1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
con_flag_valid(unsigned long con_flag)85 static bool con_flag_valid(unsigned long con_flag)
86 {
87 switch (con_flag) {
88 case CEPH_CON_F_LOSSYTX:
89 case CEPH_CON_F_KEEPALIVE_PENDING:
90 case CEPH_CON_F_WRITE_PENDING:
91 case CEPH_CON_F_SOCK_CLOSED:
92 case CEPH_CON_F_BACKOFF:
93 return true;
94 default:
95 return false;
96 }
97 }
98
ceph_con_flag_clear(struct ceph_connection * con,unsigned long con_flag)99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100 {
101 BUG_ON(!con_flag_valid(con_flag));
102
103 clear_bit(con_flag, &con->flags);
104 }
105
ceph_con_flag_set(struct ceph_connection * con,unsigned long con_flag)106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107 {
108 BUG_ON(!con_flag_valid(con_flag));
109
110 set_bit(con_flag, &con->flags);
111 }
112
ceph_con_flag_test(struct ceph_connection * con,unsigned long con_flag)113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114 {
115 BUG_ON(!con_flag_valid(con_flag));
116
117 return test_bit(con_flag, &con->flags);
118 }
119
ceph_con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 unsigned long con_flag)
122 {
123 BUG_ON(!con_flag_valid(con_flag));
124
125 return test_and_clear_bit(con_flag, &con->flags);
126 }
127
ceph_con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)128 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 unsigned long con_flag)
130 {
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_and_set_bit(con_flag, &con->flags);
134 }
135
136 /* Slab caches for frequently-allocated structures */
137
138 static struct kmem_cache *ceph_msg_cache;
139
140 #ifdef CONFIG_LOCKDEP
141 static struct lock_class_key socket_class;
142 #endif
143
144 static void queue_con(struct ceph_connection *con);
145 static void cancel_con(struct ceph_connection *con);
146 static void ceph_con_workfn(struct work_struct *);
147 static void con_fault(struct ceph_connection *con);
148
149 /*
150 * Nicely render a sockaddr as a string. An array of formatted
151 * strings is used, to approximate reentrancy.
152 */
153 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
154 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
155 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
156 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
157
158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159 static atomic_t addr_str_seq = ATOMIC_INIT(0);
160
161 struct page *ceph_zero_page; /* used in certain error cases */
162
ceph_pr_addr(const struct ceph_entity_addr * addr)163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164 {
165 int i;
166 char *s;
167 struct sockaddr_storage ss = addr->in_addr; /* align */
168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170
171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 s = addr_str[i];
173
174 switch (ss.ss_family) {
175 case AF_INET:
176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 le32_to_cpu(addr->type), &in4->sin_addr,
178 ntohs(in4->sin_port));
179 break;
180
181 case AF_INET6:
182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 le32_to_cpu(addr->type), &in6->sin6_addr,
184 ntohs(in6->sin6_port));
185 break;
186
187 default:
188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 ss.ss_family);
190 }
191
192 return s;
193 }
194 EXPORT_SYMBOL(ceph_pr_addr);
195
ceph_encode_my_addr(struct ceph_messenger * msgr)196 void ceph_encode_my_addr(struct ceph_messenger *msgr)
197 {
198 if (!ceph_msgr2(from_msgr(msgr))) {
199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 sizeof(msgr->my_enc_addr));
201 ceph_encode_banner_addr(&msgr->my_enc_addr);
202 }
203 }
204
205 /*
206 * work queue for all reading and writing to/from the socket.
207 */
208 static struct workqueue_struct *ceph_msgr_wq;
209
ceph_msgr_slab_init(void)210 static int ceph_msgr_slab_init(void)
211 {
212 BUG_ON(ceph_msg_cache);
213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 if (!ceph_msg_cache)
215 return -ENOMEM;
216
217 return 0;
218 }
219
ceph_msgr_slab_exit(void)220 static void ceph_msgr_slab_exit(void)
221 {
222 BUG_ON(!ceph_msg_cache);
223 kmem_cache_destroy(ceph_msg_cache);
224 ceph_msg_cache = NULL;
225 }
226
_ceph_msgr_exit(void)227 static void _ceph_msgr_exit(void)
228 {
229 if (ceph_msgr_wq) {
230 destroy_workqueue(ceph_msgr_wq);
231 ceph_msgr_wq = NULL;
232 }
233
234 BUG_ON(!ceph_zero_page);
235 put_page(ceph_zero_page);
236 ceph_zero_page = NULL;
237
238 ceph_msgr_slab_exit();
239 }
240
ceph_msgr_init(void)241 int __init ceph_msgr_init(void)
242 {
243 if (ceph_msgr_slab_init())
244 return -ENOMEM;
245
246 BUG_ON(ceph_zero_page);
247 ceph_zero_page = ZERO_PAGE(0);
248 get_page(ceph_zero_page);
249
250 /*
251 * The number of active work items is limited by the number of
252 * connections, so leave @max_active at default.
253 */
254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 if (ceph_msgr_wq)
256 return 0;
257
258 pr_err("msgr_init failed to create workqueue\n");
259 _ceph_msgr_exit();
260
261 return -ENOMEM;
262 }
263
ceph_msgr_exit(void)264 void ceph_msgr_exit(void)
265 {
266 BUG_ON(ceph_msgr_wq == NULL);
267
268 _ceph_msgr_exit();
269 }
270
ceph_msgr_flush(void)271 void ceph_msgr_flush(void)
272 {
273 flush_workqueue(ceph_msgr_wq);
274 }
275 EXPORT_SYMBOL(ceph_msgr_flush);
276
277 /* Connection socket state transition functions */
278
con_sock_state_init(struct ceph_connection * con)279 static void con_sock_state_init(struct ceph_connection *con)
280 {
281 int old_state;
282
283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 printk("%s: unexpected old state %d\n", __func__, old_state);
286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 CON_SOCK_STATE_CLOSED);
288 }
289
con_sock_state_connecting(struct ceph_connection * con)290 static void con_sock_state_connecting(struct ceph_connection *con)
291 {
292 int old_state;
293
294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 printk("%s: unexpected old state %d\n", __func__, old_state);
297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 CON_SOCK_STATE_CONNECTING);
299 }
300
con_sock_state_connected(struct ceph_connection * con)301 static void con_sock_state_connected(struct ceph_connection *con)
302 {
303 int old_state;
304
305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 printk("%s: unexpected old state %d\n", __func__, old_state);
308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 CON_SOCK_STATE_CONNECTED);
310 }
311
con_sock_state_closing(struct ceph_connection * con)312 static void con_sock_state_closing(struct ceph_connection *con)
313 {
314 int old_state;
315
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 old_state != CON_SOCK_STATE_CONNECTED &&
319 old_state != CON_SOCK_STATE_CLOSING))
320 printk("%s: unexpected old state %d\n", __func__, old_state);
321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 CON_SOCK_STATE_CLOSING);
323 }
324
con_sock_state_closed(struct ceph_connection * con)325 static void con_sock_state_closed(struct ceph_connection *con)
326 {
327 int old_state;
328
329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 old_state != CON_SOCK_STATE_CLOSING &&
332 old_state != CON_SOCK_STATE_CONNECTING &&
333 old_state != CON_SOCK_STATE_CLOSED))
334 printk("%s: unexpected old state %d\n", __func__, old_state);
335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 CON_SOCK_STATE_CLOSED);
337 }
338
339 /*
340 * socket callback functions
341 */
342
343 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)344 static void ceph_sock_data_ready(struct sock *sk)
345 {
346 struct ceph_connection *con = sk->sk_user_data;
347 if (atomic_read(&con->msgr->stopping)) {
348 return;
349 }
350
351 if (sk->sk_state != TCP_CLOSE_WAIT) {
352 dout("%s %p state = %d, queueing work\n", __func__,
353 con, con->state);
354 queue_con(con);
355 }
356 }
357
358 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)359 static void ceph_sock_write_space(struct sock *sk)
360 {
361 struct ceph_connection *con = sk->sk_user_data;
362
363 /* only queue to workqueue if there is data we want to write,
364 * and there is sufficient space in the socket buffer to accept
365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
366 * doesn't get called again until try_write() fills the socket
367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 * and net/core/stream.c:sk_stream_write_space().
