• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 
28 #define BTRFS_ROOT_TRANS_TAG 0
29 
30 /*
31  * Transaction states and transitions
32  *
33  * No running transaction (fs tree blocks are not modified)
34  * |
35  * | To next stage:
36  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
37  * V
38  * Transaction N [[TRANS_STATE_RUNNING]]
39  * |
40  * | New trans handles can be attached to transaction N by calling all
41  * | start_transaction() variants.
42  * |
43  * | To next stage:
44  * |  Call btrfs_commit_transaction() on any trans handle attached to
45  * |  transaction N
46  * V
47  * Transaction N [[TRANS_STATE_COMMIT_START]]
48  * |
49  * | Will wait for previous running transaction to completely finish if there
50  * | is one
51  * |
52  * | Then one of the following happes:
53  * | - Wait for all other trans handle holders to release.
54  * |   The btrfs_commit_transaction() caller will do the commit work.
55  * | - Wait for current transaction to be committed by others.
56  * |   Other btrfs_commit_transaction() caller will do the commit work.
57  * |
58  * | At this stage, only btrfs_join_transaction*() variants can attach
59  * | to this running transaction.
60  * | All other variants will wait for current one to finish and attach to
61  * | transaction N+1.
62  * |
63  * | To next stage:
64  * |  Caller is chosen to commit transaction N, and all other trans handle
65  * |  haven been released.
66  * V
67  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
68  * |
69  * | The heavy lifting transaction work is started.
70  * | From running delayed refs (modifying extent tree) to creating pending
71  * | snapshots, running qgroups.
72  * | In short, modify supporting trees to reflect modifications of subvolume
73  * | trees.
74  * |
75  * | At this stage, all start_transaction() calls will wait for this
76  * | transaction to finish and attach to transaction N+1.
77  * |
78  * | To next stage:
79  * |  Until all supporting trees are updated.
80  * V
81  * Transaction N [[TRANS_STATE_UNBLOCKED]]
82  * |						    Transaction N+1
83  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
84  * | need to write them back to disk and update	    |
85  * | super blocks.				    |
86  * |						    |
87  * | At this stage, new transaction is allowed to   |
88  * | start.					    |
89  * | All new start_transaction() calls will be	    |
90  * | attached to transid N+1.			    |
91  * |						    |
92  * | To next stage:				    |
93  * |  Until all tree blocks are super blocks are    |
94  * |  written to block devices			    |
95  * V						    |
96  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
97  *   All tree blocks and super blocks are written.  Transaction N+1
98  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
99  *   data structures will be cleaned up.	    | Life goes on
100  */
101 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
102 	[TRANS_STATE_RUNNING]		= 0U,
103 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
104 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
105 					   __TRANS_ATTACH |
106 					   __TRANS_JOIN |
107 					   __TRANS_JOIN_NOSTART),
108 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
109 					   __TRANS_ATTACH |
110 					   __TRANS_JOIN |
111 					   __TRANS_JOIN_NOLOCK |
112 					   __TRANS_JOIN_NOSTART),
113 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
114 					   __TRANS_ATTACH |
115 					   __TRANS_JOIN |
116 					   __TRANS_JOIN_NOLOCK |
117 					   __TRANS_JOIN_NOSTART),
118 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
119 					   __TRANS_ATTACH |
120 					   __TRANS_JOIN |
121 					   __TRANS_JOIN_NOLOCK |
122 					   __TRANS_JOIN_NOSTART),
123 };
124 
btrfs_put_transaction(struct btrfs_transaction * transaction)125 void btrfs_put_transaction(struct btrfs_transaction *transaction)
126 {
127 	WARN_ON(refcount_read(&transaction->use_count) == 0);
128 	if (refcount_dec_and_test(&transaction->use_count)) {
129 		BUG_ON(!list_empty(&transaction->list));
130 		WARN_ON(!RB_EMPTY_ROOT(
131 				&transaction->delayed_refs.href_root.rb_root));
132 		WARN_ON(!RB_EMPTY_ROOT(
133 				&transaction->delayed_refs.dirty_extent_root));
134 		if (transaction->delayed_refs.pending_csums)
135 			btrfs_err(transaction->fs_info,
136 				  "pending csums is %llu",
137 				  transaction->delayed_refs.pending_csums);
138 		/*
139 		 * If any block groups are found in ->deleted_bgs then it's
140 		 * because the transaction was aborted and a commit did not
141 		 * happen (things failed before writing the new superblock
142 		 * and calling btrfs_finish_extent_commit()), so we can not
143 		 * discard the physical locations of the block groups.
144 		 */
145 		while (!list_empty(&transaction->deleted_bgs)) {
146 			struct btrfs_block_group *cache;
147 
148 			cache = list_first_entry(&transaction->deleted_bgs,
149 						 struct btrfs_block_group,
150 						 bg_list);
151 			list_del_init(&cache->bg_list);
152 			btrfs_unfreeze_block_group(cache);
153 			btrfs_put_block_group(cache);
154 		}
155 		WARN_ON(!list_empty(&transaction->dev_update_list));
156 		kfree(transaction);
157 	}
158 }
159 
switch_commit_roots(struct btrfs_trans_handle * trans)160 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
161 {
162 	struct btrfs_transaction *cur_trans = trans->transaction;
163 	struct btrfs_fs_info *fs_info = trans->fs_info;
164 	struct btrfs_root *root, *tmp;
165 
166 	/*
167 	 * At this point no one can be using this transaction to modify any tree
168 	 * and no one can start another transaction to modify any tree either.
169 	 */
170 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
171 
172 	down_write(&fs_info->commit_root_sem);
173 
174 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
175 		fs_info->last_reloc_trans = trans->transid;
176 
177 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
178 				 dirty_list) {
179 		list_del_init(&root->dirty_list);
180 		free_extent_buffer(root->commit_root);
181 		root->commit_root = btrfs_root_node(root);
182 		extent_io_tree_release(&root->dirty_log_pages);
183 		btrfs_qgroup_clean_swapped_blocks(root);
184 	}
185 
186 	/* We can free old roots now. */
187 	spin_lock(&cur_trans->dropped_roots_lock);
188 	while (!list_empty(&cur_trans->dropped_roots)) {
189 		root = list_first_entry(&cur_trans->dropped_roots,
190 					struct btrfs_root, root_list);
191 		list_del_init(&root->root_list);
192 		spin_unlock(&cur_trans->dropped_roots_lock);
193 		btrfs_free_log(trans, root);
194 		btrfs_drop_and_free_fs_root(fs_info, root);
195 		spin_lock(&cur_trans->dropped_roots_lock);
196 	}
197 	spin_unlock(&cur_trans->dropped_roots_lock);
198 
199 	up_write(&fs_info->commit_root_sem);
200 }
201 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)202 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
203 					 unsigned int type)
204 {
205 	if (type & TRANS_EXTWRITERS)
206 		atomic_inc(&trans->num_extwriters);
207 }
208 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)209 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
210 					 unsigned int type)
211 {
212 	if (type & TRANS_EXTWRITERS)
213 		atomic_dec(&trans->num_extwriters);
214 }
215 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)216 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
217 					  unsigned int type)
218 {
219 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
220 }
221 
extwriter_counter_read(struct btrfs_transaction * trans)222 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
223 {
224 	return atomic_read(&trans->num_extwriters);
225 }
226 
227 /*
228  * To be called after doing the chunk btree updates right after allocating a new
229  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
230  * chunk after all chunk btree updates and after finishing the second phase of
231  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
232  * group had its chunk item insertion delayed to the second phase.
233  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)234 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
235 {
236 	struct btrfs_fs_info *fs_info = trans->fs_info;
237 
238 	if (!trans->chunk_bytes_reserved)
239 		return;
240 
241 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
242 				trans->chunk_bytes_reserved, NULL);
243 	trans->chunk_bytes_reserved = 0;
244 }
245 
246 /*
247  * either allocate a new transaction or hop into the existing one
248  */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)249 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
250 				     unsigned int type)
251 {
252 	struct btrfs_transaction *cur_trans;
253 
254 	spin_lock(&fs_info->trans_lock);
255 loop:
256 	/* The file system has been taken offline. No new transactions. */
257 	if (BTRFS_FS_ERROR(fs_info)) {
258 		spin_unlock(&fs_info->trans_lock);
259 		return -EROFS;
260 	}
261 
262 	cur_trans = fs_info->running_transaction;
263 	if (cur_trans) {
264 		if (TRANS_ABORTED(cur_trans)) {
265 			spin_unlock(&fs_info->trans_lock);
266 			return cur_trans->aborted;
267 		}
268 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
269 			spin_unlock(&fs_info->trans_lock);
270 			return -EBUSY;
271 		}
272 		refcount_inc(&cur_trans->use_count);
273 		atomic_inc(&cur_trans->num_writers);
274 		extwriter_counter_inc(cur_trans, type);
275 		spin_unlock(&fs_info->trans_lock);
276 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
277 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
278 		return 0;
279 	}
280 	spin_unlock(&fs_info->trans_lock);
281 
282 	/*
283 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
284 	 * current transaction, and commit it. If there is no transaction, just
285 	 * return ENOENT.
286 	 */
287 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
288 		return -ENOENT;
289 
290 	/*
291 	 * JOIN_NOLOCK only happens during the transaction commit, so
292 	 * it is impossible that ->running_transaction is NULL
293 	 */
294 	BUG_ON(type == TRANS_JOIN_NOLOCK);
295 
296 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
297 	if (!cur_trans)
298 		return -ENOMEM;
299 
300 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
301 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
302 
303 	spin_lock(&fs_info->trans_lock);
304 	if (fs_info->running_transaction) {
305 		/*
306 		 * someone started a transaction after we unlocked.  Make sure
307 		 * to redo the checks above
308 		 */
309 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
310 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
311 		kfree(cur_trans);
312 		goto loop;
313 	} else if (BTRFS_FS_ERROR(fs_info)) {
314 		spin_unlock(&fs_info->trans_lock);
315 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
316 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
317 		kfree(cur_trans);
318 		return -EROFS;
319 	}
320 
321 	cur_trans->fs_info = fs_info;
322 	atomic_set(&cur_trans->pending_ordered, 0);
323 	init_waitqueue_head(&cur_trans->pending_wait);
324 	atomic_set(&cur_trans->num_writers, 1);
325 	extwriter_counter_init(cur_trans, type);
326 	init_waitqueue_head(&cur_trans->writer_wait);
327 	init_waitqueue_head(&cur_trans->commit_wait);
328 	cur_trans->state = TRANS_STATE_RUNNING;
329 	/*
330 	 * One for this trans handle, one so it will live on until we
331 	 * commit the transaction.
332 	 */
333 	refcount_set(&cur_trans->use_count, 2);
334 	cur_trans->flags = 0;
335 	cur_trans->start_time = ktime_get_seconds();
336 
337 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
338 
339 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
340 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
341 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
342 
343 	/*
344 	 * although the tree mod log is per file system and not per transaction,
345 	 * the log must never go across transaction boundaries.
