• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "disk-io.h"
10 
11 /*
12  * HOW DO BLOCK RESERVES WORK
13  *
14  *   Think of block_rsv's as buckets for logically grouped metadata
15  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
16  *   how large we want our block rsv to be, ->reserved is how much space is
17  *   currently reserved for this block reserve.
18  *
19  *   ->failfast exists for the truncate case, and is described below.
20  *
21  * NORMAL OPERATION
22  *
23  *   -> Reserve
24  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
25  *
26  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
27  *     accounted for in space_info->bytes_may_use, and then add the bytes to
28  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
29  *
30  *     ->size is an over-estimation of how much we may use for a particular
31  *     operation.
32  *
33  *   -> Use
34  *     Entrance: btrfs_use_block_rsv
35  *
36  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
37  *     to determine the appropriate block_rsv to use, and then verify that
38  *     ->reserved has enough space for our tree block allocation.  Once
39  *     successful we subtract fs_info->nodesize from ->reserved.
40  *
41  *   -> Finish
42  *     Entrance: btrfs_block_rsv_release
43  *
44  *     We are finished with our operation, subtract our individual reservation
45  *     from ->size, and then subtract ->size from ->reserved and free up the
46  *     excess if there is any.
47  *
48  *     There is some logic here to refill the delayed refs rsv or the global rsv
49  *     as needed, otherwise the excess is subtracted from
50  *     space_info->bytes_may_use.
51  *
52  * TYPES OF BLOCK RESERVES
53  *
54  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
55  *   These behave normally, as described above, just within the confines of the
56  *   lifetime of their particular operation (transaction for the whole trans
57  *   handle lifetime, for example).
58  *
59  * BLOCK_RSV_GLOBAL
60  *   It is impossible to properly account for all the space that may be required
61  *   to make our extent tree updates.  This block reserve acts as an overflow
62  *   buffer in case our delayed refs reserve does not reserve enough space to
63  *   update the extent tree.
64  *
65  *   We can steal from this in some cases as well, notably on evict() or
66  *   truncate() in order to help users recover from ENOSPC conditions.
67  *
68  * BLOCK_RSV_DELALLOC
69  *   The individual item sizes are determined by the per-inode size
70  *   calculations, which are described with the delalloc code.  This is pretty
71  *   straightforward, it's just the calculation of ->size encodes a lot of
72  *   different items, and thus it gets used when updating inodes, inserting file
73  *   extents, and inserting checksums.
74  *
75  * BLOCK_RSV_DELREFS
76  *   We keep a running tally of how many delayed refs we have on the system.
77  *   We assume each one of these delayed refs are going to use a full
78  *   reservation.  We use the transaction items and pre-reserve space for every
79  *   operation, and use this reservation to refill any gap between ->size and
80  *   ->reserved that may exist.
81  *
82  *   From there it's straightforward, removing a delayed ref means we remove its
83  *   count from ->size and free up reservations as necessary.  Since this is
84  *   the most dynamic block reserve in the system, we will try to refill this
85  *   block reserve first with any excess returned by any other block reserve.
86  *
87  * BLOCK_RSV_EMPTY
88  *   This is the fallback block reserve to make us try to reserve space if we
89  *   don't have a specific bucket for this allocation.  It is mostly used for
90  *   updating the device tree and such, since that is a separate pool we're
91  *   content to just reserve space from the space_info on demand.
92  *
93  * BLOCK_RSV_TEMP
94  *   This is used by things like truncate and iput.  We will temporarily
95  *   allocate a block reserve, set it to some size, and then truncate bytes
96  *   until we have no space left.  With ->failfast set we'll simply return
97  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
98  *   to make a new reservation.  This is because these operations are
99  *   unbounded, so we want to do as much work as we can, and then back off and
100  *   re-reserve.