369 */
370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 if (sk_stream_is_writeable(sk)) {
372 dout("%s %p queueing write work\n", __func__, con);
373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 queue_con(con);
375 }
376 } else {
377 dout("%s %p nothing to write\n", __func__, con);
378 }
379 }
380
381 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)382 static void ceph_sock_state_change(struct sock *sk)
383 {
384 struct ceph_connection *con = sk->sk_user_data;
385
386 dout("%s %p state = %d sk_state = %u\n", __func__,
387 con, con->state, sk->sk_state);
388
389 switch (sk->sk_state) {
390 case TCP_CLOSE:
391 dout("%s TCP_CLOSE\n", __func__);
392 fallthrough;
393 case TCP_CLOSE_WAIT:
394 dout("%s TCP_CLOSE_WAIT\n", __func__);
395 con_sock_state_closing(con);
396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 queue_con(con);
398 break;
399 case TCP_ESTABLISHED:
400 dout("%s TCP_ESTABLISHED\n", __func__);
401 con_sock_state_connected(con);
402 queue_con(con);
403 break;
404 default: /* Everything else is uninteresting */
405 break;
406 }
407 }
408
409 /*
410 * set up socket callbacks
411 */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)412 static void set_sock_callbacks(struct socket *sock,
413 struct ceph_connection *con)
414 {
415 struct sock *sk = sock->sk;
416 sk->sk_user_data = con;
417 sk->sk_data_ready = ceph_sock_data_ready;
418 sk->sk_write_space = ceph_sock_write_space;
419 sk->sk_state_change = ceph_sock_state_change;
420 }
421
422
423 /*
424 * socket helpers
425 */
426
427 /*
428 * initiate connection to a remote socket.
429 */
ceph_tcp_connect(struct ceph_connection * con)430 int ceph_tcp_connect(struct ceph_connection *con)
431 {
432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 struct socket *sock;
434 unsigned int noio_flag;
435 int ret;
436
437 dout("%s con %p peer_addr %s\n", __func__, con,
438 ceph_pr_addr(&con->peer_addr));
439 BUG_ON(con->sock);
440
441 /* sock_create_kern() allocates with GFP_KERNEL */
442 noio_flag = memalloc_noio_save();
443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 SOCK_STREAM, IPPROTO_TCP, &sock);
445 memalloc_noio_restore(noio_flag);
446 if (ret)
447 return ret;
448 sock->sk->sk_allocation = GFP_NOFS;
449
450 #ifdef CONFIG_LOCKDEP
451 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
452 #endif
453
454 set_sock_callbacks(sock, con);
455
456 con_sock_state_connecting(con);
457 ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
458 O_NONBLOCK);
459 if (ret == -EINPROGRESS) {
460 dout("connect %s EINPROGRESS sk_state = %u\n",
461 ceph_pr_addr(&con->peer_addr),
462 sock->sk->sk_state);
463 } else if (ret < 0) {
464 pr_err("connect %s error %d\n",
465 ceph_pr_addr(&con->peer_addr), ret);
466 sock_release(sock);
467 return ret;
468 }
469
470 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
471 tcp_sock_set_nodelay(sock->sk);
472
473 con->sock = sock;
474 return 0;
475 }
476
477 /*
478 * Shutdown/close the socket for the given connection.
479 */
ceph_con_close_socket(struct ceph_connection * con)480 int ceph_con_close_socket(struct ceph_connection *con)
481 {
482 int rc = 0;
483
484 dout("%s con %p sock %p\n", __func__, con, con->sock);
485 if (con->sock) {
486 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
487 sock_release(con->sock);
488 con->sock = NULL;
489 }
490
491 /*
492 * Forcibly clear the SOCK_CLOSED flag. It gets set
493 * independent of the connection mutex, and we could have
494 * received a socket close event before we had the chance to
495 * shut the socket down.
496 */
497 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
498
499 con_sock_state_closed(con);
500 return rc;
501 }
502
ceph_con_reset_protocol(struct ceph_connection * con)503 static void ceph_con_reset_protocol(struct ceph_connection *con)
504 {
505 dout("%s con %p\n", __func__, con);
506
507 ceph_con_close_socket(con);
508 if (con->in_msg) {
509 WARN_ON(con->in_msg->con != con);
510 ceph_msg_put(con->in_msg);
511 con->in_msg = NULL;
512 }
513 if (con->out_msg) {
514 WARN_ON(con->out_msg->con != con);
515 ceph_msg_put(con->out_msg);
516 con->out_msg = NULL;
517 }
518 if (con->bounce_page) {
519 __free_page(con->bounce_page);
520 con->bounce_page = NULL;
521 }
522
523 if (ceph_msgr2(from_msgr(con->msgr)))
524 ceph_con_v2_reset_protocol(con);
525 else
526 ceph_con_v1_reset_protocol(con);
527 }
528
529 /*
530 * Reset a connection. Discard all incoming and outgoing messages
531 * and clear *_seq state.
532 */
ceph_msg_remove(struct ceph_msg * msg)533 static void ceph_msg_remove(struct ceph_msg *msg)
534 {
535 list_del_init(&msg->list_head);
536
537 ceph_msg_put(msg);
538 }
539
ceph_msg_remove_list(struct list_head * head)540 static void ceph_msg_remove_list(struct list_head *head)
541 {
542 while (!list_empty(head)) {
543 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
544 list_head);
545 ceph_msg_remove(msg);
546 }
547 }
548
ceph_con_reset_session(struct ceph_connection * con)549 void ceph_con_reset_session(struct ceph_connection *con)
550 {
551 dout("%s con %p\n", __func__, con);
552
553 WARN_ON(con->in_msg);
554 WARN_ON(con->out_msg);
555 ceph_msg_remove_list(&con->out_queue);
556 ceph_msg_remove_list(&con->out_sent);
557 con->out_seq = 0;
558 con->in_seq = 0;
559 con->in_seq_acked = 0;
560
561 if (ceph_msgr2(from_msgr(con->msgr)))
562 ceph_con_v2_reset_session(con);
563 else
564 ceph_con_v1_reset_session(con);
565 }
566
567 /*
568 * mark a peer down. drop any open connections.
569 */
ceph_con_close(struct ceph_connection * con)570 void ceph_con_close(struct ceph_connection *con)
571 {
572 mutex_lock(&con->mutex);
573 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
574 con->state = CEPH_CON_S_CLOSED;
575
576 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
577 connect */
578 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
579 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
580 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
581
582 ceph_con_reset_protocol(con);
583 ceph_con_reset_session(con);
584 cancel_con(con);
585 mutex_unlock(&con->mutex);
586 }
587 EXPORT_SYMBOL(ceph_con_close);
588
589 /*
590 * Reopen a closed connection, with a new peer address.
591 */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)592 void ceph_con_open(struct ceph_connection *con,
593 __u8 entity_type, __u64 entity_num,
594 struct ceph_entity_addr *addr)
595 {
596 mutex_lock(&con->mutex);
597 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
598
599 WARN_ON(con->state != CEPH_CON_S_CLOSED);
600 con->state = CEPH_CON_S_PREOPEN;
601
602 con->peer_name.type = (__u8) entity_type;
603 con->peer_name.num = cpu_to_le64(entity_num);
604
605 memcpy(&con->peer_addr, addr, sizeof(*addr));
606 con->delay = 0; /* reset backoff memory */
607 mutex_unlock(&con->mutex);
608 queue_con(con);
609 }
610 EXPORT_SYMBOL(ceph_con_open);
611
612 /*
613 * return true if this connection ever successfully opened
614 */
ceph_con_opened(struct ceph_connection * con)615 bool ceph_con_opened(struct ceph_connection *con)
616 {
617 if (ceph_msgr2(from_msgr(con->msgr)))
618 return ceph_con_v2_opened(con);
619
620 return ceph_con_v1_opened(con);
621 }
622
623 /*
624 * initialize a new connection.