346 	 */
347 	smp_mb();
348 	if (!list_empty(&fs_info->tree_mod_seq_list))
349 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
350 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
351 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
352 	atomic64_set(&fs_info->tree_mod_seq, 0);
353 
354 	spin_lock_init(&cur_trans->delayed_refs.lock);
355 
356 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
357 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
358 	INIT_LIST_HEAD(&cur_trans->switch_commits);
359 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
360 	INIT_LIST_HEAD(&cur_trans->io_bgs);
361 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
362 	mutex_init(&cur_trans->cache_write_mutex);
363 	spin_lock_init(&cur_trans->dirty_bgs_lock);
364 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
365 	spin_lock_init(&cur_trans->dropped_roots_lock);
366 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
367 	spin_lock_init(&cur_trans->releasing_ebs_lock);
368 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
369 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
370 			IO_TREE_TRANS_DIRTY_PAGES, NULL);
371 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
372 			IO_TREE_FS_PINNED_EXTENTS, NULL);
373 	fs_info->generation++;
374 	cur_trans->transid = fs_info->generation;
375 	fs_info->running_transaction = cur_trans;
376 	cur_trans->aborted = 0;
377 	spin_unlock(&fs_info->trans_lock);
378 
379 	return 0;
380 }
381 
382 /*
383  * This does all the record keeping required to make sure that a shareable root
384  * is properly recorded in a given transaction.  This is required to make sure
385  * the old root from before we joined the transaction is deleted when the
386  * transaction commits.
387  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)388 static int record_root_in_trans(struct btrfs_trans_handle *trans,
389 			       struct btrfs_root *root,
390 			       int force)
391 {
392 	struct btrfs_fs_info *fs_info = root->fs_info;
393 	int ret = 0;
394 
395 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
396 	    root->last_trans < trans->transid) || force) {
397 		WARN_ON(!force && root->commit_root != root->node);
398 
399 		/*
400 		 * see below for IN_TRANS_SETUP usage rules
401 		 * we have the reloc mutex held now, so there
402 		 * is only one writer in this function
403 		 */
404 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
405 
406 		/* make sure readers find IN_TRANS_SETUP before
407 		 * they find our root->last_trans update
408 		 */
409 		smp_wmb();
410 
411 		spin_lock(&fs_info->fs_roots_radix_lock);
412 		if (root->last_trans == trans->transid && !force) {
413 			spin_unlock(&fs_info->fs_roots_radix_lock);
414 			return 0;
415 		}
416 		radix_tree_tag_set(&fs_info->fs_roots_radix,
417 				   (unsigned long)root->root_key.objectid,
418 				   BTRFS_ROOT_TRANS_TAG);
419 		spin_unlock(&fs_info->fs_roots_radix_lock);
420 		root->last_trans = trans->transid;
421 
422 		/* this is pretty tricky.  We don't want to
423 		 * take the relocation lock in btrfs_record_root_in_trans
424 		 * unless we're really doing the first setup for this root in
425 		 * this transaction.
426 		 *
427 		 * Normally we'd use root->last_trans as a flag to decide
428 		 * if we want to take the expensive mutex.
429 		 *
430 		 * But, we have to set root->last_trans before we
431 		 * init the relocation root, otherwise, we trip over warnings
432 		 * in ctree.c.  The solution used here is to flag ourselves
433 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
434 		 * fixing up the reloc trees and everyone must wait.
435 		 *
436 		 * When this is zero, they can trust root->last_trans and fly
437 		 * through btrfs_record_root_in_trans without having to take the
438 		 * lock.  smp_wmb() makes sure that all the writes above are
439 		 * done before we pop in the zero below
440 		 */
441 		ret = btrfs_init_reloc_root(trans, root);
442 		smp_mb__before_atomic();
443 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
444 	}
445 	return ret;
446 }
447 
448 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)449 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
450 			    struct btrfs_root *root)
451 {
452 	struct btrfs_fs_info *fs_info = root->fs_info;
453 	struct btrfs_transaction *cur_trans = trans->transaction;
454 
455 	/* Add ourselves to the transaction dropped list */
456 	spin_lock(&cur_trans->dropped_roots_lock);
457 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
458 	spin_unlock(&cur_trans->dropped_roots_lock);
459 
460 	/* Make sure we don't try to update the root at commit time */
461 	spin_lock(&fs_info->fs_roots_radix_lock);
462 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
463 			     (unsigned long)root->root_key.objectid,
464 			     BTRFS_ROOT_TRANS_TAG);
465 	spin_unlock(&fs_info->fs_roots_radix_lock);
466 }
467 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)468 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
469 			       struct btrfs_root *root)
470 {
471 	struct btrfs_fs_info *fs_info = root->fs_info;
472 	int ret;
473 
474 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
475 		return 0;
476 
477 	/*
478 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
479 	 * and barriers
480 	 */
481 	smp_rmb();
482 	if (root->last_trans == trans->transid &&
483 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
484 		return 0;
485 
486 	mutex_lock(&fs_info->reloc_mutex);
487 	ret = record_root_in_trans(trans, root, 0);
488 	mutex_unlock(&fs_info->reloc_mutex);
489 
490 	return ret;
491 }
492 
is_transaction_blocked(struct btrfs_transaction * trans)493 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
494 {
495 	return (trans->state >= TRANS_STATE_COMMIT_START &&
496 		trans->state < TRANS_STATE_UNBLOCKED &&
497 		!TRANS_ABORTED(trans));
498 }
499 
500 /* wait for commit against the current transaction to become unblocked
501  * when this is done, it is safe to start a new transaction, but the current
502  * transaction might not be fully on disk.
503  */
wait_current_trans(struct btrfs_fs_info * fs_info)504 static void wait_current_trans(struct btrfs_fs_info *fs_info)
505 {
506 	struct btrfs_transaction *cur_trans;
507 
508 	spin_lock(&fs_info->trans_lock);
509 	cur_trans = fs_info->running_transaction;
510 	if (cur_trans && is_transaction_blocked(cur_trans)) {
511 		refcount_inc(&cur_trans->use_count);
512 		spin_unlock(&fs_info->trans_lock);
513 
514 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
515 		wait_event(fs_info->transaction_wait,
516 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
517 			   TRANS_ABORTED(cur_trans));
518 		btrfs_put_transaction(cur_trans);
519 	} else {
520 		spin_unlock(&fs_info->trans_lock);
521 	}
522 }
523 
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)524 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
525 {
526 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
527 		return 0;
528 
529 	if (type == TRANS_START)
530 		return 1;
531 
532 	return 0;
533 }
534 
need_reserve_reloc_root(struct btrfs_root * root)535 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
536 {
537 	struct btrfs_fs_info *fs_info = root->fs_info;
538 
539 	if (!fs_info->reloc_ctl ||
540 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
541 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
542 	    root->reloc_root)
543 		return false;
544 
545 	return true;
546 }
547 
548 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)549 start_transaction(struct btrfs_root *root, unsigned int num_items,
550 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
551 		  bool enforce_qgroups)
552 {
553 	struct btrfs_fs_info *fs_info = root->fs_info;
554 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
555 	struct btrfs_trans_handle *h;
556 	struct btrfs_transaction *cur_trans;
557 	u64 num_bytes = 0;
558 	u64 qgroup_reserved = 0;
559 	bool reloc_reserved = false;
560 	bool do_chunk_alloc = false;
561 	int ret;
562 
563 	if (BTRFS_FS_ERROR(fs_info))
564 		return ERR_PTR(-EROFS);
565 
566 	if (current->journal_info) {
567 		WARN_ON(type & TRANS_EXTWRITERS);
568 		h = current->journal_info;
569 		refcount_inc(&h->use_count);
570 		WARN_ON(refcount_read(&h->use_count) > 2);
571 		h->orig_rsv = h->block_rsv;
572 		h->block_rsv = NULL;
573 		goto got_it;
574 	}
575 
576 	/*
577 	 * Do the reservation before we join the transaction so we can do all
578 	 * the appropriate flushing if need be.
579 	 */
580 	if (num_items && root != fs_info->chunk_root) {
581 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
582 		u64 delayed_refs_bytes = 0;
583 
584 		qgroup_reserved = num_items * fs_info->nodesize;
585 		/*
586 		 * Use prealloc for now, as there might be a currently running
587 		 * transaction that could free this reserved space prematurely
588 		 * by committing.
589 		 */
590 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
591 							 enforce_qgroups, false);
592 		if (ret)
593 			return ERR_PTR(ret);
594 
595 		/*
596 		 * We want to reserve all the bytes we may need all at once, so
597 		 * we only do 1 enospc flushing cycle per transaction start.  We
598 		 * accomplish this by simply assuming we'll do 2 x num_items
599 		 * worth of delayed refs updates in this trans handle, and
600 		 * refill that amount for whatever is missing in the reserve.
601 		 */
602 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
603 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
604 		    btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
605 			delayed_refs_bytes = num_bytes;
606 			num_bytes <<= 1;
607 		}
608 
609 		/*
610 		 * Do the reservation for the relocation root creation
611 		 */
612 		if (need_reserve_reloc_root(root)) {
613 			num_bytes += fs_info->nodesize;
614 			reloc_reserved = true;
615 		}
616 
617 		ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush);
618 		if (ret)
619 			goto reserve_fail;
620 		if (delayed_refs_bytes) {
621 			btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes);
622 			num_bytes -= delayed_refs_bytes;
623 		}
624 		btrfs_block_rsv_add_bytes(rsv, num_bytes, true);
625 
626 		if (rsv->space_info->force_alloc)
627 			do_chunk_alloc = true;
628 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
629 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
630 		/*
631 		 * Some people call with btrfs_start_transaction(root, 0)
632 		 * because they can be throttled, but have some other mechanism
633 		 * for reserving space.  We still want these guys to refill the
634 		 * delayed block_rsv so just add 1 items worth of reservation
635 		 * here.
636 		 */
637 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
638 		if (ret)
639 			goto reserve_fail;
640 	}
641 again:
642 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
643 	if (!h) {
644 		ret = -ENOMEM;
645 		goto alloc_fail;
646 	}
647 
648 	/*
649 	 * If we are JOIN_NOLOCK we're already committing a transaction and
650 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
651 	 * because we're already holding a ref.  We need this because we could
652 	 * have raced in and did an fsync() on a file which can kick a commit
653 	 * and then we deadlock with somebody doing a freeze.
654 	 *
655 	 * If we are ATTACH, it means we just want to catch the current
656 	 * transaction and commit it, so we needn't do sb_start_intwrite().
