• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19 #include "tree-checker.h"
20 
21 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
22 		      *root, struct btrfs_path *path, int level);
23 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
24 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
25 		      int data_size, int extend);
26 static int push_node_left(struct btrfs_trans_handle *trans,
27 			  struct extent_buffer *dst,
28 			  struct extent_buffer *src, int empty);
29 static int balance_node_right(struct btrfs_trans_handle *trans,
30 			      struct extent_buffer *dst_buf,
31 			      struct extent_buffer *src_buf);
32 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
33 		    int level, int slot);
34 
35 static const struct btrfs_csums {
36 	u16		size;
37 	const char	name[10];
38 	const char	driver[12];
39 } btrfs_csums[] = {
40 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
41 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
42 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
43 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
44 				     .driver = "blake2b-256" },
45 };
46 
btrfs_super_csum_size(const struct btrfs_super_block * s)47 int btrfs_super_csum_size(const struct btrfs_super_block *s)
48 {
49 	u16 t = btrfs_super_csum_type(s);
50 	/*
51 	 * csum type is validated at mount time
52 	 */
53 	return btrfs_csums[t].size;
54 }
55 
btrfs_super_csum_name(u16 csum_type)56 const char *btrfs_super_csum_name(u16 csum_type)
57 {
58 	/* csum type is validated at mount time */
59 	return btrfs_csums[csum_type].name;
60 }
61 
62 /*
63  * Return driver name if defined, otherwise the name that's also a valid driver
64  * name
65  */
btrfs_super_csum_driver(u16 csum_type)66 const char *btrfs_super_csum_driver(u16 csum_type)
67 {
68 	/* csum type is validated at mount time */
69 	return btrfs_csums[csum_type].driver[0] ?
70 		btrfs_csums[csum_type].driver :
71 		btrfs_csums[csum_type].name;
72 }
73 
btrfs_get_num_csums(void)74 size_t __attribute_const__ btrfs_get_num_csums(void)
75 {
76 	return ARRAY_SIZE(btrfs_csums);
77 }
78 
btrfs_alloc_path(void)79 struct btrfs_path *btrfs_alloc_path(void)
80 {
81 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
82 }
83 
84 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)85 void btrfs_free_path(struct btrfs_path *p)
86 {
87 	if (!p)
88 		return;
89 	btrfs_release_path(p);
90 	kmem_cache_free(btrfs_path_cachep, p);
91 }
92 
93 /*
94  * path release drops references on the extent buffers in the path
95  * and it drops any locks held by this path
96  *
97  * It is safe to call this on paths that no locks or extent buffers held.
98  */
btrfs_release_path(struct btrfs_path * p)99 noinline void btrfs_release_path(struct btrfs_path *p)
100 {
101 	int i;
102 
103 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
104 		p->slots[i] = 0;
105 		if (!p->nodes[i])
106 			continue;
107 		if (p->locks[i]) {
108 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
109 			p->locks[i] = 0;
110 		}
111 		free_extent_buffer(p->nodes[i]);
112 		p->nodes[i] = NULL;
113 	}
114 }
115 
116 /*
117  * We want the transaction abort to print stack trace only for errors where the
118  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
119  * caused by external factors.
120  */
abort_should_print_stack(int errno)121 bool __cold abort_should_print_stack(int errno)
122 {
123 	switch (errno) {
124 	case -EIO:
125 	case -EROFS:
126 	case -ENOMEM:
127 		return false;
128 	}
129 	return true;
130 }
131 
132 /*
133  * safely gets a reference on the root node of a tree.  A lock
134  * is not taken, so a concurrent writer may put a different node
135  * at the root of the tree.  See btrfs_lock_root_node for the
136  * looping required.
137  *
138  * The extent buffer returned by this has a reference taken, so
139  * it won't disappear.  It may stop being the root of the tree
140  * at any time because there are no locks held.
141  */
btrfs_root_node(struct btrfs_root * root)142 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
143 {
144 	struct extent_buffer *eb;
145 
146 	while (1) {
147 		rcu_read_lock();
148 		eb = rcu_dereference(root->node);
149 
150 		/*
151 		 * RCU really hurts here, we could free up the root node because
152 		 * it was COWed but we may not get the new root node yet so do
153 		 * the inc_not_zero dance and if it doesn't work then
154 		 * synchronize_rcu and try again.
155 		 */
156 		if (atomic_inc_not_zero(&eb->refs)) {
157 			rcu_read_unlock();
158 			break;
159 		}
160 		rcu_read_unlock();
161 		synchronize_rcu();
162 	}
163 	return eb;
164 }
165 
166 /*
167  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
168  * just get put onto a simple dirty list.  Transaction walks this list to make
169  * sure they get properly updated on disk.
170  */
add_root_to_dirty_list(struct btrfs_root * root)171 static void add_root_to_dirty_list(struct btrfs_root *root)
172 {
173 	struct btrfs_fs_info *fs_info = root->fs_info;
174 
175 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
176 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
177 		return;
178 
179 	spin_lock(&fs_info->trans_lock);
180 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
181 		/* Want the extent tree to be the last on the list */
182 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
183 			list_move_tail(&root->dirty_list,
184 				       &fs_info->dirty_cowonly_roots);
185 		else
186 			list_move(&root->dirty_list,
187 				  &fs_info->dirty_cowonly_roots);
188 	}
189 	spin_unlock(&fs_info->trans_lock);
190 }
191 
192 /*
193  * used by snapshot creation to make a copy of a root for a tree with
194  * a given objectid.  The buffer with the new root node is returned in
195  * cow_ret, and this func returns zero on success or a negative error code.
196  */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)197 int btrfs_copy_root(struct btrfs_trans_handle *trans,
198 		      struct btrfs_root *root,
199 		      struct extent_buffer *buf,
200 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
201 {
202 	struct btrfs_fs_info *fs_info = root->fs_info;
203 	struct extent_buffer *cow;
204 	int ret = 0;
205 	int level;
206 	struct btrfs_disk_key disk_key;
207 
208 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
209 		trans->transid != fs_info->running_transaction->transid);
210 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
211 		trans->transid != root->last_trans);
212 
213 	level = btrfs_header_level(buf);
214 	if (level == 0)
215 		btrfs_item_key(buf, &disk_key, 0);
216 	else
217 		btrfs_node_key(buf, &disk_key, 0);
218 
219 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
220 				     &disk_key, level, buf->start, 0,
221 				     BTRFS_NESTING_NEW_ROOT);
222 	if (IS_ERR(cow))
223 		return PTR_ERR(cow);
224 
225 	copy_extent_buffer_full(cow, buf);
226 	btrfs_set_header_bytenr(cow, cow->start);
227 	btrfs_set_header_generation(cow, trans->transid);
228 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 				     BTRFS_HEADER_FLAG_RELOC);
231 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233 	else
234 		btrfs_set_header_owner(cow, new_root_objectid);
235 
236 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
237 
238 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
239 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
240 		ret = btrfs_inc_ref(trans, root, cow, 1);
241 	else
242 		ret = btrfs_inc_ref(trans, root, cow, 0);
243 	if (ret) {
244 		btrfs_tree_unlock(cow);
245 		free_extent_buffer(cow);
246 		btrfs_abort_transaction(trans, ret);
247 		return ret;
248 	}
249 
250 	btrfs_mark_buffer_dirty(cow);
251 	*cow_ret = cow;
252 	return 0;
253 }
254 
255 /*
256  * check if the tree block can be shared by multiple trees
257  */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)258 int btrfs_block_can_be_shared(struct btrfs_root *root,
259 			      struct extent_buffer *buf)
260 {
261 	/*
262 	 * Tree blocks not in shareable trees and tree roots are never shared.
263 	 * If a block was allocated after the last snapshot and the block was
264 	 * not allocated by tree relocation, we know the block is not shared.
265 	 */
266 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
267 	    buf != root->node && buf != root->commit_root &&
268 	    (btrfs_header_generation(buf) <=
269 	     btrfs_root_last_snapshot(&root->root_item) ||
270 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
271 		return 1;
272 
273 	return 0;
274 }
275 
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)276 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
277 				       struct btrfs_root *root,
278 				       struct extent_buffer *buf,
279 				       struct extent_buffer *cow,
280 				       int *last_ref)
281 {
282 	struct btrfs_fs_info *fs_info = root->fs_info;
283 	u64 refs;
284 	u64 owner;
285 	u64 flags;
286 	u64 new_flags = 0;
287 	int ret;
288 
289 	/*
290 	 * Backrefs update rules:
291 	 *
292 	 * Always use full backrefs for extent pointers in tree block
293 	 * allocated by tree relocation.
294 	 *
295 	 * If a shared tree block is no longer referenced by its owner
296 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
297 	 * use full backrefs for extent pointers in tree block.
298 	 *
299 	 * If a tree block is been relocating
300 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
301 	 * use full backrefs for extent pointers in tree block.
302 	 * The reason for this is some operations (such as drop tree)
303 	 * are only allowed for blocks use full backrefs.
304 	 */
305 
306 	if (btrfs_block_can_be_shared(root, buf)) {
307 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
308 					       btrfs_header_level(buf), 1,
309 					       &refs, &flags);
310 		if (ret)
311 			return ret;
312 		if (refs == 0) {
313 			ret = -EROFS;
314 			btrfs_handle_fs_error(fs_info, ret, NULL);
315 			return ret;
316 		}
317 	} else {
318 		refs = 1;
319 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
320 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
321 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
322 		else
323 			flags = 0;
324 	}
325 
326 	owner = btrfs_header_owner(buf);
327 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
328 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
329 
330 	if (refs > 1) {
331 		if ((owner == root->root_key.objectid ||
332 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
333 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
334 			ret = btrfs_inc_ref(trans, root, buf, 1);
335 			if (ret)
336 				return ret;
337 
338 			if (root->root_key.objectid ==
339 			    BTRFS_TREE_RELOC_OBJECTID) {
340 				ret = btrfs_dec_ref(trans, root, buf, 0);
341 				if (ret)
342 					return ret;
343 				ret = btrfs_inc_ref(trans, root, cow, 1);
344 				if (ret)
345 					return ret;
346 			}
347 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
348 		} else {
349 
350 			if (root->root_key.objectid ==
351 			    BTRFS_TREE_RELOC_OBJECTID)
352 				ret = btrfs_inc_ref(trans, root, cow, 1);
353 			else
354 				ret = btrfs_inc_ref(trans, root, cow, 0);
355 			if (ret)
356 				return ret;
357 		}
358 		if (new_flags != 0) {
359 			int level = btrfs_header_level(buf);
360 
361 			ret = btrfs_set_disk_extent_flags(trans, buf,
362 							  new_flags, level);
363 			if (ret)
364 				return ret;
365 		}
366 	} else {
367 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
368 			if (root->root_key.objectid ==
369 			    BTRFS_TREE_RELOC_OBJECTID)
370 				ret = btrfs_inc_ref(trans, root, cow, 1);
371 			else
372 				ret = btrfs_inc_ref(trans, root, cow, 0);
373 			if (ret)
374 				return ret;
375 			ret = btrfs_dec_ref(trans, root, buf, 1);
376 			if (ret)
377 				return ret;
378 		}
379 		btrfs_clean_tree_block(buf);
380 		*last_ref = 1;
381 	}
382 	return 0;
383 }
384 
385 /*
386  * does the dirty work in cow of a single block.  The parent block (if
387  * supplied) is updated to point to the new cow copy.  The new buffer is marked
388  * dirty and returned locked.  If you modify the block it needs to be marked
389  * dirty again.
390  *
391  * search_start -- an allocation hint for the new block
392  *
393  * empty_size -- a hint that you plan on doing more cow.  This is the size in
394  * bytes the allocator should try to find free next to the block it returns.
395  * This is just a hint and may be ignored by the allocator.
396  */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)397 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
398 			     struct btrfs_root *root,
399 			     struct extent_buffer *buf,
400 			     struct extent_buffer *parent, int parent_slot,
401 			     struct extent_buffer **cow_ret,
402 			     u64 search_start, u64 empty_size,
403 			     enum btrfs_lock_nesting nest)
404 {
405 	struct btrfs_fs_info *fs_info = root->fs_info;
406 	struct btrfs_disk_key disk_key;
407 	struct extent_buffer *cow;
408 	int level, ret;
409 	int last_ref = 0;
410 	int unlock_orig = 0;
411 	u64 parent_start = 0;
412 
413 	if (*cow_ret == buf)
414 		unlock_orig = 1;
415 
416 	btrfs_assert_tree_write_locked(buf);
417 
418 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
419 		trans->transid != fs_info->running_transaction->transid);
420 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
421 		trans->transid != root->last_trans);
422 
423 	level = btrfs_header_level(buf);
424 
425 	if (level == 0)
426 		btrfs_item_key(buf, &disk_key, 0);
427 	else
428 		btrfs_node_key(buf, &disk_key, 0);
429 
430 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
431 		parent_start = parent->start;
432 
433 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
434 				     root->root_key.objectid, &disk_key, level,
435 				     search_start, empty_size, nest);
436 	if (IS_ERR(cow))
437 		return PTR_ERR(cow);
438 
439 	/* cow is set to blocking by btrfs_init_new_buffer */
440 
441 	copy_extent_buffer_full(cow, buf);
442 	btrfs_set_header_bytenr(cow, cow->start);
443 	btrfs_set_header_generation(cow, trans->transid);
444 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
445 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
446 				     BTRFS_HEADER_FLAG_RELOC);
447 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
448 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
449 	else
450 		btrfs_set_header_owner(cow, root->root_key.objectid);
451 
452 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
453 
454 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
455 	if (ret) {
456 		btrfs_tree_unlock(cow);
457 		free_extent_buffer(cow);
458 		btrfs_abort_transaction(trans, ret);
459 		return ret;
460 	}
461 
462 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
463 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
464 		if (ret) {
465 			btrfs_tree_unlock(cow);
466 			free_extent_buffer(cow);
467 			btrfs_abort_transaction(trans, ret);
468 			return ret;
469 		}
470 	}
471 
472 	if (buf == root->node) {
473 		WARN_ON(parent && parent != buf);
474 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
475 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
476 			parent_start = buf->start;
477 
478 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
479 		if (ret < 0) {
480 			btrfs_tree_unlock(cow);
481 			free_extent_buffer(cow);
482 			btrfs_abort_transaction(trans, ret);
483 			return ret;
484 		}
485 		atomic_inc(&cow->refs);
486 		rcu_assign_pointer(root->node, cow);
487 
488 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
489 				      parent_start, last_ref);
490 		free_extent_buffer(buf);
491 		add_root_to_dirty_list(root);
492 	} else {
493 		WARN_ON(trans->transid != btrfs_header_generation(parent));
494 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
495 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
496 		btrfs_set_node_blockptr(parent, parent_slot,
497 					cow->start);
498 		btrfs_set_node_ptr_generation(parent, parent_slot,
499 					      trans->transid);
500 		btrfs_mark_buffer_dirty(parent);
501 		if (last_ref) {
502 			ret = btrfs_tree_mod_log_free_eb(buf);
503 			if (ret) {
504 				btrfs_tree_unlock(cow);
505 				free_extent_buffer(cow);
506 				btrfs_abort_transaction(trans, ret);
507 				return ret;
508 			}
509 		}
510 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
511 				      parent_start, last_ref);
512 	}
513 	if (unlock_orig)
514 		btrfs_tree_unlock(buf);
515 	free_extent_buffer_stale(buf);
516 	btrfs_mark_buffer_dirty(cow);
517 	*cow_ret = cow;
518 	return 0;
519 }
520 
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)521 static inline int should_cow_block(struct btrfs_trans_handle *trans,
522 				   struct btrfs_root *root,
523 				   struct extent_buffer *buf)
524 {
525 	if (btrfs_is_testing(root->fs_info))
526 		return 0;
527 
528 	/* Ensure we can see the FORCE_COW bit */
529 	smp_mb__before_atomic();
530 
531 	/*
532 	 * We do not need to cow a block if
533 	 * 1) this block is not created or changed in this transaction;
534 	 * 2) this block does not belong to TREE_RELOC tree;
535 	 * 3) the root is not forced COW.
536 	 *
537 	 * What is forced COW:
538 	 *    when we create snapshot during committing the transaction,
539 	 *    after we've finished copying src root, we must COW the shared
540 	 *    block to ensure the metadata consistency.
541 	 */
542 	if (btrfs_header_generation(buf) == trans->transid &&
543 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
544 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
545 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
546 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
547 		return 0;
548 	return 1;
549 }
550 
551 /*
552  * cows a single block, see __btrfs_cow_block for the real work.
553  * This version of it has extra checks so that a block isn't COWed more than
554  * once per transaction, as long as it hasn't been written yet
555  */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)556 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
557 		    struct btrfs_root *root, struct extent_buffer *buf,
558 		    struct extent_buffer *parent, int parent_slot,
559 		    struct extent_buffer **cow_ret,
560 		    enum btrfs_lock_nesting nest)
561 {
562 	struct btrfs_fs_info *fs_info = root->fs_info;
563 	u64 search_start;
564 	int ret;
565 
566 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
567 		btrfs_abort_transaction(trans, -EUCLEAN);
568 		btrfs_crit(fs_info,
569 		   "attempt to COW block %llu on root %llu that is being deleted",
570 			   buf->start, btrfs_root_id(root));
571 		return -EUCLEAN;
572 	}
573 
574 	/*
575 	 * COWing must happen through a running transaction, which always
576 	 * matches the current fs generation (it's a transaction with a state
577 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
578 	 * into error state to prevent the commit of any transaction.
579 	 */
580 	if (unlikely(trans->transaction != fs_info->running_transaction ||
581 		     trans->transid != fs_info->generation)) {
582 		btrfs_abort_transaction(trans, -EUCLEAN);
583 		btrfs_crit(fs_info,
584 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
585 			   buf->start, btrfs_root_id(root), trans->transid,
586 			   fs_info->running_transaction->transid,
587 			   fs_info->generation);
588 		return -EUCLEAN;
589 	}
590 
591 	if (!should_cow_block(trans, root, buf)) {
592 		*cow_ret = buf;
593 		return 0;
594 	}
595 
596 	search_start = buf->start & ~((u64)SZ_1G - 1);
597 
598 	/*
599 	 * Before CoWing this block for later modification, check if it's
600 	 * the subtree root and do the delayed subtree trace if needed.
601 	 *
602 	 * Also We don't care about the error, as it's handled internally.
603 	 */
604 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
605 	ret = __btrfs_cow_block(trans, root, buf, parent,
606 				 parent_slot, cow_ret, search_start, 0, nest);
607 
608 	trace_btrfs_cow_block(root, buf, *cow_ret);
609 
610 	return ret;
611 }
612 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
613 
614 /*
615  * helper function for defrag to decide if two blocks pointed to by a
616  * node are actually close by
617  */
close_blocks(u64 blocknr,u64 other,u32 blocksize)618 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
619 {
620 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
621 		return 1;
622 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
623 		return 1;
624 	return 0;
625 }
626 
627 #ifdef __LITTLE_ENDIAN
628 
629 /*
630  * Compare two keys, on little-endian the disk order is same as CPU order and
631  * we can avoid the conversion.
