1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20
21 /*
22 * Return target flags in extended format or 0 if restripe for this chunk_type
23 * is not in progress
24 *
25 * Should be called with balance_lock held
26 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 u64 target = 0;
31
32 if (!bctl)
33 return 0;
34
35 if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 }
45
46 return target;
47 }
48
49 /*
50 * @flags: available profiles in extended format (see ctree.h)
51 *
52 * Return reduced profile in chunk format. If profile changing is in progress
53 * (either running or paused) picks the target profile (if it's already
54 * available), otherwise falls back to plain reducing.
55 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 u64 num_devices = fs_info->fs_devices->rw_devices;
59 u64 target;
60 u64 raid_type;
61 u64 allowed = 0;
62
63 /*
64 * See if restripe for this chunk_type is in progress, if so try to
65 * reduce to the target profile
66 */
67 spin_lock(&fs_info->balance_lock);
68 target = get_restripe_target(fs_info, flags);
69 if (target) {
70 spin_unlock(&fs_info->balance_lock);
71 return extended_to_chunk(target);
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 /* Select the highest-redundancy RAID level. */
83 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
84 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
85 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
86 allowed = BTRFS_BLOCK_GROUP_RAID6;
87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
88 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
89 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
90 allowed = BTRFS_BLOCK_GROUP_RAID5;
91 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
92 allowed = BTRFS_BLOCK_GROUP_RAID10;
93 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
94 allowed = BTRFS_BLOCK_GROUP_RAID1;
95 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
96 allowed = BTRFS_BLOCK_GROUP_DUP;
97 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
98 allowed = BTRFS_BLOCK_GROUP_RAID0;
99
100 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
101
102 return extended_to_chunk(flags | allowed);
103 }
104
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)105 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
106 {
107 unsigned seq;
108 u64 flags;
109
110 do {
111 flags = orig_flags;
112 seq = read_seqbegin(&fs_info->profiles_lock);
113
114 if (flags & BTRFS_BLOCK_GROUP_DATA)
115 flags |= fs_info->avail_data_alloc_bits;
116 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
117 flags |= fs_info->avail_system_alloc_bits;
118 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
119 flags |= fs_info->avail_metadata_alloc_bits;
120 } while (read_seqretry(&fs_info->profiles_lock, seq));
121
122 return btrfs_reduce_alloc_profile(fs_info, flags);
123 }
124
btrfs_get_block_group(struct btrfs_block_group * cache)125 void btrfs_get_block_group(struct btrfs_block_group *cache)
126 {
127 refcount_inc(&cache->refs);
128 }
129
btrfs_put_block_group(struct btrfs_block_group * cache)130 void btrfs_put_block_group(struct btrfs_block_group *cache)
131 {
132 if (refcount_dec_and_test(&cache->refs)) {
133 WARN_ON(cache->pinned > 0);
134 /*
135 * If there was a failure to cleanup a log tree, very likely due
136 * to an IO failure on a writeback attempt of one or more of its
137 * extent buffers, we could not do proper (and cheap) unaccounting
138 * of their reserved space, so don't warn on reserved > 0 in that
139 * case.
140 */
141 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
142 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
143 WARN_ON(cache->reserved > 0);
144
145 /*
146 * A block_group shouldn't be on the discard_list anymore.
147 * Remove the block_group from the discard_list to prevent us
148 * from causing a panic due to NULL pointer dereference.
149 */
150 if (WARN_ON(!list_empty(&cache->discard_list)))
151 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
152 cache);
153
154 /*
155 * If not empty, someone is still holding mutex of
156 * full_stripe_lock, which can only be released by caller.
157 * And it will definitely cause use-after-free when caller
158 * tries to release full stripe lock.
159 *
160 * No better way to resolve, but only to warn.
161 */
162 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
163 kfree(cache->free_space_ctl);
164 kfree(cache->physical_map);
165 kfree(cache);
166 }
167 }
168
169 /*
170 * This adds the block group to the fs_info rb tree for the block group cache
171 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)172 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
173 struct btrfs_block_group *block_group)
174 {
175 struct rb_node **p;
176 struct rb_node *parent = NULL;
177 struct btrfs_block_group *cache;
178 bool leftmost = true;
179
180 ASSERT(block_group->length != 0);
181
182 write_lock(&info->block_group_cache_lock);
183 p = &info->block_group_cache_tree.rb_root.rb_node;
184
185 while (*p) {
186 parent = *p;
187 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
188 if (block_group->start < cache->start) {
189 p = &(*p)->rb_left;
190 } else if (block_group->start > cache->start) {
191 p = &(*p)->rb_right;
192 leftmost = false;
193 } else {
194 write_unlock(&info->block_group_cache_lock);
195 return -EEXIST;
196 }
197 }
198
199 rb_link_node(&block_group->cache_node, parent, p);
200 rb_insert_color_cached(&block_group->cache_node,
201 &info->block_group_cache_tree, leftmost);
202
203 write_unlock(&info->block_group_cache_lock);
204
205 return 0;
206 }
207
208 /*
209 * This will return the block group at or after bytenr if contains is 0, else
210 * it will return the block group that contains the bytenr
211 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)212 static struct btrfs_block_group *block_group_cache_tree_search(
213 struct btrfs_fs_info *info, u64 bytenr, int contains)
214 {
215 struct btrfs_block_group *cache, *ret = NULL;
216 struct rb_node *n;
217 u64 end, start;
218
219 read_lock(&info->block_group_cache_lock);
220 n = info->block_group_cache_tree.rb_root.rb_node;
221
222 while (n) {
223 cache = rb_entry(n, struct btrfs_block_group, cache_node);
224 end = cache->start + cache->length - 1;
225 start = cache->start;
226
227 if (bytenr < start) {
228 if (!contains && (!ret || start < ret->start))
229 ret = cache;
230 n = n->rb_left;
231 } else if (bytenr > start) {
232 if (contains && bytenr <= end) {
233 ret = cache;
234 break;
235 }
236 n = n->rb_right;
237 } else {
238 ret = cache;
239 break;
240 }
241 }
242 if (ret)
243 btrfs_get_block_group(ret);
244 read_unlock(&info->block_group_cache_lock);
245
246 return ret;
247 }
248
249 /*
250 * Return the block group that starts at or after bytenr
251 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)252 struct btrfs_block_group *btrfs_lookup_first_block_group(
253 struct btrfs_fs_info *info, u64 bytenr)
254 {
255 return block_group_cache_tree_search(info, bytenr, 0);
256 }
257
258 /*
259 * Return the block group that contains the given bytenr
260 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)261 struct btrfs_block_group *btrfs_lookup_block_group(
262 struct btrfs_fs_info *info, u64 bytenr)
263 {
264 return block_group_cache_tree_search(info, bytenr, 1);
265 }
266
btrfs_next_block_group(struct btrfs_block_group * cache)267 struct btrfs_block_group *btrfs_next_block_group(
268 struct btrfs_block_group *cache)
269 {
270 struct btrfs_fs_info *fs_info = cache->fs_info;
271 struct rb_node *node;
272
273 read_lock(&fs_info->block_group_cache_lock);
274
275 /* If our block group was removed, we need a full search. */
276 if (RB_EMPTY_NODE(&cache->cache_node)) {
277 const u64 next_bytenr = cache->start + cache->length;
278
279 read_unlock(&fs_info->block_group_cache_lock);
280 btrfs_put_block_group(cache);
281 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
282 }
283 node = rb_next(&cache->cache_node);
284 btrfs_put_block_group(cache);
285 if (node) {
286 cache = rb_entry(node, struct btrfs_block_group, cache_node);
287 btrfs_get_block_group(cache);
288 } else
289 cache = NULL;
290 read_unlock(&fs_info->block_group_cache_lock);
291 return cache;
292 }
293
294 /**
295 * Check if we can do a NOCOW write for a given extent.
296 *
297 * @fs_info: The filesystem information object.
298 * @bytenr: Logical start address of the extent.
299 *
300 * Check if we can do a NOCOW write for the given extent, and increments the
301 * number of NOCOW writers in the block group that contains the extent, as long
302 * as the block group exists and it's currently not in read-only mode.
303 *
304 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
305 * is responsible for calling btrfs_dec_nocow_writers() later.
306 *
307 * Or NULL if we can not do a NOCOW write
308 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)309 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
310 u64 bytenr)
311 {
312 struct btrfs_block_group *bg;
313 bool can_nocow = true;
314
315 bg = btrfs_lookup_block_group(fs_info, bytenr);
316 if (!bg)
317 return NULL;
318
319 spin_lock(&bg->lock);
320 if (bg->ro)
321 can_nocow = false;
322 else
323 atomic_inc(&bg->nocow_writers);
324 spin_unlock(&bg->lock);
325
326 if (!can_nocow) {
327 btrfs_put_block_group(bg);
328 return NULL;
329 }
330
331 /* No put on block group, done by btrfs_dec_nocow_writers(). */
332 return bg;
333 }
334
335 /**
336 * Decrement the number of NOCOW writers in a block group.
337 *
338 * @bg: The block group.
339 *
340 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
341 * and on the block group returned by that call. Typically this is called after
342 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
343 * relocation.
344 *
345 * After this call, the caller should not use the block group anymore. It it wants
346 * to use it, then it should get a reference on it before calling this function.
347 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)348 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
349 {
350 if (atomic_dec_and_test(&bg->nocow_writers))
351 wake_up_var(&bg->nocow_writers);
352
353 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
354 btrfs_put_block_group(bg);
355 }
356
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)357 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
358 {
359 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
360 }
361
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)362 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
363 const u64 start)
364 {
365 struct btrfs_block_group *bg;
366
367 bg = btrfs_lookup_block_group(fs_info, start);
368 ASSERT(bg);
369 if (atomic_dec_and_test(&bg->reservations))
370 wake_up_var(&bg->reservations);
371 btrfs_put_block_group(bg);
372 }
373
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)374 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
375 {
376 struct btrfs_space_info *space_info = bg->space_info;
377
378 ASSERT(bg->ro);
379
380 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
381 return;
382
383 /*
384 * Our block group is read only but before we set it to read only,
385 * some task might have had allocated an extent from it already, but it
386 * has not yet created a respective ordered extent (and added it to a
387 * root's list of ordered extents).
388 * Therefore wait for any task currently allocating extents, since the
389 * block group's reservations counter is incremented while a read lock
390 * on the groups' semaphore is held and decremented after releasing
391 * the read access on that semaphore and creating the ordered extent.
392 */
393 down_write(&space_info->groups_sem);
394 up_write(&space_info->groups_sem);
395
396 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
397 }
398
btrfs_get_caching_control(struct btrfs_block_group * cache)399 struct btrfs_caching_control *btrfs_get_caching_control(
400 struct btrfs_block_group *cache)
401 {
402 struct btrfs_caching_control *ctl;
403
404 spin_lock(&cache->lock);
405 if (!cache->caching_ctl) {
406 spin_unlock(&cache->lock);
407 return NULL;
408 }
409
410 ctl = cache->caching_ctl;
411 refcount_inc(&ctl->count);
412 spin_unlock(&cache->lock);
413 return ctl;
414 }
415
btrfs_put_caching_control(struct btrfs_caching_control * ctl)416 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
417 {
418 if (refcount_dec_and_test(&ctl->count))
419 kfree(ctl);
420 }
421
422 /*
423 * When we wait for progress in the block group caching, its because our
424 * allocation attempt failed at least once. So, we must sleep and let some
425 * progress happen before we try again.
426 *
427 * This function will sleep at least once waiting for new free space to show
428 * up, and then it will check the block group free space numbers for our min
429 * num_bytes. Another option is to have it go ahead and look in the rbtree for
430 * a free extent of a given size, but this is a good start.
431 *
432 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
433 * any of the information in this block group.
434 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)435 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
436 u64 num_bytes)
437 {
438 struct btrfs_caching_control *caching_ctl;
439 int progress;
440
441 caching_ctl = btrfs_get_caching_control(cache);
442 if (!caching_ctl)
443 return;
444
445 /*
446 * We've already failed to allocate from this block group, so even if
447 * there's enough space in the block group it isn't contiguous enough to
448 * allow for an allocation, so wait for at least the next wakeup tick,
449 * or for the thing to be done.
450 */
451 progress = atomic_read(&caching_ctl->progress);
452
453 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
454 (progress != atomic_read(&caching_ctl->progress) &&
455 (cache->free_space_ctl->free_space >= num_bytes)));
456
457 btrfs_put_caching_control(caching_ctl);
458 }
459
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)460 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
461 struct btrfs_caching_control *caching_ctl)
462 {
463 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
464 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
465 }
466
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)467 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
468 {
469 struct btrfs_caching_control *caching_ctl;
470 int ret;
471
472 caching_ctl = btrfs_get_caching_control(cache);
473 if (!caching_ctl)
474 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
475 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
476 btrfs_put_caching_control(caching_ctl);
477 return ret;
478 }
479
480 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)481 static void fragment_free_space(struct btrfs_block_group *block_group)
482 {
483 struct btrfs_fs_info *fs_info = block_group->fs_info;
484 u64 start = block_group->start;
485 u64 len = block_group->length;
486 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
487 fs_info->nodesize : fs_info->sectorsize;
488 u64 step = chunk << 1;
489
490 while (len > chunk) {
491 btrfs_remove_free_space(block_group, start, chunk);
492 start += step;
493 if (len < step)
494 len = 0;
495 else
496 len -= step;
497 }
498 }
499 #endif
500
501 /*
502 * This is only called by btrfs_cache_block_group, since we could have freed
503 * extents we need to check the pinned_extents for any extents that can't be
504 * used yet since their free space will be released as soon as the transaction
505 * commits.
506 */
add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)507 int add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end,
508 u64 *total_added_ret)
509 {
510 struct btrfs_fs_info *info = block_group->fs_info;
511 u64 extent_start, extent_end, size;
512 int ret;
513
514 if (total_added_ret)
515 *total_added_ret = 0;
516
517 while (start < end) {
518 ret = find_first_extent_bit(&info->excluded_extents, start,
519 &extent_start, &extent_end,
520 EXTENT_DIRTY | EXTENT_UPTODATE,
521 NULL);
522 if (ret)
523 break;
524
525 if (extent_start <= start) {
526 start = extent_end + 1;
527 } else if (extent_start > start && extent_start < end) {
528 size = extent_start - start;
529 ret = btrfs_add_free_space_async_trimmed(block_group,
530 start, size);
531 if (ret)
532 return ret;
533 if (total_added_ret)
534 *total_added_ret += size;
535 start = extent_end + 1;
536 } else {
537 break;
538 }
539 }
540
541 if (start < end) {
542 size = end - start;
543 ret = btrfs_add_free_space_async_trimmed(block_group, start,
544 size);
545 if (ret)
546 return ret;
547 if (total_added_ret)
548 *total_added_ret += size;
549 }
550
551 return 0;
552 }
553
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)554 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
555 {
556 struct btrfs_block_group *block_group = caching_ctl->block_group;
557 struct btrfs_fs_info *fs_info = block_group->fs_info;
558 struct btrfs_root *extent_root;
559 struct btrfs_path *path;
560 struct extent_buffer *leaf;
561 struct btrfs_key key;
562 u64 total_found = 0;
563 u64 last = 0;
564 u32 nritems;
565 int ret;
566 bool wakeup = true;
567
568 path = btrfs_alloc_path();
569 if (!path)
570 return -ENOMEM;
571
572 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
573 extent_root = btrfs_extent_root(fs_info, last);
574
575 #ifdef CONFIG_BTRFS_DEBUG
576 /*
577 * If we're fragmenting we don't want to make anybody think we can
578 * allocate from this block group until we've had a chance to fragment
579 * the free space.
