• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 			       struct btrfs_delayed_ref_node *node, u64 parent,
45 			       u64 root_objectid, u64 owner_objectid,
46 			       u64 owner_offset, int refs_to_drop,
47 			       struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 				    struct extent_buffer *leaf,
50 				    struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_delayed_ref_node *node,
57 				     struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 			 struct btrfs_key *key);
60 
block_group_bits(struct btrfs_block_group * cache,u64 bits)61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 	return (cache->flags & bits) == bits;
64 }
65 
btrfs_add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 			      u64 start, u64 num_bytes)
68 {
69 	u64 end = start + num_bytes - 1;
70 	set_extent_bits(&fs_info->excluded_extents, start, end,
71 			EXTENT_UPTODATE);
72 	return 0;
73 }
74 
btrfs_free_excluded_extents(struct btrfs_block_group * cache)75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 	struct btrfs_fs_info *fs_info = cache->fs_info;
78 	u64 start, end;
79 
80 	start = cache->start;
81 	end = start + cache->length - 1;
82 
83 	clear_extent_bits(&fs_info->excluded_extents, start, end,
84 			  EXTENT_UPTODATE);
85 }
86 
87 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
91 	int ret;
92 	struct btrfs_key key;
93 	struct btrfs_path *path;
94 
95 	path = btrfs_alloc_path();
96 	if (!path)
97 		return -ENOMEM;
98 
99 	key.objectid = start;
100 	key.offset = len;
101 	key.type = BTRFS_EXTENT_ITEM_KEY;
102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
103 	btrfs_free_path(path);
104 	return ret;
105 }
106 
107 /*
108  * helper function to lookup reference count and flags of a tree block.
109  *
110  * the head node for delayed ref is used to store the sum of all the
111  * reference count modifications queued up in the rbtree. the head
112  * node may also store the extent flags to set. This way you can check
113  * to see what the reference count and extent flags would be if all of
114  * the delayed refs are not processed.
115  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
117 			     struct btrfs_fs_info *fs_info, u64 bytenr,
118 			     u64 offset, int metadata, u64 *refs, u64 *flags)
119 {
120 	struct btrfs_root *extent_root;
121 	struct btrfs_delayed_ref_head *head;
122 	struct btrfs_delayed_ref_root *delayed_refs;
123 	struct btrfs_path *path;
124 	struct btrfs_extent_item *ei;
125 	struct extent_buffer *leaf;
126 	struct btrfs_key key;
127 	u32 item_size;
128 	u64 num_refs;
129 	u64 extent_flags;
130 	int ret;
131 
132 	/*
133 	 * If we don't have skinny metadata, don't bother doing anything
134 	 * different
135 	 */
136 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
137 		offset = fs_info->nodesize;
138 		metadata = 0;
139 	}
140 
141 	path = btrfs_alloc_path();
142 	if (!path)
143 		return -ENOMEM;
144 
145 	if (!trans) {
146 		path->skip_locking = 1;
147 		path->search_commit_root = 1;
148 	}
149 
150 search_again:
151 	key.objectid = bytenr;
152 	key.offset = offset;
153 	if (metadata)
154 		key.type = BTRFS_METADATA_ITEM_KEY;
155 	else
156 		key.type = BTRFS_EXTENT_ITEM_KEY;
157 
158 	extent_root = btrfs_extent_root(fs_info, bytenr);
159 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
160 	if (ret < 0)
161 		goto out_free;
162 
163 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
164 		if (path->slots[0]) {
165 			path->slots[0]--;
166 			btrfs_item_key_to_cpu(path->nodes[0], &key,
167 					      path->slots[0]);
168 			if (key.objectid == bytenr &&
169 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
170 			    key.offset == fs_info->nodesize)
171 				ret = 0;
172 		}
173 	}
174 
175 	if (ret == 0) {
176 		leaf = path->nodes[0];
177 		item_size = btrfs_item_size(leaf, path->slots[0]);
178 		if (item_size >= sizeof(*ei)) {
179 			ei = btrfs_item_ptr(leaf, path->slots[0],
180 					    struct btrfs_extent_item);
181 			num_refs = btrfs_extent_refs(leaf, ei);
182 			extent_flags = btrfs_extent_flags(leaf, ei);
183 		} else {
184 			ret = -EINVAL;
185 			btrfs_print_v0_err(fs_info);
186 			if (trans)
187 				btrfs_abort_transaction(trans, ret);
188 			else
189 				btrfs_handle_fs_error(fs_info, ret, NULL);
190 
191 			goto out_free;
192 		}
193 
194 		BUG_ON(num_refs == 0);
195 	} else {
196 		num_refs = 0;
197 		extent_flags = 0;
198 		ret = 0;
199 	}
200 
201 	if (!trans)
202 		goto out;
203 
204 	delayed_refs = &trans->transaction->delayed_refs;
205 	spin_lock(&delayed_refs->lock);
206 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
207 	if (head) {
208 		if (!mutex_trylock(&head->mutex)) {
209 			refcount_inc(&head->refs);
210 			spin_unlock(&delayed_refs->lock);
211 
212 			btrfs_release_path(path);
213 
214 			/*
215 			 * Mutex was contended, block until it's released and try
216 			 * again
217 			 */
218 			mutex_lock(&head->mutex);
219 			mutex_unlock(&head->mutex);
220 			btrfs_put_delayed_ref_head(head);
221 			goto search_again;
222 		}
223 		spin_lock(&head->lock);
224 		if (head->extent_op && head->extent_op->update_flags)
225 			extent_flags |= head->extent_op->flags_to_set;
226 		else
227 			BUG_ON(num_refs == 0);
228 
229 		num_refs += head->ref_mod;
230 		spin_unlock(&head->lock);
231 		mutex_unlock(&head->mutex);
232 	}
233 	spin_unlock(&delayed_refs->lock);
234 out:
235 	WARN_ON(num_refs == 0);
236 	if (refs)
237 		*refs = num_refs;
238 	if (flags)
239 		*flags = extent_flags;
240 out_free:
241 	btrfs_free_path(path);
242 	return ret;
243 }
244 
245 /*
246  * Back reference rules.  Back refs have three main goals:
247  *
248  * 1) differentiate between all holders of references to an extent so that
249  *    when a reference is dropped we can make sure it was a valid reference
250  *    before freeing the extent.
251  *
252  * 2) Provide enough information to quickly find the holders of an extent
253  *    if we notice a given block is corrupted or bad.
254  *
255  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
256  *    maintenance.  This is actually the same as #2, but with a slightly
257  *    different use case.
258  *
259  * There are two kinds of back refs. The implicit back refs is optimized
260  * for pointers in non-shared tree blocks. For a given pointer in a block,
261  * back refs of this kind provide information about the block's owner tree
262  * and the pointer's key. These information allow us to find the block by
263  * b-tree searching. The full back refs is for pointers in tree blocks not
264  * referenced by their owner trees. The location of tree block is recorded
265  * in the back refs. Actually the full back refs is generic, and can be
266  * used in all cases the implicit back refs is used. The major shortcoming
267  * of the full back refs is its overhead. Every time a tree block gets
268  * COWed, we have to update back refs entry for all pointers in it.
269  *
270  * For a newly allocated tree block, we use implicit back refs for
271  * pointers in it. This means most tree related operations only involve
272  * implicit back refs. For a tree block created in old transaction, the
273  * only way to drop a reference to it is COW it. So we can detect the
274  * event that tree block loses its owner tree's reference and do the
275  * back refs conversion.
276  *
277  * When a tree block is COWed through a tree, there are four cases:
278  *
279  * The reference count of the block is one and the tree is the block's
280  * owner tree. Nothing to do in this case.
281  *
282  * The reference count of the block is one and the tree is not the
283  * block's owner tree. In this case, full back refs is used for pointers
284  * in the block. Remove these full back refs, add implicit back refs for
285  * every pointers in the new block.
286  *
287  * The reference count of the block is greater than one and the tree is
288  * the block's owner tree. In this case, implicit back refs is used for
289  * pointers in the block. Add full back refs for every pointers in the
290  * block, increase lower level extents' reference counts. The original
291  * implicit back refs are entailed to the new block.
292  *
293  * The reference count of the block is greater than one and the tree is
294  * not the block's owner tree. Add implicit back refs for every pointer in
295  * the new block, increase lower level extents' reference count.
296  *
297  * Back Reference Key composing:
298  *
299  * The key objectid corresponds to the first byte in the extent,
300  * The key type is used to differentiate between types of back refs.
301  * There are different meanings of the key offset for different types
302  * of back refs.
303  *
304  * File extents can be referenced by:
305  *
306  * - multiple snapshots, subvolumes, or different generations in one subvol
307  * - different files inside a single subvolume
308  * - different offsets inside a file (bookend extents in file.c)
309  *
310  * The extent ref structure for the implicit back refs has fields for:
311  *
312  * - Objectid of the subvolume root
313  * - objectid of the file holding the reference
314  * - original offset in the file
315  * - how many bookend extents
316  *
317  * The key offset for the implicit back refs is hash of the first
318  * three fields.
319  *
320  * The extent ref structure for the full back refs has field for:
321  *
322  * - number of pointers in the tree leaf
323  *
324  * The key offset for the implicit back refs is the first byte of
325  * the tree leaf
326  *
327  * When a file extent is allocated, The implicit back refs is used.
328  * the fields are filled in:
329  *
330  *     (root_key.objectid, inode objectid, offset in file, 1)
331  *
332  * When a file extent is removed file truncation, we find the
333  * corresponding implicit back refs and check the following fields:
334  *
335  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
336  *
337  * Btree extents can be referenced by:
338  *
339  * - Different subvolumes
340  *
341  * Both the implicit back refs and the full back refs for tree blocks
342  * only consist of key. The key offset for the implicit back refs is
343  * objectid of block's owner tree. The key offset for the full back refs
344  * is the first byte of parent block.
345  *
346  * When implicit back refs is used, information about the lowest key and
347  * level of the tree block are required. These information are stored in
348  * tree block info structure.
349  */
350 
351 /*
352  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
353  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
354  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
355  */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
357 				     struct btrfs_extent_inline_ref *iref,
358 				     enum btrfs_inline_ref_type is_data)
359 {
360 	int type = btrfs_extent_inline_ref_type(eb, iref);
361 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
362 
363 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
364 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
365 	    type == BTRFS_SHARED_DATA_REF_KEY ||
366 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
367 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
368 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
381 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 				return type;
383 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 				ASSERT(eb->fs_info);
385 				/*
386 				 * Every shared one has parent tree block,
387 				 * which must be aligned to sector size.
388 				 */
389 				if (offset &&
390 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
391 					return type;
392 			}
393 		} else {
394 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 			return type;
396 		}
397 	}
398 
399 	btrfs_print_leaf((struct extent_buffer *)eb);
400 	btrfs_err(eb->fs_info,
401 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
402 		  eb->start, (unsigned long)iref, type);
403 	WARN_ON(1);
404 
405 	return BTRFS_REF_TYPE_INVALID;
406 }
407 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 	u32 high_crc = ~(u32)0;
411 	u32 low_crc = ~(u32)0;
412 	__le64 lenum;
413 
414 	lenum = cpu_to_le64(root_objectid);
415 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
416 	lenum = cpu_to_le64(owner);
417 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
418 	lenum = cpu_to_le64(offset);
419 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
420 
421 	return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 				     struct btrfs_extent_data_ref *ref)
426 {
427 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 				    btrfs_extent_data_ref_objectid(leaf, ref),
429 				    btrfs_extent_data_ref_offset(leaf, ref));
430 }
431 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 				 struct btrfs_extent_data_ref *ref,
434 				 u64 root_objectid, u64 owner, u64 offset)
435 {
436 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 		return 0;
440 	return 1;
441 }
442 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 					   struct btrfs_path *path,
445 					   u64 bytenr, u64 parent,
446 					   u64 root_objectid,
447 					   u64 owner, u64 offset)
448 {
449 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 	struct btrfs_key key;
451 	struct btrfs_extent_data_ref *ref;
452 	struct extent_buffer *leaf;
453 	u32 nritems;
454 	int ret;
455 	int recow;
456 	int err = -ENOENT;
457 
458 	key.objectid = bytenr;
459 	if (parent) {
460 		key.type = BTRFS_SHARED_DATA_REF_KEY;
461 		key.offset = parent;
462 	} else {
463 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 		key.offset = hash_extent_data_ref(root_objectid,
465 						  owner, offset);
466 	}
467 again:
468 	recow = 0;
469 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 	if (ret < 0) {
471 		err = ret;
472 		goto fail;
473 	}
474 
475 	if (parent) {
476 		if (!ret)
477 			return 0;
478 		goto fail;
479 	}
480 
481 	leaf = path->nodes[0];
482 	nritems = btrfs_header_nritems(leaf);
483 	while (1) {
484 		if (path->slots[0] >= nritems) {
485 			ret = btrfs_next_leaf(root, path);
486 			if (ret < 0)
487 				err = ret;
488 			if (ret)
489 				goto fail;
490 
491 			leaf = path->nodes[0];
492 			nritems = btrfs_header_nritems(leaf);
493 			recow = 1;
494 		}
495 
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 		if (key.objectid != bytenr ||
498 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 			goto fail;
500 
501 		ref = btrfs_item_ptr(leaf, path->slots[0],
502 				     struct btrfs_extent_data_ref);
503 
504 		if (match_extent_data_ref(leaf, ref, root_objectid,
505 					  owner, offset)) {
506 			if (recow) {
507 				btrfs_release_path(path);
508 				goto again;
509 			}
510 			err = 0;
511 			break;
512 		}
513 		path->slots[0]++;
514 	}
515 fail:
516 	return err;
517 }
518 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 					   struct btrfs_path *path,
521 					   u64 bytenr, u64 parent,
522 					   u64 root_objectid, u64 owner,
523 					   u64 offset, int refs_to_add)
524 {
525 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 	struct btrfs_key key;
527 	struct extent_buffer *leaf;
528 	u32 size;
529 	u32 num_refs;
530 	int ret;
531 
532 	key.objectid = bytenr;
533 	if (parent) {
534 		key.type = BTRFS_SHARED_DATA_REF_KEY;
535 		key.offset = parent;
536 		size = sizeof(struct btrfs_shared_data_ref);
537 	} else {
538 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 		key.offset = hash_extent_data_ref(root_objectid,
540 						  owner, offset);
541 		size = sizeof(struct btrfs_extent_data_ref);
542 	}
543 
544 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 	if (ret && ret != -EEXIST)
546 		goto fail;
547 
548 	leaf = path->nodes[0];
549 	if (parent) {
550 		struct btrfs_shared_data_ref *ref;
551 		ref = btrfs_item_ptr(leaf, path->slots[0],
552 				     struct btrfs_shared_data_ref);
553 		if (ret == 0) {
554 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 		} else {
556 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 			num_refs += refs_to_add;
558 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 		}
560 	} else {
561 		struct btrfs_extent_data_ref *ref;
562 		while (ret == -EEXIST) {
563 			ref = btrfs_item_ptr(leaf, path->slots[0],
564 					     struct btrfs_extent_data_ref);
565 			if (match_extent_data_ref(leaf, ref, root_objectid,
566 						  owner, offset))
567 				break;
568 			btrfs_release_path(path);
569 			key.offset++;
570 			ret = btrfs_insert_empty_item(trans, root, path, &key,
571 						      size);
572 			if (ret && ret != -EEXIST)
573 				goto fail;
574 
575 			leaf = path->nodes[0];
576 		}
577 		ref = btrfs_item_ptr(leaf, path->slots[0],
578 				     struct btrfs_extent_data_ref);
579 		if (ret == 0) {
580 			btrfs_set_extent_data_ref_root(leaf, ref,
581 						       root_objectid);
582 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 		}
590 	}
591 	btrfs_mark_buffer_dirty(leaf);
592 	ret = 0;
593 fail:
594 	btrfs_release_path(path);
595 	return ret;
596 }
597 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 					   struct btrfs_root *root,
600 					   struct btrfs_path *path,
601 					   int refs_to_drop)
602 {
603 	struct btrfs_key key;
604 	struct btrfs_extent_data_ref *ref1 = NULL;
605 	struct btrfs_shared_data_ref *ref2 = NULL;
606 	struct extent_buffer *leaf;
607 	u32 num_refs = 0;
608 	int ret = 0;
609 
610 	leaf = path->nodes[0];
611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612 
613 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_extent_data_ref);
616 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 				      struct btrfs_shared_data_ref);
620 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
622 		btrfs_print_v0_err(trans->fs_info);
623 		btrfs_abort_transaction(trans, -EINVAL);
624 		return -EINVAL;
625 	} else {
626 		BUG();
627 	}
628 
629 	BUG_ON(num_refs < refs_to_drop);
630 	num_refs -= refs_to_drop;
631 
632 	if (num_refs == 0) {
633 		ret = btrfs_del_item(trans, root, path);
634 	} else {
635 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 		btrfs_mark_buffer_dirty(leaf);
640 	}
641 	return ret;
642 }
643 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 					  struct btrfs_extent_inline_ref *iref)
646 {
647 	struct btrfs_key key;
648 	struct extent_buffer *leaf;
649 	struct btrfs_extent_data_ref *ref1;
650 	struct btrfs_shared_data_ref *ref2;
651 	u32 num_refs = 0;
652 	int type;
653 
654 	leaf = path->nodes[0];
655 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656 
657 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
658 	if (iref) {
659 		/*
660 		 * If type is invalid, we should have bailed out earlier than
661 		 * this call.
662 		 */
663 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
664 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
665 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
666 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
667 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
668 		} else {
669 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
670 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
671 		}
672 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
673 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
674 				      struct btrfs_extent_data_ref);
675 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
676 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
677 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
678 				      struct btrfs_shared_data_ref);
679 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
680 	} else {
681 		WARN_ON(1);
682 	}
683 	return num_refs;
684 }
685 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
687 					  struct btrfs_path *path,
688 					  u64 bytenr, u64 parent,
689 					  u64 root_objectid)
690 {
691 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
692 	struct btrfs_key key;
693 	int ret;
694 
695 	key.objectid = bytenr;
696 	if (parent) {
697 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
698 		key.offset = parent;
699 	} else {
700 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
701 		key.offset = root_objectid;
702 	}
703 
704 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
705 	if (ret > 0)
706 		ret = -ENOENT;
707 	return ret;
708 }
709 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
711 					  struct btrfs_path *path,
712 					  u64 bytenr, u64 parent,
713 					  u64 root_objectid)
714 {
715 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
716 	struct btrfs_key key;
717 	int ret;
718 
719 	key.objectid = bytenr;
720 	if (parent) {
721 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
722 		key.offset = parent;
723 	} else {
724 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
725 		key.offset = root_objectid;
726 	}
727 
728 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
729 	btrfs_release_path(path);
730 	return ret;
731 }
732 
extent_ref_type(u64 parent,u64 owner)733 static inline int extent_ref_type(u64 parent, u64 owner)
734 {
735 	int type;
736 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
737 		if (parent > 0)
738 			type = BTRFS_SHARED_BLOCK_REF_KEY;
739 		else
740 			type = BTRFS_TREE_BLOCK_REF_KEY;
741 	} else {
742 		if (parent > 0)
743 			type = BTRFS_SHARED_DATA_REF_KEY;
744 		else
745 			type = BTRFS_EXTENT_DATA_REF_KEY;
746 	}
747 	return type;
748 }
749 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)750 static int find_next_key(struct btrfs_path *path, int level,
751 			 struct btrfs_key *key)
752 
753 {
754 	for (; level < BTRFS_MAX_LEVEL; level++) {
755 		if (!path->nodes[level])
756 			break;
757 		if (path->slots[level] + 1 >=
758 		    btrfs_header_nritems(path->nodes[level]))
759 			continue;
760 		if (level == 0)
761 			btrfs_item_key_to_cpu(path->nodes[level], key,
762 					      path->slots[level] + 1);
763 		else
764 			btrfs_node_key_to_cpu(path->nodes[level], key,
765 					      path->slots[level] + 1);
766 		return 0;
767 	}
768 	return 1;
769 }
770 
771 /*
772  * look for inline back ref. if back ref is found, *ref_ret is set
773  * to the address of inline back ref, and 0 is returned.
774  *
775  * if back ref isn't found, *ref_ret is set to the address where it
776  * should be inserted, and -ENOENT is returned.
777  *
778  * if insert is true and there are too many inline back refs, the path
779  * points to the extent item, and -EAGAIN is returned.
780  *
781  * NOTE: inline back refs are ordered in the same way that back ref
782  *	 items in the tree are ordered.
783  */
784 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
786 				 struct btrfs_path *path,
787 				 struct btrfs_extent_inline_ref **ref_ret,
788 				 u64 bytenr, u64 num_bytes,
789 				 u64 parent, u64 root_objectid,
790 				 u64 owner, u64 offset, int insert)
791 {
792 	struct btrfs_fs_info *fs_info = trans->fs_info;
793 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
794 	struct btrfs_key key;
795 	struct extent_buffer *leaf;
796 	struct btrfs_extent_item *ei;
797 	struct btrfs_extent_inline_ref *iref;
798 	u64 flags;
799 	u64 item_size;
800 	unsigned long ptr;
801 	unsigned long end;
802 	int extra_size;
803 	int type;
804 	int want;
805 	int ret;
806 	int err = 0;
807 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
808 	int needed;
809 
810 	key.objectid = bytenr;
811 	key.type = BTRFS_EXTENT_ITEM_KEY;
812 	key.offset = num_bytes;
813 
814 	want = extent_ref_type(parent, owner);
815 	if (insert) {
816 		extra_size = btrfs_extent_inline_ref_size(want);
817 		path->search_for_extension = 1;
818 		path->keep_locks = 1;
819 	} else
820 		extra_size = -1;
821 
822 	/*
823 	 * Owner is our level, so we can just add one to get the level for the
824 	 * block we are interested in.
825 	 */
826 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
827 		key.type = BTRFS_METADATA_ITEM_KEY;
828 		key.offset = owner;
829 	}
830 
831 again:
832 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
833 	if (ret < 0) {
834 		err = ret;
835 		goto out;
836 	}
837 
838 	/*
839 	 * We may be a newly converted file system which still has the old fat
840 	 * extent entries for metadata, so try and see if we have one of those.