632  */
comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)633 static int comp_keys(const struct btrfs_disk_key *disk_key,
634 		     const struct btrfs_key *k2)
635 {
636 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
637 
638 	return btrfs_comp_cpu_keys(k1, k2);
639 }
640 
641 #else
642 
643 /*
644  * compare two keys in a memcmp fashion
645  */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)646 static int comp_keys(const struct btrfs_disk_key *disk,
647 		     const struct btrfs_key *k2)
648 {
649 	struct btrfs_key k1;
650 
651 	btrfs_disk_key_to_cpu(&k1, disk);
652 
653 	return btrfs_comp_cpu_keys(&k1, k2);
654 }
655 #endif
656 
657 /*
658  * same as comp_keys only with two btrfs_key's
659  */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)660 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
661 {
662 	if (k1->objectid > k2->objectid)
663 		return 1;
664 	if (k1->objectid < k2->objectid)
665 		return -1;
666 	if (k1->type > k2->type)
667 		return 1;
668 	if (k1->type < k2->type)
669 		return -1;
670 	if (k1->offset > k2->offset)
671 		return 1;
672 	if (k1->offset < k2->offset)
673 		return -1;
674 	return 0;
675 }
676 
677 /*
678  * this is used by the defrag code to go through all the
679  * leaves pointed to by a node and reallocate them so that
680  * disk order is close to key order
681  */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)682 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
683 		       struct btrfs_root *root, struct extent_buffer *parent,
684 		       int start_slot, u64 *last_ret,
685 		       struct btrfs_key *progress)
686 {
687 	struct btrfs_fs_info *fs_info = root->fs_info;
688 	struct extent_buffer *cur;
689 	u64 blocknr;
690 	u64 search_start = *last_ret;
691 	u64 last_block = 0;
692 	u64 other;
693 	u32 parent_nritems;
694 	int end_slot;
695 	int i;
696 	int err = 0;
697 	u32 blocksize;
698 	int progress_passed = 0;
699 	struct btrfs_disk_key disk_key;
700 
701 	/*
702 	 * COWing must happen through a running transaction, which always
703 	 * matches the current fs generation (it's a transaction with a state
704 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
705 	 * into error state to prevent the commit of any transaction.
706 	 */
707 	if (unlikely(trans->transaction != fs_info->running_transaction ||
708 		     trans->transid != fs_info->generation)) {
709 		btrfs_abort_transaction(trans, -EUCLEAN);
710 		btrfs_crit(fs_info,
711 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
712 			   parent->start, btrfs_root_id(root), trans->transid,
713 			   fs_info->running_transaction->transid,
714 			   fs_info->generation);
715 		return -EUCLEAN;
716 	}
717 
718 	parent_nritems = btrfs_header_nritems(parent);
719 	blocksize = fs_info->nodesize;
720 	end_slot = parent_nritems - 1;
721 
722 	if (parent_nritems <= 1)
723 		return 0;
724 
725 	for (i = start_slot; i <= end_slot; i++) {
726 		int close = 1;
727 
728 		btrfs_node_key(parent, &disk_key, i);
729 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
730 			continue;
731 
732 		progress_passed = 1;
733 		blocknr = btrfs_node_blockptr(parent, i);
734 		if (last_block == 0)
735 			last_block = blocknr;
736 
737 		if (i > 0) {
738 			other = btrfs_node_blockptr(parent, i - 1);
739 			close = close_blocks(blocknr, other, blocksize);
740 		}
741 		if (!close && i < end_slot) {
742 			other = btrfs_node_blockptr(parent, i + 1);
743 			close = close_blocks(blocknr, other, blocksize);
744 		}
745 		if (close) {
746 			last_block = blocknr;
747 			continue;
748 		}
749 
750 		cur = btrfs_read_node_slot(parent, i);
751 		if (IS_ERR(cur))
752 			return PTR_ERR(cur);
753 		if (search_start == 0)
754 			search_start = last_block;
755 
756 		btrfs_tree_lock(cur);
757 		err = __btrfs_cow_block(trans, root, cur, parent, i,
758 					&cur, search_start,
759 					min(16 * blocksize,
760 					    (end_slot - i) * blocksize),
761 					BTRFS_NESTING_COW);
762 		if (err) {
763 			btrfs_tree_unlock(cur);
764 			free_extent_buffer(cur);
765 			break;
766 		}
767 		search_start = cur->start;
768 		last_block = cur->start;
769 		*last_ret = search_start;
770 		btrfs_tree_unlock(cur);
771 		free_extent_buffer(cur);
772 	}
773 	return err;
774 }
775 
776 /*
777  * Search for a key in the given extent_buffer.
778  *
779  * The lower boundary for the search is specified by the slot number @low. Use a
780  * value of 0 to search over the whole extent buffer.
781  *
782  * The slot in the extent buffer is returned via @slot. If the key exists in the
783  * extent buffer, then @slot will point to the slot where the key is, otherwise
784  * it points to the slot where you would insert the key.
785  *
786  * Slot may point to the total number of items (i.e. one position beyond the last
787  * key) if the key is bigger than the last key in the extent buffer.
788  */
generic_bin_search(struct extent_buffer * eb,int low,const struct btrfs_key * key,int * slot)789 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
790 				       const struct btrfs_key *key, int *slot)
791 {
792 	unsigned long p;
793 	int item_size;
794 	int high = btrfs_header_nritems(eb);
795 	int ret;
796 	const int key_size = sizeof(struct btrfs_disk_key);
797 
798 	if (low > high) {
799 		btrfs_err(eb->fs_info,
800 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
801 			  __func__, low, high, eb->start,
802 			  btrfs_header_owner(eb), btrfs_header_level(eb));
803 		return -EINVAL;
804 	}
805 
806 	if (btrfs_header_level(eb) == 0) {
807 		p = offsetof(struct btrfs_leaf, items);
808 		item_size = sizeof(struct btrfs_item);
809 	} else {
810 		p = offsetof(struct btrfs_node, ptrs);
811 		item_size = sizeof(struct btrfs_key_ptr);
812 	}
813 
814 	while (low < high) {
815 		unsigned long oip;
816 		unsigned long offset;
817 		struct btrfs_disk_key *tmp;
818 		struct btrfs_disk_key unaligned;
819 		int mid;
820 
821 		mid = (low + high) / 2;
822 		offset = p + mid * item_size;
823 		oip = offset_in_page(offset);
824 
825 		if (oip + key_size <= PAGE_SIZE) {
826 			const unsigned long idx = get_eb_page_index(offset);
827 			char *kaddr = page_address(eb->pages[idx]);
828 
829 			oip = get_eb_offset_in_page(eb, offset);
830 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
831 		} else {
832 			read_extent_buffer(eb, &unaligned, offset, key_size);
833 			tmp = &unaligned;
834 		}
835 
836 		ret = comp_keys(tmp, key);
837 
838 		if (ret < 0)
839 			low = mid + 1;
840 		else if (ret > 0)
841 			high = mid;
842 		else {
843 			*slot = mid;
844 			return 0;
845 		}
846 	}
847 	*slot = low;
848 	return 1;
849 }
850 
851 /*
852  * Simple binary search on an extent buffer. Works for both leaves and nodes, and
853  * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
854  */
btrfs_bin_search(struct extent_buffer * eb,const struct btrfs_key * key,int * slot)855 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
856 		     int *slot)
857 {
858 	return generic_bin_search(eb, 0, key, slot);
859 }
860 
root_add_used(struct btrfs_root * root,u32 size)861 static void root_add_used(struct btrfs_root *root, u32 size)
862 {
863 	spin_lock(&root->accounting_lock);
864 	btrfs_set_root_used(&root->root_item,
865 			    btrfs_root_used(&root->root_item) + size);
866 	spin_unlock(&root->accounting_lock);
867 }
868 
root_sub_used(struct btrfs_root * root,u32 size)869 static void root_sub_used(struct btrfs_root *root, u32 size)
870 {
871 	spin_lock(&root->accounting_lock);
872 	btrfs_set_root_used(&root->root_item,
873 			    btrfs_root_used(&root->root_item) - size);
874 	spin_unlock(&root->accounting_lock);
875 }
876 
877 /* given a node and slot number, this reads the blocks it points to.  The
878  * extent buffer is returned with a reference taken (but unlocked).
879  */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)880 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
881 					   int slot)
882 {
883 	int level = btrfs_header_level(parent);
884 	struct extent_buffer *eb;
885 	struct btrfs_key first_key;
886 
887 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
888 		return ERR_PTR(-ENOENT);
889 
890 	BUG_ON(level == 0);
891 
892 	btrfs_node_key_to_cpu(parent, &first_key, slot);
893 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
894 			     btrfs_header_owner(parent),
895 			     btrfs_node_ptr_generation(parent, slot),
896 			     level - 1, &first_key);
897 	if (IS_ERR(eb))
898 		return eb;
899 	if (!extent_buffer_uptodate(eb)) {
900 		free_extent_buffer(eb);
901 		return ERR_PTR(-EIO);
902 	}
903 
904 	return eb;
905 }
906 
907 /*
908  * node level balancing, used to make sure nodes are in proper order for
909  * item deletion.  We balance from the top down, so we have to make sure
910  * that a deletion won't leave an node completely empty later on.
911  */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)912 static noinline int balance_level(struct btrfs_trans_handle *trans,
913 			 struct btrfs_root *root,
914 			 struct btrfs_path *path, int level)
915 {
916 	struct btrfs_fs_info *fs_info = root->fs_info;
917 	struct extent_buffer *right = NULL;
918 	struct extent_buffer *mid;
919 	struct extent_buffer *left = NULL;
920 	struct extent_buffer *parent = NULL;
921 	int ret = 0;
922 	int wret;
923 	int pslot;
924 	int orig_slot = path->slots[level];
925 	u64 orig_ptr;
926 
927 	ASSERT(level > 0);
928 
929 	mid = path->nodes[level];
930 
931 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
932 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
933 
934 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
935 
936 	if (level < BTRFS_MAX_LEVEL - 1) {
937 		parent = path->nodes[level + 1];
938 		pslot = path->slots[level + 1];
939 	}
940 
941 	/*
942 	 * deal with the case where there is only one pointer in the root
943 	 * by promoting the node below to a root
944 	 */
945 	if (!parent) {
946 		struct extent_buffer *child;
947 
948 		if (btrfs_header_nritems(mid) != 1)
949 			return 0;
950 
951 		/* promote the child to a root */
952 		child = btrfs_read_node_slot(mid, 0);
953 		if (IS_ERR(child)) {
954 			ret = PTR_ERR(child);
955 			btrfs_handle_fs_error(fs_info, ret, NULL);
956 			goto enospc;
957 		}
958 
959 		btrfs_tree_lock(child);
960 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
961 				      BTRFS_NESTING_COW);
962 		if (ret) {
963 			btrfs_tree_unlock(child);
964 			free_extent_buffer(child);
965 			goto enospc;
966 		}
967 
968 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
969 		if (ret < 0) {
970 			btrfs_tree_unlock(child);
971 			free_extent_buffer(child);
972 			btrfs_abort_transaction(trans, ret);
973 			goto enospc;
974 		}
975 		rcu_assign_pointer(root->node, child);
976 
977 		add_root_to_dirty_list(root);
978 		btrfs_tree_unlock(child);
979 
980 		path->locks[level] = 0;
981 		path->nodes[level] = NULL;
982 		btrfs_clean_tree_block(mid);
983 		btrfs_tree_unlock(mid);
984 		/* once for the path */
985 		free_extent_buffer(mid);
986 
987 		root_sub_used(root, mid->len);
988 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
989 		/* once for the root ptr */
990 		free_extent_buffer_stale(mid);
991 		return 0;
992 	}
993 	if (btrfs_header_nritems(mid) >
994 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
995 		return 0;
996 
997 	left = btrfs_read_node_slot(parent, pslot - 1);
998 	if (IS_ERR(left))
999 		left = NULL;
1000 
1001 	if (left) {
1002 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1003 		wret = btrfs_cow_block(trans, root, left,
1004 				       parent, pslot - 1, &left,
1005 				       BTRFS_NESTING_LEFT_COW);
1006 		if (wret) {
1007 			ret = wret;
1008 			goto enospc;
1009 		}
1010 	}
1011 
1012 	right = btrfs_read_node_slot(parent, pslot + 1);
1013 	if (IS_ERR(right))
1014 		right = NULL;
1015 
1016 	if (right) {
1017 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1018 		wret = btrfs_cow_block(trans, root, right,
1019 				       parent, pslot + 1, &right,
1020 				       BTRFS_NESTING_RIGHT_COW);
1021 		if (wret) {
1022 			ret = wret;
1023 			goto enospc;
1024 		}
1025 	}
1026 
1027 	/* first, try to make some room in the middle buffer */
1028 	if (left) {
1029 		orig_slot += btrfs_header_nritems(left);
1030 		wret = push_node_left(trans, left, mid, 1);
1031 		if (wret < 0)
1032 			ret = wret;
1033 	}
1034 
1035 	/*
1036 	 * then try to empty the right most buffer into the middle
1037 	 */
1038 	if (right) {
1039 		wret = push_node_left(trans, mid, right, 1);
1040 		if (wret < 0 && wret != -ENOSPC)
1041 			ret = wret;
1042 		if (btrfs_header_nritems(right) == 0) {
1043 			btrfs_clean_tree_block(right);
1044 			btrfs_tree_unlock(right);
1045 			del_ptr(root, path, level + 1, pslot + 1);
1046 			root_sub_used(root, right->len);
1047 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1048 					      0, 1);
1049 			free_extent_buffer_stale(right);
1050 			right = NULL;
1051 		} else {
1052 			struct btrfs_disk_key right_key;
1053 			btrfs_node_key(right, &right_key, 0);
1054 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1055 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1056 			if (ret < 0) {
1057 				btrfs_abort_transaction(trans, ret);
1058 				goto enospc;
1059 			}
1060 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1061 			btrfs_mark_buffer_dirty(parent);
1062 		}
1063 	}
1064 	if (btrfs_header_nritems(mid) == 1) {
1065 		/*
1066 		 * we're not allowed to leave a node with one item in the
1067 		 * tree during a delete.  A deletion from lower in the tree
1068 		 * could try to delete the only pointer in this node.
1069 		 * So, pull some keys from the left.
1070 		 * There has to be a left pointer at this point because
1071 		 * otherwise we would have pulled some pointers from the
1072 		 * right
1073 		 */
1074 		if (!left) {
1075 			ret = -EROFS;
1076 			btrfs_handle_fs_error(fs_info, ret, NULL);
1077 			goto enospc;
1078 		}
1079 		wret = balance_node_right(trans, mid, left);
1080 		if (wret < 0) {
1081 			ret = wret;
1082 			goto enospc;
1083 		}
1084 		if (wret == 1) {
1085 			wret = push_node_left(trans, left, mid, 1);
1086 			if (wret < 0)
1087 				ret = wret;
1088 		}
1089 		BUG_ON(wret == 1);
1090 	}
1091 	if (btrfs_header_nritems(mid) == 0) {
1092 		btrfs_clean_tree_block(mid);
1093 		btrfs_tree_unlock(mid);
1094 		del_ptr(root, path, level + 1, pslot);
1095 		root_sub_used(root, mid->len);
1096 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1097 		free_extent_buffer_stale(mid);
1098 		mid = NULL;
1099 	} else {
1100 		/* update the parent key to reflect our changes */
1101 		struct btrfs_disk_key mid_key;
1102 		btrfs_node_key(mid, &mid_key, 0);
1103 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1104 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1105 		if (ret < 0) {
1106 			btrfs_abort_transaction(trans, ret);
1107 			goto enospc;
1108 		}
1109 		btrfs_set_node_key(parent, &mid_key, pslot);
1110 		btrfs_mark_buffer_dirty(parent);
1111 	}
1112 
1113 	/* update the path */
1114 	if (left) {
1115 		if (btrfs_header_nritems(left) > orig_slot) {
1116 			atomic_inc(&left->refs);
1117 			/* left was locked after cow */
1118 			path->nodes[level] = left;
1119 			path->slots[level + 1] -= 1;
1120 			path->slots[level] = orig_slot;
1121 			if (mid) {
1122 				btrfs_tree_unlock(mid);
1123 				free_extent_buffer(mid);
1124 			}
1125 		} else {
1126 			orig_slot -= btrfs_header_nritems(left);
1127 			path->slots[level] = orig_slot;
1128 		}
1129 	}
1130 	/* double check we haven't messed things up */
1131 	if (orig_ptr !=
1132 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1133 		BUG();
1134 enospc:
1135 	if (right) {
1136 		btrfs_tree_unlock(right);
1137 		free_extent_buffer(right);
1138 	}
1139 	if (left) {
1140 		if (path->nodes[level] != left)
1141 			btrfs_tree_unlock(left);
1142 		free_extent_buffer(left);
1143 	}
1144 	return ret;
1145 }
1146 
1147 /* Node balancing for insertion.  Here we only split or push nodes around
1148  * when they are completely full.  This is also done top down, so we
1149  * have to be pessimistic.
1150  */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1151 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1152 					  struct btrfs_root *root,
1153 					  struct btrfs_path *path, int level)
1154 {
1155 	struct btrfs_fs_info *fs_info = root->fs_info;
1156 	struct extent_buffer *right = NULL;
1157 	struct extent_buffer *mid;
1158 	struct extent_buffer *left = NULL;
1159 	struct extent_buffer *parent = NULL;
1160 	int ret = 0;
1161 	int wret;
1162 	int pslot;
1163 	int orig_slot = path->slots[level];
1164 
1165 	if (level == 0)
1166 		return 1;
1167 
1168 	mid = path->nodes[level];
1169 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1170 
1171 	if (level < BTRFS_MAX_LEVEL - 1) {
1172 		parent = path->nodes[level + 1];
1173 		pslot = path->slots[level + 1];
1174 	}
1175 
1176 	if (!parent)
1177 		return 1;
1178 
1179 	left = btrfs_read_node_slot(parent, pslot - 1);
1180 	if (IS_ERR(left))
1181 		left = NULL;
1182 
1183 	/* first, try to make some room in the middle buffer */
1184 	if (left) {
1185 		u32 left_nr;
1186 
1187 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1188 
1189 		left_nr = btrfs_header_nritems(left);
1190 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1191 			wret = 1;
1192 		} else {
1193 			ret = btrfs_cow_block(trans, root, left, parent,
1194 					      pslot - 1, &left,
1195 					      BTRFS_NESTING_LEFT_COW);
1196 			if (ret)
1197 				wret = 1;
1198 			else {
1199 				wret = push_node_left(trans, left, mid, 0);
1200 			}
1201 		}
1202 		if (wret < 0)
1203 			ret = wret;
1204 		if (wret == 0) {
1205 			struct btrfs_disk_key disk_key;
1206 			orig_slot += left_nr;
1207 			btrfs_node_key(mid, &disk_key, 0);
1208 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1209 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1210 			BUG_ON(ret < 0);
1211 			btrfs_set_node_key(parent, &disk_key, pslot);
1212 			btrfs_mark_buffer_dirty(parent);
1213 			if (btrfs_header_nritems(left) > orig_slot) {
1214 				path->nodes[level] = left;
1215 				path->slots[level + 1] -= 1;
1216 				path->slots[level] = orig_slot;
1217 				btrfs_tree_unlock(mid);
1218 				free_extent_buffer(mid);
1219 			} else {
1220 				orig_slot -=
1221 					btrfs_header_nritems(left);
1222 				path->slots[level] = orig_slot;
1223 				btrfs_tree_unlock(left);
1224 				free_extent_buffer(left);
1225 			}
1226 			return 0;
1227 		}
1228 		btrfs_tree_unlock(left);
1229 		free_extent_buffer(left);
1230 	}
1231 	right = btrfs_read_node_slot(parent, pslot + 1);
1232 	if (IS_ERR(right))
1233 		right = NULL;
1234 
1235 	/*
1236 	 * then try to empty the right most buffer into the middle
1237 	 */
1238 	if (right) {
1239 		u32 right_nr;
1240 
1241 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1242 
1243 		right_nr = btrfs_header_nritems(right);
1244 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1245 			wret = 1;
1246 		} else {
1247 			ret = btrfs_cow_block(trans, root, right,
1248 					      parent, pslot + 1,
1249 					      &right, BTRFS_NESTING_RIGHT_COW);
1250 			if (ret)
1251 				wret = 1;
1252 			else {
1253 				wret = balance_node_right(trans, right, mid);
1254 			}
1255 		}
1256 		if (wret < 0)
1257 			ret = wret;
1258 		if (wret == 0) {
1259 			struct btrfs_disk_key disk_key;
1260 
1261 			btrfs_node_key(right, &disk_key, 0);
1262 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1263 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1264 			BUG_ON(ret < 0);
1265 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1266 			btrfs_mark_buffer_dirty(parent);
1267 
1268 			if (btrfs_header_nritems(mid) <= orig_slot) {
1269 				path->nodes[level] = right;
1270 				path->slots[level + 1] += 1;
1271 				path->slots[level] = orig_slot -
1272 					btrfs_header_nritems(mid);
1273 				btrfs_tree_unlock(mid);
1274 				free_extent_buffer(mid);
1275 			} else {
1276 				btrfs_tree_unlock(right);
1277 				free_extent_buffer(right);
1278 			}
1279 			return 0;
1280 		}
1281 		btrfs_tree_unlock(right);
1282 		free_extent_buffer(right);
1283 	}
1284 	return 1;
1285 }
1286 
1287 /*
1288  * readahead one full node of leaves, finding things that are close
1289  * to the block in 'slot', and triggering ra on them.
