1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/init.h>
4 #include <linux/fs.h>
5 #include <linux/slab.h>
6 #include <linux/rwsem.h>
7 #include <linux/xattr.h>
8 #include <linux/security.h>
9 #include <linux/posix_acl_xattr.h>
10 #include <linux/iversion.h>
11 #include <linux/fsverity.h>
12 #include <linux/sched/mm.h>
13 #include "ctree.h"
14 #include "btrfs_inode.h"
15 #include "transaction.h"
16 #include "disk-io.h"
17 #include "locking.h"
18
19 /*
20 * Implementation of the interface defined in struct fsverity_operations.
21 *
22 * The main question is how and where to store the verity descriptor and the
23 * Merkle tree. We store both in dedicated btree items in the filesystem tree,
24 * together with the rest of the inode metadata. This means we'll need to do
25 * extra work to encrypt them once encryption is supported in btrfs, but btrfs
26 * has a lot of careful code around i_size and it seems better to make a new key
27 * type than try and adjust all of our expectations for i_size.
28 *
29 * Note that this differs from the implementation in ext4 and f2fs, where
30 * this data is stored as if it were in the file, but past EOF. However, btrfs
31 * does not have a widespread mechanism for caching opaque metadata pages, so we
32 * do pretend that the Merkle tree pages themselves are past EOF for the
33 * purposes of caching them (as opposed to creating a virtual inode).
34 *
35 * fs verity items are stored under two different key types on disk.
36 * The descriptor items:
37 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
38 *
39 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
40 * size of the descriptor item and some extra data for encryption.
41 * Starting at offset 1, these hold the generic fs verity descriptor.
42 * The latter are opaque to btrfs, we just read and write them as a blob for
43 * the higher level verity code. The most common descriptor size is 256 bytes.
44 *
45 * The merkle tree items:
46 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
47 *
48 * These also start at offset 0, and correspond to the merkle tree bytes.
49 * So when fsverity asks for page 0 of the merkle tree, we pull up one page
50 * starting at offset 0 for this key type. These are also opaque to btrfs,
51 * we're blindly storing whatever fsverity sends down.
52 *
53 * Another important consideration is the fact that the Merkle tree data scales
54 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
55 * ~1/127th the size) so for large files, writing the tree can be a lengthy
56 * operation. For that reason, we guard the whole enable verity operation
57 * (between begin_enable_verity and end_enable_verity) with an orphan item.
58 * Again, because the data can be pretty large, it's quite possible that we
59 * could run out of space writing it, so we try our best to handle errors by
60 * stopping and rolling back rather than aborting the victim transaction.
61 */
62
63 #define MERKLE_START_ALIGN 65536
64
65 /*
66 * Compute the logical file offset where we cache the Merkle tree.
67 *
68 * @inode: inode of the verity file
69 *
70 * For the purposes of caching the Merkle tree pages, as required by
71 * fs-verity, it is convenient to do size computations in terms of a file
72 * offset, rather than in terms of page indices.
73 *
74 * Use 64K to be sure it's past the last page in the file, even with 64K pages.
75 * That rounding operation itself can overflow loff_t, so we do it in u64 and
76 * check.
77 *
78 * Returns the file offset on success, negative error code on failure.
79 */
merkle_file_pos(const struct inode * inode)80 static loff_t merkle_file_pos(const struct inode *inode)
81 {
82 u64 sz = inode->i_size;
83 u64 rounded = round_up(sz, MERKLE_START_ALIGN);
84
85 if (rounded > inode->i_sb->s_maxbytes)
86 return -EFBIG;
87
88 return rounded;
89 }
90
91 /*
92 * Drop all the items for this inode with this key_type.
93 *
94 * @inode: inode to drop items for
95 * @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or
96 * BTRFS_VERITY_MERKLE_ITEM)
97 *
98 * Before doing a verity enable we cleanup any existing verity items.
99 * This is also used to clean up if a verity enable failed half way through.
100 *
101 * Returns number of dropped items on success, negative error code on failure.