657 	 */
658 	if (type & __TRANS_FREEZABLE)
659 		sb_start_intwrite(fs_info->sb);
660 
661 	if (may_wait_transaction(fs_info, type))
662 		wait_current_trans(fs_info);
663 
664 	do {
665 		ret = join_transaction(fs_info, type);
666 		if (ret == -EBUSY) {
667 			wait_current_trans(fs_info);
668 			if (unlikely(type == TRANS_ATTACH ||
669 				     type == TRANS_JOIN_NOSTART))
670 				ret = -ENOENT;
671 		}
672 	} while (ret == -EBUSY);
673 
674 	if (ret < 0)
675 		goto join_fail;
676 
677 	cur_trans = fs_info->running_transaction;
678 
679 	h->transid = cur_trans->transid;
680 	h->transaction = cur_trans;
681 	refcount_set(&h->use_count, 1);
682 	h->fs_info = root->fs_info;
683 
684 	h->type = type;
685 	INIT_LIST_HEAD(&h->new_bgs);
686 
687 	smp_mb();
688 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
689 	    may_wait_transaction(fs_info, type)) {
690 		current->journal_info = h;
691 		btrfs_commit_transaction(h);
692 		goto again;
693 	}
694 
695 	if (num_bytes) {
696 		trace_btrfs_space_reservation(fs_info, "transaction",
697 					      h->transid, num_bytes, 1);
698 		h->block_rsv = &fs_info->trans_block_rsv;
699 		h->bytes_reserved = num_bytes;
700 		h->reloc_reserved = reloc_reserved;
701 	}
702 
703 	/*
704 	 * Now that we have found a transaction to be a part of, convert the
705 	 * qgroup reservation from prealloc to pertrans. A different transaction
706 	 * can't race in and free our pertrans out from under us.
707 	 */
708 	if (qgroup_reserved)
709 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
710 
711 got_it:
712 	if (!current->journal_info)
713 		current->journal_info = h;
714 
715 	/*
716 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
717 	 * ALLOC_FORCE the first run through, and then we won't allocate for
718 	 * anybody else who races in later.  We don't care about the return
719 	 * value here.
720 	 */
721 	if (do_chunk_alloc && num_bytes) {
722 		u64 flags = h->block_rsv->space_info->flags;
723 
724 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
725 				  CHUNK_ALLOC_NO_FORCE);
726 	}
727 
728 	/*
729 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
730 	 * call btrfs_join_transaction() while we're also starting a
731 	 * transaction.
732 	 *
733 	 * Thus it need to be called after current->journal_info initialized,
734 	 * or we can deadlock.
735 	 */
736 	ret = btrfs_record_root_in_trans(h, root);
737 	if (ret) {
738 		/*
739 		 * The transaction handle is fully initialized and linked with
740 		 * other structures so it needs to be ended in case of errors,
741 		 * not just freed.
742 		 */
743 		btrfs_end_transaction(h);
744 		return ERR_PTR(ret);
745 	}
746 
747 	return h;
748 
749 join_fail:
750 	if (type & __TRANS_FREEZABLE)
751 		sb_end_intwrite(fs_info->sb);
752 	kmem_cache_free(btrfs_trans_handle_cachep, h);
753 alloc_fail:
754 	if (num_bytes)
755 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
756 					num_bytes, NULL);
757 reserve_fail:
758 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
759 	return ERR_PTR(ret);
760 }
761 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)762 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
763 						   unsigned int num_items)
764 {
765 	return start_transaction(root, num_items, TRANS_START,
766 				 BTRFS_RESERVE_FLUSH_ALL, true);
767 }
768 
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)769 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
770 					struct btrfs_root *root,
771 					unsigned int num_items)
772 {
773 	return start_transaction(root, num_items, TRANS_START,
774 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
775 }
776 
btrfs_join_transaction(struct btrfs_root * root)777 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
778 {
779 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
780 				 true);
781 }
782 
btrfs_join_transaction_spacecache(struct btrfs_root * root)783 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
784 {
785 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
786 				 BTRFS_RESERVE_NO_FLUSH, true);
787 }
788 
789 /*
790  * Similar to regular join but it never starts a transaction when none is
791  * running or after waiting for the current one to finish.
792  */
btrfs_join_transaction_nostart(struct btrfs_root * root)793 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
794 {
795 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
796 				 BTRFS_RESERVE_NO_FLUSH, true);
797 }
798 
799 /*
800  * btrfs_attach_transaction() - catch the running transaction
801  *
802  * It is used when we want to commit the current the transaction, but
803  * don't want to start a new one.
804  *
805  * Note: If this function return -ENOENT, it just means there is no
806  * running transaction. But it is possible that the inactive transaction
807  * is still in the memory, not fully on disk. If you hope there is no
808  * inactive transaction in the fs when -ENOENT is returned, you should
809  * invoke
810  *     btrfs_attach_transaction_barrier()
811  */
btrfs_attach_transaction(struct btrfs_root * root)812 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
813 {
814 	return start_transaction(root, 0, TRANS_ATTACH,
815 				 BTRFS_RESERVE_NO_FLUSH, true);
816 }
817 
818 /*
819  * btrfs_attach_transaction_barrier() - catch the running transaction
820  *
821  * It is similar to the above function, the difference is this one
822  * will wait for all the inactive transactions until they fully
823  * complete.
824  */
825 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)826 btrfs_attach_transaction_barrier(struct btrfs_root *root)
827 {
828 	struct btrfs_trans_handle *trans;
829 
830 	trans = start_transaction(root, 0, TRANS_ATTACH,
831 				  BTRFS_RESERVE_NO_FLUSH, true);
832 	if (trans == ERR_PTR(-ENOENT)) {
833 		int ret;
834 
835 		ret = btrfs_wait_for_commit(root->fs_info, 0);
836 		if (ret)
837 			return ERR_PTR(ret);
838 	}
839 
840 	return trans;
841 }
842 
843 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)844 static noinline void wait_for_commit(struct btrfs_transaction *commit,
845 				     const enum btrfs_trans_state min_state)
846 {
847 	struct btrfs_fs_info *fs_info = commit->fs_info;
848 	u64 transid = commit->transid;
849 	bool put = false;
850 
851 	/*
852 	 * At the moment this function is called with min_state either being
853 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
854 	 */
855 	if (min_state == TRANS_STATE_COMPLETED)
856 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
857 	else
858 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
859 
860 	while (1) {
861 		wait_event(commit->commit_wait, commit->state >= min_state);
862 		if (put)
863 			btrfs_put_transaction(commit);
864 
865 		if (min_state < TRANS_STATE_COMPLETED)
866 			break;
867 
868 		/*
869 		 * A transaction isn't really completed until all of the
870 		 * previous transactions are completed, but with fsync we can
871 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
872 		 * transaction. Wait for those.
873 		 */
874 
875 		spin_lock(&fs_info->trans_lock);
876 		commit = list_first_entry_or_null(&fs_info->trans_list,
877 						  struct btrfs_transaction,
878 						  list);
879 		if (!commit || commit->transid > transid) {
880 			spin_unlock(&fs_info->trans_lock);
881 			break;
882 		}
883 		refcount_inc(&commit->use_count);
884 		put = true;
885 		spin_unlock(&fs_info->trans_lock);
886 	}
887 }
888 
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)889 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
890 {
891 	struct btrfs_transaction *cur_trans = NULL, *t;
892 	int ret = 0;
893 
894 	if (transid) {
895 		if (transid <= fs_info->last_trans_committed)
896 			goto out;
897 
898 		/* find specified transaction */
899 		spin_lock(&fs_info->trans_lock);
900 		list_for_each_entry(t, &fs_info->trans_list, list) {
901 			if (t->transid == transid) {
902 				cur_trans = t;
903 				refcount_inc(&cur_trans->use_count);
904 				ret = 0;
905 				break;
906 			}
907 			if (t->transid > transid) {
908 				ret = 0;
909 				break;
910 			}
911 		}
912 		spin_unlock(&fs_info->trans_lock);
913 
914 		/*
915 		 * The specified transaction doesn't exist, or we
916 		 * raced with btrfs_commit_transaction
917 		 */
918 		if (!cur_trans) {
919 			if (transid > fs_info->last_trans_committed)
920 				ret = -EINVAL;
921 			goto out;
922 		}
923 	} else {
924 		/* find newest transaction that is committing | committed */
925 		spin_lock(&fs_info->trans_lock);
926 		list_for_each_entry_reverse(t, &fs_info->trans_list,
927 					    list) {
928 			if (t->state >= TRANS_STATE_COMMIT_START) {
929 				if (t->state == TRANS_STATE_COMPLETED)
930 					break;
931 				cur_trans = t;
932 				refcount_inc(&cur_trans->use_count);
933 				break;
934 			}
935 		}
936 		spin_unlock(&fs_info->trans_lock);
937 		if (!cur_trans)
938 			goto out;  /* nothing committing|committed */
939 	}
940 
941 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
942 	ret = cur_trans->aborted;
943 	btrfs_put_transaction(cur_trans);
944 out:
945 	return ret;
946 }
947 
btrfs_throttle(struct btrfs_fs_info * fs_info)948 void btrfs_throttle(struct btrfs_fs_info *fs_info)
949 {
950 	wait_current_trans(fs_info);
951 }
952 
should_end_transaction(struct btrfs_trans_handle * trans)953 static bool should_end_transaction(struct btrfs_trans_handle *trans)
954 {
955 	struct btrfs_fs_info *fs_info = trans->fs_info;
956 
957 	if (btrfs_check_space_for_delayed_refs(fs_info))
958 		return true;
959 
960 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
961 }
962 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)963 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
964 {
965 	struct btrfs_transaction *cur_trans = trans->transaction;
966 
967 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
968 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
969 		return true;
970 
971 	return should_end_transaction(trans);
972 }
973 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)974 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
975 
976 {
977 	struct btrfs_fs_info *fs_info = trans->fs_info;
978 
979 	if (!trans->block_rsv) {
980 		ASSERT(!trans->bytes_reserved);
981 		return;
982 	}
983 
984 	if (!trans->bytes_reserved)
985 		return;
986 
987 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
988 	trace_btrfs_space_reservation(fs_info, "transaction",
989 				      trans->transid, trans->bytes_reserved, 0);
990 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
991 				trans->bytes_reserved, NULL);
992 	trans->bytes_reserved = 0;
993 }
994 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)995 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
996 				   int throttle)
997 {
998 	struct btrfs_fs_info *info = trans->fs_info;
999 	struct btrfs_transaction *cur_trans = trans->transaction;
1000 	int err = 0;
1001 
1002 	if (refcount_read(&trans->use_count) > 1) {
1003 		refcount_dec(&trans->use_count);
1004 		trans->block_rsv = trans->orig_rsv;
1005 		return 0;
1006 	}
1007 
1008 	btrfs_trans_release_metadata(trans);
1009 	trans->block_rsv = NULL;
1010 
1011 	btrfs_create_pending_block_groups(trans);
1012 
1013 	btrfs_trans_release_chunk_metadata(trans);
1014 
1015 	if (trans->type & __TRANS_FREEZABLE)
1016 		sb_end_intwrite(info->sb);
1017 
1018 	WARN_ON(cur_trans != info->running_transaction);
1019 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1020 	atomic_dec(&cur_trans->num_writers);
1021 	extwriter_counter_dec(cur_trans, trans->type);
1022 
1023 	cond_wake_up(&cur_trans->writer_wait);
1024 
1025 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1026 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1027 
1028 	btrfs_put_transaction(cur_trans);
1029 
1030 	if (current->journal_info == trans)
1031 		current->journal_info = NULL;
1032 
1033 	if (throttle)
1034 		btrfs_run_delayed_iputs(info);
1035 
1036 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1037 		wake_up_process(info->transaction_kthread);
1038 		if (TRANS_ABORTED(trans))
1039 			err = trans->aborted;
1040 		else
1041 			err = -EROFS;
1042 	}
1043 
1044 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1045 	return err;
1046 }
1047 
btrfs_end_transaction(struct btrfs_trans_handle * trans)1048 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1049 {
1050 	return __btrfs_end_transaction(trans, 0);
1051 }
1052 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1053 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1054 {
1055 	return __btrfs_end_transaction(trans, 1);
1056 }
1057 
1058 /*
1059  * when btree blocks are allocated, they have some corresponding bits set for
1060  * them in one of two extent_io trees.  This is used to make sure all of
1061  * those extents are sent to disk but does not wait on them
1062  */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1063 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1064 			       struct extent_io_tree *dirty_pages, int mark)
1065 {
1066 	int err = 0;
1067 	int werr = 0;
1068 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1069 	struct extent_state *cached_state = NULL;
1070 	u64 start = 0;
1071 	u64 end;
1072 
1073 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1074 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1075 				      mark, &cached_state)) {
1076 		bool wait_writeback = false;
1077 
1078 		err = convert_extent_bit(dirty_pages, start, end,
1079 					 EXTENT_NEED_WAIT,
1080 					 mark, &cached_state);
1081 		/*
1082 		 * convert_extent_bit can return -ENOMEM, which is most of the
1083 		 * time a temporary error. So when it happens, ignore the error
1084 		 * and wait for writeback of this range to finish - because we
1085 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1086 		 * to __btrfs_wait_marked_extents() would not know that
1087 		 * writeback for this range started and therefore wouldn't
1088 		 * wait for it to finish - we don't want to commit a
1089 		 * superblock that points to btree nodes/leafs for which
1090 		 * writeback hasn't finished yet (and without errors).