580 */
581 if (btrfs_should_fragment_free_space(block_group))
582 wakeup = false;
583 #endif
584 /*
585 * We don't want to deadlock with somebody trying to allocate a new
586 * extent for the extent root while also trying to search the extent
587 * root to add free space. So we skip locking and search the commit
588 * root, since its read-only
589 */
590 path->skip_locking = 1;
591 path->search_commit_root = 1;
592 path->reada = READA_FORWARD;
593
594 key.objectid = last;
595 key.offset = 0;
596 key.type = BTRFS_EXTENT_ITEM_KEY;
597
598 next:
599 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
600 if (ret < 0)
601 goto out;
602
603 leaf = path->nodes[0];
604 nritems = btrfs_header_nritems(leaf);
605
606 while (1) {
607 if (btrfs_fs_closing(fs_info) > 1) {
608 last = (u64)-1;
609 break;
610 }
611
612 if (path->slots[0] < nritems) {
613 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
614 } else {
615 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
616 if (ret)
617 break;
618
619 if (need_resched() ||
620 rwsem_is_contended(&fs_info->commit_root_sem)) {
621 btrfs_release_path(path);
622 up_read(&fs_info->commit_root_sem);
623 mutex_unlock(&caching_ctl->mutex);
624 cond_resched();
625 mutex_lock(&caching_ctl->mutex);
626 down_read(&fs_info->commit_root_sem);
627 goto next;
628 }
629
630 ret = btrfs_next_leaf(extent_root, path);
631 if (ret < 0)
632 goto out;
633 if (ret)
634 break;
635 leaf = path->nodes[0];
636 nritems = btrfs_header_nritems(leaf);
637 continue;
638 }
639
640 if (key.objectid < last) {
641 key.objectid = last;
642 key.offset = 0;
643 key.type = BTRFS_EXTENT_ITEM_KEY;
644 btrfs_release_path(path);
645 goto next;
646 }
647
648 if (key.objectid < block_group->start) {
649 path->slots[0]++;
650 continue;
651 }
652
653 if (key.objectid >= block_group->start + block_group->length)
654 break;
655
656 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
657 key.type == BTRFS_METADATA_ITEM_KEY) {
658 u64 space_added;
659
660 ret = add_new_free_space(block_group, last, key.objectid,
661 &space_added);
662 if (ret)
663 goto out;
664 total_found += space_added;
665 if (key.type == BTRFS_METADATA_ITEM_KEY)
666 last = key.objectid +
667 fs_info->nodesize;
668 else
669 last = key.objectid + key.offset;
670
671 if (total_found > CACHING_CTL_WAKE_UP) {
672 total_found = 0;
673 if (wakeup) {
674 atomic_inc(&caching_ctl->progress);
675 wake_up(&caching_ctl->wait);
676 }
677 }
678 }
679 path->slots[0]++;
680 }
681
682 ret = add_new_free_space(block_group, last,
683 block_group->start + block_group->length,
684 NULL);
685 out:
686 btrfs_free_path(path);
687 return ret;
688 }
689
caching_thread(struct btrfs_work * work)690 static noinline void caching_thread(struct btrfs_work *work)
691 {
692 struct btrfs_block_group *block_group;
693 struct btrfs_fs_info *fs_info;
694 struct btrfs_caching_control *caching_ctl;
695 int ret;
696
697 caching_ctl = container_of(work, struct btrfs_caching_control, work);
698 block_group = caching_ctl->block_group;
699 fs_info = block_group->fs_info;
700
701 mutex_lock(&caching_ctl->mutex);
702 down_read(&fs_info->commit_root_sem);
703
704 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
705 ret = load_free_space_cache(block_group);
706 if (ret == 1) {
707 ret = 0;
708 goto done;
709 }
710
711 /*
712 * We failed to load the space cache, set ourselves to
713 * CACHE_STARTED and carry on.
714 */
715 spin_lock(&block_group->lock);
716 block_group->cached = BTRFS_CACHE_STARTED;
717 spin_unlock(&block_group->lock);
718 wake_up(&caching_ctl->wait);
719 }
720
721 /*
722 * If we are in the transaction that populated the free space tree we
723 * can't actually cache from the free space tree as our commit root and
724 * real root are the same, so we could change the contents of the blocks
725 * while caching. Instead do the slow caching in this case, and after
726 * the transaction has committed we will be safe.
727 */
728 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
729 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
730 ret = load_free_space_tree(caching_ctl);
731 else
732 ret = load_extent_tree_free(caching_ctl);
733 done:
734 spin_lock(&block_group->lock);
735 block_group->caching_ctl = NULL;
736 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
737 spin_unlock(&block_group->lock);
738
739 #ifdef CONFIG_BTRFS_DEBUG
740 if (btrfs_should_fragment_free_space(block_group)) {
741 u64 bytes_used;
742
743 spin_lock(&block_group->space_info->lock);
744 spin_lock(&block_group->lock);
745 bytes_used = block_group->length - block_group->used;
746 block_group->space_info->bytes_used += bytes_used >> 1;
747 spin_unlock(&block_group->lock);
748 spin_unlock(&block_group->space_info->lock);
749 fragment_free_space(block_group);
750 }
751 #endif
752
753 up_read(&fs_info->commit_root_sem);
754 btrfs_free_excluded_extents(block_group);
755 mutex_unlock(&caching_ctl->mutex);
756
757 wake_up(&caching_ctl->wait);
758
759 btrfs_put_caching_control(caching_ctl);
760 btrfs_put_block_group(block_group);
761 }
762
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)763 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
764 {
765 struct btrfs_fs_info *fs_info = cache->fs_info;
766 struct btrfs_caching_control *caching_ctl = NULL;
767 int ret = 0;
768
769 /* Allocator for zoned filesystems does not use the cache at all */
770 if (btrfs_is_zoned(fs_info))
771 return 0;
772
773 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
774 if (!caching_ctl)
775 return -ENOMEM;
776
777 INIT_LIST_HEAD(&caching_ctl->list);
778 mutex_init(&caching_ctl->mutex);
779 init_waitqueue_head(&caching_ctl->wait);
780 caching_ctl->block_group = cache;
781 refcount_set(&caching_ctl->count, 2);
782 atomic_set(&caching_ctl->progress, 0);
783 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
784
785 spin_lock(&cache->lock);
786 if (cache->cached != BTRFS_CACHE_NO) {
787 kfree(caching_ctl);
788
789 caching_ctl = cache->caching_ctl;
790 if (caching_ctl)
791 refcount_inc(&caching_ctl->count);
792 spin_unlock(&cache->lock);
793 goto out;
794 }
795 WARN_ON(cache->caching_ctl);
796 cache->caching_ctl = caching_ctl;
797 cache->cached = BTRFS_CACHE_STARTED;
798 spin_unlock(&cache->lock);
799
800 write_lock(&fs_info->block_group_cache_lock);
801 refcount_inc(&caching_ctl->count);
802 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
803 write_unlock(&fs_info->block_group_cache_lock);
804
805 btrfs_get_block_group(cache);
806
807 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
808 out:
809 if (wait && caching_ctl)
810 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
811 if (caching_ctl)
812 btrfs_put_caching_control(caching_ctl);
813
814 return ret;
815 }
816
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)817 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
818 {
819 u64 extra_flags = chunk_to_extended(flags) &
820 BTRFS_EXTENDED_PROFILE_MASK;
821
822 write_seqlock(&fs_info->profiles_lock);
823 if (flags & BTRFS_BLOCK_GROUP_DATA)
824 fs_info->avail_data_alloc_bits &= ~extra_flags;
825 if (flags & BTRFS_BLOCK_GROUP_METADATA)
826 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
827 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
828 fs_info->avail_system_alloc_bits &= ~extra_flags;
829 write_sequnlock(&fs_info->profiles_lock);
830 }
831
832 /*
833 * Clear incompat bits for the following feature(s):
834 *
835 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
836 * in the whole filesystem
837 *
838 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
839 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)840 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
841 {
842 bool found_raid56 = false;
843 bool found_raid1c34 = false;
844
845 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
846 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
847 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
848 struct list_head *head = &fs_info->space_info;
849 struct btrfs_space_info *sinfo;
850
851 list_for_each_entry_rcu(sinfo, head, list) {
852 down_read(&sinfo->groups_sem);
853 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
854 found_raid56 = true;
855 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
856 found_raid56 = true;
857 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
858 found_raid1c34 = true;
859 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
860 found_raid1c34 = true;
861 up_read(&sinfo->groups_sem);
862 }
863 if (!found_raid56)
864 btrfs_clear_fs_incompat(fs_info, RAID56);
865 if (!found_raid1c34)
866 btrfs_clear_fs_incompat(fs_info, RAID1C34);
867 }
868 }
869
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)870 static int remove_block_group_item(struct btrfs_trans_handle *trans,
871 struct btrfs_path *path,
872 struct btrfs_block_group *block_group)
873 {
874 struct btrfs_fs_info *fs_info = trans->fs_info;
875 struct btrfs_root *root;
876 struct btrfs_key key;
877 int ret;
878
879 root = btrfs_block_group_root(fs_info);
880 key.objectid = block_group->start;
881 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
882 key.offset = block_group->length;
883
884 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
885 if (ret > 0)
886 ret = -ENOENT;
887 if (ret < 0)
888 return ret;
889
890 ret = btrfs_del_item(trans, root, path);
891 return ret;
892 }
893
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)894 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
895 u64 group_start, struct extent_map *em)
896 {
897 struct btrfs_fs_info *fs_info = trans->fs_info;
898 struct btrfs_path *path;
899 struct btrfs_block_group *block_group;
900 struct btrfs_free_cluster *cluster;
901 struct inode *inode;
902 struct kobject *kobj = NULL;
903 int ret;
904 int index;
905 int factor;
906 struct btrfs_caching_control *caching_ctl = NULL;
907 bool remove_em;
908 bool remove_rsv = false;
909
910 block_group = btrfs_lookup_block_group(fs_info, group_start);
911 BUG_ON(!block_group);
912 BUG_ON(!block_group->ro);
913
914 trace_btrfs_remove_block_group(block_group);
915 /*
916 * Free the reserved super bytes from this block group before
917 * remove it.
918 */
919 btrfs_free_excluded_extents(block_group);
920 btrfs_free_ref_tree_range(fs_info, block_group->start,
921 block_group->length);
922
923 index = btrfs_bg_flags_to_raid_index(block_group->flags);
924 factor = btrfs_bg_type_to_factor(block_group->flags);
925
926 /* make sure this block group isn't part of an allocation cluster */
927 cluster = &fs_info->data_alloc_cluster;
928 spin_lock(&cluster->refill_lock);
929 btrfs_return_cluster_to_free_space(block_group, cluster);
930 spin_unlock(&cluster->refill_lock);
931
932 /*
933 * make sure this block group isn't part of a metadata
934 * allocation cluster
935 */
936 cluster = &fs_info->meta_alloc_cluster;
937 spin_lock(&cluster->refill_lock);
938 btrfs_return_cluster_to_free_space(block_group, cluster);
939 spin_unlock(&cluster->refill_lock);
940
941 btrfs_clear_treelog_bg(block_group);
942 btrfs_clear_data_reloc_bg(block_group);
943
944 path = btrfs_alloc_path();
945 if (!path) {
946 ret = -ENOMEM;
947 goto out;
948 }
949
950 /*
951 * get the inode first so any iput calls done for the io_list
952 * aren't the final iput (no unlinks allowed now)
953 */
954 inode = lookup_free_space_inode(block_group, path);
955
956 mutex_lock(&trans->transaction->cache_write_mutex);
957 /*
958 * Make sure our free space cache IO is done before removing the
959 * free space inode
960 */
961 spin_lock(&trans->transaction->dirty_bgs_lock);
962 if (!list_empty(&block_group->io_list)) {
963 list_del_init(&block_group->io_list);
964
965 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
966
967 spin_unlock(&trans->transaction->dirty_bgs_lock);
968 btrfs_wait_cache_io(trans, block_group, path);
969 btrfs_put_block_group(block_group);
970 spin_lock(&trans->transaction->dirty_bgs_lock);
971 }
972
973 if (!list_empty(&block_group->dirty_list)) {
974 list_del_init(&block_group->dirty_list);
975 remove_rsv = true;
976 btrfs_put_block_group(block_group);
977 }
978 spin_unlock(&trans->transaction->dirty_bgs_lock);
979 mutex_unlock(&trans->transaction->cache_write_mutex);
980
981 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
982 if (ret)
983 goto out;
984
985 write_lock(&fs_info->block_group_cache_lock);
986 rb_erase_cached(&block_group->cache_node,
987 &fs_info->block_group_cache_tree);
988 RB_CLEAR_NODE(&block_group->cache_node);
989
990 /* Once for the block groups rbtree */
991 btrfs_put_block_group(block_group);
992
993 write_unlock(&fs_info->block_group_cache_lock);
994
995 down_write(&block_group->space_info->groups_sem);
996 /*
997 * we must use list_del_init so people can check to see if they
998 * are still on the list after taking the semaphore
999 */
1000 list_del_init(&block_group->list);
1001 if (list_empty(&block_group->space_info->block_groups[index])) {
1002 kobj = block_group->space_info->block_group_kobjs[index];
1003 block_group->space_info->block_group_kobjs[index] = NULL;
1004 clear_avail_alloc_bits(fs_info, block_group->flags);
1005 }
1006 up_write(&block_group->space_info->groups_sem);
1007 clear_incompat_bg_bits(fs_info, block_group->flags);
1008 if (kobj) {
1009 kobject_del(kobj);
1010 kobject_put(kobj);
1011 }
1012
1013 if (block_group->cached == BTRFS_CACHE_STARTED)
1014 btrfs_wait_block_group_cache_done(block_group);
1015
1016 write_lock(&fs_info->block_group_cache_lock);
1017 caching_ctl = btrfs_get_caching_control(block_group);
1018 if (!caching_ctl) {
1019 struct btrfs_caching_control *ctl;
1020
1021 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1022 if (ctl->block_group == block_group) {
1023 caching_ctl = ctl;
1024 refcount_inc(&caching_ctl->count);
1025 break;
1026 }
1027 }
1028 }
1029 if (caching_ctl)
1030 list_del_init(&caching_ctl->list);
1031 write_unlock(&fs_info->block_group_cache_lock);
1032
1033 if (caching_ctl) {
1034 /* Once for the caching bgs list and once for us. */
1035 btrfs_put_caching_control(caching_ctl);
1036 btrfs_put_caching_control(caching_ctl);
1037 }
1038
1039 spin_lock(&trans->transaction->dirty_bgs_lock);
1040 WARN_ON(!list_empty(&block_group->dirty_list));
1041 WARN_ON(!list_empty(&block_group->io_list));
1042 spin_unlock(&trans->transaction->dirty_bgs_lock);
1043
1044 btrfs_remove_free_space_cache(block_group);
1045
1046 spin_lock(&block_group->space_info->lock);
1047 list_del_init(&block_group->ro_list);
1048
1049 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1050 WARN_ON(block_group->space_info->total_bytes
1051 < block_group->length);
1052 WARN_ON(block_group->space_info->bytes_readonly
1053 < block_group->length - block_group->zone_unusable);
1054 WARN_ON(block_group->space_info->bytes_zone_unusable
1055 < block_group->zone_unusable);
1056 WARN_ON(block_group->space_info->disk_total
1057 < block_group->length * factor);
1058 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1059 &block_group->runtime_flags) &&
1060 block_group->space_info->active_total_bytes
1061 < block_group->length);
1062 }
1063 block_group->space_info->total_bytes -= block_group->length;
1064 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1065 block_group->space_info->active_total_bytes -= block_group->length;
1066 block_group->space_info->bytes_readonly -=
1067 (block_group->length - block_group->zone_unusable);
1068 block_group->space_info->bytes_zone_unusable -=
1069 block_group->zone_unusable;
1070 block_group->space_info->disk_total -= block_group->length * factor;
1071
1072 spin_unlock(&block_group->space_info->lock);
1073
1074 /*
1075 * Remove the free space for the block group from the free space tree
1076 * and the block group's item from the extent tree before marking the
1077 * block group as removed. This is to prevent races with tasks that
1078 * freeze and unfreeze a block group, this task and another task
1079 * allocating a new block group - the unfreeze task ends up removing
1080 * the block group's extent map before the task calling this function
1081 * deletes the block group item from the extent tree, allowing for
1082 * another task to attempt to create another block group with the same
1083 * item key (and failing with -EEXIST and a transaction abort).
1084 */
1085 ret = remove_block_group_free_space(trans, block_group);
1086 if (ret)
1087 goto out;
1088
1089 ret = remove_block_group_item(trans, path, block_group);
1090 if (ret < 0)
1091 goto out;
1092
1093 spin_lock(&block_group->lock);
1094 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1095
1096 /*
1097 * At this point trimming or scrub can't start on this block group,
1098 * because we removed the block group from the rbtree
1099 * fs_info->block_group_cache_tree so no one can't find it anymore and
1100 * even if someone already got this block group before we removed it
1101 * from the rbtree, they have already incremented block_group->frozen -
1102 * if they didn't, for the trimming case they won't find any free space
1103 * entries because we already removed them all when we called
1104 * btrfs_remove_free_space_cache().
1105 *
1106 * And we must not remove the extent map from the fs_info->mapping_tree
1107 * to prevent the same logical address range and physical device space
1108 * ranges from being reused for a new block group. This is needed to
1109 * avoid races with trimming and scrub.
1110 *
1111 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1112 * completely transactionless, so while it is trimming a range the
1113 * currently running transaction might finish and a new one start,
1114 * allowing for new block groups to be created that can reuse the same
1115 * physical device locations unless we take this special care.
1116 *
1117 * There may also be an implicit trim operation if the file system
1118 * is mounted with -odiscard. The same protections must remain
1119 * in place until the extents have been discarded completely when
1120 * the transaction commit has completed.
1121 */
1122 remove_em = (atomic_read(&block_group->frozen) == 0);
1123 spin_unlock(&block_group->lock);
1124
1125 if (remove_em) {
1126 struct extent_map_tree *em_tree;
1127
1128 em_tree = &fs_info->mapping_tree;
1129 write_lock(&em_tree->lock);
1130 remove_extent_mapping(em_tree, em);
1131 write_unlock(&em_tree->lock);
1132 /* once for the tree */
1133 free_extent_map(em);
1134 }
1135
1136 out:
1137 /* Once for the lookup reference */
1138 btrfs_put_block_group(block_group);
1139 if (remove_rsv)
1140 btrfs_delayed_refs_rsv_release(fs_info, 1);
1141 btrfs_free_path(path);
1142 return ret;
1143 }
1144
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1145 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1146 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1147 {
1148 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1149 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1150 struct extent_map *em;
1151 struct map_lookup *map;
1152 unsigned int num_items;
1153
1154 read_lock(&em_tree->lock);
1155 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1156 read_unlock(&em_tree->lock);
1157 ASSERT(em && em->start == chunk_offset);
1158
1159 /*
1160 * We need to reserve 3 + N units from the metadata space info in order
1161 * to remove a block group (done at btrfs_remove_chunk() and at
1162 * btrfs_remove_block_group()), which are used for:
1163 *
1164 * 1 unit for adding the free space inode's orphan (located in the tree
1165 * of tree roots).
