   overcommitting.
151  *
152  *   You can see the current logic for when we allow overcommit in
153  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
154  *   is no unallocated space to be had, all reservations are kept within the
155  *   free space in the allocated metadata chunks.
156  *
157  *   Because of overcommitting, you generally want to use the
158  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
159  *   thing with or without extra unallocated space.
160  */
161 
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)162 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
163 			  bool may_use_included)
164 {
165 	ASSERT(s_info);
166 	return s_info->bytes_used + s_info->bytes_reserved +
167 		s_info->bytes_pinned + s_info->bytes_readonly +
168 		s_info->bytes_zone_unusable +
169 		(may_use_included ? s_info->bytes_may_use : 0);
170 }
171 
172 /*
173  * after adding space to the filesystem, we need to clear the full flags
174  * on all the space infos.
175  */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)176 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
177 {
178 	struct list_head *head = &info->space_info;
179 	struct btrfs_space_info *found;
180 
181 	list_for_each_entry(found, head, list)
182 		found->full = 0;
183 }
184 
185 /*
186  * Block groups with more than this value (percents) of unusable space will be
187  * scheduled for background reclaim.
188  */
189 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
190 
191 /*
192  * Calculate chunk size depending on volume type (regular or zoned).
193  */
calc_chunk_size(const struct btrfs_fs_info * fs_info,u64 flags)194 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
195 {
196 	if (btrfs_is_zoned(fs_info))
197 		return fs_info->zone_size;
198 
199 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
200 
201 	if (flags & BTRFS_BLOCK_GROUP_DATA)
202 		return BTRFS_MAX_DATA_CHUNK_SIZE;
203 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
204 		return SZ_32M;
205 
206 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
207 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
208 		return SZ_1G;
209 
210 	return SZ_256M;
211 }
212 
213 /*
214  * Update default chunk size.
215  */
btrfs_update_space_info_chunk_size(struct btrfs_space_info * space_info,u64 chunk_size)216 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
217 					u64 chunk_size)
218 {
219 	WRITE_ONCE(space_info->chunk_size, chunk_size);
220 }
221 
create_space_info(struct btrfs_fs_info * info,u64 flags)222 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
223 {
224 
225 	struct btrfs_space_info *space_info;
226 	int i;
227 	int ret;
228 
229 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
230 	if (!space_info)
231 		return -ENOMEM;
232 
233 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
234 		INIT_LIST_HEAD(&space_info->block_groups[i]);
235 	init_rwsem(&space_info->groups_sem);
236 	spin_lock_init(&space_info->lock);
237 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
238 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
239 	INIT_LIST_HEAD(&space_info->ro_bgs);
240 	INIT_LIST_HEAD(&space_info->tickets);
241 	INIT_LIST_HEAD(&space_info->priority_tickets);
242 	space_info->clamp = 1;
243 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
244 
245 	if (btrfs_is_zoned(info))
246 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
247 
248 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
249 	if (ret)
250 		return ret;
251 
252 	list_add(&space_info->list, &info->space_info);
253 	if (flags & BTRFS_BLOCK_GROUP_DATA)
254 		info->data_sinfo = space_info;
255 
256 	return ret;
257 }
258 
btrfs_init_space_info(struct btrfs_fs_info * fs_info)259 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
260 {
261 	struct btrfs_super_block *disk_super;
262 	u64 features;
263 	u64 flags;
264 	int mixed = 0;
265 	int ret;
266 
267 	disk_super = fs_info->super_copy;
268 	if (!btrfs_super_root(disk_super))
269 		return -EINVAL;
270 
271 	features = btrfs_super_incompat_flags(disk_super);
272 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
273 		mixed = 1;
274 
275 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
276 	ret = create_space_info(fs_info, flags);
277 	if (ret)
278 		goto out;
279 
280 	if (mixed) {
281 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
282 		ret = create_space_info(fs_info, flags);
283 	} else {
284 		flags = BTRFS_BLOCK_GROUP_METADATA;
285 		ret = create_space_info(fs_info, flags);
286 		if (ret)
287 			goto out;
288 
289 		flags = BTRFS_BLOCK_GROUP_DATA;
290 		ret = create_space_info(fs_info, flags);
291 	}
292 out:
293 	return ret;
294 }
295 
btrfs_add_bg_to_space_info(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)296 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
297 				struct btrfs_block_group *block_group)
298 {
299 	struct btrfs_space_info *found;
300 	int factor, index;
301 
302 	factor = btrfs_bg_type_to_factor(block_group->flags);
303 
304 	found = btrfs_find_space_info(info, block_group->flags);
305 	ASSERT(found);
306 	spin_lock(&found->lock);
307 	found->total_bytes += block_group->length;
308 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
309 		found->active_total_bytes += block_group->length;
310 	found->disk_total += block_group->length * factor;
311 	found->bytes_used += block_group->used;
312 	found->disk_used += block_group->used * factor;
313 	found->bytes_readonly += block_group->bytes_super;
314 	found->bytes_zone_unusable += block_group->zone_unusable;
315 	if (block_group->length > 0)
316 		found->full = 0;
317 	btrfs_try_granting_tickets(info, found);
318 	spin_unlock(&found->lock);
319 
320 	block_group->space_info = found;
321 
322 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
323 	down_write(&found->groups_sem);
324 	list_add_tail(&block_group->list, &found->block_groups[index]);
325 	up_write(&found->groups_sem);
326 }
327 
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)328 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
329 					       u64 flags)
330 {
331 	struct list_head *head = &info->space_info;
332 	struct btrfs_space_info *found;
333 
334 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
335 
336 	list_for_each_entry(found, head, list) {
337 		if (found->flags & flags)
338 			return found;
339 	}
340 	return NULL;
341 }
342 
calc_available_free_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)343 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
344 			  struct btrfs_space_info *space_info,
345 			  enum btrfs_reserve_flush_enum flush)
346 {
347 	u64 profile;
348 	u64 avail;
349 	int factor;
350 
351 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
352 		profile = btrfs_system_alloc_profile(fs_info);
353 	else
354 		profile = btrfs_metadata_alloc_profile(fs_info);
355 
356 	avail = atomic64_read(&fs_info->free_chunk_space);
357 
358 	/*
359 	 * If we have dup, raid1 or raid10 then only half of the free
360 	 * space is actually usable.  For raid56, the space info used
361 	 * doesn't include the parity drive, so we don't have to
362 	 * change the math
363 	 */
364 	factor = btrfs_bg_type_to_factor(profile);
365 	avail = div_u64(avail, factor);
366 
367 	/*
368 	 * If we aren't flushing all things, let us overcommit up to
369 	 * 1/2th of the space. If we can flush, don't let us overcommit
370 	 * too much, let it overcommit up to 1/8 of the space.
371 	 */
372 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
373 		avail >>= 3;
374 	else
375 		avail >>= 1;
376 	return avail;
377 }
378 
writable_total_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)379 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
380 				       struct btrfs_space_info *space_info)
381 {
382 	/*
383 	 * On regular filesystem, all total_bytes are always writable. On zoned
384 	 * filesystem, there may be a limitation imposed by max_active_zones.