1091 		 * We cleanup any entries left in the io tree when committing
1092 		 * the transaction (through extent_io_tree_release()).
1093 		 */
1094 		if (err == -ENOMEM) {
1095 			err = 0;
1096 			wait_writeback = true;
1097 		}
1098 		if (!err)
1099 			err = filemap_fdatawrite_range(mapping, start, end);
1100 		if (err)
1101 			werr = err;
1102 		else if (wait_writeback)
1103 			werr = filemap_fdatawait_range(mapping, start, end);
1104 		free_extent_state(cached_state);
1105 		cached_state = NULL;
1106 		cond_resched();
1107 		start = end + 1;
1108 	}
1109 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1110 	return werr;
1111 }
1112 
1113 /*
1114  * when btree blocks are allocated, they have some corresponding bits set for
1115  * them in one of two extent_io trees.  This is used to make sure all of
1116  * those extents are on disk for transaction or log commit.  We wait
1117  * on all the pages and clear them from the dirty pages state tree
1118  */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1119 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1120 				       struct extent_io_tree *dirty_pages)
1121 {
1122 	int err = 0;
1123 	int werr = 0;
1124 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1125 	struct extent_state *cached_state = NULL;
1126 	u64 start = 0;
1127 	u64 end;
1128 
1129 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1130 				      EXTENT_NEED_WAIT, &cached_state)) {
1131 		/*
1132 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1133 		 * When committing the transaction, we'll remove any entries
1134 		 * left in the io tree. For a log commit, we don't remove them
1135 		 * after committing the log because the tree can be accessed
1136 		 * concurrently - we do it only at transaction commit time when
1137 		 * it's safe to do it (through extent_io_tree_release()).
1138 		 */
1139 		err = clear_extent_bit(dirty_pages, start, end,
1140 				       EXTENT_NEED_WAIT, &cached_state);
1141 		if (err == -ENOMEM)
1142 			err = 0;
1143 		if (!err)
1144 			err = filemap_fdatawait_range(mapping, start, end);
1145 		if (err)
1146 			werr = err;
1147 		free_extent_state(cached_state);
1148 		cached_state = NULL;
1149 		cond_resched();
1150 		start = end + 1;
1151 	}
1152 	if (err)
1153 		werr = err;
1154 	return werr;
1155 }
1156 
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1157 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1158 		       struct extent_io_tree *dirty_pages)
1159 {
1160 	bool errors = false;
1161 	int err;
1162 
1163 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1164 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1165 		errors = true;
1166 
1167 	if (errors && !err)
1168 		err = -EIO;
1169 	return err;
1170 }
1171 
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1172 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1173 {
1174 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1175 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1176 	bool errors = false;
1177 	int err;
1178 
1179 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1180 
1181 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1182 	if ((mark & EXTENT_DIRTY) &&
1183 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1184 		errors = true;
1185 
1186 	if ((mark & EXTENT_NEW) &&
1187 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1188 		errors = true;
1189 
1190 	if (errors && !err)
1191 		err = -EIO;
1192 	return err;
1193 }
1194 
1195 /*
1196  * When btree blocks are allocated the corresponding extents are marked dirty.
1197  * This function ensures such extents are persisted on disk for transaction or
1198  * log commit.
1199  *
1200  * @trans: transaction whose dirty pages we'd like to write
1201  */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1202 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1203 {
1204 	int ret;
1205 	int ret2;
1206 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1207 	struct btrfs_fs_info *fs_info = trans->fs_info;
1208 	struct blk_plug plug;
1209 
1210 	blk_start_plug(&plug);
1211 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1212 	blk_finish_plug(&plug);
1213 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1214 
1215 	extent_io_tree_release(&trans->transaction->dirty_pages);
1216 
1217 	if (ret)
1218 		return ret;
1219 	else if (ret2)
1220 		return ret2;
1221 	else
1222 		return 0;
1223 }
1224 
1225 /*
1226  * this is used to update the root pointer in the tree of tree roots.
1227  *
1228  * But, in the case of the extent allocation tree, updating the root
1229  * pointer may allocate blocks which may change the root of the extent
1230  * allocation tree.
1231  *
1232  * So, this loops and repeats and makes sure the cowonly root didn't
1233  * change while the root pointer was being updated in the metadata.
1234  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1235 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1236 			       struct btrfs_root *root)
1237 {
1238 	int ret;
1239 	u64 old_root_bytenr;
1240 	u64 old_root_used;
1241 	struct btrfs_fs_info *fs_info = root->fs_info;
1242 	struct btrfs_root *tree_root = fs_info->tree_root;
1243 
1244 	old_root_used = btrfs_root_used(&root->root_item);
1245 
1246 	while (1) {
1247 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1248 		if (old_root_bytenr == root->node->start &&
1249 		    old_root_used == btrfs_root_used(&root->root_item))
1250 			break;
1251 
1252 		btrfs_set_root_node(&root->root_item, root->node);
1253 		ret = btrfs_update_root(trans, tree_root,
1254 					&root->root_key,
1255 					&root->root_item);
1256 		if (ret)
1257 			return ret;
1258 
1259 		old_root_used = btrfs_root_used(&root->root_item);
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * update all the cowonly tree roots on disk
1267  *
1268  * The error handling in this function may not be obvious. Any of the
1269  * failures will cause the file system to go offline. We still need
1270  * to clean up the delayed refs.
1271  */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1272 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1273 {
1274 	struct btrfs_fs_info *fs_info = trans->fs_info;
1275 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1276 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1277 	struct list_head *next;
1278 	struct extent_buffer *eb;
1279 	int ret;
1280 
1281 	/*
1282 	 * At this point no one can be using this transaction to modify any tree
1283 	 * and no one can start another transaction to modify any tree either.
1284 	 */
1285 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1286 
1287 	eb = btrfs_lock_root_node(fs_info->tree_root);
1288 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1289 			      0, &eb, BTRFS_NESTING_COW);
1290 	btrfs_tree_unlock(eb);
1291 	free_extent_buffer(eb);
1292 
1293 	if (ret)
1294 		return ret;
1295 
1296 	ret = btrfs_run_dev_stats(trans);
1297 	if (ret)
1298 		return ret;
1299 	ret = btrfs_run_dev_replace(trans);
1300 	if (ret)
1301 		return ret;
1302 	ret = btrfs_run_qgroups(trans);
1303 	if (ret)
1304 		return ret;
1305 
1306 	ret = btrfs_setup_space_cache(trans);
1307 	if (ret)
1308 		return ret;
1309 
1310 again:
1311 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1312 		struct btrfs_root *root;
1313 		next = fs_info->dirty_cowonly_roots.next;
1314 		list_del_init(next);
1315 		root = list_entry(next, struct btrfs_root, dirty_list);
1316 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1317 
1318 		list_add_tail(&root->dirty_list,
1319 			      &trans->transaction->switch_commits);
1320 		ret = update_cowonly_root(trans, root);
1321 		if (ret)
1322 			return ret;
1323 	}
1324 
1325 	/* Now flush any delayed refs generated by updating all of the roots */
1326 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1327 	if (ret)
1328 		return ret;
1329 
1330 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1331 		ret = btrfs_write_dirty_block_groups(trans);
1332 		if (ret)
1333 			return ret;
1334 
1335 		/*
1336 		 * We're writing the dirty block groups, which could generate
1337 		 * delayed refs, which could generate more dirty block groups,
1338 		 * so we want to keep this flushing in this loop to make sure
1339 		 * everything gets run.
1340 		 */
1341 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1342 		if (ret)
1343 			return ret;
1344 	}
1345 
1346 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1347 		goto again;
1348 
1349 	/* Update dev-replace pointer once everything is committed */
1350 	fs_info->dev_replace.committed_cursor_left =
1351 		fs_info->dev_replace.cursor_left_last_write_of_item;
1352 
1353 	return 0;
1354 }
1355 
1356 /*
1357  * If we had a pending drop we need to see if there are any others left in our
1358  * dead roots list, and if not clear our bit and wake any waiters.
1359  */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1360 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1361 {
1362 	/*
1363 	 * We put the drop in progress roots at the front of the list, so if the
1364 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1365 	 * up.