1166 * 1 unit for deleting the block group item (located in the extent
1167 * tree).
1168 * 1 unit for deleting the free space item (located in tree of tree
1169 * roots).
1170 * N units for deleting N device extent items corresponding to each
1171 * stripe (located in the device tree).
1172 *
1173 * In order to remove a block group we also need to reserve units in the
1174 * system space info in order to update the chunk tree (update one or
1175 * more device items and remove one chunk item), but this is done at
1176 * btrfs_remove_chunk() through a call to check_system_chunk().
1177 */
1178 map = em->map_lookup;
1179 num_items = 3 + map->num_stripes;
1180 free_extent_map(em);
1181
1182 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1183 }
1184
1185 /*
1186 * Mark block group @cache read-only, so later write won't happen to block
1187 * group @cache.
1188 *
1189 * If @force is not set, this function will only mark the block group readonly
1190 * if we have enough free space (1M) in other metadata/system block groups.
1191 * If @force is not set, this function will mark the block group readonly
1192 * without checking free space.
1193 *
1194 * NOTE: This function doesn't care if other block groups can contain all the
1195 * data in this block group. That check should be done by relocation routine,
1196 * not this function.
1197 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1198 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1199 {
1200 struct btrfs_space_info *sinfo = cache->space_info;
1201 u64 num_bytes;
1202 int ret = -ENOSPC;
1203
1204 spin_lock(&sinfo->lock);
1205 spin_lock(&cache->lock);
1206
1207 if (cache->swap_extents) {
1208 ret = -ETXTBSY;
1209 goto out;
1210 }
1211
1212 if (cache->ro) {
1213 cache->ro++;
1214 ret = 0;
1215 goto out;
1216 }
1217
1218 num_bytes = cache->length - cache->reserved - cache->pinned -
1219 cache->bytes_super - cache->zone_unusable - cache->used;
1220
1221 /*
1222 * Data never overcommits, even in mixed mode, so do just the straight
1223 * check of left over space in how much we have allocated.
1224 */
1225 if (force) {
1226 ret = 0;
1227 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1228 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1229
1230 /*
1231 * Here we make sure if we mark this bg RO, we still have enough
1232 * free space as buffer.
1233 */
1234 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1235 ret = 0;
1236 } else {
1237 /*
1238 * We overcommit metadata, so we need to do the
1239 * btrfs_can_overcommit check here, and we need to pass in
1240 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1241 * leeway to allow us to mark this block group as read only.
1242 */
1243 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1244 BTRFS_RESERVE_NO_FLUSH))
1245 ret = 0;
1246 }
1247
1248 if (!ret) {
1249 sinfo->bytes_readonly += num_bytes;
1250 if (btrfs_is_zoned(cache->fs_info)) {
1251 /* Migrate zone_unusable bytes to readonly */
1252 sinfo->bytes_readonly += cache->zone_unusable;
1253 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1254 cache->zone_unusable = 0;
1255 }
1256 cache->ro++;
1257 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1258 }
1259 out:
1260 spin_unlock(&cache->lock);
1261 spin_unlock(&sinfo->lock);
1262 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1263 btrfs_info(cache->fs_info,
1264 "unable to make block group %llu ro", cache->start);
1265 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1266 }
1267 return ret;
1268 }
1269
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1270 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1271 struct btrfs_block_group *bg)
1272 {
1273 struct btrfs_fs_info *fs_info = bg->fs_info;
1274 struct btrfs_transaction *prev_trans = NULL;
1275 const u64 start = bg->start;
1276 const u64 end = start + bg->length - 1;
1277 int ret;
1278
1279 spin_lock(&fs_info->trans_lock);
1280 if (trans->transaction->list.prev != &fs_info->trans_list) {
1281 prev_trans = list_last_entry(&trans->transaction->list,
1282 struct btrfs_transaction, list);
1283 refcount_inc(&prev_trans->use_count);
1284 }
1285 spin_unlock(&fs_info->trans_lock);
1286
1287 /*
1288 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1289 * btrfs_finish_extent_commit(). If we are at transaction N, another
1290 * task might be running finish_extent_commit() for the previous
1291 * transaction N - 1, and have seen a range belonging to the block
1292 * group in pinned_extents before we were able to clear the whole block
1293 * group range from pinned_extents. This means that task can lookup for
1294 * the block group after we unpinned it from pinned_extents and removed
1295 * it, leading to a BUG_ON() at unpin_extent_range().
1296 */
1297 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1298 if (prev_trans) {
1299 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1300 EXTENT_DIRTY);
1301 if (ret)
1302 goto out;
1303 }
1304
1305 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1306 EXTENT_DIRTY);
1307 out:
1308 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1309 if (prev_trans)
1310 btrfs_put_transaction(prev_trans);
1311
1312 return ret == 0;
1313 }
1314
1315 /*
1316 * Process the unused_bgs list and remove any that don't have any allocated
1317 * space inside of them.
1318 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1319 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1320 {
1321 LIST_HEAD(retry_list);
1322 struct btrfs_block_group *block_group;
1323 struct btrfs_space_info *space_info;
1324 struct btrfs_trans_handle *trans;
1325 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1326 int ret = 0;
1327
1328 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1329 return;
1330
1331 if (btrfs_fs_closing(fs_info))
1332 return;
1333
1334 /*
1335 * Long running balances can keep us blocked here for eternity, so
1336 * simply skip deletion if we're unable to get the mutex.
1337 */
1338 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1339 return;
1340
1341 spin_lock(&fs_info->unused_bgs_lock);
1342 while (!list_empty(&fs_info->unused_bgs)) {
1343 u64 used;
1344 int trimming;
1345
1346 block_group = list_first_entry(&fs_info->unused_bgs,
1347 struct btrfs_block_group,
1348 bg_list);
1349 list_del_init(&block_group->bg_list);
1350
1351 space_info = block_group->space_info;
1352
1353 if (ret || btrfs_mixed_space_info(space_info)) {
1354 btrfs_put_block_group(block_group);
1355 continue;
1356 }
1357 spin_unlock(&fs_info->unused_bgs_lock);
1358
1359 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1360
1361 /* Don't want to race with allocators so take the groups_sem */
1362 down_write(&space_info->groups_sem);
1363
1364 /*
1365 * Async discard moves the final block group discard to be prior
1366 * to the unused_bgs code path. Therefore, if it's not fully
1367 * trimmed, punt it back to the async discard lists.
1368 */
1369 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1370 !btrfs_is_free_space_trimmed(block_group)) {
1371 trace_btrfs_skip_unused_block_group(block_group);
1372 up_write(&space_info->groups_sem);
1373 /* Requeue if we failed because of async discard */
1374 btrfs_discard_queue_work(&fs_info->discard_ctl,
1375 block_group);
1376 goto next;
1377 }
1378
1379 spin_lock(&space_info->lock);
1380 spin_lock(&block_group->lock);
1381 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1382 list_is_singular(&block_group->list)) {
1383 /*
1384 * We want to bail if we made new allocations or have
1385 * outstanding allocations in this block group. We do
1386 * the ro check in case balance is currently acting on
1387 * this block group.
1388 */
1389 trace_btrfs_skip_unused_block_group(block_group);
1390 spin_unlock(&block_group->lock);
1391 spin_unlock(&space_info->lock);
1392 up_write(&space_info->groups_sem);
1393 goto next;
1394 }
1395
1396 /*
1397 * The block group may be unused but there may be space reserved
1398 * accounting with the existence of that block group, that is,
1399 * space_info->bytes_may_use was incremented by a task but no
1400 * space was yet allocated from the block group by the task.
1401 * That space may or may not be allocated, as we are generally
1402 * pessimistic about space reservation for metadata as well as
1403 * for data when using compression (as we reserve space based on
1404 * the worst case, when data can't be compressed, and before
1405 * actually attempting compression, before starting writeback).
1406 *
1407 * So check if the total space of the space_info minus the size
1408 * of this block group is less than the used space of the
1409 * space_info - if that's the case, then it means we have tasks
1410 * that might be relying on the block group in order to allocate
1411 * extents, and add back the block group to the unused list when
1412 * we finish, so that we retry later in case no tasks ended up
1413 * needing to allocate extents from the block group.
1414 */
1415 used = btrfs_space_info_used(space_info, true);
1416 if (space_info->total_bytes - block_group->length < used) {
1417 /*
1418 * Add a reference for the list, compensate for the ref
1419 * drop under the "next" label for the
1420 * fs_info->unused_bgs list.
1421 */
1422 btrfs_get_block_group(block_group);
1423 list_add_tail(&block_group->bg_list, &retry_list);
1424
1425 trace_btrfs_skip_unused_block_group(block_group);
1426 spin_unlock(&block_group->lock);
1427 spin_unlock(&space_info->lock);
1428 up_write(&space_info->groups_sem);
1429 goto next;
1430 }
1431
1432 spin_unlock(&block_group->lock);
1433 spin_unlock(&space_info->lock);
1434
1435 /* We don't want to force the issue, only flip if it's ok. */
1436 ret = inc_block_group_ro(block_group, 0);
1437 up_write(&space_info->groups_sem);
1438 if (ret < 0) {
1439 ret = 0;
1440 goto next;
1441 }
1442
1443 ret = btrfs_zone_finish(block_group);
1444 if (ret < 0) {
1445 btrfs_dec_block_group_ro(block_group);
1446 if (ret == -EAGAIN)
1447 ret = 0;
1448 goto next;
1449 }
1450
1451 /*
1452 * Want to do this before we do anything else so we can recover
1453 * properly if we fail to join the transaction.
1454 */
1455 trans = btrfs_start_trans_remove_block_group(fs_info,
1456 block_group->start);
1457 if (IS_ERR(trans)) {
1458 btrfs_dec_block_group_ro(block_group);
1459 ret = PTR_ERR(trans);
1460 goto next;
1461 }
1462
1463 /*
1464 * We could have pending pinned extents for this block group,
1465 * just delete them, we don't care about them anymore.
1466 */
1467 if (!clean_pinned_extents(trans, block_group)) {
1468 btrfs_dec_block_group_ro(block_group);
1469 goto end_trans;
1470 }
1471
1472 /*
1473 * At this point, the block_group is read only and should fail
1474 * new allocations. However, btrfs_finish_extent_commit() can
1475 * cause this block_group to be placed back on the discard
1476 * lists because now the block_group isn't fully discarded.
1477 * Bail here and try again later after discarding everything.
1478 */
1479 spin_lock(&fs_info->discard_ctl.lock);
1480 if (!list_empty(&block_group->discard_list)) {
1481 spin_unlock(&fs_info->discard_ctl.lock);
1482 btrfs_dec_block_group_ro(block_group);
1483 btrfs_discard_queue_work(&fs_info->discard_ctl,
1484 block_group);
1485 goto end_trans;
1486 }
1487 spin_unlock(&fs_info->discard_ctl.lock);
1488
1489 /* Reset pinned so btrfs_put_block_group doesn't complain */
1490 spin_lock(&space_info->lock);
1491 spin_lock(&block_group->lock);
1492
1493 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1494 -block_group->pinned);
1495 space_info->bytes_readonly += block_group->pinned;
1496 block_group->pinned = 0;
1497
1498 spin_unlock(&block_group->lock);
1499 spin_unlock(&space_info->lock);
1500
1501 /*
1502 * The normal path here is an unused block group is passed here,
1503 * then trimming is handled in the transaction commit path.
1504 * Async discard interposes before this to do the trimming
1505 * before coming down the unused block group path as trimming
1506 * will no longer be done later in the transaction commit path.
1507 */
1508 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1509 goto flip_async;
1510
1511 /*
1512 * DISCARD can flip during remount. On zoned filesystems, we
1513 * need to reset sequential-required zones.
1514 */
1515 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1516 btrfs_is_zoned(fs_info);
1517
1518 /* Implicit trim during transaction commit. */
1519 if (trimming)
1520 btrfs_freeze_block_group(block_group);
1521
1522 /*
1523 * Btrfs_remove_chunk will abort the transaction if things go
1524 * horribly wrong.
1525 */
1526 ret = btrfs_remove_chunk(trans, block_group->start);
1527
1528 if (ret) {
1529 if (trimming)
1530 btrfs_unfreeze_block_group(block_group);
1531 goto end_trans;
1532 }
1533
1534 /*
1535 * If we're not mounted with -odiscard, we can just forget
1536 * about this block group. Otherwise we'll need to wait
1537 * until transaction commit to do the actual discard.
1538 */
1539 if (trimming) {
1540 spin_lock(&fs_info->unused_bgs_lock);
1541 /*
1542 * A concurrent scrub might have added us to the list
1543 * fs_info->unused_bgs, so use a list_move operation
1544 * to add the block group to the deleted_bgs list.
1545 */
1546 list_move(&block_group->bg_list,
1547 &trans->transaction->deleted_bgs);
1548 spin_unlock(&fs_info->unused_bgs_lock);
1549 btrfs_get_block_group(block_group);
1550 }
1551 end_trans:
1552 btrfs_end_transaction(trans);
1553 next:
1554 btrfs_put_block_group(block_group);
1555 spin_lock(&fs_info->unused_bgs_lock);
1556 }
1557 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1558 spin_unlock(&fs_info->unused_bgs_lock);
1559 mutex_unlock(&fs_info->reclaim_bgs_lock);
1560 return;
1561
1562 flip_async:
1563 btrfs_end_transaction(trans);
1564 spin_lock(&fs_info->unused_bgs_lock);
1565 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1566 spin_unlock(&fs_info->unused_bgs_lock);
1567 mutex_unlock(&fs_info->reclaim_bgs_lock);
1568 btrfs_put_block_group(block_group);
1569 btrfs_discard_punt_unused_bgs_list(fs_info);
1570 }
1571
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1572 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1573 {
1574 struct btrfs_fs_info *fs_info = bg->fs_info;
1575
1576 spin_lock(&fs_info->unused_bgs_lock);
1577 if (list_empty(&bg->bg_list)) {
1578 btrfs_get_block_group(bg);
1579 trace_btrfs_add_unused_block_group(bg);
1580 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1581 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1582 /* Pull out the block group from the reclaim_bgs list. */
1583 trace_btrfs_add_unused_block_group(bg);
1584 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1585 }
1586 spin_unlock(&fs_info->unused_bgs_lock);
1587 }
1588
1589 /*
1590 * We want block groups with a low number of used bytes to be in the beginning
1591 * of the list, so they will get reclaimed first.
1592 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1593 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1594 const struct list_head *b)
1595 {
1596 const struct btrfs_block_group *bg1, *bg2;
1597
1598 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1599 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1600
1601 return bg1->used > bg2->used;
1602 }
1603
btrfs_should_reclaim(struct btrfs_fs_info * fs_info)1604 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1605 {
1606 if (btrfs_is_zoned(fs_info))
1607 return btrfs_zoned_should_reclaim(fs_info);
1608 return true;
1609 }
1610
btrfs_reclaim_bgs_work(struct work_struct * work)1611 void btrfs_reclaim_bgs_work(struct work_struct *work)
1612 {
1613 struct btrfs_fs_info *fs_info =
1614 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1615 struct btrfs_block_group *bg;
1616 struct btrfs_space_info *space_info;
1617
1618 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1619 return;
1620
1621 if (btrfs_fs_closing(fs_info))
1622 return;
1623
1624 if (!btrfs_should_reclaim(fs_info))
1625 return;
1626
1627 sb_start_write(fs_info->sb);
1628
1629 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1630 sb_end_write(fs_info->sb);
1631 return;
1632 }
1633
1634 /*
1635 * Long running balances can keep us blocked here for eternity, so
1636 * simply skip reclaim if we're unable to get the mutex.
1637 */
1638 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1639 btrfs_exclop_finish(fs_info);
1640 sb_end_write(fs_info->sb);
1641 return;
1642 }
1643
1644 spin_lock(&fs_info->unused_bgs_lock);
1645 /*
1646 * Sort happens under lock because we can't simply splice it and sort.
1647 * The block groups might still be in use and reachable via bg_list,
1648 * and their presence in the reclaim_bgs list must be preserved.
1649 */
1650 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1651 while (!list_empty(&fs_info->reclaim_bgs)) {
1652 u64 zone_unusable;
1653 int ret = 0;
1654
1655 bg = list_first_entry(&fs_info->reclaim_bgs,
1656 struct btrfs_block_group,
1657 bg_list);
1658 list_del_init(&bg->bg_list);
1659
1660 space_info = bg->space_info;
1661 spin_unlock(&fs_info->unused_bgs_lock);
1662
1663 /* Don't race with allocators so take the groups_sem */
1664 down_write(&space_info->groups_sem);
1665
1666 spin_lock(&bg->lock);
1667 if (bg->reserved || bg->pinned || bg->ro) {
1668 /*
1669 * We want to bail if we made new allocations or have
1670 * outstanding allocations in this block group. We do
1671 * the ro check in case balance is currently acting on
1672 * this block group.