385 	 * For metadata allocation, we cannot finish an existing active block
386 	 * group to avoid a deadlock. Thus, we need to consider only the active
387 	 * groups to be writable for metadata space.
388 	 */
389 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
390 		return space_info->total_bytes;
391 
392 	return space_info->active_total_bytes;
393 }
394 
btrfs_can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)395 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
396 			 struct btrfs_space_info *space_info, u64 bytes,
397 			 enum btrfs_reserve_flush_enum flush)
398 {
399 	u64 avail;
400 	u64 used;
401 
402 	/* Don't overcommit when in mixed mode */
403 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
404 		return 0;
405 
406 	used = btrfs_space_info_used(space_info, true);
407 	avail = calc_available_free_space(fs_info, space_info, flush);
408 
409 	if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
410 		return 1;
411 	return 0;
412 }
413 
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)414 static void remove_ticket(struct btrfs_space_info *space_info,
415 			  struct reserve_ticket *ticket)
416 {
417 	if (!list_empty(&ticket->list)) {
418 		list_del_init(&ticket->list);
419 		ASSERT(space_info->reclaim_size >= ticket->bytes);
420 		space_info->reclaim_size -= ticket->bytes;
421 	}
422 }
423 
424 /*
425  * This is for space we already have accounted in space_info->bytes_may_use, so
426  * basically when we're returning space from block_rsv's.
427  */
btrfs_try_granting_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)428 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
429 				struct btrfs_space_info *space_info)
430 {
431 	struct list_head *head;
432 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
433 
434 	lockdep_assert_held(&space_info->lock);
435 
436 	head = &space_info->priority_tickets;
437 again:
438 	while (!list_empty(head)) {
439 		struct reserve_ticket *ticket;
440 		u64 used = btrfs_space_info_used(space_info, true);
441 
442 		ticket = list_first_entry(head, struct reserve_ticket, list);
443 
444 		/* Check and see if our ticket can be satisfied now. */
445 		if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
446 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
447 					 flush)) {
448 			btrfs_space_info_update_bytes_may_use(fs_info,
449 							      space_info,
450 							      ticket->bytes);
451 			remove_ticket(space_info, ticket);
452 			ticket->bytes = 0;
453 			space_info->tickets_id++;
454 			wake_up(&ticket->wait);
455 		} else {
456 			break;
457 		}
458 	}
459 
460 	if (head == &space_info->priority_tickets) {
461 		head = &space_info->tickets;
462 		flush = BTRFS_RESERVE_FLUSH_ALL;
463 		goto again;
464 	}
465 }
466 
467 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
468 do {									\
469 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
470 	spin_lock(&__rsv->lock);					\
471 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
472 		   __rsv->size, __rsv->reserved);			\
473 	spin_unlock(&__rsv->lock);					\
474 } while (0)
475 
space_info_flag_to_str(const struct btrfs_space_info * space_info)476 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
477 {
478 	switch (space_info->flags) {
479 	case BTRFS_BLOCK_GROUP_SYSTEM:
480 		return "SYSTEM";
481 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
482 		return "DATA+METADATA";
483 	case BTRFS_BLOCK_GROUP_DATA:
484 		return "DATA";
485 	case BTRFS_BLOCK_GROUP_METADATA:
486 		return "METADATA";
487 	default:
488 		return "UNKNOWN";
489 	}
490 }
491 
dump_global_block_rsv(struct btrfs_fs_info * fs_info)492 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
493 {
494 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
495 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
496 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
497 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
498 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
499 }
500 
__btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info)501 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
502 				    struct btrfs_space_info *info)
503 {
504 	const char *flag_str = space_info_flag_to_str(info);
505 	lockdep_assert_held(&info->lock);
506 
507 	/* The free space could be negative in case of overcommit */
508 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
509 		   flag_str,
510 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
511 		   info->full ? "" : "not ");
512 	btrfs_info(fs_info,
513 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
514 		info->total_bytes, info->bytes_used, info->bytes_pinned,
515 		info->bytes_reserved, info->bytes_may_use,
516 		info->bytes_readonly, info->bytes_zone_unusable);
517 }
518 
btrfs_dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)519 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
520 			   struct btrfs_space_info *info, u64 bytes,
521 			   int dump_block_groups)
522 {
523 	struct btrfs_block_group *cache;
524 	int index = 0;
525 
526 	spin_lock(&info->lock);
527 	__btrfs_dump_space_info(fs_info, info);
528 	dump_global_block_rsv(fs_info);
529 	spin_unlock(&info->lock);
530 
531 	if (!dump_block_groups)
532 		return;
533 
534 	down_read(&info->groups_sem);
535 again:
536 	list_for_each_entry(cache, &info->block_groups[index], list) {
537 		spin_lock(&cache->lock);
538 		btrfs_info(fs_info,
539 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
540 			cache->start, cache->length, cache->used, cache->pinned,
541 			cache->reserved, cache->zone_unusable,
542 			cache->ro ? "[readonly]" : "");
543 		spin_unlock(&cache->lock);
544 		btrfs_dump_free_space(cache, bytes);
545 	}
546 	if (++index < BTRFS_NR_RAID_TYPES)
547 		goto again;
548 	up_read(&info->groups_sem);
549 }
550 
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)551 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
552 					u64 to_reclaim)
553 {
554 	u64 bytes;
555 	u64 nr;
556 
557 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
558 	nr = div64_u64(to_reclaim, bytes);
559 	if (!nr)
560 		nr = 1;
561 	return nr;
562 }
563 
564 #define EXTENT_SIZE_PER_ITEM	SZ_256K
565 
566 /*
567  * shrink metadata reservation for delalloc
568  */
shrink_delalloc(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)569 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
570 			    struct btrfs_space_info *space_info,
571 			    u64 to_reclaim, bool wait_ordered,
572 			    bool for_preempt)
573 {
574 	struct btrfs_trans_handle *trans;
575 	u64 delalloc_bytes;
576 	u64 ordered_bytes;
577 	u64 items;
578 	long time_left;
579 	int loops;
580 
581 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
582 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
583 	if (delalloc_bytes == 0 && ordered_bytes == 0)
584 		return;
585 
586 	/* Calc the number of the pages we need flush for space reservation */
587 	if (to_reclaim == U64_MAX) {
588 		items = U64_MAX;
589 	} else {
590 		/*
591 		 * to_reclaim is set to however much metadata we need to
592 		 * reclaim, but reclaiming that much data doesn't really track
593 		 * exactly.  What we really want to do is reclaim full inode's
594 		 * worth of reservations, however that's not available to us
595 		 * here.  We will take a fraction of the delalloc bytes for our
596 		 * flushing loops and hope for the best.  Delalloc will expand
597 		 * the amount we write to cover an entire dirty extent, which
598 		 * will reclaim the metadata reservation for that range.  If
599 		 * it's not enough subsequent flush stages will be more
600 		 * aggressive.