625 */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)626 void ceph_con_init(struct ceph_connection *con, void *private,
627 const struct ceph_connection_operations *ops,
628 struct ceph_messenger *msgr)
629 {
630 dout("con_init %p\n", con);
631 memset(con, 0, sizeof(*con));
632 con->private = private;
633 con->ops = ops;
634 con->msgr = msgr;
635
636 con_sock_state_init(con);
637
638 mutex_init(&con->mutex);
639 INIT_LIST_HEAD(&con->out_queue);
640 INIT_LIST_HEAD(&con->out_sent);
641 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
642
643 con->state = CEPH_CON_S_CLOSED;
644 }
645 EXPORT_SYMBOL(ceph_con_init);
646
647 /*
648 * We maintain a global counter to order connection attempts. Get
649 * a unique seq greater than @gt.
650 */
ceph_get_global_seq(struct ceph_messenger * msgr,u32 gt)651 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
652 {
653 u32 ret;
654
655 spin_lock(&msgr->global_seq_lock);
656 if (msgr->global_seq < gt)
657 msgr->global_seq = gt;
658 ret = ++msgr->global_seq;
659 spin_unlock(&msgr->global_seq_lock);
660 return ret;
661 }
662
663 /*
664 * Discard messages that have been acked by the server.
665 */
ceph_con_discard_sent(struct ceph_connection * con,u64 ack_seq)666 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
667 {
668 struct ceph_msg *msg;
669 u64 seq;
670
671 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
672 while (!list_empty(&con->out_sent)) {
673 msg = list_first_entry(&con->out_sent, struct ceph_msg,
674 list_head);
675 WARN_ON(msg->needs_out_seq);
676 seq = le64_to_cpu(msg->hdr.seq);
677 if (seq > ack_seq)
678 break;
679
680 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
681 msg, seq);
682 ceph_msg_remove(msg);
683 }
684 }
685
686 /*
687 * Discard messages that have been requeued in con_fault(), up to
688 * reconnect_seq. This avoids gratuitously resending messages that
689 * the server had received and handled prior to reconnect.
690 */
ceph_con_discard_requeued(struct ceph_connection * con,u64 reconnect_seq)691 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
692 {
693 struct ceph_msg *msg;
694 u64 seq;
695
696 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
697 while (!list_empty(&con->out_queue)) {
698 msg = list_first_entry(&con->out_queue, struct ceph_msg,
699 list_head);
700 if (msg->needs_out_seq)
701 break;
702 seq = le64_to_cpu(msg->hdr.seq);
703 if (seq > reconnect_seq)
704 break;
705
706 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
707 msg, seq);
708 ceph_msg_remove(msg);
709 }
710 }
711
712 #ifdef CONFIG_BLOCK
713
714 /*
715 * For a bio data item, a piece is whatever remains of the next
716 * entry in the current bio iovec, or the first entry in the next
717 * bio in the list.
718 */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)719 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
720 size_t length)
721 {
722 struct ceph_msg_data *data = cursor->data;
723 struct ceph_bio_iter *it = &cursor->bio_iter;
724
725 cursor->resid = min_t(size_t, length, data->bio_length);
726 *it = data->bio_pos;
727 if (cursor->resid < it->iter.bi_size)
728 it->iter.bi_size = cursor->resid;
729
730 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
731 }
732
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)733 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
734 size_t *page_offset,
735 size_t *length)
736 {
737 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
738 cursor->bio_iter.iter);
739
740 *page_offset = bv.bv_offset;
741 *length = bv.bv_len;
742 return bv.bv_page;
743 }
744
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)745 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
746 size_t bytes)
747 {
748 struct ceph_bio_iter *it = &cursor->bio_iter;
749 struct page *page = bio_iter_page(it->bio, it->iter);
750
751 BUG_ON(bytes > cursor->resid);
752 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
753 cursor->resid -= bytes;
754 bio_advance_iter(it->bio, &it->iter, bytes);
755
756 if (!cursor->resid)
757 return false; /* no more data */
758
759 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
760 page == bio_iter_page(it->bio, it->iter)))
761 return false; /* more bytes to process in this segment */
762
763 if (!it->iter.bi_size) {
764 it->bio = it->bio->bi_next;
765 it->iter = it->bio->bi_iter;
766 if (cursor->resid < it->iter.bi_size)
767 it->iter.bi_size = cursor->resid;
768 }
769
770 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
771 return true;
772 }
773 #endif /* CONFIG_BLOCK */
774
ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)775 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
776 size_t length)
777 {
778 struct ceph_msg_data *data = cursor->data;
779 struct bio_vec *bvecs = data->bvec_pos.bvecs;
780
781 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
782 cursor->bvec_iter = data->bvec_pos.iter;
783 cursor->bvec_iter.bi_size = cursor->resid;
784
785 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
786 }
787
ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)788 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
789 size_t *page_offset,
790 size_t *length)
791 {
792 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
793 cursor->bvec_iter);
794
795 *page_offset = bv.bv_offset;
796 *length = bv.bv_len;
797 return bv.bv_page;
798 }
799
ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)800 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
801 size_t bytes)
802 {
803 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
804 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
805
806 BUG_ON(bytes > cursor->resid);
807 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
808 cursor->resid -= bytes;
809 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
810
811 if (!cursor->resid)
812 return false; /* no more data */
813
814 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
815 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
816 return false; /* more bytes to process in this segment */
817
818 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
819 return true;
820 }
821
822 /*
823 * For a page array, a piece comes from the first page in the array
824 * that has not already been fully consumed.
825 */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)826 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
827 size_t length)
828 {
829 struct ceph_msg_data *data = cursor->data;
830 int page_count;
831
832 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
833
834 BUG_ON(!data->pages);
835 BUG_ON(!data->length);
836
837 cursor->resid = min(length, data->length);
838 page_count = calc_pages_for(data->alignment, (u64)data->length);
839 cursor->page_offset = data->alignment & ~PAGE_MASK;
840 cursor->page_index = 0;
841 BUG_ON(page_count > (int)USHRT_MAX);
842 cursor->page_count = (unsigned short)page_count;
843 BUG_ON(length > SIZE_MAX - cursor->page_offset);
844 }
845
846 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)847 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
848 size_t *page_offset, size_t *length)
849 {
850 struct ceph_msg_data *data = cursor->data;
851
852 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
853
854 BUG_ON(cursor->page_index >= cursor->page_count);
855 BUG_ON(cursor->page_offset >= PAGE_SIZE);
856
857 *page_offset = cursor->page_offset;
858 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
859 return data->pages[cursor->page_index];
860 }
861
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)862 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
863 size_t bytes)
864 {
865 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
866
867 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
868
869 /* Advance the cursor page offset */
870
871 cursor->resid -= bytes;
872 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
873 if (!bytes || cursor->page_offset)
874 return false; /* more bytes to process in the current page */
875
876 if (!cursor->resid)
877 return false; /* no more data */
878
879 /* Move on to the next page; offset is already at 0 */
880
881 BUG_ON(cursor->page_index >= cursor->page_count);
882 cursor->page_index++;
883 return true;
884 }
885
886 /*
887 * For a pagelist, a piece is whatever remains to be consumed in the
888 * first page in the list, or the front of the next page.