841 	 */
842 	if (ret > 0 && skinny_metadata) {
843 		skinny_metadata = false;
844 		if (path->slots[0]) {
845 			path->slots[0]--;
846 			btrfs_item_key_to_cpu(path->nodes[0], &key,
847 					      path->slots[0]);
848 			if (key.objectid == bytenr &&
849 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
850 			    key.offset == num_bytes)
851 				ret = 0;
852 		}
853 		if (ret) {
854 			key.objectid = bytenr;
855 			key.type = BTRFS_EXTENT_ITEM_KEY;
856 			key.offset = num_bytes;
857 			btrfs_release_path(path);
858 			goto again;
859 		}
860 	}
861 
862 	if (ret && !insert) {
863 		err = -ENOENT;
864 		goto out;
865 	} else if (WARN_ON(ret)) {
866 		btrfs_print_leaf(path->nodes[0]);
867 		btrfs_err(fs_info,
868 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
869 			  bytenr, num_bytes, parent, root_objectid, owner,
870 			  offset);
871 		err = -EIO;
872 		goto out;
873 	}
874 
875 	leaf = path->nodes[0];
876 	item_size = btrfs_item_size(leaf, path->slots[0]);
877 	if (unlikely(item_size < sizeof(*ei))) {
878 		err = -EINVAL;
879 		btrfs_print_v0_err(fs_info);
880 		btrfs_abort_transaction(trans, err);
881 		goto out;
882 	}
883 
884 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
885 	flags = btrfs_extent_flags(leaf, ei);
886 
887 	ptr = (unsigned long)(ei + 1);
888 	end = (unsigned long)ei + item_size;
889 
890 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
891 		ptr += sizeof(struct btrfs_tree_block_info);
892 		BUG_ON(ptr > end);
893 	}
894 
895 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
896 		needed = BTRFS_REF_TYPE_DATA;
897 	else
898 		needed = BTRFS_REF_TYPE_BLOCK;
899 
900 	err = -ENOENT;
901 	while (1) {
902 		if (ptr >= end) {
903 			if (ptr > end) {
904 				err = -EUCLEAN;
905 				btrfs_print_leaf(path->nodes[0]);
906 				btrfs_crit(fs_info,
907 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
908 					path->slots[0], root_objectid, owner, offset, parent);
909 			}
910 			break;
911 		}
912 		iref = (struct btrfs_extent_inline_ref *)ptr;
913 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
914 		if (type == BTRFS_REF_TYPE_INVALID) {
915 			err = -EUCLEAN;
916 			goto out;
917 		}
918 
919 		if (want < type)
920 			break;
921 		if (want > type) {
922 			ptr += btrfs_extent_inline_ref_size(type);
923 			continue;
924 		}
925 
926 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
927 			struct btrfs_extent_data_ref *dref;
928 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
929 			if (match_extent_data_ref(leaf, dref, root_objectid,
930 						  owner, offset)) {
931 				err = 0;
932 				break;
933 			}
934 			if (hash_extent_data_ref_item(leaf, dref) <
935 			    hash_extent_data_ref(root_objectid, owner, offset))
936 				break;
937 		} else {
938 			u64 ref_offset;
939 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
940 			if (parent > 0) {
941 				if (parent == ref_offset) {
942 					err = 0;
943 					break;
944 				}
945 				if (ref_offset < parent)
946 					break;
947 			} else {
948 				if (root_objectid == ref_offset) {
949 					err = 0;
950 					break;
951 				}
952 				if (ref_offset < root_objectid)
953 					break;
954 			}
955 		}
956 		ptr += btrfs_extent_inline_ref_size(type);
957 	}
958 	if (err == -ENOENT && insert) {
959 		if (item_size + extra_size >=
960 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
961 			err = -EAGAIN;
962 			goto out;
963 		}
964 		/*
965 		 * To add new inline back ref, we have to make sure
966 		 * there is no corresponding back ref item.
967 		 * For simplicity, we just do not add new inline back
968 		 * ref if there is any kind of item for this block
969 		 */
970 		if (find_next_key(path, 0, &key) == 0 &&
971 		    key.objectid == bytenr &&
972 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
973 			err = -EAGAIN;
974 			goto out;
975 		}
976 	}
977 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
978 out:
979 	if (insert) {
980 		path->keep_locks = 0;
981 		path->search_for_extension = 0;
982 		btrfs_unlock_up_safe(path, 1);
983 	}
984 	return err;
985 }
986 
987 /*
988  * helper to add new inline back ref
989  */
990 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)991 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
992 				 struct btrfs_path *path,
993 				 struct btrfs_extent_inline_ref *iref,
994 				 u64 parent, u64 root_objectid,
995 				 u64 owner, u64 offset, int refs_to_add,
996 				 struct btrfs_delayed_extent_op *extent_op)
997 {
998 	struct extent_buffer *leaf;
999 	struct btrfs_extent_item *ei;
1000 	unsigned long ptr;
1001 	unsigned long end;
1002 	unsigned long item_offset;
1003 	u64 refs;
1004 	int size;
1005 	int type;
1006 
1007 	leaf = path->nodes[0];
1008 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1009 	item_offset = (unsigned long)iref - (unsigned long)ei;
1010 
1011 	type = extent_ref_type(parent, owner);
1012 	size = btrfs_extent_inline_ref_size(type);
1013 
1014 	btrfs_extend_item(path, size);
1015 
1016 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 	refs = btrfs_extent_refs(leaf, ei);
1018 	refs += refs_to_add;
1019 	btrfs_set_extent_refs(leaf, ei, refs);
1020 	if (extent_op)
1021 		__run_delayed_extent_op(extent_op, leaf, ei);
1022 
1023 	ptr = (unsigned long)ei + item_offset;
1024 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1025 	if (ptr < end - size)
1026 		memmove_extent_buffer(leaf, ptr + size, ptr,
1027 				      end - size - ptr);
1028 
1029 	iref = (struct btrfs_extent_inline_ref *)ptr;
1030 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1031 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1032 		struct btrfs_extent_data_ref *dref;
1033 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1034 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1035 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1036 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1037 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1038 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1039 		struct btrfs_shared_data_ref *sref;
1040 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1041 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1042 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1043 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1044 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045 	} else {
1046 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1047 	}
1048 	btrfs_mark_buffer_dirty(leaf);
1049 }
1050 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1051 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1052 				 struct btrfs_path *path,
1053 				 struct btrfs_extent_inline_ref **ref_ret,
1054 				 u64 bytenr, u64 num_bytes, u64 parent,
1055 				 u64 root_objectid, u64 owner, u64 offset)
1056 {
1057 	int ret;
1058 
1059 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1060 					   num_bytes, parent, root_objectid,
1061 					   owner, offset, 0);
1062 	if (ret != -ENOENT)
1063 		return ret;
1064 
1065 	btrfs_release_path(path);
1066 	*ref_ret = NULL;
1067 
1068 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1069 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1070 					    root_objectid);
1071 	} else {
1072 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1073 					     root_objectid, owner, offset);
1074 	}
1075 	return ret;
1076 }
1077 
1078 /*
1079  * helper to update/remove inline back ref
1080  */
1081 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1082 void update_inline_extent_backref(struct btrfs_path *path,
1083 				  struct btrfs_extent_inline_ref *iref,
1084 				  int refs_to_mod,
1085 				  struct btrfs_delayed_extent_op *extent_op)
1086 {
1087 	struct extent_buffer *leaf = path->nodes[0];
1088 	struct btrfs_extent_item *ei;
1089 	struct btrfs_extent_data_ref *dref = NULL;
1090 	struct btrfs_shared_data_ref *sref = NULL;
1091 	unsigned long ptr;
1092 	unsigned long end;
1093 	u32 item_size;
1094 	int size;
1095 	int type;
1096 	u64 refs;
1097 
1098 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1099 	refs = btrfs_extent_refs(leaf, ei);
1100 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1101 	refs += refs_to_mod;
1102 	btrfs_set_extent_refs(leaf, ei, refs);
1103 	if (extent_op)
1104 		__run_delayed_extent_op(extent_op, leaf, ei);
1105 
1106 	/*
1107 	 * If type is invalid, we should have bailed out after
1108 	 * lookup_inline_extent_backref().
1109 	 */
1110 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1111 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1112 
1113 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1114 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1115 		refs = btrfs_extent_data_ref_count(leaf, dref);
1116 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1117 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1118 		refs = btrfs_shared_data_ref_count(leaf, sref);
1119 	} else {
1120 		refs = 1;
1121 		BUG_ON(refs_to_mod != -1);
1122 	}
1123 
1124 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1125 	refs += refs_to_mod;
1126 
1127 	if (refs > 0) {
1128 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1129 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1130 		else
1131 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1132 	} else {
1133 		size =  btrfs_extent_inline_ref_size(type);
1134 		item_size = btrfs_item_size(leaf, path->slots[0]);
1135 		ptr = (unsigned long)iref;
1136 		end = (unsigned long)ei + item_size;
1137 		if (ptr + size < end)
1138 			memmove_extent_buffer(leaf, ptr, ptr + size,
1139 					      end - ptr - size);
1140 		item_size -= size;
1141 		btrfs_truncate_item(path, item_size, 1);
1142 	}
1143 	btrfs_mark_buffer_dirty(leaf);
1144 }
1145 
1146 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1147 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1148 				 struct btrfs_path *path,
1149 				 u64 bytenr, u64 num_bytes, u64 parent,
1150 				 u64 root_objectid, u64 owner,
1151 				 u64 offset, int refs_to_add,
1152 				 struct btrfs_delayed_extent_op *extent_op)
1153 {
1154 	struct btrfs_extent_inline_ref *iref;
1155 	int ret;
1156 
1157 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1158 					   num_bytes, parent, root_objectid,
1159 					   owner, offset, 1);
1160 	if (ret == 0) {
1161 		/*
1162 		 * We're adding refs to a tree block we already own, this
1163 		 * should not happen at all.
1164 		 */
1165 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1166 			btrfs_crit(trans->fs_info,
1167 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1168 				   bytenr, num_bytes, root_objectid);
1169 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1170 				WARN_ON(1);
1171 				btrfs_crit(trans->fs_info,
1172 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1173 				btrfs_print_leaf(path->nodes[0]);
1174 			}
1175 			return -EUCLEAN;
1176 		}
1177 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1178 	} else if (ret == -ENOENT) {
1179 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1180 					    root_objectid, owner, offset,
1181 					    refs_to_add, extent_op);
1182 		ret = 0;
1183 	}
1184 	return ret;
1185 }
1186 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1187 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1188 				 struct btrfs_root *root,
1189 				 struct btrfs_path *path,
1190 				 struct btrfs_extent_inline_ref *iref,
1191 				 int refs_to_drop, int is_data)
1192 {
1193 	int ret = 0;
1194 
1195 	BUG_ON(!is_data && refs_to_drop != 1);
1196 	if (iref)
1197 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1198 	else if (is_data)
1199 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1200 	else
1201 		ret = btrfs_del_item(trans, root, path);
1202 	return ret;
1203 }
1204 
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1205 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1206 			       u64 *discarded_bytes)
1207 {
1208 	int j, ret = 0;
1209 	u64 bytes_left, end;
1210 	u64 aligned_start = ALIGN(start, 1 << 9);
1211 
1212 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1213 	if (start != aligned_start) {
1214 		len -= aligned_start - start;
1215 		len = round_down(len, 1 << 9);
1216 		start = aligned_start;
1217 	}
1218 
1219 	*discarded_bytes = 0;
1220 
1221 	if (!len)
1222 		return 0;
1223 
1224 	end = start + len;
1225 	bytes_left = len;
1226 
1227 	/* Skip any superblocks on this device. */
1228 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1229 		u64 sb_start = btrfs_sb_offset(j);
1230 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1231 		u64 size = sb_start - start;
1232 
1233 		if (!in_range(sb_start, start, bytes_left) &&
1234 		    !in_range(sb_end, start, bytes_left) &&
1235 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1236 			continue;
1237 
1238 		/*
1239 		 * Superblock spans beginning of range.  Adjust start and
1240 		 * try again.
1241 		 */
1242 		if (sb_start <= start) {
1243 			start += sb_end - start;
1244 			if (start > end) {
1245 				bytes_left = 0;
1246 				break;
1247 			}
1248 			bytes_left = end - start;
1249 			continue;
1250 		}
1251 
1252 		if (size) {
1253 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1254 						   GFP_NOFS);
1255 			if (!ret)
1256 				*discarded_bytes += size;
1257 			else if (ret != -EOPNOTSUPP)
1258 				return ret;
1259 		}
1260 
1261 		start = sb_end;
1262 		if (start > end) {
1263 			bytes_left = 0;
1264 			break;
1265 		}
1266 		bytes_left = end - start;
1267 	}
1268 
1269 	if (bytes_left) {
1270 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1271 					   GFP_NOFS);
1272 		if (!ret)
1273 			*discarded_bytes += bytes_left;
1274 	}
1275 	return ret;
1276 }
1277 
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1278 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1279 {
1280 	struct btrfs_device *dev = stripe->dev;
1281 	struct btrfs_fs_info *fs_info = dev->fs_info;
1282 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1283 	u64 phys = stripe->physical;
1284 	u64 len = stripe->length;
1285 	u64 discarded = 0;
1286 	int ret = 0;
1287 
1288 	/* Zone reset on a zoned filesystem */
1289 	if (btrfs_can_zone_reset(dev, phys, len)) {
1290 		u64 src_disc;
1291 
1292 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1293 		if (ret)
1294 			goto out;
1295 
1296 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1297 		    dev != dev_replace->srcdev)
1298 			goto out;
1299 
1300 		src_disc = discarded;
1301 
1302 		/* Send to replace target as well */
1303 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1304 					      &discarded);
1305 		discarded += src_disc;
1306 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1307 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1308 	} else {
1309 		ret = 0;
1310 		*bytes = 0;
1311 	}
1312 
1313 out:
1314 	*bytes = discarded;
1315 	return ret;
1316 }
1317 
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1318 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1319 			 u64 num_bytes, u64 *actual_bytes)
1320 {
1321 	int ret = 0;
1322 	u64 discarded_bytes = 0;
1323 	u64 end = bytenr + num_bytes;
1324 	u64 cur = bytenr;
1325 
1326 	/*
1327 	 * Avoid races with device replace and make sure the devices in the
1328 	 * stripes don't go away while we are discarding.
1329 	 */
1330 	btrfs_bio_counter_inc_blocked(fs_info);
1331 	while (cur < end) {
1332 		struct btrfs_discard_stripe *stripes;
1333 		unsigned int num_stripes;
1334 		int i;
1335 
1336 		num_bytes = end - cur;
1337 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1338 		if (IS_ERR(stripes)) {
1339 			ret = PTR_ERR(stripes);
1340 			if (ret == -EOPNOTSUPP)
1341 				ret = 0;
1342 			break;
1343 		}
1344 
1345 		for (i = 0; i < num_stripes; i++) {
1346 			struct btrfs_discard_stripe *stripe = stripes + i;
1347 			u64 bytes;
1348 
1349 			if (!stripe->dev->bdev) {
1350 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1351 				continue;
1352 			}
1353 
1354 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1355 					&stripe->dev->dev_state))
1356 				continue;
1357 
1358 			ret = do_discard_extent(stripe, &bytes);
1359 			if (ret) {
1360 				/*
1361 				 * Keep going if discard is not supported by the
1362 				 * device.
1363 				 */
1364 				if (ret != -EOPNOTSUPP)
1365 					break;
1366 				ret = 0;
1367 			} else {
1368 				discarded_bytes += bytes;
1369 			}
1370 		}
1371 		kfree(stripes);
1372 		if (ret)
1373 			break;
1374 		cur += num_bytes;
1375 	}
1376 	btrfs_bio_counter_dec(fs_info);
1377 	if (actual_bytes)
1378 		*actual_bytes = discarded_bytes;
1379 	return ret;
1380 }
1381 
1382 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1383 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1384 			 struct btrfs_ref *generic_ref)
1385 {
1386 	struct btrfs_fs_info *fs_info = trans->fs_info;
1387 	int ret;
1388 
1389 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1390 	       generic_ref->action);
1391 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1392 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1393 
1394 	if (generic_ref->type == BTRFS_REF_METADATA)
1395 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1396 	else
1397 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1398 
1399 	btrfs_ref_tree_mod(fs_info, generic_ref);
1400 
1401 	return ret;
1402 }
1403 
1404 /*
1405  * __btrfs_inc_extent_ref - insert backreference for a given extent
1406  *
1407  * The counterpart is in __btrfs_free_extent(), with examples and more details
1408  * how it works.
1409  *
1410  * @trans:	    Handle of transaction
1411  *
1412  * @node:	    The delayed ref node used to get the bytenr/length for
1413  *		    extent whose references are incremented.
1414  *
1415  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1416  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1417  *		    bytenr of the parent block. Since new extents are always
1418  *		    created with indirect references, this will only be the case
1419  *		    when relocating a shared extent. In that case, root_objectid
1420  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1421  *		    be 0
1422  *
1423  * @root_objectid:  The id of the root where this modification has originated,
1424  *		    this can be either one of the well-known metadata trees or
1425  *		    the subvolume id which references this extent.
1426  *
1427  * @owner:	    For data extents it is the inode number of the owning file.
1428  *		    For metadata extents this parameter holds the level in the
1429  *		    tree of the extent.
1430  *
1431  * @offset:	    For metadata extents the offset is ignored and is currently
1432  *		    always passed as 0. For data extents it is the fileoffset
1433  *		    this extent belongs to.
1434  *
1435  * @refs_to_add     Number of references to add
1436  *
1437  * @extent_op       Pointer to a structure, holding information necessary when
1438  *                  updating a tree block's flags
1439  *
1440  */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1441 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1442 				  struct btrfs_delayed_ref_node *node,
1443 				  u64 parent, u64 root_objectid,
1444 				  u64 owner, u64 offset, int refs_to_add,
1445 				  struct btrfs_delayed_extent_op *extent_op)
1446 {
1447 	struct btrfs_path *path;
1448 	struct extent_buffer *leaf;
1449 	struct btrfs_extent_item *item;
1450 	struct btrfs_key key;
1451 	u64 bytenr = node->bytenr;
1452 	u64 num_bytes = node->num_bytes;
1453 	u64 refs;
1454 	int ret;
1455 
1456 	path = btrfs_alloc_path();
1457 	if (!path)
1458 		return -ENOMEM;
1459 
1460 	/* this will setup the path even if it fails to insert the back ref */
1461 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1462 					   parent, root_objectid, owner,
1463 					   offset, refs_to_add, extent_op);
1464 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1465 		goto out;
1466 
1467 	/*
1468 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1469 	 * inline extent ref, so just update the reference count and add a
1470 	 * normal backref.
1471 	 */
1472 	leaf = path->nodes[0];
1473 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1474 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1475 	refs = btrfs_extent_refs(leaf, item);
1476 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1477 	if (extent_op)
1478 		__run_delayed_extent_op(extent_op, leaf, item);
1479 
1480 	btrfs_mark_buffer_dirty(leaf);
1481 	btrfs_release_path(path);
1482 
1483 	/* now insert the actual backref */
1484 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1485 		BUG_ON(refs_to_add != 1);
1486 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1487 					    root_objectid);
1488 	} else {
1489 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1490 					     root_objectid, owner, offset,
1491 					     refs_to_add);
1492 	}
1493 	if (ret)
1494 		btrfs_abort_transaction(trans, ret);
1495 out:
1496 	btrfs_free_path(path);
1497 	return ret;
1498 }
1499 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1500 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1501 				struct btrfs_delayed_ref_node *node,
1502 				struct btrfs_delayed_extent_op *extent_op,
1503 				int insert_reserved)
1504 {
1505 	int ret = 0;
1506 	struct btrfs_delayed_data_ref *ref;
1507 	struct btrfs_key ins;
1508 	u64 parent = 0;
1509 	u64 ref_root = 0;
1510 	u64 flags = 0;
1511 
1512 	ins.objectid = node->bytenr;
1513 	ins.offset = node->num_bytes;
1514 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1515 
1516 	ref = btrfs_delayed_node_to_data_ref(node);
1517 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1518 
1519 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1520 		parent = ref->parent;
1521 	ref_root = ref->root;
1522 
1523 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1524 		if (extent_op)
1525 			flags |= extent_op->flags_to_set;
1526 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1527 						 flags, ref->objectid,
1528 						 ref->offset, &ins,
1529 						 node->ref_mod);
1530 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1531 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1532 					     ref->objectid, ref->offset,
1533 					     node->ref_mod, extent_op);
1534 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1535 		ret = __btrfs_free_extent(trans, node, parent,
1536 					  ref_root, ref->objectid,
1537 					  ref->offset, node->ref_mod,
1538 					  extent_op);
1539 	} else {
1540 		BUG();
1541 	}
1542 	return ret;
1543 }
1544 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1545 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1546 				    struct extent_buffer *leaf,
1547 				    struct btrfs_extent_item *ei)
1548 {
1549 	u64 flags = btrfs_extent_flags(leaf, ei);
1550 	if (extent_op->update_flags) {
1551 		flags |= extent_op->flags_to_set;
1552 		btrfs_set_extent_flags(leaf, ei, flags);
1553 	}
1554 
1555 	if (extent_op->update_key) {
1556 		struct btrfs_tree_block_info *bi;
1557 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1558 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1559 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1560 	}
1561 }
1562 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1563 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1564 				 struct btrfs_delayed_ref_head *head,
1565 				 struct btrfs_delayed_extent_op *extent_op)
1566 {
1567 	struct btrfs_fs_info *fs_info = trans->fs_info;
1568 	struct btrfs_root *root;
1569 	struct btrfs_key key;
1570 	struct btrfs_path *path;
1571 	struct btrfs_extent_item *ei;
1572 	struct extent_buffer *leaf;
1573 	u32 item_size;
1574 	int ret;
1575 	int err = 0;
1576 	int metadata = 1;
1577 
1578 	if (TRANS_ABORTED(trans))
1579 		return 0;
1580 
1581 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1582 		metadata = 0;
1583 
1584 	path = btrfs_alloc_path();
1585 	if (!path)
1586 		return -ENOMEM;
1587 
1588 	key.objectid = head->bytenr;
1589 
1590 	if (metadata) {
1591 		key.type = BTRFS_METADATA_ITEM_KEY;
1592 		key.offset = extent_op->level;
1593 	} else {
1594 		key.type = BTRFS_EXTENT_ITEM_KEY;
1595 		key.offset = head->num_bytes;
1596 	}
1597 
1598 	root = btrfs_extent_root(fs_info, key.objectid);
1599 again:
1600 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1601 	if (ret < 0) {
1602 		err = ret;
1603 		goto out;
1604 	}
1605 	if (ret > 0) {
1606 		if (metadata) {
1607 			if (path->slots[0] > 0) {
1608 				path->slots[0]--;
1609 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1610 						      path->slots[0]);
1611 				if (key.objectid == head->bytenr &&
1612 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1613 				    key.offset == head->num_bytes)
1614 					ret = 0;
1615 			}
1616 			if (ret > 0) {
1617 				btrfs_release_path(path);
1618 				metadata = 0;
1619 
1620 				key.objectid = head->bytenr;
1621 				key.offset = head->num_bytes;
1622 				key.type = BTRFS_EXTENT_ITEM_KEY;
1623 				goto again;
1624 			}
1625 		} else {
1626 			err = -EIO;
1627 			goto out;
1628 		}
1629 	}
1630 
1631 	leaf = path->nodes[0];
1632 	item_size = btrfs_item_size(leaf, path->slots[0]);
1633 
1634 	if (unlikely(item_size < sizeof(*ei))) {
1635 		err = -EINVAL;
1636 		btrfs_print_v0_err(fs_info);
1637 		btrfs_abort_transaction(trans, err);
1638 		goto out;
1639 	}
1640 
1641 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1642 	__run_delayed_extent_op(extent_op, leaf, ei);
1643 
1644 	btrfs_mark_buffer_dirty(leaf);
1645 out:
1646 	btrfs_free_path(path);
1647 	return err;
1648 }
1649 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1650 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1651 				struct btrfs_delayed_ref_node *node,
1652 				struct btrfs_delayed_extent_op *extent_op,
1653 				int insert_reserved)
1654 {
1655 	int ret = 0;
1656 	struct btrfs_delayed_tree_ref *ref;
1657 	u64 parent = 0;
1658 	u64 ref_root = 0;
1659 
1660 	ref = btrfs_delayed_node_to_tree_ref(node);
1661 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1662 
1663 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1664 		parent = ref->parent;
1665 	ref_root = ref->root;
1666 
1667 	if (unlikely(node->ref_mod != 1)) {
1668 		btrfs_err(trans->fs_info,
1669 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1670 			  node->bytenr, node->ref_mod, node->action, ref_root,
1671 			  parent);
1672 		return -EUCLEAN;
1673 	}
1674 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1675 		BUG_ON(!extent_op || !extent_op->update_flags);
1676 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1677 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1678 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1679 					     ref->level, 0, 1, extent_op);
1680 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1681 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1682 					  ref->level, 0, 1, extent_op);
1683 	} else {
1684 		BUG();
1685 	}
1686 	return ret;
1687 }
1688 
1689 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)1690 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1691 			       struct btrfs_delayed_ref_node *node,
1692 			       struct btrfs_delayed_extent_op *extent_op,
1693 			       int insert_reserved)
1694 {
1695 	int ret = 0;
1696 
1697 	if (TRANS_ABORTED(trans)) {
1698 		if (insert_reserved)
1699 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1700 		return 0;
1701 	}
1702 
1703 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1704 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1705 		ret = run_delayed_tree_ref(trans, node, extent_op,
1706 					   insert_reserved);
1707 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1708 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1709 		ret = run_delayed_data_ref(trans, node, extent_op,
1710 					   insert_reserved);
1711 	else
1712 		BUG();
1713 	if (ret && insert_reserved)
1714 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1715 	if (ret < 0)
1716 		btrfs_err(trans->fs_info,
1717 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1718 			  node->bytenr, node->num_bytes, node->type,
1719 			  node->action, node->ref_mod, ret);
1720 	return ret;
1721 }
1722 
1723 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1724 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1725 {
1726 	struct btrfs_delayed_ref_node *ref;
1727 
1728 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1729 		return NULL;
1730 
1731 	/*
1732 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1733 	 * This is to prevent a ref count from going down to zero, which deletes
1734 	 * the extent item from the extent tree, when there still are references
1735 	 * to add, which would fail because they would not find the extent item.