102 */
drop_verity_items(struct btrfs_inode * inode,u8 key_type)103 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
104 {
105 struct btrfs_trans_handle *trans;
106 struct btrfs_root *root = inode->root;
107 struct btrfs_path *path;
108 struct btrfs_key key;
109 int count = 0;
110 int ret;
111
112 path = btrfs_alloc_path();
113 if (!path)
114 return -ENOMEM;
115
116 while (1) {
117 /* 1 for the item being dropped */
118 trans = btrfs_start_transaction(root, 1);
119 if (IS_ERR(trans)) {
120 ret = PTR_ERR(trans);
121 goto out;
122 }
123
124 /*
125 * Walk backwards through all the items until we find one that
126 * isn't from our key type or objectid
127 */
128 key.objectid = btrfs_ino(inode);
129 key.type = key_type;
130 key.offset = (u64)-1;
131
132 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
133 if (ret > 0) {
134 ret = 0;
135 /* No more keys of this type, we're done */
136 if (path->slots[0] == 0)
137 break;
138 path->slots[0]--;
139 } else if (ret < 0) {
140 btrfs_end_transaction(trans);
141 goto out;
142 }
143
144 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
145
146 /* No more keys of this type, we're done */
147 if (key.objectid != btrfs_ino(inode) || key.type != key_type)
148 break;
149
150 /*
151 * This shouldn't be a performance sensitive function because
152 * it's not used as part of truncate. If it ever becomes
153 * perf sensitive, change this to walk forward and bulk delete
154 * items
155 */
156 ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
157 if (ret) {
158 btrfs_end_transaction(trans);
159 goto out;
160 }
161 count++;
162 btrfs_release_path(path);
163 btrfs_end_transaction(trans);
164 }
165 ret = count;
166 btrfs_end_transaction(trans);
167 out:
168 btrfs_free_path(path);
169 return ret;
170 }
171
172 /*
173 * Drop all verity items
174 *
175 * @inode: inode to drop verity items for
176 *
177 * In most contexts where we are dropping verity items, we want to do it for all
178 * the types of verity items, not a particular one.
179 *
180 * Returns: 0 on success, negative error code on failure.
181 */
btrfs_drop_verity_items(struct btrfs_inode * inode)182 int btrfs_drop_verity_items(struct btrfs_inode *inode)
183 {
184 int ret;
185
186 ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
187 if (ret < 0)
188 return ret;
189 ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
190 if (ret < 0)
191 return ret;
192
193 return 0;
194 }
195
196 /*
197 * Insert and write inode items with a given key type and offset.
198 *
199 * @inode: inode to insert for
200 * @key_type: key type to insert
201 * @offset: item offset to insert at
202 * @src: source data to write
203 * @len: length of source data to write
204 *
205 * Write len bytes from src into items of up to 2K length.
206 * The inserted items will have key (ino, key_type, offset + off) where off is
207 * consecutively increasing from 0 up to the last item ending at offset + len.
208 *
209 * Returns 0 on success and a negative error code on failure.
210 */
write_key_bytes(struct btrfs_inode * inode,u8 key_type,u64 offset,const char * src,u64 len)211 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
212 const char *src, u64 len)
213 {
214 struct btrfs_trans_handle *trans;
215 struct btrfs_path *path;
216 struct btrfs_root *root = inode->root;
217 struct extent_buffer *leaf;
218 struct btrfs_key key;
219 unsigned long copy_bytes;
220 unsigned long src_offset = 0;
221 void *data;
222 int ret = 0;
223
224 path = btrfs_alloc_path();
225 if (!path)
226 return -ENOMEM;
227
228 while (len > 0) {
229 /* 1 for the new item being inserted */
230 trans = btrfs_start_transaction(root, 1);
231 if (IS_ERR(trans)) {
232 ret = PTR_ERR(trans);
233 break;
234 }
235
236 key.objectid = btrfs_ino(inode);
237 key.type = key_type;
238 key.offset = offset;
239
240 /*
241 * Insert 2K at a time mostly to be friendly for smaller leaf
242 * size filesystems
243 */
244 copy_bytes = min_t(u64, len, 2048);
245
246 ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
247 if (ret) {
248 btrfs_end_transaction(trans);
249 break;
250 }
251
252 leaf = path->nodes[0];
253
254 data = btrfs_item_ptr(leaf, path->slots[0], void);
255 write_extent_buffer(leaf, src + src_offset,
256 (unsigned long)data, copy_bytes);
257 offset += copy_bytes;
258 src_offset += copy_bytes;
259 len -= copy_bytes;
260
261 btrfs_release_path(path);
262 btrfs_end_transaction(trans);
263 }
264
265 btrfs_free_path(path);
266 return ret;
267 }
268
269 /*
270 * Read inode items of the given key type and offset from the btree.