1673 */
1674 spin_unlock(&bg->lock);
1675 up_write(&space_info->groups_sem);
1676 goto next;
1677 }
1678 spin_unlock(&bg->lock);
1679
1680 /*
1681 * Get out fast, in case we're read-only or unmounting the
1682 * filesystem. It is OK to drop block groups from the list even
1683 * for the read-only case. As we did sb_start_write(),
1684 * "mount -o remount,ro" won't happen and read-only filesystem
1685 * means it is forced read-only due to a fatal error. So, it
1686 * never gets back to read-write to let us reclaim again.
1687 */
1688 if (btrfs_need_cleaner_sleep(fs_info)) {
1689 up_write(&space_info->groups_sem);
1690 goto next;
1691 }
1692
1693 /*
1694 * Cache the zone_unusable value before turning the block group
1695 * to read only. As soon as the blog group is read only it's
1696 * zone_unusable value gets moved to the block group's read-only
1697 * bytes and isn't available for calculations anymore.
1698 */
1699 zone_unusable = bg->zone_unusable;
1700 ret = inc_block_group_ro(bg, 0);
1701 up_write(&space_info->groups_sem);
1702 if (ret < 0)
1703 goto next;
1704
1705 btrfs_info(fs_info,
1706 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1707 bg->start,
1708 div64_u64(bg->used * 100, bg->length),
1709 div64_u64(zone_unusable * 100, bg->length));
1710 trace_btrfs_reclaim_block_group(bg);
1711 ret = btrfs_relocate_chunk(fs_info, bg->start);
1712 if (ret) {
1713 btrfs_dec_block_group_ro(bg);
1714 btrfs_err(fs_info, "error relocating chunk %llu",
1715 bg->start);
1716 }
1717
1718 next:
1719 if (ret)
1720 btrfs_mark_bg_to_reclaim(bg);
1721 btrfs_put_block_group(bg);
1722
1723 mutex_unlock(&fs_info->reclaim_bgs_lock);
1724 /*
1725 * Reclaiming all the block groups in the list can take really
1726 * long. Prioritize cleaning up unused block groups.
1727 */
1728 btrfs_delete_unused_bgs(fs_info);
1729 /*
1730 * If we are interrupted by a balance, we can just bail out. The
1731 * cleaner thread restart again if necessary.
1732 */
1733 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1734 goto end;
1735 spin_lock(&fs_info->unused_bgs_lock);
1736 }
1737 spin_unlock(&fs_info->unused_bgs_lock);
1738 mutex_unlock(&fs_info->reclaim_bgs_lock);
1739 end:
1740 btrfs_exclop_finish(fs_info);
1741 sb_end_write(fs_info->sb);
1742 }
1743
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1744 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1745 {
1746 spin_lock(&fs_info->unused_bgs_lock);
1747 if (!list_empty(&fs_info->reclaim_bgs))
1748 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1749 spin_unlock(&fs_info->unused_bgs_lock);
1750 }
1751
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1752 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1753 {
1754 struct btrfs_fs_info *fs_info = bg->fs_info;
1755
1756 spin_lock(&fs_info->unused_bgs_lock);
1757 if (list_empty(&bg->bg_list)) {
1758 btrfs_get_block_group(bg);
1759 trace_btrfs_add_reclaim_block_group(bg);
1760 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1761 }
1762 spin_unlock(&fs_info->unused_bgs_lock);
1763 }
1764
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1765 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1766 struct btrfs_path *path)
1767 {
1768 struct extent_map_tree *em_tree;
1769 struct extent_map *em;
1770 struct btrfs_block_group_item bg;
1771 struct extent_buffer *leaf;
1772 int slot;
1773 u64 flags;
1774 int ret = 0;
1775
1776 slot = path->slots[0];
1777 leaf = path->nodes[0];
1778
1779 em_tree = &fs_info->mapping_tree;
1780 read_lock(&em_tree->lock);
1781 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1782 read_unlock(&em_tree->lock);
1783 if (!em) {
1784 btrfs_err(fs_info,
1785 "logical %llu len %llu found bg but no related chunk",
1786 key->objectid, key->offset);
1787 return -ENOENT;
1788 }
1789
1790 if (em->start != key->objectid || em->len != key->offset) {
1791 btrfs_err(fs_info,
1792 "block group %llu len %llu mismatch with chunk %llu len %llu",
1793 key->objectid, key->offset, em->start, em->len);
1794 ret = -EUCLEAN;
1795 goto out_free_em;
1796 }
1797
1798 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1799 sizeof(bg));
1800 flags = btrfs_stack_block_group_flags(&bg) &
1801 BTRFS_BLOCK_GROUP_TYPE_MASK;
1802
1803 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1804 btrfs_err(fs_info,
1805 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1806 key->objectid, key->offset, flags,
1807 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1808 ret = -EUCLEAN;
1809 }
1810
1811 out_free_em:
1812 free_extent_map(em);
1813 return ret;
1814 }
1815
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1816 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1817 struct btrfs_path *path,
1818 struct btrfs_key *key)
1819 {
1820 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1821 int ret;
1822 struct btrfs_key found_key;
1823
1824 btrfs_for_each_slot(root, key, &found_key, path, ret) {
1825 if (found_key.objectid >= key->objectid &&
1826 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1827 return read_bg_from_eb(fs_info, &found_key, path);
1828 }
1829 }
1830 return ret;
1831 }
1832
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1833 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1834 {
1835 u64 extra_flags = chunk_to_extended(flags) &
1836 BTRFS_EXTENDED_PROFILE_MASK;
1837
1838 write_seqlock(&fs_info->profiles_lock);
1839 if (flags & BTRFS_BLOCK_GROUP_DATA)
1840 fs_info->avail_data_alloc_bits |= extra_flags;
1841 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1842 fs_info->avail_metadata_alloc_bits |= extra_flags;
1843 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1844 fs_info->avail_system_alloc_bits |= extra_flags;
1845 write_sequnlock(&fs_info->profiles_lock);
1846 }
1847
1848 /**
1849 * Map a physical disk address to a list of logical addresses
1850 *
1851 * @fs_info: the filesystem
1852 * @chunk_start: logical address of block group
1853 * @bdev: physical device to resolve, can be NULL to indicate any device
1854 * @physical: physical address to map to logical addresses
1855 * @logical: return array of logical addresses which map to @physical
1856 * @naddrs: length of @logical
1857 * @stripe_len: size of IO stripe for the given block group
1858 *
1859 * Maps a particular @physical disk address to a list of @logical addresses.
1860 * Used primarily to exclude those portions of a block group that contain super
1861 * block copies.
1862 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,struct block_device * bdev,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)1863 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1864 struct block_device *bdev, u64 physical, u64 **logical,
1865 int *naddrs, int *stripe_len)
1866 {
1867 struct extent_map *em;
1868 struct map_lookup *map;
1869 u64 *buf;
1870 u64 bytenr;
1871 u64 data_stripe_length;
1872 u64 io_stripe_size;
1873 int i, nr = 0;
1874 int ret = 0;
1875
1876 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1877 if (IS_ERR(em))
1878 return -EIO;
1879
1880 map = em->map_lookup;
1881 data_stripe_length = em->orig_block_len;
1882 io_stripe_size = map->stripe_len;
1883 chunk_start = em->start;
1884
1885 /* For RAID5/6 adjust to a full IO stripe length */
1886 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1887 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1888
1889 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1890 if (!buf) {
1891 ret = -ENOMEM;
1892 goto out;
1893 }
1894
1895 for (i = 0; i < map->num_stripes; i++) {
1896 bool already_inserted = false;
1897 u64 stripe_nr;
1898 u64 offset;
1899 int j;
1900
1901 if (!in_range(physical, map->stripes[i].physical,
1902 data_stripe_length))
1903 continue;
1904
1905 if (bdev && map->stripes[i].dev->bdev != bdev)
1906 continue;
1907
1908 stripe_nr = physical - map->stripes[i].physical;
1909 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1910
1911 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1912 BTRFS_BLOCK_GROUP_RAID10)) {
1913 stripe_nr = stripe_nr * map->num_stripes + i;
1914 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1915 }
1916 /*
1917 * The remaining case would be for RAID56, multiply by
1918 * nr_data_stripes(). Alternatively, just use rmap_len below
1919 * instead of map->stripe_len
1920 */
1921
1922 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1923
1924 /* Ensure we don't add duplicate addresses */
1925 for (j = 0; j < nr; j++) {
1926 if (buf[j] == bytenr) {
1927 already_inserted = true;
1928 break;
1929 }
1930 }
1931
1932 if (!already_inserted)
1933 buf[nr++] = bytenr;
1934 }
1935
1936 *logical = buf;
1937 *naddrs = nr;
1938 *stripe_len = io_stripe_size;
1939 out:
1940 free_extent_map(em);
1941 return ret;
1942 }
1943
exclude_super_stripes(struct btrfs_block_group * cache)1944 static int exclude_super_stripes(struct btrfs_block_group *cache)
1945 {
1946 struct btrfs_fs_info *fs_info = cache->fs_info;
1947 const bool zoned = btrfs_is_zoned(fs_info);
1948 u64 bytenr;
1949 u64 *logical;
1950 int stripe_len;
1951 int i, nr, ret;
1952
1953 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1954 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1955 cache->bytes_super += stripe_len;
1956 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1957 stripe_len);
1958 if (ret)
1959 return ret;
1960 }
1961
1962 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1963 bytenr = btrfs_sb_offset(i);
1964 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1965 bytenr, &logical, &nr, &stripe_len);
1966 if (ret)
1967 return ret;
1968
1969 /* Shouldn't have super stripes in sequential zones */
1970 if (zoned && nr) {
1971 kfree(logical);
1972 btrfs_err(fs_info,
1973 "zoned: block group %llu must not contain super block",
1974 cache->start);
1975 return -EUCLEAN;
1976 }
1977
1978 while (nr--) {
1979 u64 len = min_t(u64, stripe_len,
1980 cache->start + cache->length - logical[nr]);
1981
1982 cache->bytes_super += len;
1983 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1984 len);
1985 if (ret) {
1986 kfree(logical);
1987 return ret;
1988 }
1989 }
1990
1991 kfree(logical);
1992 }
1993 return 0;
1994 }
1995
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)1996 static struct btrfs_block_group *btrfs_create_block_group_cache(
1997 struct btrfs_fs_info *fs_info, u64 start)
1998 {
1999 struct btrfs_block_group *cache;
2000
2001 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2002 if (!cache)
2003 return NULL;
2004
2005 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2006 GFP_NOFS);
2007 if (!cache->free_space_ctl) {
2008 kfree(cache);
2009 return NULL;
2010 }
2011
2012 cache->start = start;
2013
2014 cache->fs_info = fs_info;
2015 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2016
2017 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2018
2019 refcount_set(&cache->refs, 1);
2020 spin_lock_init(&cache->lock);
2021 init_rwsem(&cache->data_rwsem);
2022 INIT_LIST_HEAD(&cache->list);
2023 INIT_LIST_HEAD(&cache->cluster_list);
2024 INIT_LIST_HEAD(&cache->bg_list);
2025 INIT_LIST_HEAD(&cache->ro_list);
2026 INIT_LIST_HEAD(&cache->discard_list);
2027 INIT_LIST_HEAD(&cache->dirty_list);
2028 INIT_LIST_HEAD(&cache->io_list);
2029 INIT_LIST_HEAD(&cache->active_bg_list);
2030 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2031 atomic_set(&cache->frozen, 0);
2032 mutex_init(&cache->free_space_lock);
2033 cache->full_stripe_locks_root.root = RB_ROOT;
2034 mutex_init(&cache->full_stripe_locks_root.lock);
2035
2036 return cache;
2037 }
2038
2039 /*
2040 * Iterate all chunks and verify that each of them has the corresponding block
2041 * group
2042 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2043 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2044 {
2045 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2046 struct extent_map *em;
2047 struct btrfs_block_group *bg;
2048 u64 start = 0;
2049 int ret = 0;
2050
2051 while (1) {
2052 read_lock(&map_tree->lock);
2053 /*
2054 * lookup_extent_mapping will return the first extent map
2055 * intersecting the range, so setting @len to 1 is enough to
2056 * get the first chunk.
2057 */
2058 em = lookup_extent_mapping(map_tree, start, 1);
2059 read_unlock(&map_tree->lock);
2060 if (!em)
2061 break;
2062
2063 bg = btrfs_lookup_block_group(fs_info, em->start);
2064 if (!bg) {
2065 btrfs_err(fs_info,
2066 "chunk start=%llu len=%llu doesn't have corresponding block group",
2067 em->start, em->len);
2068 ret = -EUCLEAN;
2069 free_extent_map(em);
2070 break;
2071 }
2072 if (bg->start != em->start || bg->length != em->len ||
2073 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2074 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2075 btrfs_err(fs_info,
2076 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2077 em->start, em->len,
2078 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2079 bg->start, bg->length,
2080 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2081 ret = -EUCLEAN;
2082 free_extent_map(em);
2083 btrfs_put_block_group(bg);
2084 break;
2085 }
2086 start = em->start + em->len;
2087 free_extent_map(em);
2088 btrfs_put_block_group(bg);
2089 }
2090 return ret;
2091 }
2092
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2093 static int read_one_block_group(struct btrfs_fs_info *info,
2094 struct btrfs_block_group_item *bgi,
2095 const struct btrfs_key *key,
2096 int need_clear)
2097 {
2098 struct btrfs_block_group *cache;
2099 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2100 int ret;
2101
2102 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2103
2104 cache = btrfs_create_block_group_cache(info, key->objectid);
2105 if (!cache)
2106 return -ENOMEM;
2107
2108 cache->length = key->offset;
2109 cache->used = btrfs_stack_block_group_used(bgi);
2110 cache->flags = btrfs_stack_block_group_flags(bgi);
2111 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2112
2113 set_free_space_tree_thresholds(cache);
2114
2115 if (need_clear) {
2116 /*
2117 * When we mount with old space cache, we need to
2118 * set BTRFS_DC_CLEAR and set dirty flag.
2119 *
2120 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2121 * truncate the old free space cache inode and
2122 * setup a new one.
2123 * b) Setting 'dirty flag' makes sure that we flush
2124 * the new space cache info onto disk.
2125 */
2126 if (btrfs_test_opt(info, SPACE_CACHE))
2127 cache->disk_cache_state = BTRFS_DC_CLEAR;
2128 }
2129 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2130 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2131 btrfs_err(info,
2132 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2133 cache->start);
2134 ret = -EINVAL;
2135 goto error;
2136 }
2137
2138 ret = btrfs_load_block_group_zone_info(cache, false);
2139 if (ret) {
2140 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2141 cache->start);
2142 goto error;
2143 }
2144
2145 /*
2146 * We need to exclude the super stripes now so that the space info has
2147 * super bytes accounted for, otherwise we'll think we have more space
2148 * than we actually do.
2149 */
2150 ret = exclude_super_stripes(cache);
2151 if (ret) {
2152 /* We may have excluded something, so call this just in case. */
2153 btrfs_free_excluded_extents(cache);
2154 goto error;
2155 }
2156
2157 /*
2158 * For zoned filesystem, space after the allocation offset is the only
2159 * free space for a block group. So, we don't need any caching work.
2160 * btrfs_calc_zone_unusable() will set the amount of free space and
2161 * zone_unusable space.
2162 *
2163 * For regular filesystem, check for two cases, either we are full, and
2164 * therefore don't need to bother with the caching work since we won't
2165 * find any space, or we are empty, and we can just add all the space
2166 * in and be done with it. This saves us _a_lot_ of time, particularly
2167 * in the full case.
2168 */
2169 if (btrfs_is_zoned(info)) {
2170 btrfs_calc_zone_unusable(cache);
2171 /* Should not have any excluded extents. Just in case, though. */
2172 btrfs_free_excluded_extents(cache);
2173 } else if (cache->length == cache->used) {
2174 cache->cached = BTRFS_CACHE_FINISHED;
2175 btrfs_free_excluded_extents(cache);
2176 } else if (cache->used == 0) {
2177 cache->cached = BTRFS_CACHE_FINISHED;
2178 ret = add_new_free_space(cache, cache->start,
2179 cache->start + cache->length, NULL);
2180 btrfs_free_excluded_extents(cache);
2181 if (ret)
2182 goto error;
2183 }
2184
2185 ret = btrfs_add_block_group_cache(info, cache);
2186 if (ret) {
2187 btrfs_remove_free_space_cache(cache);
2188 goto error;
2189 }
2190 trace_btrfs_add_block_group(info, cache, 0);
2191 btrfs_add_bg_to_space_info(info, cache);
2192
2193 set_avail_alloc_bits(info, cache->flags);
2194 if (btrfs_chunk_writeable(info, cache->start)) {
2195 if (cache->used == 0) {
2196 ASSERT(list_empty(&cache->bg_list));
2197 if (btrfs_test_opt(info, DISCARD_ASYNC))
2198 btrfs_discard_queue_work(&info->discard_ctl, cache);
2199 else
2200 btrfs_mark_bg_unused(cache);
2201 }
2202 } else {
2203 inc_block_group_ro(cache, 1);
2204 }
2205
2206 return 0;
2207 error:
2208 btrfs_put_block_group(cache);
2209 return ret;
2210 }
2211
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2212 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2213 {
2214 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2215 struct rb_node *node;
2216 int ret = 0;
2217
2218 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2219 struct extent_map *em;
2220 struct map_lookup *map;
2221 struct btrfs_block_group *bg;
2222
2223 em = rb_entry(node, struct extent_map, rb_node);
2224 map = em->map_lookup;
2225 bg = btrfs_create_block_group_cache(fs_info, em->start);
2226 if (!bg) {
2227 ret = -ENOMEM;
2228 break;
2229 }
2230
2231 /* Fill dummy cache as FULL */
2232 bg->length = em->len;
2233 bg->flags = map->type;
2234 bg->cached = BTRFS_CACHE_FINISHED;
2235 bg->used = em->len;
2236 bg->flags = map->type;
2237 ret = btrfs_add_block_group_cache(fs_info, bg);
2238 /*
2239 * We may have some valid block group cache added already, in
2240 * that case we skip to the next one.