1736 	 */
1737 	if (!list_empty(&head->ref_add_list))
1738 		return list_first_entry(&head->ref_add_list,
1739 				struct btrfs_delayed_ref_node, add_list);
1740 
1741 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1742 		       struct btrfs_delayed_ref_node, ref_node);
1743 	ASSERT(list_empty(&ref->add_list));
1744 	return ref;
1745 }
1746 
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1747 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1748 				      struct btrfs_delayed_ref_head *head)
1749 {
1750 	spin_lock(&delayed_refs->lock);
1751 	head->processing = 0;
1752 	delayed_refs->num_heads_ready++;
1753 	spin_unlock(&delayed_refs->lock);
1754 	btrfs_delayed_ref_unlock(head);
1755 }
1756 
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1757 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1758 				struct btrfs_delayed_ref_head *head)
1759 {
1760 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1761 
1762 	if (!extent_op)
1763 		return NULL;
1764 
1765 	if (head->must_insert_reserved) {
1766 		head->extent_op = NULL;
1767 		btrfs_free_delayed_extent_op(extent_op);
1768 		return NULL;
1769 	}
1770 	return extent_op;
1771 }
1772 
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1773 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1774 				     struct btrfs_delayed_ref_head *head)
1775 {
1776 	struct btrfs_delayed_extent_op *extent_op;
1777 	int ret;
1778 
1779 	extent_op = cleanup_extent_op(head);
1780 	if (!extent_op)
1781 		return 0;
1782 	head->extent_op = NULL;
1783 	spin_unlock(&head->lock);
1784 	ret = run_delayed_extent_op(trans, head, extent_op);
1785 	btrfs_free_delayed_extent_op(extent_op);
1786 	return ret ? ret : 1;
1787 }
1788 
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1789 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1790 				  struct btrfs_delayed_ref_root *delayed_refs,
1791 				  struct btrfs_delayed_ref_head *head)
1792 {
1793 	int nr_items = 1;	/* Dropping this ref head update. */
1794 
1795 	/*
1796 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1797 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1798 	 */
1799 	if (head->total_ref_mod < 0 && head->is_data) {
1800 		spin_lock(&delayed_refs->lock);
1801 		delayed_refs->pending_csums -= head->num_bytes;
1802 		spin_unlock(&delayed_refs->lock);
1803 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1804 	}
1805 
1806 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1807 }
1808 
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1809 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1810 			    struct btrfs_delayed_ref_head *head)
1811 {
1812 
1813 	struct btrfs_fs_info *fs_info = trans->fs_info;
1814 	struct btrfs_delayed_ref_root *delayed_refs;
1815 	int ret;
1816 
1817 	delayed_refs = &trans->transaction->delayed_refs;
1818 
1819 	ret = run_and_cleanup_extent_op(trans, head);
1820 	if (ret < 0) {
1821 		unselect_delayed_ref_head(delayed_refs, head);
1822 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1823 		return ret;
1824 	} else if (ret) {
1825 		return ret;
1826 	}
1827 
1828 	/*
1829 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1830 	 * and then re-check to make sure nobody got added.
1831 	 */
1832 	spin_unlock(&head->lock);
1833 	spin_lock(&delayed_refs->lock);
1834 	spin_lock(&head->lock);
1835 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1836 		spin_unlock(&head->lock);
1837 		spin_unlock(&delayed_refs->lock);
1838 		return 1;
1839 	}
1840 	btrfs_delete_ref_head(delayed_refs, head);
1841 	spin_unlock(&head->lock);
1842 	spin_unlock(&delayed_refs->lock);
1843 
1844 	if (head->must_insert_reserved) {
1845 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1846 		if (head->is_data) {
1847 			struct btrfs_root *csum_root;
1848 
1849 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1850 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1851 					      head->num_bytes);
1852 		}
1853 	}
1854 
1855 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1856 
1857 	trace_run_delayed_ref_head(fs_info, head, 0);
1858 	btrfs_delayed_ref_unlock(head);
1859 	btrfs_put_delayed_ref_head(head);
1860 	return ret;
1861 }
1862 
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1863 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1864 					struct btrfs_trans_handle *trans)
1865 {
1866 	struct btrfs_delayed_ref_root *delayed_refs =
1867 		&trans->transaction->delayed_refs;
1868 	struct btrfs_delayed_ref_head *head = NULL;
1869 	int ret;
1870 
1871 	spin_lock(&delayed_refs->lock);
1872 	head = btrfs_select_ref_head(delayed_refs);
1873 	if (!head) {
1874 		spin_unlock(&delayed_refs->lock);
1875 		return head;
1876 	}
1877 
1878 	/*
1879 	 * Grab the lock that says we are going to process all the refs for
1880 	 * this head
1881 	 */
1882 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1883 	spin_unlock(&delayed_refs->lock);
1884 
1885 	/*
1886 	 * We may have dropped the spin lock to get the head mutex lock, and
1887 	 * that might have given someone else time to free the head.  If that's
1888 	 * true, it has been removed from our list and we can move on.
1889 	 */
1890 	if (ret == -EAGAIN)
1891 		head = ERR_PTR(-EAGAIN);
1892 
1893 	return head;
1894 }
1895 
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref,unsigned long * run_refs)1896 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1897 				    struct btrfs_delayed_ref_head *locked_ref,
1898 				    unsigned long *run_refs)
1899 {
1900 	struct btrfs_fs_info *fs_info = trans->fs_info;
1901 	struct btrfs_delayed_ref_root *delayed_refs;
1902 	struct btrfs_delayed_extent_op *extent_op;
1903 	struct btrfs_delayed_ref_node *ref;
1904 	int must_insert_reserved = 0;
1905 	int ret;
1906 
1907 	delayed_refs = &trans->transaction->delayed_refs;
1908 
1909 	lockdep_assert_held(&locked_ref->mutex);
1910 	lockdep_assert_held(&locked_ref->lock);
1911 
1912 	while ((ref = select_delayed_ref(locked_ref))) {
1913 		if (ref->seq &&
1914 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1915 			spin_unlock(&locked_ref->lock);
1916 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1917 			return -EAGAIN;
1918 		}
1919 
1920 		(*run_refs)++;
1921 		ref->in_tree = 0;
1922 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1923 		RB_CLEAR_NODE(&ref->ref_node);
1924 		if (!list_empty(&ref->add_list))
1925 			list_del(&ref->add_list);
1926 		/*
1927 		 * When we play the delayed ref, also correct the ref_mod on
1928 		 * head
1929 		 */
1930 		switch (ref->action) {
1931 		case BTRFS_ADD_DELAYED_REF:
1932 		case BTRFS_ADD_DELAYED_EXTENT:
1933 			locked_ref->ref_mod -= ref->ref_mod;
1934 			break;
1935 		case BTRFS_DROP_DELAYED_REF:
1936 			locked_ref->ref_mod += ref->ref_mod;
1937 			break;
1938 		default:
1939 			WARN_ON(1);
1940 		}
1941 		atomic_dec(&delayed_refs->num_entries);
1942 
1943 		/*
1944 		 * Record the must_insert_reserved flag before we drop the
1945 		 * spin lock.
1946 		 */
1947 		must_insert_reserved = locked_ref->must_insert_reserved;
1948 		locked_ref->must_insert_reserved = 0;
1949 
1950 		extent_op = locked_ref->extent_op;
1951 		locked_ref->extent_op = NULL;
1952 		spin_unlock(&locked_ref->lock);
1953 
1954 		ret = run_one_delayed_ref(trans, ref, extent_op,
1955 					  must_insert_reserved);
1956 
1957 		btrfs_free_delayed_extent_op(extent_op);
1958 		if (ret) {
1959 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1960 			btrfs_put_delayed_ref(ref);
1961 			return ret;
1962 		}
1963 
1964 		btrfs_put_delayed_ref(ref);
1965 		cond_resched();
1966 
1967 		spin_lock(&locked_ref->lock);
1968 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 /*
1975  * Returns 0 on success or if called with an already aborted transaction.
1976  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1977  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)1978 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1979 					     unsigned long nr)
1980 {
1981 	struct btrfs_fs_info *fs_info = trans->fs_info;
1982 	struct btrfs_delayed_ref_root *delayed_refs;
1983 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1984 	ktime_t start = ktime_get();
1985 	int ret;
1986 	unsigned long count = 0;
1987 	unsigned long actual_count = 0;
1988 
1989 	delayed_refs = &trans->transaction->delayed_refs;
1990 	do {
1991 		if (!locked_ref) {
1992 			locked_ref = btrfs_obtain_ref_head(trans);
1993 			if (IS_ERR_OR_NULL(locked_ref)) {
1994 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1995 					continue;
1996 				} else {
1997 					break;
1998 				}
1999 			}
2000 			count++;
2001 		}
2002 		/*
2003 		 * We need to try and merge add/drops of the same ref since we
2004 		 * can run into issues with relocate dropping the implicit ref
2005 		 * and then it being added back again before the drop can
2006 		 * finish.  If we merged anything we need to re-loop so we can
2007 		 * get a good ref.
2008 		 * Or we can get node references of the same type that weren't
2009 		 * merged when created due to bumps in the tree mod seq, and
2010 		 * we need to merge them to prevent adding an inline extent
2011 		 * backref before dropping it (triggering a BUG_ON at
2012 		 * insert_inline_extent_backref()).
2013 		 */
2014 		spin_lock(&locked_ref->lock);
2015 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2016 
2017 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2018 						      &actual_count);
2019 		if (ret < 0 && ret != -EAGAIN) {
2020 			/*
2021 			 * Error, btrfs_run_delayed_refs_for_head already
2022 			 * unlocked everything so just bail out
2023 			 */
2024 			return ret;
2025 		} else if (!ret) {
2026 			/*
2027 			 * Success, perform the usual cleanup of a processed
2028 			 * head
2029 			 */
2030 			ret = cleanup_ref_head(trans, locked_ref);
2031 			if (ret > 0 ) {
2032 				/* We dropped our lock, we need to loop. */
2033 				ret = 0;
2034 				continue;
2035 			} else if (ret) {
2036 				return ret;
2037 			}
2038 		}
2039 
2040 		/*
2041 		 * Either success case or btrfs_run_delayed_refs_for_head
2042 		 * returned -EAGAIN, meaning we need to select another head
2043 		 */
2044 
2045 		locked_ref = NULL;
2046 		cond_resched();
2047 	} while ((nr != -1 && count < nr) || locked_ref);
2048 
2049 	/*
2050 	 * We don't want to include ref heads since we can have empty ref heads
2051 	 * and those will drastically skew our runtime down since we just do
2052 	 * accounting, no actual extent tree updates.
2053 	 */
2054 	if (actual_count > 0) {
2055 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2056 		u64 avg;
2057 
2058 		/*
2059 		 * We weigh the current average higher than our current runtime
2060 		 * to avoid large swings in the average.
2061 		 */
2062 		spin_lock(&delayed_refs->lock);
2063 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2064 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2065 		spin_unlock(&delayed_refs->lock);
2066 	}
2067 	return 0;
2068 }
2069 
2070 #ifdef SCRAMBLE_DELAYED_REFS
2071 /*
2072  * Normally delayed refs get processed in ascending bytenr order. This
2073  * correlates in most cases to the order added. To expose dependencies on this
2074  * order, we start to process the tree in the middle instead of the beginning
2075  */
find_middle(struct rb_root * root)2076 static u64 find_middle(struct rb_root *root)
2077 {
2078 	struct rb_node *n = root->rb_node;
2079 	struct btrfs_delayed_ref_node *entry;
2080 	int alt = 1;
2081 	u64 middle;
2082 	u64 first = 0, last = 0;
2083 
2084 	n = rb_first(root);
2085 	if (n) {
2086 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2087 		first = entry->bytenr;
2088 	}
2089 	n = rb_last(root);
2090 	if (n) {
2091 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2092 		last = entry->bytenr;
2093 	}
2094 	n = root->rb_node;
2095 
2096 	while (n) {
2097 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2098 		WARN_ON(!entry->in_tree);
2099 
2100 		middle = entry->bytenr;
2101 
2102 		if (alt)
2103 			n = n->rb_left;
2104 		else
2105 			n = n->rb_right;
2106 
2107 		alt = 1 - alt;
2108 	}
2109 	return middle;
2110 }
2111 #endif
2112 
2113 /*
2114  * this starts processing the delayed reference count updates and
2115  * extent insertions we have queued up so far.  count can be
2116  * 0, which means to process everything in the tree at the start
2117  * of the run (but not newly added entries), or it can be some target
2118  * number you'd like to process.
2119  *
2120  * Returns 0 on success or if called with an aborted transaction
2121  * Returns <0 on error and aborts the transaction
2122  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2123 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2124 			   unsigned long count)
2125 {
2126 	struct btrfs_fs_info *fs_info = trans->fs_info;
2127 	struct rb_node *node;
2128 	struct btrfs_delayed_ref_root *delayed_refs;
2129 	struct btrfs_delayed_ref_head *head;
2130 	int ret;
2131 	int run_all = count == (unsigned long)-1;
2132 
2133 	/* We'll clean this up in btrfs_cleanup_transaction */
2134 	if (TRANS_ABORTED(trans))
2135 		return 0;
2136 
2137 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2138 		return 0;
2139 
2140 	delayed_refs = &trans->transaction->delayed_refs;
2141 	if (count == 0)
2142 		count = delayed_refs->num_heads_ready;
2143 
2144 again:
2145 #ifdef SCRAMBLE_DELAYED_REFS
2146 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2147 #endif
2148 	ret = __btrfs_run_delayed_refs(trans, count);
2149 	if (ret < 0) {
2150 		btrfs_abort_transaction(trans, ret);
2151 		return ret;
2152 	}
2153 
2154 	if (run_all) {
2155 		btrfs_create_pending_block_groups(trans);
2156 
2157 		spin_lock(&delayed_refs->lock);
2158 		node = rb_first_cached(&delayed_refs->href_root);
2159 		if (!node) {
2160 			spin_unlock(&delayed_refs->lock);
2161 			goto out;
2162 		}
2163 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2164 				href_node);
2165 		refcount_inc(&head->refs);
2166 		spin_unlock(&delayed_refs->lock);
2167 
2168 		/* Mutex was contended, block until it's released and retry. */
2169 		mutex_lock(&head->mutex);
2170 		mutex_unlock(&head->mutex);
2171 
2172 		btrfs_put_delayed_ref_head(head);
2173 		cond_resched();
2174 		goto again;
2175 	}
2176 out:
2177 	return 0;
2178 }
2179 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags,int level)2180 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2181 				struct extent_buffer *eb, u64 flags,
2182 				int level)
2183 {
2184 	struct btrfs_delayed_extent_op *extent_op;
2185 	int ret;
2186 
2187 	extent_op = btrfs_alloc_delayed_extent_op();
2188 	if (!extent_op)
2189 		return -ENOMEM;
2190 
2191 	extent_op->flags_to_set = flags;
2192 	extent_op->update_flags = true;
2193 	extent_op->update_key = false;
2194 	extent_op->level = level;
2195 
2196 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2197 	if (ret)
2198 		btrfs_free_delayed_extent_op(extent_op);
2199 	return ret;
2200 }
2201 
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2202 static noinline int check_delayed_ref(struct btrfs_root *root,
2203 				      struct btrfs_path *path,
2204 				      u64 objectid, u64 offset, u64 bytenr)
2205 {
2206 	struct btrfs_delayed_ref_head *head;
2207 	struct btrfs_delayed_ref_node *ref;
2208 	struct btrfs_delayed_data_ref *data_ref;
2209 	struct btrfs_delayed_ref_root *delayed_refs;
2210 	struct btrfs_transaction *cur_trans;
2211 	struct rb_node *node;
2212 	int ret = 0;
2213 
2214 	spin_lock(&root->fs_info->trans_lock);
2215 	cur_trans = root->fs_info->running_transaction;
2216 	if (cur_trans)
2217 		refcount_inc(&cur_trans->use_count);
2218 	spin_unlock(&root->fs_info->trans_lock);
2219 	if (!cur_trans)
2220 		return 0;
2221 
2222 	delayed_refs = &cur_trans->delayed_refs;
2223 	spin_lock(&delayed_refs->lock);
2224 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2225 	if (!head) {
2226 		spin_unlock(&delayed_refs->lock);
2227 		btrfs_put_transaction(cur_trans);
2228 		return 0;
2229 	}
2230 
2231 	if (!mutex_trylock(&head->mutex)) {
2232 		if (path->nowait) {
2233 			spin_unlock(&delayed_refs->lock);
2234 			btrfs_put_transaction(cur_trans);
2235 			return -EAGAIN;
2236 		}
2237 
2238 		refcount_inc(&head->refs);
2239 		spin_unlock(&delayed_refs->lock);
2240 
2241 		btrfs_release_path(path);
2242 
2243 		/*
2244 		 * Mutex was contended, block until it's released and let
2245 		 * caller try again
2246 		 */
2247 		mutex_lock(&head->mutex);
2248 		mutex_unlock(&head->mutex);
2249 		btrfs_put_delayed_ref_head(head);
2250 		btrfs_put_transaction(cur_trans);
2251 		return -EAGAIN;
2252 	}
2253 	spin_unlock(&delayed_refs->lock);
2254 
2255 	spin_lock(&head->lock);
2256 	/*
2257 	 * XXX: We should replace this with a proper search function in the
2258 	 * future.
2259 	 */
2260 	for (node = rb_first_cached(&head->ref_tree); node;
2261 	     node = rb_next(node)) {
2262 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2263 		/* If it's a shared ref we know a cross reference exists */
2264 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2265 			ret = 1;
2266 			break;
2267 		}
2268 
2269 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2270 
2271 		/*
2272 		 * If our ref doesn't match the one we're currently looking at
2273 		 * then we have a cross reference.
2274 		 */
2275 		if (data_ref->root != root->root_key.objectid ||
2276 		    data_ref->objectid != objectid ||
2277 		    data_ref->offset != offset) {
2278 			ret = 1;
2279 			break;
2280 		}
2281 	}
2282 	spin_unlock(&head->lock);
2283 	mutex_unlock(&head->mutex);
2284 	btrfs_put_transaction(cur_trans);
2285 	return ret;
2286 }
2287 
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2288 static noinline int check_committed_ref(struct btrfs_root *root,
2289 					struct btrfs_path *path,
2290 					u64 objectid, u64 offset, u64 bytenr,
2291 					bool strict)
2292 {
2293 	struct btrfs_fs_info *fs_info = root->fs_info;
2294 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2295 	struct extent_buffer *leaf;
2296 	struct btrfs_extent_data_ref *ref;
2297 	struct btrfs_extent_inline_ref *iref;
2298 	struct btrfs_extent_item *ei;
2299 	struct btrfs_key key;
2300 	u32 item_size;
2301 	int type;
2302 	int ret;
2303 
2304 	key.objectid = bytenr;
2305 	key.offset = (u64)-1;
2306 	key.type = BTRFS_EXTENT_ITEM_KEY;
2307 
2308 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2309 	if (ret < 0)
2310 		goto out;
2311 	BUG_ON(ret == 0); /* Corruption */
2312 
2313 	ret = -ENOENT;
2314 	if (path->slots[0] == 0)
2315 		goto out;
2316 
2317 	path->slots[0]--;
2318 	leaf = path->nodes[0];
2319 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2320 
2321 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2322 		goto out;
2323 
2324 	ret = 1;
2325 	item_size = btrfs_item_size(leaf, path->slots[0]);
2326 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2327 
2328 	/* If extent item has more than 1 inline ref then it's shared */
2329 	if (item_size != sizeof(*ei) +
2330 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2331 		goto out;
2332 
2333 	/*
2334 	 * If extent created before last snapshot => it's shared unless the
2335 	 * snapshot has been deleted. Use the heuristic if strict is false.
2336 	 */
2337 	if (!strict &&
2338 	    (btrfs_extent_generation(leaf, ei) <=
2339 	     btrfs_root_last_snapshot(&root->root_item)))
2340 		goto out;
2341 
2342 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2343 
2344 	/* If this extent has SHARED_DATA_REF then it's shared */
2345 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2346 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2347 		goto out;
2348 
2349 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2350 	if (btrfs_extent_refs(leaf, ei) !=
2351 	    btrfs_extent_data_ref_count(leaf, ref) ||
2352 	    btrfs_extent_data_ref_root(leaf, ref) !=
2353 	    root->root_key.objectid ||
2354 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2355 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2356 		goto out;
2357 
2358 	ret = 0;
2359 out:
2360 	return ret;
2361 }
2362 
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2363 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2364 			  u64 bytenr, bool strict, struct btrfs_path *path)
2365 {
2366 	int ret;
2367 
2368 	do {
2369 		ret = check_committed_ref(root, path, objectid,
2370 					  offset, bytenr, strict);
2371 		if (ret && ret != -ENOENT)
2372 			goto out;
2373 
2374 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2375 	} while (ret == -EAGAIN);
2376 
2377 out:
2378 	btrfs_release_path(path);
2379 	if (btrfs_is_data_reloc_root(root))
2380 		WARN_ON(ret > 0);
2381 	return ret;
2382 }
2383 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2384 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2385 			   struct btrfs_root *root,
2386 			   struct extent_buffer *buf,
2387 			   int full_backref, int inc)
2388 {
2389 	struct btrfs_fs_info *fs_info = root->fs_info;
2390 	u64 bytenr;
2391 	u64 num_bytes;
2392 	u64 parent;
2393 	u64 ref_root;
2394 	u32 nritems;
2395 	struct btrfs_key key;
2396 	struct btrfs_file_extent_item *fi;
2397 	struct btrfs_ref generic_ref = { 0 };
2398 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2399 	int i;
2400 	int action;
2401 	int level;
2402 	int ret = 0;
2403 
2404 	if (btrfs_is_testing(fs_info))
2405 		return 0;
2406 
2407 	ref_root = btrfs_header_owner(buf);
2408 	nritems = btrfs_header_nritems(buf);
2409 	level = btrfs_header_level(buf);
2410 
2411 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2412 		return 0;
2413 
2414 	if (full_backref)
2415 		parent = buf->start;
2416 	else
2417 		parent = 0;
2418 	if (inc)
2419 		action = BTRFS_ADD_DELAYED_REF;
2420 	else
2421 		action = BTRFS_DROP_DELAYED_REF;
2422 
2423 	for (i = 0; i < nritems; i++) {
2424 		if (level == 0) {
2425 			btrfs_item_key_to_cpu(buf, &key, i);
2426 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2427 				continue;
2428 			fi = btrfs_item_ptr(buf, i,
2429 					    struct btrfs_file_extent_item);
2430 			if (btrfs_file_extent_type(buf, fi) ==
2431 			    BTRFS_FILE_EXTENT_INLINE)
2432 				continue;
2433 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2434 			if (bytenr == 0)
2435 				continue;
2436 
2437 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2438 			key.offset -= btrfs_file_extent_offset(buf, fi);
2439 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2440 					       num_bytes, parent);
2441 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2442 					    key.offset, root->root_key.objectid,
2443 					    for_reloc);
2444 			if (inc)
2445 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2446 			else
2447 				ret = btrfs_free_extent(trans, &generic_ref);
2448 			if (ret)
2449 				goto fail;
2450 		} else {
2451 			bytenr = btrfs_node_blockptr(buf, i);
2452 			num_bytes = fs_info->nodesize;
2453 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2454 					       num_bytes, parent);
2455 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2456 					    root->root_key.objectid, for_reloc);
2457 			if (inc)
2458 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2459 			else
2460 				ret = btrfs_free_extent(trans, &generic_ref);
2461 			if (ret)
2462 				goto fail;
2463 		}
2464 	}
2465 	return 0;
2466 fail:
2467 	return ret;
2468 }
2469 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2470 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2471 		  struct extent_buffer *buf, int full_backref)
2472 {
2473 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2474 }
2475 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2476 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2477 		  struct extent_buffer *buf, int full_backref)
2478 {
2479 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2480 }
2481 
get_alloc_profile_by_root(struct btrfs_root * root,int data)2482 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2483 {
2484 	struct btrfs_fs_info *fs_info = root->fs_info;
2485 	u64 flags;
2486 	u64 ret;
2487 
2488 	if (data)
2489 		flags = BTRFS_BLOCK_GROUP_DATA;
2490 	else if (root == fs_info->chunk_root)
2491 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2492 	else
2493 		flags = BTRFS_BLOCK_GROUP_METADATA;
2494 
2495 	ret = btrfs_get_alloc_profile(fs_info, flags);
2496 	return ret;
2497 }
2498 
first_logical_byte(struct btrfs_fs_info * fs_info)2499 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2500 {
2501 	struct rb_node *leftmost;
2502 	u64 bytenr = 0;
2503 
2504 	read_lock(&fs_info->block_group_cache_lock);
2505 	/* Get the block group with the lowest logical start address. */
2506 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2507 	if (leftmost) {
2508 		struct btrfs_block_group *bg;
2509 
2510 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2511 		bytenr = bg->start;
2512 	}
2513 	read_unlock(&fs_info->block_group_cache_lock);
2514 
2515 	return bytenr;
2516 }
2517 
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2518 static int pin_down_extent(struct btrfs_trans_handle *trans,
2519 			   struct btrfs_block_group *cache,
2520 			   u64 bytenr, u64 num_bytes, int reserved)
2521 {
2522 	struct btrfs_fs_info *fs_info = cache->fs_info;
2523 
2524 	spin_lock(&cache->space_info->lock);
2525 	spin_lock(&cache->lock);
2526 	cache->pinned += num_bytes;
2527 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2528 					     num_bytes);
2529 	if (reserved) {
2530 		cache->reserved -= num_bytes;
2531 		cache->space_info->bytes_reserved -= num_bytes;
2532 	}
2533 	spin_unlock(&cache->lock);
2534 	spin_unlock(&cache->space_info->lock);
2535 
2536 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2537 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2538 	return 0;
2539 }
2540 
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2541 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2542 		     u64 bytenr, u64 num_bytes, int reserved)
2543 {
2544 	struct btrfs_block_group *cache;
2545 
2546 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2547 	BUG_ON(!cache); /* Logic error */
2548 
2549 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2550 
2551 	btrfs_put_block_group(cache);
2552 	return 0;
2553 }
2554 
2555 /*
2556  * this function must be called within transaction
2557  */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2558 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2559 				    u64 bytenr, u64 num_bytes)
2560 {
2561 	struct btrfs_block_group *cache;
2562 	int ret;
2563 
2564 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2565 	if (!cache)
2566 		return -EINVAL;
2567 
2568 	/*
2569 	 * Fully cache the free space first so that our pin removes the free space
2570 	 * from the cache.