1290  */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1291 static void reada_for_search(struct btrfs_fs_info *fs_info,
1292 			     struct btrfs_path *path,
1293 			     int level, int slot, u64 objectid)
1294 {
1295 	struct extent_buffer *node;
1296 	struct btrfs_disk_key disk_key;
1297 	u32 nritems;
1298 	u64 search;
1299 	u64 target;
1300 	u64 nread = 0;
1301 	u64 nread_max;
1302 	u32 nr;
1303 	u32 blocksize;
1304 	u32 nscan = 0;
1305 
1306 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1307 		return;
1308 
1309 	if (!path->nodes[level])
1310 		return;
1311 
1312 	node = path->nodes[level];
1313 
1314 	/*
1315 	 * Since the time between visiting leaves is much shorter than the time
1316 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1317 	 * much IO at once (possibly random).
1318 	 */
1319 	if (path->reada == READA_FORWARD_ALWAYS) {
1320 		if (level > 1)
1321 			nread_max = node->fs_info->nodesize;
1322 		else
1323 			nread_max = SZ_128K;
1324 	} else {
1325 		nread_max = SZ_64K;
1326 	}
1327 
1328 	search = btrfs_node_blockptr(node, slot);
1329 	blocksize = fs_info->nodesize;
1330 	if (path->reada != READA_FORWARD_ALWAYS) {
1331 		struct extent_buffer *eb;
1332 
1333 		eb = find_extent_buffer(fs_info, search);
1334 		if (eb) {
1335 			free_extent_buffer(eb);
1336 			return;
1337 		}
1338 	}
1339 
1340 	target = search;
1341 
1342 	nritems = btrfs_header_nritems(node);
1343 	nr = slot;
1344 
1345 	while (1) {
1346 		if (path->reada == READA_BACK) {
1347 			if (nr == 0)
1348 				break;
1349 			nr--;
1350 		} else if (path->reada == READA_FORWARD ||
1351 			   path->reada == READA_FORWARD_ALWAYS) {
1352 			nr++;
1353 			if (nr >= nritems)
1354 				break;
1355 		}
1356 		if (path->reada == READA_BACK && objectid) {
1357 			btrfs_node_key(node, &disk_key, nr);
1358 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1359 				break;
1360 		}
1361 		search = btrfs_node_blockptr(node, nr);
1362 		if (path->reada == READA_FORWARD_ALWAYS ||
1363 		    (search <= target && target - search <= 65536) ||
1364 		    (search > target && search - target <= 65536)) {
1365 			btrfs_readahead_node_child(node, nr);
1366 			nread += blocksize;
1367 		}
1368 		nscan++;
1369 		if (nread > nread_max || nscan > 32)
1370 			break;
1371 	}
1372 }
1373 
reada_for_balance(struct btrfs_path * path,int level)1374 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1375 {
1376 	struct extent_buffer *parent;
1377 	int slot;
1378 	int nritems;
1379 
1380 	parent = path->nodes[level + 1];
1381 	if (!parent)
1382 		return;
1383 
1384 	nritems = btrfs_header_nritems(parent);
1385 	slot = path->slots[level + 1];
1386 
1387 	if (slot > 0)
1388 		btrfs_readahead_node_child(parent, slot - 1);
1389 	if (slot + 1 < nritems)
1390 		btrfs_readahead_node_child(parent, slot + 1);
1391 }
1392 
1393 
1394 /*
1395  * when we walk down the tree, it is usually safe to unlock the higher layers
1396  * in the tree.  The exceptions are when our path goes through slot 0, because
1397  * operations on the tree might require changing key pointers higher up in the
1398  * tree.
1399  *
1400  * callers might also have set path->keep_locks, which tells this code to keep
1401  * the lock if the path points to the last slot in the block.  This is part of
1402  * walking through the tree, and selecting the next slot in the higher block.
1403  *
1404  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1405  * if lowest_unlock is 1, level 0 won't be unlocked
1406  */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1407 static noinline void unlock_up(struct btrfs_path *path, int level,
1408 			       int lowest_unlock, int min_write_lock_level,
1409 			       int *write_lock_level)
1410 {
1411 	int i;
1412 	int skip_level = level;
1413 	bool check_skip = true;
1414 
1415 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1416 		if (!path->nodes[i])
1417 			break;
1418 		if (!path->locks[i])
1419 			break;
1420 
1421 		if (check_skip) {
1422 			if (path->slots[i] == 0) {
1423 				skip_level = i + 1;
1424 				continue;
1425 			}
1426 
1427 			if (path->keep_locks) {
1428 				u32 nritems;
1429 
1430 				nritems = btrfs_header_nritems(path->nodes[i]);
1431 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1432 					skip_level = i + 1;
1433 					continue;
1434 				}
1435 			}
1436 		}
1437 
1438 		if (i >= lowest_unlock && i > skip_level) {
1439 			check_skip = false;
1440 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1441 			path->locks[i] = 0;
1442 			if (write_lock_level &&
1443 			    i > min_write_lock_level &&
1444 			    i <= *write_lock_level) {
1445 				*write_lock_level = i - 1;
1446 			}
1447 		}
1448 	}
1449 }
1450 
1451 /*
1452  * Helper function for btrfs_search_slot() and other functions that do a search
1453  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1454  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1455  * its pages from disk.
1456  *
1457  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1458  * whole btree search, starting again from the current root node.
1459  */
1460 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1461 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1462 		      struct extent_buffer **eb_ret, int level, int slot,
1463 		      const struct btrfs_key *key)
1464 {
1465 	struct btrfs_fs_info *fs_info = root->fs_info;
1466 	u64 blocknr;
1467 	u64 gen;
1468 	struct extent_buffer *tmp;
1469 	struct btrfs_key first_key;
1470 	int ret;
1471 	int parent_level;
1472 	bool unlock_up;
1473 
1474 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1475 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1476 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1477 	parent_level = btrfs_header_level(*eb_ret);
1478 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1479 
1480 	/*
1481 	 * If we need to read an extent buffer from disk and we are holding locks
1482 	 * on upper level nodes, we unlock all the upper nodes before reading the
1483 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1484 	 * restart the search. We don't release the lock on the current level
1485 	 * because we need to walk this node to figure out which blocks to read.
1486 	 */
1487 	tmp = find_extent_buffer(fs_info, blocknr);
1488 	if (tmp) {
1489 		if (p->reada == READA_FORWARD_ALWAYS)
1490 			reada_for_search(fs_info, p, level, slot, key->objectid);
1491 
1492 		/* first we do an atomic uptodate check */
1493 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1494 			/*
1495 			 * Do extra check for first_key, eb can be stale due to
1496 			 * being cached, read from scrub, or have multiple
1497 			 * parents (shared tree blocks).
1498 			 */
1499 			if (btrfs_verify_level_key(tmp,
1500 					parent_level - 1, &first_key, gen)) {
1501 				free_extent_buffer(tmp);
1502 				return -EUCLEAN;
1503 			}
1504 			*eb_ret = tmp;
1505 			return 0;
1506 		}
1507 
1508 		if (p->nowait) {
1509 			free_extent_buffer(tmp);
1510 			return -EAGAIN;
1511 		}
1512 
1513 		if (unlock_up)
1514 			btrfs_unlock_up_safe(p, level + 1);
1515 
1516 		/* now we're allowed to do a blocking uptodate check */
1517 		ret = btrfs_read_extent_buffer(tmp, gen, parent_level - 1, &first_key);
1518 		if (ret) {
1519 			free_extent_buffer(tmp);
1520 			btrfs_release_path(p);
1521 			return -EIO;
1522 		}
1523 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1524 			free_extent_buffer(tmp);
1525 			btrfs_release_path(p);
1526 			return -EUCLEAN;
1527 		}
1528 
1529 		if (unlock_up)
1530 			ret = -EAGAIN;
1531 
1532 		goto out;
1533 	} else if (p->nowait) {
1534 		return -EAGAIN;
1535 	}
1536 
1537 	if (unlock_up) {
1538 		btrfs_unlock_up_safe(p, level + 1);
1539 		ret = -EAGAIN;
1540 	} else {
1541 		ret = 0;
1542 	}
1543 
1544 	if (p->reada != READA_NONE)
1545 		reada_for_search(fs_info, p, level, slot, key->objectid);
1546 
1547 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1548 			      gen, parent_level - 1, &first_key);
1549 	if (IS_ERR(tmp)) {
1550 		btrfs_release_path(p);
1551 		return PTR_ERR(tmp);
1552 	}
1553 	/*
1554 	 * If the read above didn't mark this buffer up to date,
1555 	 * it will never end up being up to date.  Set ret to EIO now
1556 	 * and give up so that our caller doesn't loop forever
1557 	 * on our EAGAINs.
1558 	 */
1559 	if (!extent_buffer_uptodate(tmp))
1560 		ret = -EIO;
1561 
1562 out:
1563 	if (ret == 0) {
1564 		*eb_ret = tmp;
1565 	} else {
1566 		free_extent_buffer(tmp);
1567 		btrfs_release_path(p);
1568 	}
1569 
1570 	return ret;
1571 }
1572 
1573 /*
1574  * helper function for btrfs_search_slot.  This does all of the checks
1575  * for node-level blocks and does any balancing required based on
1576  * the ins_len.
1577  *
1578  * If no extra work was required, zero is returned.  If we had to
1579  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1580  * start over
1581  */
1582 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1583 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1584 		       struct btrfs_root *root, struct btrfs_path *p,
1585 		       struct extent_buffer *b, int level, int ins_len,
1586 		       int *write_lock_level)
1587 {
1588 	struct btrfs_fs_info *fs_info = root->fs_info;
1589 	int ret = 0;
1590 
1591 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1592 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1593 
1594 		if (*write_lock_level < level + 1) {
1595 			*write_lock_level = level + 1;
1596 			btrfs_release_path(p);
1597 			return -EAGAIN;
1598 		}
1599 
1600 		reada_for_balance(p, level);
1601 		ret = split_node(trans, root, p, level);
1602 
1603 		b = p->nodes[level];
1604 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1605 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1606 
1607 		if (*write_lock_level < level + 1) {
1608 			*write_lock_level = level + 1;
1609 			btrfs_release_path(p);
1610 			return -EAGAIN;
1611 		}
1612 
1613 		reada_for_balance(p, level);
1614 		ret = balance_level(trans, root, p, level);
1615 		if (ret)
1616 			return ret;
1617 
1618 		b = p->nodes[level];
1619 		if (!b) {
1620 			btrfs_release_path(p);
1621 			return -EAGAIN;
1622 		}
1623 		BUG_ON(btrfs_header_nritems(b) == 1);
1624 	}
1625 	return ret;
1626 }
1627 
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1628 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1629 		u64 iobjectid, u64 ioff, u8 key_type,
1630 		struct btrfs_key *found_key)
1631 {
1632 	int ret;
1633 	struct btrfs_key key;
1634 	struct extent_buffer *eb;
1635 
1636 	ASSERT(path);
1637 	ASSERT(found_key);
1638 
1639 	key.type = key_type;
1640 	key.objectid = iobjectid;
1641 	key.offset = ioff;
1642 
1643 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1644 	if (ret < 0)
1645 		return ret;
1646 
1647 	eb = path->nodes[0];
1648 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1649 		ret = btrfs_next_leaf(fs_root, path);
1650 		if (ret)
1651 			return ret;
1652 		eb = path->nodes[0];
1653 	}
1654 
1655 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1656 	if (found_key->type != key.type ||
1657 			found_key->objectid != key.objectid)
1658 		return 1;
1659 
1660 	return 0;
1661 }
1662 
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1663 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1664 							struct btrfs_path *p,
1665 							int write_lock_level)
1666 {
1667 	struct extent_buffer *b;
1668 	int root_lock = 0;
1669 	int level = 0;
1670 
1671 	if (p->search_commit_root) {
1672 		b = root->commit_root;
1673 		atomic_inc(&b->refs);
1674 		level = btrfs_header_level(b);
1675 		/*
1676 		 * Ensure that all callers have set skip_locking when
1677 		 * p->search_commit_root = 1.
1678 		 */
1679 		ASSERT(p->skip_locking == 1);
1680 
1681 		goto out;
1682 	}
1683 
1684 	if (p->skip_locking) {
1685 		b = btrfs_root_node(root);
1686 		level = btrfs_header_level(b);
1687 		goto out;
1688 	}
1689 
1690 	/* We try very hard to do read locks on the root */
1691 	root_lock = BTRFS_READ_LOCK;
1692 
1693 	/*
1694 	 * If the level is set to maximum, we can skip trying to get the read
1695 	 * lock.
1696 	 */
1697 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1698 		/*
1699 		 * We don't know the level of the root node until we actually
1700 		 * have it read locked
1701 		 */
1702 		if (p->nowait) {
1703 			b = btrfs_try_read_lock_root_node(root);
1704 			if (IS_ERR(b))
1705 				return b;
1706 		} else {
1707 			b = btrfs_read_lock_root_node(root);
1708 		}
1709 		level = btrfs_header_level(b);
1710 		if (level > write_lock_level)
1711 			goto out;
1712 
1713 		/* Whoops, must trade for write lock */
1714 		btrfs_tree_read_unlock(b);
1715 		free_extent_buffer(b);
1716 	}
1717 
1718 	b = btrfs_lock_root_node(root);
1719 	root_lock = BTRFS_WRITE_LOCK;
1720 
1721 	/* The level might have changed, check again */
1722 	level = btrfs_header_level(b);
1723 
1724 out:
1725 	/*
1726 	 * The root may have failed to write out at some point, and thus is no
1727 	 * longer valid, return an error in this case.
1728 	 */
1729 	if (!extent_buffer_uptodate(b)) {
1730 		if (root_lock)
1731 			btrfs_tree_unlock_rw(b, root_lock);
1732 		free_extent_buffer(b);
1733 		return ERR_PTR(-EIO);
1734 	}
1735 
1736 	p->nodes[level] = b;
1737 	if (!p->skip_locking)
1738 		p->locks[level] = root_lock;
1739 	/*
1740 	 * Callers are responsible for dropping b's references.
1741 	 */
1742 	return b;
1743 }
1744 
1745 /*
1746  * Replace the extent buffer at the lowest level of the path with a cloned
1747  * version. The purpose is to be able to use it safely, after releasing the
1748  * commit root semaphore, even if relocation is happening in parallel, the
1749  * transaction used for relocation is committed and the extent buffer is
1750  * reallocated in the next transaction.
1751  *
1752  * This is used in a context where the caller does not prevent transaction
1753  * commits from happening, either by holding a transaction handle or holding
1754  * some lock, while it's doing searches through a commit root.
1755  * At the moment it's only used for send operations.
1756  */
finish_need_commit_sem_search(struct btrfs_path * path)1757 static int finish_need_commit_sem_search(struct btrfs_path *path)
1758 {
1759 	const int i = path->lowest_level;
1760 	const int slot = path->slots[i];
1761 	struct extent_buffer *lowest = path->nodes[i];
1762 	struct extent_buffer *clone;
1763 
1764 	ASSERT(path->need_commit_sem);
1765 
1766 	if (!lowest)
1767 		return 0;
1768 
1769 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1770 
1771 	clone = btrfs_clone_extent_buffer(lowest);
1772 	if (!clone)
1773 		return -ENOMEM;
1774 
1775 	btrfs_release_path(path);
1776 	path->nodes[i] = clone;
1777 	path->slots[i] = slot;
1778 
1779 	return 0;
1780 }
1781 
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1782 static inline int search_for_key_slot(struct extent_buffer *eb,
1783 				      int search_low_slot,
1784 				      const struct btrfs_key *key,
1785 				      int prev_cmp,
1786 				      int *slot)
1787 {
1788 	/*
1789 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1790 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1791 	 * always be at slot 0 on lower levels, since each key pointer
1792 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1793 	 * subtree it points to. Thus we can skip searching lower levels.
1794 	 */
1795 	if (prev_cmp == 0) {
1796 		*slot = 0;
1797 		return 0;
1798 	}
1799 
1800 	return generic_bin_search(eb, search_low_slot, key, slot);
1801 }
1802 
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1803 static int search_leaf(struct btrfs_trans_handle *trans,
1804 		       struct btrfs_root *root,
1805 		       const struct btrfs_key *key,
1806 		       struct btrfs_path *path,
1807 		       int ins_len,
1808 		       int prev_cmp)
1809 {
1810 	struct extent_buffer *leaf = path->nodes[0];
1811 	int leaf_free_space = -1;
1812 	int search_low_slot = 0;
1813 	int ret;
1814 	bool do_bin_search = true;
1815 
1816 	/*
1817 	 * If we are doing an insertion, the leaf has enough free space and the
1818 	 * destination slot for the key is not slot 0, then we can unlock our
1819 	 * write lock on the parent, and any other upper nodes, before doing the
1820 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1821 	 * tasks to lock the parent and any other upper nodes.
1822 	 */
1823 	if (ins_len > 0) {
1824 		/*
1825 		 * Cache the leaf free space, since we will need it later and it
1826 		 * will not change until then.
1827 		 */
1828 		leaf_free_space = btrfs_leaf_free_space(leaf);
1829 
1830 		/*
1831 		 * !path->locks[1] means we have a single node tree, the leaf is
1832 		 * the root of the tree.
1833 		 */
1834 		if (path->locks[1] && leaf_free_space >= ins_len) {
1835 			struct btrfs_disk_key first_key;
1836 
1837 			ASSERT(btrfs_header_nritems(leaf) > 0);
1838 			btrfs_item_key(leaf, &first_key, 0);
1839 
1840 			/*
1841 			 * Doing the extra comparison with the first key is cheap,
1842 			 * taking into account that the first key is very likely
1843 			 * already in a cache line because it immediately follows
1844 			 * the extent buffer's header and we have recently accessed
1845 			 * the header's level field.
1846 			 */
1847 			ret = comp_keys(&first_key, key);
1848 			if (ret < 0) {
1849 				/*
1850 				 * The first key is smaller than the key we want
1851 				 * to insert, so we are safe to unlock all upper
1852 				 * nodes and we have to do the binary search.
1853 				 *
1854 				 * We do use btrfs_unlock_up_safe() and not
1855 				 * unlock_up() because the later does not unlock
1856 				 * nodes with a slot of 0 - we can safely unlock
1857 				 * any node even if its slot is 0 since in this
1858 				 * case the key does not end up at slot 0 of the
1859 				 * leaf and there's no need to split the leaf.
1860 				 */
1861 				btrfs_unlock_up_safe(path, 1);
1862 				search_low_slot = 1;
1863 			} else {
1864 				/*
1865 				 * The first key is >= then the key we want to
1866 				 * insert, so we can skip the binary search as
1867 				 * the target key will be at slot 0.
1868 				 *
1869 				 * We can not unlock upper nodes when the key is
1870 				 * less than the first key, because we will need
1871 				 * to update the key at slot 0 of the parent node
1872 				 * and possibly of other upper nodes too.
1873 				 * If the key matches the first key, then we can
1874 				 * unlock all the upper nodes, using
1875 				 * btrfs_unlock_up_safe() instead of unlock_up()
1876 				 * as stated above.
1877 				 */
1878 				if (ret == 0)
1879 					btrfs_unlock_up_safe(path, 1);
1880 				/*
1881 				 * ret is already 0 or 1, matching the result of
1882 				 * a btrfs_bin_search() call, so there is no need
1883 				 * to adjust it.