271 *
272 * @inode: inode to read items of
273 * @key_type: key type to read
274 * @offset: item offset to read from
275 * @dest: Buffer to read into. This parameter has slightly tricky
276 * semantics. If it is NULL, the function will not do any copying
277 * and will just return the size of all the items up to len bytes.
278 * If dest_page is passed, then the function will kmap_local the
279 * page and ignore dest, but it must still be non-NULL to avoid the
280 * counting-only behavior.
281 * @len: length in bytes to read
282 * @dest_page: copy into this page instead of the dest buffer
283 *
284 * Helper function to read items from the btree. This returns the number of
285 * bytes read or < 0 for errors. We can return short reads if the items don't
286 * exist on disk or aren't big enough to fill the desired length. Supports
287 * reading into a provided buffer (dest) or into the page cache
288 *
289 * Returns number of bytes read or a negative error code on failure.
290 */
read_key_bytes(struct btrfs_inode * inode,u8 key_type,u64 offset,char * dest,u64 len,struct page * dest_page)291 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
292 char *dest, u64 len, struct page *dest_page)
293 {
294 struct btrfs_path *path;
295 struct btrfs_root *root = inode->root;
296 struct extent_buffer *leaf;
297 struct btrfs_key key;
298 u64 item_end;
299 u64 copy_end;
300 int copied = 0;
301 u32 copy_offset;
302 unsigned long copy_bytes;
303 unsigned long dest_offset = 0;
304 void *data;
305 char *kaddr = dest;
306 int ret;
307
308 path = btrfs_alloc_path();
309 if (!path)
310 return -ENOMEM;
311
312 if (dest_page)
313 path->reada = READA_FORWARD;
314
315 key.objectid = btrfs_ino(inode);
316 key.type = key_type;
317 key.offset = offset;
318
319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
320 if (ret < 0) {
321 goto out;
322 } else if (ret > 0) {
323 ret = 0;
324 if (path->slots[0] == 0)
325 goto out;
326 path->slots[0]--;
327 }
328
329 while (len > 0) {
330 leaf = path->nodes[0];
331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
332
333 if (key.objectid != btrfs_ino(inode) || key.type != key_type)
334 break;
335
336 item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
337
338 if (copied > 0) {
339 /*
340 * Once we've copied something, we want all of the items
341 * to be sequential
342 */
343 if (key.offset != offset)
344 break;
345 } else {
346 /*
347 * Our initial offset might be in the middle of an
348 * item. Make sure it all makes sense.
349 */
350 if (key.offset > offset)
351 break;
352 if (item_end <= offset)
353 break;
354 }
355
356 /* desc = NULL to just sum all the item lengths */
357 if (!dest)
358 copy_end = item_end;
359 else
360 copy_end = min(offset + len, item_end);
361
362 /* Number of bytes in this item we want to copy */
363 copy_bytes = copy_end - offset;
364
365 /* Offset from the start of item for copying */
366 copy_offset = offset - key.offset;
367
368 if (dest) {
369 if (dest_page)
370 kaddr = kmap_local_page(dest_page);
371
372 data = btrfs_item_ptr(leaf, path->slots[0], void);
373 read_extent_buffer(leaf, kaddr + dest_offset,
374 (unsigned long)data + copy_offset,
375 copy_bytes);
376
377 if (dest_page)
378 kunmap_local(kaddr);
379 }
380
381 offset += copy_bytes;
382 dest_offset += copy_bytes;
383 len -= copy_bytes;
384 copied += copy_bytes;
385
386 path->slots[0]++;
387 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
388 /*
389 * We've reached the last slot in this leaf and we need
390 * to go to the next leaf.
391 */
392 ret = btrfs_next_leaf(root, path);
393 if (ret < 0) {
394 break;
395 } else if (ret > 0) {
396 ret = 0;
397 break;
398 }
399 }
400 }
401 out:
402 btrfs_free_path(path);
403 if (!ret)
404 ret = copied;
405 return ret;
406 }
407
408 /*
409 * Delete an fsverity orphan
410 *
411 * @trans: transaction to do the delete in
412 * @inode: inode to orphan
413 *
414 * Capture verity orphan specific logic that is repeated in the couple places
415 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
416 * with 0 links.