601 		 */
602 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
603 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
604 	}
605 
606 	trans = current->journal_info;
607 
608 	/*
609 	 * If we are doing more ordered than delalloc we need to just wait on
610 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
611 	 * that likely won't give us the space back we need.
612 	 */
613 	if (ordered_bytes > delalloc_bytes && !for_preempt)
614 		wait_ordered = true;
615 
616 	loops = 0;
617 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
618 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
619 		long nr_pages = min_t(u64, temp, LONG_MAX);
620 		int async_pages;
621 
622 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
623 
624 		/*
625 		 * We need to make sure any outstanding async pages are now
626 		 * processed before we continue.  This is because things like
627 		 * sync_inode() try to be smart and skip writing if the inode is
628 		 * marked clean.  We don't use filemap_fwrite for flushing
629 		 * because we want to control how many pages we write out at a
630 		 * time, thus this is the only safe way to make sure we've
631 		 * waited for outstanding compressed workers to have started
632 		 * their jobs and thus have ordered extents set up properly.
633 		 *
634 		 * This exists because we do not want to wait for each
635 		 * individual inode to finish its async work, we simply want to
636 		 * start the IO on everybody, and then come back here and wait
637 		 * for all of the async work to catch up.  Once we're done with
638 		 * that we know we'll have ordered extents for everything and we
639 		 * can decide if we wait for that or not.
640 		 *
641 		 * If we choose to replace this in the future, make absolutely
642 		 * sure that the proper waiting is being done in the async case,
643 		 * as there have been bugs in that area before.
644 		 */
645 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
646 		if (!async_pages)
647 			goto skip_async;
648 
649 		/*
650 		 * We don't want to wait forever, if we wrote less pages in this
651 		 * loop than we have outstanding, only wait for that number of
652 		 * pages, otherwise we can wait for all async pages to finish
653 		 * before continuing.
654 		 */
655 		if (async_pages > nr_pages)
656 			async_pages -= nr_pages;
657 		else
658 			async_pages = 0;
659 		wait_event(fs_info->async_submit_wait,
660 			   atomic_read(&fs_info->async_delalloc_pages) <=
661 			   async_pages);
662 skip_async:
663 		loops++;
664 		if (wait_ordered && !trans) {
665 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
666 		} else {
667 			time_left = schedule_timeout_killable(1);
668 			if (time_left)
669 				break;
670 		}
671 
672 		/*
673 		 * If we are for preemption we just want a one-shot of delalloc
674 		 * flushing so we can stop flushing if we decide we don't need
675 		 * to anymore.
676 		 */
677 		if (for_preempt)
678 			break;
679 
680 		spin_lock(&space_info->lock);
681 		if (list_empty(&space_info->tickets) &&
682 		    list_empty(&space_info->priority_tickets)) {
683 			spin_unlock(&space_info->lock);
684 			break;
685 		}
686 		spin_unlock(&space_info->lock);
687 
688 		delalloc_bytes = percpu_counter_sum_positive(
689 						&fs_info->delalloc_bytes);
690 		ordered_bytes = percpu_counter_sum_positive(
691 						&fs_info->ordered_bytes);
692 	}
693 }
694 
695 /*
696  * Try to flush some data based on policy set by @state. This is only advisory
697  * and may fail for various reasons. The caller is supposed to examine the
698  * state of @space_info to detect the outcome.
699  */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)700 static void flush_space(struct btrfs_fs_info *fs_info,
701 		       struct btrfs_space_info *space_info, u64 num_bytes,
702 		       enum btrfs_flush_state state, bool for_preempt)
703 {
704 	struct btrfs_root *root = fs_info->tree_root;
705 	struct btrfs_trans_handle *trans;
706 	int nr;
707 	int ret = 0;
708 
709 	switch (state) {
710 	case FLUSH_DELAYED_ITEMS_NR:
711 	case FLUSH_DELAYED_ITEMS:
712 		if (state == FLUSH_DELAYED_ITEMS_NR)
713 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
714 		else
715 			nr = -1;
716 
717 		trans = btrfs_join_transaction(root);
718 		if (IS_ERR(trans)) {
719 			ret = PTR_ERR(trans);
720 			break;
721 		}
722 		ret = btrfs_run_delayed_items_nr(trans, nr);
723 		btrfs_end_transaction(trans);
724 		break;
725 	case FLUSH_DELALLOC:
726 	case FLUSH_DELALLOC_WAIT:
727 	case FLUSH_DELALLOC_FULL:
728 		if (state == FLUSH_DELALLOC_FULL)
729 			num_bytes = U64_MAX;
730 		shrink_delalloc(fs_info, space_info, num_bytes,
731 				state != FLUSH_DELALLOC, for_preempt);
732 		break;
733 	case FLUSH_DELAYED_REFS_NR:
734 	case FLUSH_DELAYED_REFS:
735 		trans = btrfs_join_transaction(root);
736 		if (IS_ERR(trans)) {
737 			ret = PTR_ERR(trans);
738 			break;
739 		}
740 		if (state == FLUSH_DELAYED_REFS_NR)
741 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
742 		else
743 			nr = 0;
744 		btrfs_run_delayed_refs(trans, nr);
745 		btrfs_end_transaction(trans);
746 		break;
747 	case ALLOC_CHUNK:
748 	case ALLOC_CHUNK_FORCE:
749 		/*
750 		 * For metadata space on zoned filesystem, reaching here means we
751 		 * don't have enough space left in active_total_bytes. Try to
752 		 * activate a block group first, because we may have inactive
753 		 * block group already allocated.
754 		 */
755 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
756 		if (ret < 0)
757 			break;
758 		else if (ret == 1)
759 			break;
760 
761 		trans = btrfs_join_transaction(root);
762 		if (IS_ERR(trans)) {
763 			ret = PTR_ERR(trans);
764 			break;
765 		}
766 		ret = btrfs_chunk_alloc(trans,
767 				btrfs_get_alloc_profile(fs_info, space_info->flags),
768 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
769 					CHUNK_ALLOC_FORCE);
770 		btrfs_end_transaction(trans);
771 
772 		/*
773 		 * For metadata space on zoned filesystem, allocating a new chunk
774 		 * is not enough. We still need to activate the block * group.
775 		 * Active the newly allocated block group by (maybe) finishing
776 		 * a block group.
777 		 */
778 		if (ret == 1) {
779 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
780 			/*
781 			 * Revert to the original ret regardless we could finish
782 			 * one block group or not.
783 			 */
784 			if (ret >= 0)
785 				ret = 1;
786 		}
787 
788 		if (ret > 0 || ret == -ENOSPC)
789 			ret = 0;
790 		break;
791 	case RUN_DELAYED_IPUTS:
792 		/*
793 		 * If we have pending delayed iputs then we could free up a
794 		 * bunch of pinned space, so make sure we run the iputs before
795 		 * we do our pinned bytes check below.