1884 				 */
1885 				do_bin_search = false;
1886 				path->slots[0] = 0;
1887 			}
1888 		}
1889 	}
1890 
1891 	if (do_bin_search) {
1892 		ret = search_for_key_slot(leaf, search_low_slot, key,
1893 					  prev_cmp, &path->slots[0]);
1894 		if (ret < 0)
1895 			return ret;
1896 	}
1897 
1898 	if (ins_len > 0) {
1899 		/*
1900 		 * Item key already exists. In this case, if we are allowed to
1901 		 * insert the item (for example, in dir_item case, item key
1902 		 * collision is allowed), it will be merged with the original
1903 		 * item. Only the item size grows, no new btrfs item will be
1904 		 * added. If search_for_extension is not set, ins_len already
1905 		 * accounts the size btrfs_item, deduct it here so leaf space
1906 		 * check will be correct.
1907 		 */
1908 		if (ret == 0 && !path->search_for_extension) {
1909 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1910 			ins_len -= sizeof(struct btrfs_item);
1911 		}
1912 
1913 		ASSERT(leaf_free_space >= 0);
1914 
1915 		if (leaf_free_space < ins_len) {
1916 			int err;
1917 
1918 			err = split_leaf(trans, root, key, path, ins_len,
1919 					 (ret == 0));
1920 			ASSERT(err <= 0);
1921 			if (WARN_ON(err > 0))
1922 				err = -EUCLEAN;
1923 			if (err)
1924 				ret = err;
1925 		}
1926 	}
1927 
1928 	return ret;
1929 }
1930 
1931 /*
1932  * btrfs_search_slot - look for a key in a tree and perform necessary
1933  * modifications to preserve tree invariants.
1934  *
1935  * @trans:	Handle of transaction, used when modifying the tree
1936  * @p:		Holds all btree nodes along the search path
1937  * @root:	The root node of the tree
1938  * @key:	The key we are looking for
1939  * @ins_len:	Indicates purpose of search:
1940  *              >0  for inserts it's size of item inserted (*)
1941  *              <0  for deletions
1942  *               0  for plain searches, not modifying the tree
1943  *
1944  *              (*) If size of item inserted doesn't include
1945  *              sizeof(struct btrfs_item), then p->search_for_extension must
1946  *              be set.
1947  * @cow:	boolean should CoW operations be performed. Must always be 1
1948  *		when modifying the tree.
1949  *
1950  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1951  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1952  *
1953  * If @key is found, 0 is returned and you can find the item in the leaf level
1954  * of the path (level 0)
1955  *
1956  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1957  * points to the slot where it should be inserted
1958  *
1959  * If an error is encountered while searching the tree a negative error number
1960  * is returned
1961  */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)1962 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1963 		      const struct btrfs_key *key, struct btrfs_path *p,
1964 		      int ins_len, int cow)
1965 {
1966 	struct btrfs_fs_info *fs_info = root->fs_info;
1967 	struct extent_buffer *b;
1968 	int slot;
1969 	int ret;
1970 	int err;
1971 	int level;
1972 	int lowest_unlock = 1;
1973 	/* everything at write_lock_level or lower must be write locked */
1974 	int write_lock_level = 0;
1975 	u8 lowest_level = 0;
1976 	int min_write_lock_level;
1977 	int prev_cmp;
1978 
1979 	lowest_level = p->lowest_level;
1980 	WARN_ON(lowest_level && ins_len > 0);
1981 	WARN_ON(p->nodes[0] != NULL);
1982 	BUG_ON(!cow && ins_len);
1983 
1984 	/*
1985 	 * For now only allow nowait for read only operations.  There's no
1986 	 * strict reason why we can't, we just only need it for reads so it's
1987 	 * only implemented for reads.
1988 	 */
1989 	ASSERT(!p->nowait || !cow);
1990 
1991 	if (ins_len < 0) {
1992 		lowest_unlock = 2;
1993 
1994 		/* when we are removing items, we might have to go up to level
1995 		 * two as we update tree pointers  Make sure we keep write
1996 		 * for those levels as well
1997 		 */
1998 		write_lock_level = 2;
1999 	} else if (ins_len > 0) {
2000 		/*
2001 		 * for inserting items, make sure we have a write lock on
2002 		 * level 1 so we can update keys
2003 		 */
2004 		write_lock_level = 1;
2005 	}
2006 
2007 	if (!cow)
2008 		write_lock_level = -1;
2009 
2010 	if (cow && (p->keep_locks || p->lowest_level))
2011 		write_lock_level = BTRFS_MAX_LEVEL;
2012 
2013 	min_write_lock_level = write_lock_level;
2014 
2015 	if (p->need_commit_sem) {
2016 		ASSERT(p->search_commit_root);
2017 		if (p->nowait) {
2018 			if (!down_read_trylock(&fs_info->commit_root_sem))
2019 				return -EAGAIN;
2020 		} else {
2021 			down_read(&fs_info->commit_root_sem);
2022 		}
2023 	}
2024 
2025 again:
2026 	prev_cmp = -1;
2027 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2028 	if (IS_ERR(b)) {
2029 		ret = PTR_ERR(b);
2030 		goto done;
2031 	}
2032 
2033 	while (b) {
2034 		int dec = 0;
2035 
2036 		level = btrfs_header_level(b);
2037 
2038 		if (cow) {
2039 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2040 
2041 			/*
2042 			 * if we don't really need to cow this block
2043 			 * then we don't want to set the path blocking,
2044 			 * so we test it here
2045 			 */
2046 			if (!should_cow_block(trans, root, b))
2047 				goto cow_done;
2048 
2049 			/*
2050 			 * must have write locks on this node and the
2051 			 * parent
2052 			 */
2053 			if (level > write_lock_level ||
2054 			    (level + 1 > write_lock_level &&
2055 			    level + 1 < BTRFS_MAX_LEVEL &&
2056 			    p->nodes[level + 1])) {
2057 				write_lock_level = level + 1;
2058 				btrfs_release_path(p);
2059 				goto again;
2060 			}
2061 
2062 			if (last_level)
2063 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2064 						      &b,
2065 						      BTRFS_NESTING_COW);
2066 			else
2067 				err = btrfs_cow_block(trans, root, b,
2068 						      p->nodes[level + 1],
2069 						      p->slots[level + 1], &b,
2070 						      BTRFS_NESTING_COW);
2071 			if (err) {
2072 				ret = err;
2073 				goto done;
2074 			}
2075 		}
2076 cow_done:
2077 		p->nodes[level] = b;
2078 
2079 		/*
2080 		 * we have a lock on b and as long as we aren't changing
2081 		 * the tree, there is no way to for the items in b to change.
2082 		 * It is safe to drop the lock on our parent before we
2083 		 * go through the expensive btree search on b.
2084 		 *
2085 		 * If we're inserting or deleting (ins_len != 0), then we might
2086 		 * be changing slot zero, which may require changing the parent.
2087 		 * So, we can't drop the lock until after we know which slot
2088 		 * we're operating on.
2089 		 */
2090 		if (!ins_len && !p->keep_locks) {
2091 			int u = level + 1;
2092 
2093 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2094 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2095 				p->locks[u] = 0;
2096 			}
2097 		}
2098 
2099 		if (level == 0) {
2100 			if (ins_len > 0)
2101 				ASSERT(write_lock_level >= 1);
2102 
2103 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2104 			if (!p->search_for_split)
2105 				unlock_up(p, level, lowest_unlock,
2106 					  min_write_lock_level, NULL);
2107 			goto done;
2108 		}
2109 
2110 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2111 		if (ret < 0)
2112 			goto done;
2113 		prev_cmp = ret;
2114 
2115 		if (ret && slot > 0) {
2116 			dec = 1;
2117 			slot--;
2118 		}
2119 		p->slots[level] = slot;
2120 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2121 					     &write_lock_level);
2122 		if (err == -EAGAIN)
2123 			goto again;
2124 		if (err) {
2125 			ret = err;
2126 			goto done;
2127 		}
2128 		b = p->nodes[level];
2129 		slot = p->slots[level];
2130 
2131 		/*
2132 		 * Slot 0 is special, if we change the key we have to update
2133 		 * the parent pointer which means we must have a write lock on
2134 		 * the parent
2135 		 */
2136 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2137 			write_lock_level = level + 1;
2138 			btrfs_release_path(p);
2139 			goto again;
2140 		}
2141 
2142 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2143 			  &write_lock_level);
2144 
2145 		if (level == lowest_level) {
2146 			if (dec)
2147 				p->slots[level]++;
2148 			goto done;
2149 		}
2150 
2151 		err = read_block_for_search(root, p, &b, level, slot, key);
2152 		if (err == -EAGAIN)
2153 			goto again;
2154 		if (err) {
2155 			ret = err;
2156 			goto done;
2157 		}
2158 
2159 		if (!p->skip_locking) {
2160 			level = btrfs_header_level(b);
2161 
2162 			btrfs_maybe_reset_lockdep_class(root, b);
2163 
2164 			if (level <= write_lock_level) {
2165 				btrfs_tree_lock(b);
2166 				p->locks[level] = BTRFS_WRITE_LOCK;
2167 			} else {
2168 				if (p->nowait) {
2169 					if (!btrfs_try_tree_read_lock(b)) {
2170 						free_extent_buffer(b);
2171 						ret = -EAGAIN;
2172 						goto done;
2173 					}
2174 				} else {
2175 					btrfs_tree_read_lock(b);
2176 				}
2177 				p->locks[level] = BTRFS_READ_LOCK;
2178 			}
2179 			p->nodes[level] = b;
2180 		}
2181 	}
2182 	ret = 1;
2183 done:
2184 	if (ret < 0 && !p->skip_release_on_error)
2185 		btrfs_release_path(p);
2186 
2187 	if (p->need_commit_sem) {
2188 		int ret2;
2189 
2190 		ret2 = finish_need_commit_sem_search(p);
2191 		up_read(&fs_info->commit_root_sem);
2192 		if (ret2)
2193 			ret = ret2;
2194 	}
2195 
2196 	return ret;
2197 }
2198 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2199 
2200 /*
2201  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2202  * current state of the tree together with the operations recorded in the tree
2203  * modification log to search for the key in a previous version of this tree, as
2204  * denoted by the time_seq parameter.
2205  *
2206  * Naturally, there is no support for insert, delete or cow operations.
2207  *
2208  * The resulting path and return value will be set up as if we called
2209  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2210  */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2211 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2212 			  struct btrfs_path *p, u64 time_seq)
2213 {
2214 	struct btrfs_fs_info *fs_info = root->fs_info;
2215 	struct extent_buffer *b;
2216 	int slot;
2217 	int ret;
2218 	int err;
2219 	int level;
2220 	int lowest_unlock = 1;
2221 	u8 lowest_level = 0;
2222 
2223 	lowest_level = p->lowest_level;
2224 	WARN_ON(p->nodes[0] != NULL);
2225 	ASSERT(!p->nowait);
2226 
2227 	if (p->search_commit_root) {
2228 		BUG_ON(time_seq);
2229 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2230 	}
2231 
2232 again:
2233 	b = btrfs_get_old_root(root, time_seq);
2234 	if (!b) {
2235 		ret = -EIO;
2236 		goto done;
2237 	}
2238 	level = btrfs_header_level(b);
2239 	p->locks[level] = BTRFS_READ_LOCK;
2240 
2241 	while (b) {
2242 		int dec = 0;
2243 
2244 		level = btrfs_header_level(b);
2245 		p->nodes[level] = b;
2246 
2247 		/*
2248 		 * we have a lock on b and as long as we aren't changing
2249 		 * the tree, there is no way to for the items in b to change.
2250 		 * It is safe to drop the lock on our parent before we
2251 		 * go through the expensive btree search on b.
2252 		 */
2253 		btrfs_unlock_up_safe(p, level + 1);
2254 
2255 		ret = btrfs_bin_search(b, key, &slot);
2256 		if (ret < 0)
2257 			goto done;
2258 
2259 		if (level == 0) {
2260 			p->slots[level] = slot;
2261 			unlock_up(p, level, lowest_unlock, 0, NULL);
2262 			goto done;
2263 		}
2264 
2265 		if (ret && slot > 0) {
2266 			dec = 1;
2267 			slot--;
2268 		}
2269 		p->slots[level] = slot;
2270 		unlock_up(p, level, lowest_unlock, 0, NULL);
2271 
2272 		if (level == lowest_level) {
2273 			if (dec)
2274 				p->slots[level]++;
2275 			goto done;
2276 		}
2277 
2278 		err = read_block_for_search(root, p, &b, level, slot, key);
2279 		if (err == -EAGAIN)
2280 			goto again;
2281 		if (err) {
2282 			ret = err;
2283 			goto done;
2284 		}
2285 
2286 		level = btrfs_header_level(b);
2287 		btrfs_tree_read_lock(b);
2288 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2289 		if (!b) {
2290 			ret = -ENOMEM;
2291 			goto done;
2292 		}
2293 		p->locks[level] = BTRFS_READ_LOCK;
2294 		p->nodes[level] = b;
2295 	}
2296 	ret = 1;
2297 done:
2298 	if (ret < 0)
2299 		btrfs_release_path(p);
2300 
2301 	return ret;
2302 }
2303 
2304 /*
2305  * helper to use instead of search slot if no exact match is needed but
2306  * instead the next or previous item should be returned.
2307  * When find_higher is true, the next higher item is returned, the next lower
2308  * otherwise.
2309  * When return_any and find_higher are both true, and no higher item is found,
2310  * return the next lower instead.
2311  * When return_any is true and find_higher is false, and no lower item is found,
2312  * return the next higher instead.
2313  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2314  * < 0 on error
2315  */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2316 int btrfs_search_slot_for_read(struct btrfs_root *root,
2317 			       const struct btrfs_key *key,
2318 			       struct btrfs_path *p, int find_higher,
2319 			       int return_any)
2320 {
2321 	int ret;
2322 	struct extent_buffer *leaf;
2323 
2324 again:
2325 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2326 	if (ret <= 0)
2327 		return ret;
2328 	/*
2329 	 * a return value of 1 means the path is at the position where the
2330 	 * item should be inserted. Normally this is the next bigger item,
2331 	 * but in case the previous item is the last in a leaf, path points
2332 	 * to the first free slot in the previous leaf, i.e. at an invalid
2333 	 * item.
2334 	 */
2335 	leaf = p->nodes[0];
2336 
2337 	if (find_higher) {
2338 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2339 			ret = btrfs_next_leaf(root, p);
2340 			if (ret <= 0)
2341 				return ret;
2342 			if (!return_any)
2343 				return 1;
2344 			/*
2345 			 * no higher item found, return the next
2346 			 * lower instead
2347 			 */
2348 			return_any = 0;
2349 			find_higher = 0;
2350 			btrfs_release_path(p);
2351 			goto again;
2352 		}
2353 	} else {
2354 		if (p->slots[0] == 0) {
2355 			ret = btrfs_prev_leaf(root, p);
2356 			if (ret < 0)
2357 				return ret;
2358 			if (!ret) {
2359 				leaf = p->nodes[0];
2360 				if (p->slots[0] == btrfs_header_nritems(leaf))
2361 					p->slots[0]--;
2362 				return 0;
2363 			}
2364 			if (!return_any)
2365 				return 1;
2366 			/*
2367 			 * no lower item found, return the next
2368 			 * higher instead
2369 			 */
2370 			return_any = 0;
2371 			find_higher = 1;
2372 			btrfs_release_path(p);
2373 			goto again;
2374 		} else {
2375 			--p->slots[0];
2376 		}
2377 	}
2378 	return 0;
2379 }
2380 
2381 /*
2382  * Execute search and call btrfs_previous_item to traverse backwards if the item
2383  * was not found.
2384  *
2385  * Return 0 if found, 1 if not found and < 0 if error.
2386  */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2387 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2388 			   struct btrfs_path *path)
2389 {
2390 	int ret;
2391 
2392 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2393 	if (ret > 0)
2394 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2395 
2396 	if (ret == 0)
2397 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2398 
2399 	return ret;
2400 }
2401 
2402 /**
2403  * Search for a valid slot for the given path.
2404  *
2405  * @root:	The root node of the tree.
2406  * @key:	Will contain a valid item if found.
2407  * @path:	The starting point to validate the slot.
2408  *
2409  * Return: 0  if the item is valid
2410  *         1  if not found
2411  *         <0 if error.
2412  */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2413 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2414 			      struct btrfs_path *path)
2415 {
2416 	while (1) {
2417 		int ret;
2418 		const int slot = path->slots[0];
2419 		const struct extent_buffer *leaf = path->nodes[0];
2420 
2421 		/* This is where we start walking the path. */
2422 		if (slot >= btrfs_header_nritems(leaf)) {
2423 			/*
2424 			 * If we've reached the last slot in this leaf we need
2425 			 * to go to the next leaf and reset the path.
2426 			 */
2427 			ret = btrfs_next_leaf(root, path);
2428 			if (ret)
2429 				return ret;
2430 			continue;
2431 		}
2432 		/* Store the found, valid item in @key. */
2433 		btrfs_item_key_to_cpu(leaf, key, slot);
2434 		break;
2435 	}
2436 	return 0;
2437 }
2438 
2439 /*
2440  * adjust the pointers going up the tree, starting at level
2441  * making sure the right key of each node is points to 'key'.
2442  * This is used after shifting pointers to the left, so it stops
2443  * fixing up pointers when a given leaf/node is not in slot 0 of the
2444  * higher levels
2445  *
2446  */
fixup_low_keys(struct btrfs_path * path,struct btrfs_disk_key * key,int level)2447 static void fixup_low_keys(struct btrfs_path *path,
2448 			   struct btrfs_disk_key *key, int level)
2449 {
2450 	int i;
2451 	struct extent_buffer *t;
2452 	int ret;
2453 
2454 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2455 		int tslot = path->slots[i];
2456 
2457 		if (!path->nodes[i])
2458 			break;
2459 		t = path->nodes[i];
2460 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2461 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2462 		BUG_ON(ret < 0);
2463 		btrfs_set_node_key(t, key, tslot);
2464 		btrfs_mark_buffer_dirty(path->nodes[i]);
2465 		if (tslot != 0)
2466 			break;
2467 	}
2468 }
2469 
2470 /*
2471  * update item key.
2472  *
2473  * This function isn't completely safe. It's the caller's responsibility
2474  * that the new key won't break the order
2475  */
btrfs_set_item_key_safe(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key)2476 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2477 			     struct btrfs_path *path,
2478 			     const struct btrfs_key *new_key)
2479 {
2480 	struct btrfs_disk_key disk_key;
2481 	struct extent_buffer *eb;
2482 	int slot;
2483 
2484 	eb = path->nodes[0];
2485 	slot = path->slots[0];
2486 	if (slot > 0) {
2487 		btrfs_item_key(eb, &disk_key, slot - 1);
2488 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2489 			btrfs_crit(fs_info,
2490 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2491 				   slot, btrfs_disk_key_objectid(&disk_key),
2492 				   btrfs_disk_key_type(&disk_key),
2493 				   btrfs_disk_key_offset(&disk_key),
2494 				   new_key->objectid, new_key->type,
2495 				   new_key->offset);
2496 			btrfs_print_leaf(eb);
2497 			BUG();
2498 		}
2499 	}
2500 	if (slot < btrfs_header_nritems(eb) - 1) {
2501 		btrfs_item_key(eb, &disk_key, slot + 1);
2502 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2503 			btrfs_crit(fs_info,
2504 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2505 				   slot, btrfs_disk_key_objectid(&disk_key),
2506 				   btrfs_disk_key_type(&disk_key),
2507 				   btrfs_disk_key_offset(&disk_key),
2508 				   new_key->objectid, new_key->type,
2509 				   new_key->offset);
2510 			btrfs_print_leaf(eb);
2511 			BUG();
2512 		}
2513 	}
2514 
2515 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2516 	btrfs_set_item_key(eb, &disk_key, slot);
2517 	btrfs_mark_buffer_dirty(eb);
2518 	if (slot == 0)
2519 		fixup_low_keys(path, &disk_key, 1);
2520 }
2521 
2522 /*
2523  * Check key order of two sibling extent buffers.
2524  *
2525  * Return true if something is wrong.
2526  * Return false if everything is fine.
2527  *
2528  * Tree-checker only works inside one tree block, thus the following
2529  * corruption can not be detected by tree-checker:
2530  *
2531  * Leaf @left			| Leaf @right
2532  * --------------------------------------------------------------
2533  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2534  *
2535  * Key f6 in leaf @left itself is valid, but not valid when the next
2536  * key in leaf @right is 7.