889 */
890 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)891 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
892 size_t length)
893 {
894 struct ceph_msg_data *data = cursor->data;
895 struct ceph_pagelist *pagelist;
896 struct page *page;
897
898 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
899
900 pagelist = data->pagelist;
901 BUG_ON(!pagelist);
902
903 if (!length)
904 return; /* pagelist can be assigned but empty */
905
906 BUG_ON(list_empty(&pagelist->head));
907 page = list_first_entry(&pagelist->head, struct page, lru);
908
909 cursor->resid = min(length, pagelist->length);
910 cursor->page = page;
911 cursor->offset = 0;
912 }
913
914 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)915 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
916 size_t *page_offset, size_t *length)
917 {
918 struct ceph_msg_data *data = cursor->data;
919 struct ceph_pagelist *pagelist;
920
921 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
922
923 pagelist = data->pagelist;
924 BUG_ON(!pagelist);
925
926 BUG_ON(!cursor->page);
927 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
928
929 /* offset of first page in pagelist is always 0 */
930 *page_offset = cursor->offset & ~PAGE_MASK;
931 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
932 return cursor->page;
933 }
934
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)935 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
936 size_t bytes)
937 {
938 struct ceph_msg_data *data = cursor->data;
939 struct ceph_pagelist *pagelist;
940
941 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
942
943 pagelist = data->pagelist;
944 BUG_ON(!pagelist);
945
946 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
947 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
948
949 /* Advance the cursor offset */
950
951 cursor->resid -= bytes;
952 cursor->offset += bytes;
953 /* offset of first page in pagelist is always 0 */
954 if (!bytes || cursor->offset & ~PAGE_MASK)
955 return false; /* more bytes to process in the current page */
956
957 if (!cursor->resid)
958 return false; /* no more data */
959
960 /* Move on to the next page */
961
962 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
963 cursor->page = list_next_entry(cursor->page, lru);
964 return true;
965 }
966
967 /*
968 * Message data is handled (sent or received) in pieces, where each
969 * piece resides on a single page. The network layer might not
970 * consume an entire piece at once. A data item's cursor keeps
971 * track of which piece is next to process and how much remains to
972 * be processed in that piece. It also tracks whether the current
973 * piece is the last one in the data item.
974 */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)975 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
976 {
977 size_t length = cursor->total_resid;
978
979 switch (cursor->data->type) {
980 case CEPH_MSG_DATA_PAGELIST:
981 ceph_msg_data_pagelist_cursor_init(cursor, length);
982 break;
983 case CEPH_MSG_DATA_PAGES:
984 ceph_msg_data_pages_cursor_init(cursor, length);
985 break;
986 #ifdef CONFIG_BLOCK
987 case CEPH_MSG_DATA_BIO:
988 ceph_msg_data_bio_cursor_init(cursor, length);
989 break;
990 #endif /* CONFIG_BLOCK */
991 case CEPH_MSG_DATA_BVECS:
992 ceph_msg_data_bvecs_cursor_init(cursor, length);
993 break;
994 case CEPH_MSG_DATA_NONE:
995 default:
996 /* BUG(); */
997 break;
998 }
999 cursor->need_crc = true;
1000 }
1001
ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor,struct ceph_msg * msg,size_t length)1002 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1003 struct ceph_msg *msg, size_t length)
1004 {
1005 BUG_ON(!length);
1006 BUG_ON(length > msg->data_length);
1007 BUG_ON(!msg->num_data_items);
1008
1009 cursor->total_resid = length;
1010 cursor->data = msg->data;
1011
1012 __ceph_msg_data_cursor_init(cursor);
1013 }
1014
1015 /*
1016 * Return the page containing the next piece to process for a given
1017 * data item, and supply the page offset and length of that piece.
1018 * Indicate whether this is the last piece in this data item.
1019 */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)1020 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1021 size_t *page_offset, size_t *length)
1022 {
1023 struct page *page;
1024
1025 switch (cursor->data->type) {
1026 case CEPH_MSG_DATA_PAGELIST:
1027 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1028 break;
1029 case CEPH_MSG_DATA_PAGES:
1030 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1031 break;
1032 #ifdef CONFIG_BLOCK
1033 case CEPH_MSG_DATA_BIO:
1034 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1035 break;
1036 #endif /* CONFIG_BLOCK */
1037 case CEPH_MSG_DATA_BVECS:
1038 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1039 break;
1040 case CEPH_MSG_DATA_NONE:
1041 default:
1042 page = NULL;
1043 break;
1044 }
1045
1046 BUG_ON(!page);
1047 BUG_ON(*page_offset + *length > PAGE_SIZE);
1048 BUG_ON(!*length);
1049 BUG_ON(*length > cursor->resid);
1050
1051 return page;
1052 }
1053
1054 /*
1055 * Returns true if the result moves the cursor on to the next piece
1056 * of the data item.
1057 */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1058 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1059 {
1060 bool new_piece;
1061
1062 BUG_ON(bytes > cursor->resid);
1063 switch (cursor->data->type) {
1064 case CEPH_MSG_DATA_PAGELIST:
1065 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1066 break;
1067 case CEPH_MSG_DATA_PAGES:
1068 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1069 break;
1070 #ifdef CONFIG_BLOCK
1071 case CEPH_MSG_DATA_BIO:
1072 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1073 break;
1074 #endif /* CONFIG_BLOCK */
1075 case CEPH_MSG_DATA_BVECS:
1076 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1077 break;
1078 case CEPH_MSG_DATA_NONE:
1079 default:
1080 BUG();
1081 break;
1082 }
1083 cursor->total_resid -= bytes;
1084
1085 if (!cursor->resid && cursor->total_resid) {
1086 cursor->data++;
1087 __ceph_msg_data_cursor_init(cursor);
1088 new_piece = true;
1089 }
1090 cursor->need_crc = new_piece;
1091 }
1092
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1093 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1094 unsigned int length)
1095 {
1096 char *kaddr;
1097
1098 kaddr = kmap(page);
1099 BUG_ON(kaddr == NULL);
1100 crc = crc32c(crc, kaddr + page_offset, length);
1101 kunmap(page);
1102
1103 return crc;
1104 }
1105
ceph_addr_is_blank(const struct ceph_entity_addr * addr)1106 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1107 {
1108 struct sockaddr_storage ss = addr->in_addr; /* align */
1109 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1110 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1111
1112 switch (ss.ss_family) {
1113 case AF_INET:
1114 return addr4->s_addr == htonl(INADDR_ANY);
1115 case AF_INET6:
1116 return ipv6_addr_any(addr6);
1117 default:
1118 return true;
1119 }
1120 }
1121 EXPORT_SYMBOL(ceph_addr_is_blank);
1122
ceph_addr_port(const struct ceph_entity_addr * addr)1123 int ceph_addr_port(const struct ceph_entity_addr *addr)
1124 {
1125 switch (get_unaligned(&addr->in_addr.ss_family)) {
1126 case AF_INET:
1127 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1128 case AF_INET6:
1129 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1130 }
1131 return 0;
1132 }
1133
ceph_addr_set_port(struct ceph_entity_addr * addr,int p)1134 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1135 {
1136 switch (get_unaligned(&addr->in_addr.ss_family)) {
1137 case AF_INET:
1138 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1139 break;
1140 case AF_INET6:
1141 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1142 break;
1143 }
1144 }
1145
1146 /*
1147 * Unlike other *_pton function semantics, zero indicates success.
1148 */
ceph_pton(const char * str,size_t len,struct ceph_entity_addr * addr,char delim,const char ** ipend)1149 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1150 char delim, const char **ipend)
1151 {
1152 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1153
1154 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1155 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1156 return 0;
1157 }
1158
1159 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1160 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1161 return 0;
1162 }
1163
1164 return -EINVAL;
1165 }
1166
1167 /*
1168 * Extract hostname string and resolve using kernel DNS facility.