1366 	 */
1367 	spin_lock(&fs_info->trans_lock);
1368 	if (!list_empty(&fs_info->dead_roots)) {
1369 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1370 							   struct btrfs_root,
1371 							   root_list);
1372 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1373 			spin_unlock(&fs_info->trans_lock);
1374 			return;
1375 		}
1376 	}
1377 	spin_unlock(&fs_info->trans_lock);
1378 
1379 	btrfs_wake_unfinished_drop(fs_info);
1380 }
1381 
1382 /*
1383  * dead roots are old snapshots that need to be deleted.  This allocates
1384  * a dirty root struct and adds it into the list of dead roots that need to
1385  * be deleted
1386  */
btrfs_add_dead_root(struct btrfs_root * root)1387 void btrfs_add_dead_root(struct btrfs_root *root)
1388 {
1389 	struct btrfs_fs_info *fs_info = root->fs_info;
1390 
1391 	spin_lock(&fs_info->trans_lock);
1392 	if (list_empty(&root->root_list)) {
1393 		btrfs_grab_root(root);
1394 
1395 		/* We want to process the partially complete drops first. */
1396 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1397 			list_add(&root->root_list, &fs_info->dead_roots);
1398 		else
1399 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1400 	}
1401 	spin_unlock(&fs_info->trans_lock);
1402 }
1403 
1404 /*
1405  * Update each subvolume root and its relocation root, if it exists, in the tree
1406  * of tree roots. Also free log roots if they exist.
1407  */
commit_fs_roots(struct btrfs_trans_handle * trans)1408 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1409 {
1410 	struct btrfs_fs_info *fs_info = trans->fs_info;
1411 	struct btrfs_root *gang[8];
1412 	int i;
1413 	int ret;
1414 
1415 	/*
1416 	 * At this point no one can be using this transaction to modify any tree
1417 	 * and no one can start another transaction to modify any tree either.
1418 	 */
1419 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1420 
1421 	spin_lock(&fs_info->fs_roots_radix_lock);
1422 	while (1) {
1423 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1424 						 (void **)gang, 0,
1425 						 ARRAY_SIZE(gang),
1426 						 BTRFS_ROOT_TRANS_TAG);
1427 		if (ret == 0)
1428 			break;
1429 		for (i = 0; i < ret; i++) {
1430 			struct btrfs_root *root = gang[i];
1431 			int ret2;
1432 
1433 			/*
1434 			 * At this point we can neither have tasks logging inodes
1435 			 * from a root nor trying to commit a log tree.
1436 			 */
1437 			ASSERT(atomic_read(&root->log_writers) == 0);
1438 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1439 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1440 
1441 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1442 					(unsigned long)root->root_key.objectid,
1443 					BTRFS_ROOT_TRANS_TAG);
1444 			spin_unlock(&fs_info->fs_roots_radix_lock);
1445 
1446 			btrfs_free_log(trans, root);
1447 			ret2 = btrfs_update_reloc_root(trans, root);
1448 			if (ret2)
1449 				return ret2;
1450 
1451 			/* see comments in should_cow_block() */
1452 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1453 			smp_mb__after_atomic();
1454 
1455 			if (root->commit_root != root->node) {
1456 				list_add_tail(&root->dirty_list,
1457 					&trans->transaction->switch_commits);
1458 				btrfs_set_root_node(&root->root_item,
1459 						    root->node);
1460 			}
1461 
1462 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1463 						&root->root_key,
1464 						&root->root_item);
1465 			if (ret2)
1466 				return ret2;
1467 			spin_lock(&fs_info->fs_roots_radix_lock);
1468 			btrfs_qgroup_free_meta_all_pertrans(root);
1469 		}
1470 	}
1471 	spin_unlock(&fs_info->fs_roots_radix_lock);
1472 	return 0;
1473 }
1474 
1475 /*
1476  * defrag a given btree.
1477  * Every leaf in the btree is read and defragged.
1478  */
btrfs_defrag_root(struct btrfs_root * root)1479 int btrfs_defrag_root(struct btrfs_root *root)
1480 {
1481 	struct btrfs_fs_info *info = root->fs_info;
1482 	struct btrfs_trans_handle *trans;
1483 	int ret;
1484 
1485 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1486 		return 0;
1487 
1488 	while (1) {
1489 		trans = btrfs_start_transaction(root, 0);
1490 		if (IS_ERR(trans)) {
1491 			ret = PTR_ERR(trans);
1492 			break;
1493 		}
1494 
1495 		ret = btrfs_defrag_leaves(trans, root);
1496 
1497 		btrfs_end_transaction(trans);
1498 		btrfs_btree_balance_dirty(info);
1499 		cond_resched();
1500 
1501 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1502 			break;
1503 
1504 		if (btrfs_defrag_cancelled(info)) {
1505 			btrfs_debug(info, "defrag_root cancelled");
1506 			ret = -EAGAIN;
1507 			break;
1508 		}
1509 	}
1510 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1511 	return ret;
1512 }
1513 
1514 /*
1515  * Do all special snapshot related qgroup dirty hack.
1516  *
1517  * Will do all needed qgroup inherit and dirty hack like switch commit
1518  * roots inside one transaction and write all btree into disk, to make
1519  * qgroup works.
1520  */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1521 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1522 				   struct btrfs_root *src,
1523 				   struct btrfs_root *parent,
1524 				   struct btrfs_qgroup_inherit *inherit,
1525 				   u64 dst_objectid)
1526 {
1527 	struct btrfs_fs_info *fs_info = src->fs_info;
1528 	int ret;
1529 
1530 	/*
1531 	 * Save some performance in the case that qgroups are not
1532 	 * enabled. If this check races with the ioctl, rescan will
1533 	 * kick in anyway.
1534 	 */
1535 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1536 		return 0;
1537 
1538 	/*
1539 	 * Ensure dirty @src will be committed.  Or, after coming
1540 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1541 	 * recorded root will never be updated again, causing an outdated root
1542 	 * item.
1543 	 */
1544 	ret = record_root_in_trans(trans, src, 1);
1545 	if (ret)
1546 		return ret;
1547 
1548 	/*
1549 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1550 	 * src root, so we must run the delayed refs here.
1551 	 *
1552 	 * However this isn't particularly fool proof, because there's no
1553 	 * synchronization keeping us from changing the tree after this point
1554 	 * before we do the qgroup_inherit, or even from making changes while
1555 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1556 	 * for now flush the delayed refs to narrow the race window where the
1557 	 * qgroup counters could end up wrong.
1558 	 */
1559 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1560 	if (ret) {
1561 		btrfs_abort_transaction(trans, ret);
1562 		return ret;
1563 	}
1564 
1565 	ret = commit_fs_roots(trans);
1566 	if (ret)
1567 		goto out;
1568 	ret = btrfs_qgroup_account_extents(trans);
1569 	if (ret < 0)
1570 		goto out;
1571 
1572 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1573 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1574 				   inherit);
1575 	if (ret < 0)
1576 		goto out;
1577 
1578 	/*
1579 	 * Now we do a simplified commit transaction, which will:
1580 	 * 1) commit all subvolume and extent tree
1581 	 *    To ensure all subvolume and extent tree have a valid
1582 	 *    commit_root to accounting later insert_dir_item()
1583 	 * 2) write all btree blocks onto disk
1584 	 *    This is to make sure later btree modification will be cowed
1585 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1586 	 * In this simplified commit, we don't really care about other trees
1587 	 * like chunk and root tree, as they won't affect qgroup.
1588 	 * And we don't write super to avoid half committed status.
1589 	 */
1590 	ret = commit_cowonly_roots(trans);
1591 	if (ret)
1592 		goto out;
1593 	switch_commit_roots(trans);
1594 	ret = btrfs_write_and_wait_transaction(trans);
1595 	if (ret)
1596 		btrfs_handle_fs_error(fs_info, ret,
1597 			"Error while writing out transaction for qgroup");
1598 
1599 out:
1600 	/*
1601 	 * Force parent root to be updated, as we recorded it before so its
1602 	 * last_trans == cur_transid.
1603 	 * Or it won't be committed again onto disk after later
1604 	 * insert_dir_item()
1605 	 */
1606 	if (!ret)
1607 		ret = record_root_in_trans(trans, parent, 1);
1608 	return ret;
1609 }
1610 
1611 /*
1612  * new snapshots need to be created at a very specific time in the
1613  * transaction commit.  This does the actual creation.
1614  *
1615  * Note:
1616  * If the error which may affect the commitment of the current transaction
1617  * happens, we should return the error number. If the error which just affect
1618  * the creation of the pending snapshots, just return 0.
1619  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1620 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1621 				   struct btrfs_pending_snapshot *pending)
1622 {
1623 
1624 	struct btrfs_fs_info *fs_info = trans->fs_info;
1625 	struct btrfs_key key;
1626 	struct btrfs_root_item *new_root_item;
1627 	struct btrfs_root *tree_root = fs_info->tree_root;
1628 	struct btrfs_root *root = pending->root;
1629 	struct btrfs_root *parent_root;
1630 	struct btrfs_block_rsv *rsv;
1631 	struct inode *parent_inode = pending->dir;
1632 	struct btrfs_path *path;
1633 	struct btrfs_dir_item *dir_item;
1634 	struct extent_buffer *tmp;
1635 	struct extent_buffer *old;
1636 	struct timespec64 cur_time;
1637 	int ret = 0;
1638 	u64 to_reserve = 0;
1639 	u64 index = 0;
1640 	u64 objectid;
1641 	u64 root_flags;
1642 	unsigned int nofs_flags;
1643 	struct fscrypt_name fname;
1644 
1645 	ASSERT(pending->path);
1646 	path = pending->path;
1647 
1648 	ASSERT(pending->root_item);
1649 	new_root_item = pending->root_item;
1650 
1651 	/*
1652 	 * We're inside a transaction and must make sure that any potential
1653 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1654 	 * filesystem.
1655 	 */
1656 	nofs_flags = memalloc_nofs_save();
1657 	pending->error = fscrypt_setup_filename(parent_inode,
1658 						&pending->dentry->d_name, 0,
1659 						&fname);
1660 	memalloc_nofs_restore(nofs_flags);
1661 	if (pending->error)
1662 		goto free_pending;
1663 
1664 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1665 	if (pending->error)
1666 		goto free_fname;
1667 
1668 	/*
1669 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1670 	 * accounted by later btrfs_qgroup_inherit().