101  */
102 
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes,u64 * qgroup_to_release_ret)103 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
104 				    struct btrfs_block_rsv *block_rsv,
105 				    struct btrfs_block_rsv *dest, u64 num_bytes,
106 				    u64 *qgroup_to_release_ret)
107 {
108 	struct btrfs_space_info *space_info = block_rsv->space_info;
109 	u64 qgroup_to_release = 0;
110 	u64 ret;
111 
112 	spin_lock(&block_rsv->lock);
113 	if (num_bytes == (u64)-1) {
114 		num_bytes = block_rsv->size;
115 		qgroup_to_release = block_rsv->qgroup_rsv_size;
116 	}
117 	block_rsv->size -= num_bytes;
118 	if (block_rsv->reserved >= block_rsv->size) {
119 		num_bytes = block_rsv->reserved - block_rsv->size;
120 		block_rsv->reserved = block_rsv->size;
121 		block_rsv->full = true;
122 	} else {
123 		num_bytes = 0;
124 	}
125 	if (qgroup_to_release_ret &&
126 	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
127 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
128 				    block_rsv->qgroup_rsv_size;
129 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
130 	} else {
131 		qgroup_to_release = 0;
132 	}
133 	spin_unlock(&block_rsv->lock);
134 
135 	ret = num_bytes;
136 	if (num_bytes > 0) {
137 		if (dest) {
138 			spin_lock(&dest->lock);
139 			if (!dest->full) {
140 				u64 bytes_to_add;
141 
142 				bytes_to_add = dest->size - dest->reserved;
143 				bytes_to_add = min(num_bytes, bytes_to_add);
144 				dest->reserved += bytes_to_add;
145 				if (dest->reserved >= dest->size)
146 					dest->full = true;
147 				num_bytes -= bytes_to_add;
148 			}
149 			spin_unlock(&dest->lock);
150 		}
151 		if (num_bytes)
152 			btrfs_space_info_free_bytes_may_use(fs_info,
153 							    space_info,
154 							    num_bytes);
155 	}
156 	if (qgroup_to_release_ret)
157 		*qgroup_to_release_ret = qgroup_to_release;
158 	return ret;
159 }
160 
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,bool update_size)161 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
162 			    struct btrfs_block_rsv *dst, u64 num_bytes,
163 			    bool update_size)
164 {
165 	int ret;
166 
167 	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
168 	if (ret)
169 		return ret;
170 
171 	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
172 	return 0;
173 }
174 
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,enum btrfs_rsv_type type)175 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
176 {
177 	memset(rsv, 0, sizeof(*rsv));
178 	spin_lock_init(&rsv->lock);
179 	rsv->type = type;
180 }
181 
btrfs_init_metadata_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv,enum btrfs_rsv_type type)182 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
183 				   struct btrfs_block_rsv *rsv,
184 				   enum btrfs_rsv_type type)
185 {
186 	btrfs_init_block_rsv(rsv, type);
187 	rsv->space_info = btrfs_find_space_info(fs_info,
188 					    BTRFS_BLOCK_GROUP_METADATA);
189 }
190 
btrfs_alloc_block_rsv(struct btrfs_fs_info * fs_info,enum btrfs_rsv_type type)191 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
192 					      enum btrfs_rsv_type type)
193 {
194 	struct btrfs_block_rsv *block_rsv;
195 
196 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
197 	if (!block_rsv)
198 		return NULL;
199 
200 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
201 	return block_rsv;
202 }
203 
btrfs_free_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)204 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
205 			  struct btrfs_block_rsv *rsv)
206 {
207 	if (!rsv)
208 		return;
209 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
210 	kfree(rsv);
211 }
212 
btrfs_block_rsv_add(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)213 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
214 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
215 			enum btrfs_reserve_flush_enum flush)
216 {
217 	int ret;
218 
219 	if (num_bytes == 0)
220 		return 0;
221 
222 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
223 	if (!ret)
224 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
225 
226 	return ret;
227 }
228 
btrfs_block_rsv_check(struct btrfs_block_rsv * block_rsv,int min_factor)229 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
230 {
231 	u64 num_bytes = 0;
232 	int ret = -ENOSPC;
233 
234 	if (!block_rsv)
235 		return 0;
236 
237 	spin_lock(&block_rsv->lock);
238 	num_bytes = div_factor(block_rsv->size, min_factor);
239 	if (block_rsv->reserved >= num_bytes)
240 		ret = 0;
241 	spin_unlock(&block_rsv->lock);
242 
243 	return ret;
244 }
245 
btrfs_block_rsv_refill(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)246 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
247 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
248 			   enum btrfs_reserve_flush_enum flush)
249 {
250 	u64 num_bytes = 0;
251 	int ret = -ENOSPC;
252 
253 	if (!block_rsv)
254 		return 0;
255 
256 	spin_lock(&block_rsv->lock);
257 	num_bytes = min_reserved;
258 	if (block_rsv->reserved >= num_bytes)
259 		ret = 0;
260 	else
261 		num_bytes -= block_rsv->reserved;
262 	spin_unlock(&block_rsv->lock);
263 
264 	if (!ret)
265 		return 0;
266 
267 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
268 	if (!ret) {
269 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
270 		return 0;
271 	}
272 
273 	return ret;
274 }
275 
btrfs_block_rsv_release(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes,u64 * qgroup_to_release)276 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
277 			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
278 			    u64 *qgroup_to_release)
279 {
280 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
281 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
282 	struct btrfs_block_rsv *target = NULL;
283 
284 	/*
285 	 * If we are the delayed_rsv then push to the global rsv, otherwise dump
286 	 * into the delayed rsv if it is not full.