1169 */
1170 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1171 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1172 struct ceph_entity_addr *addr, char delim, const char **ipend)
1173 {
1174 const char *end, *delim_p;
1175 char *colon_p, *ip_addr = NULL;
1176 int ip_len, ret;
1177
1178 /*
1179 * The end of the hostname occurs immediately preceding the delimiter or
1180 * the port marker (':') where the delimiter takes precedence.
1181 */
1182 delim_p = memchr(name, delim, namelen);
1183 colon_p = memchr(name, ':', namelen);
1184
1185 if (delim_p && colon_p)
1186 end = delim_p < colon_p ? delim_p : colon_p;
1187 else if (!delim_p && colon_p)
1188 end = colon_p;
1189 else {
1190 end = delim_p;
1191 if (!end) /* case: hostname:/ */
1192 end = name + namelen;
1193 }
1194
1195 if (end <= name)
1196 return -EINVAL;
1197
1198 /* do dns_resolve upcall */
1199 ip_len = dns_query(current->nsproxy->net_ns,
1200 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1201 if (ip_len > 0)
1202 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1203 else
1204 ret = -ESRCH;
1205
1206 kfree(ip_addr);
1207
1208 *ipend = end;
1209
1210 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1211 ret, ret ? "failed" : ceph_pr_addr(addr));
1212
1213 return ret;
1214 }
1215 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1216 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1217 struct ceph_entity_addr *addr, char delim, const char **ipend)
1218 {
1219 return -EINVAL;
1220 }
1221 #endif
1222
1223 /*
1224 * Parse a server name (IP or hostname). If a valid IP address is not found
1225 * then try to extract a hostname to resolve using userspace DNS upcall.
1226 */
ceph_parse_server_name(const char * name,size_t namelen,struct ceph_entity_addr * addr,char delim,const char ** ipend)1227 static int ceph_parse_server_name(const char *name, size_t namelen,
1228 struct ceph_entity_addr *addr, char delim, const char **ipend)
1229 {
1230 int ret;
1231
1232 ret = ceph_pton(name, namelen, addr, delim, ipend);
1233 if (ret)
1234 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1235
1236 return ret;
1237 }
1238
1239 /*
1240 * Parse an ip[:port] list into an addr array. Use the default
1241 * monitor port if a port isn't specified.
1242 */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count,char delim)1243 int ceph_parse_ips(const char *c, const char *end,
1244 struct ceph_entity_addr *addr,
1245 int max_count, int *count, char delim)
1246 {
1247 int i, ret = -EINVAL;
1248 const char *p = c;
1249
1250 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1251 for (i = 0; i < max_count; i++) {
1252 char cur_delim = delim;
1253 const char *ipend;
1254 int port;
1255
1256 if (*p == '[') {
1257 cur_delim = ']';
1258 p++;
1259 }
1260
1261 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1262 &ipend);
1263 if (ret)
1264 goto bad;
1265 ret = -EINVAL;
1266
1267 p = ipend;
1268
1269 if (cur_delim == ']') {
1270 if (*p != ']') {
1271 dout("missing matching ']'\n");
1272 goto bad;
1273 }
1274 p++;
1275 }
1276
1277 /* port? */
1278 if (p < end && *p == ':') {
1279 port = 0;
1280 p++;
1281 while (p < end && *p >= '0' && *p <= '9') {
1282 port = (port * 10) + (*p - '0');
1283 p++;
1284 }
1285 if (port == 0)
1286 port = CEPH_MON_PORT;
1287 else if (port > 65535)
1288 goto bad;
1289 } else {
1290 port = CEPH_MON_PORT;
1291 }
1292
1293 ceph_addr_set_port(&addr[i], port);
1294 /*
1295 * We want the type to be set according to ms_mode
1296 * option, but options are normally parsed after mon
1297 * addresses. Rather than complicating parsing, set
1298 * to LEGACY and override in build_initial_monmap()
1299 * for mon addresses and ceph_messenger_init() for
1300 * ip option.
1301 */
1302 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1303 addr[i].nonce = 0;
1304
1305 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1306
1307 if (p == end)
1308 break;
1309 if (*p != delim)
1310 goto bad;
1311 p++;
1312 }
1313
1314 if (p != end)
1315 goto bad;
1316
1317 if (count)
1318 *count = i + 1;
1319 return 0;
1320
1321 bad:
1322 return ret;
1323 }
1324
1325 /*
1326 * Process message. This happens in the worker thread. The callback should
1327 * be careful not to do anything that waits on other incoming messages or it
1328 * may deadlock.
1329 */
ceph_con_process_message(struct ceph_connection * con)1330 void ceph_con_process_message(struct ceph_connection *con)
1331 {
1332 struct ceph_msg *msg = con->in_msg;
1333
1334 BUG_ON(con->in_msg->con != con);
1335 con->in_msg = NULL;
1336
1337 /* if first message, set peer_name */
1338 if (con->peer_name.type == 0)
1339 con->peer_name = msg->hdr.src;
1340
1341 con->in_seq++;
1342 mutex_unlock(&con->mutex);
1343
1344 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1345 msg, le64_to_cpu(msg->hdr.seq),
1346 ENTITY_NAME(msg->hdr.src),
1347 le16_to_cpu(msg->hdr.type),
1348 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1349 le32_to_cpu(msg->hdr.front_len),
1350 le32_to_cpu(msg->hdr.middle_len),
1351 le32_to_cpu(msg->hdr.data_len),
1352 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1353 con->ops->dispatch(con, msg);
1354
1355 mutex_lock(&con->mutex);
1356 }
1357
1358 /*
1359 * Atomically queue work on a connection after the specified delay.
1360 * Bump @con reference to avoid races with connection teardown.
1361 * Returns 0 if work was queued, or an error code otherwise.
1362 */
queue_con_delay(struct ceph_connection * con,unsigned long delay)1363 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1364 {
1365 if (!con->ops->get(con)) {
1366 dout("%s %p ref count 0\n", __func__, con);
1367 return -ENOENT;
1368 }
1369
1370 if (delay >= HZ)
1371 delay = round_jiffies_relative(delay);
1372
1373 dout("%s %p %lu\n", __func__, con, delay);
1374 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1375 dout("%s %p - already queued\n", __func__, con);
1376 con->ops->put(con);
1377 return -EBUSY;
1378 }
1379
1380 return 0;
1381 }
1382
queue_con(struct ceph_connection * con)1383 static void queue_con(struct ceph_connection *con)
1384 {
1385 (void) queue_con_delay(con, 0);
1386 }
1387
cancel_con(struct ceph_connection * con)1388 static void cancel_con(struct ceph_connection *con)
1389 {
1390 if (cancel_delayed_work(&con->work)) {
1391 dout("%s %p\n", __func__, con);
1392 con->ops->put(con);
1393 }
1394 }
1395
con_sock_closed(struct ceph_connection * con)1396 static bool con_sock_closed(struct ceph_connection *con)
1397 {
1398 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1399 return false;
1400
1401 #define CASE(x) \
1402 case CEPH_CON_S_ ## x: \
1403 con->error_msg = "socket closed (con state " #x ")"; \
1404 break;
1405
1406 switch (con->state) {
1407 CASE(CLOSED);
1408 CASE(PREOPEN);
1409 CASE(V1_BANNER);
1410 CASE(V1_CONNECT_MSG);
1411 CASE(V2_BANNER_PREFIX);
1412 CASE(V2_BANNER_PAYLOAD);
1413 CASE(V2_HELLO);
1414 CASE(V2_AUTH);
1415 CASE(V2_AUTH_SIGNATURE);
1416 CASE(V2_SESSION_CONNECT);
1417 CASE(V2_SESSION_RECONNECT);
1418 CASE(OPEN);
1419 CASE(STANDBY);
1420 default:
1421 BUG();
1422 }
1423 #undef CASE
1424
1425 return true;
1426 }
1427
con_backoff(struct ceph_connection * con)1428 static bool con_backoff(struct ceph_connection *con)
1429 {
1430 int ret;
1431
1432 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1433 return false;
1434
1435 ret = queue_con_delay(con, con->delay);
1436 if (ret) {
1437 dout("%s: con %p FAILED to back off %lu\n", __func__,
1438 con, con->delay);
1439 BUG_ON(ret == -ENOENT);
1440 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1441 }
1442
1443 return true;
1444 }
1445
1446 /* Finish fault handling; con->mutex must *not* be held here */
1447
con_fault_finish(struct ceph_connection * con)1448 static void con_fault_finish(struct ceph_connection *con)
1449 {
1450 dout("%s %p\n", __func__, con);
1451
1452 /*
1453 * in case we faulted due to authentication, invalidate our
1454 * current tickets so that we can get new ones.