417 *
418 * Returns zero on success or a negative error code on failure.
419 */
del_orphan(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)420 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
421 {
422 struct btrfs_root *root = inode->root;
423 int ret;
424
425 /*
426 * If the inode has no links, it is either already unlinked, or was
427 * created with O_TMPFILE. In either case, it should have an orphan from
428 * that other operation. Rather than reference count the orphans, we
429 * simply ignore them here, because we only invoke the verity path in
430 * the orphan logic when i_nlink is 1.
431 */
432 if (!inode->vfs_inode.i_nlink)
433 return 0;
434
435 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
436 if (ret == -ENOENT)
437 ret = 0;
438 return ret;
439 }
440
441 /*
442 * Rollback in-progress verity if we encounter an error.
443 *
444 * @inode: inode verity had an error for
445 *
446 * We try to handle recoverable errors while enabling verity by rolling it back
447 * and just failing the operation, rather than having an fs level error no
448 * matter what. However, any error in rollback is unrecoverable.
449 *
450 * Returns 0 on success, negative error code on failure.
451 */
rollback_verity(struct btrfs_inode * inode)452 static int rollback_verity(struct btrfs_inode *inode)
453 {
454 struct btrfs_trans_handle *trans = NULL;
455 struct btrfs_root *root = inode->root;
456 int ret;
457
458 ASSERT(inode_is_locked(&inode->vfs_inode));
459 truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
460 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
461 ret = btrfs_drop_verity_items(inode);
462 if (ret) {
463 btrfs_handle_fs_error(root->fs_info, ret,
464 "failed to drop verity items in rollback %llu",
465 (u64)inode->vfs_inode.i_ino);
466 goto out;
467 }
468
469 /*
470 * 1 for updating the inode flag
471 * 1 for deleting the orphan
472 */
473 trans = btrfs_start_transaction(root, 2);
474 if (IS_ERR(trans)) {
475 ret = PTR_ERR(trans);
476 trans = NULL;
477 btrfs_handle_fs_error(root->fs_info, ret,
478 "failed to start transaction in verity rollback %llu",
479 (u64)inode->vfs_inode.i_ino);
480 goto out;
481 }
482 inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
483 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
484 ret = btrfs_update_inode(trans, root, inode);
485 if (ret) {
486 btrfs_abort_transaction(trans, ret);
487 goto out;
488 }
489 ret = del_orphan(trans, inode);
490 if (ret) {
491 btrfs_abort_transaction(trans, ret);
492 goto out;
493 }
494 out:
495 if (trans)
496 btrfs_end_transaction(trans);
497 return ret;
498 }
499
500 /*
501 * Finalize making the file a valid verity file
502 *
503 * @inode: inode to be marked as verity
504 * @desc: contents of the verity descriptor to write (not NULL)
505 * @desc_size: size of the verity descriptor
506 *
507 * Do the actual work of finalizing verity after successfully writing the Merkle
508 * tree:
509 *
510 * - write out the descriptor items
511 * - mark the inode with the verity flag
512 * - delete the orphan item
513 * - mark the ro compat bit
514 * - clear the in progress bit
515 *
516 * Returns 0 on success, negative error code on failure.
517 */
finish_verity(struct btrfs_inode * inode,const void * desc,size_t desc_size)518 static int finish_verity(struct btrfs_inode *inode, const void *desc,
519 size_t desc_size)
520 {
521 struct btrfs_trans_handle *trans = NULL;
522 struct btrfs_root *root = inode->root;
523 struct btrfs_verity_descriptor_item item;
524 int ret;
525
526 /* Write out the descriptor item */
527 memset(&item, 0, sizeof(item));
528 btrfs_set_stack_verity_descriptor_size(&item, desc_size);
529 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
530 (const char *)&item, sizeof(item));
531 if (ret)
532 goto out;
533
534 /* Write out the descriptor itself */
535 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
536 desc, desc_size);
537 if (ret)
538 goto out;
539
540 /*
541 * 1 for updating the inode flag
542 * 1 for deleting the orphan
543 */
544 trans = btrfs_start_transaction(root, 2);
545 if (IS_ERR(trans)) {
546 ret = PTR_ERR(trans);
547 goto out;
548 }
549 inode->ro_flags |= BTRFS_INODE_RO_VERITY;
550 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
551 ret = btrfs_update_inode(trans, root, inode);
552 if (ret)
553 goto end_trans;
554 ret = del_orphan(trans, inode);
555 if (ret)
556 goto end_trans;
557 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
558 btrfs_set_fs_compat_ro(root->fs_info, VERITY);
559 end_trans:
560 btrfs_end_transaction(trans);
561 out:
562 return ret;
563
564 }
565
566 /*
567 * fsverity op that begins enabling verity.