287 	 */
288 	if (block_rsv == delayed_rsv)
289 		target = global_rsv;
290 	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
291 		target = delayed_rsv;
292 
293 	if (target && block_rsv->space_info != target->space_info)
294 		target = NULL;
295 
296 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
297 				       qgroup_to_release);
298 }
299 
btrfs_block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)300 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
301 {
302 	int ret = -ENOSPC;
303 
304 	spin_lock(&block_rsv->lock);
305 	if (block_rsv->reserved >= num_bytes) {
306 		block_rsv->reserved -= num_bytes;
307 		if (block_rsv->reserved < block_rsv->size)
308 			block_rsv->full = false;
309 		ret = 0;
310 	}
311 	spin_unlock(&block_rsv->lock);
312 	return ret;
313 }
314 
btrfs_block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,bool update_size)315 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
316 			       u64 num_bytes, bool update_size)
317 {
318 	spin_lock(&block_rsv->lock);
319 	block_rsv->reserved += num_bytes;
320 	if (update_size)
321 		block_rsv->size += num_bytes;
322 	else if (block_rsv->reserved >= block_rsv->size)
323 		block_rsv->full = true;
324 	spin_unlock(&block_rsv->lock);
325 }
326 
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)327 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
328 			     struct btrfs_block_rsv *dest, u64 num_bytes,
329 			     int min_factor)
330 {
331 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
332 	u64 min_bytes;
333 
334 	if (global_rsv->space_info != dest->space_info)
335 		return -ENOSPC;
336 
337 	spin_lock(&global_rsv->lock);
338 	min_bytes = div_factor(global_rsv->size, min_factor);
339 	if (global_rsv->reserved < min_bytes + num_bytes) {
340 		spin_unlock(&global_rsv->lock);
341 		return -ENOSPC;
342 	}
343 	global_rsv->reserved -= num_bytes;
344 	if (global_rsv->reserved < global_rsv->size)
345 		global_rsv->full = false;
346 	spin_unlock(&global_rsv->lock);
347 
348 	btrfs_block_rsv_add_bytes(dest, num_bytes, true);
349 	return 0;
350 }
351 
btrfs_update_global_block_rsv(struct btrfs_fs_info * fs_info)352 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
353 {
354 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
355 	struct btrfs_space_info *sinfo = block_rsv->space_info;
356 	struct btrfs_root *root, *tmp;
357 	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
358 	unsigned int min_items = 1;
359 
360 	/*
361 	 * The global block rsv is based on the size of the extent tree, the
362 	 * checksum tree and the root tree.  If the fs is empty we want to set
363 	 * it to a minimal amount for safety.
364 	 *
365 	 * We also are going to need to modify the minimum of the tree root and
366 	 * any global roots we could touch.
367 	 */
368 	read_lock(&fs_info->global_root_lock);
369 	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
370 					     rb_node) {
371 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
372 		    root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
373 		    root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
374 			num_bytes += btrfs_root_used(&root->root_item);
375 			min_items++;
376 		}
377 	}
378 	read_unlock(&fs_info->global_root_lock);
379 
380 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
381 		num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
382 		min_items++;
383 	}
384 
385 	/*
386 	 * But we also want to reserve enough space so we can do the fallback
387 	 * global reserve for an unlink, which is an additional 5 items (see the
388 	 * comment in __unlink_start_trans for what we're modifying.)
389 	 *
390 	 * But we also need space for the delayed ref updates from the unlink,
391 	 * so its 10, 5 for the actual operation, and 5 for the delayed ref
392 	 * updates.