2537  * This can only be checked at tree block merge time.
2538  * And since tree checker has ensured all key order in each tree block
2539  * is correct, we only need to bother the last key of @left and the first
2540  * key of @right.
2541  */
check_sibling_keys(struct extent_buffer * left,struct extent_buffer * right)2542 static bool check_sibling_keys(struct extent_buffer *left,
2543 			       struct extent_buffer *right)
2544 {
2545 	struct btrfs_key left_last;
2546 	struct btrfs_key right_first;
2547 	int level = btrfs_header_level(left);
2548 	int nr_left = btrfs_header_nritems(left);
2549 	int nr_right = btrfs_header_nritems(right);
2550 
2551 	/* No key to check in one of the tree blocks */
2552 	if (!nr_left || !nr_right)
2553 		return false;
2554 
2555 	if (level) {
2556 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2557 		btrfs_node_key_to_cpu(right, &right_first, 0);
2558 	} else {
2559 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2560 		btrfs_item_key_to_cpu(right, &right_first, 0);
2561 	}
2562 
2563 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2564 		btrfs_crit(left->fs_info,
2565 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2566 			   left_last.objectid, left_last.type,
2567 			   left_last.offset, right_first.objectid,
2568 			   right_first.type, right_first.offset);
2569 		return true;
2570 	}
2571 	return false;
2572 }
2573 
2574 /*
2575  * try to push data from one node into the next node left in the
2576  * tree.
2577  *
2578  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2579  * error, and > 0 if there was no room in the left hand block.
2580  */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2581 static int push_node_left(struct btrfs_trans_handle *trans,
2582 			  struct extent_buffer *dst,
2583 			  struct extent_buffer *src, int empty)
2584 {
2585 	struct btrfs_fs_info *fs_info = trans->fs_info;
2586 	int push_items = 0;
2587 	int src_nritems;
2588 	int dst_nritems;
2589 	int ret = 0;
2590 
2591 	src_nritems = btrfs_header_nritems(src);
2592 	dst_nritems = btrfs_header_nritems(dst);
2593 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2594 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2595 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2596 
2597 	if (!empty && src_nritems <= 8)
2598 		return 1;
2599 
2600 	if (push_items <= 0)
2601 		return 1;
2602 
2603 	if (empty) {
2604 		push_items = min(src_nritems, push_items);
2605 		if (push_items < src_nritems) {
2606 			/* leave at least 8 pointers in the node if
2607 			 * we aren't going to empty it
2608 			 */
2609 			if (src_nritems - push_items < 8) {
2610 				if (push_items <= 8)
2611 					return 1;
2612 				push_items -= 8;
2613 			}
2614 		}
2615 	} else
2616 		push_items = min(src_nritems - 8, push_items);
2617 
2618 	/* dst is the left eb, src is the middle eb */
2619 	if (check_sibling_keys(dst, src)) {
2620 		ret = -EUCLEAN;
2621 		btrfs_abort_transaction(trans, ret);
2622 		return ret;
2623 	}
2624 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2625 	if (ret) {
2626 		btrfs_abort_transaction(trans, ret);
2627 		return ret;
2628 	}
2629 	copy_extent_buffer(dst, src,
2630 			   btrfs_node_key_ptr_offset(dst_nritems),
2631 			   btrfs_node_key_ptr_offset(0),
2632 			   push_items * sizeof(struct btrfs_key_ptr));
2633 
2634 	if (push_items < src_nritems) {
2635 		/*
2636 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2637 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2638 		 */
2639 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2640 				      btrfs_node_key_ptr_offset(push_items),
2641 				      (src_nritems - push_items) *
2642 				      sizeof(struct btrfs_key_ptr));
2643 	}
2644 	btrfs_set_header_nritems(src, src_nritems - push_items);
2645 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2646 	btrfs_mark_buffer_dirty(src);
2647 	btrfs_mark_buffer_dirty(dst);
2648 
2649 	return ret;
2650 }
2651 
2652 /*
2653  * try to push data from one node into the next node right in the
2654  * tree.
2655  *
2656  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2657  * error, and > 0 if there was no room in the right hand block.
2658  *
2659  * this will  only push up to 1/2 the contents of the left node over
2660  */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2661 static int balance_node_right(struct btrfs_trans_handle *trans,
2662 			      struct extent_buffer *dst,
2663 			      struct extent_buffer *src)
2664 {
2665 	struct btrfs_fs_info *fs_info = trans->fs_info;
2666 	int push_items = 0;
2667 	int max_push;
2668 	int src_nritems;
2669 	int dst_nritems;
2670 	int ret = 0;
2671 
2672 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2673 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2674 
2675 	src_nritems = btrfs_header_nritems(src);
2676 	dst_nritems = btrfs_header_nritems(dst);
2677 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2678 	if (push_items <= 0)
2679 		return 1;
2680 
2681 	if (src_nritems < 4)
2682 		return 1;
2683 
2684 	max_push = src_nritems / 2 + 1;
2685 	/* don't try to empty the node */
2686 	if (max_push >= src_nritems)
2687 		return 1;
2688 
2689 	if (max_push < push_items)
2690 		push_items = max_push;
2691 
2692 	/* dst is the right eb, src is the middle eb */
2693 	if (check_sibling_keys(src, dst)) {
2694 		ret = -EUCLEAN;
2695 		btrfs_abort_transaction(trans, ret);
2696 		return ret;
2697 	}
2698 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2699 	BUG_ON(ret < 0);
2700 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2701 				      btrfs_node_key_ptr_offset(0),
2702 				      (dst_nritems) *
2703 				      sizeof(struct btrfs_key_ptr));
2704 
2705 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2706 					 push_items);
2707 	if (ret) {
2708 		btrfs_abort_transaction(trans, ret);
2709 		return ret;
2710 	}
2711 	copy_extent_buffer(dst, src,
2712 			   btrfs_node_key_ptr_offset(0),
2713 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2714 			   push_items * sizeof(struct btrfs_key_ptr));
2715 
2716 	btrfs_set_header_nritems(src, src_nritems - push_items);
2717 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2718 
2719 	btrfs_mark_buffer_dirty(src);
2720 	btrfs_mark_buffer_dirty(dst);
2721 
2722 	return ret;
2723 }
2724 
2725 /*
2726  * helper function to insert a new root level in the tree.
2727  * A new node is allocated, and a single item is inserted to
2728  * point to the existing root
2729  *
2730  * returns zero on success or < 0 on failure.
2731  */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2732 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2733 			   struct btrfs_root *root,
2734 			   struct btrfs_path *path, int level)
2735 {
2736 	struct btrfs_fs_info *fs_info = root->fs_info;
2737 	u64 lower_gen;
2738 	struct extent_buffer *lower;
2739 	struct extent_buffer *c;
2740 	struct extent_buffer *old;
2741 	struct btrfs_disk_key lower_key;
2742 	int ret;
2743 
2744 	BUG_ON(path->nodes[level]);
2745 	BUG_ON(path->nodes[level-1] != root->node);
2746 
2747 	lower = path->nodes[level-1];
2748 	if (level == 1)
2749 		btrfs_item_key(lower, &lower_key, 0);
2750 	else
2751 		btrfs_node_key(lower, &lower_key, 0);
2752 
2753 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2754 				   &lower_key, level, root->node->start, 0,
2755 				   BTRFS_NESTING_NEW_ROOT);
2756 	if (IS_ERR(c))
2757 		return PTR_ERR(c);
2758 
2759 	root_add_used(root, fs_info->nodesize);
2760 
2761 	btrfs_set_header_nritems(c, 1);
2762 	btrfs_set_node_key(c, &lower_key, 0);
2763 	btrfs_set_node_blockptr(c, 0, lower->start);
2764 	lower_gen = btrfs_header_generation(lower);
2765 	WARN_ON(lower_gen != trans->transid);
2766 
2767 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2768 
2769 	btrfs_mark_buffer_dirty(c);
2770 
2771 	old = root->node;
2772 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2773 	BUG_ON(ret < 0);
2774 	rcu_assign_pointer(root->node, c);
2775 
2776 	/* the super has an extra ref to root->node */
2777 	free_extent_buffer(old);
2778 
2779 	add_root_to_dirty_list(root);
2780 	atomic_inc(&c->refs);
2781 	path->nodes[level] = c;
2782 	path->locks[level] = BTRFS_WRITE_LOCK;
2783 	path->slots[level] = 0;
2784 	return 0;
2785 }
2786 
2787 /*
2788  * worker function to insert a single pointer in a node.
2789  * the node should have enough room for the pointer already
2790  *
2791  * slot and level indicate where you want the key to go, and
2792  * blocknr is the block the key points to.
2793  */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)2794 static void insert_ptr(struct btrfs_trans_handle *trans,
2795 		       struct btrfs_path *path,
2796 		       struct btrfs_disk_key *key, u64 bytenr,
2797 		       int slot, int level)
2798 {
2799 	struct extent_buffer *lower;
2800 	int nritems;
2801 	int ret;
2802 
2803 	BUG_ON(!path->nodes[level]);
2804 	btrfs_assert_tree_write_locked(path->nodes[level]);
2805 	lower = path->nodes[level];
2806 	nritems = btrfs_header_nritems(lower);
2807 	BUG_ON(slot > nritems);
2808 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2809 	if (slot != nritems) {
2810 		if (level) {
2811 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2812 					slot, nritems - slot);
2813 			BUG_ON(ret < 0);
2814 		}
2815 		memmove_extent_buffer(lower,
2816 			      btrfs_node_key_ptr_offset(slot + 1),
2817 			      btrfs_node_key_ptr_offset(slot),
2818 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2819 	}
2820 	if (level) {
2821 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2822 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2823 		BUG_ON(ret < 0);
2824 	}
2825 	btrfs_set_node_key(lower, key, slot);
2826 	btrfs_set_node_blockptr(lower, slot, bytenr);
2827 	WARN_ON(trans->transid == 0);
2828 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2829 	btrfs_set_header_nritems(lower, nritems + 1);
2830 	btrfs_mark_buffer_dirty(lower);
2831 }
2832 
2833 /*
2834  * split the node at the specified level in path in two.
2835  * The path is corrected to point to the appropriate node after the split
2836  *
2837  * Before splitting this tries to make some room in the node by pushing
2838  * left and right, if either one works, it returns right away.
2839  *
2840  * returns 0 on success and < 0 on failure
2841  */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2842 static noinline int split_node(struct btrfs_trans_handle *trans,
2843 			       struct btrfs_root *root,
2844 			       struct btrfs_path *path, int level)
2845 {
2846 	struct btrfs_fs_info *fs_info = root->fs_info;
2847 	struct extent_buffer *c;
2848 	struct extent_buffer *split;
2849 	struct btrfs_disk_key disk_key;
2850 	int mid;
2851 	int ret;
2852 	u32 c_nritems;
2853 
2854 	c = path->nodes[level];
2855 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2856 	if (c == root->node) {
2857 		/*
2858 		 * trying to split the root, lets make a new one
2859 		 *
2860 		 * tree mod log: We don't log_removal old root in
2861 		 * insert_new_root, because that root buffer will be kept as a
2862 		 * normal node. We are going to log removal of half of the
2863 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2864 		 * holding a tree lock on the buffer, which is why we cannot
2865 		 * race with other tree_mod_log users.
2866 		 */
2867 		ret = insert_new_root(trans, root, path, level + 1);
2868 		if (ret)
2869 			return ret;
2870 	} else {
2871 		ret = push_nodes_for_insert(trans, root, path, level);
2872 		c = path->nodes[level];
2873 		if (!ret && btrfs_header_nritems(c) <
2874 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2875 			return 0;
2876 		if (ret < 0)
2877 			return ret;
2878 	}
2879 
2880 	c_nritems = btrfs_header_nritems(c);
2881 	mid = (c_nritems + 1) / 2;
2882 	btrfs_node_key(c, &disk_key, mid);
2883 
2884 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2885 				       &disk_key, level, c->start, 0,
2886 				       BTRFS_NESTING_SPLIT);
2887 	if (IS_ERR(split))
2888 		return PTR_ERR(split);
2889 
2890 	root_add_used(root, fs_info->nodesize);
2891 	ASSERT(btrfs_header_level(c) == level);
2892 
2893 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2894 	if (ret) {
2895 		btrfs_tree_unlock(split);
2896 		free_extent_buffer(split);
2897 		btrfs_abort_transaction(trans, ret);
2898 		return ret;
2899 	}
2900 	copy_extent_buffer(split, c,
2901 			   btrfs_node_key_ptr_offset(0),
2902 			   btrfs_node_key_ptr_offset(mid),
2903 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2904 	btrfs_set_header_nritems(split, c_nritems - mid);
2905 	btrfs_set_header_nritems(c, mid);
2906 
2907 	btrfs_mark_buffer_dirty(c);
2908 	btrfs_mark_buffer_dirty(split);
2909 
2910 	insert_ptr(trans, path, &disk_key, split->start,
2911 		   path->slots[level + 1] + 1, level + 1);
2912 
2913 	if (path->slots[level] >= mid) {
2914 		path->slots[level] -= mid;
2915 		btrfs_tree_unlock(c);
2916 		free_extent_buffer(c);
2917 		path->nodes[level] = split;
2918 		path->slots[level + 1] += 1;
2919 	} else {
2920 		btrfs_tree_unlock(split);
2921 		free_extent_buffer(split);
2922 	}
2923 	return 0;
2924 }
2925 
2926 /*
2927  * how many bytes are required to store the items in a leaf.  start
2928  * and nr indicate which items in the leaf to check.  This totals up the
2929  * space used both by the item structs and the item data
2930  */
leaf_space_used(struct extent_buffer * l,int start,int nr)2931 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2932 {
2933 	int data_len;
2934 	int nritems = btrfs_header_nritems(l);
2935 	int end = min(nritems, start + nr) - 1;
2936 
2937 	if (!nr)
2938 		return 0;
2939 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2940 	data_len = data_len - btrfs_item_offset(l, end);
2941 	data_len += sizeof(struct btrfs_item) * nr;
2942 	WARN_ON(data_len < 0);
2943 	return data_len;
2944 }
2945 
2946 /*
2947  * The space between the end of the leaf items and
2948  * the start of the leaf data.  IOW, how much room
2949  * the leaf has left for both items and data
2950  */
btrfs_leaf_free_space(struct extent_buffer * leaf)2951 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2952 {
2953 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2954 	int nritems = btrfs_header_nritems(leaf);
2955 	int ret;
2956 
2957 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2958 	if (ret < 0) {
2959 		btrfs_crit(fs_info,
2960 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2961 			   ret,
2962 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2963 			   leaf_space_used(leaf, 0, nritems), nritems);
2964 	}
2965 	return ret;
2966 }
2967 
2968 /*
2969  * min slot controls the lowest index we're willing to push to the
2970  * right.  We'll push up to and including min_slot, but no lower
2971  */
__push_leaf_right(struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)2972 static noinline int __push_leaf_right(struct btrfs_path *path,
2973 				      int data_size, int empty,
2974 				      struct extent_buffer *right,
2975 				      int free_space, u32 left_nritems,
2976 				      u32 min_slot)
2977 {
2978 	struct btrfs_fs_info *fs_info = right->fs_info;
2979 	struct extent_buffer *left = path->nodes[0];
2980 	struct extent_buffer *upper = path->nodes[1];
2981 	struct btrfs_map_token token;
2982 	struct btrfs_disk_key disk_key;
2983 	int slot;
2984 	u32 i;
2985 	int push_space = 0;
2986 	int push_items = 0;
2987 	u32 nr;
2988 	u32 right_nritems;
2989 	u32 data_end;
2990 	u32 this_item_size;
2991 
2992 	if (empty)
2993 		nr = 0;
2994 	else
2995 		nr = max_t(u32, 1, min_slot);
2996 
2997 	if (path->slots[0] >= left_nritems)
2998 		push_space += data_size;
2999 
3000 	slot = path->slots[1];
3001 	i = left_nritems - 1;
3002 	while (i >= nr) {
3003 		if (!empty && push_items > 0) {
3004 			if (path->slots[0] > i)
3005 				break;
3006 			if (path->slots[0] == i) {
3007 				int space = btrfs_leaf_free_space(left);
3008 
3009 				if (space + push_space * 2 > free_space)
3010 					break;
3011 			}
3012 		}
3013 
3014 		if (path->slots[0] == i)
3015 			push_space += data_size;
3016 
3017 		this_item_size = btrfs_item_size(left, i);
3018 		if (this_item_size + sizeof(struct btrfs_item) +
3019 		    push_space > free_space)
3020 			break;
3021 
3022 		push_items++;
3023 		push_space += this_item_size + sizeof(struct btrfs_item);
3024 		if (i == 0)
3025 			break;
3026 		i--;
3027 	}
3028 
3029 	if (push_items == 0)
3030 		goto out_unlock;
3031 
3032 	WARN_ON(!empty && push_items == left_nritems);
3033 
3034 	/* push left to right */
3035 	right_nritems = btrfs_header_nritems(right);
3036 
3037 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3038 	push_space -= leaf_data_end(left);
3039 
3040 	/* make room in the right data area */
3041 	data_end = leaf_data_end(right);
3042 	memmove_extent_buffer(right,
3043 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3044 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3045 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3046 
3047 	/* copy from the left data area */
3048 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3049 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3050 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3051 		     push_space);
3052 
3053 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3054 			      btrfs_item_nr_offset(0),
3055 			      right_nritems * sizeof(struct btrfs_item));
3056 
3057 	/* copy the items from left to right */
3058 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3059 		   btrfs_item_nr_offset(left_nritems - push_items),
3060 		   push_items * sizeof(struct btrfs_item));
3061 
3062 	/* update the item pointers */
3063 	btrfs_init_map_token(&token, right);
3064 	right_nritems += push_items;
3065 	btrfs_set_header_nritems(right, right_nritems);
3066 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3067 	for (i = 0; i < right_nritems; i++) {
3068 		push_space -= btrfs_token_item_size(&token, i);
3069 		btrfs_set_token_item_offset(&token, i, push_space);
3070 	}
3071 
3072 	left_nritems -= push_items;
3073 	btrfs_set_header_nritems(left, left_nritems);
3074 
3075 	if (left_nritems)
3076 		btrfs_mark_buffer_dirty(left);
3077 	else
3078 		btrfs_clean_tree_block(left);
3079 
3080 	btrfs_mark_buffer_dirty(right);
3081 
3082 	btrfs_item_key(right, &disk_key, 0);
3083 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3084 	btrfs_mark_buffer_dirty(upper);
3085 
3086 	/* then fixup the leaf pointer in the path */
3087 	if (path->slots[0] >= left_nritems) {
3088 		path->slots[0] -= left_nritems;
3089 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3090 			btrfs_clean_tree_block(path->nodes[0]);
3091 		btrfs_tree_unlock(path->nodes[0]);
3092 		free_extent_buffer(path->nodes[0]);
3093 		path->nodes[0] = right;
3094 		path->slots[1] += 1;
3095 	} else {
3096 		btrfs_tree_unlock(right);
3097 		free_extent_buffer(right);
3098 	}
3099 	return 0;
3100 
3101 out_unlock:
3102 	btrfs_tree_unlock(right);
3103 	free_extent_buffer(right);
3104 	return 1;
3105 }
3106 
3107 /*
3108  * push some data in the path leaf to the right, trying to free up at
3109  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3110  *
3111  * returns 1 if the push failed because the other node didn't have enough
3112  * room, 0 if everything worked out and < 0 if there were major errors.
3113  *
3114  * this will push starting from min_slot to the end of the leaf.  It won't
3115  * push any slot lower than min_slot
3116  */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3117 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3118 			   *root, struct btrfs_path *path,
3119 			   int min_data_size, int data_size,
3120 			   int empty, u32 min_slot)
3121 {
3122 	struct extent_buffer *left = path->nodes[0];
3123 	struct extent_buffer *right;
3124 	struct extent_buffer *upper;
3125 	int slot;
3126 	int free_space;
3127 	u32 left_nritems;
3128 	int ret;
3129 
3130 	if (!path->nodes[1])
3131 		return 1;
3132 
3133 	slot = path->slots[1];
3134 	upper = path->nodes[1];
3135 	if (slot >= btrfs_header_nritems(upper) - 1)
3136 		return 1;
3137 
3138 	btrfs_assert_tree_write_locked(path->nodes[1]);
3139 
3140 	right = btrfs_read_node_slot(upper, slot + 1);
3141 	/*
3142 	 * slot + 1 is not valid or we fail to read the right node,
3143 	 * no big deal, just return.