796 		 */
797 		btrfs_run_delayed_iputs(fs_info);
798 		btrfs_wait_on_delayed_iputs(fs_info);
799 		break;
800 	case COMMIT_TRANS:
801 		ASSERT(current->journal_info == NULL);
802 		trans = btrfs_join_transaction(root);
803 		if (IS_ERR(trans)) {
804 			ret = PTR_ERR(trans);
805 			break;
806 		}
807 		ret = btrfs_commit_transaction(trans);
808 		break;
809 	default:
810 		ret = -ENOSPC;
811 		break;
812 	}
813 
814 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
815 				ret, for_preempt);
816 	return;
817 }
818 
819 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)820 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
821 				 struct btrfs_space_info *space_info)
822 {
823 	u64 used;
824 	u64 avail;
825 	u64 total;
826 	u64 to_reclaim = space_info->reclaim_size;
827 
828 	lockdep_assert_held(&space_info->lock);
829 
830 	avail = calc_available_free_space(fs_info, space_info,
831 					  BTRFS_RESERVE_FLUSH_ALL);
832 	used = btrfs_space_info_used(space_info, true);
833 
834 	/*
835 	 * We may be flushing because suddenly we have less space than we had
836 	 * before, and now we're well over-committed based on our current free
837 	 * space.  If that's the case add in our overage so we make sure to put
838 	 * appropriate pressure on the flushing state machine.
839 	 */
840 	total = writable_total_bytes(fs_info, space_info);
841 	if (total + avail < used)
842 		to_reclaim += used - (total + avail);
843 
844 	return to_reclaim;
845 }
846 
need_preemptive_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)847 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
848 				    struct btrfs_space_info *space_info)
849 {
850 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
851 	u64 ordered, delalloc;
852 	u64 total = writable_total_bytes(fs_info, space_info);
853 	u64 thresh;
854 	u64 used;
855 
856 	thresh = div_factor_fine(total, 90);
857 
858 	lockdep_assert_held(&space_info->lock);
859 
860 	/* If we're just plain full then async reclaim just slows us down. */
861 	if ((space_info->bytes_used + space_info->bytes_reserved +
862 	     global_rsv_size) >= thresh)
863 		return false;
864 
865 	used = space_info->bytes_may_use + space_info->bytes_pinned;
866 
867 	/* The total flushable belongs to the global rsv, don't flush. */
868 	if (global_rsv_size >= used)
869 		return false;
870 
871 	/*
872 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
873 	 * that devoted to other reservations then there's no sense in flushing,
874 	 * we don't have a lot of things that need flushing.
875 	 */
876 	if (used - global_rsv_size <= SZ_128M)
877 		return false;
878 
879 	/*
880 	 * We have tickets queued, bail so we don't compete with the async
881 	 * flushers.
882 	 */
883 	if (space_info->reclaim_size)
884 		return false;
885 
886 	/*
887 	 * If we have over half of the free space occupied by reservations or
888 	 * pinned then we want to start flushing.
889 	 *
890 	 * We do not do the traditional thing here, which is to say
891 	 *
892 	 *   if (used >= ((total_bytes + avail) / 2))
893 	 *     return 1;
894 	 *
895 	 * because this doesn't quite work how we want.  If we had more than 50%
896 	 * of the space_info used by bytes_used and we had 0 available we'd just
897 	 * constantly run the background flusher.  Instead we want it to kick in
898 	 * if our reclaimable space exceeds our clamped free space.
899 	 *
900 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
901 	 * the following:
902 	 *
903 	 * Amount of RAM        Minimum threshold       Maximum threshold
904 	 *
905 	 *        256GiB                     1GiB                  128GiB
906 	 *        128GiB                   512MiB                   64GiB
907 	 *         64GiB                   256MiB                   32GiB
908 	 *         32GiB                   128MiB                   16GiB
909 	 *         16GiB                    64MiB                    8GiB
910 	 *
911 	 * These are the range our thresholds will fall in, corresponding to how
912 	 * much delalloc we need for the background flusher to kick in.
913 	 */
914 
915 	thresh = calc_available_free_space(fs_info, space_info,
916 					   BTRFS_RESERVE_FLUSH_ALL);
917 	used = space_info->bytes_used + space_info->bytes_reserved +
918 	       space_info->bytes_readonly + global_rsv_size;
919 	if (used < total)
920 		thresh += total - used;
921 	thresh >>= space_info->clamp;
922 
923 	used = space_info->bytes_pinned;
924 
925 	/*
926 	 * If we have more ordered bytes than delalloc bytes then we're either
927 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
928 	 * around.  Preemptive flushing is only useful in that it can free up
929 	 * space before tickets need to wait for things to finish.  In the case
930 	 * of ordered extents, preemptively waiting on ordered extents gets us
931 	 * nothing, if our reservations are tied up in ordered extents we'll
932 	 * simply have to slow down writers by forcing them to wait on ordered
933 	 * extents.
934 	 *
935 	 * In the case that ordered is larger than delalloc, only include the
936 	 * block reserves that we would actually be able to directly reclaim
937 	 * from.  In this case if we're heavy on metadata operations this will
938 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
939 	 * of heavy DIO or ordered reservations, preemptive flushing will just
940 	 * waste time and cause us to slow down.
941 	 *
942 	 * We want to make sure we truly are maxed out on ordered however, so
943 	 * cut ordered in half, and if it's still higher than delalloc then we
944 	 * can keep flushing.  This is to avoid the case where we start
945 	 * flushing, and now delalloc == ordered and we stop preemptively
946 	 * flushing when we could still have several gigs of delalloc to flush.
947 	 */
948 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
949 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
950 	if (ordered >= delalloc)
951 		used += fs_info->delayed_refs_rsv.reserved +
952 			fs_info->delayed_block_rsv.reserved;
953 	else
954 		used += space_info->bytes_may_use - global_rsv_size;
955 
956 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
957 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
958 }
959 
steal_from_global_rsv(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)960 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
961 				  struct btrfs_space_info *space_info,
962 				  struct reserve_ticket *ticket)
963 {
964 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
965 	u64 min_bytes;
966 
967 	if (!ticket->steal)
968 		return false;
969 
970 	if (global_rsv->space_info != space_info)
971 		return false;
972 
973 	spin_lock(&global_rsv->lock);
974 	min_bytes = div_factor(global_rsv->size, 1);
975 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
976 		spin_unlock(&global_rsv->lock);
977 		return false;
978 	}
979 	global_rsv->reserved -= ticket->bytes;
980 	remove_ticket(space_info, ticket);
981 	ticket->bytes = 0;
982 	wake_up(&ticket->wait);
983 	space_info->tickets_id++;
984 	if (global_rsv->reserved < global_rsv->size)
985 		global_rsv->full = 0;
986 	spin_unlock(&global_rsv->lock);
987 
988 	return true;
989 }
990 
991 /*
992  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
993  * @fs_info - fs_info for this fs
994  * @space_info - the space info we were flushing
995  *
996  * We call this when we've exhausted our flushing ability and haven't made
997  * progress in satisfying tickets.  The reservation code handles tickets in
998  * order, so if there is a large ticket first and then smaller ones we could
999  * very well satisfy the smaller tickets.  This will attempt to wake up any
1000  * tickets in the list to catch this case.