393 	 */
394 	min_items += 10;
395 
396 	num_bytes = max_t(u64, num_bytes,
397 			  btrfs_calc_insert_metadata_size(fs_info, min_items));
398 
399 	spin_lock(&sinfo->lock);
400 	spin_lock(&block_rsv->lock);
401 
402 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
403 
404 	if (block_rsv->reserved < block_rsv->size) {
405 		num_bytes = block_rsv->size - block_rsv->reserved;
406 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
407 						      num_bytes);
408 		block_rsv->reserved = block_rsv->size;
409 	} else if (block_rsv->reserved > block_rsv->size) {
410 		num_bytes = block_rsv->reserved - block_rsv->size;
411 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
412 						      -num_bytes);
413 		block_rsv->reserved = block_rsv->size;
414 		btrfs_try_granting_tickets(fs_info, sinfo);
415 	}
416 
417 	block_rsv->full = (block_rsv->reserved == block_rsv->size);
418 
419 	if (block_rsv->size >= sinfo->total_bytes)
420 		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
421 	spin_unlock(&block_rsv->lock);
422 	spin_unlock(&sinfo->lock);
423 }
424 
btrfs_init_root_block_rsv(struct btrfs_root * root)425 void btrfs_init_root_block_rsv(struct btrfs_root *root)
426 {
427 	struct btrfs_fs_info *fs_info = root->fs_info;
428 
429 	switch (root->root_key.objectid) {
430 	case BTRFS_CSUM_TREE_OBJECTID:
431 	case BTRFS_EXTENT_TREE_OBJECTID:
432 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
433 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
434 		root->block_rsv = &fs_info->delayed_refs_rsv;
435 		break;
436 	case BTRFS_ROOT_TREE_OBJECTID:
437 	case BTRFS_DEV_TREE_OBJECTID:
438 	case BTRFS_QUOTA_TREE_OBJECTID:
439 		root->block_rsv = &fs_info->global_block_rsv;
440 		break;
441 	case BTRFS_CHUNK_TREE_OBJECTID:
442 		root->block_rsv = &fs_info->chunk_block_rsv;
443 		break;
444 	default:
445 		root->block_rsv = NULL;
446 		break;
447 	}
448 }
449 
btrfs_init_global_block_rsv(struct btrfs_fs_info * fs_info)450 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
451 {
452 	struct btrfs_space_info *space_info;
453 
454 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
455 	fs_info->chunk_block_rsv.space_info = space_info;
456 
457 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
458 	fs_info->global_block_rsv.space_info = space_info;
459 	fs_info->trans_block_rsv.space_info = space_info;
460 	fs_info->empty_block_rsv.space_info = space_info;
461 	fs_info->delayed_block_rsv.space_info = space_info;
462 	fs_info->delayed_refs_rsv.space_info = space_info;
463 
464 	btrfs_update_global_block_rsv(fs_info);
465 }
466 
btrfs_release_global_block_rsv(struct btrfs_fs_info * fs_info)467 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
468 {
469 	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
470 				NULL);
471 	WARN_ON(fs_info->trans_block_rsv.size > 0);
472 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
473 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
474 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
475 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
476 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
477 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
478 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
479 }
480 
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)481 static struct btrfs_block_rsv *get_block_rsv(
482 					const struct btrfs_trans_handle *trans,
483 					const struct btrfs_root *root)
484 {
485 	struct btrfs_fs_info *fs_info = root->fs_info;
486 	struct btrfs_block_rsv *block_rsv = NULL;
487 
488 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
489 	    (root == fs_info->uuid_root) ||
490 	    (trans->adding_csums &&
491 	     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
492 		block_rsv = trans->block_rsv;
493 
494 	if (!block_rsv)
495 		block_rsv = root->block_rsv;
496 
497 	if (!block_rsv)
498 		block_rsv = &fs_info->empty_block_rsv;
499 
500 	return block_rsv;
501 }
502 
btrfs_use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)503 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
504 					    struct btrfs_root *root,
505 					    u32 blocksize)
506 {
507 	struct btrfs_fs_info *fs_info = root->fs_info;
508 	struct btrfs_block_rsv *block_rsv;
509 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
510 	int ret;
511 	bool global_updated = false;
512 
513 	block_rsv = get_block_rsv(trans, root);
514 
515 	if (unlikely(block_rsv->size == 0))
516 		goto try_reserve;
517 again:
518 	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
519 	if (!ret)
520 		return block_rsv;
521 
522 	if (block_rsv->failfast)
523 		return ERR_PTR(ret);
524 
525 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
526 		global_updated = true;
527 		btrfs_update_global_block_rsv(fs_info);
528 		goto again;
529 	}
530 
531 	/*
532 	 * The global reserve still exists to save us from ourselves, so don't
533 	 * warn_on if we are short on our delayed refs reserve.
534 	 */
535 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
536 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
537 		static DEFINE_RATELIMIT_STATE(_rs,
538 				DEFAULT_RATELIMIT_INTERVAL * 10,
539 				/*DEFAULT_RATELIMIT_BURST*/ 1);
540 		if (__ratelimit(&_rs))
541 			WARN(1, KERN_DEBUG
542 				"BTRFS: block rsv %d returned %d\n",
543 				block_rsv->type, ret);
544 	}
545 try_reserve:
546 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
547 					   BTRFS_RESERVE_NO_FLUSH);
548 	if (!ret)
549 		return block_rsv;
550 	/*
551 	 * If we couldn't reserve metadata bytes try and use some from
552 	 * the global reserve if its space type is the same as the global
553 	 * reservation.
554 	 */
555 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
556 	    block_rsv->space_info == global_rsv->space_info) {
557 		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
558 		if (!ret)
559 			return global_rsv;
560 	}
561 	return ERR_PTR(ret);
562 }
563