3144 	 */
3145 	if (IS_ERR(right))
3146 		return 1;
3147 
3148 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3149 
3150 	free_space = btrfs_leaf_free_space(right);
3151 	if (free_space < data_size)
3152 		goto out_unlock;
3153 
3154 	ret = btrfs_cow_block(trans, root, right, upper,
3155 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3156 	if (ret)
3157 		goto out_unlock;
3158 
3159 	left_nritems = btrfs_header_nritems(left);
3160 	if (left_nritems == 0)
3161 		goto out_unlock;
3162 
3163 	if (check_sibling_keys(left, right)) {
3164 		ret = -EUCLEAN;
3165 		btrfs_abort_transaction(trans, ret);
3166 		btrfs_tree_unlock(right);
3167 		free_extent_buffer(right);
3168 		return ret;
3169 	}
3170 	if (path->slots[0] == left_nritems && !empty) {
3171 		/* Key greater than all keys in the leaf, right neighbor has
3172 		 * enough room for it and we're not emptying our leaf to delete
3173 		 * it, therefore use right neighbor to insert the new item and
3174 		 * no need to touch/dirty our left leaf. */
3175 		btrfs_tree_unlock(left);
3176 		free_extent_buffer(left);
3177 		path->nodes[0] = right;
3178 		path->slots[0] = 0;
3179 		path->slots[1]++;
3180 		return 0;
3181 	}
3182 
3183 	return __push_leaf_right(path, min_data_size, empty,
3184 				right, free_space, left_nritems, min_slot);
3185 out_unlock:
3186 	btrfs_tree_unlock(right);
3187 	free_extent_buffer(right);
3188 	return 1;
3189 }
3190 
3191 /*
3192  * push some data in the path leaf to the left, trying to free up at
3193  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3194  *
3195  * max_slot can put a limit on how far into the leaf we'll push items.  The
3196  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3197  * items
3198  */
__push_leaf_left(struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3199 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3200 				     int empty, struct extent_buffer *left,
3201 				     int free_space, u32 right_nritems,
3202 				     u32 max_slot)
3203 {
3204 	struct btrfs_fs_info *fs_info = left->fs_info;
3205 	struct btrfs_disk_key disk_key;
3206 	struct extent_buffer *right = path->nodes[0];
3207 	int i;
3208 	int push_space = 0;
3209 	int push_items = 0;
3210 	u32 old_left_nritems;
3211 	u32 nr;
3212 	int ret = 0;
3213 	u32 this_item_size;
3214 	u32 old_left_item_size;
3215 	struct btrfs_map_token token;
3216 
3217 	if (empty)
3218 		nr = min(right_nritems, max_slot);
3219 	else
3220 		nr = min(right_nritems - 1, max_slot);
3221 
3222 	for (i = 0; i < nr; i++) {
3223 		if (!empty && push_items > 0) {
3224 			if (path->slots[0] < i)
3225 				break;
3226 			if (path->slots[0] == i) {
3227 				int space = btrfs_leaf_free_space(right);
3228 
3229 				if (space + push_space * 2 > free_space)
3230 					break;
3231 			}
3232 		}
3233 
3234 		if (path->slots[0] == i)
3235 			push_space += data_size;
3236 
3237 		this_item_size = btrfs_item_size(right, i);
3238 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3239 		    free_space)
3240 			break;
3241 
3242 		push_items++;
3243 		push_space += this_item_size + sizeof(struct btrfs_item);
3244 	}
3245 
3246 	if (push_items == 0) {
3247 		ret = 1;
3248 		goto out;
3249 	}
3250 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3251 
3252 	/* push data from right to left */
3253 	copy_extent_buffer(left, right,
3254 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3255 			   btrfs_item_nr_offset(0),
3256 			   push_items * sizeof(struct btrfs_item));
3257 
3258 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3259 		     btrfs_item_offset(right, push_items - 1);
3260 
3261 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3262 		     leaf_data_end(left) - push_space,
3263 		     BTRFS_LEAF_DATA_OFFSET +
3264 		     btrfs_item_offset(right, push_items - 1),
3265 		     push_space);
3266 	old_left_nritems = btrfs_header_nritems(left);
3267 	BUG_ON(old_left_nritems <= 0);
3268 
3269 	btrfs_init_map_token(&token, left);
3270 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3271 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3272 		u32 ioff;
3273 
3274 		ioff = btrfs_token_item_offset(&token, i);
3275 		btrfs_set_token_item_offset(&token, i,
3276 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3277 	}
3278 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3279 
3280 	/* fixup right node */
3281 	if (push_items > right_nritems)
3282 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3283 		       right_nritems);
3284 
3285 	if (push_items < right_nritems) {
3286 		push_space = btrfs_item_offset(right, push_items - 1) -
3287 						  leaf_data_end(right);
3288 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3289 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3290 				      BTRFS_LEAF_DATA_OFFSET +
3291 				      leaf_data_end(right), push_space);
3292 
3293 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3294 			      btrfs_item_nr_offset(push_items),
3295 			     (btrfs_header_nritems(right) - push_items) *
3296 			     sizeof(struct btrfs_item));
3297 	}
3298 
3299 	btrfs_init_map_token(&token, right);
3300 	right_nritems -= push_items;
3301 	btrfs_set_header_nritems(right, right_nritems);
3302 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3303 	for (i = 0; i < right_nritems; i++) {
3304 		push_space = push_space - btrfs_token_item_size(&token, i);
3305 		btrfs_set_token_item_offset(&token, i, push_space);
3306 	}
3307 
3308 	btrfs_mark_buffer_dirty(left);
3309 	if (right_nritems)
3310 		btrfs_mark_buffer_dirty(right);
3311 	else
3312 		btrfs_clean_tree_block(right);
3313 
3314 	btrfs_item_key(right, &disk_key, 0);
3315 	fixup_low_keys(path, &disk_key, 1);
3316 
3317 	/* then fixup the leaf pointer in the path */
3318 	if (path->slots[0] < push_items) {
3319 		path->slots[0] += old_left_nritems;
3320 		btrfs_tree_unlock(path->nodes[0]);
3321 		free_extent_buffer(path->nodes[0]);
3322 		path->nodes[0] = left;
3323 		path->slots[1] -= 1;
3324 	} else {
3325 		btrfs_tree_unlock(left);
3326 		free_extent_buffer(left);
3327 		path->slots[0] -= push_items;
3328 	}
3329 	BUG_ON(path->slots[0] < 0);
3330 	return ret;
3331 out:
3332 	btrfs_tree_unlock(left);
3333 	free_extent_buffer(left);
3334 	return ret;
3335 }
3336 
3337 /*
3338  * push some data in the path leaf to the left, trying to free up at
3339  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3340  *
3341  * max_slot can put a limit on how far into the leaf we'll push items.  The
3342  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3343  * items
3344  */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3345 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3346 			  *root, struct btrfs_path *path, int min_data_size,
3347 			  int data_size, int empty, u32 max_slot)
3348 {
3349 	struct extent_buffer *right = path->nodes[0];
3350 	struct extent_buffer *left;
3351 	int slot;
3352 	int free_space;
3353 	u32 right_nritems;
3354 	int ret = 0;
3355 
3356 	slot = path->slots[1];
3357 	if (slot == 0)
3358 		return 1;
3359 	if (!path->nodes[1])
3360 		return 1;
3361 
3362 	right_nritems = btrfs_header_nritems(right);
3363 	if (right_nritems == 0)
3364 		return 1;
3365 
3366 	btrfs_assert_tree_write_locked(path->nodes[1]);
3367 
3368 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3369 	/*
3370 	 * slot - 1 is not valid or we fail to read the left node,
3371 	 * no big deal, just return.
3372 	 */
3373 	if (IS_ERR(left))
3374 		return 1;
3375 
3376 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3377 
3378 	free_space = btrfs_leaf_free_space(left);
3379 	if (free_space < data_size) {
3380 		ret = 1;
3381 		goto out;
3382 	}
3383 
3384 	ret = btrfs_cow_block(trans, root, left,
3385 			      path->nodes[1], slot - 1, &left,
3386 			      BTRFS_NESTING_LEFT_COW);
3387 	if (ret) {
3388 		/* we hit -ENOSPC, but it isn't fatal here */
3389 		if (ret == -ENOSPC)
3390 			ret = 1;
3391 		goto out;
3392 	}
3393 
3394 	if (check_sibling_keys(left, right)) {
3395 		ret = -EUCLEAN;
3396 		btrfs_abort_transaction(trans, ret);
3397 		goto out;
3398 	}
3399 	return __push_leaf_left(path, min_data_size,
3400 			       empty, left, free_space, right_nritems,
3401 			       max_slot);
3402 out:
3403 	btrfs_tree_unlock(left);
3404 	free_extent_buffer(left);
3405 	return ret;
3406 }
3407 
3408 /*
3409  * split the path's leaf in two, making sure there is at least data_size
3410  * available for the resulting leaf level of the path.
3411  */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3412 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3413 				    struct btrfs_path *path,
3414 				    struct extent_buffer *l,
3415 				    struct extent_buffer *right,
3416 				    int slot, int mid, int nritems)
3417 {
3418 	struct btrfs_fs_info *fs_info = trans->fs_info;
3419 	int data_copy_size;
3420 	int rt_data_off;
3421 	int i;
3422 	struct btrfs_disk_key disk_key;
3423 	struct btrfs_map_token token;
3424 
3425 	nritems = nritems - mid;
3426 	btrfs_set_header_nritems(right, nritems);
3427 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3428 
3429 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3430 			   btrfs_item_nr_offset(mid),
3431 			   nritems * sizeof(struct btrfs_item));
3432 
3433 	copy_extent_buffer(right, l,
3434 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3435 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3436 		     leaf_data_end(l), data_copy_size);
3437 
3438 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3439 
3440 	btrfs_init_map_token(&token, right);
3441 	for (i = 0; i < nritems; i++) {
3442 		u32 ioff;
3443 
3444 		ioff = btrfs_token_item_offset(&token, i);
3445 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3446 	}
3447 
3448 	btrfs_set_header_nritems(l, mid);
3449 	btrfs_item_key(right, &disk_key, 0);
3450 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3451 
3452 	btrfs_mark_buffer_dirty(right);
3453 	btrfs_mark_buffer_dirty(l);
3454 	BUG_ON(path->slots[0] != slot);
3455 
3456 	if (mid <= slot) {
3457 		btrfs_tree_unlock(path->nodes[0]);
3458 		free_extent_buffer(path->nodes[0]);
3459 		path->nodes[0] = right;
3460 		path->slots[0] -= mid;
3461 		path->slots[1] += 1;
3462 	} else {
3463 		btrfs_tree_unlock(right);
3464 		free_extent_buffer(right);
3465 	}
3466 
3467 	BUG_ON(path->slots[0] < 0);
3468 }
3469 
3470 /*
3471  * double splits happen when we need to insert a big item in the middle
3472  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3473  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3474  *          A                 B                 C
3475  *
3476  * We avoid this by trying to push the items on either side of our target
3477  * into the adjacent leaves.  If all goes well we can avoid the double split
3478  * completely.
3479  */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3480 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3481 					  struct btrfs_root *root,
3482 					  struct btrfs_path *path,
3483 					  int data_size)
3484 {
3485 	int ret;
3486 	int progress = 0;
3487 	int slot;
3488 	u32 nritems;
3489 	int space_needed = data_size;
3490 
3491 	slot = path->slots[0];
3492 	if (slot < btrfs_header_nritems(path->nodes[0]))
3493 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3494 
3495 	/*
3496 	 * try to push all the items after our slot into the
3497 	 * right leaf
3498 	 */
3499 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3500 	if (ret < 0)
3501 		return ret;
3502 
3503 	if (ret == 0)
3504 		progress++;
3505 
3506 	nritems = btrfs_header_nritems(path->nodes[0]);
3507 	/*
3508 	 * our goal is to get our slot at the start or end of a leaf.  If
3509 	 * we've done so we're done
3510 	 */
3511 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3512 		return 0;
3513 
3514 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3515 		return 0;
3516 
3517 	/* try to push all the items before our slot into the next leaf */
3518 	slot = path->slots[0];
3519 	space_needed = data_size;
3520 	if (slot > 0)
3521 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3522 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3523 	if (ret < 0)
3524 		return ret;
3525 
3526 	if (ret == 0)
3527 		progress++;
3528 
3529 	if (progress)
3530 		return 0;
3531 	return 1;
3532 }
3533 
3534 /*
3535  * split the path's leaf in two, making sure there is at least data_size
3536  * available for the resulting leaf level of the path.
3537  *
3538  * returns 0 if all went well and < 0 on failure.
3539  */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3540 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3541 			       struct btrfs_root *root,
3542 			       const struct btrfs_key *ins_key,
3543 			       struct btrfs_path *path, int data_size,
3544 			       int extend)
3545 {
3546 	struct btrfs_disk_key disk_key;
3547 	struct extent_buffer *l;
3548 	u32 nritems;
3549 	int mid;
3550 	int slot;
3551 	struct extent_buffer *right;
3552 	struct btrfs_fs_info *fs_info = root->fs_info;
3553 	int ret = 0;
3554 	int wret;
3555 	int split;
3556 	int num_doubles = 0;
3557 	int tried_avoid_double = 0;
3558 
3559 	l = path->nodes[0];
3560 	slot = path->slots[0];
3561 	if (extend && data_size + btrfs_item_size(l, slot) +
3562 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3563 		return -EOVERFLOW;
3564 
3565 	/* first try to make some room by pushing left and right */
3566 	if (data_size && path->nodes[1]) {
3567 		int space_needed = data_size;
3568 
3569 		if (slot < btrfs_header_nritems(l))
3570 			space_needed -= btrfs_leaf_free_space(l);
3571 
3572 		wret = push_leaf_right(trans, root, path, space_needed,
3573 				       space_needed, 0, 0);
3574 		if (wret < 0)
3575 			return wret;
3576 		if (wret) {
3577 			space_needed = data_size;
3578 			if (slot > 0)
3579 				space_needed -= btrfs_leaf_free_space(l);
3580 			wret = push_leaf_left(trans, root, path, space_needed,
3581 					      space_needed, 0, (u32)-1);
3582 			if (wret < 0)
3583 				return wret;
3584 		}
3585 		l = path->nodes[0];
3586 
3587 		/* did the pushes work? */
3588 		if (btrfs_leaf_free_space(l) >= data_size)
3589 			return 0;
3590 	}
3591 
3592 	if (!path->nodes[1]) {
3593 		ret = insert_new_root(trans, root, path, 1);
3594 		if (ret)
3595 			return ret;
3596 	}
3597 again:
3598 	split = 1;
3599 	l = path->nodes[0];
3600 	slot = path->slots[0];
3601 	nritems = btrfs_header_nritems(l);
3602 	mid = (nritems + 1) / 2;
3603 
3604 	if (mid <= slot) {
3605 		if (nritems == 1 ||
3606 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3607 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3608 			if (slot >= nritems) {
3609 				split = 0;
3610 			} else {
3611 				mid = slot;
3612 				if (mid != nritems &&
3613 				    leaf_space_used(l, mid, nritems - mid) +
3614 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3615 					if (data_size && !tried_avoid_double)
3616 						goto push_for_double;
3617 					split = 2;
3618 				}
3619 			}
3620 		}
3621 	} else {
3622 		if (leaf_space_used(l, 0, mid) + data_size >
3623 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3624 			if (!extend && data_size && slot == 0) {
3625 				split = 0;
3626 			} else if ((extend || !data_size) && slot == 0) {
3627 				mid = 1;
3628 			} else {
3629 				mid = slot;
3630 				if (mid != nritems &&
3631 				    leaf_space_used(l, mid, nritems - mid) +
3632 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3633 					if (data_size && !tried_avoid_double)
3634 						goto push_for_double;
3635 					split = 2;
3636 				}
3637 			}
3638 		}
3639 	}
3640 
3641 	if (split == 0)
3642 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3643 	else
3644 		btrfs_item_key(l, &disk_key, mid);
3645 
3646 	/*
3647 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3648 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3649 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3650 	 * out.  In the future we could add a
3651 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3652 	 * use BTRFS_NESTING_NEW_ROOT.
3653 	 */
3654 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3655 				       &disk_key, 0, l->start, 0,
3656 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3657 				       BTRFS_NESTING_SPLIT);
3658 	if (IS_ERR(right))
3659 		return PTR_ERR(right);
3660 
3661 	root_add_used(root, fs_info->nodesize);
3662 
3663 	if (split == 0) {
3664 		if (mid <= slot) {
3665 			btrfs_set_header_nritems(right, 0);
3666 			insert_ptr(trans, path, &disk_key,
3667 				   right->start, path->slots[1] + 1, 1);
3668 			btrfs_tree_unlock(path->nodes[0]);
3669 			free_extent_buffer(path->nodes[0]);
3670 			path->nodes[0] = right;
3671 			path->slots[0] = 0;
3672 			path->slots[1] += 1;
3673 		} else {
3674 			btrfs_set_header_nritems(right, 0);
3675 			insert_ptr(trans, path, &disk_key,
3676 				   right->start, path->slots[1], 1);
3677 			btrfs_tree_unlock(path->nodes[0]);
3678 			free_extent_buffer(path->nodes[0]);
3679 			path->nodes[0] = right;
3680 			path->slots[0] = 0;
3681 			if (path->slots[1] == 0)
3682 				fixup_low_keys(path, &disk_key, 1);
3683 		}
3684 		/*
3685 		 * We create a new leaf 'right' for the required ins_len and
3686 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3687 		 * the content of ins_len to 'right'.
3688 		 */
3689 		return ret;
3690 	}
3691 
3692 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3693 
3694 	if (split == 2) {
3695 		BUG_ON(num_doubles != 0);
3696 		num_doubles++;
3697 		goto again;
3698 	}
3699 
3700 	return 0;
3701 
3702 push_for_double:
3703 	push_for_double_split(trans, root, path, data_size);
3704 	tried_avoid_double = 1;
3705 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3706 		return 0;
3707 	goto again;
3708 }
3709 
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3710 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3711 					 struct btrfs_root *root,
3712 					 struct btrfs_path *path, int ins_len)
3713 {
3714 	struct btrfs_key key;
3715 	struct extent_buffer *leaf;
3716 	struct btrfs_file_extent_item *fi;
3717 	u64 extent_len = 0;
3718 	u32 item_size;
3719 	int ret;
3720 
3721 	leaf = path->nodes[0];
3722 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3723 
3724 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3725 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3726 
3727 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3728 		return 0;
3729 
3730 	item_size = btrfs_item_size(leaf, path->slots[0]);
3731 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3732 		fi = btrfs_item_ptr(leaf, path->slots[0],
3733 				    struct btrfs_file_extent_item);
3734 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3735 	}
3736 	btrfs_release_path(path);
3737 
3738 	path->keep_locks = 1;
3739 	path->search_for_split = 1;
3740 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3741 	path->search_for_split = 0;
3742 	if (ret > 0)
3743 		ret = -EAGAIN;
3744 	if (ret < 0)
3745 		goto err;
3746 
3747 	ret = -EAGAIN;
3748 	leaf = path->nodes[0];
3749 	/* if our item isn't there, return now */
3750 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3751 		goto err;
3752 
3753 	/* the leaf has  changed, it now has room.  return now */
3754 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3755 		goto err;
3756 
3757 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3758 		fi = btrfs_item_ptr(leaf, path->slots[0],
3759 				    struct btrfs_file_extent_item);
3760 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3761 			goto err;
3762 	}
3763 
3764 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3765 	if (ret)
3766 		goto err;
3767 
3768 	path->keep_locks = 0;
3769 	btrfs_unlock_up_safe(path, 1);
3770 	return 0;
3771 err:
3772 	path->keep_locks = 0;
3773 	return ret;
3774 }
3775 
split_item(struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3776 static noinline int split_item(struct btrfs_path *path,
3777 			       const struct btrfs_key *new_key,
3778 			       unsigned long split_offset)
3779 {
3780 	struct extent_buffer *leaf;
3781 	int orig_slot, slot;
3782 	char *buf;
3783 	u32 nritems;
3784 	u32 item_size;
3785 	u32 orig_offset;
3786 	struct btrfs_disk_key disk_key;
3787 
3788 	leaf = path->nodes[0];
3789 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3790 
3791 	orig_slot = path->slots[0];
3792 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3793 	item_size = btrfs_item_size(leaf, path->slots[0]);
3794 
3795 	buf = kmalloc(item_size, GFP_NOFS);
3796 	if (!buf)
3797 		return -ENOMEM;
3798 
3799 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3800 			    path->slots[0]), item_size);
3801 
3802 	slot = path->slots[0] + 1;
3803 	nritems = btrfs_header_nritems(leaf);
3804 	if (slot != nritems) {
3805 		/* shift the items */
3806 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3807 				btrfs_item_nr_offset(slot),
3808 				(nritems - slot) * sizeof(struct btrfs_item));
3809 	}
3810 
3811 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3812 	btrfs_set_item_key(leaf, &disk_key, slot);
3813 
3814 	btrfs_set_item_offset(leaf, slot, orig_offset);
3815 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3816 
3817 	btrfs_set_item_offset(leaf, orig_slot,
3818 				 orig_offset + item_size - split_offset);
3819 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3820 
3821 	btrfs_set_header_nritems(leaf, nritems + 1);
3822 
3823 	/* write the data for the start of the original item */
3824 	write_extent_buffer(leaf, buf,
3825 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3826 			    split_offset);
3827 
3828 	/* write the data for the new item */
3829 	write_extent_buffer(leaf, buf + split_offset,
3830 			    btrfs_item_ptr_offset(leaf, slot),
3831 			    item_size - split_offset);
3832 	btrfs_mark_buffer_dirty(leaf);
3833 
3834 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3835 	kfree(buf);
3836 	return 0;
3837 }
3838 
3839 /*
3840  * This function splits a single item into two items,
3841  * giving 'new_key' to the new item and splitting the
3842  * old one at split_offset (from the start of the item).