1001  *
1002  * This function returns true if it was able to make progress by clearing out
1003  * other tickets, or if it stumbles across a ticket that was smaller than the
1004  * first ticket.
1005  */
maybe_fail_all_tickets(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1006 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1007 				   struct btrfs_space_info *space_info)
1008 {
1009 	struct reserve_ticket *ticket;
1010 	u64 tickets_id = space_info->tickets_id;
1011 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1012 
1013 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1014 
1015 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1016 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1017 		__btrfs_dump_space_info(fs_info, space_info);
1018 	}
1019 
1020 	while (!list_empty(&space_info->tickets) &&
1021 	       tickets_id == space_info->tickets_id) {
1022 		ticket = list_first_entry(&space_info->tickets,
1023 					  struct reserve_ticket, list);
1024 
1025 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1026 			return true;
1027 
1028 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1029 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1030 				   ticket->bytes);
1031 
1032 		remove_ticket(space_info, ticket);
1033 		if (aborted)
1034 			ticket->error = -EIO;
1035 		else
1036 			ticket->error = -ENOSPC;
1037 		wake_up(&ticket->wait);
1038 
1039 		/*
1040 		 * We're just throwing tickets away, so more flushing may not
1041 		 * trip over btrfs_try_granting_tickets, so we need to call it
1042 		 * here to see if we can make progress with the next ticket in
1043 		 * the list.
1044 		 */
1045 		if (!aborted)
1046 			btrfs_try_granting_tickets(fs_info, space_info);
1047 	}
1048 	return (tickets_id != space_info->tickets_id);
1049 }
1050 
1051 /*
1052  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1053  * will loop and continuously try to flush as long as we are making progress.
1054  * We count progress as clearing off tickets each time we have to loop.
1055  */
btrfs_async_reclaim_metadata_space(struct work_struct * work)1056 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1057 {
1058 	struct btrfs_fs_info *fs_info;
1059 	struct btrfs_space_info *space_info;
1060 	u64 to_reclaim;
1061 	enum btrfs_flush_state flush_state;
1062 	int commit_cycles = 0;
1063 	u64 last_tickets_id;
1064 
1065 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1066 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1067 
1068 	spin_lock(&space_info->lock);
1069 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1070 	if (!to_reclaim) {
1071 		space_info->flush = 0;
1072 		spin_unlock(&space_info->lock);
1073 		return;
1074 	}
1075 	last_tickets_id = space_info->tickets_id;
1076 	spin_unlock(&space_info->lock);
1077 
1078 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1079 	do {
1080 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1081 		spin_lock(&space_info->lock);
1082 		if (list_empty(&space_info->tickets)) {
1083 			space_info->flush = 0;
1084 			spin_unlock(&space_info->lock);
1085 			return;
1086 		}
1087 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1088 							      space_info);
1089 		if (last_tickets_id == space_info->tickets_id) {
1090 			flush_state++;
1091 		} else {
1092 			last_tickets_id = space_info->tickets_id;
1093 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1094 			if (commit_cycles)
1095 				commit_cycles--;
1096 		}
1097 
1098 		/*
1099 		 * We do not want to empty the system of delalloc unless we're
1100 		 * under heavy pressure, so allow one trip through the flushing
1101 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1102 		 */
1103 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1104 			flush_state++;
1105 
1106 		/*
1107 		 * We don't want to force a chunk allocation until we've tried
1108 		 * pretty hard to reclaim space.  Think of the case where we
1109 		 * freed up a bunch of space and so have a lot of pinned space
1110 		 * to reclaim.  We would rather use that than possibly create a
1111 		 * underutilized metadata chunk.  So if this is our first run
1112 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1113 		 * commit the transaction.  If nothing has changed the next go
1114 		 * around then we can force a chunk allocation.
1115 		 */
1116 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1117 			flush_state++;
1118 
1119 		if (flush_state > COMMIT_TRANS) {
1120 			commit_cycles++;
1121 			if (commit_cycles > 2) {
1122 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1123 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1124 					commit_cycles--;
1125 				} else {
1126 					space_info->flush = 0;
1127 				}
1128 			} else {
1129 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1130 			}
1131 		}
1132 		spin_unlock(&space_info->lock);
1133 	} while (flush_state <= COMMIT_TRANS);
1134 }
1135 
1136 /*
1137  * This handles pre-flushing of metadata space before we get to the point that
1138  * we need to start blocking threads on tickets.  The logic here is different
1139  * from the other flush paths because it doesn't rely on tickets to tell us how
1140  * much we need to flush, instead it attempts to keep us below the 80% full
1141  * watermark of space by flushing whichever reservation pool is currently the
1142  * largest.
1143  */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1144 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1145 {
1146 	struct btrfs_fs_info *fs_info;
1147 	struct btrfs_space_info *space_info;
1148 	struct btrfs_block_rsv *delayed_block_rsv;
1149 	struct btrfs_block_rsv *delayed_refs_rsv;
1150 	struct btrfs_block_rsv *global_rsv;
1151 	struct btrfs_block_rsv *trans_rsv;
1152 	int loops = 0;
1153 
1154 	fs_info = container_of(work, struct btrfs_fs_info,
1155 			       preempt_reclaim_work);
1156 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1157 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1158 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1159 	global_rsv = &fs_info->global_block_rsv;
1160 	trans_rsv = &fs_info->trans_block_rsv;
1161 
1162 	spin_lock(&space_info->lock);
1163 	while (need_preemptive_reclaim(fs_info, space_info)) {
1164 		enum btrfs_flush_state flush;
1165 		u64 delalloc_size = 0;
1166 		u64 to_reclaim, block_rsv_size;
1167 		u64 global_rsv_size = global_rsv->reserved;
1168 
1169 		loops++;
1170 
1171 		/*
1172 		 * We don't have a precise counter for the metadata being
1173 		 * reserved for delalloc, so we'll approximate it by subtracting
1174 		 * out the block rsv's space from the bytes_may_use.  If that
1175 		 * amount is higher than the individual reserves, then we can
1176 		 * assume it's tied up in delalloc reservations.
1177 		 */
1178 		block_rsv_size = global_rsv_size +
1179 			delayed_block_rsv->reserved +
1180 			delayed_refs_rsv->reserved +
1181 			trans_rsv->reserved;
1182 		if (block_rsv_size < space_info->bytes_may_use)
1183 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1184 
1185 		/*
1186 		 * We don't want to include the global_rsv in our calculation,
1187 		 * because that's space we can't touch.  Subtract it from the
1188 		 * block_rsv_size for the next checks.