2241 */
2242 if (ret == -EEXIST) {
2243 ret = 0;
2244 btrfs_put_block_group(bg);
2245 continue;
2246 }
2247
2248 if (ret) {
2249 btrfs_remove_free_space_cache(bg);
2250 btrfs_put_block_group(bg);
2251 break;
2252 }
2253
2254 btrfs_add_bg_to_space_info(fs_info, bg);
2255
2256 set_avail_alloc_bits(fs_info, bg->flags);
2257 }
2258 if (!ret)
2259 btrfs_init_global_block_rsv(fs_info);
2260 return ret;
2261 }
2262
btrfs_read_block_groups(struct btrfs_fs_info * info)2263 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2264 {
2265 struct btrfs_root *root = btrfs_block_group_root(info);
2266 struct btrfs_path *path;
2267 int ret;
2268 struct btrfs_block_group *cache;
2269 struct btrfs_space_info *space_info;
2270 struct btrfs_key key;
2271 int need_clear = 0;
2272 u64 cache_gen;
2273
2274 /*
2275 * Either no extent root (with ibadroots rescue option) or we have
2276 * unsupported RO options. The fs can never be mounted read-write, so no
2277 * need to waste time searching block group items.
2278 *
2279 * This also allows new extent tree related changes to be RO compat,
2280 * no need for a full incompat flag.
2281 */
2282 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2283 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2284 return fill_dummy_bgs(info);
2285
2286 key.objectid = 0;
2287 key.offset = 0;
2288 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2289 path = btrfs_alloc_path();
2290 if (!path)
2291 return -ENOMEM;
2292
2293 cache_gen = btrfs_super_cache_generation(info->super_copy);
2294 if (btrfs_test_opt(info, SPACE_CACHE) &&
2295 btrfs_super_generation(info->super_copy) != cache_gen)
2296 need_clear = 1;
2297 if (btrfs_test_opt(info, CLEAR_CACHE))
2298 need_clear = 1;
2299
2300 while (1) {
2301 struct btrfs_block_group_item bgi;
2302 struct extent_buffer *leaf;
2303 int slot;
2304
2305 ret = find_first_block_group(info, path, &key);
2306 if (ret > 0)
2307 break;
2308 if (ret != 0)
2309 goto error;
2310
2311 leaf = path->nodes[0];
2312 slot = path->slots[0];
2313
2314 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2315 sizeof(bgi));
2316
2317 btrfs_item_key_to_cpu(leaf, &key, slot);
2318 btrfs_release_path(path);
2319 ret = read_one_block_group(info, &bgi, &key, need_clear);
2320 if (ret < 0)
2321 goto error;
2322 key.objectid += key.offset;
2323 key.offset = 0;
2324 }
2325 btrfs_release_path(path);
2326
2327 list_for_each_entry(space_info, &info->space_info, list) {
2328 int i;
2329
2330 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2331 if (list_empty(&space_info->block_groups[i]))
2332 continue;
2333 cache = list_first_entry(&space_info->block_groups[i],
2334 struct btrfs_block_group,
2335 list);
2336 btrfs_sysfs_add_block_group_type(cache);
2337 }
2338
2339 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2340 (BTRFS_BLOCK_GROUP_RAID10 |
2341 BTRFS_BLOCK_GROUP_RAID1_MASK |
2342 BTRFS_BLOCK_GROUP_RAID56_MASK |
2343 BTRFS_BLOCK_GROUP_DUP)))
2344 continue;
2345 /*
2346 * Avoid allocating from un-mirrored block group if there are
2347 * mirrored block groups.
2348 */
2349 list_for_each_entry(cache,
2350 &space_info->block_groups[BTRFS_RAID_RAID0],
2351 list)
2352 inc_block_group_ro(cache, 1);
2353 list_for_each_entry(cache,
2354 &space_info->block_groups[BTRFS_RAID_SINGLE],
2355 list)
2356 inc_block_group_ro(cache, 1);
2357 }
2358
2359 btrfs_init_global_block_rsv(info);
2360 ret = check_chunk_block_group_mappings(info);
2361 error:
2362 btrfs_free_path(path);
2363 /*
2364 * We've hit some error while reading the extent tree, and have
2365 * rescue=ibadroots mount option.
2366 * Try to fill the tree using dummy block groups so that the user can
2367 * continue to mount and grab their data.
2368 */
2369 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2370 ret = fill_dummy_bgs(info);
2371 return ret;
2372 }
2373
2374 /*
2375 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2376 * allocation.
2377 *
2378 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2379 * phases.
2380 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2381 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2382 struct btrfs_block_group *block_group)
2383 {
2384 struct btrfs_fs_info *fs_info = trans->fs_info;
2385 struct btrfs_block_group_item bgi;
2386 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2387 struct btrfs_key key;
2388
2389 spin_lock(&block_group->lock);
2390 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2391 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2392 block_group->global_root_id);
2393 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2394 key.objectid = block_group->start;
2395 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2396 key.offset = block_group->length;
2397 spin_unlock(&block_group->lock);
2398
2399 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2400 }
2401
insert_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2402 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2403 struct btrfs_device *device, u64 chunk_offset,
2404 u64 start, u64 num_bytes)
2405 {
2406 struct btrfs_fs_info *fs_info = device->fs_info;
2407 struct btrfs_root *root = fs_info->dev_root;
2408 struct btrfs_path *path;
2409 struct btrfs_dev_extent *extent;
2410 struct extent_buffer *leaf;
2411 struct btrfs_key key;
2412 int ret;
2413
2414 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2415 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2416 path = btrfs_alloc_path();
2417 if (!path)
2418 return -ENOMEM;
2419
2420 key.objectid = device->devid;
2421 key.type = BTRFS_DEV_EXTENT_KEY;
2422 key.offset = start;
2423 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2424 if (ret)
2425 goto out;
2426
2427 leaf = path->nodes[0];
2428 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2429 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2430 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2431 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2432 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2433
2434 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2435 btrfs_mark_buffer_dirty(leaf);
2436 out:
2437 btrfs_free_path(path);
2438 return ret;
2439 }
2440
2441 /*
2442 * This function belongs to phase 2.
2443 *
2444 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2445 * phases.
2446 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2447 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2448 u64 chunk_offset, u64 chunk_size)
2449 {
2450 struct btrfs_fs_info *fs_info = trans->fs_info;
2451 struct btrfs_device *device;
2452 struct extent_map *em;
2453 struct map_lookup *map;
2454 u64 dev_offset;
2455 u64 stripe_size;
2456 int i;
2457 int ret = 0;
2458
2459 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2460 if (IS_ERR(em))
2461 return PTR_ERR(em);
2462
2463 map = em->map_lookup;
2464 stripe_size = em->orig_block_len;
2465
2466 /*
2467 * Take the device list mutex to prevent races with the final phase of
2468 * a device replace operation that replaces the device object associated
2469 * with the map's stripes, because the device object's id can change
2470 * at any time during that final phase of the device replace operation
2471 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2472 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2473 * resulting in persisting a device extent item with such ID.
2474 */
2475 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2476 for (i = 0; i < map->num_stripes; i++) {
2477 device = map->stripes[i].dev;
2478 dev_offset = map->stripes[i].physical;
2479
2480 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2481 stripe_size);
2482 if (ret)
2483 break;
2484 }
2485 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2486
2487 free_extent_map(em);
2488 return ret;
2489 }
2490
2491 /*
2492 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2493 * chunk allocation.
2494 *
2495 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2496 * phases.
2497 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2498 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2499 {
2500 struct btrfs_fs_info *fs_info = trans->fs_info;
2501 struct btrfs_block_group *block_group;
2502 int ret = 0;
2503
2504 while (!list_empty(&trans->new_bgs)) {
2505 int index;
2506
2507 block_group = list_first_entry(&trans->new_bgs,
2508 struct btrfs_block_group,
2509 bg_list);
2510 if (ret)
2511 goto next;
2512
2513 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2514
2515 ret = insert_block_group_item(trans, block_group);
2516 if (ret)
2517 btrfs_abort_transaction(trans, ret);
2518 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2519 &block_group->runtime_flags)) {
2520 mutex_lock(&fs_info->chunk_mutex);
2521 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2522 mutex_unlock(&fs_info->chunk_mutex);
2523 if (ret)
2524 btrfs_abort_transaction(trans, ret);
2525 }
2526 ret = insert_dev_extents(trans, block_group->start,
2527 block_group->length);
2528 if (ret)
2529 btrfs_abort_transaction(trans, ret);
2530 add_block_group_free_space(trans, block_group);
2531
2532 /*
2533 * If we restriped during balance, we may have added a new raid
2534 * type, so now add the sysfs entries when it is safe to do so.
2535 * We don't have to worry about locking here as it's handled in
2536 * btrfs_sysfs_add_block_group_type.
2537 */
2538 if (block_group->space_info->block_group_kobjs[index] == NULL)
2539 btrfs_sysfs_add_block_group_type(block_group);
2540
2541 /* Already aborted the transaction if it failed. */
2542 next:
2543 btrfs_delayed_refs_rsv_release(fs_info, 1);
2544 list_del_init(&block_group->bg_list);
2545 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2546 }
2547 btrfs_trans_release_chunk_metadata(trans);
2548 }
2549
2550 /*
2551 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2552 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2553 */
calculate_global_root_id(struct btrfs_fs_info * fs_info,u64 offset)2554 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2555 {
2556 u64 div = SZ_1G;
2557 u64 index;
2558
2559 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2560 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2561
2562 /* If we have a smaller fs index based on 128MiB. */
2563 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2564 div = SZ_128M;
2565
2566 offset = div64_u64(offset, div);
2567 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2568 return index;
2569 }
2570
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)2571 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2572 u64 bytes_used, u64 type,
2573 u64 chunk_offset, u64 size)
2574 {
2575 struct btrfs_fs_info *fs_info = trans->fs_info;
2576 struct btrfs_block_group *cache;
2577 int ret;
2578
2579 btrfs_set_log_full_commit(trans);
2580
2581 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2582 if (!cache)
2583 return ERR_PTR(-ENOMEM);
2584
2585 /*
2586 * Mark it as new before adding it to the rbtree of block groups or any
2587 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2588 * before the new flag is set.
2589 */
2590 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2591
2592 cache->length = size;
2593 set_free_space_tree_thresholds(cache);
2594 cache->used = bytes_used;
2595 cache->flags = type;
2596 cache->cached = BTRFS_CACHE_FINISHED;
2597 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2598
2599 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2600 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2601
2602 ret = btrfs_load_block_group_zone_info(cache, true);
2603 if (ret) {
2604 btrfs_put_block_group(cache);
2605 return ERR_PTR(ret);
2606 }
2607
2608 ret = exclude_super_stripes(cache);
2609 if (ret) {
2610 /* We may have excluded something, so call this just in case */
2611 btrfs_free_excluded_extents(cache);
2612 btrfs_put_block_group(cache);
2613 return ERR_PTR(ret);
2614 }
2615
2616 ret = add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2617 btrfs_free_excluded_extents(cache);
2618 if (ret) {
2619 btrfs_put_block_group(cache);
2620 return ERR_PTR(ret);
2621 }
2622
2623 /*
2624 * Ensure the corresponding space_info object is created and
2625 * assigned to our block group. We want our bg to be added to the rbtree
2626 * with its ->space_info set.
2627 */
2628 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2629 ASSERT(cache->space_info);
2630
2631 ret = btrfs_add_block_group_cache(fs_info, cache);
2632 if (ret) {
2633 btrfs_remove_free_space_cache(cache);
2634 btrfs_put_block_group(cache);
2635 return ERR_PTR(ret);
2636 }
2637
2638 /*
2639 * Now that our block group has its ->space_info set and is inserted in
2640 * the rbtree, update the space info's counters.
2641 */
2642 trace_btrfs_add_block_group(fs_info, cache, 1);
2643 btrfs_add_bg_to_space_info(fs_info, cache);
2644 btrfs_update_global_block_rsv(fs_info);
2645
2646 #ifdef CONFIG_BTRFS_DEBUG
2647 if (btrfs_should_fragment_free_space(cache)) {
2648 u64 new_bytes_used = size - bytes_used;
2649
2650 cache->space_info->bytes_used += new_bytes_used >> 1;
2651 fragment_free_space(cache);
2652 }
2653 #endif
2654
2655 list_add_tail(&cache->bg_list, &trans->new_bgs);
2656 trans->delayed_ref_updates++;
2657 btrfs_update_delayed_refs_rsv(trans);
2658
2659 set_avail_alloc_bits(fs_info, type);
2660 return cache;
2661 }
2662
2663 /*
2664 * Mark one block group RO, can be called several times for the same block
2665 * group.
2666 *
2667 * @cache: the destination block group
2668 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2669 * ensure we still have some free space after marking this
2670 * block group RO.
2671 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2672 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2673 bool do_chunk_alloc)
2674 {
2675 struct btrfs_fs_info *fs_info = cache->fs_info;
2676 struct btrfs_trans_handle *trans;
2677 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2678 u64 alloc_flags;
2679 int ret;
2680 bool dirty_bg_running;
2681
2682 /*
2683 * This can only happen when we are doing read-only scrub on read-only
2684 * mount.
2685 * In that case we should not start a new transaction on read-only fs.
2686 * Thus here we skip all chunk allocations.
2687 */
2688 if (sb_rdonly(fs_info->sb)) {
2689 mutex_lock(&fs_info->ro_block_group_mutex);
2690 ret = inc_block_group_ro(cache, 0);
2691 mutex_unlock(&fs_info->ro_block_group_mutex);
2692 return ret;
2693 }
2694
2695 do {
2696 trans = btrfs_join_transaction(root);
2697 if (IS_ERR(trans))
2698 return PTR_ERR(trans);
2699
2700 dirty_bg_running = false;
2701
2702 /*
2703 * We're not allowed to set block groups readonly after the dirty
2704 * block group cache has started writing. If it already started,
2705 * back off and let this transaction commit.
2706 */
2707 mutex_lock(&fs_info->ro_block_group_mutex);
2708 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2709 u64 transid = trans->transid;
2710
2711 mutex_unlock(&fs_info->ro_block_group_mutex);
2712 btrfs_end_transaction(trans);
2713
2714 ret = btrfs_wait_for_commit(fs_info, transid);
2715 if (ret)
2716 return ret;
2717 dirty_bg_running = true;
2718 }
2719 } while (dirty_bg_running);
2720
2721 if (do_chunk_alloc) {
2722 /*
2723 * If we are changing raid levels, try to allocate a
2724 * corresponding block group with the new raid level.
2725 */
2726 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2727 if (alloc_flags != cache->flags) {
2728 ret = btrfs_chunk_alloc(trans, alloc_flags,
2729 CHUNK_ALLOC_FORCE);
2730 /*
2731 * ENOSPC is allowed here, we may have enough space
2732 * already allocated at the new raid level to carry on
2733 */
2734 if (ret == -ENOSPC)
2735 ret = 0;
2736 if (ret < 0)
2737 goto out;
2738 }
2739 }
2740
2741 ret = inc_block_group_ro(cache, 0);
2742 if (!ret)
2743 goto out;
2744 if (ret == -ETXTBSY)
2745 goto unlock_out;
2746
2747 /*
2748 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2749 * chunk allocation storm to exhaust the system chunk array. Otherwise
2750 * we still want to try our best to mark the block group read-only.
2751 */
2752 if (!do_chunk_alloc && ret == -ENOSPC &&
2753 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2754 goto unlock_out;
2755
2756 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2757 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2758 if (ret < 0)
2759 goto out;
2760 /*
2761 * We have allocated a new chunk. We also need to activate that chunk to
2762 * grant metadata tickets for zoned filesystem.