2571 	 */
2572 	ret = btrfs_cache_block_group(cache, true);
2573 	if (ret)
2574 		goto out;
2575 
2576 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2577 
2578 	/* remove us from the free space cache (if we're there at all) */
2579 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2580 out:
2581 	btrfs_put_block_group(cache);
2582 	return ret;
2583 }
2584 
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2585 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2586 				   u64 start, u64 num_bytes)
2587 {
2588 	int ret;
2589 	struct btrfs_block_group *block_group;
2590 
2591 	block_group = btrfs_lookup_block_group(fs_info, start);
2592 	if (!block_group)
2593 		return -EINVAL;
2594 
2595 	ret = btrfs_cache_block_group(block_group, true);
2596 	if (ret)
2597 		goto out;
2598 
2599 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2600 out:
2601 	btrfs_put_block_group(block_group);
2602 	return ret;
2603 }
2604 
btrfs_exclude_logged_extents(struct extent_buffer * eb)2605 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2606 {
2607 	struct btrfs_fs_info *fs_info = eb->fs_info;
2608 	struct btrfs_file_extent_item *item;
2609 	struct btrfs_key key;
2610 	int found_type;
2611 	int i;
2612 	int ret = 0;
2613 
2614 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2615 		return 0;
2616 
2617 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2618 		btrfs_item_key_to_cpu(eb, &key, i);
2619 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2620 			continue;
2621 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2622 		found_type = btrfs_file_extent_type(eb, item);
2623 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2624 			continue;
2625 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2626 			continue;
2627 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2628 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2629 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2630 		if (ret)
2631 			break;
2632 	}
2633 
2634 	return ret;
2635 }
2636 
2637 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2638 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2639 {
2640 	atomic_inc(&bg->reservations);
2641 }
2642 
2643 /*
2644  * Returns the free cluster for the given space info and sets empty_cluster to
2645  * what it should be based on the mount options.
2646  */
2647 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2648 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2649 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2650 {
2651 	struct btrfs_free_cluster *ret = NULL;
2652 
2653 	*empty_cluster = 0;
2654 	if (btrfs_mixed_space_info(space_info))
2655 		return ret;
2656 
2657 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2658 		ret = &fs_info->meta_alloc_cluster;
2659 		if (btrfs_test_opt(fs_info, SSD))
2660 			*empty_cluster = SZ_2M;
2661 		else
2662 			*empty_cluster = SZ_64K;
2663 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2664 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2665 		*empty_cluster = SZ_2M;
2666 		ret = &fs_info->data_alloc_cluster;
2667 	}
2668 
2669 	return ret;
2670 }
2671 
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2672 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2673 			      u64 start, u64 end,
2674 			      const bool return_free_space)
2675 {
2676 	struct btrfs_block_group *cache = NULL;
2677 	struct btrfs_space_info *space_info;
2678 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2679 	struct btrfs_free_cluster *cluster = NULL;
2680 	u64 len;
2681 	u64 total_unpinned = 0;
2682 	u64 empty_cluster = 0;
2683 	bool readonly;
2684 
2685 	while (start <= end) {
2686 		readonly = false;
2687 		if (!cache ||
2688 		    start >= cache->start + cache->length) {
2689 			if (cache)
2690 				btrfs_put_block_group(cache);
2691 			total_unpinned = 0;
2692 			cache = btrfs_lookup_block_group(fs_info, start);
2693 			BUG_ON(!cache); /* Logic error */
2694 
2695 			cluster = fetch_cluster_info(fs_info,
2696 						     cache->space_info,
2697 						     &empty_cluster);
2698 			empty_cluster <<= 1;
2699 		}
2700 
2701 		len = cache->start + cache->length - start;
2702 		len = min(len, end + 1 - start);
2703 
2704 		if (return_free_space)
2705 			btrfs_add_free_space(cache, start, len);
2706 
2707 		start += len;
2708 		total_unpinned += len;
2709 		space_info = cache->space_info;
2710 
2711 		/*
2712 		 * If this space cluster has been marked as fragmented and we've
2713 		 * unpinned enough in this block group to potentially allow a
2714 		 * cluster to be created inside of it go ahead and clear the
2715 		 * fragmented check.
2716 		 */
2717 		if (cluster && cluster->fragmented &&
2718 		    total_unpinned > empty_cluster) {
2719 			spin_lock(&cluster->lock);
2720 			cluster->fragmented = 0;
2721 			spin_unlock(&cluster->lock);
2722 		}
2723 
2724 		spin_lock(&space_info->lock);
2725 		spin_lock(&cache->lock);
2726 		cache->pinned -= len;
2727 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2728 		space_info->max_extent_size = 0;
2729 		if (cache->ro) {
2730 			space_info->bytes_readonly += len;
2731 			readonly = true;
2732 		} else if (btrfs_is_zoned(fs_info)) {
2733 			/* Need reset before reusing in a zoned block group */
2734 			space_info->bytes_zone_unusable += len;
2735 			readonly = true;
2736 		}
2737 		spin_unlock(&cache->lock);
2738 		if (!readonly && return_free_space &&
2739 		    global_rsv->space_info == space_info) {
2740 			spin_lock(&global_rsv->lock);
2741 			if (!global_rsv->full) {
2742 				u64 to_add = min(len, global_rsv->size -
2743 						      global_rsv->reserved);
2744 
2745 				global_rsv->reserved += to_add;
2746 				btrfs_space_info_update_bytes_may_use(fs_info,
2747 						space_info, to_add);
2748 				if (global_rsv->reserved >= global_rsv->size)
2749 					global_rsv->full = 1;
2750 				len -= to_add;
2751 			}
2752 			spin_unlock(&global_rsv->lock);
2753 		}
2754 		/* Add to any tickets we may have */
2755 		if (!readonly && return_free_space && len)
2756 			btrfs_try_granting_tickets(fs_info, space_info);
2757 		spin_unlock(&space_info->lock);
2758 	}
2759 
2760 	if (cache)
2761 		btrfs_put_block_group(cache);
2762 	return 0;
2763 }
2764 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2765 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2766 {
2767 	struct btrfs_fs_info *fs_info = trans->fs_info;
2768 	struct btrfs_block_group *block_group, *tmp;
2769 	struct list_head *deleted_bgs;
2770 	struct extent_io_tree *unpin;
2771 	u64 start;
2772 	u64 end;
2773 	int ret;
2774 
2775 	unpin = &trans->transaction->pinned_extents;
2776 
2777 	while (!TRANS_ABORTED(trans)) {
2778 		struct extent_state *cached_state = NULL;
2779 
2780 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2781 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2782 					    EXTENT_DIRTY, &cached_state);
2783 		if (ret) {
2784 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2785 			break;
2786 		}
2787 
2788 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2789 			ret = btrfs_discard_extent(fs_info, start,
2790 						   end + 1 - start, NULL);
2791 
2792 		clear_extent_dirty(unpin, start, end, &cached_state);
2793 		unpin_extent_range(fs_info, start, end, true);
2794 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2795 		free_extent_state(cached_state);
2796 		cond_resched();
2797 	}
2798 
2799 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2800 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2801 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2802 	}
2803 
2804 	/*
2805 	 * Transaction is finished.  We don't need the lock anymore.  We
2806 	 * do need to clean up the block groups in case of a transaction
2807 	 * abort.
2808 	 */
2809 	deleted_bgs = &trans->transaction->deleted_bgs;
2810 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2811 		u64 trimmed = 0;
2812 
2813 		ret = -EROFS;
2814 		if (!TRANS_ABORTED(trans))
2815 			ret = btrfs_discard_extent(fs_info,
2816 						   block_group->start,
2817 						   block_group->length,
2818 						   &trimmed);
2819 
2820 		list_del_init(&block_group->bg_list);
2821 		btrfs_unfreeze_block_group(block_group);
2822 		btrfs_put_block_group(block_group);
2823 
2824 		if (ret) {
2825 			const char *errstr = btrfs_decode_error(ret);
2826 			btrfs_warn(fs_info,
2827 			   "discard failed while removing blockgroup: errno=%d %s",
2828 				   ret, errstr);
2829 		}
2830 	}
2831 
2832 	return 0;
2833 }
2834 
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool is_data)2835 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2836 				     u64 bytenr, u64 num_bytes, bool is_data)
2837 {
2838 	int ret;
2839 
2840 	if (is_data) {
2841 		struct btrfs_root *csum_root;
2842 
2843 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2844 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2845 		if (ret) {
2846 			btrfs_abort_transaction(trans, ret);
2847 			return ret;
2848 		}
2849 	}
2850 
2851 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2852 	if (ret) {
2853 		btrfs_abort_transaction(trans, ret);
2854 		return ret;
2855 	}
2856 
2857 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2858 	if (ret)
2859 		btrfs_abort_transaction(trans, ret);
2860 
2861 	return ret;
2862 }
2863 
2864 /*
2865  * Drop one or more refs of @node.
2866  *
2867  * 1. Locate the extent refs.
2868  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2869  *    Locate it, then reduce the refs number or remove the ref line completely.
2870  *
2871  * 2. Update the refs count in EXTENT/METADATA_ITEM
2872  *
2873  * Inline backref case:
2874  *
2875  * in extent tree we have:
2876  *
2877  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2878  *		refs 2 gen 6 flags DATA
2879  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2880  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2881  *
2882  * This function gets called with:
2883  *
2884  *    node->bytenr = 13631488
2885  *    node->num_bytes = 1048576
2886  *    root_objectid = FS_TREE
2887  *    owner_objectid = 257
2888  *    owner_offset = 0
2889  *    refs_to_drop = 1
2890  *
2891  * Then we should get some like:
2892  *
2893  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2894  *		refs 1 gen 6 flags DATA
2895  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2896  *
2897  * Keyed backref case:
2898  *
2899  * in extent tree we have:
2900  *
2901  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2902  *		refs 754 gen 6 flags DATA
2903  *	[...]
2904  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2905  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2906  *
2907  * This function get called with:
2908  *
2909  *    node->bytenr = 13631488
2910  *    node->num_bytes = 1048576
2911  *    root_objectid = FS_TREE
2912  *    owner_objectid = 866
2913  *    owner_offset = 0
2914  *    refs_to_drop = 1
2915  *
2916  * Then we should get some like:
2917  *
2918  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2919  *		refs 753 gen 6 flags DATA
2920  *
2921  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2922  */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2923 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2924 			       struct btrfs_delayed_ref_node *node, u64 parent,
2925 			       u64 root_objectid, u64 owner_objectid,
2926 			       u64 owner_offset, int refs_to_drop,
2927 			       struct btrfs_delayed_extent_op *extent_op)
2928 {
2929 	struct btrfs_fs_info *info = trans->fs_info;
2930 	struct btrfs_key key;
2931 	struct btrfs_path *path;
2932 	struct btrfs_root *extent_root;
2933 	struct extent_buffer *leaf;
2934 	struct btrfs_extent_item *ei;
2935 	struct btrfs_extent_inline_ref *iref;
2936 	int ret;
2937 	int is_data;
2938 	int extent_slot = 0;
2939 	int found_extent = 0;
2940 	int num_to_del = 1;
2941 	u32 item_size;
2942 	u64 refs;
2943 	u64 bytenr = node->bytenr;
2944 	u64 num_bytes = node->num_bytes;
2945 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2946 
2947 	extent_root = btrfs_extent_root(info, bytenr);
2948 	ASSERT(extent_root);
2949 
2950 	path = btrfs_alloc_path();
2951 	if (!path)
2952 		return -ENOMEM;
2953 
2954 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2955 
2956 	if (!is_data && refs_to_drop != 1) {
2957 		btrfs_crit(info,
2958 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2959 			   node->bytenr, refs_to_drop);
2960 		ret = -EINVAL;
2961 		btrfs_abort_transaction(trans, ret);
2962 		goto out;
2963 	}
2964 
2965 	if (is_data)
2966 		skinny_metadata = false;
2967 
2968 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2969 				    parent, root_objectid, owner_objectid,
2970 				    owner_offset);
2971 	if (ret == 0) {
2972 		/*
2973 		 * Either the inline backref or the SHARED_DATA_REF/
2974 		 * SHARED_BLOCK_REF is found
2975 		 *
2976 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2977 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2978 		 */
2979 		extent_slot = path->slots[0];
2980 		while (extent_slot >= 0) {
2981 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2982 					      extent_slot);
2983 			if (key.objectid != bytenr)
2984 				break;
2985 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2986 			    key.offset == num_bytes) {
2987 				found_extent = 1;
2988 				break;
2989 			}
2990 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2991 			    key.offset == owner_objectid) {
2992 				found_extent = 1;
2993 				break;
2994 			}
2995 
2996 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2997 			if (path->slots[0] - extent_slot > 5)
2998 				break;
2999 			extent_slot--;
3000 		}
3001 
3002 		if (!found_extent) {
3003 			if (iref) {
3004 				btrfs_crit(info,
3005 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3006 				btrfs_abort_transaction(trans, -EUCLEAN);
3007 				goto err_dump;
3008 			}
3009 			/* Must be SHARED_* item, remove the backref first */
3010 			ret = remove_extent_backref(trans, extent_root, path,
3011 						    NULL, refs_to_drop, is_data);
3012 			if (ret) {
3013 				btrfs_abort_transaction(trans, ret);
3014 				goto out;
3015 			}
3016 			btrfs_release_path(path);
3017 
3018 			/* Slow path to locate EXTENT/METADATA_ITEM */
3019 			key.objectid = bytenr;
3020 			key.type = BTRFS_EXTENT_ITEM_KEY;
3021 			key.offset = num_bytes;
3022 
3023 			if (!is_data && skinny_metadata) {
3024 				key.type = BTRFS_METADATA_ITEM_KEY;
3025 				key.offset = owner_objectid;
3026 			}
3027 
3028 			ret = btrfs_search_slot(trans, extent_root,
3029 						&key, path, -1, 1);
3030 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3031 				/*
3032 				 * Couldn't find our skinny metadata item,
3033 				 * see if we have ye olde extent item.
3034 				 */
3035 				path->slots[0]--;
3036 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3037 						      path->slots[0]);
3038 				if (key.objectid == bytenr &&
3039 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3040 				    key.offset == num_bytes)
3041 					ret = 0;
3042 			}
3043 
3044 			if (ret > 0 && skinny_metadata) {
3045 				skinny_metadata = false;
3046 				key.objectid = bytenr;
3047 				key.type = BTRFS_EXTENT_ITEM_KEY;
3048 				key.offset = num_bytes;
3049 				btrfs_release_path(path);
3050 				ret = btrfs_search_slot(trans, extent_root,
3051 							&key, path, -1, 1);
3052 			}
3053 
3054 			if (ret) {
3055 				btrfs_err(info,
3056 					  "umm, got %d back from search, was looking for %llu",
3057 					  ret, bytenr);
3058 				if (ret > 0)
3059 					btrfs_print_leaf(path->nodes[0]);
3060 			}
3061 			if (ret < 0) {
3062 				btrfs_abort_transaction(trans, ret);
3063 				goto out;
3064 			}
3065 			extent_slot = path->slots[0];
3066 		}
3067 	} else if (WARN_ON(ret == -ENOENT)) {
3068 		btrfs_print_leaf(path->nodes[0]);
3069 		btrfs_err(info,
3070 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3071 			bytenr, parent, root_objectid, owner_objectid,
3072 			owner_offset);
3073 		btrfs_abort_transaction(trans, ret);
3074 		goto out;
3075 	} else {
3076 		btrfs_abort_transaction(trans, ret);
3077 		goto out;
3078 	}
3079 
3080 	leaf = path->nodes[0];
3081 	item_size = btrfs_item_size(leaf, extent_slot);
3082 	if (unlikely(item_size < sizeof(*ei))) {
3083 		ret = -EINVAL;
3084 		btrfs_print_v0_err(info);
3085 		btrfs_abort_transaction(trans, ret);
3086 		goto out;
3087 	}
3088 	ei = btrfs_item_ptr(leaf, extent_slot,
3089 			    struct btrfs_extent_item);
3090 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3091 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3092 		struct btrfs_tree_block_info *bi;
3093 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3094 			btrfs_crit(info,
3095 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3096 				   key.objectid, key.type, key.offset,
3097 				   owner_objectid, item_size,
3098 				   sizeof(*ei) + sizeof(*bi));
3099 			btrfs_abort_transaction(trans, -EUCLEAN);
3100 			goto err_dump;
3101 		}
3102 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3103 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3104 	}
3105 
3106 	refs = btrfs_extent_refs(leaf, ei);
3107 	if (refs < refs_to_drop) {
3108 		btrfs_crit(info,
3109 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3110 			  refs_to_drop, refs, bytenr);
3111 		btrfs_abort_transaction(trans, -EUCLEAN);
3112 		goto err_dump;
3113 	}
3114 	refs -= refs_to_drop;
3115 
3116 	if (refs > 0) {
3117 		if (extent_op)
3118 			__run_delayed_extent_op(extent_op, leaf, ei);
3119 		/*
3120 		 * In the case of inline back ref, reference count will
3121 		 * be updated by remove_extent_backref
3122 		 */
3123 		if (iref) {
3124 			if (!found_extent) {
3125 				btrfs_crit(info,
3126 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3127 				btrfs_abort_transaction(trans, -EUCLEAN);
3128 				goto err_dump;
3129 			}
3130 		} else {
3131 			btrfs_set_extent_refs(leaf, ei, refs);
3132 			btrfs_mark_buffer_dirty(leaf);
3133 		}
3134 		if (found_extent) {
3135 			ret = remove_extent_backref(trans, extent_root, path,
3136 						    iref, refs_to_drop, is_data);
3137 			if (ret) {
3138 				btrfs_abort_transaction(trans, ret);
3139 				goto out;
3140 			}
3141 		}
3142 	} else {
3143 		/* In this branch refs == 1 */
3144 		if (found_extent) {
3145 			if (is_data && refs_to_drop !=
3146 			    extent_data_ref_count(path, iref)) {
3147 				btrfs_crit(info,
3148 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3149 					   extent_data_ref_count(path, iref),
3150 					   refs_to_drop);
3151 				btrfs_abort_transaction(trans, -EUCLEAN);
3152 				goto err_dump;
3153 			}
3154 			if (iref) {
3155 				if (path->slots[0] != extent_slot) {
3156 					btrfs_crit(info,
3157 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3158 						   key.objectid, key.type,
3159 						   key.offset);
3160 					btrfs_abort_transaction(trans, -EUCLEAN);
3161 					goto err_dump;
3162 				}
3163 			} else {
3164 				/*
3165 				 * No inline ref, we must be at SHARED_* item,
3166 				 * And it's single ref, it must be:
3167 				 * |	extent_slot	  ||extent_slot + 1|
3168 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3169 				 */
3170 				if (path->slots[0] != extent_slot + 1) {
3171 					btrfs_crit(info,
3172 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3173 					btrfs_abort_transaction(trans, -EUCLEAN);
3174 					goto err_dump;
3175 				}
3176 				path->slots[0] = extent_slot;
3177 				num_to_del = 2;
3178 			}
3179 		}
3180 
3181 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3182 				      num_to_del);
3183 		if (ret) {
3184 			btrfs_abort_transaction(trans, ret);
3185 			goto out;
3186 		}
3187 		btrfs_release_path(path);
3188 
3189 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3190 	}
3191 	btrfs_release_path(path);
3192 
3193 out:
3194 	btrfs_free_path(path);
3195 	return ret;
3196 err_dump:
3197 	/*
3198 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3199 	 * dump for debug build.
3200 	 */
3201 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3202 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3203 			   path->slots[0], extent_slot);
3204 		btrfs_print_leaf(path->nodes[0]);
3205 	}
3206 
3207 	btrfs_free_path(path);
3208 	return -EUCLEAN;
3209 }
3210 
3211 /*
3212  * when we free an block, it is possible (and likely) that we free the last
3213  * delayed ref for that extent as well.  This searches the delayed ref tree for
3214  * a given extent, and if there are no other delayed refs to be processed, it
3215  * removes it from the tree.