1189 		 */
1190 		block_rsv_size -= global_rsv_size;
1191 
1192 		/*
1193 		 * We really want to avoid flushing delalloc too much, as it
1194 		 * could result in poor allocation patterns, so only flush it if
1195 		 * it's larger than the rest of the pools combined.
1196 		 */
1197 		if (delalloc_size > block_rsv_size) {
1198 			to_reclaim = delalloc_size;
1199 			flush = FLUSH_DELALLOC;
1200 		} else if (space_info->bytes_pinned >
1201 			   (delayed_block_rsv->reserved +
1202 			    delayed_refs_rsv->reserved)) {
1203 			to_reclaim = space_info->bytes_pinned;
1204 			flush = COMMIT_TRANS;
1205 		} else if (delayed_block_rsv->reserved >
1206 			   delayed_refs_rsv->reserved) {
1207 			to_reclaim = delayed_block_rsv->reserved;
1208 			flush = FLUSH_DELAYED_ITEMS_NR;
1209 		} else {
1210 			to_reclaim = delayed_refs_rsv->reserved;
1211 			flush = FLUSH_DELAYED_REFS_NR;
1212 		}
1213 
1214 		spin_unlock(&space_info->lock);
1215 
1216 		/*
1217 		 * We don't want to reclaim everything, just a portion, so scale
1218 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1219 		 * reclaim 1 items worth.
1220 		 */
1221 		to_reclaim >>= 2;
1222 		if (!to_reclaim)
1223 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1224 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1225 		cond_resched();
1226 		spin_lock(&space_info->lock);
1227 	}
1228 
1229 	/* We only went through once, back off our clamping. */
1230 	if (loops == 1 && !space_info->reclaim_size)
1231 		space_info->clamp = max(1, space_info->clamp - 1);
1232 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1233 	spin_unlock(&space_info->lock);
1234 }
1235 
1236 /*
1237  * FLUSH_DELALLOC_WAIT:
1238  *   Space is freed from flushing delalloc in one of two ways.
1239  *
1240  *   1) compression is on and we allocate less space than we reserved
1241  *   2) we are overwriting existing space
1242  *
1243  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1244  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1245  *   length to ->bytes_reserved, and subtracts the reserved space from
1246  *   ->bytes_may_use.
1247  *
1248  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1249  *   extent in the range we are overwriting, which creates a delayed ref for
1250  *   that freed extent.  This however is not reclaimed until the transaction
1251  *   commits, thus the next stages.
1252  *
1253  * RUN_DELAYED_IPUTS
1254  *   If we are freeing inodes, we want to make sure all delayed iputs have
1255  *   completed, because they could have been on an inode with i_nlink == 0, and
1256  *   thus have been truncated and freed up space.  But again this space is not
1257  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1258  *   run and then the transaction must be committed.
1259  *
1260  * COMMIT_TRANS
1261  *   This is where we reclaim all of the pinned space generated by running the
1262  *   iputs
1263  *
1264  * ALLOC_CHUNK_FORCE
1265  *   For data we start with alloc chunk force, however we could have been full
1266  *   before, and then the transaction commit could have freed new block groups,
1267  *   so if we now have space to allocate do the force chunk allocation.
1268  */
1269 static const enum btrfs_flush_state data_flush_states[] = {
1270 	FLUSH_DELALLOC_FULL,
1271 	RUN_DELAYED_IPUTS,
1272 	COMMIT_TRANS,
1273 	ALLOC_CHUNK_FORCE,
1274 };
1275 
btrfs_async_reclaim_data_space(struct work_struct * work)1276 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1277 {
1278 	struct btrfs_fs_info *fs_info;
1279 	struct btrfs_space_info *space_info;
1280 	u64 last_tickets_id;
1281 	enum btrfs_flush_state flush_state = 0;
1282 
1283 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1284 	space_info = fs_info->data_sinfo;
1285 
1286 	spin_lock(&space_info->lock);
1287 	if (list_empty(&space_info->tickets)) {
1288 		space_info->flush = 0;
1289 		spin_unlock(&space_info->lock);
1290 		return;
1291 	}
1292 	last_tickets_id = space_info->tickets_id;
1293 	spin_unlock(&space_info->lock);
1294 
1295 	while (!space_info->full) {
1296 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1297 		spin_lock(&space_info->lock);
1298 		if (list_empty(&space_info->tickets)) {
1299 			space_info->flush = 0;
1300 			spin_unlock(&space_info->lock);
1301 			return;
1302 		}
1303 
1304 		/* Something happened, fail everything and bail. */
1305 		if (BTRFS_FS_ERROR(fs_info))
1306 			goto aborted_fs;
1307 		last_tickets_id = space_info->tickets_id;
1308 		spin_unlock(&space_info->lock);
1309 	}
1310 
1311 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1312 		flush_space(fs_info, space_info, U64_MAX,
1313 			    data_flush_states[flush_state], false);
1314 		spin_lock(&space_info->lock);
1315 		if (list_empty(&space_info->tickets)) {
1316 			space_info->flush = 0;
1317 			spin_unlock(&space_info->lock);
1318 			return;
1319 		}
1320 
1321 		if (last_tickets_id == space_info->tickets_id) {
1322 			flush_state++;
1323 		} else {
1324 			last_tickets_id = space_info->tickets_id;
1325 			flush_state = 0;
1326 		}
1327 
1328 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1329 			if (space_info->full) {
1330 				if (maybe_fail_all_tickets(fs_info, space_info))
1331 					flush_state = 0;
1332 				else
1333 					space_info->flush = 0;
1334 			} else {
1335 				flush_state = 0;
1336 			}
1337 
1338 			/* Something happened, fail everything and bail. */
1339 			if (BTRFS_FS_ERROR(fs_info))
1340 				goto aborted_fs;
1341 
1342 		}
1343 		spin_unlock(&space_info->lock);
1344 	}
1345 	return;
1346 
1347 aborted_fs:
1348 	maybe_fail_all_tickets(fs_info, space_info);
1349 	space_info->flush = 0;
1350 	spin_unlock(&space_info->lock);
1351 }
1352 
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1353 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1354 {
1355 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1356 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1357 	INIT_WORK(&fs_info->preempt_reclaim_work,
1358 		  btrfs_preempt_reclaim_metadata_space);
1359 }
1360 
1361 static const enum btrfs_flush_state priority_flush_states[] = {
1362 	FLUSH_DELAYED_ITEMS_NR,
1363 	FLUSH_DELAYED_ITEMS,
1364 	ALLOC_CHUNK,
1365 };
1366 
1367 static const enum btrfs_flush_state evict_flush_states[] = {
1368 	FLUSH_DELAYED_ITEMS_NR,
1369 	FLUSH_DELAYED_ITEMS,
1370 	FLUSH_DELAYED_REFS_NR,
1371 	FLUSH_DELAYED_REFS,
1372 	FLUSH_DELALLOC,
1373 	FLUSH_DELALLOC_WAIT,
1374 	FLUSH_DELALLOC_FULL,
1375 	ALLOC_CHUNK,
1376 	COMMIT_TRANS,
1377 };
1378 
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1379 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1380 				struct btrfs_space_info *space_info,
1381 				struct reserve_ticket *ticket,
1382 				const enum btrfs_flush_state *states,
1383 				int states_nr)
1384 {
1385 	u64 to_reclaim;
1386 	int flush_state = 0;
1387 
1388 	spin_lock(&space_info->lock);
1389 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1390 	/*
1391 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1392 	 * because we may have only satisfied the priority tickets and still
1393 	 * left non priority tickets on the list.  We would then have
1394 	 * to_reclaim but ->bytes == 0.