2763 */
2764 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2765 if (ret < 0)
2766 goto out;
2767
2768 ret = inc_block_group_ro(cache, 0);
2769 if (ret == -ETXTBSY)
2770 goto unlock_out;
2771 out:
2772 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2773 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2774 mutex_lock(&fs_info->chunk_mutex);
2775 check_system_chunk(trans, alloc_flags);
2776 mutex_unlock(&fs_info->chunk_mutex);
2777 }
2778 unlock_out:
2779 mutex_unlock(&fs_info->ro_block_group_mutex);
2780
2781 btrfs_end_transaction(trans);
2782 return ret;
2783 }
2784
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2785 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2786 {
2787 struct btrfs_space_info *sinfo = cache->space_info;
2788 u64 num_bytes;
2789
2790 BUG_ON(!cache->ro);
2791
2792 spin_lock(&sinfo->lock);
2793 spin_lock(&cache->lock);
2794 if (!--cache->ro) {
2795 if (btrfs_is_zoned(cache->fs_info)) {
2796 /* Migrate zone_unusable bytes back */
2797 cache->zone_unusable =
2798 (cache->alloc_offset - cache->used) +
2799 (cache->length - cache->zone_capacity);
2800 sinfo->bytes_zone_unusable += cache->zone_unusable;
2801 sinfo->bytes_readonly -= cache->zone_unusable;
2802 }
2803 num_bytes = cache->length - cache->reserved -
2804 cache->pinned - cache->bytes_super -
2805 cache->zone_unusable - cache->used;
2806 sinfo->bytes_readonly -= num_bytes;
2807 list_del_init(&cache->ro_list);
2808 }
2809 spin_unlock(&cache->lock);
2810 spin_unlock(&sinfo->lock);
2811 }
2812
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)2813 static int update_block_group_item(struct btrfs_trans_handle *trans,
2814 struct btrfs_path *path,
2815 struct btrfs_block_group *cache)
2816 {
2817 struct btrfs_fs_info *fs_info = trans->fs_info;
2818 int ret;
2819 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2820 unsigned long bi;
2821 struct extent_buffer *leaf;
2822 struct btrfs_block_group_item bgi;
2823 struct btrfs_key key;
2824
2825 key.objectid = cache->start;
2826 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2827 key.offset = cache->length;
2828
2829 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2830 if (ret) {
2831 if (ret > 0)
2832 ret = -ENOENT;
2833 goto fail;
2834 }
2835
2836 leaf = path->nodes[0];
2837 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2838 btrfs_set_stack_block_group_used(&bgi, cache->used);
2839 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2840 cache->global_root_id);
2841 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2842 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2843 btrfs_mark_buffer_dirty(leaf);
2844 fail:
2845 btrfs_release_path(path);
2846 return ret;
2847
2848 }
2849
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2850 static int cache_save_setup(struct btrfs_block_group *block_group,
2851 struct btrfs_trans_handle *trans,
2852 struct btrfs_path *path)
2853 {
2854 struct btrfs_fs_info *fs_info = block_group->fs_info;
2855 struct btrfs_root *root = fs_info->tree_root;
2856 struct inode *inode = NULL;
2857 struct extent_changeset *data_reserved = NULL;
2858 u64 alloc_hint = 0;
2859 int dcs = BTRFS_DC_ERROR;
2860 u64 cache_size = 0;
2861 int retries = 0;
2862 int ret = 0;
2863
2864 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2865 return 0;
2866
2867 /*
2868 * If this block group is smaller than 100 megs don't bother caching the
2869 * block group.
2870 */
2871 if (block_group->length < (100 * SZ_1M)) {
2872 spin_lock(&block_group->lock);
2873 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2874 spin_unlock(&block_group->lock);
2875 return 0;
2876 }
2877
2878 if (TRANS_ABORTED(trans))
2879 return 0;
2880 again:
2881 inode = lookup_free_space_inode(block_group, path);
2882 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2883 ret = PTR_ERR(inode);
2884 btrfs_release_path(path);
2885 goto out;
2886 }
2887
2888 if (IS_ERR(inode)) {
2889 BUG_ON(retries);
2890 retries++;
2891
2892 if (block_group->ro)
2893 goto out_free;
2894
2895 ret = create_free_space_inode(trans, block_group, path);
2896 if (ret)
2897 goto out_free;
2898 goto again;
2899 }
2900
2901 /*
2902 * We want to set the generation to 0, that way if anything goes wrong
2903 * from here on out we know not to trust this cache when we load up next
2904 * time.
2905 */
2906 BTRFS_I(inode)->generation = 0;
2907 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2908 if (ret) {
2909 /*
2910 * So theoretically we could recover from this, simply set the
2911 * super cache generation to 0 so we know to invalidate the
2912 * cache, but then we'd have to keep track of the block groups
2913 * that fail this way so we know we _have_ to reset this cache
2914 * before the next commit or risk reading stale cache. So to
2915 * limit our exposure to horrible edge cases lets just abort the
2916 * transaction, this only happens in really bad situations
2917 * anyway.
2918 */
2919 btrfs_abort_transaction(trans, ret);
2920 goto out_put;
2921 }
2922 WARN_ON(ret);
2923
2924 /* We've already setup this transaction, go ahead and exit */
2925 if (block_group->cache_generation == trans->transid &&
2926 i_size_read(inode)) {
2927 dcs = BTRFS_DC_SETUP;
2928 goto out_put;
2929 }
2930
2931 if (i_size_read(inode) > 0) {
2932 ret = btrfs_check_trunc_cache_free_space(fs_info,
2933 &fs_info->global_block_rsv);
2934 if (ret)
2935 goto out_put;
2936
2937 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2938 if (ret)
2939 goto out_put;
2940 }
2941
2942 spin_lock(&block_group->lock);
2943 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2944 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2945 /*
2946 * don't bother trying to write stuff out _if_
2947 * a) we're not cached,
2948 * b) we're with nospace_cache mount option,
2949 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2950 */
2951 dcs = BTRFS_DC_WRITTEN;
2952 spin_unlock(&block_group->lock);
2953 goto out_put;
2954 }
2955 spin_unlock(&block_group->lock);
2956
2957 /*
2958 * We hit an ENOSPC when setting up the cache in this transaction, just
2959 * skip doing the setup, we've already cleared the cache so we're safe.
2960 */
2961 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2962 ret = -ENOSPC;
2963 goto out_put;
2964 }
2965
2966 /*
2967 * Try to preallocate enough space based on how big the block group is.
2968 * Keep in mind this has to include any pinned space which could end up
2969 * taking up quite a bit since it's not folded into the other space
2970 * cache.
2971 */
2972 cache_size = div_u64(block_group->length, SZ_256M);
2973 if (!cache_size)
2974 cache_size = 1;
2975
2976 cache_size *= 16;
2977 cache_size *= fs_info->sectorsize;
2978
2979 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2980 cache_size, false);
2981 if (ret)
2982 goto out_put;
2983
2984 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2985 cache_size, cache_size,
2986 &alloc_hint);
2987 /*
2988 * Our cache requires contiguous chunks so that we don't modify a bunch
2989 * of metadata or split extents when writing the cache out, which means
2990 * we can enospc if we are heavily fragmented in addition to just normal
2991 * out of space conditions. So if we hit this just skip setting up any
2992 * other block groups for this transaction, maybe we'll unpin enough
2993 * space the next time around.
2994 */
2995 if (!ret)
2996 dcs = BTRFS_DC_SETUP;
2997 else if (ret == -ENOSPC)
2998 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2999
3000 out_put:
3001 iput(inode);
3002 out_free:
3003 btrfs_release_path(path);
3004 out:
3005 spin_lock(&block_group->lock);
3006 if (!ret && dcs == BTRFS_DC_SETUP)
3007 block_group->cache_generation = trans->transid;
3008 block_group->disk_cache_state = dcs;
3009 spin_unlock(&block_group->lock);
3010
3011 extent_changeset_free(data_reserved);
3012 return ret;
3013 }
3014
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3015 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3016 {
3017 struct btrfs_fs_info *fs_info = trans->fs_info;
3018 struct btrfs_block_group *cache, *tmp;
3019 struct btrfs_transaction *cur_trans = trans->transaction;
3020 struct btrfs_path *path;
3021
3022 if (list_empty(&cur_trans->dirty_bgs) ||
3023 !btrfs_test_opt(fs_info, SPACE_CACHE))
3024 return 0;
3025
3026 path = btrfs_alloc_path();
3027 if (!path)
3028 return -ENOMEM;
3029
3030 /* Could add new block groups, use _safe just in case */
3031 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3032 dirty_list) {
3033 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3034 cache_save_setup(cache, trans, path);
3035 }
3036
3037 btrfs_free_path(path);
3038 return 0;
3039 }
3040
3041 /*
3042 * Transaction commit does final block group cache writeback during a critical
3043 * section where nothing is allowed to change the FS. This is required in
3044 * order for the cache to actually match the block group, but can introduce a
3045 * lot of latency into the commit.
3046 *
3047 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3048 * There's a chance we'll have to redo some of it if the block group changes
3049 * again during the commit, but it greatly reduces the commit latency by
3050 * getting rid of the easy block groups while we're still allowing others to
3051 * join the commit.
3052 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3053 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3054 {
3055 struct btrfs_fs_info *fs_info = trans->fs_info;
3056 struct btrfs_block_group *cache;
3057 struct btrfs_transaction *cur_trans = trans->transaction;
3058 int ret = 0;
3059 int should_put;
3060 struct btrfs_path *path = NULL;
3061 LIST_HEAD(dirty);
3062 struct list_head *io = &cur_trans->io_bgs;
3063 int loops = 0;
3064
3065 spin_lock(&cur_trans->dirty_bgs_lock);
3066 if (list_empty(&cur_trans->dirty_bgs)) {
3067 spin_unlock(&cur_trans->dirty_bgs_lock);
3068 return 0;
3069 }
3070 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3071 spin_unlock(&cur_trans->dirty_bgs_lock);
3072
3073 again:
3074 /* Make sure all the block groups on our dirty list actually exist */
3075 btrfs_create_pending_block_groups(trans);
3076
3077 if (!path) {
3078 path = btrfs_alloc_path();
3079 if (!path) {
3080 ret = -ENOMEM;
3081 goto out;
3082 }
3083 }
3084
3085 /*
3086 * cache_write_mutex is here only to save us from balance or automatic
3087 * removal of empty block groups deleting this block group while we are
3088 * writing out the cache
3089 */
3090 mutex_lock(&trans->transaction->cache_write_mutex);
3091 while (!list_empty(&dirty)) {
3092 bool drop_reserve = true;
3093
3094 cache = list_first_entry(&dirty, struct btrfs_block_group,
3095 dirty_list);
3096 /*
3097 * This can happen if something re-dirties a block group that
3098 * is already under IO. Just wait for it to finish and then do
3099 * it all again
3100 */
3101 if (!list_empty(&cache->io_list)) {
3102 list_del_init(&cache->io_list);
3103 btrfs_wait_cache_io(trans, cache, path);
3104 btrfs_put_block_group(cache);
3105 }
3106
3107
3108 /*
3109 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3110 * it should update the cache_state. Don't delete until after
3111 * we wait.
3112 *
3113 * Since we're not running in the commit critical section
3114 * we need the dirty_bgs_lock to protect from update_block_group
3115 */
3116 spin_lock(&cur_trans->dirty_bgs_lock);
3117 list_del_init(&cache->dirty_list);
3118 spin_unlock(&cur_trans->dirty_bgs_lock);
3119
3120 should_put = 1;
3121
3122 cache_save_setup(cache, trans, path);
3123
3124 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3125 cache->io_ctl.inode = NULL;
3126 ret = btrfs_write_out_cache(trans, cache, path);
3127 if (ret == 0 && cache->io_ctl.inode) {
3128 should_put = 0;
3129
3130 /*
3131 * The cache_write_mutex is protecting the
3132 * io_list, also refer to the definition of
3133 * btrfs_transaction::io_bgs for more details
3134 */
3135 list_add_tail(&cache->io_list, io);
3136 } else {
3137 /*
3138 * If we failed to write the cache, the
3139 * generation will be bad and life goes on
3140 */
3141 ret = 0;
3142 }
3143 }
3144 if (!ret) {
3145 ret = update_block_group_item(trans, path, cache);
3146 /*
3147 * Our block group might still be attached to the list
3148 * of new block groups in the transaction handle of some
3149 * other task (struct btrfs_trans_handle->new_bgs). This
3150 * means its block group item isn't yet in the extent
3151 * tree. If this happens ignore the error, as we will
3152 * try again later in the critical section of the
3153 * transaction commit.
3154 */
3155 if (ret == -ENOENT) {
3156 ret = 0;
3157 spin_lock(&cur_trans->dirty_bgs_lock);
3158 if (list_empty(&cache->dirty_list)) {
3159 list_add_tail(&cache->dirty_list,
3160 &cur_trans->dirty_bgs);
3161 btrfs_get_block_group(cache);
3162 drop_reserve = false;
3163 }
3164 spin_unlock(&cur_trans->dirty_bgs_lock);
3165 } else if (ret) {
3166 btrfs_abort_transaction(trans, ret);
3167 }
3168 }
3169
3170 /* If it's not on the io list, we need to put the block group */
3171 if (should_put)
3172 btrfs_put_block_group(cache);
3173 if (drop_reserve)
3174 btrfs_delayed_refs_rsv_release(fs_info, 1);
3175 /*
3176 * Avoid blocking other tasks for too long. It might even save
3177 * us from writing caches for block groups that are going to be
3178 * removed.
3179 */
3180 mutex_unlock(&trans->transaction->cache_write_mutex);
3181 if (ret)
3182 goto out;
3183 mutex_lock(&trans->transaction->cache_write_mutex);
3184 }
3185 mutex_unlock(&trans->transaction->cache_write_mutex);
3186
3187 /*
3188 * Go through delayed refs for all the stuff we've just kicked off
3189 * and then loop back (just once)
3190 */
3191 if (!ret)
3192 ret = btrfs_run_delayed_refs(trans, 0);
3193 if (!ret && loops == 0) {
3194 loops++;
3195 spin_lock(&cur_trans->dirty_bgs_lock);
3196 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3197 /*
3198 * dirty_bgs_lock protects us from concurrent block group
3199 * deletes too (not just cache_write_mutex).
3200 */
3201 if (!list_empty(&dirty)) {
3202 spin_unlock(&cur_trans->dirty_bgs_lock);
3203 goto again;
3204 }
3205 spin_unlock(&cur_trans->dirty_bgs_lock);
3206 }
3207 out:
3208 if (ret < 0) {
3209 spin_lock(&cur_trans->dirty_bgs_lock);
3210 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3211 spin_unlock(&cur_trans->dirty_bgs_lock);
3212 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3213 }
3214
3215 btrfs_free_path(path);
3216 return ret;
3217 }
3218
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3219 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3220 {
3221 struct btrfs_fs_info *fs_info = trans->fs_info;
3222 struct btrfs_block_group *cache;
3223 struct btrfs_transaction *cur_trans = trans->transaction;
3224 int ret = 0;
3225 int should_put;
3226 struct btrfs_path *path;
3227 struct list_head *io = &cur_trans->io_bgs;
3228
3229 path = btrfs_alloc_path();
3230 if (!path)
3231 return -ENOMEM;
3232
3233 /*
3234 * Even though we are in the critical section of the transaction commit,
3235 * we can still have concurrent tasks adding elements to this
3236 * transaction's list of dirty block groups. These tasks correspond to
3237 * endio free space workers started when writeback finishes for a
3238 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3239 * allocate new block groups as a result of COWing nodes of the root
3240 * tree when updating the free space inode. The writeback for the space
3241 * caches is triggered by an earlier call to
3242 * btrfs_start_dirty_block_groups() and iterations of the following
3243 * loop.
3244 * Also we want to do the cache_save_setup first and then run the
3245 * delayed refs to make sure we have the best chance at doing this all
3246 * in one shot.
3247 */
3248 spin_lock(&cur_trans->dirty_bgs_lock);
3249 while (!list_empty(&cur_trans->dirty_bgs)) {
3250 cache = list_first_entry(&cur_trans->dirty_bgs,
3251 struct btrfs_block_group,
3252 dirty_list);
3253
3254 /*
3255 * This can happen if cache_save_setup re-dirties a block group
3256 * that is already under IO. Just wait for it to finish and
3257 * then do it all again
3258 */
3259 if (!list_empty(&cache->io_list)) {
3260 spin_unlock(&cur_trans->dirty_bgs_lock);
3261 list_del_init(&cache->io_list);
3262 btrfs_wait_cache_io(trans, cache, path);
3263 btrfs_put_block_group(cache);
3264 spin_lock(&cur_trans->dirty_bgs_lock);
3265 }
3266
3267 /*
3268 * Don't remove from the dirty list until after we've waited on
3269 * any pending IO
3270 */
3271 list_del_init(&cache->dirty_list);
3272 spin_unlock(&cur_trans->dirty_bgs_lock);
3273 should_put = 1;
3274
3275 cache_save_setup(cache, trans, path);
3276
3277 if (!ret)
3278 ret = btrfs_run_delayed_refs(trans,
3279 (unsigned long) -1);
3280
3281 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3282 cache->io_ctl.inode = NULL;
3283 ret = btrfs_write_out_cache(trans, cache, path);
3284 if (ret == 0 && cache->io_ctl.inode) {
3285 should_put = 0;
3286 list_add_tail(&cache->io_list, io);
3287 } else {
3288 /*
3289 * If we failed to write the cache, the
3290 * generation will be bad and life goes on
3291 */
3292 ret = 0;
3293 }
3294 }
3295 if (!ret) {
3296 ret = update_block_group_item(trans, path, cache);
3297 /*
3298 * One of the free space endio workers might have
3299 * created a new block group while updating a free space
3300 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3301 * and hasn't released its transaction handle yet, in
3302 * which case the new block group is still attached to
3303 * its transaction handle and its creation has not
3304 * finished yet (no block group item in the extent tree
3305 * yet, etc). If this is the case, wait for all free
3306 * space endio workers to finish and retry. This is a
3307 * very rare case so no need for a more efficient and
3308 * complex approach.