3216  */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3217 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3218 				      u64 bytenr)
3219 {
3220 	struct btrfs_delayed_ref_head *head;
3221 	struct btrfs_delayed_ref_root *delayed_refs;
3222 	int ret = 0;
3223 
3224 	delayed_refs = &trans->transaction->delayed_refs;
3225 	spin_lock(&delayed_refs->lock);
3226 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3227 	if (!head)
3228 		goto out_delayed_unlock;
3229 
3230 	spin_lock(&head->lock);
3231 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3232 		goto out;
3233 
3234 	if (cleanup_extent_op(head) != NULL)
3235 		goto out;
3236 
3237 	/*
3238 	 * waiting for the lock here would deadlock.  If someone else has it
3239 	 * locked they are already in the process of dropping it anyway
3240 	 */
3241 	if (!mutex_trylock(&head->mutex))
3242 		goto out;
3243 
3244 	btrfs_delete_ref_head(delayed_refs, head);
3245 	head->processing = 0;
3246 
3247 	spin_unlock(&head->lock);
3248 	spin_unlock(&delayed_refs->lock);
3249 
3250 	BUG_ON(head->extent_op);
3251 	if (head->must_insert_reserved)
3252 		ret = 1;
3253 
3254 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3255 	mutex_unlock(&head->mutex);
3256 	btrfs_put_delayed_ref_head(head);
3257 	return ret;
3258 out:
3259 	spin_unlock(&head->lock);
3260 
3261 out_delayed_unlock:
3262 	spin_unlock(&delayed_refs->lock);
3263 	return 0;
3264 }
3265 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3266 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3267 			   u64 root_id,
3268 			   struct extent_buffer *buf,
3269 			   u64 parent, int last_ref)
3270 {
3271 	struct btrfs_fs_info *fs_info = trans->fs_info;
3272 	struct btrfs_ref generic_ref = { 0 };
3273 	int ret;
3274 
3275 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3276 			       buf->start, buf->len, parent);
3277 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3278 			    root_id, 0, false);
3279 
3280 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3281 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3282 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3283 		BUG_ON(ret); /* -ENOMEM */
3284 	}
3285 
3286 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3287 		struct btrfs_block_group *cache;
3288 		bool must_pin = false;
3289 
3290 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3291 			ret = check_ref_cleanup(trans, buf->start);
3292 			if (!ret) {
3293 				btrfs_redirty_list_add(trans->transaction, buf);
3294 				goto out;
3295 			}
3296 		}
3297 
3298 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3299 
3300 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3301 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3302 			btrfs_put_block_group(cache);
3303 			goto out;
3304 		}
3305 
3306 		/*
3307 		 * If there are tree mod log users we may have recorded mod log
3308 		 * operations for this node.  If we re-allocate this node we
3309 		 * could replay operations on this node that happened when it
3310 		 * existed in a completely different root.  For example if it
3311 		 * was part of root A, then was reallocated to root B, and we
3312 		 * are doing a btrfs_old_search_slot(root b), we could replay
3313 		 * operations that happened when the block was part of root A,
3314 		 * giving us an inconsistent view of the btree.
3315 		 *
3316 		 * We are safe from races here because at this point no other
3317 		 * node or root points to this extent buffer, so if after this
3318 		 * check a new tree mod log user joins we will not have an
3319 		 * existing log of operations on this node that we have to
3320 		 * contend with.
3321 		 */
3322 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3323 			must_pin = true;
3324 
3325 		if (must_pin || btrfs_is_zoned(fs_info)) {
3326 			btrfs_redirty_list_add(trans->transaction, buf);
3327 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3328 			btrfs_put_block_group(cache);
3329 			goto out;
3330 		}
3331 
3332 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3333 
3334 		btrfs_add_free_space(cache, buf->start, buf->len);
3335 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3336 		btrfs_put_block_group(cache);
3337 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3338 	}
3339 out:
3340 	if (last_ref) {
3341 		/*
3342 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3343 		 * matter anymore.
3344 		 */
3345 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3346 	}
3347 }
3348 
3349 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3350 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3351 {
3352 	struct btrfs_fs_info *fs_info = trans->fs_info;
3353 	int ret;
3354 
3355 	if (btrfs_is_testing(fs_info))
3356 		return 0;
3357 
3358 	/*
3359 	 * tree log blocks never actually go into the extent allocation
3360 	 * tree, just update pinning info and exit early.
3361 	 */
3362 	if ((ref->type == BTRFS_REF_METADATA &&
3363 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3364 	    (ref->type == BTRFS_REF_DATA &&
3365 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3366 		/* unlocks the pinned mutex */
3367 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3368 		ret = 0;
3369 	} else if (ref->type == BTRFS_REF_METADATA) {
3370 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3371 	} else {
3372 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3373 	}
3374 
3375 	if (!((ref->type == BTRFS_REF_METADATA &&
3376 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3377 	      (ref->type == BTRFS_REF_DATA &&
3378 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3379 		btrfs_ref_tree_mod(fs_info, ref);
3380 
3381 	return ret;
3382 }
3383 
3384 enum btrfs_loop_type {
3385 	LOOP_CACHING_NOWAIT,
3386 	LOOP_CACHING_WAIT,
3387 	LOOP_ALLOC_CHUNK,
3388 	LOOP_NO_EMPTY_SIZE,
3389 };
3390 
3391 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3392 btrfs_lock_block_group(struct btrfs_block_group *cache,
3393 		       int delalloc)
3394 {
3395 	if (delalloc)
3396 		down_read(&cache->data_rwsem);
3397 }
3398 
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3399 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3400 		       int delalloc)
3401 {
3402 	btrfs_get_block_group(cache);
3403 	if (delalloc)
3404 		down_read(&cache->data_rwsem);
3405 }
3406 
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3407 static struct btrfs_block_group *btrfs_lock_cluster(
3408 		   struct btrfs_block_group *block_group,
3409 		   struct btrfs_free_cluster *cluster,
3410 		   int delalloc)
3411 	__acquires(&cluster->refill_lock)
3412 {
3413 	struct btrfs_block_group *used_bg = NULL;
3414 
3415 	spin_lock(&cluster->refill_lock);
3416 	while (1) {
3417 		used_bg = cluster->block_group;
3418 		if (!used_bg)
3419 			return NULL;
3420 
3421 		if (used_bg == block_group)
3422 			return used_bg;
3423 
3424 		btrfs_get_block_group(used_bg);
3425 
3426 		if (!delalloc)
3427 			return used_bg;
3428 
3429 		if (down_read_trylock(&used_bg->data_rwsem))
3430 			return used_bg;
3431 
3432 		spin_unlock(&cluster->refill_lock);
3433 
3434 		/* We should only have one-level nested. */
3435 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3436 
3437 		spin_lock(&cluster->refill_lock);
3438 		if (used_bg == cluster->block_group)
3439 			return used_bg;
3440 
3441 		up_read(&used_bg->data_rwsem);
3442 		btrfs_put_block_group(used_bg);
3443 	}
3444 }
3445 
3446 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3447 btrfs_release_block_group(struct btrfs_block_group *cache,
3448 			 int delalloc)
3449 {
3450 	if (delalloc)
3451 		up_read(&cache->data_rwsem);
3452 	btrfs_put_block_group(cache);
3453 }
3454 
3455 enum btrfs_extent_allocation_policy {
3456 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3457 	BTRFS_EXTENT_ALLOC_ZONED,
3458 };
3459 
3460 /*
3461  * Structure used internally for find_free_extent() function.  Wraps needed
3462  * parameters.
3463  */
3464 struct find_free_extent_ctl {
3465 	/* Basic allocation info */
3466 	u64 ram_bytes;
3467 	u64 num_bytes;
3468 	u64 min_alloc_size;
3469 	u64 empty_size;
3470 	u64 flags;
3471 	int delalloc;
3472 
3473 	/* Where to start the search inside the bg */
3474 	u64 search_start;
3475 
3476 	/* For clustered allocation */
3477 	u64 empty_cluster;
3478 	struct btrfs_free_cluster *last_ptr;
3479 	bool use_cluster;
3480 
3481 	bool have_caching_bg;
3482 	bool orig_have_caching_bg;
3483 
3484 	/* Allocation is called for tree-log */
3485 	bool for_treelog;
3486 
3487 	/* Allocation is called for data relocation */
3488 	bool for_data_reloc;
3489 
3490 	/* RAID index, converted from flags */
3491 	int index;
3492 
3493 	/*
3494 	 * Current loop number, check find_free_extent_update_loop() for details
3495 	 */
3496 	int loop;
3497 
3498 	/*
3499 	 * Whether we're refilling a cluster, if true we need to re-search
3500 	 * current block group but don't try to refill the cluster again.
3501 	 */
3502 	bool retry_clustered;
3503 
3504 	/*
3505 	 * Whether we're updating free space cache, if true we need to re-search
3506 	 * current block group but don't try updating free space cache again.
3507 	 */
3508 	bool retry_unclustered;
3509 
3510 	/* If current block group is cached */
3511 	int cached;
3512 
3513 	/* Max contiguous hole found */
3514 	u64 max_extent_size;
3515 
3516 	/* Total free space from free space cache, not always contiguous */
3517 	u64 total_free_space;
3518 
3519 	/* Found result */
3520 	u64 found_offset;
3521 
3522 	/* Hint where to start looking for an empty space */
3523 	u64 hint_byte;
3524 
3525 	/* Allocation policy */
3526 	enum btrfs_extent_allocation_policy policy;
3527 };
3528 
3529 
3530 /*
3531  * Helper function for find_free_extent().
3532  *
3533  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3534  * Return -EAGAIN to inform caller that we need to re-search this block group
3535  * Return >0 to inform caller that we find nothing
3536  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3537  */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3538 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3539 				      struct find_free_extent_ctl *ffe_ctl,
3540 				      struct btrfs_block_group **cluster_bg_ret)
3541 {
3542 	struct btrfs_block_group *cluster_bg;
3543 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3544 	u64 aligned_cluster;
3545 	u64 offset;
3546 	int ret;
3547 
3548 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3549 	if (!cluster_bg)
3550 		goto refill_cluster;
3551 	if (cluster_bg != bg && (cluster_bg->ro ||
3552 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3553 		goto release_cluster;
3554 
3555 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3556 			ffe_ctl->num_bytes, cluster_bg->start,
3557 			&ffe_ctl->max_extent_size);
3558 	if (offset) {
3559 		/* We have a block, we're done */
3560 		spin_unlock(&last_ptr->refill_lock);
3561 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3562 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3563 		*cluster_bg_ret = cluster_bg;
3564 		ffe_ctl->found_offset = offset;
3565 		return 0;
3566 	}
3567 	WARN_ON(last_ptr->block_group != cluster_bg);
3568 
3569 release_cluster:
3570 	/*
3571 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3572 	 * lets just skip it and let the allocator find whatever block it can
3573 	 * find. If we reach this point, we will have tried the cluster
3574 	 * allocator plenty of times and not have found anything, so we are
3575 	 * likely way too fragmented for the clustering stuff to find anything.
3576 	 *
3577 	 * However, if the cluster is taken from the current block group,
3578 	 * release the cluster first, so that we stand a better chance of
3579 	 * succeeding in the unclustered allocation.
3580 	 */
3581 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3582 		spin_unlock(&last_ptr->refill_lock);
3583 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3584 		return -ENOENT;
3585 	}
3586 
3587 	/* This cluster didn't work out, free it and start over */
3588 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3589 
3590 	if (cluster_bg != bg)
3591 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3592 
3593 refill_cluster:
3594 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3595 		spin_unlock(&last_ptr->refill_lock);
3596 		return -ENOENT;
3597 	}
3598 
3599 	aligned_cluster = max_t(u64,
3600 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3601 			bg->full_stripe_len);
3602 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3603 			ffe_ctl->num_bytes, aligned_cluster);
3604 	if (ret == 0) {
3605 		/* Now pull our allocation out of this cluster */
3606 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3607 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3608 				&ffe_ctl->max_extent_size);
3609 		if (offset) {
3610 			/* We found one, proceed */
3611 			spin_unlock(&last_ptr->refill_lock);
3612 			trace_btrfs_reserve_extent_cluster(bg,
3613 					ffe_ctl->search_start,
3614 					ffe_ctl->num_bytes);
3615 			ffe_ctl->found_offset = offset;
3616 			return 0;
3617 		}
3618 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3619 		   !ffe_ctl->retry_clustered) {
3620 		spin_unlock(&last_ptr->refill_lock);
3621 
3622 		ffe_ctl->retry_clustered = true;
3623 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3624 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3625 		return -EAGAIN;
3626 	}
3627 	/*
3628 	 * At this point we either didn't find a cluster or we weren't able to
3629 	 * allocate a block from our cluster.  Free the cluster we've been
3630 	 * trying to use, and go to the next block group.
3631 	 */
3632 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3633 	spin_unlock(&last_ptr->refill_lock);
3634 	return 1;
3635 }
3636 
3637 /*
3638  * Return >0 to inform caller that we find nothing
3639  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3640  * Return -EAGAIN to inform caller that we need to re-search this block group
3641  */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3642 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3643 					struct find_free_extent_ctl *ffe_ctl)
3644 {
3645 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3646 	u64 offset;
3647 
3648 	/*
3649 	 * We are doing an unclustered allocation, set the fragmented flag so
3650 	 * we don't bother trying to setup a cluster again until we get more
3651 	 * space.
3652 	 */
3653 	if (unlikely(last_ptr)) {
3654 		spin_lock(&last_ptr->lock);
3655 		last_ptr->fragmented = 1;
3656 		spin_unlock(&last_ptr->lock);
3657 	}
3658 	if (ffe_ctl->cached) {
3659 		struct btrfs_free_space_ctl *free_space_ctl;
3660 
3661 		free_space_ctl = bg->free_space_ctl;
3662 		spin_lock(&free_space_ctl->tree_lock);
3663 		if (free_space_ctl->free_space <
3664 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3665 		    ffe_ctl->empty_size) {
3666 			ffe_ctl->total_free_space = max_t(u64,
3667 					ffe_ctl->total_free_space,
3668 					free_space_ctl->free_space);
3669 			spin_unlock(&free_space_ctl->tree_lock);
3670 			return 1;
3671 		}
3672 		spin_unlock(&free_space_ctl->tree_lock);
3673 	}
3674 
3675 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3676 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3677 			&ffe_ctl->max_extent_size);
3678 
3679 	/*
3680 	 * If we didn't find a chunk, and we haven't failed on this block group
3681 	 * before, and this block group is in the middle of caching and we are
3682 	 * ok with waiting, then go ahead and wait for progress to be made, and
3683 	 * set @retry_unclustered to true.
3684 	 *
3685 	 * If @retry_unclustered is true then we've already waited on this
3686 	 * block group once and should move on to the next block group.
3687 	 */
3688 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3689 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3690 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3691 						      ffe_ctl->empty_size);
3692 		ffe_ctl->retry_unclustered = true;
3693 		return -EAGAIN;
3694 	} else if (!offset) {
3695 		return 1;
3696 	}
3697 	ffe_ctl->found_offset = offset;
3698 	return 0;
3699 }
3700 
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3701 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3702 				   struct find_free_extent_ctl *ffe_ctl,
3703 				   struct btrfs_block_group **bg_ret)
3704 {
3705 	int ret;
3706 
3707 	/* We want to try and use the cluster allocator, so lets look there */
3708 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3709 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3710 		if (ret >= 0 || ret == -EAGAIN)
3711 			return ret;
3712 		/* ret == -ENOENT case falls through */
3713 	}
3714 
3715 	return find_free_extent_unclustered(block_group, ffe_ctl);
3716 }
3717 
3718 /*
3719  * Tree-log block group locking
3720  * ============================
3721  *
3722  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3723  * indicates the starting address of a block group, which is reserved only
3724  * for tree-log metadata.
3725  *
3726  * Lock nesting
3727  * ============
3728  *
3729  * space_info::lock
3730  *   block_group::lock
3731  *     fs_info::treelog_bg_lock
3732  */
3733 
3734 /*
3735  * Simple allocator for sequential-only block group. It only allows sequential
3736  * allocation. No need to play with trees. This function also reserves the
3737  * bytes as in btrfs_add_reserved_bytes.
3738  */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3739 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3740 			       struct find_free_extent_ctl *ffe_ctl,
3741 			       struct btrfs_block_group **bg_ret)
3742 {
3743 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3744 	struct btrfs_space_info *space_info = block_group->space_info;
3745 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3746 	u64 start = block_group->start;
3747 	u64 num_bytes = ffe_ctl->num_bytes;
3748 	u64 avail;
3749 	u64 bytenr = block_group->start;
3750 	u64 log_bytenr;
3751 	u64 data_reloc_bytenr;
3752 	int ret = 0;
3753 	bool skip = false;
3754 
3755 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3756 
3757 	/*
3758 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3759 	 * group, and vice versa.
3760 	 */
3761 	spin_lock(&fs_info->treelog_bg_lock);
3762 	log_bytenr = fs_info->treelog_bg;
3763 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3764 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3765 		skip = true;
3766 	spin_unlock(&fs_info->treelog_bg_lock);
3767 	if (skip)
3768 		return 1;
3769 
3770 	/*
3771 	 * Do not allow non-relocation blocks in the dedicated relocation block
3772 	 * group, and vice versa.
3773 	 */
3774 	spin_lock(&fs_info->relocation_bg_lock);
3775 	data_reloc_bytenr = fs_info->data_reloc_bg;
3776 	if (data_reloc_bytenr &&
3777 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3778 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3779 		skip = true;
3780 	spin_unlock(&fs_info->relocation_bg_lock);
3781 	if (skip)
3782 		return 1;
3783 
3784 	/* Check RO and no space case before trying to activate it */
3785 	spin_lock(&block_group->lock);
3786 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3787 		ret = 1;
3788 		/*
3789 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3790 		 * Return the error after taking the locks.
3791 		 */
3792 	}
3793 	spin_unlock(&block_group->lock);
3794 
3795 	if (!ret && !btrfs_zone_activate(block_group)) {
3796 		ret = 1;
3797 		/*
3798 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3799 		 * Return the error after taking the locks.
3800 		 */
3801 	}
3802 
3803 	spin_lock(&space_info->lock);
3804 	spin_lock(&block_group->lock);
3805 	spin_lock(&fs_info->treelog_bg_lock);
3806 	spin_lock(&fs_info->relocation_bg_lock);
3807 
3808 	if (ret)
3809 		goto out;
3810 
3811 	ASSERT(!ffe_ctl->for_treelog ||
3812 	       block_group->start == fs_info->treelog_bg ||
3813 	       fs_info->treelog_bg == 0);
3814 	ASSERT(!ffe_ctl->for_data_reloc ||
3815 	       block_group->start == fs_info->data_reloc_bg ||
3816 	       fs_info->data_reloc_bg == 0);
3817 
3818 	if (block_group->ro ||
3819 	    (!ffe_ctl->for_data_reloc &&
3820 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3821 		ret = 1;
3822 		goto out;
3823 	}
3824 
3825 	/*
3826 	 * Do not allow currently using block group to be tree-log dedicated
3827 	 * block group.
3828 	 */
3829 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3830 	    (block_group->used || block_group->reserved)) {
3831 		ret = 1;
3832 		goto out;
3833 	}
3834 
3835 	/*
3836 	 * Do not allow currently used block group to be the data relocation
3837 	 * dedicated block group.
3838 	 */
3839 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3840 	    (block_group->used || block_group->reserved)) {
3841 		ret = 1;
3842 		goto out;
3843 	}
3844 
3845 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3846 	avail = block_group->zone_capacity - block_group->alloc_offset;
3847 	if (avail < num_bytes) {
3848 		if (ffe_ctl->max_extent_size < avail) {
3849 			/*
3850 			 * With sequential allocator, free space is always
3851 			 * contiguous
3852 			 */
3853 			ffe_ctl->max_extent_size = avail;
3854 			ffe_ctl->total_free_space = avail;
3855 		}
3856 		ret = 1;
3857 		goto out;
3858 	}
3859 
3860 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3861 		fs_info->treelog_bg = block_group->start;
3862 
3863 	if (ffe_ctl->for_data_reloc) {
3864 		if (!fs_info->data_reloc_bg)
3865 			fs_info->data_reloc_bg = block_group->start;
3866 		/*
3867 		 * Do not allow allocations from this block group, unless it is
3868 		 * for data relocation. Compared to increasing the ->ro, setting
3869 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3870 		 * writers to come in. See btrfs_inc_nocow_writers().
3871 		 *
3872 		 * We need to disable an allocation to avoid an allocation of
3873 		 * regular (non-relocation data) extent. With mix of relocation
3874 		 * extents and regular extents, we can dispatch WRITE commands
3875 		 * (for relocation extents) and ZONE APPEND commands (for
3876 		 * regular extents) at the same time to the same zone, which
3877 		 * easily break the write pointer.
3878 		 *
3879 		 * Also, this flag avoids this block group to be zone finished.
3880 		 */
3881 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3882 	}
3883 
3884 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3885 	block_group->alloc_offset += num_bytes;
3886 	spin_lock(&ctl->tree_lock);
3887 	ctl->free_space -= num_bytes;
3888 	spin_unlock(&ctl->tree_lock);
3889 
3890 	/*
3891 	 * We do not check if found_offset is aligned to stripesize. The
3892 	 * address is anyway rewritten when using zone append writing.
3893 	 */
3894 
3895 	ffe_ctl->search_start = ffe_ctl->found_offset;
3896 
3897 out:
3898 	if (ret && ffe_ctl->for_treelog)
3899 		fs_info->treelog_bg = 0;
3900 	if (ret && ffe_ctl->for_data_reloc)
3901 		fs_info->data_reloc_bg = 0;
3902 	spin_unlock(&fs_info->relocation_bg_lock);
3903 	spin_unlock(&fs_info->treelog_bg_lock);
3904 	spin_unlock(&block_group->lock);
3905 	spin_unlock(&space_info->lock);
3906 	return ret;
3907 }
3908 
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3909 static int do_allocation(struct btrfs_block_group *block_group,
3910 			 struct find_free_extent_ctl *ffe_ctl,
3911 			 struct btrfs_block_group **bg_ret)
3912 {
3913 	switch (ffe_ctl->policy) {
3914 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3915 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3916 	case BTRFS_EXTENT_ALLOC_ZONED:
3917 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3918 	default:
3919 		BUG();
3920 	}
3921 }
3922 
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3923 static void release_block_group(struct btrfs_block_group *block_group,
3924 				struct find_free_extent_ctl *ffe_ctl,
3925 				int delalloc)
3926 {
3927 	switch (ffe_ctl->policy) {
3928 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3929 		ffe_ctl->retry_clustered = false;
3930 		ffe_ctl->retry_unclustered = false;
3931 		break;
3932 	case BTRFS_EXTENT_ALLOC_ZONED:
3933 		/* Nothing to do */
3934 		break;
3935 	default:
3936 		BUG();
3937 	}
3938 
3939 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3940 	       ffe_ctl->index);
3941 	btrfs_release_block_group(block_group, delalloc);
3942 }
3943 
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3944 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3945 				   struct btrfs_key *ins)
3946 {
3947 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3948 
3949 	if (!ffe_ctl->use_cluster && last_ptr) {
3950 		spin_lock(&last_ptr->lock);
3951 		last_ptr->window_start = ins->objectid;
3952 		spin_unlock(&last_ptr->lock);
3953 	}
3954 }
3955 
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3956 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3957 			 struct btrfs_key *ins)
3958 {
3959 	switch (ffe_ctl->policy) {
3960 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3961 		found_extent_clustered(ffe_ctl, ins);
3962 		break;
3963 	case BTRFS_EXTENT_ALLOC_ZONED:
3964 		/* Nothing to do */
3965 		break;
3966 	default:
3967 		BUG();
3968 	}
3969 }
3970 
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3971 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3972 				    struct find_free_extent_ctl *ffe_ctl)
3973 {
3974 	/* If we can activate new zone, just allocate a chunk and use it */
3975 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3976 		return 0;
3977 
3978 	/*
3979 	 * We already reached the max active zones. Try to finish one block
3980 	 * group to make a room for a new block group. This is only possible
3981 	 * for a data block group because btrfs_zone_finish() may need to wait
3982 	 * for a running transaction which can cause a deadlock for metadata
3983 	 * allocation.
3984 	 */
3985 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3986 		int ret = btrfs_zone_finish_one_bg(fs_info);
3987 
3988 		if (ret == 1)
3989 			return 0;
3990 		else if (ret < 0)
3991 			return ret;
3992 	}
3993 
3994 	/*
3995 	 * If we have enough free space left in an already active block group
3996 	 * and we can't activate any other zone now, do not allow allocating a
3997 	 * new chunk and let find_free_extent() retry with a smaller size.