3843  *
3844  * The path may be released by this operation.  After
3845  * the split, the path is pointing to the old item.  The
3846  * new item is going to be in the same node as the old one.
3847  *
3848  * Note, the item being split must be smaller enough to live alone on
3849  * a tree block with room for one extra struct btrfs_item
3850  *
3851  * This allows us to split the item in place, keeping a lock on the
3852  * leaf the entire time.
3853  */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)3854 int btrfs_split_item(struct btrfs_trans_handle *trans,
3855 		     struct btrfs_root *root,
3856 		     struct btrfs_path *path,
3857 		     const struct btrfs_key *new_key,
3858 		     unsigned long split_offset)
3859 {
3860 	int ret;
3861 	ret = setup_leaf_for_split(trans, root, path,
3862 				   sizeof(struct btrfs_item));
3863 	if (ret)
3864 		return ret;
3865 
3866 	ret = split_item(path, new_key, split_offset);
3867 	return ret;
3868 }
3869 
3870 /*
3871  * make the item pointed to by the path smaller.  new_size indicates
3872  * how small to make it, and from_end tells us if we just chop bytes
3873  * off the end of the item or if we shift the item to chop bytes off
3874  * the front.
3875  */
btrfs_truncate_item(struct btrfs_path * path,u32 new_size,int from_end)3876 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3877 {
3878 	int slot;
3879 	struct extent_buffer *leaf;
3880 	u32 nritems;
3881 	unsigned int data_end;
3882 	unsigned int old_data_start;
3883 	unsigned int old_size;
3884 	unsigned int size_diff;
3885 	int i;
3886 	struct btrfs_map_token token;
3887 
3888 	leaf = path->nodes[0];
3889 	slot = path->slots[0];
3890 
3891 	old_size = btrfs_item_size(leaf, slot);
3892 	if (old_size == new_size)
3893 		return;
3894 
3895 	nritems = btrfs_header_nritems(leaf);
3896 	data_end = leaf_data_end(leaf);
3897 
3898 	old_data_start = btrfs_item_offset(leaf, slot);
3899 
3900 	size_diff = old_size - new_size;
3901 
3902 	BUG_ON(slot < 0);
3903 	BUG_ON(slot >= nritems);
3904 
3905 	/*
3906 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3907 	 */
3908 	/* first correct the data pointers */
3909 	btrfs_init_map_token(&token, leaf);
3910 	for (i = slot; i < nritems; i++) {
3911 		u32 ioff;
3912 
3913 		ioff = btrfs_token_item_offset(&token, i);
3914 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3915 	}
3916 
3917 	/* shift the data */
3918 	if (from_end) {
3919 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3920 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3921 			      data_end, old_data_start + new_size - data_end);
3922 	} else {
3923 		struct btrfs_disk_key disk_key;
3924 		u64 offset;
3925 
3926 		btrfs_item_key(leaf, &disk_key, slot);
3927 
3928 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3929 			unsigned long ptr;
3930 			struct btrfs_file_extent_item *fi;
3931 
3932 			fi = btrfs_item_ptr(leaf, slot,
3933 					    struct btrfs_file_extent_item);
3934 			fi = (struct btrfs_file_extent_item *)(
3935 			     (unsigned long)fi - size_diff);
3936 
3937 			if (btrfs_file_extent_type(leaf, fi) ==
3938 			    BTRFS_FILE_EXTENT_INLINE) {
3939 				ptr = btrfs_item_ptr_offset(leaf, slot);
3940 				memmove_extent_buffer(leaf, ptr,
3941 				      (unsigned long)fi,
3942 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3943 			}
3944 		}
3945 
3946 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3947 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3948 			      data_end, old_data_start - data_end);
3949 
3950 		offset = btrfs_disk_key_offset(&disk_key);
3951 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3952 		btrfs_set_item_key(leaf, &disk_key, slot);
3953 		if (slot == 0)
3954 			fixup_low_keys(path, &disk_key, 1);
3955 	}
3956 
3957 	btrfs_set_item_size(leaf, slot, new_size);
3958 	btrfs_mark_buffer_dirty(leaf);
3959 
3960 	if (btrfs_leaf_free_space(leaf) < 0) {
3961 		btrfs_print_leaf(leaf);
3962 		BUG();
3963 	}
3964 }
3965 
3966 /*
3967  * make the item pointed to by the path bigger, data_size is the added size.
3968  */
btrfs_extend_item(struct btrfs_path * path,u32 data_size)3969 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3970 {
3971 	int slot;
3972 	struct extent_buffer *leaf;
3973 	u32 nritems;
3974 	unsigned int data_end;
3975 	unsigned int old_data;
3976 	unsigned int old_size;
3977 	int i;
3978 	struct btrfs_map_token token;
3979 
3980 	leaf = path->nodes[0];
3981 
3982 	nritems = btrfs_header_nritems(leaf);
3983 	data_end = leaf_data_end(leaf);
3984 
3985 	if (btrfs_leaf_free_space(leaf) < data_size) {
3986 		btrfs_print_leaf(leaf);
3987 		BUG();
3988 	}
3989 	slot = path->slots[0];
3990 	old_data = btrfs_item_data_end(leaf, slot);
3991 
3992 	BUG_ON(slot < 0);
3993 	if (slot >= nritems) {
3994 		btrfs_print_leaf(leaf);
3995 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3996 			   slot, nritems);
3997 		BUG();
3998 	}
3999 
4000 	/*
4001 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4002 	 */
4003 	/* first correct the data pointers */
4004 	btrfs_init_map_token(&token, leaf);
4005 	for (i = slot; i < nritems; i++) {
4006 		u32 ioff;
4007 
4008 		ioff = btrfs_token_item_offset(&token, i);
4009 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4010 	}
4011 
4012 	/* shift the data */
4013 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4014 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4015 		      data_end, old_data - data_end);
4016 
4017 	data_end = old_data;
4018 	old_size = btrfs_item_size(leaf, slot);
4019 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4020 	btrfs_mark_buffer_dirty(leaf);
4021 
4022 	if (btrfs_leaf_free_space(leaf) < 0) {
4023 		btrfs_print_leaf(leaf);
4024 		BUG();
4025 	}
4026 }
4027 
4028 /**
4029  * setup_items_for_insert - Helper called before inserting one or more items
4030  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
4031  * in a function that doesn't call btrfs_search_slot
4032  *
4033  * @root:	root we are inserting items to
4034  * @path:	points to the leaf/slot where we are going to insert new items
4035  * @batch:      information about the batch of items to insert
4036  */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4037 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4038 				   const struct btrfs_item_batch *batch)
4039 {
4040 	struct btrfs_fs_info *fs_info = root->fs_info;
4041 	int i;
4042 	u32 nritems;
4043 	unsigned int data_end;
4044 	struct btrfs_disk_key disk_key;
4045 	struct extent_buffer *leaf;
4046 	int slot;
4047 	struct btrfs_map_token token;
4048 	u32 total_size;
4049 
4050 	/*
4051 	 * Before anything else, update keys in the parent and other ancestors
4052 	 * if needed, then release the write locks on them, so that other tasks
4053 	 * can use them while we modify the leaf.
4054 	 */
4055 	if (path->slots[0] == 0) {
4056 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4057 		fixup_low_keys(path, &disk_key, 1);
4058 	}
4059 	btrfs_unlock_up_safe(path, 1);
4060 
4061 	leaf = path->nodes[0];
4062 	slot = path->slots[0];
4063 
4064 	nritems = btrfs_header_nritems(leaf);
4065 	data_end = leaf_data_end(leaf);
4066 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4067 
4068 	if (btrfs_leaf_free_space(leaf) < total_size) {
4069 		btrfs_print_leaf(leaf);
4070 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4071 			   total_size, btrfs_leaf_free_space(leaf));
4072 		BUG();
4073 	}
4074 
4075 	btrfs_init_map_token(&token, leaf);
4076 	if (slot != nritems) {
4077 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4078 
4079 		if (old_data < data_end) {
4080 			btrfs_print_leaf(leaf);
4081 			btrfs_crit(fs_info,
4082 		"item at slot %d with data offset %u beyond data end of leaf %u",
4083 				   slot, old_data, data_end);
4084 			BUG();
4085 		}
4086 		/*
4087 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4088 		 */
4089 		/* first correct the data pointers */
4090 		for (i = slot; i < nritems; i++) {
4091 			u32 ioff;
4092 
4093 			ioff = btrfs_token_item_offset(&token, i);
4094 			btrfs_set_token_item_offset(&token, i,
4095 						       ioff - batch->total_data_size);
4096 		}
4097 		/* shift the items */
4098 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
4099 			      btrfs_item_nr_offset(slot),
4100 			      (nritems - slot) * sizeof(struct btrfs_item));
4101 
4102 		/* shift the data */
4103 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4104 				      data_end - batch->total_data_size,
4105 				      BTRFS_LEAF_DATA_OFFSET + data_end,
4106 				      old_data - data_end);
4107 		data_end = old_data;
4108 	}
4109 
4110 	/* setup the item for the new data */
4111 	for (i = 0; i < batch->nr; i++) {
4112 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4113 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4114 		data_end -= batch->data_sizes[i];
4115 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4116 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4117 	}
4118 
4119 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4120 	btrfs_mark_buffer_dirty(leaf);
4121 
4122 	if (btrfs_leaf_free_space(leaf) < 0) {
4123 		btrfs_print_leaf(leaf);
4124 		BUG();
4125 	}
4126 }
4127 
4128 /*
4129  * Insert a new item into a leaf.
4130  *
4131  * @root:      The root of the btree.
4132  * @path:      A path pointing to the target leaf and slot.
4133  * @key:       The key of the new item.
4134  * @data_size: The size of the data associated with the new key.
4135  */
btrfs_setup_item_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4136 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4137 				 struct btrfs_path *path,
4138 				 const struct btrfs_key *key,
4139 				 u32 data_size)
4140 {
4141 	struct btrfs_item_batch batch;
4142 
4143 	batch.keys = key;
4144 	batch.data_sizes = &data_size;
4145 	batch.total_data_size = data_size;
4146 	batch.nr = 1;
4147 
4148 	setup_items_for_insert(root, path, &batch);
4149 }
4150 
4151 /*
4152  * Given a key and some data, insert items into the tree.
4153  * This does all the path init required, making room in the tree if needed.
4154  */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4155 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4156 			    struct btrfs_root *root,
4157 			    struct btrfs_path *path,
4158 			    const struct btrfs_item_batch *batch)
4159 {
4160 	int ret = 0;
4161 	int slot;
4162 	u32 total_size;
4163 
4164 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4165 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4166 	if (ret == 0)
4167 		return -EEXIST;
4168 	if (ret < 0)
4169 		return ret;
4170 
4171 	slot = path->slots[0];
4172 	BUG_ON(slot < 0);
4173 
4174 	setup_items_for_insert(root, path, batch);
4175 	return 0;
4176 }
4177 
4178 /*
4179  * Given a key and some data, insert an item into the tree.
4180  * This does all the path init required, making room in the tree if needed.
4181  */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4182 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4183 		      const struct btrfs_key *cpu_key, void *data,
4184 		      u32 data_size)
4185 {
4186 	int ret = 0;
4187 	struct btrfs_path *path;
4188 	struct extent_buffer *leaf;
4189 	unsigned long ptr;
4190 
4191 	path = btrfs_alloc_path();
4192 	if (!path)
4193 		return -ENOMEM;
4194 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4195 	if (!ret) {
4196 		leaf = path->nodes[0];
4197 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4198 		write_extent_buffer(leaf, data, ptr, data_size);
4199 		btrfs_mark_buffer_dirty(leaf);
4200 	}
4201 	btrfs_free_path(path);
4202 	return ret;
4203 }
4204 
4205 /*
4206  * This function duplicates an item, giving 'new_key' to the new item.
4207  * It guarantees both items live in the same tree leaf and the new item is
4208  * contiguous with the original item.
4209  *
4210  * This allows us to split a file extent in place, keeping a lock on the leaf
4211  * the entire time.
4212  */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4213 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4214 			 struct btrfs_root *root,
4215 			 struct btrfs_path *path,
4216 			 const struct btrfs_key *new_key)
4217 {
4218 	struct extent_buffer *leaf;
4219 	int ret;
4220 	u32 item_size;
4221 
4222 	leaf = path->nodes[0];
4223 	item_size = btrfs_item_size(leaf, path->slots[0]);
4224 	ret = setup_leaf_for_split(trans, root, path,
4225 				   item_size + sizeof(struct btrfs_item));
4226 	if (ret)
4227 		return ret;
4228 
4229 	path->slots[0]++;
4230 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4231 	leaf = path->nodes[0];
4232 	memcpy_extent_buffer(leaf,
4233 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4234 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4235 			     item_size);
4236 	return 0;
4237 }
4238 
4239 /*
4240  * delete the pointer from a given node.
4241  *
4242  * the tree should have been previously balanced so the deletion does not
4243  * empty a node.
4244  */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4245 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4246 		    int level, int slot)
4247 {
4248 	struct extent_buffer *parent = path->nodes[level];
4249 	u32 nritems;
4250 	int ret;
4251 
4252 	nritems = btrfs_header_nritems(parent);
4253 	if (slot != nritems - 1) {
4254 		if (level) {
4255 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4256 					slot + 1, nritems - slot - 1);
4257 			BUG_ON(ret < 0);
4258 		}
4259 		memmove_extent_buffer(parent,
4260 			      btrfs_node_key_ptr_offset(slot),
4261 			      btrfs_node_key_ptr_offset(slot + 1),
4262 			      sizeof(struct btrfs_key_ptr) *
4263 			      (nritems - slot - 1));
4264 	} else if (level) {
4265 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4266 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4267 		BUG_ON(ret < 0);
4268 	}
4269 
4270 	nritems--;
4271 	btrfs_set_header_nritems(parent, nritems);
4272 	if (nritems == 0 && parent == root->node) {
4273 		BUG_ON(btrfs_header_level(root->node) != 1);
4274 		/* just turn the root into a leaf and break */
4275 		btrfs_set_header_level(root->node, 0);
4276 	} else if (slot == 0) {
4277 		struct btrfs_disk_key disk_key;
4278 
4279 		btrfs_node_key(parent, &disk_key, 0);
4280 		fixup_low_keys(path, &disk_key, level + 1);
4281 	}
4282 	btrfs_mark_buffer_dirty(parent);
4283 }
4284 
4285 /*
4286  * a helper function to delete the leaf pointed to by path->slots[1] and
4287  * path->nodes[1].
4288  *
4289  * This deletes the pointer in path->nodes[1] and frees the leaf
4290  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4291  *
4292  * The path must have already been setup for deleting the leaf, including
4293  * all the proper balancing.  path->nodes[1] must be locked.
4294  */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4295 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4296 				    struct btrfs_root *root,
4297 				    struct btrfs_path *path,
4298 				    struct extent_buffer *leaf)
4299 {
4300 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4301 	del_ptr(root, path, 1, path->slots[1]);
4302 
4303 	/*
4304 	 * btrfs_free_extent is expensive, we want to make sure we
4305 	 * aren't holding any locks when we call it
4306 	 */
4307 	btrfs_unlock_up_safe(path, 0);
4308 
4309 	root_sub_used(root, leaf->len);
4310 
4311 	atomic_inc(&leaf->refs);
4312 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4313 	free_extent_buffer_stale(leaf);
4314 }
4315 /*
4316  * delete the item at the leaf level in path.  If that empties
4317  * the leaf, remove it from the tree
4318  */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4319 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4320 		    struct btrfs_path *path, int slot, int nr)
4321 {
4322 	struct btrfs_fs_info *fs_info = root->fs_info;
4323 	struct extent_buffer *leaf;
4324 	int ret = 0;
4325 	int wret;
4326 	u32 nritems;
4327 
4328 	leaf = path->nodes[0];
4329 	nritems = btrfs_header_nritems(leaf);
4330 
4331 	if (slot + nr != nritems) {
4332 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4333 		const int data_end = leaf_data_end(leaf);
4334 		struct btrfs_map_token token;
4335 		u32 dsize = 0;
4336 		int i;
4337 
4338 		for (i = 0; i < nr; i++)
4339 			dsize += btrfs_item_size(leaf, slot + i);
4340 
4341 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4342 			      data_end + dsize,
4343 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4344 			      last_off - data_end);
4345 
4346 		btrfs_init_map_token(&token, leaf);
4347 		for (i = slot + nr; i < nritems; i++) {
4348 			u32 ioff;
4349 
4350 			ioff = btrfs_token_item_offset(&token, i);
4351 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4352 		}
4353 
4354 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4355 			      btrfs_item_nr_offset(slot + nr),
4356 			      sizeof(struct btrfs_item) *
4357 			      (nritems - slot - nr));
4358 	}
4359 	btrfs_set_header_nritems(leaf, nritems - nr);
4360 	nritems -= nr;
4361 
4362 	/* delete the leaf if we've emptied it */
4363 	if (nritems == 0) {
4364 		if (leaf == root->node) {
4365 			btrfs_set_header_level(leaf, 0);
4366 		} else {
4367 			btrfs_clean_tree_block(leaf);
4368 			btrfs_del_leaf(trans, root, path, leaf);
4369 		}
4370 	} else {
4371 		int used = leaf_space_used(leaf, 0, nritems);
4372 		if (slot == 0) {
4373 			struct btrfs_disk_key disk_key;
4374 
4375 			btrfs_item_key(leaf, &disk_key, 0);
4376 			fixup_low_keys(path, &disk_key, 1);
4377 		}
4378 
4379 		/*
4380 		 * Try to delete the leaf if it is mostly empty. We do this by
4381 		 * trying to move all its items into its left and right neighbours.
4382 		 * If we can't move all the items, then we don't delete it - it's
4383 		 * not ideal, but future insertions might fill the leaf with more
4384 		 * items, or items from other leaves might be moved later into our
4385 		 * leaf due to deletions on those leaves.
4386 		 */
4387 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4388 			u32 min_push_space;
4389 
4390 			/* push_leaf_left fixes the path.