1395 	 */
1396 	if (ticket->bytes == 0) {
1397 		spin_unlock(&space_info->lock);
1398 		return;
1399 	}
1400 
1401 	while (flush_state < states_nr) {
1402 		spin_unlock(&space_info->lock);
1403 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1404 			    false);
1405 		flush_state++;
1406 		spin_lock(&space_info->lock);
1407 		if (ticket->bytes == 0) {
1408 			spin_unlock(&space_info->lock);
1409 			return;
1410 		}
1411 	}
1412 
1413 	/* Attempt to steal from the global rsv if we can. */
1414 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1415 		ticket->error = -ENOSPC;
1416 		remove_ticket(space_info, ticket);
1417 	}
1418 
1419 	/*
1420 	 * We must run try_granting_tickets here because we could be a large
1421 	 * ticket in front of a smaller ticket that can now be satisfied with
1422 	 * the available space.
1423 	 */
1424 	btrfs_try_granting_tickets(fs_info, space_info);
1425 	spin_unlock(&space_info->lock);
1426 }
1427 
priority_reclaim_data_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1428 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1429 					struct btrfs_space_info *space_info,
1430 					struct reserve_ticket *ticket)
1431 {
1432 	spin_lock(&space_info->lock);
1433 
1434 	/* We could have been granted before we got here. */
1435 	if (ticket->bytes == 0) {
1436 		spin_unlock(&space_info->lock);
1437 		return;
1438 	}
1439 
1440 	while (!space_info->full) {
1441 		spin_unlock(&space_info->lock);
1442 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1443 		spin_lock(&space_info->lock);
1444 		if (ticket->bytes == 0) {
1445 			spin_unlock(&space_info->lock);
1446 			return;
1447 		}
1448 	}
1449 
1450 	ticket->error = -ENOSPC;
1451 	remove_ticket(space_info, ticket);
1452 	btrfs_try_granting_tickets(fs_info, space_info);
1453 	spin_unlock(&space_info->lock);
1454 }
1455 
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1456 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1457 				struct btrfs_space_info *space_info,
1458 				struct reserve_ticket *ticket)
1459 
1460 {
1461 	DEFINE_WAIT(wait);
1462 	int ret = 0;
1463 
1464 	spin_lock(&space_info->lock);
1465 	while (ticket->bytes > 0 && ticket->error == 0) {
1466 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1467 		if (ret) {
1468 			/*
1469 			 * Delete us from the list. After we unlock the space
1470 			 * info, we don't want the async reclaim job to reserve
1471 			 * space for this ticket. If that would happen, then the
1472 			 * ticket's task would not known that space was reserved
1473 			 * despite getting an error, resulting in a space leak
1474 			 * (bytes_may_use counter of our space_info).
1475 			 */
1476 			remove_ticket(space_info, ticket);
1477 			ticket->error = -EINTR;
1478 			break;
1479 		}
1480 		spin_unlock(&space_info->lock);
1481 
1482 		schedule();
1483 
1484 		finish_wait(&ticket->wait, &wait);
1485 		spin_lock(&space_info->lock);
1486 	}
1487 	spin_unlock(&space_info->lock);
1488 }
1489 
1490 /**
1491  * Do the appropriate flushing and waiting for a ticket
1492  *
1493  * @fs_info:    the filesystem
1494  * @space_info: space info for the reservation
1495  * @ticket:     ticket for the reservation
1496  * @start_ns:   timestamp when the reservation started
1497  * @orig_bytes: amount of bytes originally reserved
1498  * @flush:      how much we can flush
1499  *
1500  * This does the work of figuring out how to flush for the ticket, waiting for
1501  * the reservation, and returning the appropriate error if there is one.
1502  */
handle_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1503 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1504 				 struct btrfs_space_info *space_info,
1505 				 struct reserve_ticket *ticket,
1506 				 u64 start_ns, u64 orig_bytes,
1507 				 enum btrfs_reserve_flush_enum flush)
1508 {
1509 	int ret;
1510 
1511 	switch (flush) {
1512 	case BTRFS_RESERVE_FLUSH_DATA:
1513 	case BTRFS_RESERVE_FLUSH_ALL:
1514 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1515 		wait_reserve_ticket(fs_info, space_info, ticket);
1516 		break;
1517 	case BTRFS_RESERVE_FLUSH_LIMIT:
1518 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1519 						priority_flush_states,
1520 						ARRAY_SIZE(priority_flush_states));
1521 		break;
1522 	case BTRFS_RESERVE_FLUSH_EVICT:
1523 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1524 						evict_flush_states,
1525 						ARRAY_SIZE(evict_flush_states));
1526 		break;
1527 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1528 		priority_reclaim_data_space(fs_info, space_info, ticket);
1529 		break;
1530 	default:
1531 		ASSERT(0);
1532 		break;
1533 	}
1534 
1535 	ret = ticket->error;
1536 	ASSERT(list_empty(&ticket->list));
1537 	/*
1538 	 * Check that we can't have an error set if the reservation succeeded,
1539 	 * as that would confuse tasks and lead them to error out without
1540 	 * releasing reserved space (if an error happens the expectation is that
1541 	 * space wasn't reserved at all).
1542 	 */
1543 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1544 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1545 				   start_ns, flush, ticket->error);
1546 	return ret;
1547 }
1548 
1549 /*
1550  * This returns true if this flush state will go through the ordinary flushing
1551  * code.
1552  */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1553 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1554 {
1555 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1556 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1557 }
1558 
maybe_clamp_preempt(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)1559 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1560 				       struct btrfs_space_info *space_info)
1561 {
1562 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1563 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1564 
1565 	/*
1566 	 * If we're heavy on ordered operations then clamping won't help us.  We
1567 	 * need to clamp specifically to keep up with dirty'ing buffered
1568 	 * writers, because there's not a 1:1 correlation of writing delalloc
1569 	 * and freeing space, like there is with flushing delayed refs or
1570 	 * delayed nodes.  If we're already more ordered than delalloc then
1571 	 * we're keeping up, otherwise we aren't and should probably clamp.