1671 	 */
1672 	btrfs_set_skip_qgroup(trans, objectid);
1673 
1674 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1675 
1676 	if (to_reserve > 0) {
1677 		pending->error = btrfs_block_rsv_add(fs_info,
1678 						     &pending->block_rsv,
1679 						     to_reserve,
1680 						     BTRFS_RESERVE_NO_FLUSH);
1681 		if (pending->error)
1682 			goto clear_skip_qgroup;
1683 	}
1684 
1685 	key.objectid = objectid;
1686 	key.offset = (u64)-1;
1687 	key.type = BTRFS_ROOT_ITEM_KEY;
1688 
1689 	rsv = trans->block_rsv;
1690 	trans->block_rsv = &pending->block_rsv;
1691 	trans->bytes_reserved = trans->block_rsv->reserved;
1692 	trace_btrfs_space_reservation(fs_info, "transaction",
1693 				      trans->transid,
1694 				      trans->bytes_reserved, 1);
1695 	parent_root = BTRFS_I(parent_inode)->root;
1696 	ret = record_root_in_trans(trans, parent_root, 0);
1697 	if (ret)
1698 		goto fail;
1699 	cur_time = current_time(parent_inode);
1700 
1701 	/*
1702 	 * insert the directory item
1703 	 */
1704 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1705 	BUG_ON(ret); /* -ENOMEM */
1706 
1707 	/* check if there is a file/dir which has the same name. */
1708 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1709 					 btrfs_ino(BTRFS_I(parent_inode)),
1710 					 &fname.disk_name, 0);
1711 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1712 		pending->error = -EEXIST;
1713 		goto dir_item_existed;
1714 	} else if (IS_ERR(dir_item)) {
1715 		ret = PTR_ERR(dir_item);
1716 		btrfs_abort_transaction(trans, ret);
1717 		goto fail;
1718 	}
1719 	btrfs_release_path(path);
1720 
1721 	/*
1722 	 * pull in the delayed directory update
1723 	 * and the delayed inode item
1724 	 * otherwise we corrupt the FS during
1725 	 * snapshot
1726 	 */
1727 	ret = btrfs_run_delayed_items(trans);
1728 	if (ret) {	/* Transaction aborted */
1729 		btrfs_abort_transaction(trans, ret);
1730 		goto fail;
1731 	}
1732 
1733 	ret = record_root_in_trans(trans, root, 0);
1734 	if (ret) {
1735 		btrfs_abort_transaction(trans, ret);
1736 		goto fail;
1737 	}
1738 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1739 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1740 	btrfs_check_and_init_root_item(new_root_item);
1741 
1742 	root_flags = btrfs_root_flags(new_root_item);
1743 	if (pending->readonly)
1744 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1745 	else
1746 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1747 	btrfs_set_root_flags(new_root_item, root_flags);
1748 
1749 	btrfs_set_root_generation_v2(new_root_item,
1750 			trans->transid);
1751 	generate_random_guid(new_root_item->uuid);
1752 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1753 			BTRFS_UUID_SIZE);
1754 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1755 		memset(new_root_item->received_uuid, 0,
1756 		       sizeof(new_root_item->received_uuid));
1757 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1758 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1759 		btrfs_set_root_stransid(new_root_item, 0);
1760 		btrfs_set_root_rtransid(new_root_item, 0);
1761 	}
1762 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1763 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1764 	btrfs_set_root_otransid(new_root_item, trans->transid);
1765 
1766 	old = btrfs_lock_root_node(root);
1767 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1768 			      BTRFS_NESTING_COW);
1769 	if (ret) {
1770 		btrfs_tree_unlock(old);
1771 		free_extent_buffer(old);
1772 		btrfs_abort_transaction(trans, ret);
1773 		goto fail;
1774 	}
1775 
1776 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1777 	/* clean up in any case */
1778 	btrfs_tree_unlock(old);
1779 	free_extent_buffer(old);
1780 	if (ret) {
1781 		btrfs_abort_transaction(trans, ret);
1782 		goto fail;
1783 	}
1784 	/* see comments in should_cow_block() */
1785 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1786 	smp_wmb();
1787 
1788 	btrfs_set_root_node(new_root_item, tmp);
1789 	/* record when the snapshot was created in key.offset */
1790 	key.offset = trans->transid;
1791 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1792 	btrfs_tree_unlock(tmp);
1793 	free_extent_buffer(tmp);
1794 	if (ret) {
1795 		btrfs_abort_transaction(trans, ret);
1796 		goto fail;
1797 	}
1798 
1799 	/*
1800 	 * insert root back/forward references
1801 	 */
1802 	ret = btrfs_add_root_ref(trans, objectid,
1803 				 parent_root->root_key.objectid,
1804 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1805 				 &fname.disk_name);
1806 	if (ret) {
1807 		btrfs_abort_transaction(trans, ret);
1808 		goto fail;
1809 	}
1810 
1811 	key.offset = (u64)-1;
1812 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1813 	if (IS_ERR(pending->snap)) {
1814 		ret = PTR_ERR(pending->snap);
1815 		pending->snap = NULL;
1816 		btrfs_abort_transaction(trans, ret);
1817 		goto fail;
1818 	}
1819 
1820 	ret = btrfs_reloc_post_snapshot(trans, pending);
1821 	if (ret) {
1822 		btrfs_abort_transaction(trans, ret);
1823 		goto fail;
1824 	}
1825 
1826 	/*
1827 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1828 	 * snapshot hack to do fast snapshot.
1829 	 * To co-operate with that hack, we do hack again.
1830 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1831 	 */
1832 	ret = qgroup_account_snapshot(trans, root, parent_root,
1833 				      pending->inherit, objectid);
1834 	if (ret < 0)
1835 		goto fail;
1836 
1837 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1838 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1839 				    index);
1840 	/* We have check then name at the beginning, so it is impossible. */
1841 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1842 	if (ret) {
1843 		btrfs_abort_transaction(trans, ret);
1844 		goto fail;
1845 	}
1846 
1847 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1848 						  fname.disk_name.len * 2);
1849 	parent_inode->i_mtime = current_time(parent_inode);
1850 	parent_inode->i_ctime = parent_inode->i_mtime;
1851 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1852 	if (ret) {
1853 		btrfs_abort_transaction(trans, ret);
1854 		goto fail;
1855 	}
1856 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1857 				  BTRFS_UUID_KEY_SUBVOL,
1858 				  objectid);
1859 	if (ret) {
1860 		btrfs_abort_transaction(trans, ret);
1861 		goto fail;
1862 	}
1863 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1864 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1865 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1866 					  objectid);
1867 		if (ret && ret != -EEXIST) {
1868 			btrfs_abort_transaction(trans, ret);
1869 			goto fail;
1870 		}
1871 	}
1872 
1873 fail:
1874 	pending->error = ret;
1875 dir_item_existed:
1876 	trans->block_rsv = rsv;
1877 	trans->bytes_reserved = 0;
1878 clear_skip_qgroup:
1879 	btrfs_clear_skip_qgroup(trans);
1880 free_fname:
1881 	fscrypt_free_filename(&fname);
1882 free_pending:
1883 	kfree(new_root_item);
1884 	pending->root_item = NULL;
1885 	btrfs_free_path(path);
1886 	pending->path = NULL;
1887 
1888 	return ret;
1889 }
1890 
1891 /*
1892  * create all the snapshots we've scheduled for creation
1893  */
create_pending_snapshots(struct btrfs_trans_handle * trans)1894 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1895 {
1896 	struct btrfs_pending_snapshot *pending, *next;
1897 	struct list_head *head = &trans->transaction->pending_snapshots;
1898 	int ret = 0;
1899 
1900 	list_for_each_entry_safe(pending, next, head, list) {
1901 		list_del(&pending->list);
1902 		ret = create_pending_snapshot(trans, pending);
1903 		if (ret)
1904 			break;
1905 	}
1906 	return ret;
1907 }
1908 
update_super_roots(struct btrfs_fs_info * fs_info)1909 static void update_super_roots(struct btrfs_fs_info *fs_info)
1910 {
1911 	struct btrfs_root_item *root_item;
1912 	struct btrfs_super_block *super;
1913 
1914 	super = fs_info->super_copy;
1915 
1916 	root_item = &fs_info->chunk_root->root_item;
1917 	super->chunk_root = root_item->bytenr;
1918 	super->chunk_root_generation = root_item->generation;
1919 	super->chunk_root_level = root_item->level;
1920 
1921 	root_item = &fs_info->tree_root->root_item;
1922 	super->root = root_item->bytenr;
1923 	super->generation = root_item->generation;
1924 	super->root_level = root_item->level;
1925 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1926 		super->cache_generation = root_item->generation;
1927 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1928 		super->cache_generation = 0;
1929 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1930 		super->uuid_tree_generation = root_item->generation;
1931 }
1932 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1933 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1934 {
1935 	struct btrfs_transaction *trans;
1936 	int ret = 0;
1937 
1938 	spin_lock(&info->trans_lock);
1939 	trans = info->running_transaction;
1940 	if (trans)
1941 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1942 	spin_unlock(&info->trans_lock);
1943 	return ret;
1944 }
1945 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1946 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1947 {
1948 	struct btrfs_transaction *trans;
1949 	int ret = 0;
1950 
1951 	spin_lock(&info->trans_lock);
1952 	trans = info->running_transaction;
1953 	if (trans)
1954 		ret = is_transaction_blocked(trans);
1955 	spin_unlock(&info->trans_lock);
1956 	return ret;
1957 }
1958 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1959 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1960 {
1961 	struct btrfs_fs_info *fs_info = trans->fs_info;
1962 	struct btrfs_transaction *cur_trans;
1963 
1964 	/* Kick the transaction kthread. */
1965 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1966 	wake_up_process(fs_info->transaction_kthread);
1967 
1968 	/* take transaction reference */
1969 	cur_trans = trans->transaction;
1970 	refcount_inc(&cur_trans->use_count);
1971 
1972 	btrfs_end_transaction(trans);
1973 
1974 	/*
1975 	 * Wait for the current transaction commit to start and block
1976 	 * subsequent transaction joins
1977 	 */
1978 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1979 	wait_event(fs_info->transaction_blocked_wait,
1980 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1981 		   TRANS_ABORTED(cur_trans));
1982 	btrfs_put_transaction(cur_trans);
1983 }
1984 
cleanup_transaction(struct btrfs_trans_handle * trans,int err)1985 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1986 {
1987 	struct btrfs_fs_info *fs_info = trans->fs_info;
1988 	struct btrfs_transaction *cur_trans = trans->transaction;
1989 
1990 	WARN_ON(refcount_read(&trans->use_count) > 1);
1991 
1992 	btrfs_abort_transaction(trans, err);
1993 
1994 	spin_lock(&fs_info->trans_lock);
1995 
1996 	/*
1997 	 * If the transaction is removed from the list, it means this
1998 	 * transaction has been committed successfully, so it is impossible
1999 	 * to call the cleanup function.
2000 	 */
2001 	BUG_ON(list_empty(&cur_trans->list));
2002 
2003 	if (cur_trans == fs_info->running_transaction) {
2004 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2005 		spin_unlock(&fs_info->trans_lock);
2006 
2007 		/*
2008 		 * The thread has already released the lockdep map as reader
2009 		 * already in btrfs_commit_transaction().