568 *
569 * @filp: file to enable verity on
570 *
571 * Begin enabling fsverity for the file. We drop any existing verity items, add
572 * an orphan and set the in progress bit.
573 *
574 * Returns 0 on success, negative error code on failure.
575 */
btrfs_begin_enable_verity(struct file * filp)576 static int btrfs_begin_enable_verity(struct file *filp)
577 {
578 struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
579 struct btrfs_root *root = inode->root;
580 struct btrfs_trans_handle *trans;
581 int ret;
582
583 ASSERT(inode_is_locked(file_inode(filp)));
584
585 if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
586 return -EBUSY;
587
588 /*
589 * This should almost never do anything, but theoretically, it's
590 * possible that we failed to enable verity on a file, then were
591 * interrupted or failed while rolling back, failed to cleanup the
592 * orphan, and finally attempt to enable verity again.
593 */
594 ret = btrfs_drop_verity_items(inode);
595 if (ret)
596 return ret;
597
598 /* 1 for the orphan item */
599 trans = btrfs_start_transaction(root, 1);
600 if (IS_ERR(trans))
601 return PTR_ERR(trans);
602
603 ret = btrfs_orphan_add(trans, inode);
604 if (!ret)
605 set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
606 btrfs_end_transaction(trans);
607
608 return 0;
609 }
610
611 /*
612 * fsverity op that ends enabling verity.
613 *
614 * @filp: file we are finishing enabling verity on
615 * @desc: verity descriptor to write out (NULL in error conditions)
616 * @desc_size: size of the verity descriptor (variable with signatures)
617 * @merkle_tree_size: size of the merkle tree in bytes
618 *
619 * If desc is null, then VFS is signaling an error occurred during verity
620 * enable, and we should try to rollback. Otherwise, attempt to finish verity.
621 *
622 * Returns 0 on success, negative error code on error.
623 */
btrfs_end_enable_verity(struct file * filp,const void * desc,size_t desc_size,u64 merkle_tree_size)624 static int btrfs_end_enable_verity(struct file *filp, const void *desc,
625 size_t desc_size, u64 merkle_tree_size)
626 {
627 struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
628 int ret = 0;
629 int rollback_ret;
630
631 ASSERT(inode_is_locked(file_inode(filp)));
632
633 if (desc == NULL)
634 goto rollback;
635
636 ret = finish_verity(inode, desc, desc_size);
637 if (ret)
638 goto rollback;
639 return ret;
640
641 rollback:
642 rollback_ret = rollback_verity(inode);
643 if (rollback_ret)
644 btrfs_err(inode->root->fs_info,
645 "failed to rollback verity items: %d", rollback_ret);
646 return ret;
647 }
648
649 /*
650 * fsverity op that gets the struct fsverity_descriptor.
651 *
652 * @inode: inode to get the descriptor of
653 * @buf: output buffer for the descriptor contents
654 * @buf_size: size of the output buffer. 0 to query the size
655 *
656 * fsverity does a two pass setup for reading the descriptor, in the first pass
657 * it calls with buf_size = 0 to query the size of the descriptor, and then in
658 * the second pass it actually reads the descriptor off disk.
659 *
660 * Returns the size on success or a negative error code on failure.