1572 	 */
1573 	if (ordered < delalloc)
1574 		space_info->clamp = min(space_info->clamp + 1, 8);
1575 }
1576 
can_steal(enum btrfs_reserve_flush_enum flush)1577 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1578 {
1579 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1580 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1581 }
1582 
1583 /**
1584  * Try to reserve bytes from the block_rsv's space
1585  *
1586  * @fs_info:    the filesystem
1587  * @space_info: space info we want to allocate from
1588  * @orig_bytes: number of bytes we want
1589  * @flush:      whether or not we can flush to make our reservation
1590  *
1591  * This will reserve orig_bytes number of bytes from the space info associated
1592  * with the block_rsv.  If there is not enough space it will make an attempt to
1593  * flush out space to make room.  It will do this by flushing delalloc if
1594  * possible or committing the transaction.  If flush is 0 then no attempts to
1595  * regain reservations will be made and this will fail if there is not enough
1596  * space already.
1597  */
__reserve_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1598 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1599 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1600 			   enum btrfs_reserve_flush_enum flush)
1601 {
1602 	struct work_struct *async_work;
1603 	struct reserve_ticket ticket;
1604 	u64 start_ns = 0;
1605 	u64 used;
1606 	int ret = 0;
1607 	bool pending_tickets;
1608 
1609 	ASSERT(orig_bytes);
1610 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1611 
1612 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1613 		async_work = &fs_info->async_data_reclaim_work;
1614 	else
1615 		async_work = &fs_info->async_reclaim_work;
1616 
1617 	spin_lock(&space_info->lock);
1618 	ret = -ENOSPC;
1619 	used = btrfs_space_info_used(space_info, true);
1620 
1621 	/*
1622 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1623 	 * generally handle ENOSPC in a different way, so treat them the same as
1624 	 * normal flushers when it comes to skipping pending tickets.
1625 	 */
1626 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1627 		pending_tickets = !list_empty(&space_info->tickets) ||
1628 			!list_empty(&space_info->priority_tickets);
1629 	else
1630 		pending_tickets = !list_empty(&space_info->priority_tickets);
1631 
1632 	/*
1633 	 * Carry on if we have enough space (short-circuit) OR call
1634 	 * can_overcommit() to ensure we can overcommit to continue.
1635 	 */
1636 	if (!pending_tickets &&
1637 	    ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
1638 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1639 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1640 						      orig_bytes);
1641 		ret = 0;
1642 	}
1643 
1644 	/*
1645 	 * If we couldn't make a reservation then setup our reservation ticket
1646 	 * and kick the async worker if it's not already running.
1647 	 *
1648 	 * If we are a priority flusher then we just need to add our ticket to
1649 	 * the list and we will do our own flushing further down.
1650 	 */
1651 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1652 		ticket.bytes = orig_bytes;
1653 		ticket.error = 0;
1654 		space_info->reclaim_size += ticket.bytes;
1655 		init_waitqueue_head(&ticket.wait);
1656 		ticket.steal = can_steal(flush);
1657 		if (trace_btrfs_reserve_ticket_enabled())
1658 			start_ns = ktime_get_ns();
1659 
1660 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1661 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1662 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1663 			list_add_tail(&ticket.list, &space_info->tickets);
1664 			if (!space_info->flush) {
1665 				/*
1666 				 * We were forced to add a reserve ticket, so
1667 				 * our preemptive flushing is unable to keep
1668 				 * up.  Clamp down on the threshold for the
1669 				 * preemptive flushing in order to keep up with
1670 				 * the workload.
1671 				 */
1672 				maybe_clamp_preempt(fs_info, space_info);
1673 
1674 				space_info->flush = 1;
1675 				trace_btrfs_trigger_flush(fs_info,
1676 							  space_info->flags,
1677 							  orig_bytes, flush,
1678 							  "enospc");
1679 				queue_work(system_unbound_wq, async_work);
1680 			}
1681 		} else {
1682 			list_add_tail(&ticket.list,
1683 				      &space_info->priority_tickets);
1684 		}
1685 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1686 		/*
1687 		 * We will do the space reservation dance during log replay,
1688 		 * which means we won't have fs_info->fs_root set, so don't do
1689 		 * the async reclaim as we will panic.
1690 		 */
1691 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1692 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1693 		    need_preemptive_reclaim(fs_info, space_info)) {
1694 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1695 						  orig_bytes, flush, "preempt");
1696 			queue_work(system_unbound_wq,
1697 				   &fs_info->preempt_reclaim_work);
1698 		}
1699 	}
1700 	spin_unlock(&space_info->lock);
1701 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1702 		return ret;
1703 
1704 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1705 				     orig_bytes, flush);
1706 }
1707 
1708 /**
1709  * Trye to reserve metadata bytes from the block_rsv's space
1710  *
1711  * @fs_info:    the filesystem
1712  * @block_rsv:  block_rsv we're allocating for
1713  * @orig_bytes: number of bytes we want
1714  * @flush:      whether or not we can flush to make our reservation
1715  *
1716  * This will reserve orig_bytes number of bytes from the space info associated
1717  * with the block_rsv.  If there is not enough space it will make an attempt to
1718  * flush out space to make room.  It will do this by flushing delalloc if
1719  * possible or committing the transaction.  If flush is 0 then no attempts to
1720  * regain reservations will be made and this will fail if there is not enough
1721  * space already.
1722  */
btrfs_reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1723 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1724 				 struct btrfs_block_rsv *block_rsv,
1725 				 u64 orig_bytes,
1726 				 enum btrfs_reserve_flush_enum flush)
1727 {
1728 	int ret;
1729 
1730 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1731 	if (ret == -ENOSPC) {
1732 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1733 					      block_rsv->space_info->flags,
1734 					      orig_bytes, 1);
1735 
1736 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1737 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1738 					      orig_bytes, 0);
1739 	}
1740 	return ret;
1741 }
1742 
1743 /**
1744  * Try to reserve data bytes for an allocation
1745  *
1746  * @fs_info: the filesystem
1747  * @bytes:   number of bytes we need
1748  * @flush:   how we are allowed to flush
1749  *
1750  * This will reserve bytes from the data space info.  If there is not enough
1751  * space then we will attempt to flush space as specified by flush.
1752  */
btrfs_reserve_data_bytes(struct btrfs_fs_info * fs_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1753 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1754 			     enum btrfs_reserve_flush_enum flush)
1755 {
1756 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1757 	int ret;
1758 
1759 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1760 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1761 	       flush == BTRFS_RESERVE_NO_FLUSH);
1762 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1763 
1764 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1765 	if (ret == -ENOSPC) {
1766 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1767 					      data_sinfo->flags, bytes, 1);
1768 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1769 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1770 	}
1771 	return ret;
1772 }
1773 
1774 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info * fs_info)1775 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1776 {
1777 	struct btrfs_space_info *space_info;
1778 
1779 	btrfs_info(fs_info, "dumping space info:");
1780 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1781 		spin_lock(&space_info->lock);
1782 		__btrfs_dump_space_info(fs_info, space_info);
1783 		spin_unlock(&space_info->lock);
1784 	}
1785 	dump_global_block_rsv(fs_info);
1786 }
1787