3998 	 */
3999 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4000 		return -ENOSPC;
4001 
4002 	/*
4003 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4004 	 * activate a new block group, allocating it may not help. Let's tell a
4005 	 * caller to try again and hope it progress something by writing some
4006 	 * parts of the region. That is only possible for data block groups,
4007 	 * where a part of the region can be written.
4008 	 */
4009 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4010 		return -EAGAIN;
4011 
4012 	/*
4013 	 * We cannot activate a new block group and no enough space left in any
4014 	 * block groups. So, allocating a new block group may not help. But,
4015 	 * there is nothing to do anyway, so let's go with it.
4016 	 */
4017 	return 0;
4018 }
4019 
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4020 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4021 			      struct find_free_extent_ctl *ffe_ctl)
4022 {
4023 	switch (ffe_ctl->policy) {
4024 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4025 		return 0;
4026 	case BTRFS_EXTENT_ALLOC_ZONED:
4027 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4028 	default:
4029 		BUG();
4030 	}
4031 }
4032 
chunk_allocation_failed(struct find_free_extent_ctl * ffe_ctl)4033 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4034 {
4035 	switch (ffe_ctl->policy) {
4036 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4037 		/*
4038 		 * If we can't allocate a new chunk we've already looped through
4039 		 * at least once, move on to the NO_EMPTY_SIZE case.
4040 		 */
4041 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4042 		return 0;
4043 	case BTRFS_EXTENT_ALLOC_ZONED:
4044 		/* Give up here */
4045 		return -ENOSPC;
4046 	default:
4047 		BUG();
4048 	}
4049 }
4050 
4051 /*
4052  * Return >0 means caller needs to re-search for free extent
4053  * Return 0 means we have the needed free extent.
4054  * Return <0 means we failed to locate any free extent.
4055  */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4056 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4057 					struct btrfs_key *ins,
4058 					struct find_free_extent_ctl *ffe_ctl,
4059 					bool full_search)
4060 {
4061 	struct btrfs_root *root = fs_info->chunk_root;
4062 	int ret;
4063 
4064 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4065 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4066 		ffe_ctl->orig_have_caching_bg = true;
4067 
4068 	if (ins->objectid) {
4069 		found_extent(ffe_ctl, ins);
4070 		return 0;
4071 	}
4072 
4073 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4074 		return 1;
4075 
4076 	ffe_ctl->index++;
4077 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4078 		return 1;
4079 
4080 	/*
4081 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4082 	 *			caching kthreads as we move along
4083 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4084 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4085 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4086 	 *		       again
4087 	 */
4088 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4089 		ffe_ctl->index = 0;
4090 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4091 			/*
4092 			 * We want to skip the LOOP_CACHING_WAIT step if we
4093 			 * don't have any uncached bgs and we've already done a
4094 			 * full search through.
4095 			 */
4096 			if (ffe_ctl->orig_have_caching_bg || !full_search)
4097 				ffe_ctl->loop = LOOP_CACHING_WAIT;
4098 			else
4099 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4100 		} else {
4101 			ffe_ctl->loop++;
4102 		}
4103 
4104 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4105 			struct btrfs_trans_handle *trans;
4106 			int exist = 0;
4107 
4108 			/*Check if allocation policy allows to create a new chunk */
4109 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4110 			if (ret)
4111 				return ret;
4112 
4113 			trans = current->journal_info;
4114 			if (trans)
4115 				exist = 1;
4116 			else
4117 				trans = btrfs_join_transaction(root);
4118 
4119 			if (IS_ERR(trans)) {
4120 				ret = PTR_ERR(trans);
4121 				return ret;
4122 			}
4123 
4124 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4125 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4126 
4127 			/* Do not bail out on ENOSPC since we can do more. */
4128 			if (ret == -ENOSPC)
4129 				ret = chunk_allocation_failed(ffe_ctl);
4130 			else if (ret < 0)
4131 				btrfs_abort_transaction(trans, ret);
4132 			else
4133 				ret = 0;
4134 			if (!exist)
4135 				btrfs_end_transaction(trans);
4136 			if (ret)
4137 				return ret;
4138 		}
4139 
4140 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4141 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4142 				return -ENOSPC;
4143 
4144 			/*
4145 			 * Don't loop again if we already have no empty_size and
4146 			 * no empty_cluster.
4147 			 */
4148 			if (ffe_ctl->empty_size == 0 &&
4149 			    ffe_ctl->empty_cluster == 0)
4150 				return -ENOSPC;
4151 			ffe_ctl->empty_size = 0;
4152 			ffe_ctl->empty_cluster = 0;
4153 		}
4154 		return 1;
4155 	}
4156 	return -ENOSPC;
4157 }
4158 
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4159 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4160 					struct find_free_extent_ctl *ffe_ctl,
4161 					struct btrfs_space_info *space_info,
4162 					struct btrfs_key *ins)
4163 {
4164 	/*
4165 	 * If our free space is heavily fragmented we may not be able to make
4166 	 * big contiguous allocations, so instead of doing the expensive search
4167 	 * for free space, simply return ENOSPC with our max_extent_size so we
4168 	 * can go ahead and search for a more manageable chunk.
4169 	 *
4170 	 * If our max_extent_size is large enough for our allocation simply
4171 	 * disable clustering since we will likely not be able to find enough
4172 	 * space to create a cluster and induce latency trying.
4173 	 */
4174 	if (space_info->max_extent_size) {
4175 		spin_lock(&space_info->lock);
4176 		if (space_info->max_extent_size &&
4177 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4178 			ins->offset = space_info->max_extent_size;
4179 			spin_unlock(&space_info->lock);
4180 			return -ENOSPC;
4181 		} else if (space_info->max_extent_size) {
4182 			ffe_ctl->use_cluster = false;
4183 		}
4184 		spin_unlock(&space_info->lock);
4185 	}
4186 
4187 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4188 					       &ffe_ctl->empty_cluster);
4189 	if (ffe_ctl->last_ptr) {
4190 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4191 
4192 		spin_lock(&last_ptr->lock);
4193 		if (last_ptr->block_group)
4194 			ffe_ctl->hint_byte = last_ptr->window_start;
4195 		if (last_ptr->fragmented) {
4196 			/*
4197 			 * We still set window_start so we can keep track of the
4198 			 * last place we found an allocation to try and save
4199 			 * some time.
4200 			 */
4201 			ffe_ctl->hint_byte = last_ptr->window_start;
4202 			ffe_ctl->use_cluster = false;
4203 		}
4204 		spin_unlock(&last_ptr->lock);
4205 	}
4206 
4207 	return 0;
4208 }
4209 
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4210 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4211 				    struct find_free_extent_ctl *ffe_ctl)
4212 {
4213 	if (ffe_ctl->for_treelog) {
4214 		spin_lock(&fs_info->treelog_bg_lock);
4215 		if (fs_info->treelog_bg)
4216 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4217 		spin_unlock(&fs_info->treelog_bg_lock);
4218 	} else if (ffe_ctl->for_data_reloc) {
4219 		spin_lock(&fs_info->relocation_bg_lock);
4220 		if (fs_info->data_reloc_bg)
4221 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4222 		spin_unlock(&fs_info->relocation_bg_lock);
4223 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4224 		struct btrfs_block_group *block_group;
4225 
4226 		spin_lock(&fs_info->zone_active_bgs_lock);
4227 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4228 			/*
4229 			 * No lock is OK here because avail is monotinically
4230 			 * decreasing, and this is just a hint.
4231 			 */
4232 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4233 
4234 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4235 			    avail >= ffe_ctl->num_bytes) {
4236 				ffe_ctl->hint_byte = block_group->start;
4237 				break;
4238 			}
4239 		}
4240 		spin_unlock(&fs_info->zone_active_bgs_lock);
4241 	}
4242 
4243 	return 0;
4244 }
4245 
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4246 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4247 			      struct find_free_extent_ctl *ffe_ctl,
4248 			      struct btrfs_space_info *space_info,
4249 			      struct btrfs_key *ins)
4250 {
4251 	switch (ffe_ctl->policy) {
4252 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4253 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4254 						    space_info, ins);
4255 	case BTRFS_EXTENT_ALLOC_ZONED:
4256 		return prepare_allocation_zoned(fs_info, ffe_ctl);
4257 	default:
4258 		BUG();
4259 	}
4260 }
4261 
4262 /*
4263  * walks the btree of allocated extents and find a hole of a given size.
4264  * The key ins is changed to record the hole:
4265  * ins->objectid == start position
4266  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4267  * ins->offset == the size of the hole.
4268  * Any available blocks before search_start are skipped.
4269  *
4270  * If there is no suitable free space, we will record the max size of
4271  * the free space extent currently.
4272  *
4273  * The overall logic and call chain:
4274  *
4275  * find_free_extent()
4276  * |- Iterate through all block groups
4277  * |  |- Get a valid block group
4278  * |  |- Try to do clustered allocation in that block group
4279  * |  |- Try to do unclustered allocation in that block group
4280  * |  |- Check if the result is valid
4281  * |  |  |- If valid, then exit
4282  * |  |- Jump to next block group
4283  * |
4284  * |- Push harder to find free extents
4285  *    |- If not found, re-iterate all block groups
4286  */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4287 static noinline int find_free_extent(struct btrfs_root *root,
4288 				     struct btrfs_key *ins,
4289 				     struct find_free_extent_ctl *ffe_ctl)
4290 {
4291 	struct btrfs_fs_info *fs_info = root->fs_info;
4292 	int ret = 0;
4293 	int cache_block_group_error = 0;
4294 	struct btrfs_block_group *block_group = NULL;
4295 	struct btrfs_space_info *space_info;
4296 	bool full_search = false;
4297 
4298 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4299 
4300 	ffe_ctl->search_start = 0;
4301 	/* For clustered allocation */
4302 	ffe_ctl->empty_cluster = 0;
4303 	ffe_ctl->last_ptr = NULL;
4304 	ffe_ctl->use_cluster = true;
4305 	ffe_ctl->have_caching_bg = false;
4306 	ffe_ctl->orig_have_caching_bg = false;
4307 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4308 	ffe_ctl->loop = 0;
4309 	/* For clustered allocation */
4310 	ffe_ctl->retry_clustered = false;
4311 	ffe_ctl->retry_unclustered = false;
4312 	ffe_ctl->cached = 0;
4313 	ffe_ctl->max_extent_size = 0;
4314 	ffe_ctl->total_free_space = 0;
4315 	ffe_ctl->found_offset = 0;
4316 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4317 
4318 	if (btrfs_is_zoned(fs_info))
4319 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4320 
4321 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4322 	ins->objectid = 0;
4323 	ins->offset = 0;
4324 
4325 	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4326 			       ffe_ctl->flags);
4327 
4328 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4329 	if (!space_info) {
4330 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4331 		return -ENOSPC;
4332 	}
4333 
4334 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4335 	if (ret < 0)
4336 		return ret;
4337 
4338 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4339 				    first_logical_byte(fs_info));
4340 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4341 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4342 		block_group = btrfs_lookup_block_group(fs_info,
4343 						       ffe_ctl->search_start);
4344 		/*
4345 		 * we don't want to use the block group if it doesn't match our
4346 		 * allocation bits, or if its not cached.
4347 		 *
4348 		 * However if we are re-searching with an ideal block group
4349 		 * picked out then we don't care that the block group is cached.
4350 		 */
4351 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4352 		    block_group->cached != BTRFS_CACHE_NO) {
4353 			down_read(&space_info->groups_sem);
4354 			if (list_empty(&block_group->list) ||
4355 			    block_group->ro) {
4356 				/*
4357 				 * someone is removing this block group,
4358 				 * we can't jump into the have_block_group
4359 				 * target because our list pointers are not
4360 				 * valid
4361 				 */
4362 				btrfs_put_block_group(block_group);
4363 				up_read(&space_info->groups_sem);
4364 			} else {
4365 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4366 							block_group->flags);
4367 				btrfs_lock_block_group(block_group,
4368 						       ffe_ctl->delalloc);
4369 				goto have_block_group;
4370 			}
4371 		} else if (block_group) {
4372 			btrfs_put_block_group(block_group);
4373 		}
4374 	}
4375 search:
4376 	ffe_ctl->have_caching_bg = false;
4377 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4378 	    ffe_ctl->index == 0)
4379 		full_search = true;
4380 	down_read(&space_info->groups_sem);
4381 	list_for_each_entry(block_group,
4382 			    &space_info->block_groups[ffe_ctl->index], list) {
4383 		struct btrfs_block_group *bg_ret;
4384 
4385 		/* If the block group is read-only, we can skip it entirely. */
4386 		if (unlikely(block_group->ro)) {
4387 			if (ffe_ctl->for_treelog)
4388 				btrfs_clear_treelog_bg(block_group);
4389 			if (ffe_ctl->for_data_reloc)
4390 				btrfs_clear_data_reloc_bg(block_group);
4391 			continue;
4392 		}
4393 
4394 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4395 		ffe_ctl->search_start = block_group->start;
4396 
4397 		/*
4398 		 * this can happen if we end up cycling through all the
4399 		 * raid types, but we want to make sure we only allocate
4400 		 * for the proper type.
4401 		 */
4402 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4403 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4404 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4405 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4406 				BTRFS_BLOCK_GROUP_RAID10;
4407 
4408 			/*
4409 			 * if they asked for extra copies and this block group
4410 			 * doesn't provide them, bail.  This does allow us to
4411 			 * fill raid0 from raid1.
4412 			 */
4413 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4414 				goto loop;
4415 
4416 			/*
4417 			 * This block group has different flags than we want.
4418 			 * It's possible that we have MIXED_GROUP flag but no
4419 			 * block group is mixed.  Just skip such block group.
4420 			 */
4421 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4422 			continue;
4423 		}
4424 
4425 have_block_group:
4426 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4427 		if (unlikely(!ffe_ctl->cached)) {
4428 			ffe_ctl->have_caching_bg = true;
4429 			ret = btrfs_cache_block_group(block_group, false);
4430 
4431 			/*
4432 			 * If we get ENOMEM here or something else we want to
4433 			 * try other block groups, because it may not be fatal.
4434 			 * However if we can't find anything else we need to
4435 			 * save our return here so that we return the actual
4436 			 * error that caused problems, not ENOSPC.
4437 			 */
4438 			if (ret < 0) {
4439 				if (!cache_block_group_error)
4440 					cache_block_group_error = ret;
4441 				ret = 0;
4442 				goto loop;
4443 			}
4444 			ret = 0;
4445 		}
4446 
4447 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4448 			if (!cache_block_group_error)
4449 				cache_block_group_error = -EIO;
4450 			goto loop;
4451 		}
4452 
4453 		bg_ret = NULL;
4454 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4455 		if (ret == 0) {
4456 			if (bg_ret && bg_ret != block_group) {
4457 				btrfs_release_block_group(block_group,
4458 							  ffe_ctl->delalloc);
4459 				block_group = bg_ret;
4460 			}
4461 		} else if (ret == -EAGAIN) {
4462 			goto have_block_group;
4463 		} else if (ret > 0) {
4464 			goto loop;
4465 		}
4466 
4467 		/* Checks */
4468 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4469 						 fs_info->stripesize);
4470 
4471 		/* move on to the next group */
4472 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4473 		    block_group->start + block_group->length) {
4474 			btrfs_add_free_space_unused(block_group,
4475 					    ffe_ctl->found_offset,
4476 					    ffe_ctl->num_bytes);
4477 			goto loop;
4478 		}
4479 
4480 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4481 			btrfs_add_free_space_unused(block_group,
4482 					ffe_ctl->found_offset,
4483 					ffe_ctl->search_start - ffe_ctl->found_offset);
4484 
4485 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4486 					       ffe_ctl->num_bytes,
4487 					       ffe_ctl->delalloc);
4488 		if (ret == -EAGAIN) {
4489 			btrfs_add_free_space_unused(block_group,
4490 					ffe_ctl->found_offset,
4491 					ffe_ctl->num_bytes);
4492 			goto loop;
4493 		}
4494 		btrfs_inc_block_group_reservations(block_group);
4495 
4496 		/* we are all good, lets return */
4497 		ins->objectid = ffe_ctl->search_start;
4498 		ins->offset = ffe_ctl->num_bytes;
4499 
4500 		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4501 					   ffe_ctl->num_bytes);
4502 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4503 		break;
4504 loop:
4505 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4506 		cond_resched();
4507 	}
4508 	up_read(&space_info->groups_sem);
4509 
4510 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4511 	if (ret > 0)
4512 		goto search;
4513 
4514 	if (ret == -ENOSPC && !cache_block_group_error) {
4515 		/*
4516 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4517 		 * any contiguous hole.
4518 		 */
4519 		if (!ffe_ctl->max_extent_size)
4520 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4521 		spin_lock(&space_info->lock);
4522 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4523 		spin_unlock(&space_info->lock);
4524 		ins->offset = ffe_ctl->max_extent_size;
4525 	} else if (ret == -ENOSPC) {
4526 		ret = cache_block_group_error;
4527 	}
4528 	return ret;
4529 }
4530 
4531 /*
4532  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4533  *			  hole that is at least as big as @num_bytes.
4534  *
4535  * @root           -	The root that will contain this extent
4536  *
4537  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4538  *			is used for accounting purposes. This value differs
4539  *			from @num_bytes only in the case of compressed extents.
4540  *
4541  * @num_bytes      -	Number of bytes to allocate on-disk.
4542  *
4543  * @min_alloc_size -	Indicates the minimum amount of space that the
4544  *			allocator should try to satisfy. In some cases
4545  *			@num_bytes may be larger than what is required and if
4546  *			the filesystem is fragmented then allocation fails.
4547  *			However, the presence of @min_alloc_size gives a
4548  *			chance to try and satisfy the smaller allocation.
4549  *
4550  * @empty_size     -	A hint that you plan on doing more COW. This is the
4551  *			size in bytes the allocator should try to find free
4552  *			next to the block it returns.  This is just a hint and
4553  *			may be ignored by the allocator.
4554  *
4555  * @hint_byte      -	Hint to the allocator to start searching above the byte
4556  *			address passed. It might be ignored.
4557  *
4558  * @ins            -	This key is modified to record the found hole. It will
4559  *			have the following values:
4560  *			ins->objectid == start position
4561  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4562  *			ins->offset == the size of the hole.
4563  *
4564  * @is_data        -	Boolean flag indicating whether an extent is
4565  *			allocated for data (true) or metadata (false)
4566  *
4567  * @delalloc       -	Boolean flag indicating whether this allocation is for
4568  *			delalloc or not. If 'true' data_rwsem of block groups
4569  *			is going to be acquired.
4570  *
4571  *
4572  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4573  * case -ENOSPC is returned then @ins->offset will contain the size of the
4574  * largest available hole the allocator managed to find.
4575  */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4576 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4577 			 u64 num_bytes, u64 min_alloc_size,
4578 			 u64 empty_size, u64 hint_byte,
4579 			 struct btrfs_key *ins, int is_data, int delalloc)
4580 {
4581 	struct btrfs_fs_info *fs_info = root->fs_info;
4582 	struct find_free_extent_ctl ffe_ctl = {};
4583 	bool final_tried = num_bytes == min_alloc_size;
4584 	u64 flags;
4585 	int ret;
4586 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4587 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4588 
4589 	flags = get_alloc_profile_by_root(root, is_data);
4590 again:
4591 	WARN_ON(num_bytes < fs_info->sectorsize);
4592 
4593 	ffe_ctl.ram_bytes = ram_bytes;
4594 	ffe_ctl.num_bytes = num_bytes;
4595 	ffe_ctl.min_alloc_size = min_alloc_size;
4596 	ffe_ctl.empty_size = empty_size;
4597 	ffe_ctl.flags = flags;
4598 	ffe_ctl.delalloc = delalloc;
4599 	ffe_ctl.hint_byte = hint_byte;
4600 	ffe_ctl.for_treelog = for_treelog;
4601 	ffe_ctl.for_data_reloc = for_data_reloc;
4602 
4603 	ret = find_free_extent(root, ins, &ffe_ctl);
4604 	if (!ret && !is_data) {
4605 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4606 	} else if (ret == -ENOSPC) {
4607 		if (!final_tried && ins->offset) {
4608 			num_bytes = min(num_bytes >> 1, ins->offset);
4609 			num_bytes = round_down(num_bytes,
4610 					       fs_info->sectorsize);
4611 			num_bytes = max(num_bytes, min_alloc_size);
4612 			ram_bytes = num_bytes;
4613 			if (num_bytes == min_alloc_size)
4614 				final_tried = true;
4615 			goto again;
4616 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4617 			struct btrfs_space_info *sinfo;
4618 
4619 			sinfo = btrfs_find_space_info(fs_info, flags);
4620 			btrfs_err(fs_info,
4621 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4622 				  flags, num_bytes, for_treelog, for_data_reloc);
4623 			if (sinfo)
4624 				btrfs_dump_space_info(fs_info, sinfo,
4625 						      num_bytes, 1);
4626 		}
4627 	}
4628 
4629 	return ret;
4630 }
4631 
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4632 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4633 			       u64 start, u64 len, int delalloc)
4634 {
4635 	struct btrfs_block_group *cache;
4636 
4637 	cache = btrfs_lookup_block_group(fs_info, start);
4638 	if (!cache) {
4639 		btrfs_err(fs_info, "Unable to find block group for %llu",
4640 			  start);
4641 		return -ENOSPC;
4642 	}
4643 
4644 	btrfs_add_free_space(cache, start, len);
4645 	btrfs_free_reserved_bytes(cache, len, delalloc);
4646 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4647 
4648 	btrfs_put_block_group(cache);
4649 	return 0;
4650 }
4651 
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4652 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4653 			      u64 len)
4654 {
4655 	struct btrfs_block_group *cache;
4656 	int ret = 0;
4657 
4658 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4659 	if (!cache) {
4660 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4661 			  start);
4662 		return -ENOSPC;
4663 	}
4664 
4665 	ret = pin_down_extent(trans, cache, start, len, 1);
4666 	btrfs_put_block_group(cache);
4667 	return ret;
4668 }
4669 
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4670 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4671 				 u64 num_bytes)
4672 {
4673 	struct btrfs_fs_info *fs_info = trans->fs_info;
4674 	int ret;
4675 
4676 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4677 	if (ret)
4678 		return ret;
4679 
4680 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4681 	if (ret) {
4682 		ASSERT(!ret);
4683 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4684 			  bytenr, num_bytes);
4685 		return ret;
4686 	}
4687 
4688 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4689 	return 0;
4690 }
4691 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4692 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4693 				      u64 parent, u64 root_objectid,
4694 				      u64 flags, u64 owner, u64 offset,
4695 				      struct btrfs_key *ins, int ref_mod)
4696 {
4697 	struct btrfs_fs_info *fs_info = trans->fs_info;
4698 	struct btrfs_root *extent_root;
4699 	int ret;
4700 	struct btrfs_extent_item *extent_item;
4701 	struct btrfs_extent_inline_ref *iref;
4702 	struct btrfs_path *path;
4703 	struct extent_buffer *leaf;
4704 	int type;
4705 	u32 size;
4706 
4707 	if (parent > 0)
4708 		type = BTRFS_SHARED_DATA_REF_KEY;
4709 	else
4710 		type = BTRFS_EXTENT_DATA_REF_KEY;
4711 
4712 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4713 
4714 	path = btrfs_alloc_path();
4715 	if (!path)
4716 		return -ENOMEM;
4717 
4718 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4719 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4720 	if (ret) {
4721 		btrfs_free_path(path);
4722 		return ret;
4723 	}
4724 
4725 	leaf = path->nodes[0];
4726 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4727 				     struct btrfs_extent_item);
4728 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4729 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4730 	btrfs_set_extent_flags(leaf, extent_item,
4731 			       flags | BTRFS_EXTENT_FLAG_DATA);
4732 
4733 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4734 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4735 	if (parent > 0) {
4736 		struct btrfs_shared_data_ref *ref;
4737 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4738 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4739 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4740 	} else {
4741 		struct btrfs_extent_data_ref *ref;
4742 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4743 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4744 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4745 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4746 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4747 	}
4748 
4749 	btrfs_mark_buffer_dirty(path->nodes[0]);
4750 	btrfs_free_path(path);
4751 
4752 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4753 }
4754 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4755 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4756 				     struct btrfs_delayed_ref_node *node,
4757 				     struct btrfs_delayed_extent_op *extent_op)
4758 {
4759 	struct btrfs_fs_info *fs_info = trans->fs_info;
4760 	struct btrfs_root *extent_root;
4761 	int ret;
4762 	struct btrfs_extent_item *extent_item;
4763 	struct btrfs_key extent_key;
4764 	struct btrfs_tree_block_info *block_info;
4765 	struct btrfs_extent_inline_ref *iref;
4766 	struct btrfs_path *path;
4767 	struct extent_buffer *leaf;
4768 	struct btrfs_delayed_tree_ref *ref;
4769 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4770 	u64 flags = extent_op->flags_to_set;
4771 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4772 
4773 	ref = btrfs_delayed_node_to_tree_ref(node);
4774 
4775 	extent_key.objectid = node->bytenr;
4776 	if (skinny_metadata) {
4777 		extent_key.offset = ref->level;
4778 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4779 	} else {
4780 		extent_key.offset = node->num_bytes;
4781 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4782 		size += sizeof(*block_info);
4783 	}
4784 
4785 	path = btrfs_alloc_path();
4786 	if (!path)
4787 		return -ENOMEM;
4788 
4789 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4790 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4791 				      size);
4792 	if (ret) {
4793 		btrfs_free_path(path);
4794 		return ret;
4795 	}
4796 
4797 	leaf = path->nodes[0];
4798 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4799 				     struct btrfs_extent_item);
4800 	btrfs_set_extent_refs(leaf, extent_item, 1);
4801 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4802 	btrfs_set_extent_flags(leaf, extent_item,
4803 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4804 
4805 	if (skinny_metadata) {
4806 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4807 	} else {
4808 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4809 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4810 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4811 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4812 	}
4813 
4814 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4815 		btrfs_set_extent_inline_ref_type(leaf, iref,
4816 						 BTRFS_SHARED_BLOCK_REF_KEY);
4817 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4818 	} else {
4819 		btrfs_set_extent_inline_ref_type(leaf, iref,
4820 						 BTRFS_TREE_BLOCK_REF_KEY);
4821 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4822 	}
4823 
4824 	btrfs_mark_buffer_dirty(leaf);
4825 	btrfs_free_path(path);
4826 
4827 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4828 }
4829 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4830 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4831 				     struct btrfs_root *root, u64 owner,
4832 				     u64 offset, u64 ram_bytes,
4833 				     struct btrfs_key *ins)
4834 {
4835 	struct btrfs_ref generic_ref = { 0 };
4836 
4837 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4838 
4839 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4840 			       ins->objectid, ins->offset, 0);
4841 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4842 			    offset, 0, false);
4843 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4844 
4845 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4846 }
4847 
4848 /*
4849  * this is used by the tree logging recovery code.  It records that
4850  * an extent has been allocated and makes sure to clear the free
4851  * space cache bits as well
4852  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4853 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4854 				   u64 root_objectid, u64 owner, u64 offset,
4855 				   struct btrfs_key *ins)
4856 {
4857 	struct btrfs_fs_info *fs_info = trans->fs_info;
4858 	int ret;
4859 	struct btrfs_block_group *block_group;
4860 	struct btrfs_space_info *space_info;
4861 
4862 	/*
4863 	 * Mixed block groups will exclude before processing the log so we only
4864 	 * need to do the exclude dance if this fs isn't mixed.