3309 */
3310 if (ret == -ENOENT) {
3311 wait_event(cur_trans->writer_wait,
3312 atomic_read(&cur_trans->num_writers) == 1);
3313 ret = update_block_group_item(trans, path, cache);
3314 }
3315 if (ret)
3316 btrfs_abort_transaction(trans, ret);
3317 }
3318
3319 /* If its not on the io list, we need to put the block group */
3320 if (should_put)
3321 btrfs_put_block_group(cache);
3322 btrfs_delayed_refs_rsv_release(fs_info, 1);
3323 spin_lock(&cur_trans->dirty_bgs_lock);
3324 }
3325 spin_unlock(&cur_trans->dirty_bgs_lock);
3326
3327 /*
3328 * Refer to the definition of io_bgs member for details why it's safe
3329 * to use it without any locking
3330 */
3331 while (!list_empty(io)) {
3332 cache = list_first_entry(io, struct btrfs_block_group,
3333 io_list);
3334 list_del_init(&cache->io_list);
3335 btrfs_wait_cache_io(trans, cache, path);
3336 btrfs_put_block_group(cache);
3337 }
3338
3339 btrfs_free_path(path);
3340 return ret;
3341 }
3342
should_reclaim_block_group(struct btrfs_block_group * bg,u64 bytes_freed)3343 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3344 u64 bytes_freed)
3345 {
3346 const struct btrfs_space_info *space_info = bg->space_info;
3347 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3348 const u64 new_val = bg->used;
3349 const u64 old_val = new_val + bytes_freed;
3350 u64 thresh;
3351
3352 if (reclaim_thresh == 0)
3353 return false;
3354
3355 thresh = div_factor_fine(bg->length, reclaim_thresh);
3356
3357 /*
3358 * If we were below the threshold before don't reclaim, we are likely a
3359 * brand new block group and we don't want to relocate new block groups.
3360 */
3361 if (old_val < thresh)
3362 return false;
3363 if (new_val >= thresh)
3364 return false;
3365 return true;
3366 }
3367
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3368 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3369 u64 bytenr, u64 num_bytes, bool alloc)
3370 {
3371 struct btrfs_fs_info *info = trans->fs_info;
3372 struct btrfs_block_group *cache = NULL;
3373 u64 total = num_bytes;
3374 u64 old_val;
3375 u64 byte_in_group;
3376 int factor;
3377 int ret = 0;
3378
3379 /* Block accounting for super block */
3380 spin_lock(&info->delalloc_root_lock);
3381 old_val = btrfs_super_bytes_used(info->super_copy);
3382 if (alloc)
3383 old_val += num_bytes;
3384 else
3385 old_val -= num_bytes;
3386 btrfs_set_super_bytes_used(info->super_copy, old_val);
3387 spin_unlock(&info->delalloc_root_lock);
3388
3389 while (total) {
3390 struct btrfs_space_info *space_info;
3391 bool reclaim = false;
3392
3393 cache = btrfs_lookup_block_group(info, bytenr);
3394 if (!cache) {
3395 ret = -ENOENT;
3396 break;
3397 }
3398 space_info = cache->space_info;
3399 factor = btrfs_bg_type_to_factor(cache->flags);
3400
3401 /*
3402 * If this block group has free space cache written out, we
3403 * need to make sure to load it if we are removing space. This
3404 * is because we need the unpinning stage to actually add the
3405 * space back to the block group, otherwise we will leak space.
3406 */
3407 if (!alloc && !btrfs_block_group_done(cache))
3408 btrfs_cache_block_group(cache, true);
3409
3410 byte_in_group = bytenr - cache->start;
3411 WARN_ON(byte_in_group > cache->length);
3412
3413 spin_lock(&space_info->lock);
3414 spin_lock(&cache->lock);
3415
3416 if (btrfs_test_opt(info, SPACE_CACHE) &&
3417 cache->disk_cache_state < BTRFS_DC_CLEAR)
3418 cache->disk_cache_state = BTRFS_DC_CLEAR;
3419
3420 old_val = cache->used;
3421 num_bytes = min(total, cache->length - byte_in_group);
3422 if (alloc) {
3423 old_val += num_bytes;
3424 cache->used = old_val;
3425 cache->reserved -= num_bytes;
3426 space_info->bytes_reserved -= num_bytes;
3427 space_info->bytes_used += num_bytes;
3428 space_info->disk_used += num_bytes * factor;
3429 spin_unlock(&cache->lock);
3430 spin_unlock(&space_info->lock);
3431 } else {
3432 old_val -= num_bytes;
3433 cache->used = old_val;
3434 cache->pinned += num_bytes;
3435 btrfs_space_info_update_bytes_pinned(info, space_info,
3436 num_bytes);
3437 space_info->bytes_used -= num_bytes;
3438 space_info->disk_used -= num_bytes * factor;
3439
3440 reclaim = should_reclaim_block_group(cache, num_bytes);
3441 spin_unlock(&cache->lock);
3442 spin_unlock(&space_info->lock);
3443
3444 set_extent_dirty(&trans->transaction->pinned_extents,
3445 bytenr, bytenr + num_bytes - 1,
3446 GFP_NOFS | __GFP_NOFAIL);
3447 }
3448
3449 spin_lock(&trans->transaction->dirty_bgs_lock);
3450 if (list_empty(&cache->dirty_list)) {
3451 list_add_tail(&cache->dirty_list,
3452 &trans->transaction->dirty_bgs);
3453 trans->delayed_ref_updates++;
3454 btrfs_get_block_group(cache);
3455 }
3456 spin_unlock(&trans->transaction->dirty_bgs_lock);
3457
3458 /*
3459 * No longer have used bytes in this block group, queue it for
3460 * deletion. We do this after adding the block group to the
3461 * dirty list to avoid races between cleaner kthread and space
3462 * cache writeout.
3463 */
3464 if (!alloc && old_val == 0) {
3465 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3466 btrfs_mark_bg_unused(cache);
3467 } else if (!alloc && reclaim) {
3468 btrfs_mark_bg_to_reclaim(cache);
3469 }
3470
3471 btrfs_put_block_group(cache);
3472 total -= num_bytes;
3473 bytenr += num_bytes;
3474 }
3475
3476 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3477 btrfs_update_delayed_refs_rsv(trans);
3478 return ret;
3479 }
3480
3481 /**
3482 * btrfs_add_reserved_bytes - update the block_group and space info counters
3483 * @cache: The cache we are manipulating
3484 * @ram_bytes: The number of bytes of file content, and will be same to
3485 * @num_bytes except for the compress path.
3486 * @num_bytes: The number of bytes in question
3487 * @delalloc: The blocks are allocated for the delalloc write
3488 *
3489 * This is called by the allocator when it reserves space. If this is a
3490 * reservation and the block group has become read only we cannot make the
3491 * reservation and return -EAGAIN, otherwise this function always succeeds.
3492 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc)3493 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3494 u64 ram_bytes, u64 num_bytes, int delalloc)
3495 {
3496 struct btrfs_space_info *space_info = cache->space_info;
3497 int ret = 0;
3498
3499 spin_lock(&space_info->lock);
3500 spin_lock(&cache->lock);
3501 if (cache->ro) {
3502 ret = -EAGAIN;
3503 } else {
3504 cache->reserved += num_bytes;
3505 space_info->bytes_reserved += num_bytes;
3506 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3507 space_info->flags, num_bytes, 1);
3508 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3509 space_info, -ram_bytes);
3510 if (delalloc)
3511 cache->delalloc_bytes += num_bytes;
3512
3513 /*
3514 * Compression can use less space than we reserved, so wake
3515 * tickets if that happens
3516 */
3517 if (num_bytes < ram_bytes)
3518 btrfs_try_granting_tickets(cache->fs_info, space_info);
3519 }
3520 spin_unlock(&cache->lock);
3521 spin_unlock(&space_info->lock);
3522 return ret;
3523 }
3524
3525 /**
3526 * btrfs_free_reserved_bytes - update the block_group and space info counters
3527 * @cache: The cache we are manipulating
3528 * @num_bytes: The number of bytes in question
3529 * @delalloc: The blocks are allocated for the delalloc write
3530 *
3531 * This is called by somebody who is freeing space that was never actually used
3532 * on disk. For example if you reserve some space for a new leaf in transaction
3533 * A and before transaction A commits you free that leaf, you call this with
3534 * reserve set to 0 in order to clear the reservation.
3535 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3536 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3537 u64 num_bytes, int delalloc)
3538 {
3539 struct btrfs_space_info *space_info = cache->space_info;
3540
3541 spin_lock(&space_info->lock);
3542 spin_lock(&cache->lock);
3543 if (cache->ro)
3544 space_info->bytes_readonly += num_bytes;
3545 cache->reserved -= num_bytes;
3546 space_info->bytes_reserved -= num_bytes;
3547 space_info->max_extent_size = 0;
3548
3549 if (delalloc)
3550 cache->delalloc_bytes -= num_bytes;
3551 spin_unlock(&cache->lock);
3552
3553 btrfs_try_granting_tickets(cache->fs_info, space_info);
3554 spin_unlock(&space_info->lock);
3555 }
3556
force_metadata_allocation(struct btrfs_fs_info * info)3557 static void force_metadata_allocation(struct btrfs_fs_info *info)
3558 {
3559 struct list_head *head = &info->space_info;
3560 struct btrfs_space_info *found;
3561
3562 list_for_each_entry(found, head, list) {
3563 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3564 found->force_alloc = CHUNK_ALLOC_FORCE;
3565 }
3566 }
3567
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3568 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3569 struct btrfs_space_info *sinfo, int force)
3570 {
3571 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3572 u64 thresh;
3573
3574 if (force == CHUNK_ALLOC_FORCE)
3575 return 1;
3576
3577 /*
3578 * in limited mode, we want to have some free space up to
3579 * about 1% of the FS size.
3580 */
3581 if (force == CHUNK_ALLOC_LIMITED) {
3582 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3583 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3584
3585 if (sinfo->total_bytes - bytes_used < thresh)
3586 return 1;
3587 }
3588
3589 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3590 return 0;
3591 return 1;
3592 }
3593
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3594 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3595 {
3596 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3597
3598 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3599 }
3600
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3601 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3602 {
3603 struct btrfs_block_group *bg;
3604 int ret;
3605
3606 /*
3607 * Check if we have enough space in the system space info because we
3608 * will need to update device items in the chunk btree and insert a new
3609 * chunk item in the chunk btree as well. This will allocate a new
3610 * system block group if needed.
3611 */
3612 check_system_chunk(trans, flags);
3613
3614 bg = btrfs_create_chunk(trans, flags);
3615 if (IS_ERR(bg)) {
3616 ret = PTR_ERR(bg);
3617 goto out;
3618 }
3619
3620 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3621 /*
3622 * Normally we are not expected to fail with -ENOSPC here, since we have
3623 * previously reserved space in the system space_info and allocated one
3624 * new system chunk if necessary. However there are three exceptions:
3625 *
3626 * 1) We may have enough free space in the system space_info but all the
3627 * existing system block groups have a profile which can not be used
3628 * for extent allocation.
3629 *
3630 * This happens when mounting in degraded mode. For example we have a
3631 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3632 * using the other device in degraded mode. If we then allocate a chunk,
3633 * we may have enough free space in the existing system space_info, but
3634 * none of the block groups can be used for extent allocation since they
3635 * have a RAID1 profile, and because we are in degraded mode with a
3636 * single device, we are forced to allocate a new system chunk with a
3637 * SINGLE profile. Making check_system_chunk() iterate over all system
3638 * block groups and check if they have a usable profile and enough space
3639 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3640 * try again after forcing allocation of a new system chunk. Like this
3641 * we avoid paying the cost of that search in normal circumstances, when
3642 * we were not mounted in degraded mode;
3643 *
3644 * 2) We had enough free space info the system space_info, and one suitable
3645 * block group to allocate from when we called check_system_chunk()
3646 * above. However right after we called it, the only system block group
3647 * with enough free space got turned into RO mode by a running scrub,
3648 * and in this case we have to allocate a new one and retry. We only
3649 * need do this allocate and retry once, since we have a transaction
3650 * handle and scrub uses the commit root to search for block groups;
3651 *
3652 * 3) We had one system block group with enough free space when we called
3653 * check_system_chunk(), but after that, right before we tried to
3654 * allocate the last extent buffer we needed, a discard operation came
3655 * in and it temporarily removed the last free space entry from the
3656 * block group (discard removes a free space entry, discards it, and
3657 * then adds back the entry to the block group cache).
3658 */
3659 if (ret == -ENOSPC) {
3660 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3661 struct btrfs_block_group *sys_bg;
3662
3663 sys_bg = btrfs_create_chunk(trans, sys_flags);
3664 if (IS_ERR(sys_bg)) {
3665 ret = PTR_ERR(sys_bg);
3666 btrfs_abort_transaction(trans, ret);
3667 goto out;
3668 }
3669
3670 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3671 if (ret) {
3672 btrfs_abort_transaction(trans, ret);
3673 goto out;
3674 }
3675
3676 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3677 if (ret) {
3678 btrfs_abort_transaction(trans, ret);
3679 goto out;
3680 }
3681 } else if (ret) {
3682 btrfs_abort_transaction(trans, ret);
3683 goto out;
3684 }
3685 out:
3686 btrfs_trans_release_chunk_metadata(trans);
3687
3688 if (ret)
3689 return ERR_PTR(ret);
3690
3691 btrfs_get_block_group(bg);
3692 return bg;
3693 }
3694
3695 /*
3696 * Chunk allocation is done in 2 phases:
3697 *
3698 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3699 * the chunk, the chunk mapping, create its block group and add the items
3700 * that belong in the chunk btree to it - more specifically, we need to
3701 * update device items in the chunk btree and add a new chunk item to it.
3702 *
3703 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3704 * group item to the extent btree and the device extent items to the devices
3705 * btree.
3706 *
3707 * This is done to prevent deadlocks. For example when COWing a node from the
3708 * extent btree we are holding a write lock on the node's parent and if we
3709 * trigger chunk allocation and attempted to insert the new block group item
3710 * in the extent btree right way, we could deadlock because the path for the
3711 * insertion can include that parent node. At first glance it seems impossible
3712 * to trigger chunk allocation after starting a transaction since tasks should
3713 * reserve enough transaction units (metadata space), however while that is true
3714 * most of the time, chunk allocation may still be triggered for several reasons:
3715 *
3716 * 1) When reserving metadata, we check if there is enough free space in the
3717 * metadata space_info and therefore don't trigger allocation of a new chunk.
3718 * However later when the task actually tries to COW an extent buffer from
3719 * the extent btree or from the device btree for example, it is forced to
3720 * allocate a new block group (chunk) because the only one that had enough
3721 * free space was just turned to RO mode by a running scrub for example (or
3722 * device replace, block group reclaim thread, etc), so we can not use it
3723 * for allocating an extent and end up being forced to allocate a new one;
3724 *
3725 * 2) Because we only check that the metadata space_info has enough free bytes,
3726 * we end up not allocating a new metadata chunk in that case. However if
3727 * the filesystem was mounted in degraded mode, none of the existing block
3728 * groups might be suitable for extent allocation due to their incompatible
3729 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3730 * use a RAID1 profile, in degraded mode using a single device). In this case
3731 * when the task attempts to COW some extent buffer of the extent btree for
3732 * example, it will trigger allocation of a new metadata block group with a
3733 * suitable profile (SINGLE profile in the example of the degraded mount of
3734 * the RAID1 filesystem);
3735 *
3736 * 3) The task has reserved enough transaction units / metadata space, but when
3737 * it attempts to COW an extent buffer from the extent or device btree for
3738 * example, it does not find any free extent in any metadata block group,
3739 * therefore forced to try to allocate a new metadata block group.
3740 * This is because some other task allocated all available extents in the
3741 * meanwhile - this typically happens with tasks that don't reserve space
3742 * properly, either intentionally or as a bug. One example where this is
3743 * done intentionally is fsync, as it does not reserve any transaction units
3744 * and ends up allocating a variable number of metadata extents for log
3745 * tree extent buffers;
3746 *
3747 * 4) The task has reserved enough transaction units / metadata space, but right
3748 * before it tries to allocate the last extent buffer it needs, a discard
3749 * operation comes in and, temporarily, removes the last free space entry from
3750 * the only metadata block group that had free space (discard starts by
3751 * removing a free space entry from a block group, then does the discard
3752 * operation and, once it's done, it adds back the free space entry to the
3753 * block group).
3754 *
3755 * We also need this 2 phases setup when adding a device to a filesystem with
3756 * a seed device - we must create new metadata and system chunks without adding
3757 * any of the block group items to the chunk, extent and device btrees. If we
3758 * did not do it this way, we would get ENOSPC when attempting to update those
3759 * btrees, since all the chunks from the seed device are read-only.
3760 *
3761 * Phase 1 does the updates and insertions to the chunk btree because if we had
3762 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3763 * parallel, we risk having too many system chunks allocated by many tasks if
3764 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3765 * extreme case this leads to exhaustion of the system chunk array in the
3766 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3767 * and with RAID filesystems (so we have more device items in the chunk btree).
3768 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3769 * the system chunk array due to concurrent allocations") provides more details.
3770 *
3771 * Allocation of system chunks does not happen through this function. A task that
3772 * needs to update the chunk btree (the only btree that uses system chunks), must
3773 * preallocate chunk space by calling either check_system_chunk() or
3774 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3775 * metadata chunk or when removing a chunk, while the later is used before doing
3776 * a modification to the chunk btree - use cases for the later are adding,
3777 * removing and resizing a device as well as relocation of a system chunk.