1455 */
1456 if (con->v1.auth_retry) {
1457 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1458 if (con->ops->invalidate_authorizer)
1459 con->ops->invalidate_authorizer(con);
1460 con->v1.auth_retry = 0;
1461 }
1462
1463 if (con->ops->fault)
1464 con->ops->fault(con);
1465 }
1466
1467 /*
1468 * Do some work on a connection. Drop a connection ref when we're done.
1469 */
ceph_con_workfn(struct work_struct * work)1470 static void ceph_con_workfn(struct work_struct *work)
1471 {
1472 struct ceph_connection *con = container_of(work, struct ceph_connection,
1473 work.work);
1474 bool fault;
1475
1476 mutex_lock(&con->mutex);
1477 while (true) {
1478 int ret;
1479
1480 if ((fault = con_sock_closed(con))) {
1481 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1482 break;
1483 }
1484 if (con_backoff(con)) {
1485 dout("%s: con %p BACKOFF\n", __func__, con);
1486 break;
1487 }
1488 if (con->state == CEPH_CON_S_STANDBY) {
1489 dout("%s: con %p STANDBY\n", __func__, con);
1490 break;
1491 }
1492 if (con->state == CEPH_CON_S_CLOSED) {
1493 dout("%s: con %p CLOSED\n", __func__, con);
1494 BUG_ON(con->sock);
1495 break;
1496 }
1497 if (con->state == CEPH_CON_S_PREOPEN) {
1498 dout("%s: con %p PREOPEN\n", __func__, con);
1499 BUG_ON(con->sock);
1500 }
1501
1502 if (ceph_msgr2(from_msgr(con->msgr)))
1503 ret = ceph_con_v2_try_read(con);
1504 else
1505 ret = ceph_con_v1_try_read(con);
1506 if (ret < 0) {
1507 if (ret == -EAGAIN)
1508 continue;
1509 if (!con->error_msg)
1510 con->error_msg = "socket error on read";
1511 fault = true;
1512 break;
1513 }
1514
1515 if (ceph_msgr2(from_msgr(con->msgr)))
1516 ret = ceph_con_v2_try_write(con);
1517 else
1518 ret = ceph_con_v1_try_write(con);
1519 if (ret < 0) {
1520 if (ret == -EAGAIN)
1521 continue;
1522 if (!con->error_msg)
1523 con->error_msg = "socket error on write";
1524 fault = true;
1525 }
1526
1527 break; /* If we make it to here, we're done */
1528 }
1529 if (fault)
1530 con_fault(con);
1531 mutex_unlock(&con->mutex);
1532
1533 if (fault)
1534 con_fault_finish(con);
1535
1536 con->ops->put(con);
1537 }
1538
1539 /*
1540 * Generic error/fault handler. A retry mechanism is used with
1541 * exponential backoff
1542 */
con_fault(struct ceph_connection * con)1543 static void con_fault(struct ceph_connection *con)
1544 {
1545 dout("fault %p state %d to peer %s\n",
1546 con, con->state, ceph_pr_addr(&con->peer_addr));
1547
1548 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1549 ceph_pr_addr(&con->peer_addr), con->error_msg);
1550 con->error_msg = NULL;
1551
1552 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1553 con->state == CEPH_CON_S_CLOSED);
1554
1555 ceph_con_reset_protocol(con);
1556
1557 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1558 dout("fault on LOSSYTX channel, marking CLOSED\n");
1559 con->state = CEPH_CON_S_CLOSED;
1560 return;
1561 }
1562
1563 /* Requeue anything that hasn't been acked */
1564 list_splice_init(&con->out_sent, &con->out_queue);
1565
1566 /* If there are no messages queued or keepalive pending, place
1567 * the connection in a STANDBY state */
1568 if (list_empty(&con->out_queue) &&
1569 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1570 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1571 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1572 con->state = CEPH_CON_S_STANDBY;
1573 } else {
1574 /* retry after a delay. */
1575 con->state = CEPH_CON_S_PREOPEN;
1576 if (!con->delay) {
1577 con->delay = BASE_DELAY_INTERVAL;
1578 } else if (con->delay < MAX_DELAY_INTERVAL) {
1579 con->delay *= 2;
1580 if (con->delay > MAX_DELAY_INTERVAL)
1581 con->delay = MAX_DELAY_INTERVAL;
1582 }
1583 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1584 queue_con(con);
1585 }
1586 }
1587
ceph_messenger_reset_nonce(struct ceph_messenger * msgr)1588 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1589 {
1590 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1591 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1592 ceph_encode_my_addr(msgr);
1593 }
1594
1595 /*
1596 * initialize a new messenger instance
1597 */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr)1598 void ceph_messenger_init(struct ceph_messenger *msgr,
1599 struct ceph_entity_addr *myaddr)
1600 {
1601 spin_lock_init(&msgr->global_seq_lock);
1602
1603 if (myaddr) {
1604 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1605 sizeof(msgr->inst.addr.in_addr));
1606 ceph_addr_set_port(&msgr->inst.addr, 0);
1607 }
1608
1609 /*
1610 * Since nautilus, clients are identified using type ANY.
1611 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1612 */
1613 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1614
1615 /* generate a random non-zero nonce */
1616 do {
1617 get_random_bytes(&msgr->inst.addr.nonce,
1618 sizeof(msgr->inst.addr.nonce));
1619 } while (!msgr->inst.addr.nonce);
1620 ceph_encode_my_addr(msgr);
1621
1622 atomic_set(&msgr->stopping, 0);
1623 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1624
1625 dout("%s %p\n", __func__, msgr);
1626 }
1627
ceph_messenger_fini(struct ceph_messenger * msgr)1628 void ceph_messenger_fini(struct ceph_messenger *msgr)
1629 {
1630 put_net(read_pnet(&msgr->net));
1631 }
1632
msg_con_set(struct ceph_msg * msg,struct ceph_connection * con)1633 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1634 {
1635 if (msg->con)
1636 msg->con->ops->put(msg->con);
1637
1638 msg->con = con ? con->ops->get(con) : NULL;
1639 BUG_ON(msg->con != con);
1640 }
1641
clear_standby(struct ceph_connection * con)1642 static void clear_standby(struct ceph_connection *con)
1643 {
1644 /* come back from STANDBY? */
1645 if (con->state == CEPH_CON_S_STANDBY) {
1646 dout("clear_standby %p and ++connect_seq\n", con);
1647 con->state = CEPH_CON_S_PREOPEN;
1648 con->v1.connect_seq++;
1649 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1650 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1651 }
1652 }
1653
1654 /*
1655 * Queue up an outgoing message on the given connection.
1656 *
1657 * Consumes a ref on @msg.