4865 	 */
4866 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4867 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4868 					      ins->offset);
4869 		if (ret)
4870 			return ret;
4871 	}
4872 
4873 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4874 	if (!block_group)
4875 		return -EINVAL;
4876 
4877 	space_info = block_group->space_info;
4878 	spin_lock(&space_info->lock);
4879 	spin_lock(&block_group->lock);
4880 	space_info->bytes_reserved += ins->offset;
4881 	block_group->reserved += ins->offset;
4882 	spin_unlock(&block_group->lock);
4883 	spin_unlock(&space_info->lock);
4884 
4885 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4886 					 offset, ins, 1);
4887 	if (ret)
4888 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4889 	btrfs_put_block_group(block_group);
4890 	return ret;
4891 }
4892 
4893 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4894 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4895 		      u64 bytenr, int level, u64 owner,
4896 		      enum btrfs_lock_nesting nest)
4897 {
4898 	struct btrfs_fs_info *fs_info = root->fs_info;
4899 	struct extent_buffer *buf;
4900 	u64 lockdep_owner = owner;
4901 
4902 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4903 	if (IS_ERR(buf))
4904 		return buf;
4905 
4906 	/*
4907 	 * Extra safety check in case the extent tree is corrupted and extent
4908 	 * allocator chooses to use a tree block which is already used and
4909 	 * locked.
4910 	 */
4911 	if (buf->lock_owner == current->pid) {
4912 		btrfs_err_rl(fs_info,
4913 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4914 			buf->start, btrfs_header_owner(buf), current->pid);
4915 		free_extent_buffer(buf);
4916 		return ERR_PTR(-EUCLEAN);
4917 	}
4918 
4919 	/*
4920 	 * The reloc trees are just snapshots, so we need them to appear to be
4921 	 * just like any other fs tree WRT lockdep.
4922 	 *
4923 	 * The exception however is in replace_path() in relocation, where we
4924 	 * hold the lock on the original fs root and then search for the reloc
4925 	 * root.  At that point we need to make sure any reloc root buffers are
4926 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4927 	 * lockdep happy.
4928 	 */
4929 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4930 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4931 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4932 
4933 	/* btrfs_clean_tree_block() accesses generation field. */
4934 	btrfs_set_header_generation(buf, trans->transid);
4935 
4936 	/*
4937 	 * This needs to stay, because we could allocate a freed block from an
4938 	 * old tree into a new tree, so we need to make sure this new block is
4939 	 * set to the appropriate level and owner.
4940 	 */
4941 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4942 
4943 	__btrfs_tree_lock(buf, nest);
4944 	btrfs_clean_tree_block(buf);
4945 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4946 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4947 
4948 	set_extent_buffer_uptodate(buf);
4949 
4950 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4951 	btrfs_set_header_level(buf, level);
4952 	btrfs_set_header_bytenr(buf, buf->start);
4953 	btrfs_set_header_generation(buf, trans->transid);
4954 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4955 	btrfs_set_header_owner(buf, owner);
4956 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4957 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4958 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4959 		buf->log_index = root->log_transid % 2;
4960 		/*
4961 		 * we allow two log transactions at a time, use different
4962 		 * EXTENT bit to differentiate dirty pages.
4963 		 */
4964 		if (buf->log_index == 0)
4965 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4966 					buf->start + buf->len - 1, GFP_NOFS);
4967 		else
4968 			set_extent_new(&root->dirty_log_pages, buf->start,
4969 					buf->start + buf->len - 1);
4970 	} else {
4971 		buf->log_index = -1;
4972 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4973 			 buf->start + buf->len - 1, GFP_NOFS);
4974 	}
4975 	/* this returns a buffer locked for blocking */
4976 	return buf;
4977 }
4978 
4979 /*
4980  * finds a free extent and does all the dirty work required for allocation
4981  * returns the tree buffer or an ERR_PTR on error.
4982  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4983 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4984 					     struct btrfs_root *root,
4985 					     u64 parent, u64 root_objectid,
4986 					     const struct btrfs_disk_key *key,
4987 					     int level, u64 hint,
4988 					     u64 empty_size,
4989 					     enum btrfs_lock_nesting nest)
4990 {
4991 	struct btrfs_fs_info *fs_info = root->fs_info;
4992 	struct btrfs_key ins;
4993 	struct btrfs_block_rsv *block_rsv;
4994 	struct extent_buffer *buf;
4995 	struct btrfs_delayed_extent_op *extent_op;
4996 	struct btrfs_ref generic_ref = { 0 };
4997 	u64 flags = 0;
4998 	int ret;
4999 	u32 blocksize = fs_info->nodesize;
5000 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5001 
5002 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5003 	if (btrfs_is_testing(fs_info)) {
5004 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5005 					    level, root_objectid, nest);
5006 		if (!IS_ERR(buf))
5007 			root->alloc_bytenr += blocksize;
5008 		return buf;
5009 	}
5010 #endif
5011 
5012 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5013 	if (IS_ERR(block_rsv))
5014 		return ERR_CAST(block_rsv);
5015 
5016 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5017 				   empty_size, hint, &ins, 0, 0);
5018 	if (ret)
5019 		goto out_unuse;
5020 
5021 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5022 				    root_objectid, nest);
5023 	if (IS_ERR(buf)) {
5024 		ret = PTR_ERR(buf);
5025 		goto out_free_reserved;
5026 	}
5027 
5028 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5029 		if (parent == 0)
5030 			parent = ins.objectid;
5031 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5032 	} else
5033 		BUG_ON(parent > 0);
5034 
5035 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5036 		extent_op = btrfs_alloc_delayed_extent_op();
5037 		if (!extent_op) {
5038 			ret = -ENOMEM;
5039 			goto out_free_buf;
5040 		}
5041 		if (key)
5042 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5043 		else
5044 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5045 		extent_op->flags_to_set = flags;
5046 		extent_op->update_key = skinny_metadata ? false : true;
5047 		extent_op->update_flags = true;
5048 		extent_op->level = level;
5049 
5050 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5051 				       ins.objectid, ins.offset, parent);
5052 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5053 				    root->root_key.objectid, false);
5054 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5055 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5056 		if (ret)
5057 			goto out_free_delayed;
5058 	}
5059 	return buf;
5060 
5061 out_free_delayed:
5062 	btrfs_free_delayed_extent_op(extent_op);
5063 out_free_buf:
5064 	btrfs_tree_unlock(buf);
5065 	free_extent_buffer(buf);
5066 out_free_reserved:
5067 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5068 out_unuse:
5069 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5070 	return ERR_PTR(ret);
5071 }
5072 
5073 struct walk_control {
5074 	u64 refs[BTRFS_MAX_LEVEL];
5075 	u64 flags[BTRFS_MAX_LEVEL];
5076 	struct btrfs_key update_progress;
5077 	struct btrfs_key drop_progress;
5078 	int drop_level;
5079 	int stage;
5080 	int level;
5081 	int shared_level;
5082 	int update_ref;
5083 	int keep_locks;
5084 	int reada_slot;
5085 	int reada_count;
5086 	int restarted;
5087 };
5088 
5089 #define DROP_REFERENCE	1
5090 #define UPDATE_BACKREF	2
5091 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5092 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5093 				     struct btrfs_root *root,
5094 				     struct walk_control *wc,
5095 				     struct btrfs_path *path)
5096 {
5097 	struct btrfs_fs_info *fs_info = root->fs_info;
5098 	u64 bytenr;
5099 	u64 generation;
5100 	u64 refs;
5101 	u64 flags;
5102 	u32 nritems;
5103 	struct btrfs_key key;
5104 	struct extent_buffer *eb;
5105 	int ret;
5106 	int slot;
5107 	int nread = 0;
5108 
5109 	if (path->slots[wc->level] < wc->reada_slot) {
5110 		wc->reada_count = wc->reada_count * 2 / 3;
5111 		wc->reada_count = max(wc->reada_count, 2);
5112 	} else {
5113 		wc->reada_count = wc->reada_count * 3 / 2;
5114 		wc->reada_count = min_t(int, wc->reada_count,
5115 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5116 	}
5117 
5118 	eb = path->nodes[wc->level];
5119 	nritems = btrfs_header_nritems(eb);
5120 
5121 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5122 		if (nread >= wc->reada_count)
5123 			break;
5124 
5125 		cond_resched();
5126 		bytenr = btrfs_node_blockptr(eb, slot);
5127 		generation = btrfs_node_ptr_generation(eb, slot);
5128 
5129 		if (slot == path->slots[wc->level])
5130 			goto reada;
5131 
5132 		if (wc->stage == UPDATE_BACKREF &&
5133 		    generation <= root->root_key.offset)
5134 			continue;
5135 
5136 		/* We don't lock the tree block, it's OK to be racy here */
5137 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5138 					       wc->level - 1, 1, &refs,
5139 					       &flags);
5140 		/* We don't care about errors in readahead. */
5141 		if (ret < 0)
5142 			continue;
5143 		BUG_ON(refs == 0);
5144 
5145 		if (wc->stage == DROP_REFERENCE) {
5146 			if (refs == 1)
5147 				goto reada;
5148 
5149 			if (wc->level == 1 &&
5150 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5151 				continue;
5152 			if (!wc->update_ref ||
5153 			    generation <= root->root_key.offset)
5154 				continue;
5155 			btrfs_node_key_to_cpu(eb, &key, slot);
5156 			ret = btrfs_comp_cpu_keys(&key,
5157 						  &wc->update_progress);
5158 			if (ret < 0)
5159 				continue;
5160 		} else {
5161 			if (wc->level == 1 &&
5162 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5163 				continue;
5164 		}
5165 reada:
5166 		btrfs_readahead_node_child(eb, slot);
5167 		nread++;
5168 	}
5169 	wc->reada_slot = slot;
5170 }
5171 
5172 /*
5173  * helper to process tree block while walking down the tree.
5174  *
5175  * when wc->stage == UPDATE_BACKREF, this function updates
5176  * back refs for pointers in the block.
5177  *
5178  * NOTE: return value 1 means we should stop walking down.
5179  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)5180 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5181 				   struct btrfs_root *root,
5182 				   struct btrfs_path *path,
5183 				   struct walk_control *wc, int lookup_info)
5184 {
5185 	struct btrfs_fs_info *fs_info = root->fs_info;
5186 	int level = wc->level;
5187 	struct extent_buffer *eb = path->nodes[level];
5188 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5189 	int ret;
5190 
5191 	if (wc->stage == UPDATE_BACKREF &&
5192 	    btrfs_header_owner(eb) != root->root_key.objectid)
5193 		return 1;
5194 
5195 	/*
5196 	 * when reference count of tree block is 1, it won't increase
5197 	 * again. once full backref flag is set, we never clear it.
5198 	 */
5199 	if (lookup_info &&
5200 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5201 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5202 		BUG_ON(!path->locks[level]);
5203 		ret = btrfs_lookup_extent_info(trans, fs_info,
5204 					       eb->start, level, 1,
5205 					       &wc->refs[level],
5206 					       &wc->flags[level]);
5207 		BUG_ON(ret == -ENOMEM);
5208 		if (ret)
5209 			return ret;
5210 		BUG_ON(wc->refs[level] == 0);
5211 	}
5212 
5213 	if (wc->stage == DROP_REFERENCE) {
5214 		if (wc->refs[level] > 1)
5215 			return 1;
5216 
5217 		if (path->locks[level] && !wc->keep_locks) {
5218 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5219 			path->locks[level] = 0;
5220 		}
5221 		return 0;
5222 	}
5223 
5224 	/* wc->stage == UPDATE_BACKREF */
5225 	if (!(wc->flags[level] & flag)) {
5226 		BUG_ON(!path->locks[level]);
5227 		ret = btrfs_inc_ref(trans, root, eb, 1);
5228 		BUG_ON(ret); /* -ENOMEM */
5229 		ret = btrfs_dec_ref(trans, root, eb, 0);
5230 		BUG_ON(ret); /* -ENOMEM */
5231 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5232 						  btrfs_header_level(eb));
5233 		BUG_ON(ret); /* -ENOMEM */
5234 		wc->flags[level] |= flag;
5235 	}
5236 
5237 	/*
5238 	 * the block is shared by multiple trees, so it's not good to
5239 	 * keep the tree lock
5240 	 */
5241 	if (path->locks[level] && level > 0) {
5242 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5243 		path->locks[level] = 0;
5244 	}
5245 	return 0;
5246 }
5247 
5248 /*
5249  * This is used to verify a ref exists for this root to deal with a bug where we
5250  * would have a drop_progress key that hadn't been updated properly.
5251  */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5252 static int check_ref_exists(struct btrfs_trans_handle *trans,
5253 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5254 			    int level)
5255 {
5256 	struct btrfs_path *path;
5257 	struct btrfs_extent_inline_ref *iref;
5258 	int ret;
5259 
5260 	path = btrfs_alloc_path();
5261 	if (!path)
5262 		return -ENOMEM;
5263 
5264 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5265 				    root->fs_info->nodesize, parent,
5266 				    root->root_key.objectid, level, 0);
5267 	btrfs_free_path(path);
5268 	if (ret == -ENOENT)
5269 		return 0;
5270 	if (ret < 0)
5271 		return ret;
5272 	return 1;
5273 }
5274 
5275 /*
5276  * helper to process tree block pointer.
5277  *
5278  * when wc->stage == DROP_REFERENCE, this function checks
5279  * reference count of the block pointed to. if the block
5280  * is shared and we need update back refs for the subtree
5281  * rooted at the block, this function changes wc->stage to
5282  * UPDATE_BACKREF. if the block is shared and there is no
5283  * need to update back, this function drops the reference
5284  * to the block.
5285  *
5286  * NOTE: return value 1 means we should stop walking down.
5287  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)5288 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5289 				 struct btrfs_root *root,
5290 				 struct btrfs_path *path,
5291 				 struct walk_control *wc, int *lookup_info)
5292 {
5293 	struct btrfs_fs_info *fs_info = root->fs_info;
5294 	u64 bytenr;
5295 	u64 generation;
5296 	u64 parent;
5297 	struct btrfs_key key;
5298 	struct btrfs_key first_key;
5299 	struct btrfs_ref ref = { 0 };
5300 	struct extent_buffer *next;
5301 	int level = wc->level;
5302 	int reada = 0;
5303 	int ret = 0;
5304 	bool need_account = false;
5305 
5306 	generation = btrfs_node_ptr_generation(path->nodes[level],
5307 					       path->slots[level]);
5308 	/*
5309 	 * if the lower level block was created before the snapshot
5310 	 * was created, we know there is no need to update back refs
5311 	 * for the subtree
5312 	 */
5313 	if (wc->stage == UPDATE_BACKREF &&
5314 	    generation <= root->root_key.offset) {
5315 		*lookup_info = 1;
5316 		return 1;
5317 	}
5318 
5319 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5320 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5321 			      path->slots[level]);
5322 
5323 	next = find_extent_buffer(fs_info, bytenr);
5324 	if (!next) {
5325 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5326 				root->root_key.objectid, level - 1);
5327 		if (IS_ERR(next))
5328 			return PTR_ERR(next);
5329 		reada = 1;
5330 	}
5331 	btrfs_tree_lock(next);
5332 
5333 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5334 				       &wc->refs[level - 1],
5335 				       &wc->flags[level - 1]);
5336 	if (ret < 0)
5337 		goto out_unlock;
5338 
5339 	if (unlikely(wc->refs[level - 1] == 0)) {
5340 		btrfs_err(fs_info, "Missing references.");
5341 		ret = -EIO;
5342 		goto out_unlock;
5343 	}
5344 	*lookup_info = 0;
5345 
5346 	if (wc->stage == DROP_REFERENCE) {
5347 		if (wc->refs[level - 1] > 1) {
5348 			need_account = true;
5349 			if (level == 1 &&
5350 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5351 				goto skip;
5352 
5353 			if (!wc->update_ref ||
5354 			    generation <= root->root_key.offset)
5355 				goto skip;
5356 
5357 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5358 					      path->slots[level]);
5359 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5360 			if (ret < 0)
5361 				goto skip;
5362 
5363 			wc->stage = UPDATE_BACKREF;
5364 			wc->shared_level = level - 1;
5365 		}
5366 	} else {
5367 		if (level == 1 &&
5368 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5369 			goto skip;
5370 	}
5371 
5372 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5373 		btrfs_tree_unlock(next);
5374 		free_extent_buffer(next);
5375 		next = NULL;
5376 		*lookup_info = 1;
5377 	}
5378 
5379 	if (!next) {
5380 		if (reada && level == 1)
5381 			reada_walk_down(trans, root, wc, path);
5382 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5383 				       generation, level - 1, &first_key);
5384 		if (IS_ERR(next)) {
5385 			return PTR_ERR(next);
5386 		} else if (!extent_buffer_uptodate(next)) {
5387 			free_extent_buffer(next);
5388 			return -EIO;
5389 		}
5390 		btrfs_tree_lock(next);
5391 	}
5392 
5393 	level--;
5394 	ASSERT(level == btrfs_header_level(next));
5395 	if (level != btrfs_header_level(next)) {
5396 		btrfs_err(root->fs_info, "mismatched level");
5397 		ret = -EIO;
5398 		goto out_unlock;
5399 	}
5400 	path->nodes[level] = next;
5401 	path->slots[level] = 0;
5402 	path->locks[level] = BTRFS_WRITE_LOCK;
5403 	wc->level = level;
5404 	if (wc->level == 1)
5405 		wc->reada_slot = 0;
5406 	return 0;
5407 skip:
5408 	wc->refs[level - 1] = 0;
5409 	wc->flags[level - 1] = 0;
5410 	if (wc->stage == DROP_REFERENCE) {
5411 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5412 			parent = path->nodes[level]->start;
5413 		} else {
5414 			ASSERT(root->root_key.objectid ==
5415 			       btrfs_header_owner(path->nodes[level]));
5416 			if (root->root_key.objectid !=
5417 			    btrfs_header_owner(path->nodes[level])) {
5418 				btrfs_err(root->fs_info,
5419 						"mismatched block owner");
5420 				ret = -EIO;
5421 				goto out_unlock;
5422 			}
5423 			parent = 0;
5424 		}
5425 
5426 		/*
5427 		 * If we had a drop_progress we need to verify the refs are set
5428 		 * as expected.  If we find our ref then we know that from here
5429 		 * on out everything should be correct, and we can clear the
5430 		 * ->restarted flag.
5431 		 */
5432 		if (wc->restarted) {
5433 			ret = check_ref_exists(trans, root, bytenr, parent,
5434 					       level - 1);
5435 			if (ret < 0)
5436 				goto out_unlock;
5437 			if (ret == 0)
5438 				goto no_delete;
5439 			ret = 0;
5440 			wc->restarted = 0;
5441 		}
5442 
5443 		/*
5444 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5445 		 * already accounted them at merge time (replace_path),
5446 		 * thus we could skip expensive subtree trace here.
5447 		 */
5448 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5449 		    need_account) {
5450 			ret = btrfs_qgroup_trace_subtree(trans, next,
5451 							 generation, level - 1);
5452 			if (ret) {
5453 				btrfs_err_rl(fs_info,
5454 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5455 					     ret);
5456 			}
5457 		}
5458 
5459 		/*
5460 		 * We need to update the next key in our walk control so we can
5461 		 * update the drop_progress key accordingly.  We don't care if
5462 		 * find_next_key doesn't find a key because that means we're at
5463 		 * the end and are going to clean up now.
5464 		 */
5465 		wc->drop_level = level;
5466 		find_next_key(path, level, &wc->drop_progress);
5467 
5468 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5469 				       fs_info->nodesize, parent);
5470 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5471 				    0, false);
5472 		ret = btrfs_free_extent(trans, &ref);
5473 		if (ret)
5474 			goto out_unlock;
5475 	}
5476 no_delete:
5477 	*lookup_info = 1;
5478 	ret = 1;
5479 
5480 out_unlock:
5481 	btrfs_tree_unlock(next);
5482 	free_extent_buffer(next);
5483 
5484 	return ret;
5485 }
5486 
5487 /*
5488  * helper to process tree block while walking up the tree.
5489  *
5490  * when wc->stage == DROP_REFERENCE, this function drops
5491  * reference count on the block.
5492  *
5493  * when wc->stage == UPDATE_BACKREF, this function changes
5494  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5495  * to UPDATE_BACKREF previously while processing the block.
5496  *
5497  * NOTE: return value 1 means we should stop walking up.