2010 		 */
2011 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2012 		wait_event(cur_trans->writer_wait,
2013 			   atomic_read(&cur_trans->num_writers) == 1);
2014 
2015 		spin_lock(&fs_info->trans_lock);
2016 	}
2017 
2018 	/*
2019 	 * Now that we know no one else is still using the transaction we can
2020 	 * remove the transaction from the list of transactions. This avoids
2021 	 * the transaction kthread from cleaning up the transaction while some
2022 	 * other task is still using it, which could result in a use-after-free
2023 	 * on things like log trees, as it forces the transaction kthread to
2024 	 * wait for this transaction to be cleaned up by us.
2025 	 */
2026 	list_del_init(&cur_trans->list);
2027 
2028 	spin_unlock(&fs_info->trans_lock);
2029 
2030 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2031 
2032 	spin_lock(&fs_info->trans_lock);
2033 	if (cur_trans == fs_info->running_transaction)
2034 		fs_info->running_transaction = NULL;
2035 	spin_unlock(&fs_info->trans_lock);
2036 
2037 	if (trans->type & __TRANS_FREEZABLE)
2038 		sb_end_intwrite(fs_info->sb);
2039 	btrfs_put_transaction(cur_trans);
2040 	btrfs_put_transaction(cur_trans);
2041 
2042 	trace_btrfs_transaction_commit(fs_info);
2043 
2044 	if (current->journal_info == trans)
2045 		current->journal_info = NULL;
2046 
2047 	/*
2048 	 * If relocation is running, we can't cancel scrub because that will
2049 	 * result in a deadlock. Before relocating a block group, relocation
2050 	 * pauses scrub, then starts and commits a transaction before unpausing
2051 	 * scrub. If the transaction commit is being done by the relocation
2052 	 * task or triggered by another task and the relocation task is waiting
2053 	 * for the commit, and we end up here due to an error in the commit
2054 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2055 	 * asking for scrub to stop while having it asked to be paused higher
2056 	 * above in relocation code.
2057 	 */
2058 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2059 		btrfs_scrub_cancel(fs_info);
2060 
2061 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2062 }
2063 
2064 /*
2065  * Release reserved delayed ref space of all pending block groups of the
2066  * transaction and remove them from the list
2067  */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2068 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2069 {
2070        struct btrfs_fs_info *fs_info = trans->fs_info;
2071        struct btrfs_block_group *block_group, *tmp;
2072 
2073        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2074                btrfs_delayed_refs_rsv_release(fs_info, 1);
2075                list_del_init(&block_group->bg_list);
2076        }
2077 }
2078 
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2079 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2080 {
2081 	/*
2082 	 * We use try_to_writeback_inodes_sb() here because if we used
2083 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2084 	 * Currently are holding the fs freeze lock, if we do an async flush
2085 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2086 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2087 	 * from already being in a transaction and our join_transaction doesn't
2088 	 * have to re-take the fs freeze lock.
2089 	 *
2090 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2091 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2092 	 * except when the filesystem is being unmounted or being frozen, but in
2093 	 * those cases sync_filesystem() is called, which results in calling
2094 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2095 	 * Note that we don't call writeback_inodes_sb() directly, because it
2096 	 * will emit a warning if sb->s_umount is not locked.
2097 	 */
2098 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2099 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2100 	return 0;
2101 }
2102 
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2103 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2104 {
2105 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2106 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2107 }
2108 
2109 /*
2110  * Add a pending snapshot associated with the given transaction handle to the
2111  * respective handle. This must be called after the transaction commit started
2112  * and while holding fs_info->trans_lock.
2113  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2114  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2115  * returns an error.
2116  */
add_pending_snapshot(struct btrfs_trans_handle * trans)2117 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2118 {
2119 	struct btrfs_transaction *cur_trans = trans->transaction;
2120 
2121 	if (!trans->pending_snapshot)
2122 		return;
2123 
2124 	lockdep_assert_held(&trans->fs_info->trans_lock);
2125 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2126 
2127 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2128 }
2129 
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2130 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2131 {
2132 	fs_info->commit_stats.commit_count++;
2133 	fs_info->commit_stats.last_commit_dur = interval;
2134 	fs_info->commit_stats.max_commit_dur =
2135 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2136 	fs_info->commit_stats.total_commit_dur += interval;
2137 }
2138 
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2139 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2140 {
2141 	struct btrfs_fs_info *fs_info = trans->fs_info;
2142 	struct btrfs_transaction *cur_trans = trans->transaction;
2143 	struct btrfs_transaction *prev_trans = NULL;
2144 	int ret;
2145 	ktime_t start_time;
2146 	ktime_t interval;
2147 
2148 	ASSERT(refcount_read(&trans->use_count) == 1);
2149 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2150 
2151 	/* Stop the commit early if ->aborted is set */
2152 	if (TRANS_ABORTED(cur_trans)) {
2153 		ret = cur_trans->aborted;
2154 		goto lockdep_trans_commit_start_release;
2155 	}
2156 
2157 	btrfs_trans_release_metadata(trans);
2158 	trans->block_rsv = NULL;
2159 
2160 	/*
2161 	 * We only want one transaction commit doing the flushing so we do not
2162 	 * waste a bunch of time on lock contention on the extent root node.
2163 	 */
2164 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2165 			      &cur_trans->delayed_refs.flags)) {
2166 		/*
2167 		 * Make a pass through all the delayed refs we have so far.
2168 		 * Any running threads may add more while we are here.
2169 		 */
2170 		ret = btrfs_run_delayed_refs(trans, 0);
2171 		if (ret)
2172 			goto lockdep_trans_commit_start_release;
2173 	}
2174 
2175 	btrfs_create_pending_block_groups(trans);
2176 
2177 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2178 		int run_it = 0;
2179 
2180 		/* this mutex is also taken before trying to set
2181 		 * block groups readonly.  We need to make sure
2182 		 * that nobody has set a block group readonly
2183 		 * after a extents from that block group have been
2184 		 * allocated for cache files.  btrfs_set_block_group_ro
2185 		 * will wait for the transaction to commit if it
2186 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2187 		 *
2188 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2189 		 * only one process starts all the block group IO.  It wouldn't
2190 		 * hurt to have more than one go through, but there's no
2191 		 * real advantage to it either.
2192 		 */
2193 		mutex_lock(&fs_info->ro_block_group_mutex);
2194 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2195 				      &cur_trans->flags))
2196 			run_it = 1;
2197 		mutex_unlock(&fs_info->ro_block_group_mutex);
2198 
2199 		if (run_it) {
2200 			ret = btrfs_start_dirty_block_groups(trans);
2201 			if (ret)
2202 				goto lockdep_trans_commit_start_release;
2203 		}
2204 	}
2205 
2206 	spin_lock(&fs_info->trans_lock);
2207 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2208 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2209 
2210 		add_pending_snapshot(trans);
2211 
2212 		spin_unlock(&fs_info->trans_lock);
2213 		refcount_inc(&cur_trans->use_count);
2214 
2215 		if (trans->in_fsync)
2216 			want_state = TRANS_STATE_SUPER_COMMITTED;
2217 
2218 		btrfs_trans_state_lockdep_release(fs_info,
2219 						  BTRFS_LOCKDEP_TRANS_COMMIT_START);
2220 		ret = btrfs_end_transaction(trans);
2221 		wait_for_commit(cur_trans, want_state);
2222 
2223 		if (TRANS_ABORTED(cur_trans))
2224 			ret = cur_trans->aborted;
2225 
2226 		btrfs_put_transaction(cur_trans);
2227 
2228 		return ret;
2229 	}
2230 
2231 	cur_trans->state = TRANS_STATE_COMMIT_START;
2232 	wake_up(&fs_info->transaction_blocked_wait);
2233 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2234 
2235 	if (cur_trans->list.prev != &fs_info->trans_list) {
2236 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2237 
2238 		if (trans->in_fsync)
2239 			want_state = TRANS_STATE_SUPER_COMMITTED;
2240 
2241 		prev_trans = list_entry(cur_trans->list.prev,
2242 					struct btrfs_transaction, list);
2243 		if (prev_trans->state < want_state) {
2244 			refcount_inc(&prev_trans->use_count);
2245 			spin_unlock(&fs_info->trans_lock);
2246 
2247 			wait_for_commit(prev_trans, want_state);
2248 
2249 			ret = READ_ONCE(prev_trans->aborted);
2250 
2251 			btrfs_put_transaction(prev_trans);
2252 			if (ret)
2253 				goto lockdep_release;
2254 		} else {
2255 			spin_unlock(&fs_info->trans_lock);
2256 		}
2257 	} else {
2258 		spin_unlock(&fs_info->trans_lock);
2259 		/*
2260 		 * The previous transaction was aborted and was already removed
2261 		 * from the list of transactions at fs_info->trans_list. So we
2262 		 * abort to prevent writing a new superblock that reflects a
2263 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2264 		 */
2265 		if (BTRFS_FS_ERROR(fs_info)) {
2266 			ret = -EROFS;
2267 			goto lockdep_release;
2268 		}
2269 	}
2270 
2271 	/*
2272 	 * Get the time spent on the work done by the commit thread and not
2273 	 * the time spent waiting on a previous commit
2274 	 */
2275 	start_time = ktime_get_ns();
2276 
2277 	extwriter_counter_dec(cur_trans, trans->type);
2278 
2279 	ret = btrfs_start_delalloc_flush(fs_info);
2280 	if (ret)
2281 		goto lockdep_release;
2282 
2283 	ret = btrfs_run_delayed_items(trans);
2284 	if (ret)
2285 		goto lockdep_release;
2286 
2287 	/*
2288 	 * The thread has started/joined the transaction thus it holds the
2289 	 * lockdep map as a reader. It has to release it before acquiring the
2290 	 * lockdep map as a writer.
2291 	 */
2292 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2293 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2294 	wait_event(cur_trans->writer_wait,
2295 		   extwriter_counter_read(cur_trans) == 0);
2296 
2297 	/* some pending stuffs might be added after the previous flush. */
2298 	ret = btrfs_run_delayed_items(trans);
2299 	if (ret) {
2300 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2301 		goto cleanup_transaction;
2302 	}
2303 
2304 	btrfs_wait_delalloc_flush(fs_info);
2305 
2306 	/*
2307 	 * Wait for all ordered extents started by a fast fsync that joined this
2308 	 * transaction. Otherwise if this transaction commits before the ordered
2309 	 * extents complete we lose logged data after a power failure.
2310 	 */
2311 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2312 	wait_event(cur_trans->pending_wait,
2313 		   atomic_read(&cur_trans->pending_ordered) == 0);
2314 
2315 	btrfs_scrub_pause(fs_info);
2316 	/*
2317 	 * Ok now we need to make sure to block out any other joins while we
2318 	 * commit the transaction.  We could have started a join before setting
2319 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2320 	 */
2321 	spin_lock(&fs_info->trans_lock);
2322 	add_pending_snapshot(trans);
2323 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2324 	spin_unlock(&fs_info->trans_lock);
2325 
2326 	/*
2327 	 * The thread has started/joined the transaction thus it holds the
2328 	 * lockdep map as a reader. It has to release it before acquiring the
2329 	 * lockdep map as a writer.