4391 			 * make sure the path still points to our leaf
4392 			 * for possible call to del_ptr below
4393 			 */
4394 			slot = path->slots[1];
4395 			atomic_inc(&leaf->refs);
4396 			/*
4397 			 * We want to be able to at least push one item to the
4398 			 * left neighbour leaf, and that's the first item.
4399 			 */
4400 			min_push_space = sizeof(struct btrfs_item) +
4401 				btrfs_item_size(leaf, 0);
4402 			wret = push_leaf_left(trans, root, path, 0,
4403 					      min_push_space, 1, (u32)-1);
4404 			if (wret < 0 && wret != -ENOSPC)
4405 				ret = wret;
4406 
4407 			if (path->nodes[0] == leaf &&
4408 			    btrfs_header_nritems(leaf)) {
4409 				/*
4410 				 * If we were not able to push all items from our
4411 				 * leaf to its left neighbour, then attempt to
4412 				 * either push all the remaining items to the
4413 				 * right neighbour or none. There's no advantage
4414 				 * in pushing only some items, instead of all, as
4415 				 * it's pointless to end up with a leaf having
4416 				 * too few items while the neighbours can be full
4417 				 * or nearly full.
4418 				 */
4419 				nritems = btrfs_header_nritems(leaf);
4420 				min_push_space = leaf_space_used(leaf, 0, nritems);
4421 				wret = push_leaf_right(trans, root, path, 0,
4422 						       min_push_space, 1, 0);
4423 				if (wret < 0 && wret != -ENOSPC)
4424 					ret = wret;
4425 			}
4426 
4427 			if (btrfs_header_nritems(leaf) == 0) {
4428 				path->slots[1] = slot;
4429 				btrfs_del_leaf(trans, root, path, leaf);
4430 				free_extent_buffer(leaf);
4431 				ret = 0;
4432 			} else {
4433 				/* if we're still in the path, make sure
4434 				 * we're dirty.  Otherwise, one of the
4435 				 * push_leaf functions must have already
4436 				 * dirtied this buffer
4437 				 */
4438 				if (path->nodes[0] == leaf)
4439 					btrfs_mark_buffer_dirty(leaf);
4440 				free_extent_buffer(leaf);
4441 			}
4442 		} else {
4443 			btrfs_mark_buffer_dirty(leaf);
4444 		}
4445 	}
4446 	return ret;
4447 }
4448 
4449 /*
4450  * search the tree again to find a leaf with lesser keys
4451  * returns 0 if it found something or 1 if there are no lesser leaves.
4452  * returns < 0 on io errors.
4453  *
4454  * This may release the path, and so you may lose any locks held at the
4455  * time you call it.
4456  */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)4457 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4458 {
4459 	struct btrfs_key key;
4460 	struct btrfs_key orig_key;
4461 	struct btrfs_disk_key found_key;
4462 	int ret;
4463 
4464 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4465 	orig_key = key;
4466 
4467 	if (key.offset > 0) {
4468 		key.offset--;
4469 	} else if (key.type > 0) {
4470 		key.type--;
4471 		key.offset = (u64)-1;
4472 	} else if (key.objectid > 0) {
4473 		key.objectid--;
4474 		key.type = (u8)-1;
4475 		key.offset = (u64)-1;
4476 	} else {
4477 		return 1;
4478 	}
4479 
4480 	btrfs_release_path(path);
4481 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4482 	if (ret <= 0)
4483 		return ret;
4484 
4485 	/*
4486 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
4487 	 * before releasing the path and calling btrfs_search_slot(), we now may
4488 	 * be in a slot pointing to the same original key - this can happen if
4489 	 * after we released the path, one of more items were moved from a
4490 	 * sibling leaf into the front of the leaf we had due to an insertion
4491 	 * (see push_leaf_right()).
4492 	 * If we hit this case and our slot is > 0 and just decrement the slot
4493 	 * so that the caller does not process the same key again, which may or
4494 	 * may not break the caller, depending on its logic.
4495 	 */
4496 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
4497 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
4498 		ret = comp_keys(&found_key, &orig_key);
4499 		if (ret == 0) {
4500 			if (path->slots[0] > 0) {
4501 				path->slots[0]--;
4502 				return 0;
4503 			}
4504 			/*
4505 			 * At slot 0, same key as before, it means orig_key is
4506 			 * the lowest, leftmost, key in the tree. We're done.
4507 			 */
4508 			return 1;
4509 		}
4510 	}
4511 
4512 	btrfs_item_key(path->nodes[0], &found_key, 0);
4513 	ret = comp_keys(&found_key, &key);
4514 	/*
4515 	 * We might have had an item with the previous key in the tree right
4516 	 * before we released our path. And after we released our path, that
4517 	 * item might have been pushed to the first slot (0) of the leaf we
4518 	 * were holding due to a tree balance. Alternatively, an item with the
4519 	 * previous key can exist as the only element of a leaf (big fat item).
4520 	 * Therefore account for these 2 cases, so that our callers (like
4521 	 * btrfs_previous_item) don't miss an existing item with a key matching
4522 	 * the previous key we computed above.
4523 	 */
4524 	if (ret <= 0)
4525 		return 0;
4526 	return 1;
4527 }
4528 
4529 /*
4530  * A helper function to walk down the tree starting at min_key, and looking
4531  * for nodes or leaves that are have a minimum transaction id.
4532  * This is used by the btree defrag code, and tree logging
4533  *
4534  * This does not cow, but it does stuff the starting key it finds back
4535  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4536  * key and get a writable path.
4537  *
4538  * This honors path->lowest_level to prevent descent past a given level
4539  * of the tree.
4540  *
4541  * min_trans indicates the oldest transaction that you are interested
4542  * in walking through.  Any nodes or leaves older than min_trans are
4543  * skipped over (without reading them).
4544  *
4545  * returns zero if something useful was found, < 0 on error and 1 if there
4546  * was nothing in the tree that matched the search criteria.
4547  */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4548 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4549 			 struct btrfs_path *path,
4550 			 u64 min_trans)
4551 {
4552 	struct extent_buffer *cur;
4553 	struct btrfs_key found_key;
4554 	int slot;
4555 	int sret;
4556 	u32 nritems;
4557 	int level;
4558 	int ret = 1;
4559 	int keep_locks = path->keep_locks;
4560 
4561 	ASSERT(!path->nowait);
4562 	path->keep_locks = 1;
4563 again:
4564 	cur = btrfs_read_lock_root_node(root);
4565 	level = btrfs_header_level(cur);
4566 	WARN_ON(path->nodes[level]);
4567 	path->nodes[level] = cur;
4568 	path->locks[level] = BTRFS_READ_LOCK;
4569 
4570 	if (btrfs_header_generation(cur) < min_trans) {
4571 		ret = 1;
4572 		goto out;
4573 	}
4574 	while (1) {
4575 		nritems = btrfs_header_nritems(cur);
4576 		level = btrfs_header_level(cur);
4577 		sret = btrfs_bin_search(cur, min_key, &slot);
4578 		if (sret < 0) {
4579 			ret = sret;
4580 			goto out;
4581 		}
4582 
4583 		/* at the lowest level, we're done, setup the path and exit */
4584 		if (level == path->lowest_level) {
4585 			if (slot >= nritems)
4586 				goto find_next_key;
4587 			ret = 0;
4588 			path->slots[level] = slot;
4589 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4590 			goto out;
4591 		}
4592 		if (sret && slot > 0)
4593 			slot--;
4594 		/*
4595 		 * check this node pointer against the min_trans parameters.
4596 		 * If it is too old, skip to the next one.
4597 		 */
4598 		while (slot < nritems) {
4599 			u64 gen;
4600 
4601 			gen = btrfs_node_ptr_generation(cur, slot);
4602 			if (gen < min_trans) {
4603 				slot++;
4604 				continue;
4605 			}
4606 			break;
4607 		}
4608 find_next_key:
4609 		/*
4610 		 * we didn't find a candidate key in this node, walk forward
4611 		 * and find another one
4612 		 */
4613 		if (slot >= nritems) {
4614 			path->slots[level] = slot;
4615 			sret = btrfs_find_next_key(root, path, min_key, level,
4616 						  min_trans);
4617 			if (sret == 0) {
4618 				btrfs_release_path(path);
4619 				goto again;
4620 			} else {
4621 				goto out;
4622 			}
4623 		}
4624 		/* save our key for returning back */
4625 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4626 		path->slots[level] = slot;
4627 		if (level == path->lowest_level) {
4628 			ret = 0;
4629 			goto out;
4630 		}
4631 		cur = btrfs_read_node_slot(cur, slot);
4632 		if (IS_ERR(cur)) {
4633 			ret = PTR_ERR(cur);
4634 			goto out;
4635 		}
4636 
4637 		btrfs_tree_read_lock(cur);
4638 
4639 		path->locks[level - 1] = BTRFS_READ_LOCK;
4640 		path->nodes[level - 1] = cur;
4641 		unlock_up(path, level, 1, 0, NULL);
4642 	}
4643 out:
4644 	path->keep_locks = keep_locks;
4645 	if (ret == 0) {
4646 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4647 		memcpy(min_key, &found_key, sizeof(found_key));
4648 	}
4649 	return ret;
4650 }
4651 
4652 /*
4653  * this is similar to btrfs_next_leaf, but does not try to preserve
4654  * and fixup the path.  It looks for and returns the next key in the
4655  * tree based on the current path and the min_trans parameters.
4656  *
4657  * 0 is returned if another key is found, < 0 if there are any errors
4658  * and 1 is returned if there are no higher keys in the tree
4659  *
4660  * path->keep_locks should be set to 1 on the search made before
4661  * calling this function.
4662  */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4663 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4664 			struct btrfs_key *key, int level, u64 min_trans)
4665 {
4666 	int slot;
4667 	struct extent_buffer *c;
4668 
4669 	WARN_ON(!path->keep_locks && !path->skip_locking);
4670 	while (level < BTRFS_MAX_LEVEL) {
4671 		if (!path->nodes[level])
4672 			return 1;
4673 
4674 		slot = path->slots[level] + 1;
4675 		c = path->nodes[level];
4676 next:
4677 		if (slot >= btrfs_header_nritems(c)) {
4678 			int ret;
4679 			int orig_lowest;
4680 			struct btrfs_key cur_key;
4681 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4682 			    !path->nodes[level + 1])
4683 				return 1;
4684 
4685 			if (path->locks[level + 1] || path->skip_locking) {
4686 				level++;
4687 				continue;
4688 			}
4689 
4690 			slot = btrfs_header_nritems(c) - 1;
4691 			if (level == 0)
4692 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4693 			else
4694 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4695 
4696 			orig_lowest = path->lowest_level;
4697 			btrfs_release_path(path);
4698 			path->lowest_level = level;
4699 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4700 						0, 0);
4701 			path->lowest_level = orig_lowest;
4702 			if (ret < 0)
4703 				return ret;
4704 
4705 			c = path->nodes[level];
4706 			slot = path->slots[level];
4707 			if (ret == 0)
4708 				slot++;
4709 			goto next;
4710 		}
4711 
4712 		if (level == 0)
4713 			btrfs_item_key_to_cpu(c, key, slot);
4714 		else {
4715 			u64 gen = btrfs_node_ptr_generation(c, slot);
4716 
4717 			if (gen < min_trans) {
4718 				slot++;
4719 				goto next;
4720 			}
4721 			btrfs_node_key_to_cpu(c, key, slot);
4722 		}
4723 		return 0;
4724 	}
4725 	return 1;
4726 }
4727 
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4728 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4729 			u64 time_seq)
4730 {
4731 	int slot;
4732 	int level;
4733 	struct extent_buffer *c;
4734 	struct extent_buffer *next;
4735 	struct btrfs_fs_info *fs_info = root->fs_info;
4736 	struct btrfs_key key;
4737 	bool need_commit_sem = false;
4738 	u32 nritems;
4739 	int ret;
4740 	int i;
4741 
4742 	/*
4743 	 * The nowait semantics are used only for write paths, where we don't
4744 	 * use the tree mod log and sequence numbers.
4745 	 */
4746 	if (time_seq)
4747 		ASSERT(!path->nowait);
4748 
4749 	nritems = btrfs_header_nritems(path->nodes[0]);
4750 	if (nritems == 0)
4751 		return 1;
4752 
4753 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4754 again:
4755 	level = 1;
4756 	next = NULL;
4757 	btrfs_release_path(path);
4758 
4759 	path->keep_locks = 1;
4760 
4761 	if (time_seq) {
4762 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4763 	} else {
4764 		if (path->need_commit_sem) {
4765 			path->need_commit_sem = 0;
4766 			need_commit_sem = true;
4767 			if (path->nowait) {
4768 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4769 					ret = -EAGAIN;
4770 					goto done;
4771 				}
4772 			} else {
4773 				down_read(&fs_info->commit_root_sem);
4774 			}
4775 		}
4776 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4777 	}
4778 	path->keep_locks = 0;
4779 
4780 	if (ret < 0)
4781 		goto done;
4782 
4783 	nritems = btrfs_header_nritems(path->nodes[0]);
4784 	/*
4785 	 * by releasing the path above we dropped all our locks.  A balance
4786 	 * could have added more items next to the key that used to be
4787 	 * at the very end of the block.  So, check again here and
4788 	 * advance the path if there are now more items available.
4789 	 */
4790 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4791 		if (ret == 0)
4792 			path->slots[0]++;
4793 		ret = 0;
4794 		goto done;
4795 	}
4796 	/*
4797 	 * So the above check misses one case:
4798 	 * - after releasing the path above, someone has removed the item that
4799 	 *   used to be at the very end of the block, and balance between leafs
4800 	 *   gets another one with bigger key.offset to replace it.
4801 	 *
4802 	 * This one should be returned as well, or we can get leaf corruption
4803 	 * later(esp. in __btrfs_drop_extents()).
4804 	 *
4805 	 * And a bit more explanation about this check,
4806 	 * with ret > 0, the key isn't found, the path points to the slot
4807 	 * where it should be inserted, so the path->slots[0] item must be the
4808 	 * bigger one.
4809 	 */
4810 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4811 		ret = 0;
4812 		goto done;
4813 	}
4814 
4815 	while (level < BTRFS_MAX_LEVEL) {
4816 		if (!path->nodes[level]) {
4817 			ret = 1;
4818 			goto done;
4819 		}
4820 
4821 		slot = path->slots[level] + 1;
4822 		c = path->nodes[level];
4823 		if (slot >= btrfs_header_nritems(c)) {
4824 			level++;
4825 			if (level == BTRFS_MAX_LEVEL) {
4826 				ret = 1;
4827 				goto done;
4828 			}
4829 			continue;
4830 		}
4831 
4832 
4833 		/*
4834 		 * Our current level is where we're going to start from, and to
4835 		 * make sure lockdep doesn't complain we need to drop our locks
4836 		 * and nodes from 0 to our current level.
4837 		 */
4838 		for (i = 0; i < level; i++) {
4839 			if (path->locks[level]) {
4840 				btrfs_tree_read_unlock(path->nodes[i]);
4841 				path->locks[i] = 0;
4842 			}
4843 			free_extent_buffer(path->nodes[i]);
4844 			path->nodes[i] = NULL;
4845 		}
4846 
4847 		next = c;
4848 		ret = read_block_for_search(root, path, &next, level,
4849 					    slot, &key);
4850 		if (ret == -EAGAIN && !path->nowait)
4851 			goto again;
4852 
4853 		if (ret < 0) {
4854 			btrfs_release_path(path);
4855 			goto done;
4856 		}
4857 
4858 		if (!path->skip_locking) {
4859 			ret = btrfs_try_tree_read_lock(next);
4860 			if (!ret && path->nowait) {
4861 				ret = -EAGAIN;
4862 				goto done;
4863 			}
4864 			if (!ret && time_seq) {
4865 				/*
4866 				 * If we don't get the lock, we may be racing
4867 				 * with push_leaf_left, holding that lock while
4868 				 * itself waiting for the leaf we've currently
4869 				 * locked. To solve this situation, we give up
4870 				 * on our lock and cycle.
4871 				 */
4872 				free_extent_buffer(next);
4873 				btrfs_release_path(path);
4874 				cond_resched();
4875 				goto again;
4876 			}
4877 			if (!ret)
4878 				btrfs_tree_read_lock(next);
4879 		}
4880 		break;
4881 	}
4882 	path->slots[level] = slot;
4883 	while (1) {
4884 		level--;
4885 		path->nodes[level] = next;
4886 		path->slots[level] = 0;
4887 		if (!path->skip_locking)
4888 			path->locks[level] = BTRFS_READ_LOCK;
4889 		if (!level)
4890 			break;
4891 
4892 		ret = read_block_for_search(root, path, &next, level,
4893 					    0, &key);
4894 		if (ret == -EAGAIN && !path->nowait)
4895 			goto again;
4896 
4897 		if (ret < 0) {
4898 			btrfs_release_path(path);
4899 			goto done;
4900 		}
4901 
4902 		if (!path->skip_locking) {
4903 			if (path->nowait) {
4904 				if (!btrfs_try_tree_read_lock(next)) {
4905 					ret = -EAGAIN;
4906 					goto done;
4907 				}
4908 			} else {
4909 				btrfs_tree_read_lock(next);
4910 			}
4911 		}
4912 	}
4913 	ret = 0;
4914 done:
4915 	unlock_up(path, 0, 1, 0, NULL);
4916 	if (need_commit_sem) {
4917 		int ret2;
4918 
4919 		path->need_commit_sem = 1;
4920 		ret2 = finish_need_commit_sem_search(path);
4921 		up_read(&fs_info->commit_root_sem);
4922 		if (ret2)
4923 			ret = ret2;
4924 	}
4925 
4926 	return ret;
4927 }
4928 
4929 /*
4930  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4931  * searching until it gets past min_objectid or finds an item of 'type'
4932  *
4933  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4934  */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)4935 int btrfs_previous_item(struct btrfs_root *root,
4936 			struct btrfs_path *path, u64 min_objectid,
4937 			int type)
4938 {
4939 	struct btrfs_key found_key;
4940 	struct extent_buffer *leaf;
4941 	u32 nritems;
4942 	int ret;
4943 
4944 	while (1) {
4945 		if (path->slots[0] == 0) {
4946 			ret = btrfs_prev_leaf(root, path);
4947 			if (ret != 0)
4948 				return ret;
4949 		} else {
4950 			path->slots[0]--;
4951 		}
4952 		leaf = path->nodes[0];
4953 		nritems = btrfs_header_nritems(leaf);
4954 		if (nritems == 0)
4955 			return 1;
4956 		if (path->slots[0] == nritems)
4957 			path->slots[0]--;
4958 
4959 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4960 		if (found_key.objectid < min_objectid)
4961 			break;
4962 		if (found_key.type == type)
4963 			return 0;
4964 		if (found_key.objectid == min_objectid &&
4965 		    found_key.type < type)
4966 			break;
4967 	}
4968 	return 1;
4969 }
4970 
4971 /*
4972  * search in extent tree to find a previous Metadata/Data extent item with
4973  * min objecitd.
4974  *
4975  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4976  */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)4977 int btrfs_previous_extent_item(struct btrfs_root *root,
4978 			struct btrfs_path *path, u64 min_objectid)
4979 {
4980 	struct btrfs_key found_key;
4981 	struct extent_buffer *leaf;
4982 	u32 nritems;
4983 	int ret;
4984 
4985 	while (1) {
4986 		if (path->slots[0] == 0) {
4987 			ret = btrfs_prev_leaf(root, path);
4988 			if (ret != 0)
4989 				return ret;
4990 		} else {
4991 			path->slots[0]--;
4992 		}
4993 		leaf = path->nodes[0];
4994 		nritems = btrfs_header_nritems(leaf);
4995 		if (nritems == 0)
4996 			return 1;
4997 		if (path->slots[0] == nritems)
4998 			path->slots[0]--;
4999 
5000 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5001 		if (found_key.objectid < min_objectid)
5002 			break;
5003 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5004 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5005 			return 0;
5006 		if (found_key.objectid == min_objectid &&
5007 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5008 			break;
5009 	}
5010 	return 1;
5011 }
5012