5498  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5499 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5500 				 struct btrfs_root *root,
5501 				 struct btrfs_path *path,
5502 				 struct walk_control *wc)
5503 {
5504 	struct btrfs_fs_info *fs_info = root->fs_info;
5505 	int ret;
5506 	int level = wc->level;
5507 	struct extent_buffer *eb = path->nodes[level];
5508 	u64 parent = 0;
5509 
5510 	if (wc->stage == UPDATE_BACKREF) {
5511 		BUG_ON(wc->shared_level < level);
5512 		if (level < wc->shared_level)
5513 			goto out;
5514 
5515 		ret = find_next_key(path, level + 1, &wc->update_progress);
5516 		if (ret > 0)
5517 			wc->update_ref = 0;
5518 
5519 		wc->stage = DROP_REFERENCE;
5520 		wc->shared_level = -1;
5521 		path->slots[level] = 0;
5522 
5523 		/*
5524 		 * check reference count again if the block isn't locked.
5525 		 * we should start walking down the tree again if reference
5526 		 * count is one.
5527 		 */
5528 		if (!path->locks[level]) {
5529 			BUG_ON(level == 0);
5530 			btrfs_tree_lock(eb);
5531 			path->locks[level] = BTRFS_WRITE_LOCK;
5532 
5533 			ret = btrfs_lookup_extent_info(trans, fs_info,
5534 						       eb->start, level, 1,
5535 						       &wc->refs[level],
5536 						       &wc->flags[level]);
5537 			if (ret < 0) {
5538 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5539 				path->locks[level] = 0;
5540 				return ret;
5541 			}
5542 			BUG_ON(wc->refs[level] == 0);
5543 			if (wc->refs[level] == 1) {
5544 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5545 				path->locks[level] = 0;
5546 				return 1;
5547 			}
5548 		}
5549 	}
5550 
5551 	/* wc->stage == DROP_REFERENCE */
5552 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5553 
5554 	if (wc->refs[level] == 1) {
5555 		if (level == 0) {
5556 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5557 				ret = btrfs_dec_ref(trans, root, eb, 1);
5558 			else
5559 				ret = btrfs_dec_ref(trans, root, eb, 0);
5560 			BUG_ON(ret); /* -ENOMEM */
5561 			if (is_fstree(root->root_key.objectid)) {
5562 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5563 				if (ret) {
5564 					btrfs_err_rl(fs_info,
5565 	"error %d accounting leaf items, quota is out of sync, rescan required",
5566 					     ret);
5567 				}
5568 			}
5569 		}
5570 		/* make block locked assertion in btrfs_clean_tree_block happy */
5571 		if (!path->locks[level] &&
5572 		    btrfs_header_generation(eb) == trans->transid) {
5573 			btrfs_tree_lock(eb);
5574 			path->locks[level] = BTRFS_WRITE_LOCK;
5575 		}
5576 		btrfs_clean_tree_block(eb);
5577 	}
5578 
5579 	if (eb == root->node) {
5580 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5581 			parent = eb->start;
5582 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5583 			goto owner_mismatch;
5584 	} else {
5585 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5586 			parent = path->nodes[level + 1]->start;
5587 		else if (root->root_key.objectid !=
5588 			 btrfs_header_owner(path->nodes[level + 1]))
5589 			goto owner_mismatch;
5590 	}
5591 
5592 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5593 			      wc->refs[level] == 1);
5594 out:
5595 	wc->refs[level] = 0;
5596 	wc->flags[level] = 0;
5597 	return 0;
5598 
5599 owner_mismatch:
5600 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5601 		     btrfs_header_owner(eb), root->root_key.objectid);
5602 	return -EUCLEAN;
5603 }
5604 
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5605 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5606 				   struct btrfs_root *root,
5607 				   struct btrfs_path *path,
5608 				   struct walk_control *wc)
5609 {
5610 	int level = wc->level;
5611 	int lookup_info = 1;
5612 	int ret;
5613 
5614 	while (level >= 0) {
5615 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5616 		if (ret > 0)
5617 			break;
5618 
5619 		if (level == 0)
5620 			break;
5621 
5622 		if (path->slots[level] >=
5623 		    btrfs_header_nritems(path->nodes[level]))
5624 			break;
5625 
5626 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5627 		if (ret > 0) {
5628 			path->slots[level]++;
5629 			continue;
5630 		} else if (ret < 0)
5631 			return ret;
5632 		level = wc->level;
5633 	}
5634 	return 0;
5635 }
5636 
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5637 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5638 				 struct btrfs_root *root,
5639 				 struct btrfs_path *path,
5640 				 struct walk_control *wc, int max_level)
5641 {
5642 	int level = wc->level;
5643 	int ret;
5644 
5645 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5646 	while (level < max_level && path->nodes[level]) {
5647 		wc->level = level;
5648 		if (path->slots[level] + 1 <
5649 		    btrfs_header_nritems(path->nodes[level])) {
5650 			path->slots[level]++;
5651 			return 0;
5652 		} else {
5653 			ret = walk_up_proc(trans, root, path, wc);
5654 			if (ret > 0)
5655 				return 0;
5656 			if (ret < 0)
5657 				return ret;
5658 
5659 			if (path->locks[level]) {
5660 				btrfs_tree_unlock_rw(path->nodes[level],
5661 						     path->locks[level]);
5662 				path->locks[level] = 0;
5663 			}
5664 			free_extent_buffer(path->nodes[level]);
5665 			path->nodes[level] = NULL;
5666 			level++;
5667 		}
5668 	}
5669 	return 1;
5670 }
5671 
5672 /*
5673  * drop a subvolume tree.
5674  *
5675  * this function traverses the tree freeing any blocks that only
5676  * referenced by the tree.
5677  *
5678  * when a shared tree block is found. this function decreases its
5679  * reference count by one. if update_ref is true, this function
5680  * also make sure backrefs for the shared block and all lower level
5681  * blocks are properly updated.
5682  *
5683  * If called with for_reloc == 0, may exit early with -EAGAIN
5684  */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5685 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5686 {
5687 	const bool is_reloc_root = (root->root_key.objectid ==
5688 				    BTRFS_TREE_RELOC_OBJECTID);
5689 	struct btrfs_fs_info *fs_info = root->fs_info;
5690 	struct btrfs_path *path;
5691 	struct btrfs_trans_handle *trans;
5692 	struct btrfs_root *tree_root = fs_info->tree_root;
5693 	struct btrfs_root_item *root_item = &root->root_item;
5694 	struct walk_control *wc;
5695 	struct btrfs_key key;
5696 	int err = 0;
5697 	int ret;
5698 	int level;
5699 	bool root_dropped = false;
5700 	bool unfinished_drop = false;
5701 
5702 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5703 
5704 	path = btrfs_alloc_path();
5705 	if (!path) {
5706 		err = -ENOMEM;
5707 		goto out;
5708 	}
5709 
5710 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5711 	if (!wc) {
5712 		btrfs_free_path(path);
5713 		err = -ENOMEM;
5714 		goto out;
5715 	}
5716 
5717 	/*
5718 	 * Use join to avoid potential EINTR from transaction start. See
5719 	 * wait_reserve_ticket and the whole reservation callchain.
5720 	 */
5721 	if (for_reloc)
5722 		trans = btrfs_join_transaction(tree_root);
5723 	else
5724 		trans = btrfs_start_transaction(tree_root, 0);
5725 	if (IS_ERR(trans)) {
5726 		err = PTR_ERR(trans);
5727 		goto out_free;
5728 	}
5729 
5730 	err = btrfs_run_delayed_items(trans);
5731 	if (err)
5732 		goto out_end_trans;
5733 
5734 	/*
5735 	 * This will help us catch people modifying the fs tree while we're
5736 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5737 	 * dropped as we unlock the root node and parent nodes as we walk down
5738 	 * the tree, assuming nothing will change.  If something does change
5739 	 * then we'll have stale information and drop references to blocks we've
5740 	 * already dropped.
5741 	 */
5742 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5743 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5744 
5745 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5746 		level = btrfs_header_level(root->node);
5747 		path->nodes[level] = btrfs_lock_root_node(root);
5748 		path->slots[level] = 0;
5749 		path->locks[level] = BTRFS_WRITE_LOCK;
5750 		memset(&wc->update_progress, 0,
5751 		       sizeof(wc->update_progress));
5752 	} else {
5753 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5754 		memcpy(&wc->update_progress, &key,
5755 		       sizeof(wc->update_progress));
5756 
5757 		level = btrfs_root_drop_level(root_item);
5758 		BUG_ON(level == 0);
5759 		path->lowest_level = level;
5760 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5761 		path->lowest_level = 0;
5762 		if (ret < 0) {
5763 			err = ret;
5764 			goto out_end_trans;
5765 		}
5766 		WARN_ON(ret > 0);
5767 
5768 		/*
5769 		 * unlock our path, this is safe because only this
5770 		 * function is allowed to delete this snapshot
5771 		 */
5772 		btrfs_unlock_up_safe(path, 0);
5773 
5774 		level = btrfs_header_level(root->node);
5775 		while (1) {
5776 			btrfs_tree_lock(path->nodes[level]);
5777 			path->locks[level] = BTRFS_WRITE_LOCK;
5778 
5779 			ret = btrfs_lookup_extent_info(trans, fs_info,
5780 						path->nodes[level]->start,
5781 						level, 1, &wc->refs[level],
5782 						&wc->flags[level]);
5783 			if (ret < 0) {
5784 				err = ret;
5785 				goto out_end_trans;
5786 			}
5787 			BUG_ON(wc->refs[level] == 0);
5788 
5789 			if (level == btrfs_root_drop_level(root_item))
5790 				break;
5791 
5792 			btrfs_tree_unlock(path->nodes[level]);
5793 			path->locks[level] = 0;
5794 			WARN_ON(wc->refs[level] != 1);
5795 			level--;
5796 		}
5797 	}
5798 
5799 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5800 	wc->level = level;
5801 	wc->shared_level = -1;
5802 	wc->stage = DROP_REFERENCE;
5803 	wc->update_ref = update_ref;
5804 	wc->keep_locks = 0;
5805 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5806 
5807 	while (1) {
5808 
5809 		ret = walk_down_tree(trans, root, path, wc);
5810 		if (ret < 0) {
5811 			err = ret;
5812 			break;
5813 		}
5814 
5815 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5816 		if (ret < 0) {
5817 			err = ret;
5818 			break;
5819 		}
5820 
5821 		if (ret > 0) {
5822 			BUG_ON(wc->stage != DROP_REFERENCE);
5823 			break;
5824 		}
5825 
5826 		if (wc->stage == DROP_REFERENCE) {
5827 			wc->drop_level = wc->level;
5828 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5829 					      &wc->drop_progress,
5830 					      path->slots[wc->drop_level]);
5831 		}
5832 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5833 				      &wc->drop_progress);
5834 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5835 
5836 		BUG_ON(wc->level == 0);
5837 		if (btrfs_should_end_transaction(trans) ||
5838 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5839 			ret = btrfs_update_root(trans, tree_root,
5840 						&root->root_key,
5841 						root_item);
5842 			if (ret) {
5843 				btrfs_abort_transaction(trans, ret);
5844 				err = ret;
5845 				goto out_end_trans;
5846 			}
5847 
5848 			if (!is_reloc_root)
5849 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5850 
5851 			btrfs_end_transaction_throttle(trans);
5852 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5853 				btrfs_debug(fs_info,
5854 					    "drop snapshot early exit");
5855 				err = -EAGAIN;
5856 				goto out_free;
5857 			}
5858 
5859 		       /*
5860 			* Use join to avoid potential EINTR from transaction
5861 			* start. See wait_reserve_ticket and the whole
5862 			* reservation callchain.
5863 			*/
5864 			if (for_reloc)
5865 				trans = btrfs_join_transaction(tree_root);
5866 			else
5867 				trans = btrfs_start_transaction(tree_root, 0);
5868 			if (IS_ERR(trans)) {
5869 				err = PTR_ERR(trans);
5870 				goto out_free;
5871 			}
5872 		}
5873 	}
5874 	btrfs_release_path(path);
5875 	if (err)
5876 		goto out_end_trans;
5877 
5878 	ret = btrfs_del_root(trans, &root->root_key);
5879 	if (ret) {
5880 		btrfs_abort_transaction(trans, ret);
5881 		err = ret;
5882 		goto out_end_trans;
5883 	}
5884 
5885 	if (!is_reloc_root) {
5886 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5887 				      NULL, NULL);
5888 		if (ret < 0) {
5889 			btrfs_abort_transaction(trans, ret);
5890 			err = ret;
5891 			goto out_end_trans;
5892 		} else if (ret > 0) {
5893 			/* if we fail to delete the orphan item this time
5894 			 * around, it'll get picked up the next time.
5895 			 *
5896 			 * The most common failure here is just -ENOENT.
5897 			 */
5898 			btrfs_del_orphan_item(trans, tree_root,
5899 					      root->root_key.objectid);
5900 		}
5901 	}
5902 
5903 	/*
5904 	 * This subvolume is going to be completely dropped, and won't be
5905 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5906 	 * commit transaction time.  So free it here manually.
5907 	 */
5908 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5909 	btrfs_qgroup_free_meta_all_pertrans(root);
5910 
5911 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5912 		btrfs_add_dropped_root(trans, root);
5913 	else
5914 		btrfs_put_root(root);
5915 	root_dropped = true;
5916 out_end_trans:
5917 	if (!is_reloc_root)
5918 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5919 
5920 	btrfs_end_transaction_throttle(trans);
5921 out_free:
5922 	kfree(wc);
5923 	btrfs_free_path(path);
5924 out:
5925 	/*
5926 	 * We were an unfinished drop root, check to see if there are any
5927 	 * pending, and if not clear and wake up any waiters.
5928 	 */
5929 	if (!err && unfinished_drop)
5930 		btrfs_maybe_wake_unfinished_drop(fs_info);
5931 
5932 	/*
5933 	 * So if we need to stop dropping the snapshot for whatever reason we
5934 	 * need to make sure to add it back to the dead root list so that we
5935 	 * keep trying to do the work later.  This also cleans up roots if we
5936 	 * don't have it in the radix (like when we recover after a power fail
5937 	 * or unmount) so we don't leak memory.
5938 	 */
5939 	if (!for_reloc && !root_dropped)
5940 		btrfs_add_dead_root(root);
5941 	return err;
5942 }
5943 
5944 /*
5945  * drop subtree rooted at tree block 'node'.
5946  *
5947  * NOTE: this function will unlock and release tree block 'node'
5948  * only used by relocation code
5949  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5950 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5951 			struct btrfs_root *root,
5952 			struct extent_buffer *node,
5953 			struct extent_buffer *parent)
5954 {
5955 	struct btrfs_fs_info *fs_info = root->fs_info;
5956 	struct btrfs_path *path;
5957 	struct walk_control *wc;
5958 	int level;
5959 	int parent_level;
5960 	int ret = 0;
5961 	int wret;
5962 
5963 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5964 
5965 	path = btrfs_alloc_path();
5966 	if (!path)
5967 		return -ENOMEM;
5968 
5969 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5970 	if (!wc) {
5971 		btrfs_free_path(path);
5972 		return -ENOMEM;
5973 	}
5974 
5975 	btrfs_assert_tree_write_locked(parent);
5976 	parent_level = btrfs_header_level(parent);
5977 	atomic_inc(&parent->refs);
5978 	path->nodes[parent_level] = parent;
5979 	path->slots[parent_level] = btrfs_header_nritems(parent);
5980 
5981 	btrfs_assert_tree_write_locked(node);
5982 	level = btrfs_header_level(node);
5983 	path->nodes[level] = node;
5984 	path->slots[level] = 0;
5985 	path->locks[level] = BTRFS_WRITE_LOCK;
5986 
5987 	wc->refs[parent_level] = 1;
5988 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5989 	wc->level = level;
5990 	wc->shared_level = -1;
5991 	wc->stage = DROP_REFERENCE;
5992 	wc->update_ref = 0;
5993 	wc->keep_locks = 1;
5994 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5995 
5996 	while (1) {
5997 		wret = walk_down_tree(trans, root, path, wc);
5998 		if (wret < 0) {
5999 			ret = wret;
6000 			break;
6001 		}
6002 
6003 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6004 		if (wret < 0)
6005 			ret = wret;
6006 		if (wret != 0)
6007 			break;
6008 	}
6009 
6010 	kfree(wc);
6011 	btrfs_free_path(path);
6012 	return ret;
6013 }
6014 
6015 /*
6016  * helper to account the unused space of all the readonly block group in the
6017  * space_info. takes mirrors into account.
6018  */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)6019 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6020 {
6021 	struct btrfs_block_group *block_group;
6022 	u64 free_bytes = 0;
6023 	int factor;
6024 
6025 	/* It's df, we don't care if it's racy */
6026 	if (list_empty(&sinfo->ro_bgs))
6027 		return 0;
6028 
6029 	spin_lock(&sinfo->lock);
6030 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6031 		spin_lock(&block_group->lock);
6032 
6033 		if (!block_group->ro) {
6034 			spin_unlock(&block_group->lock);
6035 			continue;
6036 		}
6037 
6038 		factor = btrfs_bg_type_to_factor(block_group->flags);
6039 		free_bytes += (block_group->length -
6040 			       block_group->used) * factor;
6041 
6042 		spin_unlock(&block_group->lock);
6043 	}
6044 	spin_unlock(&sinfo->lock);
6045 
6046 	return free_bytes;
6047 }
6048 
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6049 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6050 				   u64 start, u64 end)
6051 {
6052 	return unpin_extent_range(fs_info, start, end, false);
6053 }
6054 
6055 /*
6056  * It used to be that old block groups would be left around forever.
6057  * Iterating over them would be enough to trim unused space.  Since we
6058  * now automatically remove them, we also need to iterate over unallocated
6059  * space.
6060  *
6061  * We don't want a transaction for this since the discard may take a
6062  * substantial amount of time.  We don't require that a transaction be
6063  * running, but we do need to take a running transaction into account
6064  * to ensure that we're not discarding chunks that were released or
6065  * allocated in the current transaction.
6066  *
6067  * Holding the chunks lock will prevent other threads from allocating
6068  * or releasing chunks, but it won't prevent a running transaction
6069  * from committing and releasing the memory that the pending chunks
6070  * list head uses.  For that, we need to take a reference to the
6071  * transaction and hold the commit root sem.  We only need to hold
6072  * it while performing the free space search since we have already
6073  * held back allocations.
6074  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6075 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6076 {
6077 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6078 	int ret;
6079 
6080 	*trimmed = 0;
6081 
6082 	/* Discard not supported = nothing to do. */
6083 	if (!bdev_max_discard_sectors(device->bdev))
6084 		return 0;
6085 
6086 	/* Not writable = nothing to do. */
6087 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6088 		return 0;
6089 
6090 	/* No free space = nothing to do. */
6091 	if (device->total_bytes <= device->bytes_used)
6092 		return 0;
6093 
6094 	ret = 0;
6095 
6096 	while (1) {
6097 		struct btrfs_fs_info *fs_info = device->fs_info;
6098 		u64 bytes;
6099 
6100 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6101 		if (ret)
6102 			break;
6103 
6104 		find_first_clear_extent_bit(&device->alloc_state, start,
6105 					    &start, &end,
6106 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6107 
6108 		/* Check if there are any CHUNK_* bits left */
6109 		if (start > device->total_bytes) {
6110 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6111 			btrfs_warn_in_rcu(fs_info,
6112 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6113 					  start, end - start + 1,
6114 					  rcu_str_deref(device->name),
6115 					  device->total_bytes);
6116 			mutex_unlock(&fs_info->chunk_mutex);
6117 			ret = 0;
6118 			break;
6119 		}
6120 
6121 		/* Ensure we skip the reserved space on each device. */
6122 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6123 
6124 		/*
6125 		 * If find_first_clear_extent_bit find a range that spans the
6126 		 * end of the device it will set end to -1, in this case it's up
6127 		 * to the caller to trim the value to the size of the device.
6128 		 */
6129 		end = min(end, device->total_bytes - 1);
6130 
6131 		len = end - start + 1;
6132 
6133 		/* We didn't find any extents */
6134 		if (!len) {
6135 			mutex_unlock(&fs_info->chunk_mutex);
6136 			ret = 0;
6137 			break;
6138 		}
6139 
6140 		ret = btrfs_issue_discard(device->bdev, start, len,
6141 					  &bytes);
6142 		if (!ret)
6143 			set_extent_bits(&device->alloc_state, start,
6144 					start + bytes - 1,
6145 					CHUNK_TRIMMED);
6146 		mutex_unlock(&fs_info->chunk_mutex);
6147 
6148 		if (ret)
6149 			break;
6150 
6151 		start += len;
6152 		*trimmed += bytes;
6153 
6154 		if (fatal_signal_pending(current)) {
6155 			ret = -ERESTARTSYS;
6156 			break;
6157 		}
6158 
6159 		cond_resched();
6160 	}
6161 
6162 	return ret;
6163 }
6164 
6165 /*
6166  * Trim the whole filesystem by:
6167  * 1) trimming the free space in each block group
6168  * 2) trimming the unallocated space on each device
6169  *
6170  * This will also continue trimming even if a block group or device encounters
6171  * an error.  The return value will be the last error, or 0 if nothing bad
6172  * happens.
6173  */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6174 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6175 {
6176 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6177 	struct btrfs_block_group *cache = NULL;
6178 	struct btrfs_device *device;
6179 	u64 group_trimmed;
6180 	u64 range_end = U64_MAX;
6181 	u64 start;
6182 	u64 end;
6183 	u64 trimmed = 0;
6184 	u64 bg_failed = 0;
6185 	u64 dev_failed = 0;
6186 	int bg_ret = 0;
6187 	int dev_ret = 0;
6188 	int ret = 0;
6189 
6190 	if (range->start == U64_MAX)
6191 		return -EINVAL;
6192 
6193 	/*
6194 	 * Check range overflow if range->len is set.
6195 	 * The default range->len is U64_MAX.
6196 	 */
6197 	if (range->len != U64_MAX &&
6198 	    check_add_overflow(range->start, range->len, &range_end))
6199 		return -EINVAL;
6200 
6201 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6202 	for (; cache; cache = btrfs_next_block_group(cache)) {
6203 		if (cache->start >= range_end) {
6204 			btrfs_put_block_group(cache);
6205 			break;
6206 		}
6207 
6208 		start = max(range->start, cache->start);
6209 		end = min(range_end, cache->start + cache->length);
6210 
6211 		if (end - start >= range->minlen) {
6212 			if (!btrfs_block_group_done(cache)) {
6213 				ret = btrfs_cache_block_group(cache, true);
6214 				if (ret) {
6215 					bg_failed++;
6216 					bg_ret = ret;
6217 					continue;
6218 				}
6219 			}
6220 			ret = btrfs_trim_block_group(cache,
6221 						     &group_trimmed,
6222 						     start,
6223 						     end,
6224 						     range->minlen);
6225 
6226 			trimmed += group_trimmed;
6227 			if (ret) {
6228 				bg_failed++;
6229 				bg_ret = ret;
6230 				continue;
6231 			}
6232 		}
6233 	}
6234 
6235 	if (bg_failed)
6236 		btrfs_warn(fs_info,
6237 			"failed to trim %llu block group(s), last error %d",
6238 			bg_failed, bg_ret);
6239 
6240 	mutex_lock(&fs_devices->device_list_mutex);
6241 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6242 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6243 			continue;
6244 
6245 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6246 		if (ret) {
6247 			dev_failed++;
6248 			dev_ret = ret;
6249 			break;
6250 		}
6251 
6252 		trimmed += group_trimmed;
6253 	}
6254 	mutex_unlock(&fs_devices->device_list_mutex);
6255 
6256 	if (dev_failed)
6257 		btrfs_warn(fs_info,
6258 			"failed to trim %llu device(s), last error %d",
6259 			dev_failed, dev_ret);
6260 	range->len = trimmed;
6261 	if (bg_ret)
6262 		return bg_ret;
6263 	return dev_ret;
6264 }
6265