1658 */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)1659 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1660 {
1661 /* set src+dst */
1662 msg->hdr.src = con->msgr->inst.name;
1663 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1664 msg->needs_out_seq = true;
1665
1666 mutex_lock(&con->mutex);
1667
1668 if (con->state == CEPH_CON_S_CLOSED) {
1669 dout("con_send %p closed, dropping %p\n", con, msg);
1670 ceph_msg_put(msg);
1671 mutex_unlock(&con->mutex);
1672 return;
1673 }
1674
1675 msg_con_set(msg, con);
1676
1677 BUG_ON(!list_empty(&msg->list_head));
1678 list_add_tail(&msg->list_head, &con->out_queue);
1679 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1680 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1681 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1682 le32_to_cpu(msg->hdr.front_len),
1683 le32_to_cpu(msg->hdr.middle_len),
1684 le32_to_cpu(msg->hdr.data_len));
1685
1686 clear_standby(con);
1687 mutex_unlock(&con->mutex);
1688
1689 /* if there wasn't anything waiting to send before, queue
1690 * new work */
1691 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1692 queue_con(con);
1693 }
1694 EXPORT_SYMBOL(ceph_con_send);
1695
1696 /*
1697 * Revoke a message that was previously queued for send
1698 */
ceph_msg_revoke(struct ceph_msg * msg)1699 void ceph_msg_revoke(struct ceph_msg *msg)
1700 {
1701 struct ceph_connection *con = msg->con;
1702
1703 if (!con) {
1704 dout("%s msg %p null con\n", __func__, msg);
1705 return; /* Message not in our possession */
1706 }
1707
1708 mutex_lock(&con->mutex);
1709 if (list_empty(&msg->list_head)) {
1710 WARN_ON(con->out_msg == msg);
1711 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1712 mutex_unlock(&con->mutex);
1713 return;
1714 }
1715
1716 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1717 msg->hdr.seq = 0;
1718 ceph_msg_remove(msg);
1719
1720 if (con->out_msg == msg) {
1721 WARN_ON(con->state != CEPH_CON_S_OPEN);
1722 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1723 if (ceph_msgr2(from_msgr(con->msgr)))
1724 ceph_con_v2_revoke(con);
1725 else
1726 ceph_con_v1_revoke(con);
1727 ceph_msg_put(con->out_msg);
1728 con->out_msg = NULL;
1729 } else {
1730 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1731 con, msg, con->out_msg);
1732 }
1733 mutex_unlock(&con->mutex);
1734 }
1735
1736 /*
1737 * Revoke a message that we may be reading data into
1738 */
ceph_msg_revoke_incoming(struct ceph_msg * msg)1739 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1740 {
1741 struct ceph_connection *con = msg->con;
1742
1743 if (!con) {
1744 dout("%s msg %p null con\n", __func__, msg);
1745 return; /* Message not in our possession */
1746 }
1747
1748 mutex_lock(&con->mutex);
1749 if (con->in_msg == msg) {
1750 WARN_ON(con->state != CEPH_CON_S_OPEN);
1751 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1752 if (ceph_msgr2(from_msgr(con->msgr)))
1753 ceph_con_v2_revoke_incoming(con);
1754 else
1755 ceph_con_v1_revoke_incoming(con);
1756 ceph_msg_put(con->in_msg);
1757 con->in_msg = NULL;
1758 } else {
1759 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1760 con, msg, con->in_msg);
1761 }
1762 mutex_unlock(&con->mutex);
1763 }
1764
1765 /*
1766 * Queue a keepalive byte to ensure the tcp connection is alive.
1767 */
ceph_con_keepalive(struct ceph_connection * con)1768 void ceph_con_keepalive(struct ceph_connection *con)
1769 {
1770 dout("con_keepalive %p\n", con);
1771 mutex_lock(&con->mutex);
1772 clear_standby(con);
1773 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1774 mutex_unlock(&con->mutex);
1775
1776 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1777 queue_con(con);
1778 }
1779 EXPORT_SYMBOL(ceph_con_keepalive);
1780
ceph_con_keepalive_expired(struct ceph_connection * con,unsigned long interval)1781 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1782 unsigned long interval)
1783 {
1784 if (interval > 0 &&
1785 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1786 struct timespec64 now;
1787 struct timespec64 ts;
1788 ktime_get_real_ts64(&now);
1789 jiffies_to_timespec64(interval, &ts);
1790 ts = timespec64_add(con->last_keepalive_ack, ts);
1791 return timespec64_compare(&now, &ts) >= 0;
1792 }
1793 return false;
1794 }
1795
ceph_msg_data_add(struct ceph_msg * msg)1796 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1797 {
1798 BUG_ON(msg->num_data_items >= msg->max_data_items);
1799 return &msg->data[msg->num_data_items++];
1800 }
1801
ceph_msg_data_destroy(struct ceph_msg_data * data)1802 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1803 {
1804 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1805 int num_pages = calc_pages_for(data->alignment, data->length);
1806 ceph_release_page_vector(data->pages, num_pages);
1807 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1808 ceph_pagelist_release(data->pagelist);
1809 }
1810 }
1811
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment,bool own_pages)1812 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1813 size_t length, size_t alignment, bool own_pages)
1814 {
1815 struct ceph_msg_data *data;
1816
1817 BUG_ON(!pages);
1818 BUG_ON(!length);
1819
1820 data = ceph_msg_data_add(msg);
1821 data->type = CEPH_MSG_DATA_PAGES;
1822 data->pages = pages;
1823 data->length = length;
1824 data->alignment = alignment & ~PAGE_MASK;
1825 data->own_pages = own_pages;
1826
1827 msg->data_length += length;
1828 }
1829 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1830
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)1831 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1832 struct ceph_pagelist *pagelist)
1833 {
1834 struct ceph_msg_data *data;
1835
1836 BUG_ON(!pagelist);
1837 BUG_ON(!pagelist->length);
1838
1839 data = ceph_msg_data_add(msg);
1840 data->type = CEPH_MSG_DATA_PAGELIST;
1841 refcount_inc(&pagelist->refcnt);
1842 data->pagelist = pagelist;
1843
1844 msg->data_length += pagelist->length;
1845 }
1846 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1847
1848 #ifdef CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct ceph_bio_iter * bio_pos,u32 length)1849 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1850 u32 length)
1851 {
1852 struct ceph_msg_data *data;
1853
1854 data = ceph_msg_data_add(msg);
1855 data->type = CEPH_MSG_DATA_BIO;
1856 data->bio_pos = *bio_pos;
1857 data->bio_length = length;
1858
1859 msg->data_length += length;
1860 }
1861 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1862 #endif /* CONFIG_BLOCK */
1863
ceph_msg_data_add_bvecs(struct ceph_msg * msg,struct ceph_bvec_iter * bvec_pos)1864 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1865 struct ceph_bvec_iter *bvec_pos)
1866 {
1867 struct ceph_msg_data *data;
1868
1869 data = ceph_msg_data_add(msg);
1870 data->type = CEPH_MSG_DATA_BVECS;
1871 data->bvec_pos = *bvec_pos;
1872
1873 msg->data_length += bvec_pos->iter.bi_size;
1874 }
1875 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1876
1877 /*
1878 * construct a new message with given type, size
1879 * the new msg has a ref count of 1.
1880 */
ceph_msg_new2(int type,int front_len,int max_data_items,gfp_t flags,bool can_fail)1881 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1882 gfp_t flags, bool can_fail)
1883 {
1884 struct ceph_msg *m;
1885
1886 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1887 if (m == NULL)
1888 goto out;
1889
1890 m->hdr.type = cpu_to_le16(type);
1891 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1892 m->hdr.front_len = cpu_to_le32(front_len);
1893
1894 INIT_LIST_HEAD(&m->list_head);
1895 kref_init(&m->kref);
1896
1897 /* front */
1898 if (front_len) {
1899 m->front.iov_base = kvmalloc(front_len, flags);
1900 if (m->front.iov_base == NULL) {
1901 dout("ceph_msg_new can't allocate %d bytes\n",
1902 front_len);
1903 goto out2;
1904 }
1905 } else {
1906 m->front.iov_base = NULL;
1907 }
1908 m->front_alloc_len = m->front.iov_len = front_len;
1909
1910 if (max_data_items) {
1911 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1912 flags);
1913 if (!m->data)
1914 goto out2;
1915
1916 m->max_data_items = max_data_items;
1917 }
1918
1919 dout("ceph_msg_new %p front %d\n", m, front_len);
1920 return m;
1921
1922 out2:
1923 ceph_msg_put(m);
1924 out:
1925 if (!can_fail) {
1926 pr_err("msg_new can't create type %d front %d\n", type,
1927 front_len);
1928 WARN_ON(1);
1929 } else {
1930 dout("msg_new can't create type %d front %d\n", type,
1931 front_len);
1932 }
1933 return NULL;
1934 }
1935 EXPORT_SYMBOL(ceph_msg_new2);
1936
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)1937 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1938 bool can_fail)
1939 {
1940 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1941 }
1942 EXPORT_SYMBOL(ceph_msg_new);
1943
1944 /*
1945 * Allocate "middle" portion of a message, if it is needed and wasn't
1946 * allocated by alloc_msg. This allows us to read a small fixed-size
1947 * per-type header in the front and then gracefully fail (i.e.,
1948 * propagate the error to the caller based on info in the front) when
1949 * the middle is too large.