2330 	 */
2331 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2332 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2333 	wait_event(cur_trans->writer_wait,
2334 		   atomic_read(&cur_trans->num_writers) == 1);
2335 
2336 	/*
2337 	 * Make lockdep happy by acquiring the state locks after
2338 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2339 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2340 	 * complain because we did not follow the reverse order unlocking rule.
2341 	 */
2342 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2343 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2344 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2345 
2346 	/*
2347 	 * We've started the commit, clear the flag in case we were triggered to
2348 	 * do an async commit but somebody else started before the transaction
2349 	 * kthread could do the work.
2350 	 */
2351 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2352 
2353 	if (TRANS_ABORTED(cur_trans)) {
2354 		ret = cur_trans->aborted;
2355 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2356 		goto scrub_continue;
2357 	}
2358 	/*
2359 	 * the reloc mutex makes sure that we stop
2360 	 * the balancing code from coming in and moving
2361 	 * extents around in the middle of the commit
2362 	 */
2363 	mutex_lock(&fs_info->reloc_mutex);
2364 
2365 	/*
2366 	 * We needn't worry about the delayed items because we will
2367 	 * deal with them in create_pending_snapshot(), which is the
2368 	 * core function of the snapshot creation.
2369 	 */
2370 	ret = create_pending_snapshots(trans);
2371 	if (ret)
2372 		goto unlock_reloc;
2373 
2374 	/*
2375 	 * We insert the dir indexes of the snapshots and update the inode
2376 	 * of the snapshots' parents after the snapshot creation, so there
2377 	 * are some delayed items which are not dealt with. Now deal with
2378 	 * them.
2379 	 *
2380 	 * We needn't worry that this operation will corrupt the snapshots,
2381 	 * because all the tree which are snapshoted will be forced to COW
2382 	 * the nodes and leaves.
2383 	 */
2384 	ret = btrfs_run_delayed_items(trans);
2385 	if (ret)
2386 		goto unlock_reloc;
2387 
2388 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2389 	if (ret)
2390 		goto unlock_reloc;
2391 
2392 	/*
2393 	 * make sure none of the code above managed to slip in a
2394 	 * delayed item
2395 	 */
2396 	btrfs_assert_delayed_root_empty(fs_info);
2397 
2398 	WARN_ON(cur_trans != trans->transaction);
2399 
2400 	ret = commit_fs_roots(trans);
2401 	if (ret)
2402 		goto unlock_reloc;
2403 
2404 	/*
2405 	 * Since the transaction is done, we can apply the pending changes
2406 	 * before the next transaction.
2407 	 */
2408 	btrfs_apply_pending_changes(fs_info);
2409 
2410 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2411 	 * safe to free the root of tree log roots
2412 	 */
2413 	btrfs_free_log_root_tree(trans, fs_info);
2414 
2415 	/*
2416 	 * Since fs roots are all committed, we can get a quite accurate
2417 	 * new_roots. So let's do quota accounting.
2418 	 */
2419 	ret = btrfs_qgroup_account_extents(trans);
2420 	if (ret < 0)
2421 		goto unlock_reloc;
2422 
2423 	ret = commit_cowonly_roots(trans);
2424 	if (ret)
2425 		goto unlock_reloc;
2426 
2427 	/*
2428 	 * The tasks which save the space cache and inode cache may also
2429 	 * update ->aborted, check it.
2430 	 */
2431 	if (TRANS_ABORTED(cur_trans)) {
2432 		ret = cur_trans->aborted;
2433 		goto unlock_reloc;
2434 	}
2435 
2436 	cur_trans = fs_info->running_transaction;
2437 
2438 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2439 			    fs_info->tree_root->node);
2440 	list_add_tail(&fs_info->tree_root->dirty_list,
2441 		      &cur_trans->switch_commits);
2442 
2443 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2444 			    fs_info->chunk_root->node);
2445 	list_add_tail(&fs_info->chunk_root->dirty_list,
2446 		      &cur_trans->switch_commits);
2447 
2448 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2449 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2450 				    fs_info->block_group_root->node);
2451 		list_add_tail(&fs_info->block_group_root->dirty_list,
2452 			      &cur_trans->switch_commits);
2453 	}
2454 
2455 	switch_commit_roots(trans);
2456 
2457 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2458 	ASSERT(list_empty(&cur_trans->io_bgs));
2459 	update_super_roots(fs_info);
2460 
2461 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2462 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2463 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2464 	       sizeof(*fs_info->super_copy));
2465 
2466 	btrfs_commit_device_sizes(cur_trans);
2467 
2468 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2469 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2470 
2471 	btrfs_trans_release_chunk_metadata(trans);
2472 
2473 	/*
2474 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2475 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2476 	 * make sure that before we commit our superblock, no other task can
2477 	 * start a new transaction and commit a log tree before we commit our
2478 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2479 	 * writing its superblock.
2480 	 */
2481 	mutex_lock(&fs_info->tree_log_mutex);
2482 
2483 	spin_lock(&fs_info->trans_lock);
2484 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2485 	fs_info->running_transaction = NULL;
2486 	spin_unlock(&fs_info->trans_lock);
2487 	mutex_unlock(&fs_info->reloc_mutex);
2488 
2489 	wake_up(&fs_info->transaction_wait);
2490 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2491 
2492 	ret = btrfs_write_and_wait_transaction(trans);
2493 	if (ret) {
2494 		btrfs_handle_fs_error(fs_info, ret,
2495 				      "Error while writing out transaction");
2496 		mutex_unlock(&fs_info->tree_log_mutex);
2497 		goto scrub_continue;
2498 	}
2499 
2500 	/*
2501 	 * At this point, we should have written all the tree blocks allocated
2502 	 * in this transaction. So it's now safe to free the redirtyied extent
2503 	 * buffers.
2504 	 */
2505 	btrfs_free_redirty_list(cur_trans);
2506 
2507 	ret = write_all_supers(fs_info, 0);
2508 	/*
2509 	 * the super is written, we can safely allow the tree-loggers
2510 	 * to go about their business
2511 	 */
2512 	mutex_unlock(&fs_info->tree_log_mutex);
2513 	if (ret)
2514 		goto scrub_continue;
2515 
2516 	/*
2517 	 * We needn't acquire the lock here because there is no other task
2518 	 * which can change it.
2519 	 */
2520 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2521 	wake_up(&cur_trans->commit_wait);
2522 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2523 
2524 	btrfs_finish_extent_commit(trans);
2525 
2526 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2527 		btrfs_clear_space_info_full(fs_info);
2528 
2529 	fs_info->last_trans_committed = cur_trans->transid;
2530 	/*
2531 	 * We needn't acquire the lock here because there is no other task
2532 	 * which can change it.
2533 	 */
2534 	cur_trans->state = TRANS_STATE_COMPLETED;
2535 	wake_up(&cur_trans->commit_wait);
2536 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2537 
2538 	spin_lock(&fs_info->trans_lock);
2539 	list_del_init(&cur_trans->list);
2540 	spin_unlock(&fs_info->trans_lock);
2541 
2542 	btrfs_put_transaction(cur_trans);
2543 	btrfs_put_transaction(cur_trans);
2544 
2545 	if (trans->type & __TRANS_FREEZABLE)
2546 		sb_end_intwrite(fs_info->sb);
2547 
2548 	trace_btrfs_transaction_commit(fs_info);
2549 
2550 	interval = ktime_get_ns() - start_time;
2551 
2552 	btrfs_scrub_continue(fs_info);
2553 
2554 	if (current->journal_info == trans)
2555 		current->journal_info = NULL;
2556 
2557 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2558 
2559 	update_commit_stats(fs_info, interval);
2560 
2561 	return ret;
2562 
2563 unlock_reloc:
2564 	mutex_unlock(&fs_info->reloc_mutex);
2565 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2566 scrub_continue:
2567 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2568 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2569 	btrfs_scrub_continue(fs_info);
2570 cleanup_transaction:
2571 	btrfs_trans_release_metadata(trans);
2572 	btrfs_cleanup_pending_block_groups(trans);
2573 	btrfs_trans_release_chunk_metadata(trans);
2574 	trans->block_rsv = NULL;
2575 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2576 	if (current->journal_info == trans)
2577 		current->journal_info = NULL;
2578 	cleanup_transaction(trans, ret);
2579 
2580 	return ret;
2581 
2582 lockdep_release:
2583 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2584 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2585 	goto cleanup_transaction;
2586 
2587 lockdep_trans_commit_start_release:
2588 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2589 	btrfs_end_transaction(trans);
2590 	return ret;
2591 }
2592 
2593 /*
2594  * return < 0 if error
2595  * 0 if there are no more dead_roots at the time of call
2596  * 1 there are more to be processed, call me again
2597  *
2598  * The return value indicates there are certainly more snapshots to delete, but
2599  * if there comes a new one during processing, it may return 0. We don't mind,
2600  * because btrfs_commit_super will poke cleaner thread and it will process it a
2601  * few seconds later.
2602  */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2603 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2604 {
2605 	struct btrfs_root *root;
2606 	int ret;
2607 
2608 	spin_lock(&fs_info->trans_lock);
2609 	if (list_empty(&fs_info->dead_roots)) {
2610 		spin_unlock(&fs_info->trans_lock);
2611 		return 0;
2612 	}
2613 	root = list_first_entry(&fs_info->dead_roots,
2614 			struct btrfs_root, root_list);
2615 	list_del_init(&root->root_list);
2616 	spin_unlock(&fs_info->trans_lock);
2617 
2618 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2619 
2620 	btrfs_kill_all_delayed_nodes(root);
2621 
2622 	if (btrfs_header_backref_rev(root->node) <
2623 			BTRFS_MIXED_BACKREF_REV)
2624 		ret = btrfs_drop_snapshot(root, 0, 0);
2625 	else
2626 		ret = btrfs_drop_snapshot(root, 1, 0);
2627 
2628 	btrfs_put_root(root);
2629 	return (ret < 0) ? 0 : 1;
2630 }
2631 
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2632 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2633 {
2634 	unsigned long prev;
2635 	unsigned long bit;
2636 
2637 	prev = xchg(&fs_info->pending_changes, 0);
2638 	if (!prev)
2639 		return;
2640 
2641 	bit = 1 << BTRFS_PENDING_COMMIT;
2642 	if (prev & bit)
2643 		btrfs_debug(fs_info, "pending commit done");
2644 	prev &= ~bit;
2645 
2646 	if (prev)
2647 		btrfs_warn(fs_info,
2648 			"unknown pending changes left 0x%lx, ignoring", prev);
2649 }
2650