661 */
btrfs_get_verity_descriptor(struct inode * inode,void * buf,size_t buf_size)662 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
663 {
664 u64 true_size;
665 int ret = 0;
666 struct btrfs_verity_descriptor_item item;
667
668 memset(&item, 0, sizeof(item));
669 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
670 (char *)&item, sizeof(item), NULL);
671 if (ret < 0)
672 return ret;
673
674 if (item.reserved[0] != 0 || item.reserved[1] != 0)
675 return -EUCLEAN;
676
677 true_size = btrfs_stack_verity_descriptor_size(&item);
678 if (true_size > INT_MAX)
679 return -EUCLEAN;
680
681 if (buf_size == 0)
682 return true_size;
683 if (buf_size < true_size)
684 return -ERANGE;
685
686 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
687 buf, buf_size, NULL);
688 if (ret < 0)
689 return ret;
690 if (ret != true_size)
691 return -EIO;
692
693 return true_size;
694 }
695
696 /*
697 * fsverity op that reads and caches a merkle tree page.
698 *
699 * @inode: inode to read a merkle tree page for
700 * @index: page index relative to the start of the merkle tree
701 * @num_ra_pages: number of pages to readahead. Optional, we ignore it
702 *
703 * The Merkle tree is stored in the filesystem btree, but its pages are cached
704 * with a logical position past EOF in the inode's mapping.
705 *
706 * Returns the page we read, or an ERR_PTR on error.
707 */
btrfs_read_merkle_tree_page(struct inode * inode,pgoff_t index,unsigned long num_ra_pages)708 static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
709 pgoff_t index,
710 unsigned long num_ra_pages)
711 {
712 struct page *page;
713 u64 off = (u64)index << PAGE_SHIFT;
714 loff_t merkle_pos = merkle_file_pos(inode);
715 int ret;
716
717 if (merkle_pos < 0)
718 return ERR_PTR(merkle_pos);
719 if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
720 return ERR_PTR(-EFBIG);
721 index += merkle_pos >> PAGE_SHIFT;
722 again:
723 page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED);
724 if (page) {
725 if (PageUptodate(page))
726 return page;
727
728 lock_page(page);
729 /*
730 * We only insert uptodate pages, so !Uptodate has to be
731 * an error
732 */
733 if (!PageUptodate(page)) {
734 unlock_page(page);
735 put_page(page);
736 return ERR_PTR(-EIO);
737 }
738 unlock_page(page);
739 return page;
740 }
741
742 page = __page_cache_alloc(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
743 if (!page)
744 return ERR_PTR(-ENOMEM);
745
746 /*
747 * Merkle item keys are indexed from byte 0 in the merkle tree.
748 * They have the form:
749 *
750 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
751 */
752 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
753 page_address(page), PAGE_SIZE, page);
754 if (ret < 0) {
755 put_page(page);
756 return ERR_PTR(ret);
757 }
758 if (ret < PAGE_SIZE)
759 memzero_page(page, ret, PAGE_SIZE - ret);
760
761 SetPageUptodate(page);
762 ret = add_to_page_cache_lru(page, inode->i_mapping, index, GFP_NOFS);
763
764 if (!ret) {
765 /* Inserted and ready for fsverity */
766 unlock_page(page);
767 } else {
768 put_page(page);
769 /* Did someone race us into inserting this page? */
770 if (ret == -EEXIST)
771 goto again;
772 page = ERR_PTR(ret);
773 }
774 return page;
775 }
776
777 /*
778 * fsverity op that writes a Merkle tree block into the btree.
779 *
780 * @inode: inode to write a Merkle tree block for
781 * @buf: Merkle tree block to write
782 * @pos: the position of the block in the Merkle tree (in bytes)
783 * @size: the Merkle tree block size (in bytes)
784 *
785 * Returns 0 on success or negative error code on failure
786 */
btrfs_write_merkle_tree_block(struct inode * inode,const void * buf,u64 pos,unsigned int size)787 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
788 u64 pos, unsigned int size)
789 {
790 loff_t merkle_pos = merkle_file_pos(inode);
791
792 if (merkle_pos < 0)
793 return merkle_pos;
794 if (merkle_pos > inode->i_sb->s_maxbytes - pos - size)
795 return -EFBIG;
796
797 return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
798 pos, buf, size);
799 }
800
801 const struct fsverity_operations btrfs_verityops = {
802 .begin_enable_verity = btrfs_begin_enable_verity,
803 .end_enable_verity = btrfs_end_enable_verity,
804 .get_verity_descriptor = btrfs_get_verity_descriptor,
805 .read_merkle_tree_page = btrfs_read_merkle_tree_page,
806 .write_merkle_tree_block = btrfs_write_merkle_tree_block,
807 };
808