3778 * See the comment below for more details.
3779 *
3780 * The reservation of system space, done through check_system_chunk(), as well
3781 * as all the updates and insertions into the chunk btree must be done while
3782 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3783 * an extent buffer from the chunks btree we never trigger allocation of a new
3784 * system chunk, which would result in a deadlock (trying to lock twice an
3785 * extent buffer of the chunk btree, first time before triggering the chunk
3786 * allocation and the second time during chunk allocation while attempting to
3787 * update the chunks btree). The system chunk array is also updated while holding
3788 * that mutex. The same logic applies to removing chunks - we must reserve system
3789 * space, update the chunk btree and the system chunk array in the superblock
3790 * while holding fs_info->chunk_mutex.
3791 *
3792 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3793 *
3794 * If @force is CHUNK_ALLOC_FORCE:
3795 * - return 1 if it successfully allocates a chunk,
3796 * - return errors including -ENOSPC otherwise.
3797 * If @force is NOT CHUNK_ALLOC_FORCE:
3798 * - return 0 if it doesn't need to allocate a new chunk,
3799 * - return 1 if it successfully allocates a chunk,
3800 * - return errors including -ENOSPC otherwise.
3801 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)3802 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3803 enum btrfs_chunk_alloc_enum force)
3804 {
3805 struct btrfs_fs_info *fs_info = trans->fs_info;
3806 struct btrfs_space_info *space_info;
3807 struct btrfs_block_group *ret_bg;
3808 bool wait_for_alloc = false;
3809 bool should_alloc = false;
3810 bool from_extent_allocation = false;
3811 int ret = 0;
3812
3813 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3814 from_extent_allocation = true;
3815 force = CHUNK_ALLOC_FORCE;
3816 }
3817
3818 /* Don't re-enter if we're already allocating a chunk */
3819 if (trans->allocating_chunk)
3820 return -ENOSPC;
3821 /*
3822 * Allocation of system chunks can not happen through this path, as we
3823 * could end up in a deadlock if we are allocating a data or metadata
3824 * chunk and there is another task modifying the chunk btree.
3825 *
3826 * This is because while we are holding the chunk mutex, we will attempt
3827 * to add the new chunk item to the chunk btree or update an existing
3828 * device item in the chunk btree, while the other task that is modifying
3829 * the chunk btree is attempting to COW an extent buffer while holding a
3830 * lock on it and on its parent - if the COW operation triggers a system
3831 * chunk allocation, then we can deadlock because we are holding the
3832 * chunk mutex and we may need to access that extent buffer or its parent
3833 * in order to add the chunk item or update a device item.
3834 *
3835 * Tasks that want to modify the chunk tree should reserve system space
3836 * before updating the chunk btree, by calling either
3837 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3838 * It's possible that after a task reserves the space, it still ends up
3839 * here - this happens in the cases described above at do_chunk_alloc().
3840 * The task will have to either retry or fail.
3841 */
3842 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3843 return -ENOSPC;
3844
3845 space_info = btrfs_find_space_info(fs_info, flags);
3846 ASSERT(space_info);
3847
3848 do {
3849 spin_lock(&space_info->lock);
3850 if (force < space_info->force_alloc)
3851 force = space_info->force_alloc;
3852 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3853 if (space_info->full) {
3854 /* No more free physical space */
3855 if (should_alloc)
3856 ret = -ENOSPC;
3857 else
3858 ret = 0;
3859 spin_unlock(&space_info->lock);
3860 return ret;
3861 } else if (!should_alloc) {
3862 spin_unlock(&space_info->lock);
3863 return 0;
3864 } else if (space_info->chunk_alloc) {
3865 /*
3866 * Someone is already allocating, so we need to block
3867 * until this someone is finished and then loop to
3868 * recheck if we should continue with our allocation
3869 * attempt.
3870 */
3871 wait_for_alloc = true;
3872 force = CHUNK_ALLOC_NO_FORCE;
3873 spin_unlock(&space_info->lock);
3874 mutex_lock(&fs_info->chunk_mutex);
3875 mutex_unlock(&fs_info->chunk_mutex);
3876 } else {
3877 /* Proceed with allocation */
3878 space_info->chunk_alloc = 1;
3879 wait_for_alloc = false;
3880 spin_unlock(&space_info->lock);
3881 }
3882
3883 cond_resched();
3884 } while (wait_for_alloc);
3885
3886 mutex_lock(&fs_info->chunk_mutex);
3887 trans->allocating_chunk = true;
3888
3889 /*
3890 * If we have mixed data/metadata chunks we want to make sure we keep
3891 * allocating mixed chunks instead of individual chunks.
3892 */
3893 if (btrfs_mixed_space_info(space_info))
3894 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3895
3896 /*
3897 * if we're doing a data chunk, go ahead and make sure that
3898 * we keep a reasonable number of metadata chunks allocated in the
3899 * FS as well.
3900 */
3901 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3902 fs_info->data_chunk_allocations++;
3903 if (!(fs_info->data_chunk_allocations %
3904 fs_info->metadata_ratio))
3905 force_metadata_allocation(fs_info);
3906 }
3907
3908 ret_bg = do_chunk_alloc(trans, flags);
3909 trans->allocating_chunk = false;
3910
3911 if (IS_ERR(ret_bg)) {
3912 ret = PTR_ERR(ret_bg);
3913 } else if (from_extent_allocation) {
3914 /*
3915 * New block group is likely to be used soon. Try to activate
3916 * it now. Failure is OK for now.
3917 */
3918 btrfs_zone_activate(ret_bg);
3919 }
3920
3921 if (!ret)
3922 btrfs_put_block_group(ret_bg);
3923
3924 spin_lock(&space_info->lock);
3925 if (ret < 0) {
3926 if (ret == -ENOSPC)
3927 space_info->full = 1;
3928 else
3929 goto out;
3930 } else {
3931 ret = 1;
3932 space_info->max_extent_size = 0;
3933 }
3934
3935 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3936 out:
3937 space_info->chunk_alloc = 0;
3938 spin_unlock(&space_info->lock);
3939 mutex_unlock(&fs_info->chunk_mutex);
3940
3941 return ret;
3942 }
3943
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)3944 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3945 {
3946 u64 num_dev;
3947
3948 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3949 if (!num_dev)
3950 num_dev = fs_info->fs_devices->rw_devices;
3951
3952 return num_dev;
3953 }
3954
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)3955 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3956 u64 bytes,
3957 u64 type)
3958 {
3959 struct btrfs_fs_info *fs_info = trans->fs_info;
3960 struct btrfs_space_info *info;
3961 u64 left;
3962 int ret = 0;
3963
3964 /*
3965 * Needed because we can end up allocating a system chunk and for an
3966 * atomic and race free space reservation in the chunk block reserve.
3967 */
3968 lockdep_assert_held(&fs_info->chunk_mutex);
3969
3970 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3971 spin_lock(&info->lock);
3972 left = info->total_bytes - btrfs_space_info_used(info, true);
3973 spin_unlock(&info->lock);
3974
3975 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3976 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3977 left, bytes, type);
3978 btrfs_dump_space_info(fs_info, info, 0, 0);
3979 }
3980
3981 if (left < bytes) {
3982 u64 flags = btrfs_system_alloc_profile(fs_info);
3983 struct btrfs_block_group *bg;
3984
3985 /*
3986 * Ignore failure to create system chunk. We might end up not
3987 * needing it, as we might not need to COW all nodes/leafs from
3988 * the paths we visit in the chunk tree (they were already COWed
3989 * or created in the current transaction for example).
3990 */
3991 bg = btrfs_create_chunk(trans, flags);
3992 if (IS_ERR(bg)) {
3993 ret = PTR_ERR(bg);
3994 } else {
3995 /*
3996 * We have a new chunk. We also need to activate it for
3997 * zoned filesystem.
3998 */
3999 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4000 if (ret < 0)
4001 return;
4002
4003 /*
4004 * If we fail to add the chunk item here, we end up
4005 * trying again at phase 2 of chunk allocation, at
4006 * btrfs_create_pending_block_groups(). So ignore
4007 * any error here. An ENOSPC here could happen, due to
4008 * the cases described at do_chunk_alloc() - the system
4009 * block group we just created was just turned into RO
4010 * mode by a scrub for example, or a running discard
4011 * temporarily removed its free space entries, etc.
4012 */
4013 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4014 }
4015 }
4016
4017 if (!ret) {
4018 ret = btrfs_block_rsv_add(fs_info,
4019 &fs_info->chunk_block_rsv,
4020 bytes, BTRFS_RESERVE_NO_FLUSH);
4021 if (!ret)
4022 trans->chunk_bytes_reserved += bytes;
4023 }
4024 }
4025
4026 /*
4027 * Reserve space in the system space for allocating or removing a chunk.
4028 * The caller must be holding fs_info->chunk_mutex.
4029 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4030 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4031 {
4032 struct btrfs_fs_info *fs_info = trans->fs_info;
4033 const u64 num_devs = get_profile_num_devs(fs_info, type);
4034 u64 bytes;
4035
4036 /* num_devs device items to update and 1 chunk item to add or remove. */
4037 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4038 btrfs_calc_insert_metadata_size(fs_info, 1);
4039
4040 reserve_chunk_space(trans, bytes, type);
4041 }
4042
4043 /*
4044 * Reserve space in the system space, if needed, for doing a modification to the
4045 * chunk btree.
4046 *
4047 * @trans: A transaction handle.
4048 * @is_item_insertion: Indicate if the modification is for inserting a new item
4049 * in the chunk btree or if it's for the deletion or update
4050 * of an existing item.
4051 *
4052 * This is used in a context where we need to update the chunk btree outside
4053 * block group allocation and removal, to avoid a deadlock with a concurrent
4054 * task that is allocating a metadata or data block group and therefore needs to
4055 * update the chunk btree while holding the chunk mutex. After the update to the
4056 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4057 *
4058 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4059 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4060 bool is_item_insertion)
4061 {
4062 struct btrfs_fs_info *fs_info = trans->fs_info;
4063 u64 bytes;
4064
4065 if (is_item_insertion)
4066 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4067 else
4068 bytes = btrfs_calc_metadata_size(fs_info, 1);
4069
4070 mutex_lock(&fs_info->chunk_mutex);
4071 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4072 mutex_unlock(&fs_info->chunk_mutex);
4073 }
4074
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4075 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4076 {
4077 struct btrfs_block_group *block_group;
4078
4079 block_group = btrfs_lookup_first_block_group(info, 0);
4080 while (block_group) {
4081 btrfs_wait_block_group_cache_done(block_group);
4082 spin_lock(&block_group->lock);
4083 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4084 &block_group->runtime_flags)) {
4085 struct inode *inode = block_group->inode;
4086
4087 block_group->inode = NULL;
4088 spin_unlock(&block_group->lock);
4089
4090 ASSERT(block_group->io_ctl.inode == NULL);
4091 iput(inode);
4092 } else {
4093 spin_unlock(&block_group->lock);
4094 }
4095 block_group = btrfs_next_block_group(block_group);
4096 }
4097 }
4098
4099 /*
4100 * Must be called only after stopping all workers, since we could have block
4101 * group caching kthreads running, and therefore they could race with us if we
4102 * freed the block groups before stopping them.
4103 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4104 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4105 {
4106 struct btrfs_block_group *block_group;
4107 struct btrfs_space_info *space_info;
4108 struct btrfs_caching_control *caching_ctl;
4109 struct rb_node *n;
4110
4111 write_lock(&info->block_group_cache_lock);
4112 while (!list_empty(&info->caching_block_groups)) {
4113 caching_ctl = list_entry(info->caching_block_groups.next,
4114 struct btrfs_caching_control, list);
4115 list_del(&caching_ctl->list);
4116 btrfs_put_caching_control(caching_ctl);
4117 }
4118 write_unlock(&info->block_group_cache_lock);
4119
4120 spin_lock(&info->unused_bgs_lock);
4121 while (!list_empty(&info->unused_bgs)) {
4122 block_group = list_first_entry(&info->unused_bgs,
4123 struct btrfs_block_group,
4124 bg_list);
4125 list_del_init(&block_group->bg_list);
4126 btrfs_put_block_group(block_group);
4127 }
4128
4129 while (!list_empty(&info->reclaim_bgs)) {
4130 block_group = list_first_entry(&info->reclaim_bgs,
4131 struct btrfs_block_group,
4132 bg_list);
4133 list_del_init(&block_group->bg_list);
4134 btrfs_put_block_group(block_group);
4135 }
4136 spin_unlock(&info->unused_bgs_lock);
4137
4138 spin_lock(&info->zone_active_bgs_lock);
4139 while (!list_empty(&info->zone_active_bgs)) {
4140 block_group = list_first_entry(&info->zone_active_bgs,
4141 struct btrfs_block_group,
4142 active_bg_list);
4143 list_del_init(&block_group->active_bg_list);
4144 btrfs_put_block_group(block_group);
4145 }
4146 spin_unlock(&info->zone_active_bgs_lock);
4147
4148 write_lock(&info->block_group_cache_lock);
4149 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4150 block_group = rb_entry(n, struct btrfs_block_group,
4151 cache_node);
4152 rb_erase_cached(&block_group->cache_node,
4153 &info->block_group_cache_tree);
4154 RB_CLEAR_NODE(&block_group->cache_node);
4155 write_unlock(&info->block_group_cache_lock);
4156
4157 down_write(&block_group->space_info->groups_sem);
4158 list_del(&block_group->list);
4159 up_write(&block_group->space_info->groups_sem);
4160
4161 /*
4162 * We haven't cached this block group, which means we could
4163 * possibly have excluded extents on this block group.
4164 */
4165 if (block_group->cached == BTRFS_CACHE_NO ||
4166 block_group->cached == BTRFS_CACHE_ERROR)
4167 btrfs_free_excluded_extents(block_group);
4168
4169 btrfs_remove_free_space_cache(block_group);
4170 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4171 ASSERT(list_empty(&block_group->dirty_list));
4172 ASSERT(list_empty(&block_group->io_list));
4173 ASSERT(list_empty(&block_group->bg_list));
4174 ASSERT(refcount_read(&block_group->refs) == 1);
4175 ASSERT(block_group->swap_extents == 0);
4176 btrfs_put_block_group(block_group);
4177
4178 write_lock(&info->block_group_cache_lock);
4179 }
4180 write_unlock(&info->block_group_cache_lock);
4181
4182 btrfs_release_global_block_rsv(info);
4183
4184 while (!list_empty(&info->space_info)) {
4185 space_info = list_entry(info->space_info.next,
4186 struct btrfs_space_info,
4187 list);
4188
4189 /*
4190 * Do not hide this behind enospc_debug, this is actually
4191 * important and indicates a real bug if this happens.
4192 */
4193 if (WARN_ON(space_info->bytes_pinned > 0 ||
4194 space_info->bytes_may_use > 0))
4195 btrfs_dump_space_info(info, space_info, 0, 0);
4196
4197 /*
4198 * If there was a failure to cleanup a log tree, very likely due
4199 * to an IO failure on a writeback attempt of one or more of its
4200 * extent buffers, we could not do proper (and cheap) unaccounting
4201 * of their reserved space, so don't warn on bytes_reserved > 0 in
4202 * that case.
4203 */
4204 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4205 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4206 if (WARN_ON(space_info->bytes_reserved > 0))
4207 btrfs_dump_space_info(info, space_info, 0, 0);
4208 }
4209
4210 WARN_ON(space_info->reclaim_size > 0);
4211 list_del(&space_info->list);
4212 btrfs_sysfs_remove_space_info(space_info);
4213 }
4214 return 0;
4215 }
4216
btrfs_freeze_block_group(struct btrfs_block_group * cache)4217 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4218 {
4219 atomic_inc(&cache->frozen);
4220 }
4221
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4222 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4223 {
4224 struct btrfs_fs_info *fs_info = block_group->fs_info;
4225 struct extent_map_tree *em_tree;
4226 struct extent_map *em;
4227 bool cleanup;
4228
4229 spin_lock(&block_group->lock);
4230 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4231 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4232 spin_unlock(&block_group->lock);
4233
4234 if (cleanup) {
4235 em_tree = &fs_info->mapping_tree;
4236 write_lock(&em_tree->lock);
4237 em = lookup_extent_mapping(em_tree, block_group->start,
4238 1);
4239 BUG_ON(!em); /* logic error, can't happen */
4240 remove_extent_mapping(em_tree, em);
4241 write_unlock(&em_tree->lock);
4242
4243 /* once for us and once for the tree */
4244 free_extent_map(em);
4245 free_extent_map(em);
4246
4247 /*
4248 * We may have left one free space entry and other possible
4249 * tasks trimming this block group have left 1 entry each one.
4250 * Free them if any.
4251 */
4252 btrfs_remove_free_space_cache(block_group);
4253 }
4254 }
4255
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4256 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4257 {
4258 bool ret = true;
4259
4260 spin_lock(&bg->lock);
4261 if (bg->ro)
4262 ret = false;
4263 else
4264 bg->swap_extents++;
4265 spin_unlock(&bg->lock);
4266
4267 return ret;
4268 }
4269
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4270 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4271 {
4272 spin_lock(&bg->lock);
4273 ASSERT(!bg->ro);
4274 ASSERT(bg->swap_extents >= amount);
4275 bg->swap_extents -= amount;
4276 spin_unlock(&bg->lock);
4277 }
4278