1950 */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)1951 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1952 {
1953 int type = le16_to_cpu(msg->hdr.type);
1954 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1955
1956 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1957 ceph_msg_type_name(type), middle_len);
1958 BUG_ON(!middle_len);
1959 BUG_ON(msg->middle);
1960
1961 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1962 if (!msg->middle)
1963 return -ENOMEM;
1964 return 0;
1965 }
1966
1967 /*
1968 * Allocate a message for receiving an incoming message on a
1969 * connection, and save the result in con->in_msg. Uses the
1970 * connection's private alloc_msg op if available.
1971 *
1972 * Returns 0 on success, or a negative error code.
1973 *
1974 * On success, if we set *skip = 1:
1975 * - the next message should be skipped and ignored.
1976 * - con->in_msg == NULL
1977 * or if we set *skip = 0:
1978 * - con->in_msg is non-null.
1979 * On error (ENOMEM, EAGAIN, ...),
1980 * - con->in_msg == NULL
1981 */
ceph_con_in_msg_alloc(struct ceph_connection * con,struct ceph_msg_header * hdr,int * skip)1982 int ceph_con_in_msg_alloc(struct ceph_connection *con,
1983 struct ceph_msg_header *hdr, int *skip)
1984 {
1985 int middle_len = le32_to_cpu(hdr->middle_len);
1986 struct ceph_msg *msg;
1987 int ret = 0;
1988
1989 BUG_ON(con->in_msg != NULL);
1990 BUG_ON(!con->ops->alloc_msg);
1991
1992 mutex_unlock(&con->mutex);
1993 msg = con->ops->alloc_msg(con, hdr, skip);
1994 mutex_lock(&con->mutex);
1995 if (con->state != CEPH_CON_S_OPEN) {
1996 if (msg)
1997 ceph_msg_put(msg);
1998 return -EAGAIN;
1999 }
2000 if (msg) {
2001 BUG_ON(*skip);
2002 msg_con_set(msg, con);
2003 con->in_msg = msg;
2004 } else {
2005 /*
2006 * Null message pointer means either we should skip
2007 * this message or we couldn't allocate memory. The
2008 * former is not an error.
2009 */
2010 if (*skip)
2011 return 0;
2012
2013 con->error_msg = "error allocating memory for incoming message";
2014 return -ENOMEM;
2015 }
2016 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2017
2018 if (middle_len && !con->in_msg->middle) {
2019 ret = ceph_alloc_middle(con, con->in_msg);
2020 if (ret < 0) {
2021 ceph_msg_put(con->in_msg);
2022 con->in_msg = NULL;
2023 }
2024 }
2025
2026 return ret;
2027 }
2028
ceph_con_get_out_msg(struct ceph_connection * con)2029 void ceph_con_get_out_msg(struct ceph_connection *con)
2030 {
2031 struct ceph_msg *msg;
2032
2033 BUG_ON(list_empty(&con->out_queue));
2034 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2035 WARN_ON(msg->con != con);
2036
2037 /*
2038 * Put the message on "sent" list using a ref from ceph_con_send().
2039 * It is put when the message is acked or revoked.
2040 */
2041 list_move_tail(&msg->list_head, &con->out_sent);
2042
2043 /*
2044 * Only assign outgoing seq # if we haven't sent this message
2045 * yet. If it is requeued, resend with it's original seq.
2046 */
2047 if (msg->needs_out_seq) {
2048 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2049 msg->needs_out_seq = false;
2050
2051 if (con->ops->reencode_message)
2052 con->ops->reencode_message(msg);
2053 }
2054
2055 /*
2056 * Get a ref for out_msg. It is put when we are done sending the
2057 * message or in case of a fault.
2058 */
2059 WARN_ON(con->out_msg);
2060 con->out_msg = ceph_msg_get(msg);
2061 }
2062
2063 /*
2064 * Free a generically kmalloc'd message.
2065 */
ceph_msg_free(struct ceph_msg * m)2066 static void ceph_msg_free(struct ceph_msg *m)
2067 {
2068 dout("%s %p\n", __func__, m);
2069 kvfree(m->front.iov_base);
2070 kfree(m->data);
2071 kmem_cache_free(ceph_msg_cache, m);
2072 }
2073
ceph_msg_release(struct kref * kref)2074 static void ceph_msg_release(struct kref *kref)
2075 {
2076 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2077 int i;
2078
2079 dout("%s %p\n", __func__, m);
2080 WARN_ON(!list_empty(&m->list_head));
2081
2082 msg_con_set(m, NULL);
2083
2084 /* drop middle, data, if any */
2085 if (m->middle) {
2086 ceph_buffer_put(m->middle);
2087 m->middle = NULL;
2088 }
2089
2090 for (i = 0; i < m->num_data_items; i++)
2091 ceph_msg_data_destroy(&m->data[i]);
2092
2093 if (m->pool)
2094 ceph_msgpool_put(m->pool, m);
2095 else
2096 ceph_msg_free(m);
2097 }
2098
ceph_msg_get(struct ceph_msg * msg)2099 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2100 {
2101 dout("%s %p (was %d)\n", __func__, msg,
2102 kref_read(&msg->kref));
2103 kref_get(&msg->kref);
2104 return msg;
2105 }
2106 EXPORT_SYMBOL(ceph_msg_get);
2107
ceph_msg_put(struct ceph_msg * msg)2108 void ceph_msg_put(struct ceph_msg *msg)
2109 {
2110 dout("%s %p (was %d)\n", __func__, msg,
2111 kref_read(&msg->kref));
2112 kref_put(&msg->kref, ceph_msg_release);
2113 }
2114 EXPORT_SYMBOL(ceph_msg_put);
2115
ceph_msg_dump(struct ceph_msg * msg)2116 void ceph_msg_dump(struct ceph_msg *msg)
2117 {
2118 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2119 msg->front_alloc_len, msg->data_length);
2120 print_hex_dump(KERN_DEBUG, "header: ",
2121 DUMP_PREFIX_OFFSET, 16, 1,
2122 &msg->hdr, sizeof(msg->hdr), true);
2123 print_hex_dump(KERN_DEBUG, " front: ",
2124 DUMP_PREFIX_OFFSET, 16, 1,
2125 msg->front.iov_base, msg->front.iov_len, true);
2126 if (msg->middle)
2127 print_hex_dump(KERN_DEBUG, "middle: ",
2128 DUMP_PREFIX_OFFSET, 16, 1,
2129 msg->middle->vec.iov_base,
2130 msg->middle->vec.iov_len, true);
2131 print_hex_dump(KERN_DEBUG, "footer: ",
2132 DUMP_PREFIX_OFFSET, 16, 1,
2133 &msg->footer, sizeof(msg->footer), true);
2134 }
2135 EXPORT_SYMBOL(ceph_msg_dump);
2136